ggml.c 741 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049220502205122052220532205422055220562205722058220592206022061220622206322064220652206622067220682206922070220712207222073220742207522076220772207822079220802208122082220832208422085220862208722088220892209022091220922209322094220952209622097220982209922100221012210222103221042210522106221072210822109221102211122112221132211422115221162211722118221192212022121221222212322124221252212622127221282212922130221312213222133221342213522136221372213822139221402214122142221432214422145221462214722148221492215022151221522215322154221552215622157221582215922160221612216222163221642216522166221672216822169221702217122172221732217422175221762217722178221792218022181221822218322184221852218622187221882218922190221912219222193221942219522196221972219822199222002220122202222032220422205222062220722208222092221022211222122221322214222152221622217222182221922220222212222222223222242222522226222272222822229222302223122232222332223422235222362223722238222392224022241222422224322244222452224622247222482224922250222512225222253222542225522256222572225822259222602226122262222632226422265222662226722268222692227022271222722227322274222752227622277222782227922280222812228222283222842228522286222872228822289222902229122292222932229422295222962229722298222992230022301223022230322304223052230622307223082230922310223112231222313223142231522316223172231822319223202232122322223232232422325223262232722328223292233022331223322233322334223352233622337223382233922340223412234222343223442234522346223472234822349223502235122352223532235422355223562235722358223592236022361223622236322364223652236622367223682236922370223712237222373223742237522376223772237822379223802238122382223832238422385223862238722388223892239022391223922239322394223952239622397223982239922400224012240222403224042240522406224072240822409224102241122412224132241422415224162241722418224192242022421224222242322424224252242622427224282242922430224312243222433224342243522436224372243822439224402244122442224432244422445224462244722448224492245022451224522245322454224552245622457224582245922460224612246222463224642246522466224672246822469224702247122472224732247422475224762247722478224792248022481224822248322484224852248622487224882248922490224912249222493224942249522496224972249822499225002250122502225032250422505225062250722508225092251022511225122251322514225152251622517225182251922520225212252222523225242252522526225272252822529225302253122532225332253422535225362253722538225392254022541225422254322544225452254622547225482254922550225512255222553225542255522556225572255822559225602256122562225632256422565225662256722568225692257022571225722257322574225752257622577225782257922580225812258222583225842258522586225872258822589225902259122592225932259422595225962259722598225992260022601226022260322604226052260622607226082260922610226112261222613226142261522616226172261822619226202262122622226232262422625226262262722628226292263022631226322263322634226352263622637226382263922640226412264222643226442264522646226472264822649226502265122652226532265422655226562265722658226592266022661226622266322664226652266622667226682266922670226712267222673226742267522676226772267822679226802268122682226832268422685226862268722688226892269022691226922269322694226952269622697226982269922700227012270222703227042270522706227072270822709227102271122712227132271422715227162271722718227192272022721227222272322724227252272622727227282272922730227312273222733227342273522736227372273822739227402274122742227432274422745227462274722748227492275022751227522275322754227552275622757227582275922760227612276222763227642276522766227672276822769227702277122772227732277422775227762277722778227792278022781227822278322784227852278622787227882278922790227912279222793227942279522796227972279822799228002280122802228032280422805228062280722808228092281022811228122281322814228152281622817228182281922820228212282222823228242282522826228272282822829228302283122832228332283422835228362283722838228392284022841228422284322844228452284622847228482284922850228512285222853228542285522856228572285822859228602286122862228632286422865228662286722868228692287022871228722287322874228752287622877228782287922880228812288222883228842288522886228872288822889228902289122892228932289422895228962289722898
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_OPENMP
  28. #include <omp.h>
  29. #endif
  30. #ifdef GGML_USE_METAL
  31. #include <unistd.h>
  32. #endif
  33. #ifdef __ARM_FEATURE_MATMUL_INT8
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include "sgemm.h"
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. #endif
  47. #if defined(_WIN32)
  48. #define WIN32_LEAN_AND_MEAN
  49. #ifndef NOMINMAX
  50. #define NOMINMAX
  51. #endif
  52. #include <windows.h>
  53. typedef volatile LONG atomic_int;
  54. typedef atomic_int atomic_bool;
  55. typedef atomic_int atomic_flag;
  56. #define ATOMIC_FLAG_INIT 0
  57. static void atomic_store(atomic_int * ptr, LONG val) {
  58. InterlockedExchange(ptr, val);
  59. }
  60. static LONG atomic_load(atomic_int * ptr) {
  61. return InterlockedCompareExchange(ptr, 0, 0);
  62. }
  63. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  64. return InterlockedExchangeAdd(ptr, inc);
  65. }
  66. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  67. return atomic_fetch_add(ptr, -(dec));
  68. }
  69. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  70. return InterlockedExchange(ptr, 1);
  71. }
  72. static void atomic_flag_clear(atomic_flag * ptr) {
  73. InterlockedExchange(ptr, 0);
  74. }
  75. typedef HANDLE pthread_t;
  76. typedef DWORD thread_ret_t;
  77. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  78. (void) unused;
  79. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  80. if (handle == NULL)
  81. {
  82. return EAGAIN;
  83. }
  84. *out = handle;
  85. return 0;
  86. }
  87. static int pthread_join(pthread_t thread, void * unused) {
  88. (void) unused;
  89. int ret = (int) WaitForSingleObject(thread, INFINITE);
  90. CloseHandle(thread);
  91. return ret;
  92. }
  93. static int sched_yield (void) {
  94. Sleep (0);
  95. return 0;
  96. }
  97. #else
  98. #include <pthread.h>
  99. #include <stdatomic.h>
  100. typedef void * thread_ret_t;
  101. #include <sys/types.h>
  102. #include <sys/stat.h>
  103. #include <unistd.h>
  104. #endif
  105. typedef pthread_t ggml_thread_t;
  106. #ifdef GGML_USE_CPU_HBM
  107. #include <hbwmalloc.h>
  108. #endif
  109. #if defined(__APPLE__)
  110. #include <TargetConditionals.h>
  111. #endif
  112. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  113. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  114. #include <sys/wait.h>
  115. void ggml_print_backtrace(void) {
  116. /*
  117. #include <execinfo.h>
  118. #include <dlfcn.h>
  119. void * trace[100];
  120. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  121. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  122. */
  123. // backtrack_symbols does not show line numbers, use gdb instead
  124. char attach[32];
  125. snprintf(attach, sizeof(attach), "attach %d", getpid());
  126. int pid = fork();
  127. if (pid == 0) {
  128. execlp("gdb", "gdb", "--batch",
  129. "-ex", "set style enabled on",
  130. "-ex", attach,
  131. "-ex", "bt -frame-info source-and-location",
  132. "-ex", "detach",
  133. "-ex", "quit",
  134. (char *) NULL);
  135. } else {
  136. waitpid(pid, NULL, 0);
  137. }
  138. }
  139. #else
  140. void ggml_print_backtrace(void) {
  141. // platform not supported
  142. }
  143. #endif
  144. /*#define GGML_PERF*/
  145. #define GGML_DEBUG 0
  146. #define GGML_GELU_FP16
  147. #define GGML_GELU_QUICK_FP16
  148. #define GGML_SOFT_MAX_UNROLL 4
  149. #define GGML_VEC_DOT_UNROLL 2
  150. #define GGML_VEC_MAD_UNROLL 32
  151. //
  152. // logging
  153. //
  154. #if (GGML_DEBUG >= 1)
  155. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  156. #else
  157. #define GGML_PRINT_DEBUG(...)
  158. #endif
  159. #if (GGML_DEBUG >= 5)
  160. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  161. #else
  162. #define GGML_PRINT_DEBUG_5(...)
  163. #endif
  164. #if (GGML_DEBUG >= 10)
  165. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  166. #else
  167. #define GGML_PRINT_DEBUG_10(...)
  168. #endif
  169. #define GGML_PRINT(...) printf(__VA_ARGS__)
  170. //
  171. // end of logging block
  172. //
  173. #ifdef GGML_USE_ACCELERATE
  174. // uncomment to use vDSP for soft max computation
  175. // note: not sure if it is actually faster
  176. //#define GGML_SOFT_MAX_ACCELERATE
  177. #endif
  178. #if defined(_MSC_VER) || defined(__MINGW32__)
  179. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  180. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  181. #else
  182. inline static void * ggml_aligned_malloc(size_t size) {
  183. if (size == 0) {
  184. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  185. return NULL;
  186. }
  187. void * aligned_memory = NULL;
  188. #ifdef GGML_USE_CPU_HBM
  189. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  190. #elif GGML_USE_METAL
  191. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  192. #else
  193. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  194. #endif
  195. if (result != 0) {
  196. // Handle allocation failure
  197. const char *error_desc = "unknown allocation error";
  198. switch (result) {
  199. case EINVAL:
  200. error_desc = "invalid alignment value";
  201. break;
  202. case ENOMEM:
  203. error_desc = "insufficient memory";
  204. break;
  205. }
  206. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. return NULL;
  209. }
  210. return aligned_memory;
  211. }
  212. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  213. #ifdef GGML_USE_CPU_HBM
  214. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  215. #else
  216. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  217. #endif
  218. #endif
  219. inline static void * ggml_malloc(size_t size) {
  220. if (size == 0) {
  221. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  222. return NULL;
  223. }
  224. void * result = malloc(size);
  225. if (result == NULL) {
  226. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  227. GGML_ASSERT(false);
  228. }
  229. return result;
  230. }
  231. // calloc
  232. inline static void * ggml_calloc(size_t num, size_t size) {
  233. if (num == 0 || size == 0) {
  234. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  235. return NULL;
  236. }
  237. void * result = calloc(num, size);
  238. if (result == NULL) {
  239. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  240. GGML_ASSERT(false);
  241. }
  242. return result;
  243. }
  244. #define GGML_MALLOC(size) ggml_malloc(size)
  245. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  246. #define GGML_FREE(ptr) free(ptr)
  247. #define UNUSED GGML_UNUSED
  248. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  249. #if defined(GGML_USE_ACCELERATE)
  250. #include <Accelerate/Accelerate.h>
  251. #elif defined(GGML_USE_OPENBLAS)
  252. #if defined(GGML_BLAS_USE_MKL)
  253. #include <mkl.h>
  254. #else
  255. #include <cblas.h>
  256. #endif
  257. #endif
  258. // floating point type used to accumulate sums
  259. typedef double ggml_float;
  260. #undef MIN
  261. #undef MAX
  262. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  263. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  264. //
  265. // global data
  266. //
  267. // precomputed gelu table for f16 (128 KB)
  268. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  269. // precomputed quick gelu table for f16 (128 KB)
  270. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  271. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  272. float ggml_table_f32_f16[1 << 16];
  273. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  274. switch (status) {
  275. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  276. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  277. case GGML_STATUS_SUCCESS: return "GGML status: success";
  278. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  279. }
  280. return "GGML status: unknown";
  281. }
  282. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  283. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  284. return GGML_FP16_TO_FP32(x);
  285. }
  286. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  287. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  288. return GGML_FP32_TO_FP16(x);
  289. }
  290. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  291. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  292. return GGML_BF16_TO_FP32(x); // it just left shifts
  293. }
  294. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  295. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  296. return GGML_FP32_TO_BF16(x);
  297. }
  298. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  299. for (int64_t i = 0; i < n; i++) {
  300. y[i] = GGML_FP16_TO_FP32(x[i]);
  301. }
  302. }
  303. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  304. int64_t i = 0;
  305. #if defined(__F16C__)
  306. for (; i + 7 < n; i += 8) {
  307. __m256 x_vec = _mm256_loadu_ps(x + i);
  308. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  309. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  310. }
  311. for(; i + 3 < n; i += 4) {
  312. __m128 x_vec = _mm_loadu_ps(x + i);
  313. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  314. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  315. }
  316. #endif
  317. for (; i < n; i++) {
  318. y[i] = GGML_FP32_TO_FP16(x[i]);
  319. }
  320. }
  321. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  322. int64_t i = 0;
  323. #if defined(__AVX512F__)
  324. for (; i + 16 <= n; i += 16) {
  325. _mm512_storeu_ps(y + i,
  326. _mm512_castsi512_ps(
  327. _mm512_slli_epi32(
  328. _mm512_cvtepu16_epi32(
  329. _mm256_loadu_si256(
  330. (const __m256i *)(x + i))),
  331. 16)));
  332. }
  333. #elif defined(__AVX2__)
  334. for (; i + 8 <= n; i += 8) {
  335. _mm256_storeu_ps(y + i,
  336. _mm256_castsi256_ps(
  337. _mm256_slli_epi32(
  338. _mm256_cvtepu16_epi32(
  339. _mm_loadu_si128(
  340. (const __m128i *)(x + i))),
  341. 16)));
  342. }
  343. #endif
  344. for (; i < n; i++) {
  345. y[i] = GGML_BF16_TO_FP32(x[i]);
  346. }
  347. }
  348. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  349. int i = 0;
  350. #if defined(__AVX512BF16__)
  351. for (; i + 32 <= n; i += 32) {
  352. _mm512_storeu_si512(
  353. (__m512i *)(y + i),
  354. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  355. _mm512_loadu_ps(x + i))));
  356. }
  357. #endif
  358. for (; i < n; i++) {
  359. y[i] = GGML_FP32_TO_BF16(x[i]);
  360. }
  361. }
  362. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  363. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  364. }
  365. //
  366. // timing
  367. //
  368. #if defined(_MSC_VER) || defined(__MINGW32__)
  369. static int64_t timer_freq, timer_start;
  370. void ggml_time_init(void) {
  371. LARGE_INTEGER t;
  372. QueryPerformanceFrequency(&t);
  373. timer_freq = t.QuadPart;
  374. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  375. // and the uptime is high enough.
  376. // We subtract the program start time to reduce the likelihood of that happening.
  377. QueryPerformanceCounter(&t);
  378. timer_start = t.QuadPart;
  379. }
  380. int64_t ggml_time_ms(void) {
  381. LARGE_INTEGER t;
  382. QueryPerformanceCounter(&t);
  383. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  384. }
  385. int64_t ggml_time_us(void) {
  386. LARGE_INTEGER t;
  387. QueryPerformanceCounter(&t);
  388. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  389. }
  390. #else
  391. void ggml_time_init(void) {}
  392. int64_t ggml_time_ms(void) {
  393. struct timespec ts;
  394. clock_gettime(CLOCK_MONOTONIC, &ts);
  395. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  396. }
  397. int64_t ggml_time_us(void) {
  398. struct timespec ts;
  399. clock_gettime(CLOCK_MONOTONIC, &ts);
  400. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  401. }
  402. #endif
  403. int64_t ggml_cycles(void) {
  404. return clock();
  405. }
  406. int64_t ggml_cycles_per_ms(void) {
  407. return CLOCKS_PER_SEC/1000;
  408. }
  409. #ifdef GGML_PERF
  410. #define ggml_perf_time_ms() ggml_time_ms()
  411. #define ggml_perf_time_us() ggml_time_us()
  412. #define ggml_perf_cycles() ggml_cycles()
  413. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  414. #else
  415. #define ggml_perf_time_ms() 0
  416. #define ggml_perf_time_us() 0
  417. #define ggml_perf_cycles() 0
  418. #define ggml_perf_cycles_per_ms() 0
  419. #endif
  420. //
  421. // cross-platform UTF-8 file paths
  422. //
  423. #ifdef _WIN32
  424. static wchar_t * ggml_mbstowcs(const char * mbs) {
  425. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  426. if (!wlen) {
  427. errno = EINVAL;
  428. return NULL;
  429. }
  430. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  431. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  432. if (!wlen) {
  433. GGML_FREE(wbuf);
  434. errno = EINVAL;
  435. return NULL;
  436. }
  437. return wbuf;
  438. }
  439. #endif
  440. FILE * ggml_fopen(const char * fname, const char * mode) {
  441. #ifdef _WIN32
  442. FILE * file = NULL;
  443. // convert fname (UTF-8)
  444. wchar_t * wfname = ggml_mbstowcs(fname);
  445. if (wfname) {
  446. // convert mode (ANSI)
  447. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  448. wchar_t * wmode_p = wmode;
  449. do {
  450. *wmode_p++ = (wchar_t)*mode;
  451. } while (*mode++);
  452. // open file
  453. file = _wfopen(wfname, wmode);
  454. GGML_FREE(wfname);
  455. GGML_FREE(wmode);
  456. }
  457. return file;
  458. #else
  459. return fopen(fname, mode);
  460. #endif
  461. }
  462. //
  463. // cache line
  464. //
  465. #if defined(__cpp_lib_hardware_interference_size)
  466. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  467. #else
  468. #if defined(__POWER9_VECTOR__)
  469. #define CACHE_LINE_SIZE 128
  470. #else
  471. #define CACHE_LINE_SIZE 64
  472. #endif
  473. #endif
  474. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  475. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  476. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  477. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  478. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  479. [GGML_TYPE_I8] = {
  480. .type_name = "i8",
  481. .blck_size = 1,
  482. .type_size = sizeof(int8_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_I16] = {
  486. .type_name = "i16",
  487. .blck_size = 1,
  488. .type_size = sizeof(int16_t),
  489. .is_quantized = false,
  490. },
  491. [GGML_TYPE_I32] = {
  492. .type_name = "i32",
  493. .blck_size = 1,
  494. .type_size = sizeof(int32_t),
  495. .is_quantized = false,
  496. },
  497. [GGML_TYPE_I64] = {
  498. .type_name = "i64",
  499. .blck_size = 1,
  500. .type_size = sizeof(int64_t),
  501. .is_quantized = false,
  502. },
  503. [GGML_TYPE_F64] = {
  504. .type_name = "f64",
  505. .blck_size = 1,
  506. .type_size = sizeof(double),
  507. .is_quantized = false,
  508. .nrows = 1,
  509. },
  510. [GGML_TYPE_F32] = {
  511. .type_name = "f32",
  512. .blck_size = 1,
  513. .type_size = sizeof(float),
  514. .is_quantized = false,
  515. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  516. .vec_dot_type = GGML_TYPE_F32,
  517. .nrows = 1,
  518. },
  519. [GGML_TYPE_F16] = {
  520. .type_name = "f16",
  521. .blck_size = 1,
  522. .type_size = sizeof(ggml_fp16_t),
  523. .is_quantized = false,
  524. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  525. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  526. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  527. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  528. .vec_dot_type = GGML_TYPE_F16,
  529. .nrows = 1,
  530. },
  531. [GGML_TYPE_Q4_0] = {
  532. .type_name = "q4_0",
  533. .blck_size = QK4_0,
  534. .type_size = sizeof(block_q4_0),
  535. .is_quantized = true,
  536. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  537. .from_float = quantize_row_q4_0,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  539. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  540. .vec_dot_type = GGML_TYPE_Q8_0,
  541. #if defined (__ARM_FEATURE_MATMUL_INT8)
  542. .nrows = 2,
  543. #else
  544. .nrows = 1,
  545. #endif
  546. },
  547. [GGML_TYPE_Q4_1] = {
  548. .type_name = "q4_1",
  549. .blck_size = QK4_1,
  550. .type_size = sizeof(block_q4_1),
  551. .is_quantized = true,
  552. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  553. .from_float = quantize_row_q4_1,
  554. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  555. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  556. .vec_dot_type = GGML_TYPE_Q8_1,
  557. #if defined (__ARM_FEATURE_MATMUL_INT8)
  558. .nrows = 2,
  559. #else
  560. .nrows = 1,
  561. #endif
  562. },
  563. [4] = { // GGML_TYPE_Q4_2
  564. .type_name = "DEPRECATED",
  565. .blck_size = 0,
  566. .type_size = 0,
  567. .is_quantized = false,
  568. .to_float = NULL,
  569. .from_float = NULL,
  570. .from_float_reference = NULL,
  571. .vec_dot = NULL,
  572. .vec_dot_type = GGML_TYPE_COUNT,
  573. .nrows = 1,
  574. },
  575. [5] = { // GGML_TYPE_Q4_3
  576. .type_name = "DEPRECATED",
  577. .blck_size = 0,
  578. .type_size = 0,
  579. .is_quantized = false,
  580. .to_float = NULL,
  581. .from_float = NULL,
  582. .from_float_reference = NULL,
  583. .vec_dot = NULL,
  584. .vec_dot_type = GGML_TYPE_COUNT,
  585. .nrows = 1,
  586. },
  587. [GGML_TYPE_Q5_0] = {
  588. .type_name = "q5_0",
  589. .blck_size = QK5_0,
  590. .type_size = sizeof(block_q5_0),
  591. .is_quantized = true,
  592. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  593. .from_float = quantize_row_q5_0,
  594. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  595. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  596. .vec_dot_type = GGML_TYPE_Q8_0,
  597. .nrows = 1,
  598. },
  599. [GGML_TYPE_Q5_1] = {
  600. .type_name = "q5_1",
  601. .blck_size = QK5_1,
  602. .type_size = sizeof(block_q5_1),
  603. .is_quantized = true,
  604. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  605. .from_float = quantize_row_q5_1,
  606. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  607. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  608. .vec_dot_type = GGML_TYPE_Q8_1,
  609. .nrows = 1,
  610. },
  611. [GGML_TYPE_Q8_0] = {
  612. .type_name = "q8_0",
  613. .blck_size = QK8_0,
  614. .type_size = sizeof(block_q8_0),
  615. .is_quantized = true,
  616. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  617. .from_float = quantize_row_q8_0,
  618. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  619. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  620. .vec_dot_type = GGML_TYPE_Q8_0,
  621. #if defined (__ARM_FEATURE_MATMUL_INT8)
  622. .nrows = 2,
  623. #else
  624. .nrows = 1,
  625. #endif
  626. },
  627. [GGML_TYPE_Q8_1] = {
  628. .type_name = "q8_1",
  629. .blck_size = QK8_1,
  630. .type_size = sizeof(block_q8_1),
  631. .is_quantized = true,
  632. .from_float = quantize_row_q8_1,
  633. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  634. .vec_dot_type = GGML_TYPE_Q8_1,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_Q2_K] = {
  638. .type_name = "q2_K",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_q2_K),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  643. .from_float = quantize_row_q2_K,
  644. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  645. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_Q3_K] = {
  650. .type_name = "q3_K",
  651. .blck_size = QK_K,
  652. .type_size = sizeof(block_q3_K),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  655. .from_float = quantize_row_q3_K,
  656. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  657. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  658. .vec_dot_type = GGML_TYPE_Q8_K,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_Q4_K] = {
  662. .type_name = "q4_K",
  663. .blck_size = QK_K,
  664. .type_size = sizeof(block_q4_K),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  667. .from_float = quantize_row_q4_K,
  668. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  669. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  670. .vec_dot_type = GGML_TYPE_Q8_K,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_Q5_K] = {
  674. .type_name = "q5_K",
  675. .blck_size = QK_K,
  676. .type_size = sizeof(block_q5_K),
  677. .is_quantized = true,
  678. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  679. .from_float = quantize_row_q5_K,
  680. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  681. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  682. .vec_dot_type = GGML_TYPE_Q8_K,
  683. .nrows = 1,
  684. },
  685. [GGML_TYPE_Q6_K] = {
  686. .type_name = "q6_K",
  687. .blck_size = QK_K,
  688. .type_size = sizeof(block_q6_K),
  689. .is_quantized = true,
  690. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  691. .from_float = quantize_row_q6_K,
  692. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  693. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  694. .vec_dot_type = GGML_TYPE_Q8_K,
  695. .nrows = 1,
  696. },
  697. [GGML_TYPE_IQ2_XXS] = {
  698. .type_name = "iq2_xxs",
  699. .blck_size = QK_K,
  700. .type_size = sizeof(block_iq2_xxs),
  701. .is_quantized = true,
  702. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  703. .from_float = NULL,
  704. .from_float_reference = NULL,
  705. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  706. .vec_dot_type = GGML_TYPE_Q8_K,
  707. .nrows = 1,
  708. },
  709. [GGML_TYPE_IQ2_XS] = {
  710. .type_name = "iq2_xs",
  711. .blck_size = QK_K,
  712. .type_size = sizeof(block_iq2_xs),
  713. .is_quantized = true,
  714. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  715. .from_float = NULL,
  716. .from_float_reference = NULL,
  717. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  718. .vec_dot_type = GGML_TYPE_Q8_K,
  719. .nrows = 1,
  720. },
  721. [GGML_TYPE_IQ3_XXS] = {
  722. .type_name = "iq3_xxs",
  723. .blck_size = QK_K,
  724. .type_size = sizeof(block_iq3_xxs),
  725. .is_quantized = true,
  726. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  727. .from_float = quantize_row_iq3_xxs,
  728. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  729. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  730. .vec_dot_type = GGML_TYPE_Q8_K,
  731. .nrows = 1,
  732. },
  733. [GGML_TYPE_IQ3_S] = {
  734. .type_name = "iq3_s",
  735. .blck_size = QK_K,
  736. .type_size = sizeof(block_iq3_s),
  737. .is_quantized = true,
  738. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  739. .from_float = quantize_row_iq3_s,
  740. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  741. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  742. .vec_dot_type = GGML_TYPE_Q8_K,
  743. .nrows = 1,
  744. },
  745. [GGML_TYPE_IQ2_S] = {
  746. .type_name = "iq2_s",
  747. .blck_size = QK_K,
  748. .type_size = sizeof(block_iq2_s),
  749. .is_quantized = true,
  750. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  751. .from_float = quantize_row_iq2_s,
  752. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  753. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  754. .vec_dot_type = GGML_TYPE_Q8_K,
  755. .nrows = 1,
  756. },
  757. [GGML_TYPE_IQ1_S] = {
  758. .type_name = "iq1_s",
  759. .blck_size = QK_K,
  760. .type_size = sizeof(block_iq1_s),
  761. .is_quantized = true,
  762. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  763. .from_float = NULL,
  764. .from_float_reference = NULL,
  765. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  766. .vec_dot_type = GGML_TYPE_Q8_K,
  767. .nrows = 1,
  768. },
  769. [GGML_TYPE_IQ1_M] = {
  770. .type_name = "iq1_m",
  771. .blck_size = QK_K,
  772. .type_size = sizeof(block_iq1_m),
  773. .is_quantized = true,
  774. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  775. .from_float = NULL,
  776. .from_float_reference = NULL,
  777. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  778. .vec_dot_type = GGML_TYPE_Q8_K,
  779. .nrows = 1,
  780. },
  781. [GGML_TYPE_IQ4_NL] = {
  782. .type_name = "iq4_nl",
  783. .blck_size = QK4_NL,
  784. .type_size = sizeof(block_iq4_nl),
  785. .is_quantized = true,
  786. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  787. .from_float = quantize_row_iq4_nl,
  788. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  789. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  790. .vec_dot_type = GGML_TYPE_Q8_0,
  791. .nrows = 1,
  792. },
  793. [GGML_TYPE_IQ4_XS] = {
  794. .type_name = "iq4_xs",
  795. .blck_size = QK_K,
  796. .type_size = sizeof(block_iq4_xs),
  797. .is_quantized = true,
  798. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  799. .from_float = quantize_row_iq4_xs,
  800. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  801. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  802. .vec_dot_type = GGML_TYPE_Q8_K,
  803. .nrows = 1,
  804. },
  805. [GGML_TYPE_Q8_K] = {
  806. .type_name = "q8_K",
  807. .blck_size = QK_K,
  808. .type_size = sizeof(block_q8_K),
  809. .is_quantized = true,
  810. .from_float = quantize_row_q8_K,
  811. },
  812. [GGML_TYPE_BF16] = {
  813. .type_name = "bf16",
  814. .blck_size = 1,
  815. .type_size = sizeof(ggml_bf16_t),
  816. .is_quantized = false,
  817. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  818. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  819. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  820. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  821. .vec_dot_type = GGML_TYPE_BF16,
  822. .nrows = 1,
  823. }
  824. };
  825. // For internal test use
  826. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  827. GGML_ASSERT(type < GGML_TYPE_COUNT);
  828. return type_traits[type];
  829. }
  830. //
  831. // simd mappings
  832. //
  833. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  834. // we then implement the fundamental computation operations below using only these macros
  835. // adding support for new architectures requires to define the corresponding SIMD macros
  836. //
  837. // GGML_F32_STEP / GGML_F16_STEP
  838. // number of elements to process in a single step
  839. //
  840. // GGML_F32_EPR / GGML_F16_EPR
  841. // number of elements to fit in a single register
  842. //
  843. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  844. #define GGML_SIMD
  845. // F32 NEON
  846. #define GGML_F32_STEP 16
  847. #define GGML_F32_EPR 4
  848. #define GGML_F32x4 float32x4_t
  849. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  850. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  851. #define GGML_F32x4_LOAD vld1q_f32
  852. #define GGML_F32x4_STORE vst1q_f32
  853. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  854. #define GGML_F32x4_ADD vaddq_f32
  855. #define GGML_F32x4_MUL vmulq_f32
  856. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  857. #define GGML_F32x4_REDUCE(res, x) \
  858. { \
  859. int offset = GGML_F32_ARR >> 1; \
  860. for (int i = 0; i < offset; ++i) { \
  861. x[i] = vaddq_f32(x[i], x[offset+i]); \
  862. } \
  863. offset >>= 1; \
  864. for (int i = 0; i < offset; ++i) { \
  865. x[i] = vaddq_f32(x[i], x[offset+i]); \
  866. } \
  867. offset >>= 1; \
  868. for (int i = 0; i < offset; ++i) { \
  869. x[i] = vaddq_f32(x[i], x[offset+i]); \
  870. } \
  871. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  872. }
  873. #define GGML_F32_VEC GGML_F32x4
  874. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  875. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  876. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  877. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  878. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  879. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  880. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  881. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  882. // F16 NEON
  883. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  884. #define GGML_F16_STEP 32
  885. #define GGML_F16_EPR 8
  886. #define GGML_F16x8 float16x8_t
  887. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  888. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  889. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  890. #define GGML_F16x8_STORE vst1q_f16
  891. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  892. #define GGML_F16x8_ADD vaddq_f16
  893. #define GGML_F16x8_MUL vmulq_f16
  894. #define GGML_F16x8_REDUCE(res, x) \
  895. do { \
  896. int offset = GGML_F16_ARR >> 1; \
  897. for (int i = 0; i < offset; ++i) { \
  898. x[i] = vaddq_f16(x[i], x[offset+i]); \
  899. } \
  900. offset >>= 1; \
  901. for (int i = 0; i < offset; ++i) { \
  902. x[i] = vaddq_f16(x[i], x[offset+i]); \
  903. } \
  904. offset >>= 1; \
  905. for (int i = 0; i < offset; ++i) { \
  906. x[i] = vaddq_f16(x[i], x[offset+i]); \
  907. } \
  908. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  909. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  910. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  911. } while (0)
  912. #define GGML_F16_VEC GGML_F16x8
  913. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  914. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  915. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  916. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  917. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  918. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  919. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  920. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  921. #else
  922. // if FP16 vector arithmetic is not supported, we use FP32 instead
  923. // and take advantage of the vcvt_ functions to convert to/from FP16
  924. #define GGML_F16_STEP 16
  925. #define GGML_F16_EPR 4
  926. #define GGML_F32Cx4 float32x4_t
  927. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  928. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  929. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  930. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  931. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  932. #define GGML_F32Cx4_ADD vaddq_f32
  933. #define GGML_F32Cx4_MUL vmulq_f32
  934. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  935. #define GGML_F16_VEC GGML_F32Cx4
  936. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  937. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  938. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  939. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  940. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  941. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  942. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  943. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  944. #endif
  945. #elif defined(__AVX512F__)
  946. #define GGML_SIMD
  947. // F32 AVX512
  948. #define GGML_F32_STEP 64
  949. #define GGML_F32_EPR 16
  950. #define GGML_F32x16 __m512
  951. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  952. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  953. #define GGML_F32x16_LOAD _mm512_loadu_ps
  954. #define GGML_F32x16_STORE _mm512_storeu_ps
  955. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  956. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  957. #define GGML_F32x16_ADD _mm512_add_ps
  958. #define GGML_F32x16_MUL _mm512_mul_ps
  959. #define GGML_F32x16_REDUCE(res, x) \
  960. do { \
  961. int offset = GGML_F32_ARR >> 1; \
  962. for (int i = 0; i < offset; ++i) { \
  963. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  964. } \
  965. offset >>= 1; \
  966. for (int i = 0; i < offset; ++i) { \
  967. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  968. } \
  969. offset >>= 1; \
  970. for (int i = 0; i < offset; ++i) { \
  971. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  972. } \
  973. res = _mm512_reduce_add_ps(x[0]); \
  974. } while (0)
  975. // TODO: is this optimal ?
  976. #define GGML_F32_VEC GGML_F32x16
  977. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  978. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  979. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  980. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  981. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  982. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  983. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  984. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  985. // F16 AVX512
  986. // F16 AVX
  987. #define GGML_F16_STEP 64
  988. #define GGML_F16_EPR 16
  989. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  990. #define GGML_F32Cx16 __m512
  991. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  992. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  993. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  994. // so F16C guard isn't required
  995. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  996. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  997. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  998. #define GGML_F32Cx16_ADD _mm512_add_ps
  999. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1000. #define GGML_F32Cx16_REDUCE(res, x) \
  1001. do { \
  1002. int offset = GGML_F32_ARR >> 1; \
  1003. for (int i = 0; i < offset; ++i) { \
  1004. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1005. } \
  1006. offset >>= 1; \
  1007. for (int i = 0; i < offset; ++i) { \
  1008. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1009. } \
  1010. offset >>= 1; \
  1011. for (int i = 0; i < offset; ++i) { \
  1012. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1013. } \
  1014. res = _mm512_reduce_add_ps(x[0]); \
  1015. } while (0)
  1016. #define GGML_F16_VEC GGML_F32Cx16
  1017. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1018. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1019. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1020. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1021. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1022. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1023. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1024. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1025. #elif defined(__AVX__)
  1026. #define GGML_SIMD
  1027. // F32 AVX
  1028. #define GGML_F32_STEP 32
  1029. #define GGML_F32_EPR 8
  1030. #define GGML_F32x8 __m256
  1031. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1032. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1033. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1034. #define GGML_F32x8_STORE _mm256_storeu_ps
  1035. #if defined(__FMA__)
  1036. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1037. #else
  1038. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1039. #endif
  1040. #define GGML_F32x8_ADD _mm256_add_ps
  1041. #define GGML_F32x8_MUL _mm256_mul_ps
  1042. #define GGML_F32x8_REDUCE(res, x) \
  1043. do { \
  1044. int offset = GGML_F32_ARR >> 1; \
  1045. for (int i = 0; i < offset; ++i) { \
  1046. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1047. } \
  1048. offset >>= 1; \
  1049. for (int i = 0; i < offset; ++i) { \
  1050. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1051. } \
  1052. offset >>= 1; \
  1053. for (int i = 0; i < offset; ++i) { \
  1054. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1055. } \
  1056. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1057. _mm256_extractf128_ps(x[0], 1)); \
  1058. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1059. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1060. } while (0)
  1061. // TODO: is this optimal ?
  1062. #define GGML_F32_VEC GGML_F32x8
  1063. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1064. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1065. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1066. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1067. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1068. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1069. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1070. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1071. // F16 AVX
  1072. #define GGML_F16_STEP 32
  1073. #define GGML_F16_EPR 8
  1074. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1075. #define GGML_F32Cx8 __m256
  1076. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1077. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1078. #if defined(__F16C__)
  1079. // the _mm256_cvt intrinsics require F16C
  1080. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1081. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1082. #else
  1083. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1084. float tmp[8];
  1085. for (int i = 0; i < 8; i++) {
  1086. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1087. }
  1088. return _mm256_loadu_ps(tmp);
  1089. }
  1090. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1091. float arr[8];
  1092. _mm256_storeu_ps(arr, y);
  1093. for (int i = 0; i < 8; i++)
  1094. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1095. }
  1096. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1097. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1098. #endif
  1099. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1100. #define GGML_F32Cx8_ADD _mm256_add_ps
  1101. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1102. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1103. #define GGML_F16_VEC GGML_F32Cx8
  1104. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1105. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1106. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1107. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1108. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1109. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1110. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1111. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1112. #elif defined(__POWER9_VECTOR__)
  1113. #define GGML_SIMD
  1114. // F32 POWER9
  1115. #define GGML_F32_STEP 32
  1116. #define GGML_F32_EPR 4
  1117. #define GGML_F32x4 vector float
  1118. #define GGML_F32x4_ZERO 0.0f
  1119. #define GGML_F32x4_SET1 vec_splats
  1120. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1121. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1122. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1123. #define GGML_F32x4_ADD vec_add
  1124. #define GGML_F32x4_MUL vec_mul
  1125. #define GGML_F32x4_REDUCE(res, x) \
  1126. { \
  1127. int offset = GGML_F32_ARR >> 1; \
  1128. for (int i = 0; i < offset; ++i) { \
  1129. x[i] = vec_add(x[i], x[offset+i]); \
  1130. } \
  1131. offset >>= 1; \
  1132. for (int i = 0; i < offset; ++i) { \
  1133. x[i] = vec_add(x[i], x[offset+i]); \
  1134. } \
  1135. offset >>= 1; \
  1136. for (int i = 0; i < offset; ++i) { \
  1137. x[i] = vec_add(x[i], x[offset+i]); \
  1138. } \
  1139. res = vec_extract(x[0], 0) + \
  1140. vec_extract(x[0], 1) + \
  1141. vec_extract(x[0], 2) + \
  1142. vec_extract(x[0], 3); \
  1143. }
  1144. #define GGML_F32_VEC GGML_F32x4
  1145. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1146. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1147. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1148. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1149. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1150. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1151. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1152. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1153. // F16 POWER9
  1154. #define GGML_F16_STEP GGML_F32_STEP
  1155. #define GGML_F16_EPR GGML_F32_EPR
  1156. #define GGML_F16_VEC GGML_F32x4
  1157. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1158. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1159. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1160. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1161. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1162. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1163. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1164. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1165. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1166. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1167. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1168. #define GGML_F16_VEC_STORE(p, r, i) \
  1169. if (i & 0x1) \
  1170. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1171. r[i - GGML_ENDIAN_BYTE(0)]), \
  1172. 0, p - GGML_F16_EPR)
  1173. #elif defined(__wasm_simd128__)
  1174. #define GGML_SIMD
  1175. // F32 WASM
  1176. #define GGML_F32_STEP 16
  1177. #define GGML_F32_EPR 4
  1178. #define GGML_F32x4 v128_t
  1179. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1180. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1181. #define GGML_F32x4_LOAD wasm_v128_load
  1182. #define GGML_F32x4_STORE wasm_v128_store
  1183. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1184. #define GGML_F32x4_ADD wasm_f32x4_add
  1185. #define GGML_F32x4_MUL wasm_f32x4_mul
  1186. #define GGML_F32x4_REDUCE(res, x) \
  1187. { \
  1188. int offset = GGML_F32_ARR >> 1; \
  1189. for (int i = 0; i < offset; ++i) { \
  1190. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1191. } \
  1192. offset >>= 1; \
  1193. for (int i = 0; i < offset; ++i) { \
  1194. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1195. } \
  1196. offset >>= 1; \
  1197. for (int i = 0; i < offset; ++i) { \
  1198. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1199. } \
  1200. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1201. wasm_f32x4_extract_lane(x[0], 1) + \
  1202. wasm_f32x4_extract_lane(x[0], 2) + \
  1203. wasm_f32x4_extract_lane(x[0], 3); \
  1204. }
  1205. #define GGML_F32_VEC GGML_F32x4
  1206. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1207. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1208. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1209. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1210. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1211. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1212. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1213. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1214. // F16 WASM
  1215. #define GGML_F16_STEP 16
  1216. #define GGML_F16_EPR 4
  1217. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1218. float tmp[4];
  1219. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1220. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1221. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1222. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1223. return wasm_v128_load(tmp);
  1224. }
  1225. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1226. float tmp[4];
  1227. wasm_v128_store(tmp, x);
  1228. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1229. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1230. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1231. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1232. }
  1233. #define GGML_F16x4 v128_t
  1234. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1235. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1236. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1237. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1238. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1239. #define GGML_F16x4_ADD wasm_f32x4_add
  1240. #define GGML_F16x4_MUL wasm_f32x4_mul
  1241. #define GGML_F16x4_REDUCE(res, x) \
  1242. { \
  1243. int offset = GGML_F16_ARR >> 1; \
  1244. for (int i = 0; i < offset; ++i) { \
  1245. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1246. } \
  1247. offset >>= 1; \
  1248. for (int i = 0; i < offset; ++i) { \
  1249. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1250. } \
  1251. offset >>= 1; \
  1252. for (int i = 0; i < offset; ++i) { \
  1253. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1254. } \
  1255. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1256. wasm_f32x4_extract_lane(x[0], 1) + \
  1257. wasm_f32x4_extract_lane(x[0], 2) + \
  1258. wasm_f32x4_extract_lane(x[0], 3); \
  1259. }
  1260. #define GGML_F16_VEC GGML_F16x4
  1261. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1262. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1263. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1264. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1265. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1266. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1267. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1268. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1269. #elif defined(__SSE3__)
  1270. #define GGML_SIMD
  1271. // F32 SSE
  1272. #define GGML_F32_STEP 32
  1273. #define GGML_F32_EPR 4
  1274. #define GGML_F32x4 __m128
  1275. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1276. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1277. #define GGML_F32x4_LOAD _mm_loadu_ps
  1278. #define GGML_F32x4_STORE _mm_storeu_ps
  1279. #if defined(__FMA__)
  1280. // TODO: Does this work?
  1281. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1282. #else
  1283. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1284. #endif
  1285. #define GGML_F32x4_ADD _mm_add_ps
  1286. #define GGML_F32x4_MUL _mm_mul_ps
  1287. #define GGML_F32x4_REDUCE(res, x) \
  1288. { \
  1289. int offset = GGML_F32_ARR >> 1; \
  1290. for (int i = 0; i < offset; ++i) { \
  1291. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1292. } \
  1293. offset >>= 1; \
  1294. for (int i = 0; i < offset; ++i) { \
  1295. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1296. } \
  1297. offset >>= 1; \
  1298. for (int i = 0; i < offset; ++i) { \
  1299. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1300. } \
  1301. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1302. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1303. }
  1304. // TODO: is this optimal ?
  1305. #define GGML_F32_VEC GGML_F32x4
  1306. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1307. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1308. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1309. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1310. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1311. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1312. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1313. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1314. // F16 SSE
  1315. #define GGML_F16_STEP 32
  1316. #define GGML_F16_EPR 4
  1317. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1318. float tmp[4];
  1319. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1320. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1321. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1322. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1323. return _mm_loadu_ps(tmp);
  1324. }
  1325. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1326. float arr[4];
  1327. _mm_storeu_ps(arr, y);
  1328. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1329. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1330. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1331. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1332. }
  1333. #define GGML_F32Cx4 __m128
  1334. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1335. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1336. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1337. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1338. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1339. #define GGML_F32Cx4_ADD _mm_add_ps
  1340. #define GGML_F32Cx4_MUL _mm_mul_ps
  1341. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1342. #define GGML_F16_VEC GGML_F32Cx4
  1343. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1344. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1345. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1346. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1347. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1348. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1349. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1350. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1351. #elif defined(__loongarch_asx)
  1352. #define GGML_SIMD
  1353. // F32 LASX
  1354. #define GGML_F32_STEP 32
  1355. #define GGML_F32_EPR 8
  1356. #define GGML_F32x8 __m256
  1357. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1358. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1359. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1360. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1361. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1362. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1363. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1364. #define GGML_F32x8_REDUCE(res, x) \
  1365. do { \
  1366. int offset = GGML_F32_ARR >> 1; \
  1367. for (int i = 0; i < offset; ++i) { \
  1368. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1369. } \
  1370. offset >>= 1; \
  1371. for (int i = 0; i < offset; ++i) { \
  1372. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1373. } \
  1374. offset >>= 1; \
  1375. for (int i = 0; i < offset; ++i) { \
  1376. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1377. } \
  1378. float *tmp_p = (float *)&x[0]; \
  1379. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1380. } while (0)
  1381. // TODO: is this optimal ?
  1382. #define GGML_F32_VEC GGML_F32x8
  1383. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1384. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1385. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1386. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1387. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1388. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1389. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1390. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1391. // F16 LASX
  1392. #define GGML_F16_STEP 32
  1393. #define GGML_F16_EPR 8
  1394. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1395. #define GGML_F32Cx8 __m256
  1396. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1397. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1398. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1399. float tmp[8];
  1400. for (int i = 0; i < 8; i++) {
  1401. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1402. }
  1403. return (__m256)__lasx_xvld(tmp, 0);
  1404. }
  1405. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1406. float arr[8];
  1407. __lasx_xvst(y, arr, 0);
  1408. for (int i = 0; i < 8; i++) {
  1409. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1410. }
  1411. }
  1412. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1413. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1414. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1415. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1416. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1417. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1418. #define GGML_F16_VEC GGML_F32Cx8
  1419. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1420. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1421. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1422. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1423. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1424. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1425. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1426. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1427. #elif defined(__loongarch_sx)
  1428. #define GGML_SIMD
  1429. // F32 LSX
  1430. #define GGML_F32_STEP 32
  1431. #define GGML_F32_EPR 4
  1432. #define GGML_F32x4 __m128
  1433. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1434. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1435. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1436. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1437. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1438. #define GGML_F32x4_ADD __lsx_vfadd_s
  1439. #define GGML_F32x4_MUL __lsx_vfmul_s
  1440. #define GGML_F32x4_REDUCE(res, x) \
  1441. { \
  1442. int offset = GGML_F32_ARR >> 1; \
  1443. for (int i = 0; i < offset; ++i) { \
  1444. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1445. } \
  1446. offset >>= 1; \
  1447. for (int i = 0; i < offset; ++i) { \
  1448. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1449. } \
  1450. offset >>= 1; \
  1451. for (int i = 0; i < offset; ++i) { \
  1452. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1453. } \
  1454. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1455. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1456. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1457. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1458. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1459. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1460. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1461. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1462. }
  1463. #define GGML_F32_VEC GGML_F32x4
  1464. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1465. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1466. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1467. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1468. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1469. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1470. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1471. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1472. // F16 LSX
  1473. #define GGML_F16_STEP 32
  1474. #define GGML_F16_EPR 4
  1475. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1476. float tmp[4];
  1477. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1478. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1479. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1480. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1481. return __lsx_vld(tmp, 0);
  1482. }
  1483. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1484. float arr[4];
  1485. __lsx_vst(y, arr, 0);
  1486. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1487. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1488. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1489. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1490. }
  1491. #define GGML_F32Cx4 __m128
  1492. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1493. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1494. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1495. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1496. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1497. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1498. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1499. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1500. #define GGML_F16_VEC GGML_F32Cx4
  1501. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1502. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1503. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1504. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1505. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1506. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1507. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1508. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1509. #endif
  1510. // GGML_F32_ARR / GGML_F16_ARR
  1511. // number of registers to use per step
  1512. #ifdef GGML_SIMD
  1513. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1514. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1515. #endif
  1516. //
  1517. // ggml context
  1518. //
  1519. struct ggml_context {
  1520. size_t mem_size;
  1521. void* mem_buffer;
  1522. bool mem_buffer_owned;
  1523. bool no_alloc;
  1524. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1525. int n_objects;
  1526. struct ggml_object* objects_begin;
  1527. struct ggml_object* objects_end;
  1528. struct ggml_scratch scratch;
  1529. struct ggml_scratch scratch_save;
  1530. };
  1531. struct ggml_context_container {
  1532. bool used;
  1533. struct ggml_context context;
  1534. };
  1535. struct ggml_compute_state_shared {
  1536. const struct ggml_cgraph* cgraph;
  1537. const struct ggml_cplan* cplan;
  1538. int64_t perf_node_start_cycles;
  1539. int64_t perf_node_start_time_us;
  1540. int n_threads;
  1541. // synchronization primitives
  1542. atomic_int n_active; // num active threads
  1543. atomic_int node_n; // active graph node
  1544. atomic_int node_task; // active graph node task phase
  1545. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1546. void* abort_callback_data;
  1547. atomic_int current_chunk; // currently processing chunk during Mat_Mul, shared between all the threads.
  1548. };
  1549. struct ggml_compute_state {
  1550. ggml_thread_t thrd;
  1551. int ith;
  1552. struct ggml_compute_state_shared* shared;
  1553. enum ggml_status ec;
  1554. };
  1555. //
  1556. // fundamental operations
  1557. //
  1558. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1559. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1560. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1561. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1562. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1563. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1564. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1565. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1566. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1567. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1568. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1569. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1570. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1571. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1572. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1573. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1574. assert(nrc == 1);
  1575. UNUSED(nrc);
  1576. UNUSED(bx);
  1577. UNUSED(by);
  1578. UNUSED(bs);
  1579. #if defined(GGML_SIMD)
  1580. float sumf = 0.0f;
  1581. const int np = (n & ~(GGML_F32_STEP - 1));
  1582. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1583. GGML_F32_VEC ax[GGML_F32_ARR];
  1584. GGML_F32_VEC ay[GGML_F32_ARR];
  1585. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1586. for (int j = 0; j < GGML_F32_ARR; j++) {
  1587. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1588. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1589. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1590. }
  1591. }
  1592. // reduce sum0..sum3 to sum0
  1593. GGML_F32_VEC_REDUCE(sumf, sum);
  1594. // leftovers
  1595. for (int i = np; i < n; ++i) {
  1596. sumf += x[i]*y[i];
  1597. }
  1598. #else
  1599. // scalar
  1600. ggml_float sumf = 0.0;
  1601. for (int i = 0; i < n; ++i) {
  1602. sumf += (ggml_float)(x[i]*y[i]);
  1603. }
  1604. #endif
  1605. *s = sumf;
  1606. }
  1607. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1608. assert(nrc == 1);
  1609. UNUSED(nrc);
  1610. UNUSED(bx);
  1611. UNUSED(by);
  1612. UNUSED(bs);
  1613. int i = 0;
  1614. ggml_float sumf = 0;
  1615. #if defined(__AVX512BF16__)
  1616. __m512 c1 = _mm512_setzero_ps();
  1617. __m512 c2 = _mm512_setzero_ps();
  1618. for (; i + 64 <= n; i += 64) {
  1619. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1620. m512bh(_mm512_loadu_si512((y + i))));
  1621. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1622. m512bh(_mm512_loadu_si512((y + i + 32))));
  1623. }
  1624. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1625. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1626. #elif defined(__AVX512F__)
  1627. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1628. __m512 c1 = _mm512_setzero_ps();
  1629. __m512 c2 = _mm512_setzero_ps();
  1630. for (; i + 32 <= n; i += 32) {
  1631. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1632. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1633. }
  1634. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1635. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1636. #undef LOAD
  1637. #elif defined(__AVX2__)
  1638. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1639. __m256 c1 = _mm256_setzero_ps();
  1640. __m256 c2 = _mm256_setzero_ps();
  1641. __m256 c3 = _mm256_setzero_ps();
  1642. __m256 c4 = _mm256_setzero_ps();
  1643. for (; i + 32 <= n; i += 32) {
  1644. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1645. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1646. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1647. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1648. }
  1649. __m128 g;
  1650. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1651. _mm256_add_ps(c2, c4));
  1652. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1653. _mm256_castps256_ps128(c1));
  1654. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1655. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1656. sumf += (ggml_float)_mm_cvtss_f32(g);
  1657. #undef LOAD
  1658. #endif
  1659. for (; i < n; ++i) {
  1660. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1661. GGML_BF16_TO_FP32(y[i]));
  1662. }
  1663. *s = sumf;
  1664. }
  1665. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1666. assert(nrc == 1);
  1667. UNUSED(nrc);
  1668. UNUSED(bx);
  1669. UNUSED(by);
  1670. UNUSED(bs);
  1671. ggml_float sumf = 0.0;
  1672. #if defined(GGML_SIMD)
  1673. const int np = (n & ~(GGML_F16_STEP - 1));
  1674. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1675. GGML_F16_VEC ax[GGML_F16_ARR];
  1676. GGML_F16_VEC ay[GGML_F16_ARR];
  1677. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1678. for (int j = 0; j < GGML_F16_ARR; j++) {
  1679. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1680. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1681. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1682. }
  1683. }
  1684. // reduce sum0..sum3 to sum0
  1685. GGML_F16_VEC_REDUCE(sumf, sum);
  1686. // leftovers
  1687. for (int i = np; i < n; ++i) {
  1688. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1689. }
  1690. #else
  1691. for (int i = 0; i < n; ++i) {
  1692. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1693. }
  1694. #endif
  1695. *s = sumf;
  1696. }
  1697. // compute GGML_VEC_DOT_UNROLL dot products at once
  1698. // xs - x row stride in bytes
  1699. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1700. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1701. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1702. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1703. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1704. }
  1705. #if defined(GGML_SIMD)
  1706. const int np = (n & ~(GGML_F16_STEP - 1));
  1707. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1708. GGML_F16_VEC ax[GGML_F16_ARR];
  1709. GGML_F16_VEC ay[GGML_F16_ARR];
  1710. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1711. for (int j = 0; j < GGML_F16_ARR; j++) {
  1712. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1713. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1714. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1715. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1716. }
  1717. }
  1718. }
  1719. // reduce sum0..sum3 to sum0
  1720. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1721. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1722. }
  1723. // leftovers
  1724. for (int i = np; i < n; ++i) {
  1725. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1726. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1727. }
  1728. }
  1729. #else
  1730. for (int i = 0; i < n; ++i) {
  1731. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1732. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1733. }
  1734. }
  1735. #endif
  1736. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1737. s[i] = sumf[i];
  1738. }
  1739. }
  1740. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1741. #if defined(GGML_SIMD)
  1742. const int np = (n & ~(GGML_F32_STEP - 1));
  1743. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1744. GGML_F32_VEC ax[GGML_F32_ARR];
  1745. GGML_F32_VEC ay[GGML_F32_ARR];
  1746. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1747. for (int j = 0; j < GGML_F32_ARR; j++) {
  1748. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1749. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1750. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1751. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1752. }
  1753. }
  1754. // leftovers
  1755. for (int i = np; i < n; ++i) {
  1756. y[i] += x[i]*v;
  1757. }
  1758. #else
  1759. // scalar
  1760. for (int i = 0; i < n; ++i) {
  1761. y[i] += x[i]*v;
  1762. }
  1763. #endif
  1764. }
  1765. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1766. #if defined(GGML_SIMD)
  1767. const int np = (n & ~(GGML_F16_STEP - 1));
  1768. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1769. GGML_F16_VEC ax[GGML_F16_ARR];
  1770. GGML_F16_VEC ay[GGML_F16_ARR];
  1771. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1772. for (int j = 0; j < GGML_F16_ARR; j++) {
  1773. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1774. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1775. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1776. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1777. }
  1778. }
  1779. // leftovers
  1780. for (int i = np; i < n; ++i) {
  1781. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1782. }
  1783. #else
  1784. // scalar
  1785. for (int i = 0; i < n; ++i) {
  1786. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1787. }
  1788. #endif
  1789. }
  1790. // xs and vs are byte strides of x and v
  1791. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1792. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1793. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1794. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1795. x[i] = (const float *) ((const char *) xv + i*xs);
  1796. v[i] = (const float *) ((const char *) vv + i*vs);
  1797. }
  1798. #if defined(GGML_SIMD)
  1799. const int np = (n & ~(GGML_F32_STEP - 1));
  1800. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1801. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1802. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1803. }
  1804. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1805. GGML_F32_VEC ay[GGML_F32_ARR];
  1806. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1807. for (int j = 0; j < GGML_F32_ARR; j++) {
  1808. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1809. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1810. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1811. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1812. }
  1813. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1814. }
  1815. }
  1816. // leftovers
  1817. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1818. for (int i = np; i < n; ++i) {
  1819. y[i] += x[k][i]*v[k][0];
  1820. }
  1821. }
  1822. #else
  1823. // scalar
  1824. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1825. for (int i = 0; i < n; ++i) {
  1826. y[i] += x[k][i]*v[k][0];
  1827. }
  1828. }
  1829. #endif
  1830. }
  1831. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1832. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1833. #if defined(GGML_USE_ACCELERATE)
  1834. vDSP_vsmul(y, 1, &v, y, 1, n);
  1835. #elif defined(GGML_SIMD)
  1836. const int np = (n & ~(GGML_F32_STEP - 1));
  1837. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1838. GGML_F32_VEC ay[GGML_F32_ARR];
  1839. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1840. for (int j = 0; j < GGML_F32_ARR; j++) {
  1841. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1842. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1843. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1844. }
  1845. }
  1846. // leftovers
  1847. for (int i = np; i < n; ++i) {
  1848. y[i] *= v;
  1849. }
  1850. #else
  1851. // scalar
  1852. for (int i = 0; i < n; ++i) {
  1853. y[i] *= v;
  1854. }
  1855. #endif
  1856. }
  1857. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1858. #if defined(GGML_SIMD)
  1859. const int np = (n & ~(GGML_F16_STEP - 1));
  1860. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1861. GGML_F16_VEC ay[GGML_F16_ARR];
  1862. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1863. for (int j = 0; j < GGML_F16_ARR; j++) {
  1864. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1865. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1866. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1867. }
  1868. }
  1869. // leftovers
  1870. for (int i = np; i < n; ++i) {
  1871. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1872. }
  1873. #else
  1874. // scalar
  1875. for (int i = 0; i < n; ++i) {
  1876. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1877. }
  1878. #endif
  1879. }
  1880. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1881. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1882. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1883. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1884. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1885. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1886. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1887. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1888. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1889. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1890. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1891. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1892. // TODO: optimize performance
  1893. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1894. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1895. static const float GELU_COEF_A = 0.044715f;
  1896. static const float GELU_QUICK_COEF = -1.702f;
  1897. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1898. inline static float ggml_gelu_f32(float x) {
  1899. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1900. }
  1901. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1902. const uint16_t * i16 = (const uint16_t *) x;
  1903. for (int i = 0; i < n; ++i) {
  1904. y[i] = ggml_table_gelu_f16[i16[i]];
  1905. }
  1906. }
  1907. #ifdef GGML_GELU_FP16
  1908. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1909. uint16_t t;
  1910. for (int i = 0; i < n; ++i) {
  1911. if (x[i] <= -10.0f) {
  1912. y[i] = 0.0f;
  1913. } else if (x[i] >= 10.0f) {
  1914. y[i] = x[i];
  1915. } else {
  1916. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1917. memcpy(&t, &fp16, sizeof(uint16_t));
  1918. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1919. }
  1920. }
  1921. }
  1922. #else
  1923. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1924. for (int i = 0; i < n; ++i) {
  1925. y[i] = ggml_gelu_f32(x[i]);
  1926. }
  1927. }
  1928. #endif
  1929. inline static float ggml_gelu_quick_f32(float x) {
  1930. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1931. }
  1932. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1933. // const uint16_t * i16 = (const uint16_t *) x;
  1934. // for (int i = 0; i < n; ++i) {
  1935. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1936. // }
  1937. //}
  1938. #ifdef GGML_GELU_QUICK_FP16
  1939. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1940. uint16_t t;
  1941. for (int i = 0; i < n; ++i) {
  1942. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1943. memcpy(&t, &fp16, sizeof(uint16_t));
  1944. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1945. }
  1946. }
  1947. #else
  1948. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1949. for (int i = 0; i < n; ++i) {
  1950. y[i] = ggml_gelu_quick_f32(x[i]);
  1951. }
  1952. }
  1953. #endif
  1954. // Sigmoid Linear Unit (SiLU) function
  1955. inline static float ggml_silu_f32(float x) {
  1956. return x/(1.0f + expf(-x));
  1957. }
  1958. #if __FINITE_MATH_ONLY__
  1959. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1960. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1961. #endif
  1962. #if defined(__ARM_NEON) && defined(__aarch64__)
  1963. // adapted from arm limited optimized routine
  1964. // the maximum error is 1.45358 plus 0.5 ulps
  1965. // numbers above 88.38 will flush to infinity
  1966. // numbers beneath -103.97 will flush to zero
  1967. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1968. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1969. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1970. const float32x4_t n = vsubq_f32(z, r);
  1971. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1972. vdupq_n_f32(0x1.7f7d1cp-20f));
  1973. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1974. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1975. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1976. const float32x4_t u = vmulq_f32(b, b);
  1977. const float32x4_t j = vfmaq_f32(
  1978. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1979. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1980. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1981. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1982. return vfmaq_f32(k, j, k);
  1983. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1984. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1985. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1986. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1987. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1988. }
  1989. // computes silu x/(1+exp(-x)) in single precision vector
  1990. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1991. const float32x4_t one = vdupq_n_f32(1.0f);
  1992. const float32x4_t zero = vdupq_n_f32(0.0f);
  1993. const float32x4_t neg_x = vsubq_f32(zero, x);
  1994. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1995. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1996. return vdivq_f32(x, one_plus_exp_neg_x);
  1997. }
  1998. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1999. // adapted from arm limited optimized routine
  2000. // the maximum error is 1.45358 plus 0.5 ulps
  2001. // numbers above 88.38 will flush to infinity
  2002. // numbers beneath -103.97 will flush to zero
  2003. inline static __m512 ggml_v_expf(__m512 x) {
  2004. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2005. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2006. const __m512 n = _mm512_sub_ps(z, r);
  2007. const __m512 b =
  2008. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2009. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2010. const __mmask16 d =
  2011. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2012. const __m512 u = _mm512_mul_ps(b, b);
  2013. const __m512 j = _mm512_fmadd_ps(
  2014. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2015. _mm512_set1_ps(0x1.573e2ep-5f)),
  2016. u,
  2017. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2018. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2019. u,
  2020. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2021. const __m512 res = _mm512_scalef_ps(j, n);
  2022. if (_mm512_kortestz(d, d))
  2023. return res;
  2024. const __m512 zero = _mm512_setzero_ps();
  2025. const __m512 alt = _mm512_mask_blend_ps(
  2026. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2027. return _mm512_mask_blend_ps(d, res, alt);
  2028. }
  2029. // computes silu x/(1+exp(-x)) in single precision vector
  2030. inline static __m512 ggml_v_silu(__m512 x) {
  2031. const __m512 one = _mm512_set1_ps(1);
  2032. const __m512 zero = _mm512_setzero_ps();
  2033. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2034. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2035. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2036. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2037. }
  2038. #elif defined(__AVX2__) && defined(__FMA__)
  2039. // adapted from arm limited optimized routine
  2040. // the maximum error is 1.45358 plus 0.5 ulps
  2041. // numbers above 88.38 will flush to infinity
  2042. // numbers beneath -103.97 will flush to zero
  2043. inline static __m256 ggml_v_expf(__m256 x) {
  2044. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2045. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2046. const __m256 n = _mm256_sub_ps(z, r);
  2047. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2048. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2049. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2050. const __m256 k = _mm256_castsi256_ps(
  2051. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2052. const __m256i c = _mm256_castps_si256(
  2053. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2054. _mm256_set1_ps(126), _CMP_GT_OQ));
  2055. const __m256 u = _mm256_mul_ps(b, b);
  2056. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2057. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2058. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2059. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2060. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2061. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2062. return _mm256_fmadd_ps(j, k, k);
  2063. const __m256i g = _mm256_and_si256(
  2064. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2065. _mm256_set1_epi32(0x82000000u));
  2066. const __m256 s1 =
  2067. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2068. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2069. const __m256i d = _mm256_castps_si256(
  2070. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2071. _mm256_set1_ps(192), _CMP_GT_OQ));
  2072. return _mm256_or_ps(
  2073. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2074. _mm256_andnot_ps(
  2075. _mm256_castsi256_ps(d),
  2076. _mm256_or_ps(
  2077. _mm256_and_ps(_mm256_castsi256_ps(c),
  2078. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2079. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2080. }
  2081. // computes silu x/(1+exp(-x)) in single precision vector
  2082. inline static __m256 ggml_v_silu(__m256 x) {
  2083. const __m256 one = _mm256_set1_ps(1);
  2084. const __m256 zero = _mm256_setzero_ps();
  2085. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2086. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2087. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2088. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2089. }
  2090. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2091. #if defined(__FMA__)
  2092. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2093. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2094. #else
  2095. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2096. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2097. #endif
  2098. // adapted from arm limited optimized routine
  2099. // the maximum error is 1.45358 plus 0.5 ulps
  2100. // numbers above 88.38 will flush to infinity
  2101. // numbers beneath -103.97 will flush to zero
  2102. inline static __m128 ggml_v_expf(__m128 x) {
  2103. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2104. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2105. const __m128 n = _mm_sub_ps(z, r);
  2106. const __m128 b =
  2107. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2108. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2109. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2110. const __m128i c =
  2111. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2112. const __m128 u = _mm_mul_ps(b, b);
  2113. const __m128 j =
  2114. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2115. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2116. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2117. if (!_mm_movemask_epi8(c))
  2118. return MADD128(j, k, k);
  2119. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2120. _mm_set1_epi32(0x82000000u));
  2121. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2122. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2123. const __m128i d =
  2124. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2125. return _mm_or_ps(
  2126. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2127. _mm_andnot_ps(_mm_castsi128_ps(d),
  2128. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2129. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2130. }
  2131. // computes silu x/(1+exp(-x)) in single precision vector
  2132. inline static __m128 ggml_v_silu(__m128 x) {
  2133. const __m128 one = _mm_set1_ps(1);
  2134. const __m128 zero = _mm_setzero_ps();
  2135. const __m128 neg_x = _mm_sub_ps(zero, x);
  2136. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2137. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2138. return _mm_div_ps(x, one_plus_exp_neg_x);
  2139. }
  2140. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2141. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2142. int i = 0;
  2143. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2144. for (; i + 15 < n; i += 16) {
  2145. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2146. }
  2147. #elif defined(__AVX2__) && defined(__FMA__)
  2148. for (; i + 7 < n; i += 8) {
  2149. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2150. }
  2151. #elif defined(__SSE2__)
  2152. for (; i + 3 < n; i += 4) {
  2153. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2154. }
  2155. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2156. for (; i + 3 < n; i += 4) {
  2157. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2158. }
  2159. #endif
  2160. for (; i < n; ++i) {
  2161. y[i] = ggml_silu_f32(x[i]);
  2162. }
  2163. }
  2164. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2165. int i = 0;
  2166. ggml_float sum = 0;
  2167. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2168. for (; i + 15 < n; i += 16) {
  2169. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2170. _mm512_set1_ps(max)));
  2171. _mm512_storeu_ps(y + i, val);
  2172. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2173. }
  2174. #elif defined(__AVX2__) && defined(__FMA__)
  2175. for (; i + 7 < n; i += 8) {
  2176. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2177. _mm256_set1_ps(max)));
  2178. _mm256_storeu_ps(y + i, val);
  2179. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2180. _mm256_castps256_ps128(val));
  2181. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2182. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2183. sum += (ggml_float)_mm_cvtss_f32(val2);
  2184. }
  2185. #elif defined(__SSE2__)
  2186. for (; i + 3 < n; i += 4) {
  2187. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2188. _mm_set1_ps(max)));
  2189. _mm_storeu_ps(y + i, val);
  2190. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2191. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2192. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2193. #else
  2194. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2195. val = _mm_add_ps(val, tmp);
  2196. tmp = _mm_movehl_ps(tmp, val);
  2197. val = _mm_add_ss(val, tmp);
  2198. #endif
  2199. sum += (ggml_float)_mm_cvtss_f32(val);
  2200. }
  2201. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2202. for (; i + 3 < n; i += 4) {
  2203. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2204. vdupq_n_f32(max)));
  2205. vst1q_f32(y + i, val);
  2206. sum += (ggml_float)vaddvq_f32(val);
  2207. }
  2208. #endif
  2209. for (; i < n; ++i) {
  2210. float val = expf(x[i] - max);
  2211. sum += (ggml_float)val;
  2212. y[i] = val;
  2213. }
  2214. return sum;
  2215. }
  2216. inline static float ggml_silu_backward_f32(float x, float dy) {
  2217. const float s = 1.0f/(1.0f + expf(-x));
  2218. return dy*s*(1.0f + x*(1.0f - s));
  2219. }
  2220. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2221. for (int i = 0; i < n; ++i) {
  2222. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2223. }
  2224. }
  2225. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2226. #ifndef GGML_USE_ACCELERATE
  2227. ggml_float sum = 0.0;
  2228. for (int i = 0; i < n; ++i) {
  2229. sum += (ggml_float)x[i];
  2230. }
  2231. *s = sum;
  2232. #else
  2233. vDSP_sve(x, 1, s, n);
  2234. #endif
  2235. }
  2236. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2237. ggml_float sum = 0.0;
  2238. for (int i = 0; i < n; ++i) {
  2239. sum += (ggml_float)x[i];
  2240. }
  2241. *s = sum;
  2242. }
  2243. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2244. float sum = 0.0f;
  2245. for (int i = 0; i < n; ++i) {
  2246. sum += GGML_FP16_TO_FP32(x[i]);
  2247. }
  2248. *s = sum;
  2249. }
  2250. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2251. float sum = 0.0f;
  2252. for (int i = 0; i < n; ++i) {
  2253. sum += GGML_BF16_TO_FP32(x[i]);
  2254. }
  2255. *s = sum;
  2256. }
  2257. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2258. #ifndef GGML_USE_ACCELERATE
  2259. float max = -INFINITY;
  2260. for (int i = 0; i < n; ++i) {
  2261. max = MAX(max, x[i]);
  2262. }
  2263. *s = max;
  2264. #else
  2265. vDSP_maxv(x, 1, s, n);
  2266. #endif
  2267. }
  2268. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2269. ggml_vec_norm_f32(n, s, x);
  2270. *s = 1.f/(*s);
  2271. }
  2272. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2273. float max = -INFINITY;
  2274. int idx = 0;
  2275. for (int i = 0; i < n; ++i) {
  2276. max = MAX(max, x[i]);
  2277. if (max == x[i]) { idx = i; }
  2278. }
  2279. *s = idx;
  2280. }
  2281. //
  2282. // data types
  2283. //
  2284. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2285. "NONE",
  2286. "DUP",
  2287. "ADD",
  2288. "ADD1",
  2289. "ACC",
  2290. "SUB",
  2291. "MUL",
  2292. "DIV",
  2293. "SQR",
  2294. "SQRT",
  2295. "LOG",
  2296. "SUM",
  2297. "SUM_ROWS",
  2298. "MEAN",
  2299. "ARGMAX",
  2300. "REPEAT",
  2301. "REPEAT_BACK",
  2302. "CONCAT",
  2303. "SILU_BACK",
  2304. "NORM",
  2305. "RMS_NORM",
  2306. "RMS_NORM_BACK",
  2307. "GROUP_NORM",
  2308. "MUL_MAT",
  2309. "MUL_MAT_ID",
  2310. "OUT_PROD",
  2311. "SCALE",
  2312. "SET",
  2313. "CPY",
  2314. "CONT",
  2315. "RESHAPE",
  2316. "VIEW",
  2317. "PERMUTE",
  2318. "TRANSPOSE",
  2319. "GET_ROWS",
  2320. "GET_ROWS_BACK",
  2321. "DIAG",
  2322. "DIAG_MASK_INF",
  2323. "DIAG_MASK_ZERO",
  2324. "SOFT_MAX",
  2325. "SOFT_MAX_BACK",
  2326. "ROPE",
  2327. "ROPE_BACK",
  2328. "CLAMP",
  2329. "CONV_TRANSPOSE_1D",
  2330. "IM2COL",
  2331. "CONV_TRANSPOSE_2D",
  2332. "POOL_1D",
  2333. "POOL_2D",
  2334. "UPSCALE",
  2335. "PAD",
  2336. "ARANGE",
  2337. "TIMESTEP_EMBEDDING",
  2338. "ARGSORT",
  2339. "LEAKY_RELU",
  2340. "FLASH_ATTN_EXT",
  2341. "FLASH_ATTN_BACK",
  2342. "SSM_CONV",
  2343. "SSM_SCAN",
  2344. "WIN_PART",
  2345. "WIN_UNPART",
  2346. "GET_REL_POS",
  2347. "ADD_REL_POS",
  2348. "UNARY",
  2349. "MAP_UNARY",
  2350. "MAP_BINARY",
  2351. "MAP_CUSTOM1_F32",
  2352. "MAP_CUSTOM2_F32",
  2353. "MAP_CUSTOM3_F32",
  2354. "MAP_CUSTOM1",
  2355. "MAP_CUSTOM2",
  2356. "MAP_CUSTOM3",
  2357. "CROSS_ENTROPY_LOSS",
  2358. "CROSS_ENTROPY_LOSS_BACK",
  2359. };
  2360. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2361. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2362. "none",
  2363. "x",
  2364. "x+y",
  2365. "x+y",
  2366. "view(x,nb,offset)+=y->x",
  2367. "x-y",
  2368. "x*y",
  2369. "x/y",
  2370. "x^2",
  2371. "√x",
  2372. "log(x)",
  2373. "Σx",
  2374. "Σx_k",
  2375. "Σx/n",
  2376. "argmax(x)",
  2377. "repeat(x)",
  2378. "repeat_back(x)",
  2379. "concat(x, y)",
  2380. "silu_back(x)",
  2381. "norm(x)",
  2382. "rms_norm(x)",
  2383. "rms_norm_back(x)",
  2384. "group_norm(x)",
  2385. "X*Y",
  2386. "X[i]*Y",
  2387. "X*Y",
  2388. "x*v",
  2389. "y-\\>view(x)",
  2390. "x-\\>y",
  2391. "cont(x)",
  2392. "reshape(x)",
  2393. "view(x)",
  2394. "permute(x)",
  2395. "transpose(x)",
  2396. "get_rows(x)",
  2397. "get_rows_back(x)",
  2398. "diag(x)",
  2399. "diag_mask_inf(x)",
  2400. "diag_mask_zero(x)",
  2401. "soft_max(x)",
  2402. "soft_max_back(x)",
  2403. "rope(x)",
  2404. "rope_back(x)",
  2405. "clamp(x)",
  2406. "conv_transpose_1d(x)",
  2407. "im2col(x)",
  2408. "conv_transpose_2d(x)",
  2409. "pool_1d(x)",
  2410. "pool_2d(x)",
  2411. "upscale(x)",
  2412. "pad(x)",
  2413. "arange(start, stop, step)",
  2414. "timestep_embedding(timesteps, dim, max_period)",
  2415. "argsort(x)",
  2416. "leaky_relu(x)",
  2417. "flash_attn_ext(x)",
  2418. "flash_attn_back(x)",
  2419. "ssm_conv(x)",
  2420. "ssm_scan(x)",
  2421. "win_part(x)",
  2422. "win_unpart(x)",
  2423. "get_rel_pos(x)",
  2424. "add_rel_pos(x)",
  2425. "unary(x)",
  2426. "f(x)",
  2427. "f(x,y)",
  2428. "custom_f32(x)",
  2429. "custom_f32(x,y)",
  2430. "custom_f32(x,y,z)",
  2431. "custom(x)",
  2432. "custom(x,y)",
  2433. "custom(x,y,z)",
  2434. "cross_entropy_loss(x,y)",
  2435. "cross_entropy_loss_back(x,y)",
  2436. };
  2437. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2438. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2439. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2440. "ABS",
  2441. "SGN",
  2442. "NEG",
  2443. "STEP",
  2444. "TANH",
  2445. "ELU",
  2446. "RELU",
  2447. "SIGMOID",
  2448. "GELU",
  2449. "GELU_QUICK",
  2450. "SILU",
  2451. "HARDSWISH",
  2452. "HARDSIGMOID",
  2453. };
  2454. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2455. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2456. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2457. // WARN:
  2458. // Mis-configuration can lead to problem that's hard to reason about:
  2459. // * At best it crash or talks nosense.
  2460. // * At worst it talks slightly difference but hard to perceive.
  2461. //
  2462. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  2463. // Take care about compile options (e.g., GGML_USE_xxx).
  2464. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  2465. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  2466. static void ggml_setup_op_has_task_pass(void) {
  2467. { // INIT
  2468. bool * p = GGML_OP_HAS_INIT;
  2469. p[GGML_OP_ACC ] = true;
  2470. p[GGML_OP_MUL_MAT ] = true;
  2471. p[GGML_OP_MUL_MAT_ID ] = true;
  2472. p[GGML_OP_OUT_PROD ] = true;
  2473. p[GGML_OP_SET ] = true;
  2474. p[GGML_OP_GET_ROWS_BACK ] = true;
  2475. p[GGML_OP_DIAG_MASK_INF ] = true;
  2476. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  2477. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  2478. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  2479. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  2480. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2481. p[GGML_OP_ADD_REL_POS ] = true;
  2482. }
  2483. { // FINALIZE
  2484. bool * p = GGML_OP_HAS_FINALIZE;
  2485. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  2486. }
  2487. }
  2488. //
  2489. // NUMA support
  2490. //
  2491. #define GGML_NUMA_MAX_NODES 8
  2492. #define GGML_NUMA_MAX_CPUS 512
  2493. struct ggml_numa_node {
  2494. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2495. uint32_t n_cpus;
  2496. };
  2497. struct ggml_numa_nodes {
  2498. enum ggml_numa_strategy numa_strategy;
  2499. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2500. uint32_t n_nodes;
  2501. uint32_t total_cpus; // hardware threads on system
  2502. uint32_t current_node; // node on which main process is execting
  2503. #if defined(__gnu_linux__)
  2504. cpu_set_t cpuset; // cpuset from numactl
  2505. #else
  2506. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2507. #endif
  2508. };
  2509. //
  2510. // ggml state
  2511. //
  2512. struct ggml_state {
  2513. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2514. struct ggml_numa_nodes numa;
  2515. };
  2516. // global state
  2517. static struct ggml_state g_state;
  2518. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2519. // barrier via spin lock
  2520. inline static void ggml_critical_section_start(void) {
  2521. while (atomic_flag_test_and_set(&g_state_critical)) {
  2522. // spin
  2523. sched_yield();
  2524. }
  2525. }
  2526. // TODO: make this somehow automatically executed
  2527. // some sort of "sentry" mechanism
  2528. inline static void ggml_critical_section_end(void) {
  2529. atomic_flag_clear(&g_state_critical);
  2530. }
  2531. #if defined(__gnu_linux__)
  2532. static cpu_set_t ggml_get_numa_affinity(void) {
  2533. cpu_set_t cpuset;
  2534. pthread_t thread;
  2535. thread = pthread_self();
  2536. CPU_ZERO(&cpuset);
  2537. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2538. return cpuset;
  2539. }
  2540. #else
  2541. static uint32_t ggml_get_numa_affinity(void) {
  2542. return 0; // no NUMA support
  2543. }
  2544. #endif
  2545. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2546. if (g_state.numa.n_nodes > 0) {
  2547. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2548. return;
  2549. }
  2550. #if defined(__gnu_linux__)
  2551. struct stat st;
  2552. char path[256];
  2553. int rv;
  2554. // set numa scheme
  2555. g_state.numa.numa_strategy = numa_flag;
  2556. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2557. g_state.numa.cpuset = ggml_get_numa_affinity();
  2558. // enumerate nodes
  2559. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2560. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2561. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2562. if (stat(path, &st) != 0) { break; }
  2563. ++g_state.numa.n_nodes;
  2564. }
  2565. // enumerate CPUs
  2566. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2567. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2568. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2569. if (stat(path, &st) != 0) { break; }
  2570. ++g_state.numa.total_cpus;
  2571. }
  2572. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2573. // figure out which node we're on
  2574. uint current_cpu;
  2575. int getcpu_ret = 0;
  2576. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2577. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2578. #else
  2579. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2580. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2581. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2582. # endif
  2583. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2584. #endif
  2585. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2586. g_state.numa.n_nodes = 0;
  2587. return;
  2588. }
  2589. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2590. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2591. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2592. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2593. node->n_cpus = 0;
  2594. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2595. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2596. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2597. if (stat(path, &st) == 0) {
  2598. node->cpus[node->n_cpus++] = c;
  2599. GGML_PRINT_DEBUG(" %u", c);
  2600. }
  2601. }
  2602. GGML_PRINT_DEBUG("\n");
  2603. }
  2604. if (ggml_is_numa()) {
  2605. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2606. if (fptr != NULL) {
  2607. char buf[42];
  2608. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2609. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2610. }
  2611. fclose(fptr);
  2612. }
  2613. }
  2614. #else
  2615. GGML_UNUSED(numa_flag);
  2616. // TODO
  2617. #endif
  2618. }
  2619. bool ggml_is_numa(void) {
  2620. return g_state.numa.n_nodes > 1;
  2621. }
  2622. ////////////////////////////////////////////////////////////////////////////////
  2623. void ggml_print_object(const struct ggml_object * obj) {
  2624. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2625. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2626. }
  2627. void ggml_print_objects(const struct ggml_context * ctx) {
  2628. struct ggml_object * obj = ctx->objects_begin;
  2629. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2630. while (obj != NULL) {
  2631. ggml_print_object(obj);
  2632. obj = obj->next;
  2633. }
  2634. GGML_PRINT("%s: --- end ---\n", __func__);
  2635. }
  2636. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2637. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2638. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2639. }
  2640. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2641. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2642. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2643. }
  2644. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2645. size_t nbytes;
  2646. size_t blck_size = ggml_blck_size(tensor->type);
  2647. if (blck_size == 1) {
  2648. nbytes = ggml_type_size(tensor->type);
  2649. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2650. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2651. }
  2652. }
  2653. else {
  2654. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2655. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2656. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2657. }
  2658. }
  2659. return nbytes;
  2660. }
  2661. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2662. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2663. }
  2664. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2665. return type_traits[type].blck_size;
  2666. }
  2667. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2668. return type_traits[type].type_size;
  2669. }
  2670. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2671. assert(ne % ggml_blck_size(type) == 0);
  2672. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2673. }
  2674. double ggml_type_sizef(enum ggml_type type) {
  2675. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2676. }
  2677. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2678. return type_traits[type].type_name;
  2679. }
  2680. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2681. return type_traits[type].is_quantized;
  2682. }
  2683. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2684. return GGML_OP_NAME[op];
  2685. }
  2686. const char * ggml_op_symbol(enum ggml_op op) {
  2687. return GGML_OP_SYMBOL[op];
  2688. }
  2689. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2690. return GGML_UNARY_OP_NAME[op];
  2691. }
  2692. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2693. if (t->op == GGML_OP_UNARY) {
  2694. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2695. return ggml_unary_op_name(uop);
  2696. }
  2697. else {
  2698. return ggml_op_name(t->op);
  2699. }
  2700. }
  2701. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2702. return ggml_type_size(tensor->type);
  2703. }
  2704. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2705. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2706. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2707. }
  2708. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2709. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2710. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2711. }
  2712. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2713. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2714. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2715. }
  2716. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2717. return tensor->ne[3] == 1;
  2718. }
  2719. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2720. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2721. if (tensor->ne[i] > 1) {
  2722. return i + 1;
  2723. }
  2724. }
  2725. return 1;
  2726. }
  2727. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2728. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2729. return (t0->ne[0] == t1->ne[0]) &&
  2730. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2731. (t1->ne[3]%t0->ne[3] == 0);
  2732. }
  2733. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2734. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2735. return (t0->ne[1] == t1->ne[1]) &&
  2736. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2737. (t1->ne[3]%t0->ne[3] == 0);
  2738. }
  2739. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2740. enum ggml_type wtype = GGML_TYPE_COUNT;
  2741. switch (ftype) {
  2742. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2743. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2744. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2745. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2746. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2747. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2748. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2749. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2750. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2751. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2752. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2753. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2754. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2755. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2756. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2757. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2758. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2759. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2760. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2761. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2762. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2763. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2764. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2765. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2766. }
  2767. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2768. return wtype;
  2769. }
  2770. size_t ggml_tensor_overhead(void) {
  2771. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2772. }
  2773. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2774. return tensor->nb[0] > tensor->nb[1];
  2775. }
  2776. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2777. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2778. return
  2779. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2780. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2781. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2782. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2783. }
  2784. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2785. return ggml_is_contiguous(tensor);
  2786. }
  2787. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2788. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2789. return
  2790. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2791. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2792. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2793. }
  2794. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2795. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2796. return
  2797. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2798. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2799. }
  2800. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2801. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2802. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2803. }
  2804. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2806. return
  2807. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2808. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2809. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2810. }
  2811. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2812. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2813. if (tensor->ne[i] == 0) {
  2814. // empty if any dimension has no elements
  2815. return true;
  2816. }
  2817. }
  2818. return false;
  2819. }
  2820. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2822. return
  2823. (t0->ne[0] == t1->ne[0] ) &&
  2824. (t0->ne[1] == t1->ne[1] ) &&
  2825. (t0->ne[2] == t1->ne[2] ) &&
  2826. (t0->ne[3] == t1->ne[3] );
  2827. }
  2828. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2830. return
  2831. (t0->nb[0] == t1->nb[0] ) &&
  2832. (t0->nb[1] == t1->nb[1] ) &&
  2833. (t0->nb[2] == t1->nb[2] ) &&
  2834. (t0->nb[3] == t1->nb[3] );
  2835. }
  2836. // check if t1 can be represented as a repeatition of t0
  2837. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2840. (t1->ne[0]%t0->ne[0] == 0) &&
  2841. (t1->ne[1]%t0->ne[1] == 0) &&
  2842. (t1->ne[2]%t0->ne[2] == 0) &&
  2843. (t1->ne[3]%t0->ne[3] == 0);
  2844. }
  2845. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2847. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2848. }
  2849. static inline int ggml_up32(int n) {
  2850. return (n + 31) & ~31;
  2851. }
  2852. //static inline int ggml_up64(int n) {
  2853. // return (n + 63) & ~63;
  2854. //}
  2855. static inline int ggml_up(int n, int m) {
  2856. // assert m is a power of 2
  2857. GGML_ASSERT((m & (m - 1)) == 0);
  2858. return (n + m - 1) & ~(m - 1);
  2859. }
  2860. // assert that pointer is aligned to GGML_MEM_ALIGN
  2861. #define ggml_assert_aligned(ptr) \
  2862. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2863. ////////////////////////////////////////////////////////////////////////////////
  2864. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2865. // make this function thread safe
  2866. ggml_critical_section_start();
  2867. static bool is_first_call = true;
  2868. if (is_first_call) {
  2869. // initialize time system (required on Windows)
  2870. ggml_time_init();
  2871. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2872. {
  2873. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2874. for (int i = 0; i < (1 << 16); ++i) {
  2875. union {
  2876. uint16_t u16;
  2877. ggml_fp16_t fp16;
  2878. } u = {i};
  2879. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2880. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2881. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2882. }
  2883. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2884. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2885. }
  2886. // initialize g_state
  2887. {
  2888. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2889. g_state = (struct ggml_state) {
  2890. /*.contexts =*/ { { 0 } },
  2891. /*.numa =*/ {
  2892. .n_nodes = 0,
  2893. .total_cpus = 0,
  2894. },
  2895. };
  2896. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2897. g_state.contexts[i].used = false;
  2898. }
  2899. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2900. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2901. }
  2902. ggml_setup_op_has_task_pass();
  2903. is_first_call = false;
  2904. }
  2905. // find non-used context in g_state
  2906. struct ggml_context * ctx = NULL;
  2907. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2908. if (!g_state.contexts[i].used) {
  2909. g_state.contexts[i].used = true;
  2910. ctx = &g_state.contexts[i].context;
  2911. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2912. break;
  2913. }
  2914. }
  2915. if (ctx == NULL) {
  2916. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2917. ggml_critical_section_end();
  2918. return NULL;
  2919. }
  2920. // allow to call ggml_init with 0 size
  2921. if (params.mem_size == 0) {
  2922. params.mem_size = GGML_MEM_ALIGN;
  2923. }
  2924. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2925. *ctx = (struct ggml_context) {
  2926. /*.mem_size =*/ mem_size,
  2927. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2928. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2929. /*.no_alloc =*/ params.no_alloc,
  2930. /*.no_alloc_save =*/ params.no_alloc,
  2931. /*.n_objects =*/ 0,
  2932. /*.objects_begin =*/ NULL,
  2933. /*.objects_end =*/ NULL,
  2934. /*.scratch =*/ { 0, 0, NULL, },
  2935. /*.scratch_save =*/ { 0, 0, NULL, },
  2936. };
  2937. GGML_ASSERT(ctx->mem_buffer != NULL);
  2938. ggml_assert_aligned(ctx->mem_buffer);
  2939. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2940. ggml_critical_section_end();
  2941. return ctx;
  2942. }
  2943. void ggml_free(struct ggml_context * ctx) {
  2944. if (ctx == NULL) {
  2945. return;
  2946. }
  2947. // make this function thread safe
  2948. ggml_critical_section_start();
  2949. bool found = false;
  2950. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2951. if (&g_state.contexts[i].context == ctx) {
  2952. g_state.contexts[i].used = false;
  2953. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2954. __func__, i, ggml_used_mem(ctx));
  2955. if (ctx->mem_buffer_owned) {
  2956. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2957. }
  2958. found = true;
  2959. break;
  2960. }
  2961. }
  2962. if (!found) {
  2963. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2964. }
  2965. ggml_critical_section_end();
  2966. }
  2967. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2968. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2969. }
  2970. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2971. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2972. ctx->scratch = scratch;
  2973. return result;
  2974. }
  2975. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2976. return ctx->no_alloc;
  2977. }
  2978. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2979. ctx->no_alloc = no_alloc;
  2980. }
  2981. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2982. return ctx->mem_buffer;
  2983. }
  2984. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2985. return ctx->mem_size;
  2986. }
  2987. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2988. size_t max_size = 0;
  2989. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2990. size_t bytes = ggml_nbytes(tensor);
  2991. max_size = MAX(max_size, bytes);
  2992. }
  2993. return max_size;
  2994. }
  2995. // IMPORTANT:
  2996. // when creating "opt" tensors, always save and load the scratch buffer
  2997. // this is an error prone process, but it is necessary to support inplace
  2998. // operators when using scratch buffers
  2999. // TODO: implement a better way
  3000. static void ggml_scratch_save(struct ggml_context * ctx) {
  3001. // this is needed to allow opt tensors to store their data
  3002. // TODO: again, need to find a better way
  3003. ctx->no_alloc_save = ctx->no_alloc;
  3004. ctx->no_alloc = false;
  3005. ctx->scratch_save = ctx->scratch;
  3006. ctx->scratch.data = NULL;
  3007. }
  3008. static void ggml_scratch_load(struct ggml_context * ctx) {
  3009. ctx->no_alloc = ctx->no_alloc_save;
  3010. ctx->scratch = ctx->scratch_save;
  3011. }
  3012. ////////////////////////////////////////////////////////////////////////////////
  3013. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3014. // always insert objects at the end of the context's memory pool
  3015. struct ggml_object * obj_cur = ctx->objects_end;
  3016. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3017. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3018. const size_t cur_end = cur_offs + cur_size;
  3019. // align to GGML_MEM_ALIGN
  3020. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3021. char * const mem_buffer = ctx->mem_buffer;
  3022. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3023. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3024. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3025. __func__, cur_end + size_needed, ctx->mem_size);
  3026. assert(false);
  3027. return NULL;
  3028. }
  3029. *obj_new = (struct ggml_object) {
  3030. .offs = cur_end + GGML_OBJECT_SIZE,
  3031. .size = size_needed,
  3032. .next = NULL,
  3033. .type = type,
  3034. };
  3035. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3036. if (obj_cur != NULL) {
  3037. obj_cur->next = obj_new;
  3038. } else {
  3039. // this is the first object in this context
  3040. ctx->objects_begin = obj_new;
  3041. }
  3042. ctx->objects_end = obj_new;
  3043. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3044. return obj_new;
  3045. }
  3046. static struct ggml_tensor * ggml_new_tensor_impl(
  3047. struct ggml_context * ctx,
  3048. enum ggml_type type,
  3049. int n_dims,
  3050. const int64_t * ne,
  3051. struct ggml_tensor * view_src,
  3052. size_t view_offs) {
  3053. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3054. // find the base tensor and absolute offset
  3055. if (view_src != NULL && view_src->view_src != NULL) {
  3056. view_offs += view_src->view_offs;
  3057. view_src = view_src->view_src;
  3058. }
  3059. size_t data_size = ggml_row_size(type, ne[0]);
  3060. for (int i = 1; i < n_dims; i++) {
  3061. data_size *= ne[i];
  3062. }
  3063. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3064. void * data = view_src != NULL ? view_src->data : NULL;
  3065. if (data != NULL) {
  3066. data = (char *) data + view_offs;
  3067. }
  3068. size_t obj_alloc_size = 0;
  3069. if (view_src == NULL && !ctx->no_alloc) {
  3070. if (ctx->scratch.data != NULL) {
  3071. // allocate tensor data in the scratch buffer
  3072. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3073. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3074. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3075. assert(false);
  3076. return NULL;
  3077. }
  3078. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3079. ctx->scratch.offs += data_size;
  3080. } else {
  3081. // allocate tensor data in the context's memory pool
  3082. obj_alloc_size = data_size;
  3083. }
  3084. }
  3085. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3086. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3087. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3088. #ifdef __clang__
  3089. // temporary until ggml_tensor::backend is removed
  3090. #pragma clang diagnostic push
  3091. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3092. #endif
  3093. *result = (struct ggml_tensor) {
  3094. /*.type =*/ type,
  3095. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3096. /*.buffer =*/ NULL,
  3097. /*.ne =*/ { 1, 1, 1, 1 },
  3098. /*.nb =*/ { 0, 0, 0, 0 },
  3099. /*.op =*/ GGML_OP_NONE,
  3100. /*.op_params =*/ { 0 },
  3101. /*.flags =*/ 0,
  3102. /*.grad =*/ NULL,
  3103. /*.src =*/ { NULL },
  3104. /*.perf_runs =*/ 0,
  3105. /*.perf_cycles =*/ 0,
  3106. /*.perf_time_us =*/ 0,
  3107. /*.view_src =*/ view_src,
  3108. /*.view_offs =*/ view_offs,
  3109. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3110. /*.name =*/ { 0 },
  3111. /*.extra =*/ NULL,
  3112. /*.padding =*/ { 0 },
  3113. };
  3114. #ifdef __clang__
  3115. #pragma clang diagnostic pop
  3116. #endif
  3117. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3118. //ggml_assert_aligned(result->data);
  3119. for (int i = 0; i < n_dims; i++) {
  3120. result->ne[i] = ne[i];
  3121. }
  3122. result->nb[0] = ggml_type_size(type);
  3123. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3124. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3125. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3126. }
  3127. ctx->n_objects++;
  3128. return result;
  3129. }
  3130. struct ggml_tensor * ggml_new_tensor(
  3131. struct ggml_context * ctx,
  3132. enum ggml_type type,
  3133. int n_dims,
  3134. const int64_t * ne) {
  3135. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3136. }
  3137. struct ggml_tensor * ggml_new_tensor_1d(
  3138. struct ggml_context * ctx,
  3139. enum ggml_type type,
  3140. int64_t ne0) {
  3141. return ggml_new_tensor(ctx, type, 1, &ne0);
  3142. }
  3143. struct ggml_tensor * ggml_new_tensor_2d(
  3144. struct ggml_context * ctx,
  3145. enum ggml_type type,
  3146. int64_t ne0,
  3147. int64_t ne1) {
  3148. const int64_t ne[2] = { ne0, ne1 };
  3149. return ggml_new_tensor(ctx, type, 2, ne);
  3150. }
  3151. struct ggml_tensor * ggml_new_tensor_3d(
  3152. struct ggml_context * ctx,
  3153. enum ggml_type type,
  3154. int64_t ne0,
  3155. int64_t ne1,
  3156. int64_t ne2) {
  3157. const int64_t ne[3] = { ne0, ne1, ne2 };
  3158. return ggml_new_tensor(ctx, type, 3, ne);
  3159. }
  3160. struct ggml_tensor * ggml_new_tensor_4d(
  3161. struct ggml_context * ctx,
  3162. enum ggml_type type,
  3163. int64_t ne0,
  3164. int64_t ne1,
  3165. int64_t ne2,
  3166. int64_t ne3) {
  3167. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3168. return ggml_new_tensor(ctx, type, 4, ne);
  3169. }
  3170. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3171. ggml_scratch_save(ctx);
  3172. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3173. ggml_scratch_load(ctx);
  3174. ggml_set_i32(result, value);
  3175. return result;
  3176. }
  3177. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3178. ggml_scratch_save(ctx);
  3179. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3180. ggml_scratch_load(ctx);
  3181. ggml_set_f32(result, value);
  3182. return result;
  3183. }
  3184. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3185. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3186. }
  3187. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3188. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3189. assert(params_size <= GGML_MAX_OP_PARAMS);
  3190. memcpy(tensor->op_params, params, params_size);
  3191. }
  3192. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3193. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3194. return ((const int32_t *)(tensor->op_params))[i];
  3195. }
  3196. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3197. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3198. return ((const float *)(tensor->op_params))[i];
  3199. }
  3200. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3201. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3202. ((int32_t *)(tensor->op_params))[i] = value;
  3203. }
  3204. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3205. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3206. ((float *)(tensor->op_params))[i] = value;
  3207. }
  3208. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3209. memset(tensor->data, 0, ggml_nbytes(tensor));
  3210. return tensor;
  3211. }
  3212. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3213. const int n = ggml_nrows(tensor);
  3214. const int nc = tensor->ne[0];
  3215. const size_t n1 = tensor->nb[1];
  3216. char * const data = tensor->data;
  3217. switch (tensor->type) {
  3218. case GGML_TYPE_I8:
  3219. {
  3220. assert(tensor->nb[0] == sizeof(int8_t));
  3221. for (int i = 0; i < n; i++) {
  3222. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3223. }
  3224. } break;
  3225. case GGML_TYPE_I16:
  3226. {
  3227. assert(tensor->nb[0] == sizeof(int16_t));
  3228. for (int i = 0; i < n; i++) {
  3229. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3230. }
  3231. } break;
  3232. case GGML_TYPE_I32:
  3233. {
  3234. assert(tensor->nb[0] == sizeof(int32_t));
  3235. for (int i = 0; i < n; i++) {
  3236. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3237. }
  3238. } break;
  3239. case GGML_TYPE_F16:
  3240. {
  3241. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3242. for (int i = 0; i < n; i++) {
  3243. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3244. }
  3245. } break;
  3246. case GGML_TYPE_BF16:
  3247. {
  3248. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3249. for (int i = 0; i < n; i++) {
  3250. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3251. }
  3252. } break;
  3253. case GGML_TYPE_F32:
  3254. {
  3255. assert(tensor->nb[0] == sizeof(float));
  3256. for (int i = 0; i < n; i++) {
  3257. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3258. }
  3259. } break;
  3260. default:
  3261. {
  3262. GGML_ASSERT(false);
  3263. } break;
  3264. }
  3265. return tensor;
  3266. }
  3267. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3268. const int n = ggml_nrows(tensor);
  3269. const int nc = tensor->ne[0];
  3270. const size_t n1 = tensor->nb[1];
  3271. char * const data = tensor->data;
  3272. switch (tensor->type) {
  3273. case GGML_TYPE_I8:
  3274. {
  3275. assert(tensor->nb[0] == sizeof(int8_t));
  3276. for (int i = 0; i < n; i++) {
  3277. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3278. }
  3279. } break;
  3280. case GGML_TYPE_I16:
  3281. {
  3282. assert(tensor->nb[0] == sizeof(int16_t));
  3283. for (int i = 0; i < n; i++) {
  3284. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3285. }
  3286. } break;
  3287. case GGML_TYPE_I32:
  3288. {
  3289. assert(tensor->nb[0] == sizeof(int32_t));
  3290. for (int i = 0; i < n; i++) {
  3291. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3292. }
  3293. } break;
  3294. case GGML_TYPE_F16:
  3295. {
  3296. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3297. for (int i = 0; i < n; i++) {
  3298. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3299. }
  3300. } break;
  3301. case GGML_TYPE_BF16:
  3302. {
  3303. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3304. for (int i = 0; i < n; i++) {
  3305. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3306. }
  3307. } break;
  3308. case GGML_TYPE_F32:
  3309. {
  3310. assert(tensor->nb[0] == sizeof(float));
  3311. for (int i = 0; i < n; i++) {
  3312. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3313. }
  3314. } break;
  3315. default:
  3316. {
  3317. GGML_ASSERT(false);
  3318. } break;
  3319. }
  3320. return tensor;
  3321. }
  3322. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3323. const int64_t ne2 = tensor->ne[2];
  3324. const int64_t ne1 = tensor->ne[1];
  3325. const int64_t ne0 = tensor->ne[0];
  3326. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3327. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3328. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3329. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3330. if (i0) {
  3331. * i0 = i0_;
  3332. }
  3333. if (i1) {
  3334. * i1 = i1_;
  3335. }
  3336. if (i2) {
  3337. * i2 = i2_;
  3338. }
  3339. if (i3) {
  3340. * i3 = i3_;
  3341. }
  3342. }
  3343. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3344. if (!ggml_is_contiguous(tensor)) {
  3345. int64_t id[4] = { 0, 0, 0, 0 };
  3346. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3347. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3348. }
  3349. switch (tensor->type) {
  3350. case GGML_TYPE_I8:
  3351. {
  3352. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3353. return ((int8_t *)(tensor->data))[i];
  3354. }
  3355. case GGML_TYPE_I16:
  3356. {
  3357. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3358. return ((int16_t *)(tensor->data))[i];
  3359. }
  3360. case GGML_TYPE_I32:
  3361. {
  3362. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3363. return ((int32_t *)(tensor->data))[i];
  3364. }
  3365. case GGML_TYPE_F16:
  3366. {
  3367. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3368. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3369. }
  3370. case GGML_TYPE_BF16:
  3371. {
  3372. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3373. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3374. }
  3375. case GGML_TYPE_F32:
  3376. {
  3377. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3378. return ((float *)(tensor->data))[i];
  3379. }
  3380. default:
  3381. {
  3382. GGML_ASSERT(false);
  3383. }
  3384. }
  3385. return 0.0f;
  3386. }
  3387. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3388. if (!ggml_is_contiguous(tensor)) {
  3389. int64_t id[4] = { 0, 0, 0, 0 };
  3390. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3391. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3392. return;
  3393. }
  3394. switch (tensor->type) {
  3395. case GGML_TYPE_I8:
  3396. {
  3397. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3398. ((int8_t *)(tensor->data))[i] = value;
  3399. } break;
  3400. case GGML_TYPE_I16:
  3401. {
  3402. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3403. ((int16_t *)(tensor->data))[i] = value;
  3404. } break;
  3405. case GGML_TYPE_I32:
  3406. {
  3407. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3408. ((int32_t *)(tensor->data))[i] = value;
  3409. } break;
  3410. case GGML_TYPE_F16:
  3411. {
  3412. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3413. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3414. } break;
  3415. case GGML_TYPE_BF16:
  3416. {
  3417. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3418. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3419. } break;
  3420. case GGML_TYPE_F32:
  3421. {
  3422. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3423. ((float *)(tensor->data))[i] = value;
  3424. } break;
  3425. default:
  3426. {
  3427. GGML_ASSERT(false);
  3428. } break;
  3429. }
  3430. }
  3431. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3432. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3433. switch (tensor->type) {
  3434. case GGML_TYPE_I8:
  3435. return ((int8_t *) data)[0];
  3436. case GGML_TYPE_I16:
  3437. return ((int16_t *) data)[0];
  3438. case GGML_TYPE_I32:
  3439. return ((int32_t *) data)[0];
  3440. case GGML_TYPE_F16:
  3441. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3442. case GGML_TYPE_BF16:
  3443. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3444. case GGML_TYPE_F32:
  3445. return ((float *) data)[0];
  3446. default:
  3447. GGML_ASSERT(false);
  3448. }
  3449. return 0.0f;
  3450. }
  3451. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3452. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3453. switch (tensor->type) {
  3454. case GGML_TYPE_I8:
  3455. {
  3456. ((int8_t *)(data))[0] = value;
  3457. } break;
  3458. case GGML_TYPE_I16:
  3459. {
  3460. ((int16_t *)(data))[0] = value;
  3461. } break;
  3462. case GGML_TYPE_I32:
  3463. {
  3464. ((int32_t *)(data))[0] = value;
  3465. } break;
  3466. case GGML_TYPE_F16:
  3467. {
  3468. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3469. } break;
  3470. case GGML_TYPE_BF16:
  3471. {
  3472. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3473. } break;
  3474. case GGML_TYPE_F32:
  3475. {
  3476. ((float *)(data))[0] = value;
  3477. } break;
  3478. default:
  3479. {
  3480. GGML_ASSERT(false);
  3481. } break;
  3482. }
  3483. }
  3484. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3485. if (!ggml_is_contiguous(tensor)) {
  3486. int64_t id[4] = { 0, 0, 0, 0 };
  3487. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3488. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3489. }
  3490. switch (tensor->type) {
  3491. case GGML_TYPE_I8:
  3492. {
  3493. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3494. return ((int8_t *)(tensor->data))[i];
  3495. }
  3496. case GGML_TYPE_I16:
  3497. {
  3498. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3499. return ((int16_t *)(tensor->data))[i];
  3500. }
  3501. case GGML_TYPE_I32:
  3502. {
  3503. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3504. return ((int32_t *)(tensor->data))[i];
  3505. }
  3506. case GGML_TYPE_F16:
  3507. {
  3508. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3509. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3510. }
  3511. case GGML_TYPE_BF16:
  3512. {
  3513. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3514. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3515. }
  3516. case GGML_TYPE_F32:
  3517. {
  3518. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3519. return ((float *)(tensor->data))[i];
  3520. }
  3521. default:
  3522. {
  3523. GGML_ASSERT(false);
  3524. }
  3525. }
  3526. return 0.0f;
  3527. }
  3528. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3529. if (!ggml_is_contiguous(tensor)) {
  3530. int64_t id[4] = { 0, 0, 0, 0 };
  3531. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3532. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3533. return;
  3534. }
  3535. switch (tensor->type) {
  3536. case GGML_TYPE_I8:
  3537. {
  3538. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3539. ((int8_t *)(tensor->data))[i] = value;
  3540. } break;
  3541. case GGML_TYPE_I16:
  3542. {
  3543. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3544. ((int16_t *)(tensor->data))[i] = value;
  3545. } break;
  3546. case GGML_TYPE_I32:
  3547. {
  3548. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3549. ((int32_t *)(tensor->data))[i] = value;
  3550. } break;
  3551. case GGML_TYPE_F16:
  3552. {
  3553. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3554. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3555. } break;
  3556. case GGML_TYPE_BF16:
  3557. {
  3558. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3559. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3560. } break;
  3561. case GGML_TYPE_F32:
  3562. {
  3563. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3564. ((float *)(tensor->data))[i] = value;
  3565. } break;
  3566. default:
  3567. {
  3568. GGML_ASSERT(false);
  3569. } break;
  3570. }
  3571. }
  3572. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3573. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3574. switch (tensor->type) {
  3575. case GGML_TYPE_I8:
  3576. return ((int8_t *) data)[0];
  3577. case GGML_TYPE_I16:
  3578. return ((int16_t *) data)[0];
  3579. case GGML_TYPE_I32:
  3580. return ((int32_t *) data)[0];
  3581. case GGML_TYPE_F16:
  3582. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3583. case GGML_TYPE_BF16:
  3584. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3585. case GGML_TYPE_F32:
  3586. return ((float *) data)[0];
  3587. default:
  3588. GGML_ASSERT(false);
  3589. }
  3590. return 0.0f;
  3591. }
  3592. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3593. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3594. switch (tensor->type) {
  3595. case GGML_TYPE_I8:
  3596. {
  3597. ((int8_t *)(data))[0] = value;
  3598. } break;
  3599. case GGML_TYPE_I16:
  3600. {
  3601. ((int16_t *)(data))[0] = value;
  3602. } break;
  3603. case GGML_TYPE_I32:
  3604. {
  3605. ((int32_t *)(data))[0] = value;
  3606. } break;
  3607. case GGML_TYPE_F16:
  3608. {
  3609. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3610. } break;
  3611. case GGML_TYPE_BF16:
  3612. {
  3613. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3614. } break;
  3615. case GGML_TYPE_F32:
  3616. {
  3617. ((float *)(data))[0] = value;
  3618. } break;
  3619. default:
  3620. {
  3621. GGML_ASSERT(false);
  3622. } break;
  3623. }
  3624. }
  3625. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3626. return tensor->data;
  3627. }
  3628. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3629. assert(tensor->type == GGML_TYPE_F32);
  3630. return (float *)(tensor->data);
  3631. }
  3632. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3633. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3634. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3635. }
  3636. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3637. return tensor->name;
  3638. }
  3639. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3640. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3641. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3642. return tensor;
  3643. }
  3644. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3645. va_list args;
  3646. va_start(args, fmt);
  3647. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3648. va_end(args);
  3649. return tensor;
  3650. }
  3651. struct ggml_tensor * ggml_view_tensor(
  3652. struct ggml_context * ctx,
  3653. struct ggml_tensor * src) {
  3654. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3655. ggml_format_name(result, "%s (view)", src->name);
  3656. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3657. result->nb[i] = src->nb[i];
  3658. }
  3659. return result;
  3660. }
  3661. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3662. struct ggml_object * obj = ctx->objects_begin;
  3663. char * const mem_buffer = ctx->mem_buffer;
  3664. while (obj != NULL) {
  3665. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3666. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3667. }
  3668. obj = obj->next;
  3669. }
  3670. return NULL;
  3671. }
  3672. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3673. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3674. obj = obj->next;
  3675. char * const mem_buffer = ctx->mem_buffer;
  3676. while (obj != NULL) {
  3677. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3678. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3679. }
  3680. obj = obj->next;
  3681. }
  3682. return NULL;
  3683. }
  3684. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3685. struct ggml_object * obj = ctx->objects_begin;
  3686. char * const mem_buffer = ctx->mem_buffer;
  3687. while (obj != NULL) {
  3688. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3689. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3690. if (strcmp(cur->name, name) == 0) {
  3691. return cur;
  3692. }
  3693. }
  3694. obj = obj->next;
  3695. }
  3696. return NULL;
  3697. }
  3698. ////////////////////////////////////////////////////////////////////////////////
  3699. // ggml_dup
  3700. static struct ggml_tensor * ggml_dup_impl(
  3701. struct ggml_context * ctx,
  3702. struct ggml_tensor * a,
  3703. bool inplace) {
  3704. bool is_node = false;
  3705. if (!inplace && (a->grad)) {
  3706. is_node = true;
  3707. }
  3708. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3709. result->op = GGML_OP_DUP;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src[0] = a;
  3712. return result;
  3713. }
  3714. struct ggml_tensor * ggml_dup(
  3715. struct ggml_context * ctx,
  3716. struct ggml_tensor * a) {
  3717. return ggml_dup_impl(ctx, a, false);
  3718. }
  3719. struct ggml_tensor * ggml_dup_inplace(
  3720. struct ggml_context * ctx,
  3721. struct ggml_tensor * a) {
  3722. return ggml_dup_impl(ctx, a, true);
  3723. }
  3724. // ggml_add
  3725. static struct ggml_tensor * ggml_add_impl(
  3726. struct ggml_context * ctx,
  3727. struct ggml_tensor * a,
  3728. struct ggml_tensor * b,
  3729. bool inplace) {
  3730. GGML_ASSERT(ggml_can_repeat(b, a));
  3731. bool is_node = false;
  3732. if (!inplace && (a->grad || b->grad)) {
  3733. // TODO: support backward pass for broadcasting
  3734. GGML_ASSERT(ggml_are_same_shape(a, b));
  3735. is_node = true;
  3736. }
  3737. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3738. result->op = GGML_OP_ADD;
  3739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3740. result->src[0] = a;
  3741. result->src[1] = b;
  3742. return result;
  3743. }
  3744. struct ggml_tensor * ggml_add(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. struct ggml_tensor * b) {
  3748. return ggml_add_impl(ctx, a, b, false);
  3749. }
  3750. struct ggml_tensor * ggml_add_inplace(
  3751. struct ggml_context * ctx,
  3752. struct ggml_tensor * a,
  3753. struct ggml_tensor * b) {
  3754. return ggml_add_impl(ctx, a, b, true);
  3755. }
  3756. // ggml_add_cast
  3757. static struct ggml_tensor * ggml_add_cast_impl(
  3758. struct ggml_context * ctx,
  3759. struct ggml_tensor * a,
  3760. struct ggml_tensor * b,
  3761. enum ggml_type type) {
  3762. // TODO: support less-strict constraint
  3763. // GGML_ASSERT(ggml_can_repeat(b, a));
  3764. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3765. // currently only supported for quantized input and f16
  3766. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3767. a->type == GGML_TYPE_F16 ||
  3768. a->type == GGML_TYPE_BF16);
  3769. bool is_node = false;
  3770. if (a->grad || b->grad) {
  3771. // TODO: support backward pass for broadcasting
  3772. GGML_ASSERT(ggml_are_same_shape(a, b));
  3773. is_node = true;
  3774. }
  3775. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3776. result->op = GGML_OP_ADD;
  3777. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3778. result->src[0] = a;
  3779. result->src[1] = b;
  3780. return result;
  3781. }
  3782. struct ggml_tensor * ggml_add_cast(
  3783. struct ggml_context * ctx,
  3784. struct ggml_tensor * a,
  3785. struct ggml_tensor * b,
  3786. enum ggml_type type) {
  3787. return ggml_add_cast_impl(ctx, a, b, type);
  3788. }
  3789. // ggml_add1
  3790. static struct ggml_tensor * ggml_add1_impl(
  3791. struct ggml_context * ctx,
  3792. struct ggml_tensor * a,
  3793. struct ggml_tensor * b,
  3794. bool inplace) {
  3795. GGML_ASSERT(ggml_is_scalar(b));
  3796. GGML_ASSERT(ggml_is_padded_1d(a));
  3797. bool is_node = false;
  3798. if (a->grad || b->grad) {
  3799. is_node = true;
  3800. }
  3801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3802. result->op = GGML_OP_ADD1;
  3803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3804. result->src[0] = a;
  3805. result->src[1] = b;
  3806. return result;
  3807. }
  3808. struct ggml_tensor * ggml_add1(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. struct ggml_tensor * b) {
  3812. return ggml_add1_impl(ctx, a, b, false);
  3813. }
  3814. struct ggml_tensor * ggml_add1_inplace(
  3815. struct ggml_context * ctx,
  3816. struct ggml_tensor * a,
  3817. struct ggml_tensor * b) {
  3818. return ggml_add1_impl(ctx, a, b, true);
  3819. }
  3820. // ggml_acc
  3821. static struct ggml_tensor * ggml_acc_impl(
  3822. struct ggml_context * ctx,
  3823. struct ggml_tensor * a,
  3824. struct ggml_tensor * b,
  3825. size_t nb1,
  3826. size_t nb2,
  3827. size_t nb3,
  3828. size_t offset,
  3829. bool inplace) {
  3830. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3831. GGML_ASSERT(ggml_is_contiguous(a));
  3832. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3833. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3834. bool is_node = false;
  3835. if (!inplace && (a->grad || b->grad)) {
  3836. is_node = true;
  3837. }
  3838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3839. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3840. ggml_set_op_params(result, params, sizeof(params));
  3841. result->op = GGML_OP_ACC;
  3842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3843. result->src[0] = a;
  3844. result->src[1] = b;
  3845. return result;
  3846. }
  3847. struct ggml_tensor * ggml_acc(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a,
  3850. struct ggml_tensor * b,
  3851. size_t nb1,
  3852. size_t nb2,
  3853. size_t nb3,
  3854. size_t offset) {
  3855. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3856. }
  3857. struct ggml_tensor * ggml_acc_inplace(
  3858. struct ggml_context * ctx,
  3859. struct ggml_tensor * a,
  3860. struct ggml_tensor * b,
  3861. size_t nb1,
  3862. size_t nb2,
  3863. size_t nb3,
  3864. size_t offset) {
  3865. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3866. }
  3867. // ggml_sub
  3868. static struct ggml_tensor * ggml_sub_impl(
  3869. struct ggml_context * ctx,
  3870. struct ggml_tensor * a,
  3871. struct ggml_tensor * b,
  3872. bool inplace) {
  3873. GGML_ASSERT(ggml_are_same_shape(a, b));
  3874. bool is_node = false;
  3875. if (!inplace && (a->grad || b->grad)) {
  3876. is_node = true;
  3877. }
  3878. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3879. result->op = GGML_OP_SUB;
  3880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3881. result->src[0] = a;
  3882. result->src[1] = b;
  3883. return result;
  3884. }
  3885. struct ggml_tensor * ggml_sub(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a,
  3888. struct ggml_tensor * b) {
  3889. return ggml_sub_impl(ctx, a, b, false);
  3890. }
  3891. struct ggml_tensor * ggml_sub_inplace(
  3892. struct ggml_context * ctx,
  3893. struct ggml_tensor * a,
  3894. struct ggml_tensor * b) {
  3895. return ggml_sub_impl(ctx, a, b, true);
  3896. }
  3897. // ggml_mul
  3898. static struct ggml_tensor * ggml_mul_impl(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. struct ggml_tensor * b,
  3902. bool inplace) {
  3903. GGML_ASSERT(ggml_can_repeat(b, a));
  3904. bool is_node = false;
  3905. if (!inplace && (a->grad || b->grad)) {
  3906. // TODO: support backward pass for broadcasting
  3907. GGML_ASSERT(ggml_are_same_shape(a, b));
  3908. is_node = true;
  3909. }
  3910. if (inplace) {
  3911. GGML_ASSERT(!is_node);
  3912. }
  3913. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3914. result->op = GGML_OP_MUL;
  3915. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3916. result->src[0] = a;
  3917. result->src[1] = b;
  3918. return result;
  3919. }
  3920. struct ggml_tensor * ggml_mul(
  3921. struct ggml_context * ctx,
  3922. struct ggml_tensor * a,
  3923. struct ggml_tensor * b) {
  3924. return ggml_mul_impl(ctx, a, b, false);
  3925. }
  3926. struct ggml_tensor * ggml_mul_inplace(
  3927. struct ggml_context * ctx,
  3928. struct ggml_tensor * a,
  3929. struct ggml_tensor * b) {
  3930. return ggml_mul_impl(ctx, a, b, true);
  3931. }
  3932. // ggml_div
  3933. static struct ggml_tensor * ggml_div_impl(
  3934. struct ggml_context * ctx,
  3935. struct ggml_tensor * a,
  3936. struct ggml_tensor * b,
  3937. bool inplace) {
  3938. GGML_ASSERT(ggml_can_repeat(b, a));
  3939. bool is_node = false;
  3940. if (!inplace && (a->grad || b->grad)) {
  3941. is_node = true;
  3942. }
  3943. if (inplace) {
  3944. GGML_ASSERT(!is_node);
  3945. }
  3946. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3947. result->op = GGML_OP_DIV;
  3948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3949. result->src[0] = a;
  3950. result->src[1] = b;
  3951. return result;
  3952. }
  3953. struct ggml_tensor * ggml_div(
  3954. struct ggml_context * ctx,
  3955. struct ggml_tensor * a,
  3956. struct ggml_tensor * b) {
  3957. return ggml_div_impl(ctx, a, b, false);
  3958. }
  3959. struct ggml_tensor * ggml_div_inplace(
  3960. struct ggml_context * ctx,
  3961. struct ggml_tensor * a,
  3962. struct ggml_tensor * b) {
  3963. return ggml_div_impl(ctx, a, b, true);
  3964. }
  3965. // ggml_sqr
  3966. static struct ggml_tensor * ggml_sqr_impl(
  3967. struct ggml_context * ctx,
  3968. struct ggml_tensor * a,
  3969. bool inplace) {
  3970. bool is_node = false;
  3971. if (!inplace && (a->grad)) {
  3972. is_node = true;
  3973. }
  3974. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3975. result->op = GGML_OP_SQR;
  3976. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3977. result->src[0] = a;
  3978. return result;
  3979. }
  3980. struct ggml_tensor * ggml_sqr(
  3981. struct ggml_context * ctx,
  3982. struct ggml_tensor * a) {
  3983. return ggml_sqr_impl(ctx, a, false);
  3984. }
  3985. struct ggml_tensor * ggml_sqr_inplace(
  3986. struct ggml_context * ctx,
  3987. struct ggml_tensor * a) {
  3988. return ggml_sqr_impl(ctx, a, true);
  3989. }
  3990. // ggml_sqrt
  3991. static struct ggml_tensor * ggml_sqrt_impl(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. bool inplace) {
  3995. bool is_node = false;
  3996. if (!inplace && (a->grad)) {
  3997. is_node = true;
  3998. }
  3999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4000. result->op = GGML_OP_SQRT;
  4001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4002. result->src[0] = a;
  4003. return result;
  4004. }
  4005. struct ggml_tensor * ggml_sqrt(
  4006. struct ggml_context * ctx,
  4007. struct ggml_tensor * a) {
  4008. return ggml_sqrt_impl(ctx, a, false);
  4009. }
  4010. struct ggml_tensor * ggml_sqrt_inplace(
  4011. struct ggml_context * ctx,
  4012. struct ggml_tensor * a) {
  4013. return ggml_sqrt_impl(ctx, a, true);
  4014. }
  4015. // ggml_log
  4016. static struct ggml_tensor * ggml_log_impl(
  4017. struct ggml_context * ctx,
  4018. struct ggml_tensor * a,
  4019. bool inplace) {
  4020. bool is_node = false;
  4021. if (!inplace && (a->grad)) {
  4022. is_node = true;
  4023. }
  4024. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4025. result->op = GGML_OP_LOG;
  4026. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4027. result->src[0] = a;
  4028. return result;
  4029. }
  4030. struct ggml_tensor * ggml_log(
  4031. struct ggml_context * ctx,
  4032. struct ggml_tensor * a) {
  4033. return ggml_log_impl(ctx, a, false);
  4034. }
  4035. struct ggml_tensor * ggml_log_inplace(
  4036. struct ggml_context * ctx,
  4037. struct ggml_tensor * a) {
  4038. return ggml_log_impl(ctx, a, true);
  4039. }
  4040. // ggml_sum
  4041. struct ggml_tensor * ggml_sum(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a) {
  4044. bool is_node = false;
  4045. if (a->grad) {
  4046. is_node = true;
  4047. }
  4048. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4049. result->op = GGML_OP_SUM;
  4050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4051. result->src[0] = a;
  4052. return result;
  4053. }
  4054. // ggml_sum_rows
  4055. struct ggml_tensor * ggml_sum_rows(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a) {
  4058. bool is_node = false;
  4059. if (a->grad) {
  4060. is_node = true;
  4061. }
  4062. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4063. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4064. ne[i] = a->ne[i];
  4065. }
  4066. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4067. result->op = GGML_OP_SUM_ROWS;
  4068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4069. result->src[0] = a;
  4070. return result;
  4071. }
  4072. // ggml_mean
  4073. struct ggml_tensor * ggml_mean(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a) {
  4076. bool is_node = false;
  4077. if (a->grad) {
  4078. GGML_ASSERT(false); // TODO: implement
  4079. is_node = true;
  4080. }
  4081. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4082. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4083. result->op = GGML_OP_MEAN;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src[0] = a;
  4086. return result;
  4087. }
  4088. // ggml_argmax
  4089. struct ggml_tensor * ggml_argmax(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a) {
  4092. GGML_ASSERT(ggml_is_matrix(a));
  4093. bool is_node = false;
  4094. if (a->grad) {
  4095. GGML_ASSERT(false);
  4096. is_node = true;
  4097. }
  4098. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4099. result->op = GGML_OP_ARGMAX;
  4100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4101. result->src[0] = a;
  4102. return result;
  4103. }
  4104. // ggml_repeat
  4105. struct ggml_tensor * ggml_repeat(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. struct ggml_tensor * b) {
  4109. GGML_ASSERT(ggml_can_repeat(a, b));
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. is_node = true;
  4113. }
  4114. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4115. result->op = GGML_OP_REPEAT;
  4116. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4117. result->src[0] = a;
  4118. return result;
  4119. }
  4120. // ggml_repeat_back
  4121. struct ggml_tensor * ggml_repeat_back(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a,
  4124. struct ggml_tensor * b) {
  4125. GGML_ASSERT(ggml_can_repeat(b, a));
  4126. bool is_node = false;
  4127. if (a->grad) {
  4128. is_node = true;
  4129. }
  4130. if (ggml_are_same_shape(a, b) && !is_node) {
  4131. return a;
  4132. }
  4133. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4134. result->op = GGML_OP_REPEAT_BACK;
  4135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4136. result->src[0] = a;
  4137. return result;
  4138. }
  4139. // ggml_concat
  4140. struct ggml_tensor * ggml_concat(
  4141. struct ggml_context * ctx,
  4142. struct ggml_tensor * a,
  4143. struct ggml_tensor * b,
  4144. int dim) {
  4145. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4146. int64_t ne[GGML_MAX_DIMS];
  4147. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4148. if (d == dim) {
  4149. ne[d] = a->ne[d] + b->ne[d];
  4150. continue;
  4151. }
  4152. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4153. ne[d] = a->ne[d];
  4154. }
  4155. bool is_node = false;
  4156. if (a->grad || b->grad) {
  4157. is_node = true;
  4158. }
  4159. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4160. ggml_set_op_params_i32(result, 0, dim);
  4161. result->op = GGML_OP_CONCAT;
  4162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4163. result->src[0] = a;
  4164. result->src[1] = b;
  4165. return result;
  4166. }
  4167. // ggml_abs
  4168. struct ggml_tensor * ggml_abs(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a) {
  4171. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4172. }
  4173. struct ggml_tensor * ggml_abs_inplace(
  4174. struct ggml_context * ctx,
  4175. struct ggml_tensor * a) {
  4176. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4177. }
  4178. // ggml_sgn
  4179. struct ggml_tensor * ggml_sgn(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4183. }
  4184. struct ggml_tensor * ggml_sgn_inplace(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a) {
  4187. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4188. }
  4189. // ggml_neg
  4190. struct ggml_tensor * ggml_neg(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a) {
  4193. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4194. }
  4195. struct ggml_tensor * ggml_neg_inplace(
  4196. struct ggml_context * ctx,
  4197. struct ggml_tensor * a) {
  4198. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4199. }
  4200. // ggml_step
  4201. struct ggml_tensor * ggml_step(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a) {
  4204. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4205. }
  4206. struct ggml_tensor * ggml_step_inplace(
  4207. struct ggml_context * ctx,
  4208. struct ggml_tensor * a) {
  4209. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4210. }
  4211. // ggml_tanh
  4212. struct ggml_tensor * ggml_tanh(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4216. }
  4217. struct ggml_tensor * ggml_tanh_inplace(
  4218. struct ggml_context * ctx,
  4219. struct ggml_tensor * a) {
  4220. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4221. }
  4222. // ggml_elu
  4223. struct ggml_tensor * ggml_elu(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a) {
  4226. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4227. }
  4228. struct ggml_tensor * ggml_elu_inplace(
  4229. struct ggml_context * ctx,
  4230. struct ggml_tensor * a) {
  4231. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4232. }
  4233. // ggml_relu
  4234. struct ggml_tensor * ggml_relu(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a) {
  4237. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4238. }
  4239. struct ggml_tensor * ggml_relu_inplace(
  4240. struct ggml_context * ctx,
  4241. struct ggml_tensor * a) {
  4242. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4243. }
  4244. // ggml_leaky_relu
  4245. struct ggml_tensor * ggml_leaky_relu(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4248. bool is_node = false;
  4249. if (!inplace && (a->grad)) {
  4250. is_node = true;
  4251. }
  4252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4253. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4254. result->op = GGML_OP_LEAKY_RELU;
  4255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4256. result->src[0] = a;
  4257. return result;
  4258. }
  4259. // ggml_sigmoid
  4260. struct ggml_tensor * ggml_sigmoid(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a) {
  4263. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4264. }
  4265. struct ggml_tensor * ggml_sigmoid_inplace(
  4266. struct ggml_context * ctx,
  4267. struct ggml_tensor * a) {
  4268. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4269. }
  4270. // ggml_gelu
  4271. struct ggml_tensor * ggml_gelu(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a) {
  4274. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4275. }
  4276. struct ggml_tensor * ggml_gelu_inplace(
  4277. struct ggml_context * ctx,
  4278. struct ggml_tensor * a) {
  4279. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4280. }
  4281. // ggml_gelu_quick
  4282. struct ggml_tensor * ggml_gelu_quick(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4286. }
  4287. struct ggml_tensor * ggml_gelu_quick_inplace(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a) {
  4290. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4291. }
  4292. // ggml_silu
  4293. struct ggml_tensor * ggml_silu(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a) {
  4296. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4297. }
  4298. struct ggml_tensor * ggml_silu_inplace(
  4299. struct ggml_context * ctx,
  4300. struct ggml_tensor * a) {
  4301. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4302. }
  4303. // ggml_silu_back
  4304. struct ggml_tensor * ggml_silu_back(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a,
  4307. struct ggml_tensor * b) {
  4308. bool is_node = false;
  4309. if (a->grad || b->grad) {
  4310. // TODO: implement backward
  4311. is_node = true;
  4312. }
  4313. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4314. result->op = GGML_OP_SILU_BACK;
  4315. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4316. result->src[0] = a;
  4317. result->src[1] = b;
  4318. return result;
  4319. }
  4320. // ggml hardswish
  4321. struct ggml_tensor * ggml_hardswish(
  4322. struct ggml_context * ctx,
  4323. struct ggml_tensor * a) {
  4324. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4325. }
  4326. // ggml hardsigmoid
  4327. struct ggml_tensor * ggml_hardsigmoid(
  4328. struct ggml_context * ctx,
  4329. struct ggml_tensor * a) {
  4330. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4331. }
  4332. // ggml_norm
  4333. static struct ggml_tensor * ggml_norm_impl(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a,
  4336. float eps,
  4337. bool inplace) {
  4338. bool is_node = false;
  4339. if (!inplace && (a->grad)) {
  4340. GGML_ASSERT(false); // TODO: implement backward
  4341. is_node = true;
  4342. }
  4343. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4344. ggml_set_op_params(result, &eps, sizeof(eps));
  4345. result->op = GGML_OP_NORM;
  4346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4347. result->src[0] = a;
  4348. return result;
  4349. }
  4350. struct ggml_tensor * ggml_norm(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a,
  4353. float eps) {
  4354. return ggml_norm_impl(ctx, a, eps, false);
  4355. }
  4356. struct ggml_tensor * ggml_norm_inplace(
  4357. struct ggml_context * ctx,
  4358. struct ggml_tensor * a,
  4359. float eps) {
  4360. return ggml_norm_impl(ctx, a, eps, true);
  4361. }
  4362. // ggml_rms_norm
  4363. static struct ggml_tensor * ggml_rms_norm_impl(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. float eps,
  4367. bool inplace) {
  4368. bool is_node = false;
  4369. if (!inplace && (a->grad)) {
  4370. is_node = true;
  4371. }
  4372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4373. ggml_set_op_params(result, &eps, sizeof(eps));
  4374. result->op = GGML_OP_RMS_NORM;
  4375. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4376. result->src[0] = a;
  4377. return result;
  4378. }
  4379. struct ggml_tensor * ggml_rms_norm(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. float eps) {
  4383. return ggml_rms_norm_impl(ctx, a, eps, false);
  4384. }
  4385. struct ggml_tensor * ggml_rms_norm_inplace(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a,
  4388. float eps) {
  4389. return ggml_rms_norm_impl(ctx, a, eps, true);
  4390. }
  4391. // ggml_rms_norm_back
  4392. struct ggml_tensor * ggml_rms_norm_back(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a,
  4395. struct ggml_tensor * b,
  4396. float eps) {
  4397. bool is_node = false;
  4398. if (a->grad) {
  4399. // TODO: implement backward
  4400. is_node = true;
  4401. }
  4402. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4403. ggml_set_op_params(result, &eps, sizeof(eps));
  4404. result->op = GGML_OP_RMS_NORM_BACK;
  4405. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4406. result->src[0] = a;
  4407. result->src[1] = b;
  4408. return result;
  4409. }
  4410. // ggml_group_norm
  4411. static struct ggml_tensor * ggml_group_norm_impl(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. int n_groups,
  4415. bool inplace) {
  4416. bool is_node = false;
  4417. if (!inplace && (a->grad)) {
  4418. GGML_ASSERT(false); // TODO: implement backward
  4419. is_node = true;
  4420. }
  4421. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4422. result->op_params[0] = n_groups;
  4423. result->op = GGML_OP_GROUP_NORM;
  4424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4425. result->src[0] = a;
  4426. return result;
  4427. }
  4428. struct ggml_tensor * ggml_group_norm(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. int n_groups) {
  4432. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4433. }
  4434. struct ggml_tensor * ggml_group_norm_inplace(
  4435. struct ggml_context * ctx,
  4436. struct ggml_tensor * a,
  4437. int n_groups) {
  4438. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4439. }
  4440. // ggml_mul_mat
  4441. struct ggml_tensor * ggml_mul_mat(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a,
  4444. struct ggml_tensor * b) {
  4445. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4446. GGML_ASSERT(!ggml_is_transposed(a));
  4447. bool is_node = false;
  4448. if (a->grad || b->grad) {
  4449. is_node = true;
  4450. }
  4451. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4452. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4453. result->op = GGML_OP_MUL_MAT;
  4454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4455. result->src[0] = a;
  4456. result->src[1] = b;
  4457. return result;
  4458. }
  4459. void ggml_mul_mat_set_prec(
  4460. struct ggml_tensor * a,
  4461. enum ggml_prec prec) {
  4462. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4463. const int32_t prec_i32 = (int32_t) prec;
  4464. ggml_set_op_params_i32(a, 0, prec_i32);
  4465. }
  4466. // ggml_mul_mat_id
  4467. /*
  4468. c = ggml_mul_mat_id(ctx, as, b, ids);
  4469. as -> [cols, rows, n_expert]
  4470. ids -> [n_experts_used, n_tokens] (i32)
  4471. b -> [cols, n_expert_used, n_tokens]
  4472. c -> [cols, n_expert_used, n_tokens]
  4473. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4474. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4475. */
  4476. struct ggml_tensor * ggml_mul_mat_id(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * as,
  4479. struct ggml_tensor * b,
  4480. struct ggml_tensor * ids) {
  4481. GGML_ASSERT(!ggml_is_transposed(as));
  4482. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4483. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4484. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4485. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4486. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4487. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4488. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4489. bool is_node = false;
  4490. if (as->grad || b->grad) {
  4491. is_node = true;
  4492. }
  4493. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4494. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4495. result->op = GGML_OP_MUL_MAT_ID;
  4496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4497. result->src[0] = as;
  4498. result->src[1] = b;
  4499. result->src[2] = ids;
  4500. return result;
  4501. }
  4502. // ggml_out_prod
  4503. struct ggml_tensor * ggml_out_prod(
  4504. struct ggml_context * ctx,
  4505. struct ggml_tensor * a,
  4506. struct ggml_tensor * b) {
  4507. GGML_ASSERT(ggml_can_out_prod(a, b));
  4508. GGML_ASSERT(!ggml_is_transposed(a));
  4509. bool is_node = false;
  4510. if (a->grad || b->grad) {
  4511. is_node = true;
  4512. }
  4513. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4514. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4515. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4516. result->op = GGML_OP_OUT_PROD;
  4517. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4518. result->src[0] = a;
  4519. result->src[1] = b;
  4520. return result;
  4521. }
  4522. // ggml_scale
  4523. static struct ggml_tensor * ggml_scale_impl(
  4524. struct ggml_context * ctx,
  4525. struct ggml_tensor * a,
  4526. float s,
  4527. bool inplace) {
  4528. GGML_ASSERT(ggml_is_padded_1d(a));
  4529. bool is_node = false;
  4530. if (a->grad) {
  4531. is_node = true;
  4532. }
  4533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4534. ggml_set_op_params(result, &s, sizeof(s));
  4535. result->op = GGML_OP_SCALE;
  4536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4537. result->src[0] = a;
  4538. return result;
  4539. }
  4540. struct ggml_tensor * ggml_scale(
  4541. struct ggml_context * ctx,
  4542. struct ggml_tensor * a,
  4543. float s) {
  4544. return ggml_scale_impl(ctx, a, s, false);
  4545. }
  4546. struct ggml_tensor * ggml_scale_inplace(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. float s) {
  4550. return ggml_scale_impl(ctx, a, s, true);
  4551. }
  4552. // ggml_set
  4553. static struct ggml_tensor * ggml_set_impl(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a,
  4556. struct ggml_tensor * b,
  4557. size_t nb1,
  4558. size_t nb2,
  4559. size_t nb3,
  4560. size_t offset,
  4561. bool inplace) {
  4562. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4563. bool is_node = false;
  4564. if (a->grad || b->grad) {
  4565. is_node = true;
  4566. }
  4567. // make a view of the destination
  4568. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4569. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4570. ggml_set_op_params(result, params, sizeof(params));
  4571. result->op = GGML_OP_SET;
  4572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4573. result->src[0] = a;
  4574. result->src[1] = b;
  4575. return result;
  4576. }
  4577. struct ggml_tensor * ggml_set(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a,
  4580. struct ggml_tensor * b,
  4581. size_t nb1,
  4582. size_t nb2,
  4583. size_t nb3,
  4584. size_t offset) {
  4585. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4586. }
  4587. struct ggml_tensor * ggml_set_inplace(
  4588. struct ggml_context * ctx,
  4589. struct ggml_tensor * a,
  4590. struct ggml_tensor * b,
  4591. size_t nb1,
  4592. size_t nb2,
  4593. size_t nb3,
  4594. size_t offset) {
  4595. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4596. }
  4597. struct ggml_tensor * ggml_set_1d(
  4598. struct ggml_context * ctx,
  4599. struct ggml_tensor * a,
  4600. struct ggml_tensor * b,
  4601. size_t offset) {
  4602. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4603. }
  4604. struct ggml_tensor * ggml_set_1d_inplace(
  4605. struct ggml_context * ctx,
  4606. struct ggml_tensor * a,
  4607. struct ggml_tensor * b,
  4608. size_t offset) {
  4609. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4610. }
  4611. struct ggml_tensor * ggml_set_2d(
  4612. struct ggml_context * ctx,
  4613. struct ggml_tensor * a,
  4614. struct ggml_tensor * b,
  4615. size_t nb1,
  4616. size_t offset) {
  4617. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4618. }
  4619. struct ggml_tensor * ggml_set_2d_inplace(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b,
  4623. size_t nb1,
  4624. size_t offset) {
  4625. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4626. }
  4627. // ggml_cpy
  4628. static struct ggml_tensor * ggml_cpy_impl(
  4629. struct ggml_context * ctx,
  4630. struct ggml_tensor * a,
  4631. struct ggml_tensor * b) {
  4632. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4633. bool is_node = false;
  4634. if (a->grad || b->grad) {
  4635. // inplace is false and either one have a grad
  4636. is_node = true;
  4637. }
  4638. // make a view of the destination
  4639. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4640. if (strlen(b->name) > 0) {
  4641. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4642. } else {
  4643. ggml_format_name(result, "%s (copy)", a->name);
  4644. }
  4645. result->op = GGML_OP_CPY;
  4646. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4647. result->src[0] = a;
  4648. result->src[1] = b;
  4649. return result;
  4650. }
  4651. struct ggml_tensor * ggml_cpy(
  4652. struct ggml_context * ctx,
  4653. struct ggml_tensor * a,
  4654. struct ggml_tensor * b) {
  4655. return ggml_cpy_impl(ctx, a, b);
  4656. }
  4657. struct ggml_tensor * ggml_cast(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. enum ggml_type type) {
  4661. bool is_node = false;
  4662. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4663. ggml_format_name(result, "%s (copy)", a->name);
  4664. result->op = GGML_OP_CPY;
  4665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4666. result->src[0] = a;
  4667. result->src[1] = result;
  4668. return result;
  4669. }
  4670. // ggml_cont
  4671. static struct ggml_tensor * ggml_cont_impl(
  4672. struct ggml_context * ctx,
  4673. struct ggml_tensor * a) {
  4674. bool is_node = false;
  4675. if (a->grad) {
  4676. is_node = true;
  4677. }
  4678. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4679. ggml_format_name(result, "%s (cont)", a->name);
  4680. result->op = GGML_OP_CONT;
  4681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4682. result->src[0] = a;
  4683. return result;
  4684. }
  4685. struct ggml_tensor * ggml_cont(
  4686. struct ggml_context * ctx,
  4687. struct ggml_tensor * a) {
  4688. return ggml_cont_impl(ctx, a);
  4689. }
  4690. // make contiguous, with new shape
  4691. GGML_API struct ggml_tensor * ggml_cont_1d(
  4692. struct ggml_context * ctx,
  4693. struct ggml_tensor * a,
  4694. int64_t ne0) {
  4695. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4696. }
  4697. GGML_API struct ggml_tensor * ggml_cont_2d(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. int64_t ne0,
  4701. int64_t ne1) {
  4702. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4703. }
  4704. GGML_API struct ggml_tensor * ggml_cont_3d(
  4705. struct ggml_context * ctx,
  4706. struct ggml_tensor * a,
  4707. int64_t ne0,
  4708. int64_t ne1,
  4709. int64_t ne2) {
  4710. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4711. }
  4712. struct ggml_tensor * ggml_cont_4d(
  4713. struct ggml_context * ctx,
  4714. struct ggml_tensor * a,
  4715. int64_t ne0,
  4716. int64_t ne1,
  4717. int64_t ne2,
  4718. int64_t ne3) {
  4719. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4720. bool is_node = false;
  4721. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4722. ggml_format_name(result, "%s (cont)", a->name);
  4723. result->op = GGML_OP_CONT;
  4724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4725. result->src[0] = a;
  4726. return result;
  4727. }
  4728. // ggml_reshape
  4729. struct ggml_tensor * ggml_reshape(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a,
  4732. struct ggml_tensor * b) {
  4733. GGML_ASSERT(ggml_is_contiguous(a));
  4734. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4735. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4736. bool is_node = false;
  4737. if (a->grad) {
  4738. is_node = true;
  4739. }
  4740. if (b->grad) {
  4741. // gradient propagation is not supported
  4742. //GGML_ASSERT(false);
  4743. }
  4744. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4745. ggml_format_name(result, "%s (reshaped)", a->name);
  4746. result->op = GGML_OP_RESHAPE;
  4747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4748. result->src[0] = a;
  4749. return result;
  4750. }
  4751. struct ggml_tensor * ggml_reshape_1d(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. int64_t ne0) {
  4755. GGML_ASSERT(ggml_is_contiguous(a));
  4756. GGML_ASSERT(ggml_nelements(a) == ne0);
  4757. bool is_node = false;
  4758. if (a->grad) {
  4759. is_node = true;
  4760. }
  4761. const int64_t ne[1] = { ne0 };
  4762. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4763. ggml_format_name(result, "%s (reshaped)", a->name);
  4764. result->op = GGML_OP_RESHAPE;
  4765. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4766. result->src[0] = a;
  4767. return result;
  4768. }
  4769. struct ggml_tensor * ggml_reshape_2d(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. int64_t ne0,
  4773. int64_t ne1) {
  4774. GGML_ASSERT(ggml_is_contiguous(a));
  4775. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4776. bool is_node = false;
  4777. if (a->grad) {
  4778. is_node = true;
  4779. }
  4780. const int64_t ne[2] = { ne0, ne1 };
  4781. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4782. ggml_format_name(result, "%s (reshaped)", a->name);
  4783. result->op = GGML_OP_RESHAPE;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src[0] = a;
  4786. return result;
  4787. }
  4788. struct ggml_tensor * ggml_reshape_3d(
  4789. struct ggml_context * ctx,
  4790. struct ggml_tensor * a,
  4791. int64_t ne0,
  4792. int64_t ne1,
  4793. int64_t ne2) {
  4794. GGML_ASSERT(ggml_is_contiguous(a));
  4795. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4796. bool is_node = false;
  4797. if (a->grad) {
  4798. is_node = true;
  4799. }
  4800. const int64_t ne[3] = { ne0, ne1, ne2 };
  4801. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4802. ggml_format_name(result, "%s (reshaped)", a->name);
  4803. result->op = GGML_OP_RESHAPE;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src[0] = a;
  4806. return result;
  4807. }
  4808. struct ggml_tensor * ggml_reshape_4d(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. int64_t ne0,
  4812. int64_t ne1,
  4813. int64_t ne2,
  4814. int64_t ne3) {
  4815. GGML_ASSERT(ggml_is_contiguous(a));
  4816. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4817. bool is_node = false;
  4818. if (a->grad) {
  4819. is_node = true;
  4820. }
  4821. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4822. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4823. ggml_format_name(result, "%s (reshaped)", a->name);
  4824. result->op = GGML_OP_RESHAPE;
  4825. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4826. result->src[0] = a;
  4827. return result;
  4828. }
  4829. static struct ggml_tensor * ggml_view_impl(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. int n_dims,
  4833. const int64_t * ne,
  4834. size_t offset) {
  4835. bool is_node = false;
  4836. if (a->grad) {
  4837. is_node = true;
  4838. }
  4839. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4840. ggml_format_name(result, "%s (view)", a->name);
  4841. ggml_set_op_params(result, &offset, sizeof(offset));
  4842. result->op = GGML_OP_VIEW;
  4843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4844. result->src[0] = a;
  4845. return result;
  4846. }
  4847. // ggml_view_1d
  4848. struct ggml_tensor * ggml_view_1d(
  4849. struct ggml_context * ctx,
  4850. struct ggml_tensor * a,
  4851. int64_t ne0,
  4852. size_t offset) {
  4853. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4854. return result;
  4855. }
  4856. // ggml_view_2d
  4857. struct ggml_tensor * ggml_view_2d(
  4858. struct ggml_context * ctx,
  4859. struct ggml_tensor * a,
  4860. int64_t ne0,
  4861. int64_t ne1,
  4862. size_t nb1,
  4863. size_t offset) {
  4864. const int64_t ne[2] = { ne0, ne1 };
  4865. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4866. result->nb[1] = nb1;
  4867. result->nb[2] = result->nb[1]*ne1;
  4868. result->nb[3] = result->nb[2];
  4869. return result;
  4870. }
  4871. // ggml_view_3d
  4872. struct ggml_tensor * ggml_view_3d(
  4873. struct ggml_context * ctx,
  4874. struct ggml_tensor * a,
  4875. int64_t ne0,
  4876. int64_t ne1,
  4877. int64_t ne2,
  4878. size_t nb1,
  4879. size_t nb2,
  4880. size_t offset) {
  4881. const int64_t ne[3] = { ne0, ne1, ne2 };
  4882. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4883. result->nb[1] = nb1;
  4884. result->nb[2] = nb2;
  4885. result->nb[3] = result->nb[2]*ne2;
  4886. return result;
  4887. }
  4888. // ggml_view_4d
  4889. struct ggml_tensor * ggml_view_4d(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. int64_t ne0,
  4893. int64_t ne1,
  4894. int64_t ne2,
  4895. int64_t ne3,
  4896. size_t nb1,
  4897. size_t nb2,
  4898. size_t nb3,
  4899. size_t offset) {
  4900. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4901. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4902. result->nb[1] = nb1;
  4903. result->nb[2] = nb2;
  4904. result->nb[3] = nb3;
  4905. return result;
  4906. }
  4907. // ggml_permute
  4908. struct ggml_tensor * ggml_permute(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. int axis0,
  4912. int axis1,
  4913. int axis2,
  4914. int axis3) {
  4915. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4916. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4917. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4918. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4919. GGML_ASSERT(axis0 != axis1);
  4920. GGML_ASSERT(axis0 != axis2);
  4921. GGML_ASSERT(axis0 != axis3);
  4922. GGML_ASSERT(axis1 != axis2);
  4923. GGML_ASSERT(axis1 != axis3);
  4924. GGML_ASSERT(axis2 != axis3);
  4925. bool is_node = false;
  4926. if (a->grad) {
  4927. is_node = true;
  4928. }
  4929. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4930. ggml_format_name(result, "%s (permuted)", a->name);
  4931. int ne[GGML_MAX_DIMS];
  4932. int nb[GGML_MAX_DIMS];
  4933. ne[axis0] = a->ne[0];
  4934. ne[axis1] = a->ne[1];
  4935. ne[axis2] = a->ne[2];
  4936. ne[axis3] = a->ne[3];
  4937. nb[axis0] = a->nb[0];
  4938. nb[axis1] = a->nb[1];
  4939. nb[axis2] = a->nb[2];
  4940. nb[axis3] = a->nb[3];
  4941. result->ne[0] = ne[0];
  4942. result->ne[1] = ne[1];
  4943. result->ne[2] = ne[2];
  4944. result->ne[3] = ne[3];
  4945. result->nb[0] = nb[0];
  4946. result->nb[1] = nb[1];
  4947. result->nb[2] = nb[2];
  4948. result->nb[3] = nb[3];
  4949. result->op = GGML_OP_PERMUTE;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4953. ggml_set_op_params(result, params, sizeof(params));
  4954. return result;
  4955. }
  4956. // ggml_transpose
  4957. struct ggml_tensor * ggml_transpose(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a) {
  4960. bool is_node = false;
  4961. if (a->grad) {
  4962. is_node = true;
  4963. }
  4964. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4965. ggml_format_name(result, "%s (transposed)", a->name);
  4966. result->ne[0] = a->ne[1];
  4967. result->ne[1] = a->ne[0];
  4968. result->nb[0] = a->nb[1];
  4969. result->nb[1] = a->nb[0];
  4970. result->op = GGML_OP_TRANSPOSE;
  4971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4972. result->src[0] = a;
  4973. return result;
  4974. }
  4975. // ggml_get_rows
  4976. struct ggml_tensor * ggml_get_rows(
  4977. struct ggml_context * ctx,
  4978. struct ggml_tensor * a,
  4979. struct ggml_tensor * b) {
  4980. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4981. GGML_ASSERT(b->ne[3] == 1);
  4982. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4983. bool is_node = false;
  4984. if (a->grad || b->grad) {
  4985. is_node = true;
  4986. }
  4987. // TODO: implement non F32 return
  4988. enum ggml_type type = GGML_TYPE_F32;
  4989. if (a->type == GGML_TYPE_I32) {
  4990. type = a->type;
  4991. }
  4992. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4993. result->op = GGML_OP_GET_ROWS;
  4994. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4995. result->src[0] = a;
  4996. result->src[1] = b;
  4997. return result;
  4998. }
  4999. // ggml_get_rows_back
  5000. struct ggml_tensor * ggml_get_rows_back(
  5001. struct ggml_context * ctx,
  5002. struct ggml_tensor * a,
  5003. struct ggml_tensor * b,
  5004. struct ggml_tensor * c) {
  5005. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5006. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5007. bool is_node = false;
  5008. if (a->grad || b->grad) {
  5009. is_node = true;
  5010. }
  5011. // TODO: implement non F32 return
  5012. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5013. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5014. result->op = GGML_OP_GET_ROWS_BACK;
  5015. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5016. result->src[0] = a;
  5017. result->src[1] = b;
  5018. return result;
  5019. }
  5020. // ggml_diag
  5021. struct ggml_tensor * ggml_diag(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a) {
  5024. GGML_ASSERT(a->ne[1] == 1);
  5025. bool is_node = false;
  5026. if (a->grad) {
  5027. is_node = true;
  5028. }
  5029. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5030. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5031. result->op = GGML_OP_DIAG;
  5032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5033. result->src[0] = a;
  5034. return result;
  5035. }
  5036. // ggml_diag_mask_inf
  5037. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5038. struct ggml_context * ctx,
  5039. struct ggml_tensor * a,
  5040. int n_past,
  5041. bool inplace) {
  5042. bool is_node = false;
  5043. if (a->grad) {
  5044. is_node = true;
  5045. }
  5046. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5047. int32_t params[] = { n_past };
  5048. ggml_set_op_params(result, params, sizeof(params));
  5049. result->op = GGML_OP_DIAG_MASK_INF;
  5050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5051. result->src[0] = a;
  5052. return result;
  5053. }
  5054. struct ggml_tensor * ggml_diag_mask_inf(
  5055. struct ggml_context * ctx,
  5056. struct ggml_tensor * a,
  5057. int n_past) {
  5058. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5059. }
  5060. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5061. struct ggml_context * ctx,
  5062. struct ggml_tensor * a,
  5063. int n_past) {
  5064. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5065. }
  5066. // ggml_diag_mask_zero
  5067. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5068. struct ggml_context * ctx,
  5069. struct ggml_tensor * a,
  5070. int n_past,
  5071. bool inplace) {
  5072. bool is_node = false;
  5073. if (a->grad) {
  5074. is_node = true;
  5075. }
  5076. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5077. int32_t params[] = { n_past };
  5078. ggml_set_op_params(result, params, sizeof(params));
  5079. result->op = GGML_OP_DIAG_MASK_ZERO;
  5080. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5081. result->src[0] = a;
  5082. return result;
  5083. }
  5084. struct ggml_tensor * ggml_diag_mask_zero(
  5085. struct ggml_context * ctx,
  5086. struct ggml_tensor * a,
  5087. int n_past) {
  5088. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5089. }
  5090. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5091. struct ggml_context * ctx,
  5092. struct ggml_tensor * a,
  5093. int n_past) {
  5094. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5095. }
  5096. // ggml_soft_max
  5097. static struct ggml_tensor * ggml_soft_max_impl(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * mask,
  5101. float scale,
  5102. float max_bias,
  5103. bool inplace) {
  5104. GGML_ASSERT(ggml_is_contiguous(a));
  5105. if (mask) {
  5106. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5107. GGML_ASSERT(ggml_is_contiguous(mask));
  5108. GGML_ASSERT(ggml_is_matrix(mask));
  5109. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5110. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5111. }
  5112. if (max_bias > 0.0f) {
  5113. GGML_ASSERT(mask);
  5114. }
  5115. bool is_node = false;
  5116. if (a->grad) {
  5117. is_node = true;
  5118. }
  5119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5120. float params[] = { scale, max_bias };
  5121. ggml_set_op_params(result, params, sizeof(params));
  5122. result->op = GGML_OP_SOFT_MAX;
  5123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5124. result->src[0] = a;
  5125. result->src[1] = mask;
  5126. return result;
  5127. }
  5128. struct ggml_tensor * ggml_soft_max(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a) {
  5131. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5132. }
  5133. struct ggml_tensor * ggml_soft_max_inplace(
  5134. struct ggml_context * ctx,
  5135. struct ggml_tensor * a) {
  5136. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5137. }
  5138. struct ggml_tensor * ggml_soft_max_ext(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. struct ggml_tensor * mask,
  5142. float scale,
  5143. float max_bias) {
  5144. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5145. }
  5146. // ggml_soft_max_back
  5147. static struct ggml_tensor * ggml_soft_max_back_impl(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. struct ggml_tensor * b,
  5151. bool inplace) {
  5152. bool is_node = false;
  5153. if (a->grad || b->grad) {
  5154. is_node = true; // TODO : implement backward pass
  5155. }
  5156. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5157. result->op = GGML_OP_SOFT_MAX_BACK;
  5158. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5159. result->src[0] = a;
  5160. result->src[1] = b;
  5161. return result;
  5162. }
  5163. struct ggml_tensor * ggml_soft_max_back(
  5164. struct ggml_context * ctx,
  5165. struct ggml_tensor * a,
  5166. struct ggml_tensor * b) {
  5167. return ggml_soft_max_back_impl(ctx, a, b, false);
  5168. }
  5169. struct ggml_tensor * ggml_soft_max_back_inplace(
  5170. struct ggml_context * ctx,
  5171. struct ggml_tensor * a,
  5172. struct ggml_tensor * b) {
  5173. return ggml_soft_max_back_impl(ctx, a, b, true);
  5174. }
  5175. // ggml_rope
  5176. static struct ggml_tensor * ggml_rope_impl(
  5177. struct ggml_context * ctx,
  5178. struct ggml_tensor * a,
  5179. struct ggml_tensor * b,
  5180. struct ggml_tensor * c,
  5181. int n_dims,
  5182. int mode,
  5183. int n_ctx,
  5184. int n_orig_ctx,
  5185. float freq_base,
  5186. float freq_scale,
  5187. float ext_factor,
  5188. float attn_factor,
  5189. float beta_fast,
  5190. float beta_slow,
  5191. float xpos_base,
  5192. bool xpos_down,
  5193. bool inplace) {
  5194. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5195. GGML_ASSERT(ggml_is_vector(b));
  5196. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5197. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5198. if (c) {
  5199. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5200. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5201. }
  5202. bool is_node = false;
  5203. if (a->grad) {
  5204. is_node = true;
  5205. }
  5206. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5207. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5208. memcpy(params + 5, &freq_base, sizeof(float));
  5209. memcpy(params + 6, &freq_scale, sizeof(float));
  5210. memcpy(params + 7, &ext_factor, sizeof(float));
  5211. memcpy(params + 8, &attn_factor, sizeof(float));
  5212. memcpy(params + 9, &beta_fast, sizeof(float));
  5213. memcpy(params + 10, &beta_slow, sizeof(float));
  5214. memcpy(params + 11, &xpos_base, sizeof(float));
  5215. memcpy(params + 12, &xpos_down, sizeof(bool));
  5216. ggml_set_op_params(result, params, sizeof(params));
  5217. result->op = GGML_OP_ROPE;
  5218. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5219. result->src[0] = a;
  5220. result->src[1] = b;
  5221. result->src[2] = c;
  5222. return result;
  5223. }
  5224. struct ggml_tensor * ggml_rope(
  5225. struct ggml_context * ctx,
  5226. struct ggml_tensor * a,
  5227. struct ggml_tensor * b,
  5228. int n_dims,
  5229. int mode,
  5230. int n_ctx) {
  5231. return ggml_rope_impl(
  5232. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  5233. );
  5234. }
  5235. struct ggml_tensor * ggml_rope_inplace(
  5236. struct ggml_context * ctx,
  5237. struct ggml_tensor * a,
  5238. struct ggml_tensor * b,
  5239. int n_dims,
  5240. int mode,
  5241. int n_ctx) {
  5242. return ggml_rope_impl(
  5243. ctx, a, b, NULL, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  5244. );
  5245. }
  5246. struct ggml_tensor * ggml_rope_ext(
  5247. struct ggml_context * ctx,
  5248. struct ggml_tensor * a,
  5249. struct ggml_tensor * b,
  5250. struct ggml_tensor * c,
  5251. int n_dims,
  5252. int mode,
  5253. int n_ctx,
  5254. int n_orig_ctx,
  5255. float freq_base,
  5256. float freq_scale,
  5257. float ext_factor,
  5258. float attn_factor,
  5259. float beta_fast,
  5260. float beta_slow) {
  5261. return ggml_rope_impl(
  5262. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5263. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5264. );
  5265. }
  5266. struct ggml_tensor * ggml_rope_ext_inplace(
  5267. struct ggml_context * ctx,
  5268. struct ggml_tensor * a,
  5269. struct ggml_tensor * b,
  5270. struct ggml_tensor * c,
  5271. int n_dims,
  5272. int mode,
  5273. int n_ctx,
  5274. int n_orig_ctx,
  5275. float freq_base,
  5276. float freq_scale,
  5277. float ext_factor,
  5278. float attn_factor,
  5279. float beta_fast,
  5280. float beta_slow) {
  5281. return ggml_rope_impl(
  5282. ctx, a, b, c, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5283. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5284. );
  5285. }
  5286. struct ggml_tensor * ggml_rope_custom(
  5287. struct ggml_context * ctx,
  5288. struct ggml_tensor * a,
  5289. struct ggml_tensor * b,
  5290. int n_dims,
  5291. int mode,
  5292. int n_ctx,
  5293. int n_orig_ctx,
  5294. float freq_base,
  5295. float freq_scale,
  5296. float ext_factor,
  5297. float attn_factor,
  5298. float beta_fast,
  5299. float beta_slow) {
  5300. return ggml_rope_impl(
  5301. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5302. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  5303. );
  5304. }
  5305. struct ggml_tensor * ggml_rope_custom_inplace(
  5306. struct ggml_context * ctx,
  5307. struct ggml_tensor * a,
  5308. struct ggml_tensor * b,
  5309. int n_dims,
  5310. int mode,
  5311. int n_ctx,
  5312. int n_orig_ctx,
  5313. float freq_base,
  5314. float freq_scale,
  5315. float ext_factor,
  5316. float attn_factor,
  5317. float beta_fast,
  5318. float beta_slow) {
  5319. return ggml_rope_impl(
  5320. ctx, a, b, NULL, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  5321. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  5322. );
  5323. }
  5324. struct ggml_tensor * ggml_rope_xpos_inplace(
  5325. struct ggml_context * ctx,
  5326. struct ggml_tensor * a,
  5327. struct ggml_tensor * b,
  5328. int n_dims,
  5329. float base,
  5330. bool down) {
  5331. return ggml_rope_impl(ctx, a, b, NULL, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  5332. }
  5333. // ggml_rope_back
  5334. struct ggml_tensor * ggml_rope_back(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * a,
  5337. struct ggml_tensor * b,
  5338. struct ggml_tensor * c,
  5339. int n_dims,
  5340. int mode,
  5341. int n_ctx,
  5342. int n_orig_ctx,
  5343. float freq_base,
  5344. float freq_scale,
  5345. float ext_factor,
  5346. float attn_factor,
  5347. float beta_fast,
  5348. float beta_slow,
  5349. float xpos_base,
  5350. bool xpos_down) {
  5351. GGML_ASSERT(ggml_is_vector(b));
  5352. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5353. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5354. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5355. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5356. bool is_node = false;
  5357. if (a->grad) {
  5358. is_node = false; // TODO: implement backward
  5359. }
  5360. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5361. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  5362. memcpy(params + 5, &freq_base, sizeof(float));
  5363. memcpy(params + 6, &freq_scale, sizeof(float));
  5364. memcpy(params + 7, &ext_factor, sizeof(float));
  5365. memcpy(params + 8, &attn_factor, sizeof(float));
  5366. memcpy(params + 9, &beta_fast, sizeof(float));
  5367. memcpy(params + 10, &beta_slow, sizeof(float));
  5368. memcpy(params + 11, &xpos_base, sizeof(float));
  5369. memcpy(params + 12, &xpos_down, sizeof(bool));
  5370. ggml_set_op_params(result, params, sizeof(params));
  5371. result->op = GGML_OP_ROPE_BACK;
  5372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5373. result->src[0] = a;
  5374. result->src[1] = b;
  5375. return result;
  5376. }
  5377. // ggml_clamp
  5378. struct ggml_tensor * ggml_clamp(
  5379. struct ggml_context * ctx,
  5380. struct ggml_tensor * a,
  5381. float min,
  5382. float max) {
  5383. bool is_node = false;
  5384. if (a->grad) {
  5385. GGML_ASSERT(false); // TODO: implement backward
  5386. is_node = true;
  5387. }
  5388. // TODO: when implement backward, fix this:
  5389. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5390. float params[] = { min, max };
  5391. ggml_set_op_params(result, params, sizeof(params));
  5392. result->op = GGML_OP_CLAMP;
  5393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5394. result->src[0] = a;
  5395. return result;
  5396. }
  5397. // ggml_conv_1d
  5398. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5399. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5400. }
  5401. GGML_API struct ggml_tensor * ggml_conv_1d(
  5402. struct ggml_context * ctx,
  5403. struct ggml_tensor * a,
  5404. struct ggml_tensor * b,
  5405. int s0,
  5406. int p0,
  5407. int d0) {
  5408. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5409. struct ggml_tensor * result =
  5410. ggml_mul_mat(ctx,
  5411. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5412. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5413. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5414. return result;
  5415. }
  5416. // ggml_conv_1d_ph
  5417. struct ggml_tensor* ggml_conv_1d_ph(
  5418. struct ggml_context * ctx,
  5419. struct ggml_tensor * a,
  5420. struct ggml_tensor * b,
  5421. int s,
  5422. int d) {
  5423. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5424. }
  5425. // ggml_conv_transpose_1d
  5426. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5427. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5428. }
  5429. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5430. struct ggml_context * ctx,
  5431. struct ggml_tensor * a,
  5432. struct ggml_tensor * b,
  5433. int s0,
  5434. int p0,
  5435. int d0) {
  5436. GGML_ASSERT(ggml_is_matrix(b));
  5437. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5438. GGML_ASSERT(a->ne[3] == 1);
  5439. GGML_ASSERT(p0 == 0);
  5440. GGML_ASSERT(d0 == 1);
  5441. bool is_node = false;
  5442. if (a->grad || b->grad) {
  5443. GGML_ASSERT(false); // TODO: implement backward
  5444. is_node = true;
  5445. }
  5446. const int64_t ne[4] = {
  5447. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5448. a->ne[1], b->ne[2], 1,
  5449. };
  5450. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5451. int32_t params[] = { s0, p0, d0 };
  5452. ggml_set_op_params(result, params, sizeof(params));
  5453. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5455. result->src[0] = a;
  5456. result->src[1] = b;
  5457. return result;
  5458. }
  5459. // ggml_conv_depthwise
  5460. struct ggml_tensor * ggml_conv_depthwise_2d(
  5461. struct ggml_context * ctx,
  5462. struct ggml_tensor * a,
  5463. struct ggml_tensor * b,
  5464. int s0,
  5465. int s1,
  5466. int p0,
  5467. int p1,
  5468. int d0,
  5469. int d1) {
  5470. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5471. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5472. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5473. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5474. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5475. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5476. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5477. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5478. return result;
  5479. }
  5480. // ggml_conv_2d
  5481. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5482. // a: [OC,IC, KH, KW]
  5483. // b: [N, IC, IH, IW]
  5484. // result: [N, OH, OW, IC*KH*KW]
  5485. struct ggml_tensor * ggml_im2col(
  5486. struct ggml_context * ctx,
  5487. struct ggml_tensor * a,
  5488. struct ggml_tensor * b,
  5489. int s0,
  5490. int s1,
  5491. int p0,
  5492. int p1,
  5493. int d0,
  5494. int d1,
  5495. bool is_2D,
  5496. enum ggml_type dst_type) {
  5497. if(is_2D) {
  5498. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5499. } else {
  5500. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5501. }
  5502. bool is_node = false;
  5503. if (a->grad || b->grad) {
  5504. GGML_ASSERT(false); // TODO: implement backward
  5505. is_node = true;
  5506. }
  5507. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5508. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5509. const int64_t ne[4] = {
  5510. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5511. OW,
  5512. is_2D ? OH : b->ne[2],
  5513. is_2D ? b->ne[3] : 1,
  5514. };
  5515. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5516. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5517. ggml_set_op_params(result, params, sizeof(params));
  5518. result->op = GGML_OP_IM2COL;
  5519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5520. result->src[0] = a;
  5521. result->src[1] = b;
  5522. return result;
  5523. }
  5524. // a: [OC,IC, KH, KW]
  5525. // b: [N, IC, IH, IW]
  5526. // result: [N, OC, OH, OW]
  5527. struct ggml_tensor * ggml_conv_2d(
  5528. struct ggml_context * ctx,
  5529. struct ggml_tensor * a,
  5530. struct ggml_tensor * b,
  5531. int s0,
  5532. int s1,
  5533. int p0,
  5534. int p1,
  5535. int d0,
  5536. int d1) {
  5537. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5538. struct ggml_tensor * result =
  5539. ggml_mul_mat(ctx,
  5540. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5541. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5542. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5543. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5544. return result;
  5545. }
  5546. // ggml_conv_2d_sk_p0
  5547. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5548. struct ggml_context * ctx,
  5549. struct ggml_tensor * a,
  5550. struct ggml_tensor * b) {
  5551. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5552. }
  5553. // ggml_conv_2d_s1_ph
  5554. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5555. struct ggml_context * ctx,
  5556. struct ggml_tensor * a,
  5557. struct ggml_tensor * b) {
  5558. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5559. }
  5560. // ggml_conv_transpose_2d_p0
  5561. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5562. return (ins - 1) * s - 2 * p + ks;
  5563. }
  5564. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5565. struct ggml_context * ctx,
  5566. struct ggml_tensor * a,
  5567. struct ggml_tensor * b,
  5568. int stride) {
  5569. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5570. bool is_node = false;
  5571. if (a->grad || b->grad) {
  5572. GGML_ASSERT(false); // TODO: implement backward
  5573. is_node = true;
  5574. }
  5575. const int64_t ne[4] = {
  5576. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5577. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5578. a->ne[2], b->ne[3],
  5579. };
  5580. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5581. ggml_set_op_params_i32(result, 0, stride);
  5582. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5584. result->src[0] = a;
  5585. result->src[1] = b;
  5586. return result;
  5587. }
  5588. // ggml_pool_*
  5589. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5590. return (ins + 2 * p - ks) / s + 1;
  5591. }
  5592. // ggml_pool_1d
  5593. struct ggml_tensor * ggml_pool_1d(
  5594. struct ggml_context * ctx,
  5595. struct ggml_tensor * a,
  5596. enum ggml_op_pool op,
  5597. int k0,
  5598. int s0,
  5599. int p0) {
  5600. bool is_node = false;
  5601. if (a->grad) {
  5602. GGML_ASSERT(false); // TODO: implement backward
  5603. is_node = true;
  5604. }
  5605. const int64_t ne[4] = {
  5606. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5607. a->ne[1],
  5608. a->ne[2],
  5609. a->ne[3],
  5610. };
  5611. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5612. int32_t params[] = { op, k0, s0, p0 };
  5613. ggml_set_op_params(result, params, sizeof(params));
  5614. result->op = GGML_OP_POOL_1D;
  5615. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5616. result->src[0] = a;
  5617. return result;
  5618. }
  5619. // ggml_pool_2d
  5620. struct ggml_tensor * ggml_pool_2d(
  5621. struct ggml_context * ctx,
  5622. struct ggml_tensor * a,
  5623. enum ggml_op_pool op,
  5624. int k0,
  5625. int k1,
  5626. int s0,
  5627. int s1,
  5628. float p0,
  5629. float p1) {
  5630. bool is_node = false;
  5631. if (a->grad) {
  5632. GGML_ASSERT(false); // TODO: implement backward
  5633. is_node = true;
  5634. }
  5635. struct ggml_tensor * result;
  5636. const int64_t ne[3] = {
  5637. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5638. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5639. a->ne[2],
  5640. };
  5641. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5642. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5643. ggml_set_op_params(result, params, sizeof(params));
  5644. result->op = GGML_OP_POOL_2D;
  5645. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5646. result->src[0] = a;
  5647. return result;
  5648. }
  5649. // ggml_upscale
  5650. static struct ggml_tensor * ggml_upscale_impl(
  5651. struct ggml_context * ctx,
  5652. struct ggml_tensor * a,
  5653. int ne0,
  5654. int ne1,
  5655. int ne2,
  5656. int ne3) {
  5657. bool is_node = false;
  5658. if (a->grad) {
  5659. GGML_ASSERT(false); // TODO: implement backward
  5660. is_node = true;
  5661. }
  5662. GGML_ASSERT(a->ne[0] <= ne0);
  5663. GGML_ASSERT(a->ne[1] <= ne1);
  5664. GGML_ASSERT(a->ne[2] <= ne2);
  5665. GGML_ASSERT(a->ne[3] <= ne3);
  5666. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5667. ne0,
  5668. ne1,
  5669. ne2,
  5670. ne3
  5671. );
  5672. result->op = GGML_OP_UPSCALE;
  5673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5674. result->src[0] = a;
  5675. return result;
  5676. }
  5677. struct ggml_tensor * ggml_upscale(
  5678. struct ggml_context * ctx,
  5679. struct ggml_tensor * a,
  5680. int scale_factor) {
  5681. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5682. }
  5683. struct ggml_tensor * ggml_upscale_ext(
  5684. struct ggml_context * ctx,
  5685. struct ggml_tensor * a,
  5686. int ne0,
  5687. int ne1,
  5688. int ne2,
  5689. int ne3) {
  5690. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5691. }
  5692. // ggml_pad
  5693. struct ggml_tensor * ggml_pad(
  5694. struct ggml_context * ctx,
  5695. struct ggml_tensor * a,
  5696. int p0, int p1, int p2, int p3) {
  5697. bool is_node = false;
  5698. if (a->grad) {
  5699. GGML_ASSERT(false); // TODO: implement backward
  5700. is_node = true;
  5701. }
  5702. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5703. a->ne[0] + p0,
  5704. a->ne[1] + p1,
  5705. a->ne[2] + p2,
  5706. a->ne[3] + p3);
  5707. result->op = GGML_OP_PAD;
  5708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5709. result->src[0] = a;
  5710. return result;
  5711. }
  5712. // ggml_arange
  5713. struct ggml_tensor * ggml_arange(
  5714. struct ggml_context * ctx,
  5715. float start,
  5716. float stop,
  5717. float step) {
  5718. GGML_ASSERT(stop > start);
  5719. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5720. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5721. result->op = GGML_OP_ARANGE;
  5722. ggml_set_op_params_f32(result, 0, start);
  5723. ggml_set_op_params_f32(result, 1, stop);
  5724. ggml_set_op_params_f32(result, 2, step);
  5725. return result;
  5726. }
  5727. // ggml_timestep_embedding
  5728. struct ggml_tensor * ggml_timestep_embedding(
  5729. struct ggml_context * ctx,
  5730. struct ggml_tensor * timesteps,
  5731. int dim,
  5732. int max_period) {
  5733. bool is_node = false;
  5734. if (timesteps->grad) {
  5735. GGML_ASSERT(false); // TODO: implement backward
  5736. is_node = true;
  5737. }
  5738. int actual_dim = dim;
  5739. if (dim % 2 != 0) {
  5740. actual_dim = dim + 1;
  5741. }
  5742. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5743. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5744. ggml_set_op_params_i32(result, 0, dim);
  5745. ggml_set_op_params_i32(result, 1, max_period);
  5746. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5747. result->src[0] = timesteps;
  5748. return result;
  5749. }
  5750. // ggml_argsort
  5751. struct ggml_tensor * ggml_argsort(
  5752. struct ggml_context * ctx,
  5753. struct ggml_tensor * a,
  5754. enum ggml_sort_order order) {
  5755. bool is_node = false;
  5756. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5757. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5758. result->op = GGML_OP_ARGSORT;
  5759. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5760. result->src[0] = a;
  5761. return result;
  5762. }
  5763. // ggml_top_k
  5764. struct ggml_tensor * ggml_top_k(
  5765. struct ggml_context * ctx,
  5766. struct ggml_tensor * a,
  5767. int k) {
  5768. GGML_ASSERT(a->ne[0] >= k);
  5769. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5770. result = ggml_view_4d(ctx, result,
  5771. k, result->ne[1], result->ne[2], result->ne[3],
  5772. result->nb[1], result->nb[2], result->nb[3],
  5773. 0);
  5774. return result;
  5775. }
  5776. // ggml_flash_attn_ext
  5777. struct ggml_tensor * ggml_flash_attn_ext(
  5778. struct ggml_context * ctx,
  5779. struct ggml_tensor * q,
  5780. struct ggml_tensor * k,
  5781. struct ggml_tensor * v,
  5782. struct ggml_tensor * mask,
  5783. float scale,
  5784. float max_bias) {
  5785. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5786. // TODO: check if vT can be multiplied by (k*qT)
  5787. if (mask) {
  5788. GGML_ASSERT(ggml_is_contiguous(mask));
  5789. GGML_ASSERT(mask->ne[2] == 1);
  5790. GGML_ASSERT(mask->ne[3] == 1);
  5791. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5792. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5793. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5794. }
  5795. if (max_bias > 0.0f) {
  5796. GGML_ASSERT(mask);
  5797. }
  5798. bool is_node = false;
  5799. if (q->grad || k->grad || v->grad) {
  5800. is_node = true;
  5801. }
  5802. // permute(0, 2, 1, 3)
  5803. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5804. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5805. float params[] = { scale, max_bias };
  5806. ggml_set_op_params(result, params, sizeof(params));
  5807. result->op = GGML_OP_FLASH_ATTN_EXT;
  5808. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5809. result->src[0] = q;
  5810. result->src[1] = k;
  5811. result->src[2] = v;
  5812. result->src[3] = mask;
  5813. return result;
  5814. }
  5815. void ggml_flash_attn_ext_set_prec(
  5816. struct ggml_tensor * a,
  5817. enum ggml_prec prec) {
  5818. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5819. const int32_t prec_i32 = (int32_t) prec;
  5820. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5821. }
  5822. // ggml_flash_attn_back
  5823. struct ggml_tensor * ggml_flash_attn_back(
  5824. struct ggml_context * ctx,
  5825. struct ggml_tensor * q,
  5826. struct ggml_tensor * k,
  5827. struct ggml_tensor * v,
  5828. struct ggml_tensor * d,
  5829. bool masked) {
  5830. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5831. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5832. // TODO: check if vT can be multiplied by (k*qT)
  5833. // d shape [D,N,ne2,ne3]
  5834. // q shape [D,N,ne2,ne3]
  5835. // k shape [D,M,kvne2,ne3]
  5836. // v shape [M,D,kvne2,ne3]
  5837. const int64_t D = q->ne[0];
  5838. const int64_t N = q->ne[1];
  5839. const int64_t M = k->ne[1];
  5840. const int64_t ne2 = q->ne[2];
  5841. const int64_t ne3 = q->ne[3];
  5842. const int64_t kvne2 = k->ne[2];
  5843. GGML_ASSERT(k->ne[0] == D);
  5844. GGML_ASSERT(v->ne[0] == M);
  5845. GGML_ASSERT(v->ne[1] == D);
  5846. GGML_ASSERT(d->ne[0] == D);
  5847. GGML_ASSERT(d->ne[1] == N);
  5848. GGML_ASSERT(k->ne[2] == kvne2);
  5849. GGML_ASSERT(k->ne[3] == ne3);
  5850. GGML_ASSERT(v->ne[2] == kvne2);
  5851. GGML_ASSERT(v->ne[3] == ne3);
  5852. GGML_ASSERT(d->ne[2] == ne2);
  5853. GGML_ASSERT(d->ne[3] == ne3);
  5854. GGML_ASSERT(ne2 % kvne2 == 0);
  5855. bool is_node = false;
  5856. if (q->grad || k->grad || v->grad) {
  5857. // when using this operation (in backwards pass) these grads are set.
  5858. // we don't want to create (big) grad of our result, so is_node is false.
  5859. is_node = false;
  5860. }
  5861. // store gradients of q, k and v as continuous tensors concatenated in result.
  5862. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5863. const int64_t elem_q = ggml_nelements(q);
  5864. const int64_t elem_k = ggml_nelements(k);
  5865. const int64_t elem_v = ggml_nelements(v);
  5866. enum ggml_type result_type = GGML_TYPE_F32;
  5867. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5868. const size_t tsize = ggml_type_size(result_type);
  5869. const size_t offs_q = 0;
  5870. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5871. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5872. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5873. const size_t nelements = (end + tsize - 1)/tsize;
  5874. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5875. int32_t masked_i = masked ? 1 : 0;
  5876. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5877. result->op = GGML_OP_FLASH_ATTN_BACK;
  5878. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5879. result->src[0] = q;
  5880. result->src[1] = k;
  5881. result->src[2] = v;
  5882. result->src[3] = d;
  5883. return result;
  5884. }
  5885. // ggml_ssm_conv
  5886. struct ggml_tensor * ggml_ssm_conv(
  5887. struct ggml_context * ctx,
  5888. struct ggml_tensor * s,
  5889. struct ggml_tensor * x,
  5890. struct ggml_tensor * c,
  5891. struct ggml_tensor * sq) {
  5892. GGML_ASSERT(ggml_is_3d(s));
  5893. GGML_ASSERT(ggml_is_matrix(x));
  5894. GGML_ASSERT(ggml_is_matrix(c));
  5895. GGML_ASSERT(ggml_is_matrix(sq));
  5896. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5897. const int64_t d_conv = c->ne[0];
  5898. const int64_t d_inner = c->ne[1];
  5899. const int64_t n_tokens = x->ne[1];
  5900. const int64_t n_kv = s->ne[2];
  5901. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5902. GGML_ASSERT( s->ne[1] == d_inner);
  5903. GGML_ASSERT( x->ne[0] == d_inner);
  5904. GGML_ASSERT(sq->ne[0] == n_kv);
  5905. GGML_ASSERT(sq->ne[1] == n_tokens);
  5906. bool is_node = false;
  5907. if (s->grad || x->grad || c->grad || sq->grad) {
  5908. GGML_ASSERT(false); // TODO: implement
  5909. is_node = true;
  5910. }
  5911. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5912. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5913. result->op = GGML_OP_SSM_CONV;
  5914. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5915. result->src[0] = s;
  5916. result->src[1] = x;
  5917. result->src[2] = c;
  5918. result->src[3] = sq;
  5919. return result;
  5920. }
  5921. // ggml_ssm_scan
  5922. struct ggml_tensor * ggml_ssm_scan(
  5923. struct ggml_context * ctx,
  5924. struct ggml_tensor * s,
  5925. struct ggml_tensor * x,
  5926. struct ggml_tensor * dt,
  5927. struct ggml_tensor * A,
  5928. struct ggml_tensor * B,
  5929. struct ggml_tensor * C,
  5930. struct ggml_tensor * sq) {
  5931. GGML_ASSERT(ggml_is_contiguous(s));
  5932. GGML_ASSERT(ggml_is_contiguous(x));
  5933. GGML_ASSERT(ggml_is_contiguous(dt));
  5934. GGML_ASSERT(ggml_is_contiguous(A));
  5935. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5936. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5937. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5938. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5939. {
  5940. const int64_t d_state = s->ne[0];
  5941. const int64_t d_inner = s->ne[1];
  5942. const int64_t n_tokens = x->ne[1];
  5943. GGML_ASSERT(x->ne[0] == d_inner);
  5944. GGML_ASSERT(A->ne[0] == d_state);
  5945. GGML_ASSERT(A->ne[1] == d_inner);
  5946. GGML_ASSERT(B->ne[0] == d_state);
  5947. GGML_ASSERT(B->ne[1] == n_tokens);
  5948. GGML_ASSERT(C->ne[0] == d_state);
  5949. GGML_ASSERT(C->ne[1] == n_tokens);
  5950. }
  5951. bool is_node = false;
  5952. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5953. GGML_ASSERT(false); // TODO: implement
  5954. is_node = true;
  5955. }
  5956. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5957. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5958. result->op = GGML_OP_SSM_SCAN;
  5959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5960. result->src[0] = s;
  5961. result->src[1] = x;
  5962. result->src[2] = dt;
  5963. result->src[3] = A;
  5964. result->src[4] = B;
  5965. result->src[5] = C;
  5966. result->src[6] = sq;
  5967. return result;
  5968. }
  5969. // ggml_win_part
  5970. struct ggml_tensor * ggml_win_part(
  5971. struct ggml_context * ctx,
  5972. struct ggml_tensor * a,
  5973. int w) {
  5974. GGML_ASSERT(a->ne[3] == 1);
  5975. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5976. bool is_node = false;
  5977. if (a->grad) {
  5978. GGML_ASSERT(false); // TODO: implement backward
  5979. is_node = true;
  5980. }
  5981. // padding
  5982. const int px = (w - a->ne[1]%w)%w;
  5983. const int py = (w - a->ne[2]%w)%w;
  5984. const int npx = (px + a->ne[1])/w;
  5985. const int npy = (py + a->ne[2])/w;
  5986. const int np = npx*npy;
  5987. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5988. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5989. int32_t params[] = { npx, npy, w };
  5990. ggml_set_op_params(result, params, sizeof(params));
  5991. result->op = GGML_OP_WIN_PART;
  5992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5993. result->src[0] = a;
  5994. return result;
  5995. }
  5996. // ggml_win_unpart
  5997. struct ggml_tensor * ggml_win_unpart(
  5998. struct ggml_context * ctx,
  5999. struct ggml_tensor * a,
  6000. int w0,
  6001. int h0,
  6002. int w) {
  6003. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6004. bool is_node = false;
  6005. if (a->grad) {
  6006. GGML_ASSERT(false); // TODO: implement backward
  6007. is_node = true;
  6008. }
  6009. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6010. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6011. int32_t params[] = { w };
  6012. ggml_set_op_params(result, params, sizeof(params));
  6013. result->op = GGML_OP_WIN_UNPART;
  6014. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6015. result->src[0] = a;
  6016. return result;
  6017. }
  6018. // ggml_get_rel_pos
  6019. struct ggml_tensor * ggml_get_rel_pos(
  6020. struct ggml_context * ctx,
  6021. struct ggml_tensor * a,
  6022. int qh,
  6023. int kh) {
  6024. GGML_ASSERT(qh == kh);
  6025. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6026. bool is_node = false;
  6027. if (a->grad) {
  6028. GGML_ASSERT(false); // TODO: implement backward
  6029. is_node = true;
  6030. }
  6031. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6032. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6033. result->op = GGML_OP_GET_REL_POS;
  6034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6035. result->src[0] = a;
  6036. return result;
  6037. }
  6038. // ggml_add_rel_pos
  6039. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6040. struct ggml_context * ctx,
  6041. struct ggml_tensor * a,
  6042. struct ggml_tensor * pw,
  6043. struct ggml_tensor * ph,
  6044. bool inplace) {
  6045. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6046. GGML_ASSERT(ggml_is_contiguous(a));
  6047. GGML_ASSERT(ggml_is_contiguous(pw));
  6048. GGML_ASSERT(ggml_is_contiguous(ph));
  6049. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6050. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6051. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6052. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6053. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6054. bool is_node = false;
  6055. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6056. is_node = true;
  6057. }
  6058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6059. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6060. result->op = GGML_OP_ADD_REL_POS;
  6061. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6062. result->src[0] = a;
  6063. result->src[1] = pw;
  6064. result->src[2] = ph;
  6065. return result;
  6066. }
  6067. struct ggml_tensor * ggml_add_rel_pos(
  6068. struct ggml_context * ctx,
  6069. struct ggml_tensor * a,
  6070. struct ggml_tensor * pw,
  6071. struct ggml_tensor * ph) {
  6072. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6073. }
  6074. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6075. struct ggml_context * ctx,
  6076. struct ggml_tensor * a,
  6077. struct ggml_tensor * pw,
  6078. struct ggml_tensor * ph) {
  6079. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6080. }
  6081. // gmml_unary
  6082. static struct ggml_tensor * ggml_unary_impl(
  6083. struct ggml_context * ctx,
  6084. struct ggml_tensor * a,
  6085. enum ggml_unary_op op,
  6086. bool inplace) {
  6087. bool is_node = false;
  6088. if (!inplace && (a->grad)) {
  6089. is_node = true;
  6090. }
  6091. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6092. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6093. result->op = GGML_OP_UNARY;
  6094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6095. result->src[0] = a;
  6096. return result;
  6097. }
  6098. struct ggml_tensor * ggml_unary(
  6099. struct ggml_context * ctx,
  6100. struct ggml_tensor * a,
  6101. enum ggml_unary_op op) {
  6102. return ggml_unary_impl(ctx, a, op, false);
  6103. }
  6104. struct ggml_tensor * ggml_unary_inplace(
  6105. struct ggml_context * ctx,
  6106. struct ggml_tensor * a,
  6107. enum ggml_unary_op op) {
  6108. return ggml_unary_impl(ctx, a, op, true);
  6109. }
  6110. // ggml_map_unary
  6111. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6112. struct ggml_context * ctx,
  6113. struct ggml_tensor * a,
  6114. const ggml_unary_op_f32_t fun,
  6115. bool inplace) {
  6116. bool is_node = false;
  6117. if (!inplace && a->grad) {
  6118. is_node = true;
  6119. }
  6120. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6121. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6122. result->op = GGML_OP_MAP_UNARY;
  6123. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6124. result->src[0] = a;
  6125. return result;
  6126. }
  6127. struct ggml_tensor * ggml_map_unary_f32(
  6128. struct ggml_context * ctx,
  6129. struct ggml_tensor * a,
  6130. const ggml_unary_op_f32_t fun) {
  6131. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6132. }
  6133. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6134. struct ggml_context * ctx,
  6135. struct ggml_tensor * a,
  6136. const ggml_unary_op_f32_t fun) {
  6137. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6138. }
  6139. // ggml_map_binary
  6140. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6141. struct ggml_context * ctx,
  6142. struct ggml_tensor * a,
  6143. struct ggml_tensor * b,
  6144. const ggml_binary_op_f32_t fun,
  6145. bool inplace) {
  6146. GGML_ASSERT(ggml_are_same_shape(a, b));
  6147. bool is_node = false;
  6148. if (!inplace && (a->grad || b->grad)) {
  6149. is_node = true;
  6150. }
  6151. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6152. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6153. result->op = GGML_OP_MAP_BINARY;
  6154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6155. result->src[0] = a;
  6156. result->src[1] = b;
  6157. return result;
  6158. }
  6159. struct ggml_tensor * ggml_map_binary_f32(
  6160. struct ggml_context * ctx,
  6161. struct ggml_tensor * a,
  6162. struct ggml_tensor * b,
  6163. const ggml_binary_op_f32_t fun) {
  6164. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6165. }
  6166. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6167. struct ggml_context * ctx,
  6168. struct ggml_tensor * a,
  6169. struct ggml_tensor * b,
  6170. const ggml_binary_op_f32_t fun) {
  6171. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6172. }
  6173. // ggml_map_custom1_f32
  6174. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6175. struct ggml_context * ctx,
  6176. struct ggml_tensor * a,
  6177. const ggml_custom1_op_f32_t fun,
  6178. bool inplace) {
  6179. bool is_node = false;
  6180. if (!inplace && a->grad) {
  6181. is_node = true;
  6182. }
  6183. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6184. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6185. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6187. result->src[0] = a;
  6188. return result;
  6189. }
  6190. struct ggml_tensor * ggml_map_custom1_f32(
  6191. struct ggml_context * ctx,
  6192. struct ggml_tensor * a,
  6193. const ggml_custom1_op_f32_t fun) {
  6194. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6195. }
  6196. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6197. struct ggml_context * ctx,
  6198. struct ggml_tensor * a,
  6199. const ggml_custom1_op_f32_t fun) {
  6200. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6201. }
  6202. // ggml_map_custom2_f32
  6203. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6204. struct ggml_context * ctx,
  6205. struct ggml_tensor * a,
  6206. struct ggml_tensor * b,
  6207. const ggml_custom2_op_f32_t fun,
  6208. bool inplace) {
  6209. bool is_node = false;
  6210. if (!inplace && (a->grad || b->grad)) {
  6211. is_node = true;
  6212. }
  6213. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6214. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6215. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6217. result->src[0] = a;
  6218. result->src[1] = b;
  6219. return result;
  6220. }
  6221. struct ggml_tensor * ggml_map_custom2_f32(
  6222. struct ggml_context * ctx,
  6223. struct ggml_tensor * a,
  6224. struct ggml_tensor * b,
  6225. const ggml_custom2_op_f32_t fun) {
  6226. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6227. }
  6228. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6229. struct ggml_context * ctx,
  6230. struct ggml_tensor * a,
  6231. struct ggml_tensor * b,
  6232. const ggml_custom2_op_f32_t fun) {
  6233. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6234. }
  6235. // ggml_map_custom3_f32
  6236. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6237. struct ggml_context * ctx,
  6238. struct ggml_tensor * a,
  6239. struct ggml_tensor * b,
  6240. struct ggml_tensor * c,
  6241. const ggml_custom3_op_f32_t fun,
  6242. bool inplace) {
  6243. bool is_node = false;
  6244. if (!inplace && (a->grad || b->grad || c->grad)) {
  6245. is_node = true;
  6246. }
  6247. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6248. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6249. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6251. result->src[0] = a;
  6252. result->src[1] = b;
  6253. result->src[2] = c;
  6254. return result;
  6255. }
  6256. struct ggml_tensor * ggml_map_custom3_f32(
  6257. struct ggml_context * ctx,
  6258. struct ggml_tensor * a,
  6259. struct ggml_tensor * b,
  6260. struct ggml_tensor * c,
  6261. const ggml_custom3_op_f32_t fun) {
  6262. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6263. }
  6264. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6265. struct ggml_context * ctx,
  6266. struct ggml_tensor * a,
  6267. struct ggml_tensor * b,
  6268. struct ggml_tensor * c,
  6269. const ggml_custom3_op_f32_t fun) {
  6270. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6271. }
  6272. // ggml_map_custom1
  6273. struct ggml_map_custom1_op_params {
  6274. ggml_custom1_op_t fun;
  6275. int n_tasks;
  6276. void * userdata;
  6277. };
  6278. static struct ggml_tensor * ggml_map_custom1_impl(
  6279. struct ggml_context * ctx,
  6280. struct ggml_tensor * a,
  6281. const ggml_custom1_op_t fun,
  6282. int n_tasks,
  6283. void * userdata,
  6284. bool inplace) {
  6285. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6286. bool is_node = false;
  6287. if (!inplace && a->grad) {
  6288. is_node = true;
  6289. }
  6290. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6291. struct ggml_map_custom1_op_params params = {
  6292. /*.fun =*/ fun,
  6293. /*.n_tasks =*/ n_tasks,
  6294. /*.userdata =*/ userdata
  6295. };
  6296. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6297. result->op = GGML_OP_MAP_CUSTOM1;
  6298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6299. result->src[0] = a;
  6300. return result;
  6301. }
  6302. struct ggml_tensor * ggml_map_custom1(
  6303. struct ggml_context * ctx,
  6304. struct ggml_tensor * a,
  6305. const ggml_custom1_op_t fun,
  6306. int n_tasks,
  6307. void * userdata) {
  6308. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6309. }
  6310. struct ggml_tensor * ggml_map_custom1_inplace(
  6311. struct ggml_context * ctx,
  6312. struct ggml_tensor * a,
  6313. const ggml_custom1_op_t fun,
  6314. int n_tasks,
  6315. void * userdata) {
  6316. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6317. }
  6318. // ggml_map_custom2
  6319. struct ggml_map_custom2_op_params {
  6320. ggml_custom2_op_t fun;
  6321. int n_tasks;
  6322. void * userdata;
  6323. };
  6324. static struct ggml_tensor * ggml_map_custom2_impl(
  6325. struct ggml_context * ctx,
  6326. struct ggml_tensor * a,
  6327. struct ggml_tensor * b,
  6328. const ggml_custom2_op_t fun,
  6329. int n_tasks,
  6330. void * userdata,
  6331. bool inplace) {
  6332. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6333. bool is_node = false;
  6334. if (!inplace && (a->grad || b->grad)) {
  6335. is_node = true;
  6336. }
  6337. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6338. struct ggml_map_custom2_op_params params = {
  6339. /*.fun =*/ fun,
  6340. /*.n_tasks =*/ n_tasks,
  6341. /*.userdata =*/ userdata
  6342. };
  6343. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6344. result->op = GGML_OP_MAP_CUSTOM2;
  6345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6346. result->src[0] = a;
  6347. result->src[1] = b;
  6348. return result;
  6349. }
  6350. struct ggml_tensor * ggml_map_custom2(
  6351. struct ggml_context * ctx,
  6352. struct ggml_tensor * a,
  6353. struct ggml_tensor * b,
  6354. const ggml_custom2_op_t fun,
  6355. int n_tasks,
  6356. void * userdata) {
  6357. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6358. }
  6359. struct ggml_tensor * ggml_map_custom2_inplace(
  6360. struct ggml_context * ctx,
  6361. struct ggml_tensor * a,
  6362. struct ggml_tensor * b,
  6363. const ggml_custom2_op_t fun,
  6364. int n_tasks,
  6365. void * userdata) {
  6366. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6367. }
  6368. // ggml_map_custom3
  6369. struct ggml_map_custom3_op_params {
  6370. ggml_custom3_op_t fun;
  6371. int n_tasks;
  6372. void * userdata;
  6373. };
  6374. static struct ggml_tensor * ggml_map_custom3_impl(
  6375. struct ggml_context * ctx,
  6376. struct ggml_tensor * a,
  6377. struct ggml_tensor * b,
  6378. struct ggml_tensor * c,
  6379. const ggml_custom3_op_t fun,
  6380. int n_tasks,
  6381. void * userdata,
  6382. bool inplace) {
  6383. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6384. bool is_node = false;
  6385. if (!inplace && (a->grad || b->grad || c->grad)) {
  6386. is_node = true;
  6387. }
  6388. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6389. struct ggml_map_custom3_op_params params = {
  6390. /*.fun =*/ fun,
  6391. /*.n_tasks =*/ n_tasks,
  6392. /*.userdata =*/ userdata
  6393. };
  6394. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6395. result->op = GGML_OP_MAP_CUSTOM3;
  6396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6397. result->src[0] = a;
  6398. result->src[1] = b;
  6399. result->src[2] = c;
  6400. return result;
  6401. }
  6402. struct ggml_tensor * ggml_map_custom3(
  6403. struct ggml_context * ctx,
  6404. struct ggml_tensor * a,
  6405. struct ggml_tensor * b,
  6406. struct ggml_tensor * c,
  6407. const ggml_custom3_op_t fun,
  6408. int n_tasks,
  6409. void * userdata) {
  6410. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6411. }
  6412. struct ggml_tensor * ggml_map_custom3_inplace(
  6413. struct ggml_context * ctx,
  6414. struct ggml_tensor * a,
  6415. struct ggml_tensor * b,
  6416. struct ggml_tensor * c,
  6417. const ggml_custom3_op_t fun,
  6418. int n_tasks,
  6419. void * userdata) {
  6420. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6421. }
  6422. // ggml_cross_entropy_loss
  6423. struct ggml_tensor * ggml_cross_entropy_loss(
  6424. struct ggml_context * ctx,
  6425. struct ggml_tensor * a,
  6426. struct ggml_tensor * b) {
  6427. GGML_ASSERT(ggml_are_same_shape(a, b));
  6428. bool is_node = false;
  6429. if (a->grad || b->grad) {
  6430. is_node = true;
  6431. }
  6432. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6433. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6435. result->src[0] = a;
  6436. result->src[1] = b;
  6437. return result;
  6438. }
  6439. // ggml_cross_entropy_loss_back
  6440. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6441. struct ggml_context * ctx,
  6442. struct ggml_tensor * a,
  6443. struct ggml_tensor * b,
  6444. struct ggml_tensor * c) {
  6445. GGML_ASSERT(ggml_are_same_shape(a, b));
  6446. GGML_ASSERT(ggml_is_scalar(c));
  6447. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6448. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6449. result->grad = NULL;
  6450. result->src[0] = a;
  6451. result->src[1] = b;
  6452. result->src[2] = c;
  6453. return result;
  6454. }
  6455. ////////////////////////////////////////////////////////////////////////////////
  6456. void ggml_set_param(
  6457. struct ggml_context * ctx,
  6458. struct ggml_tensor * tensor) {
  6459. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6460. GGML_ASSERT(tensor->grad == NULL);
  6461. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6462. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6463. }
  6464. // ggml_compute_forward_dup
  6465. static void ggml_compute_forward_dup_same_cont(
  6466. const struct ggml_compute_params * params,
  6467. struct ggml_tensor * dst) {
  6468. const struct ggml_tensor * src0 = dst->src[0];
  6469. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6470. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6471. GGML_ASSERT(src0->type == dst->type);
  6472. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6473. return;
  6474. }
  6475. const size_t nb00 = src0->nb[0];
  6476. const size_t nb0 = dst->nb[0];
  6477. const int ith = params->ith; // thread index
  6478. const int nth = params->nth; // number of threads
  6479. // parallelize by elements
  6480. const int ne = ggml_nelements(dst);
  6481. const int dr = (ne + nth - 1) / nth;
  6482. const int ie0 = dr * ith;
  6483. const int ie1 = MIN(ie0 + dr, ne);
  6484. if (ie0 < ie1) {
  6485. memcpy(
  6486. ((char *) dst->data + ie0*nb0),
  6487. ((char *) src0->data + ie0*nb00),
  6488. (ie1 - ie0) * ggml_type_size(src0->type));
  6489. }
  6490. }
  6491. static void ggml_compute_forward_dup_f16(
  6492. const struct ggml_compute_params * params,
  6493. struct ggml_tensor * dst) {
  6494. const struct ggml_tensor * src0 = dst->src[0];
  6495. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6496. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6497. return;
  6498. }
  6499. GGML_TENSOR_UNARY_OP_LOCALS
  6500. const int ith = params->ith; // thread index
  6501. const int nth = params->nth; // number of threads
  6502. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6503. ggml_compute_forward_dup_same_cont(params, dst);
  6504. return;
  6505. }
  6506. // parallelize by rows
  6507. const int nr = ne01;
  6508. // number of rows per thread
  6509. const int dr = (nr + nth - 1) / nth;
  6510. // row range for this thread
  6511. const int ir0 = dr * ith;
  6512. const int ir1 = MIN(ir0 + dr, nr);
  6513. if (src0->type == dst->type &&
  6514. ne00 == ne0 &&
  6515. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6516. // copy by rows
  6517. const size_t rs = ne00*nb00;
  6518. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6519. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6520. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6521. memcpy(
  6522. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6523. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6524. rs);
  6525. }
  6526. }
  6527. }
  6528. return;
  6529. }
  6530. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6531. if (ggml_is_contiguous(dst)) {
  6532. if (nb00 == sizeof(ggml_fp16_t)) {
  6533. if (dst->type == GGML_TYPE_F16) {
  6534. size_t id = 0;
  6535. const size_t rs = ne00 * nb00;
  6536. char * dst_ptr = (char *) dst->data;
  6537. for (int i03 = 0; i03 < ne03; i03++) {
  6538. for (int i02 = 0; i02 < ne02; i02++) {
  6539. id += rs * ir0;
  6540. for (int i01 = ir0; i01 < ir1; i01++) {
  6541. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6542. memcpy(dst_ptr + id, src0_ptr, rs);
  6543. id += rs;
  6544. }
  6545. id += rs * (ne01 - ir1);
  6546. }
  6547. }
  6548. } else if (dst->type == GGML_TYPE_F32) {
  6549. size_t id = 0;
  6550. float * dst_ptr = (float *) dst->data;
  6551. for (int i03 = 0; i03 < ne03; i03++) {
  6552. for (int i02 = 0; i02 < ne02; i02++) {
  6553. id += ne00 * ir0;
  6554. for (int i01 = ir0; i01 < ir1; i01++) {
  6555. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6556. for (int i00 = 0; i00 < ne00; i00++) {
  6557. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6558. id++;
  6559. }
  6560. }
  6561. id += ne00 * (ne01 - ir1);
  6562. }
  6563. }
  6564. } else if (type_traits[dst->type].from_float) {
  6565. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6566. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6567. size_t id = 0;
  6568. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6569. char * dst_ptr = (char *) dst->data;
  6570. for (int i03 = 0; i03 < ne03; i03++) {
  6571. for (int i02 = 0; i02 < ne02; i02++) {
  6572. id += rs * ir0;
  6573. for (int i01 = ir0; i01 < ir1; i01++) {
  6574. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6575. for (int i00 = 0; i00 < ne00; i00++) {
  6576. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6577. }
  6578. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6579. id += rs;
  6580. }
  6581. id += rs * (ne01 - ir1);
  6582. }
  6583. }
  6584. } else {
  6585. GGML_ASSERT(false); // TODO: implement
  6586. }
  6587. } else {
  6588. //printf("%s: this is not optimal - fix me\n", __func__);
  6589. if (dst->type == GGML_TYPE_F32) {
  6590. size_t id = 0;
  6591. float * dst_ptr = (float *) dst->data;
  6592. for (int i03 = 0; i03 < ne03; i03++) {
  6593. for (int i02 = 0; i02 < ne02; i02++) {
  6594. id += ne00 * ir0;
  6595. for (int i01 = ir0; i01 < ir1; i01++) {
  6596. for (int i00 = 0; i00 < ne00; i00++) {
  6597. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6598. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6599. id++;
  6600. }
  6601. }
  6602. id += ne00 * (ne01 - ir1);
  6603. }
  6604. }
  6605. } else if (dst->type == GGML_TYPE_F16) {
  6606. size_t id = 0;
  6607. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6608. for (int i03 = 0; i03 < ne03; i03++) {
  6609. for (int i02 = 0; i02 < ne02; i02++) {
  6610. id += ne00 * ir0;
  6611. for (int i01 = ir0; i01 < ir1; i01++) {
  6612. for (int i00 = 0; i00 < ne00; i00++) {
  6613. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6614. dst_ptr[id] = *src0_ptr;
  6615. id++;
  6616. }
  6617. }
  6618. id += ne00 * (ne01 - ir1);
  6619. }
  6620. }
  6621. } else {
  6622. GGML_ASSERT(false); // TODO: implement
  6623. }
  6624. }
  6625. return;
  6626. }
  6627. // dst counters
  6628. int64_t i10 = 0;
  6629. int64_t i11 = 0;
  6630. int64_t i12 = 0;
  6631. int64_t i13 = 0;
  6632. if (dst->type == GGML_TYPE_F16) {
  6633. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6634. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6635. i10 += ne00 * ir0;
  6636. while (i10 >= ne0) {
  6637. i10 -= ne0;
  6638. if (++i11 == ne1) {
  6639. i11 = 0;
  6640. if (++i12 == ne2) {
  6641. i12 = 0;
  6642. if (++i13 == ne3) {
  6643. i13 = 0;
  6644. }
  6645. }
  6646. }
  6647. }
  6648. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6649. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6650. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6651. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6652. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6653. if (++i10 == ne00) {
  6654. i10 = 0;
  6655. if (++i11 == ne01) {
  6656. i11 = 0;
  6657. if (++i12 == ne02) {
  6658. i12 = 0;
  6659. if (++i13 == ne03) {
  6660. i13 = 0;
  6661. }
  6662. }
  6663. }
  6664. }
  6665. }
  6666. }
  6667. i10 += ne00 * (ne01 - ir1);
  6668. while (i10 >= ne0) {
  6669. i10 -= ne0;
  6670. if (++i11 == ne1) {
  6671. i11 = 0;
  6672. if (++i12 == ne2) {
  6673. i12 = 0;
  6674. if (++i13 == ne3) {
  6675. i13 = 0;
  6676. }
  6677. }
  6678. }
  6679. }
  6680. }
  6681. }
  6682. } else if (dst->type == GGML_TYPE_F32) {
  6683. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6684. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6685. i10 += ne00 * ir0;
  6686. while (i10 >= ne0) {
  6687. i10 -= ne0;
  6688. if (++i11 == ne1) {
  6689. i11 = 0;
  6690. if (++i12 == ne2) {
  6691. i12 = 0;
  6692. if (++i13 == ne3) {
  6693. i13 = 0;
  6694. }
  6695. }
  6696. }
  6697. }
  6698. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6699. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6700. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6701. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6702. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6703. if (++i10 == ne0) {
  6704. i10 = 0;
  6705. if (++i11 == ne1) {
  6706. i11 = 0;
  6707. if (++i12 == ne2) {
  6708. i12 = 0;
  6709. if (++i13 == ne3) {
  6710. i13 = 0;
  6711. }
  6712. }
  6713. }
  6714. }
  6715. }
  6716. }
  6717. i10 += ne00 * (ne01 - ir1);
  6718. while (i10 >= ne0) {
  6719. i10 -= ne0;
  6720. if (++i11 == ne1) {
  6721. i11 = 0;
  6722. if (++i12 == ne2) {
  6723. i12 = 0;
  6724. if (++i13 == ne3) {
  6725. i13 = 0;
  6726. }
  6727. }
  6728. }
  6729. }
  6730. }
  6731. }
  6732. } else {
  6733. GGML_ASSERT(false); // TODO: implement
  6734. }
  6735. }
  6736. static void ggml_compute_forward_dup_bf16(
  6737. const struct ggml_compute_params * params,
  6738. struct ggml_tensor * dst) {
  6739. const struct ggml_tensor * src0 = dst->src[0];
  6740. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6741. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6742. return;
  6743. }
  6744. GGML_TENSOR_UNARY_OP_LOCALS
  6745. const int ith = params->ith; // thread index
  6746. const int nth = params->nth; // number of threads
  6747. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6748. ggml_compute_forward_dup_same_cont(params, dst);
  6749. return;
  6750. }
  6751. // parallelize by rows
  6752. const int nr = ne01;
  6753. // number of rows per thread
  6754. const int dr = (nr + nth - 1) / nth;
  6755. // row range for this thread
  6756. const int ir0 = dr * ith;
  6757. const int ir1 = MIN(ir0 + dr, nr);
  6758. if (src0->type == dst->type &&
  6759. ne00 == ne0 &&
  6760. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6761. // copy by rows
  6762. const size_t rs = ne00*nb00;
  6763. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6764. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6765. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6766. memcpy(
  6767. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6768. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6769. rs);
  6770. }
  6771. }
  6772. }
  6773. return;
  6774. }
  6775. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6776. if (ggml_is_contiguous(dst)) {
  6777. if (nb00 == sizeof(ggml_bf16_t)) {
  6778. if (dst->type == GGML_TYPE_BF16) {
  6779. size_t id = 0;
  6780. const size_t rs = ne00 * nb00;
  6781. char * dst_ptr = (char *) dst->data;
  6782. for (int i03 = 0; i03 < ne03; i03++) {
  6783. for (int i02 = 0; i02 < ne02; i02++) {
  6784. id += rs * ir0;
  6785. for (int i01 = ir0; i01 < ir1; i01++) {
  6786. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6787. memcpy(dst_ptr + id, src0_ptr, rs);
  6788. id += rs;
  6789. }
  6790. id += rs * (ne01 - ir1);
  6791. }
  6792. }
  6793. } else if (dst->type == GGML_TYPE_F16) {
  6794. size_t id = 0;
  6795. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6796. for (int i03 = 0; i03 < ne03; i03++) {
  6797. for (int i02 = 0; i02 < ne02; i02++) {
  6798. id += ne00 * ir0;
  6799. for (int i01 = ir0; i01 < ir1; i01++) {
  6800. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6801. for (int i00 = 0; i00 < ne00; i00++) {
  6802. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6803. id++;
  6804. }
  6805. }
  6806. id += ne00 * (ne01 - ir1);
  6807. }
  6808. }
  6809. } else if (dst->type == GGML_TYPE_F32) {
  6810. size_t id = 0;
  6811. float * dst_ptr = (float *) dst->data;
  6812. for (int i03 = 0; i03 < ne03; i03++) {
  6813. for (int i02 = 0; i02 < ne02; i02++) {
  6814. id += ne00 * ir0;
  6815. for (int i01 = ir0; i01 < ir1; i01++) {
  6816. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6817. for (int i00 = 0; i00 < ne00; i00++) {
  6818. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6819. id++;
  6820. }
  6821. }
  6822. id += ne00 * (ne01 - ir1);
  6823. }
  6824. }
  6825. } else if (type_traits[dst->type].from_float) {
  6826. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6827. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6828. size_t id = 0;
  6829. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6830. char * dst_ptr = (char *) dst->data;
  6831. for (int i03 = 0; i03 < ne03; i03++) {
  6832. for (int i02 = 0; i02 < ne02; i02++) {
  6833. id += rs * ir0;
  6834. for (int i01 = ir0; i01 < ir1; i01++) {
  6835. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6836. for (int i00 = 0; i00 < ne00; i00++) {
  6837. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6838. }
  6839. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6840. id += rs;
  6841. }
  6842. id += rs * (ne01 - ir1);
  6843. }
  6844. }
  6845. } else {
  6846. GGML_ASSERT(false); // TODO: implement
  6847. }
  6848. } else {
  6849. //printf("%s: this is not optimal - fix me\n", __func__);
  6850. if (dst->type == GGML_TYPE_F32) {
  6851. size_t id = 0;
  6852. float * dst_ptr = (float *) dst->data;
  6853. for (int i03 = 0; i03 < ne03; i03++) {
  6854. for (int i02 = 0; i02 < ne02; i02++) {
  6855. id += ne00 * ir0;
  6856. for (int i01 = ir0; i01 < ir1; i01++) {
  6857. for (int i00 = 0; i00 < ne00; i00++) {
  6858. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6859. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6860. id++;
  6861. }
  6862. }
  6863. id += ne00 * (ne01 - ir1);
  6864. }
  6865. }
  6866. } else if (dst->type == GGML_TYPE_BF16) {
  6867. size_t id = 0;
  6868. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6869. for (int i03 = 0; i03 < ne03; i03++) {
  6870. for (int i02 = 0; i02 < ne02; i02++) {
  6871. id += ne00 * ir0;
  6872. for (int i01 = ir0; i01 < ir1; i01++) {
  6873. for (int i00 = 0; i00 < ne00; i00++) {
  6874. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6875. dst_ptr[id] = *src0_ptr;
  6876. id++;
  6877. }
  6878. }
  6879. id += ne00 * (ne01 - ir1);
  6880. }
  6881. }
  6882. } else if (dst->type == GGML_TYPE_F16) {
  6883. size_t id = 0;
  6884. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6885. for (int i03 = 0; i03 < ne03; i03++) {
  6886. for (int i02 = 0; i02 < ne02; i02++) {
  6887. id += ne00 * ir0;
  6888. for (int i01 = ir0; i01 < ir1; i01++) {
  6889. for (int i00 = 0; i00 < ne00; i00++) {
  6890. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6891. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6892. id++;
  6893. }
  6894. }
  6895. id += ne00 * (ne01 - ir1);
  6896. }
  6897. }
  6898. } else {
  6899. GGML_ASSERT(false); // TODO: implement
  6900. }
  6901. }
  6902. return;
  6903. }
  6904. // dst counters
  6905. int64_t i10 = 0;
  6906. int64_t i11 = 0;
  6907. int64_t i12 = 0;
  6908. int64_t i13 = 0;
  6909. if (dst->type == GGML_TYPE_BF16) {
  6910. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6911. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6912. i10 += ne00 * ir0;
  6913. while (i10 >= ne0) {
  6914. i10 -= ne0;
  6915. if (++i11 == ne1) {
  6916. i11 = 0;
  6917. if (++i12 == ne2) {
  6918. i12 = 0;
  6919. if (++i13 == ne3) {
  6920. i13 = 0;
  6921. }
  6922. }
  6923. }
  6924. }
  6925. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6926. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6927. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6928. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6929. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6930. if (++i10 == ne00) {
  6931. i10 = 0;
  6932. if (++i11 == ne01) {
  6933. i11 = 0;
  6934. if (++i12 == ne02) {
  6935. i12 = 0;
  6936. if (++i13 == ne03) {
  6937. i13 = 0;
  6938. }
  6939. }
  6940. }
  6941. }
  6942. }
  6943. }
  6944. i10 += ne00 * (ne01 - ir1);
  6945. while (i10 >= ne0) {
  6946. i10 -= ne0;
  6947. if (++i11 == ne1) {
  6948. i11 = 0;
  6949. if (++i12 == ne2) {
  6950. i12 = 0;
  6951. if (++i13 == ne3) {
  6952. i13 = 0;
  6953. }
  6954. }
  6955. }
  6956. }
  6957. }
  6958. }
  6959. } else if (dst->type == GGML_TYPE_F16) {
  6960. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6961. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6962. i10 += ne00 * ir0;
  6963. while (i10 >= ne0) {
  6964. i10 -= ne0;
  6965. if (++i11 == ne1) {
  6966. i11 = 0;
  6967. if (++i12 == ne2) {
  6968. i12 = 0;
  6969. if (++i13 == ne3) {
  6970. i13 = 0;
  6971. }
  6972. }
  6973. }
  6974. }
  6975. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6976. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6977. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6978. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6979. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6980. if (++i10 == ne0) {
  6981. i10 = 0;
  6982. if (++i11 == ne1) {
  6983. i11 = 0;
  6984. if (++i12 == ne2) {
  6985. i12 = 0;
  6986. if (++i13 == ne3) {
  6987. i13 = 0;
  6988. }
  6989. }
  6990. }
  6991. }
  6992. }
  6993. }
  6994. i10 += ne00 * (ne01 - ir1);
  6995. while (i10 >= ne0) {
  6996. i10 -= ne0;
  6997. if (++i11 == ne1) {
  6998. i11 = 0;
  6999. if (++i12 == ne2) {
  7000. i12 = 0;
  7001. if (++i13 == ne3) {
  7002. i13 = 0;
  7003. }
  7004. }
  7005. }
  7006. }
  7007. }
  7008. }
  7009. } else if (dst->type == GGML_TYPE_F32) {
  7010. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7011. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7012. i10 += ne00 * ir0;
  7013. while (i10 >= ne0) {
  7014. i10 -= ne0;
  7015. if (++i11 == ne1) {
  7016. i11 = 0;
  7017. if (++i12 == ne2) {
  7018. i12 = 0;
  7019. if (++i13 == ne3) {
  7020. i13 = 0;
  7021. }
  7022. }
  7023. }
  7024. }
  7025. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7026. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7027. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7028. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7029. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7030. if (++i10 == ne0) {
  7031. i10 = 0;
  7032. if (++i11 == ne1) {
  7033. i11 = 0;
  7034. if (++i12 == ne2) {
  7035. i12 = 0;
  7036. if (++i13 == ne3) {
  7037. i13 = 0;
  7038. }
  7039. }
  7040. }
  7041. }
  7042. }
  7043. }
  7044. i10 += ne00 * (ne01 - ir1);
  7045. while (i10 >= ne0) {
  7046. i10 -= ne0;
  7047. if (++i11 == ne1) {
  7048. i11 = 0;
  7049. if (++i12 == ne2) {
  7050. i12 = 0;
  7051. if (++i13 == ne3) {
  7052. i13 = 0;
  7053. }
  7054. }
  7055. }
  7056. }
  7057. }
  7058. }
  7059. } else {
  7060. GGML_ASSERT(false); // TODO: implement
  7061. }
  7062. }
  7063. static void ggml_compute_forward_dup_f32(
  7064. const struct ggml_compute_params * params,
  7065. struct ggml_tensor * dst) {
  7066. const struct ggml_tensor * src0 = dst->src[0];
  7067. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7068. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7069. return;
  7070. }
  7071. GGML_TENSOR_UNARY_OP_LOCALS
  7072. const int ith = params->ith; // thread index
  7073. const int nth = params->nth; // number of threads
  7074. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7075. ggml_compute_forward_dup_same_cont(params, dst);
  7076. return;
  7077. }
  7078. // parallelize by rows
  7079. const int nr = ne01;
  7080. // number of rows per thread
  7081. const int dr = (nr + nth - 1) / nth;
  7082. // row range for this thread
  7083. const int ir0 = dr * ith;
  7084. const int ir1 = MIN(ir0 + dr, nr);
  7085. if (src0->type == dst->type &&
  7086. ne00 == ne0 &&
  7087. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7088. // copy by rows
  7089. const size_t rs = ne00*nb00;
  7090. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7092. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7093. memcpy(
  7094. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7095. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7096. rs);
  7097. }
  7098. }
  7099. }
  7100. return;
  7101. }
  7102. if (ggml_is_contiguous(dst)) {
  7103. // TODO: simplify
  7104. if (nb00 == sizeof(float)) {
  7105. if (dst->type == GGML_TYPE_F32) {
  7106. size_t id = 0;
  7107. const size_t rs = ne00 * nb00;
  7108. char * dst_ptr = (char *) dst->data;
  7109. for (int i03 = 0; i03 < ne03; i03++) {
  7110. for (int i02 = 0; i02 < ne02; i02++) {
  7111. id += rs * ir0;
  7112. for (int i01 = ir0; i01 < ir1; i01++) {
  7113. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7114. memcpy(dst_ptr + id, src0_ptr, rs);
  7115. id += rs;
  7116. }
  7117. id += rs * (ne01 - ir1);
  7118. }
  7119. }
  7120. } else if (type_traits[dst->type].from_float) {
  7121. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7122. size_t id = 0;
  7123. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7124. char * dst_ptr = (char *) dst->data;
  7125. for (int i03 = 0; i03 < ne03; i03++) {
  7126. for (int i02 = 0; i02 < ne02; i02++) {
  7127. id += rs * ir0;
  7128. for (int i01 = ir0; i01 < ir1; i01++) {
  7129. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7130. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7131. id += rs;
  7132. }
  7133. id += rs * (ne01 - ir1);
  7134. }
  7135. }
  7136. } else {
  7137. GGML_ASSERT(false); // TODO: implement
  7138. }
  7139. } else {
  7140. //printf("%s: this is not optimal - fix me\n", __func__);
  7141. if (dst->type == GGML_TYPE_F32) {
  7142. size_t id = 0;
  7143. float * dst_ptr = (float *) dst->data;
  7144. for (int i03 = 0; i03 < ne03; i03++) {
  7145. for (int i02 = 0; i02 < ne02; i02++) {
  7146. id += ne00 * ir0;
  7147. for (int i01 = ir0; i01 < ir1; i01++) {
  7148. for (int i00 = 0; i00 < ne00; i00++) {
  7149. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7150. dst_ptr[id] = *src0_ptr;
  7151. id++;
  7152. }
  7153. }
  7154. id += ne00 * (ne01 - ir1);
  7155. }
  7156. }
  7157. } else if (dst->type == GGML_TYPE_F16) {
  7158. size_t id = 0;
  7159. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7160. for (int i03 = 0; i03 < ne03; i03++) {
  7161. for (int i02 = 0; i02 < ne02; i02++) {
  7162. id += ne00 * ir0;
  7163. for (int i01 = ir0; i01 < ir1; i01++) {
  7164. for (int i00 = 0; i00 < ne00; i00++) {
  7165. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7166. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7167. id++;
  7168. }
  7169. }
  7170. id += ne00 * (ne01 - ir1);
  7171. }
  7172. }
  7173. } else if (dst->type == GGML_TYPE_BF16) {
  7174. size_t id = 0;
  7175. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7176. for (int i03 = 0; i03 < ne03; i03++) {
  7177. for (int i02 = 0; i02 < ne02; i02++) {
  7178. id += ne00 * ir0;
  7179. for (int i01 = ir0; i01 < ir1; i01++) {
  7180. for (int i00 = 0; i00 < ne00; i00++) {
  7181. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7182. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7183. id++;
  7184. }
  7185. }
  7186. id += ne00 * (ne01 - ir1);
  7187. }
  7188. }
  7189. } else {
  7190. GGML_ASSERT(false); // TODO: implement
  7191. }
  7192. }
  7193. return;
  7194. }
  7195. // dst counters
  7196. int64_t i10 = 0;
  7197. int64_t i11 = 0;
  7198. int64_t i12 = 0;
  7199. int64_t i13 = 0;
  7200. if (dst->type == GGML_TYPE_F32) {
  7201. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7202. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7203. i10 += ne00 * ir0;
  7204. while (i10 >= ne0) {
  7205. i10 -= ne0;
  7206. if (++i11 == ne1) {
  7207. i11 = 0;
  7208. if (++i12 == ne2) {
  7209. i12 = 0;
  7210. if (++i13 == ne3) {
  7211. i13 = 0;
  7212. }
  7213. }
  7214. }
  7215. }
  7216. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7217. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7218. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7219. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7220. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7221. if (++i10 == ne0) {
  7222. i10 = 0;
  7223. if (++i11 == ne1) {
  7224. i11 = 0;
  7225. if (++i12 == ne2) {
  7226. i12 = 0;
  7227. if (++i13 == ne3) {
  7228. i13 = 0;
  7229. }
  7230. }
  7231. }
  7232. }
  7233. }
  7234. }
  7235. i10 += ne00 * (ne01 - ir1);
  7236. while (i10 >= ne0) {
  7237. i10 -= ne0;
  7238. if (++i11 == ne1) {
  7239. i11 = 0;
  7240. if (++i12 == ne2) {
  7241. i12 = 0;
  7242. if (++i13 == ne3) {
  7243. i13 = 0;
  7244. }
  7245. }
  7246. }
  7247. }
  7248. }
  7249. }
  7250. } else if (dst->type == GGML_TYPE_F16) {
  7251. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7252. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7253. i10 += ne00 * ir0;
  7254. while (i10 >= ne0) {
  7255. i10 -= ne0;
  7256. if (++i11 == ne1) {
  7257. i11 = 0;
  7258. if (++i12 == ne2) {
  7259. i12 = 0;
  7260. if (++i13 == ne3) {
  7261. i13 = 0;
  7262. }
  7263. }
  7264. }
  7265. }
  7266. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7267. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7268. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7269. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7270. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7271. if (++i10 == ne0) {
  7272. i10 = 0;
  7273. if (++i11 == ne1) {
  7274. i11 = 0;
  7275. if (++i12 == ne2) {
  7276. i12 = 0;
  7277. if (++i13 == ne3) {
  7278. i13 = 0;
  7279. }
  7280. }
  7281. }
  7282. }
  7283. }
  7284. }
  7285. i10 += ne00 * (ne01 - ir1);
  7286. while (i10 >= ne0) {
  7287. i10 -= ne0;
  7288. if (++i11 == ne1) {
  7289. i11 = 0;
  7290. if (++i12 == ne2) {
  7291. i12 = 0;
  7292. if (++i13 == ne3) {
  7293. i13 = 0;
  7294. }
  7295. }
  7296. }
  7297. }
  7298. }
  7299. }
  7300. } else if (dst->type == GGML_TYPE_BF16) {
  7301. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7302. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7303. i10 += ne00 * ir0;
  7304. while (i10 >= ne0) {
  7305. i10 -= ne0;
  7306. if (++i11 == ne1) {
  7307. i11 = 0;
  7308. if (++i12 == ne2) {
  7309. i12 = 0;
  7310. if (++i13 == ne3) {
  7311. i13 = 0;
  7312. }
  7313. }
  7314. }
  7315. }
  7316. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7317. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7318. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7319. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7320. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7321. if (++i10 == ne0) {
  7322. i10 = 0;
  7323. if (++i11 == ne1) {
  7324. i11 = 0;
  7325. if (++i12 == ne2) {
  7326. i12 = 0;
  7327. if (++i13 == ne3) {
  7328. i13 = 0;
  7329. }
  7330. }
  7331. }
  7332. }
  7333. }
  7334. }
  7335. i10 += ne00 * (ne01 - ir1);
  7336. while (i10 >= ne0) {
  7337. i10 -= ne0;
  7338. if (++i11 == ne1) {
  7339. i11 = 0;
  7340. if (++i12 == ne2) {
  7341. i12 = 0;
  7342. if (++i13 == ne3) {
  7343. i13 = 0;
  7344. }
  7345. }
  7346. }
  7347. }
  7348. }
  7349. }
  7350. } else {
  7351. GGML_ASSERT(false); // TODO: implement
  7352. }
  7353. }
  7354. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7355. static void ggml_compute_forward_dup_bytes(
  7356. const struct ggml_compute_params * params,
  7357. struct ggml_tensor * dst) {
  7358. const struct ggml_tensor * src0 = dst->src[0];
  7359. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7360. GGML_ASSERT(src0->type == dst->type);
  7361. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7362. return;
  7363. }
  7364. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7365. ggml_compute_forward_dup_same_cont(params, dst);
  7366. return;
  7367. }
  7368. GGML_TENSOR_UNARY_OP_LOCALS;
  7369. const size_t type_size = ggml_type_size(src0->type);
  7370. const int ith = params->ith; // thread index
  7371. const int nth = params->nth; // number of threads
  7372. // parallelize by rows
  7373. const int nr = ne01;
  7374. // number of rows per thread
  7375. const int dr = (nr + nth - 1) / nth;
  7376. // row range for this thread
  7377. const int ir0 = dr * ith;
  7378. const int ir1 = MIN(ir0 + dr, nr);
  7379. if (src0->type == dst->type &&
  7380. ne00 == ne0 &&
  7381. nb00 == type_size && nb0 == type_size) {
  7382. // copy by rows
  7383. const size_t rs = ne00 * type_size;
  7384. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7385. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7386. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7387. memcpy(
  7388. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7389. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7390. rs);
  7391. }
  7392. }
  7393. }
  7394. return;
  7395. }
  7396. if (ggml_is_contiguous(dst)) {
  7397. size_t id = 0;
  7398. char * dst_ptr = (char *) dst->data;
  7399. const size_t rs = ne00 * type_size;
  7400. if (nb00 == type_size) {
  7401. // src0 is contigous on first dimension, copy by rows
  7402. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7403. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7404. id += rs * ir0;
  7405. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7406. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7407. memcpy(dst_ptr + id, src0_ptr, rs);
  7408. id += rs;
  7409. }
  7410. id += rs * (ne01 - ir1);
  7411. }
  7412. }
  7413. } else {
  7414. //printf("%s: this is not optimal - fix me\n", __func__);
  7415. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7416. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7417. id += rs * ir0;
  7418. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7419. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7420. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7421. memcpy(dst_ptr + id, src0_ptr, type_size);
  7422. id += type_size;
  7423. }
  7424. }
  7425. id += rs * (ne01 - ir1);
  7426. }
  7427. }
  7428. }
  7429. return;
  7430. }
  7431. // dst counters
  7432. int64_t i10 = 0;
  7433. int64_t i11 = 0;
  7434. int64_t i12 = 0;
  7435. int64_t i13 = 0;
  7436. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7437. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7438. i10 += ne00 * ir0;
  7439. while (i10 >= ne0) {
  7440. i10 -= ne0;
  7441. if (++i11 == ne1) {
  7442. i11 = 0;
  7443. if (++i12 == ne2) {
  7444. i12 = 0;
  7445. if (++i13 == ne3) {
  7446. i13 = 0;
  7447. }
  7448. }
  7449. }
  7450. }
  7451. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7452. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7453. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7454. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7455. memcpy(dst_ptr, src0_ptr, type_size);
  7456. if (++i10 == ne0) {
  7457. i10 = 0;
  7458. if (++i11 == ne1) {
  7459. i11 = 0;
  7460. if (++i12 == ne2) {
  7461. i12 = 0;
  7462. if (++i13 == ne3) {
  7463. i13 = 0;
  7464. }
  7465. }
  7466. }
  7467. }
  7468. }
  7469. }
  7470. i10 += ne00 * (ne01 - ir1);
  7471. while (i10 >= ne0) {
  7472. i10 -= ne0;
  7473. if (++i11 == ne1) {
  7474. i11 = 0;
  7475. if (++i12 == ne2) {
  7476. i12 = 0;
  7477. if (++i13 == ne3) {
  7478. i13 = 0;
  7479. }
  7480. }
  7481. }
  7482. }
  7483. }
  7484. }
  7485. }
  7486. static void ggml_compute_forward_dup(
  7487. const struct ggml_compute_params * params,
  7488. struct ggml_tensor * dst) {
  7489. const struct ggml_tensor * src0 = dst->src[0];
  7490. if (src0->type == dst->type) {
  7491. ggml_compute_forward_dup_bytes(params, dst);
  7492. return;
  7493. }
  7494. switch (src0->type) {
  7495. case GGML_TYPE_F16:
  7496. {
  7497. ggml_compute_forward_dup_f16(params, dst);
  7498. } break;
  7499. case GGML_TYPE_BF16:
  7500. {
  7501. ggml_compute_forward_dup_bf16(params, dst);
  7502. } break;
  7503. case GGML_TYPE_F32:
  7504. {
  7505. ggml_compute_forward_dup_f32(params, dst);
  7506. } break;
  7507. default:
  7508. {
  7509. GGML_ASSERT(false);
  7510. } break;
  7511. }
  7512. }
  7513. // ggml_compute_forward_add
  7514. static void ggml_compute_forward_add_f32(
  7515. const struct ggml_compute_params * params,
  7516. struct ggml_tensor * dst) {
  7517. const struct ggml_tensor * src0 = dst->src[0];
  7518. const struct ggml_tensor * src1 = dst->src[1];
  7519. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7520. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7521. return;
  7522. }
  7523. const int ith = params->ith;
  7524. const int nth = params->nth;
  7525. const int nr = ggml_nrows(src0);
  7526. GGML_TENSOR_BINARY_OP_LOCALS
  7527. GGML_ASSERT( nb0 == sizeof(float));
  7528. GGML_ASSERT(nb00 == sizeof(float));
  7529. // rows per thread
  7530. const int dr = (nr + nth - 1)/nth;
  7531. // row range for this thread
  7532. const int ir0 = dr*ith;
  7533. const int ir1 = MIN(ir0 + dr, nr);
  7534. if (nb10 == sizeof(float)) {
  7535. for (int ir = ir0; ir < ir1; ++ir) {
  7536. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7537. const int64_t i03 = ir/(ne02*ne01);
  7538. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7539. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7540. const int64_t i13 = i03 % ne13;
  7541. const int64_t i12 = i02 % ne12;
  7542. const int64_t i11 = i01 % ne11;
  7543. const int64_t nr0 = ne00 / ne10;
  7544. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7545. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7546. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7547. for (int64_t r = 0; r < nr0; ++r) {
  7548. #ifdef GGML_USE_ACCELERATE
  7549. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7550. #else
  7551. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7552. #endif
  7553. }
  7554. }
  7555. } else {
  7556. // src1 is not contiguous
  7557. for (int ir = ir0; ir < ir1; ++ir) {
  7558. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7559. const int64_t i03 = ir/(ne02*ne01);
  7560. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7561. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7562. const int64_t i13 = i03 % ne13;
  7563. const int64_t i12 = i02 % ne12;
  7564. const int64_t i11 = i01 % ne11;
  7565. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7566. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7567. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7568. const int64_t i10 = i0 % ne10;
  7569. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7570. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7571. }
  7572. }
  7573. }
  7574. }
  7575. static void ggml_compute_forward_add_f16_f32(
  7576. const struct ggml_compute_params * params,
  7577. struct ggml_tensor * dst) {
  7578. const struct ggml_tensor * src0 = dst->src[0];
  7579. const struct ggml_tensor * src1 = dst->src[1];
  7580. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7581. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7582. return;
  7583. }
  7584. const int ith = params->ith;
  7585. const int nth = params->nth;
  7586. const int nr = ggml_nrows(src0);
  7587. GGML_TENSOR_BINARY_OP_LOCALS
  7588. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7589. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7590. if (dst->type == GGML_TYPE_F32) {
  7591. GGML_ASSERT( nb0 == sizeof(float));
  7592. }
  7593. else {
  7594. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7595. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7596. }
  7597. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7598. // rows per thread
  7599. const int dr = (nr + nth - 1)/nth;
  7600. // row range for this thread
  7601. const int ir0 = dr*ith;
  7602. const int ir1 = MIN(ir0 + dr, nr);
  7603. if (nb10 == sizeof(float)) {
  7604. if (dst->type == GGML_TYPE_F16) {
  7605. for (int ir = ir0; ir < ir1; ++ir) {
  7606. // src0, src1 and dst are same shape => same indices
  7607. const int i3 = ir/(ne2*ne1);
  7608. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7609. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7610. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7611. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7612. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7613. for (int i = 0; i < ne0; i++) {
  7614. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7615. }
  7616. }
  7617. } else {
  7618. for (int ir = ir0; ir < ir1; ++ir) {
  7619. // src0, src1 and dst are same shape => same indices
  7620. const int i3 = ir/(ne2*ne1);
  7621. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7622. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7623. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7624. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7625. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7626. for (int i = 0; i < ne0; i++) {
  7627. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7628. }
  7629. }
  7630. }
  7631. }
  7632. else {
  7633. // src1 is not contiguous
  7634. GGML_ASSERT(false);
  7635. }
  7636. }
  7637. static void ggml_compute_forward_add_bf16_f32(
  7638. const struct ggml_compute_params * params,
  7639. struct ggml_tensor * dst) {
  7640. const struct ggml_tensor * src0 = dst->src[0];
  7641. const struct ggml_tensor * src1 = dst->src[1];
  7642. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7643. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7644. return;
  7645. }
  7646. const int ith = params->ith;
  7647. const int nth = params->nth;
  7648. const int nr = ggml_nrows(src0);
  7649. GGML_TENSOR_BINARY_OP_LOCALS
  7650. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7651. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7652. if (dst->type == GGML_TYPE_F32) {
  7653. GGML_ASSERT( nb0 == sizeof(float));
  7654. }
  7655. else {
  7656. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7657. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7658. }
  7659. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7660. // rows per thread
  7661. const int dr = (nr + nth - 1)/nth;
  7662. // row range for this thread
  7663. const int ir0 = dr*ith;
  7664. const int ir1 = MIN(ir0 + dr, nr);
  7665. if (nb10 == sizeof(float)) {
  7666. if (dst->type == GGML_TYPE_BF16) {
  7667. for (int ir = ir0; ir < ir1; ++ir) {
  7668. // src0, src1 and dst are same shape => same indices
  7669. const int i3 = ir/(ne2*ne1);
  7670. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7671. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7672. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7673. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7674. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7675. for (int i = 0; i < ne0; i++) {
  7676. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7677. }
  7678. }
  7679. } else {
  7680. for (int ir = ir0; ir < ir1; ++ir) {
  7681. // src0, src1 and dst are same shape => same indices
  7682. const int i3 = ir/(ne2*ne1);
  7683. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7684. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7685. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7686. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7687. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7688. for (int i = 0; i < ne0; i++) {
  7689. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7690. }
  7691. }
  7692. }
  7693. }
  7694. else {
  7695. // src1 is not contiguous
  7696. GGML_ASSERT(false);
  7697. }
  7698. }
  7699. static void ggml_compute_forward_add_f16_f16(
  7700. const struct ggml_compute_params * params,
  7701. struct ggml_tensor * dst) {
  7702. const struct ggml_tensor * src0 = dst->src[0];
  7703. const struct ggml_tensor * src1 = dst->src[1];
  7704. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7705. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7706. return;
  7707. }
  7708. const int ith = params->ith;
  7709. const int nth = params->nth;
  7710. const int nr = ggml_nrows(src0);
  7711. GGML_TENSOR_BINARY_OP_LOCALS
  7712. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7713. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7714. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7715. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7716. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7717. // rows per thread
  7718. const int dr = (nr + nth - 1)/nth;
  7719. // row range for this thread
  7720. const int ir0 = dr*ith;
  7721. const int ir1 = MIN(ir0 + dr, nr);
  7722. if (nb10 == sizeof(ggml_fp16_t)) {
  7723. for (int ir = ir0; ir < ir1; ++ir) {
  7724. // src0, src1 and dst are same shape => same indices
  7725. const int i3 = ir/(ne2*ne1);
  7726. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7727. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7728. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7729. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7730. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7731. for (int i = 0; i < ne0; i++) {
  7732. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7733. }
  7734. }
  7735. }
  7736. else {
  7737. // src1 is not contiguous
  7738. GGML_ASSERT(false);
  7739. }
  7740. }
  7741. static void ggml_compute_forward_add_bf16_bf16(
  7742. const struct ggml_compute_params * params,
  7743. struct ggml_tensor * dst) {
  7744. const struct ggml_tensor * src0 = dst->src[0];
  7745. const struct ggml_tensor * src1 = dst->src[1];
  7746. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7747. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7748. return;
  7749. }
  7750. const int ith = params->ith;
  7751. const int nth = params->nth;
  7752. const int nr = ggml_nrows(src0);
  7753. GGML_TENSOR_BINARY_OP_LOCALS
  7754. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7755. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7756. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7757. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7758. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7759. // rows per thread
  7760. const int dr = (nr + nth - 1)/nth;
  7761. // row range for this thread
  7762. const int ir0 = dr*ith;
  7763. const int ir1 = MIN(ir0 + dr, nr);
  7764. if (nb10 == sizeof(ggml_bf16_t)) {
  7765. for (int ir = ir0; ir < ir1; ++ir) {
  7766. // src0, src1 and dst are same shape => same indices
  7767. const int i3 = ir/(ne2*ne1);
  7768. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7769. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7770. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7771. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7772. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7773. for (int i = 0; i < ne0; i++) {
  7774. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7775. }
  7776. }
  7777. }
  7778. else {
  7779. // src1 is not contiguous
  7780. GGML_ASSERT(false);
  7781. }
  7782. }
  7783. static void ggml_compute_forward_add_q_f32(
  7784. const struct ggml_compute_params * params,
  7785. struct ggml_tensor * dst) {
  7786. const struct ggml_tensor * src0 = dst->src[0];
  7787. const struct ggml_tensor * src1 = dst->src[1];
  7788. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7789. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7790. return;
  7791. }
  7792. const int nr = ggml_nrows(src0);
  7793. GGML_TENSOR_BINARY_OP_LOCALS
  7794. const int ith = params->ith;
  7795. const int nth = params->nth;
  7796. const enum ggml_type type = src0->type;
  7797. const enum ggml_type dtype = dst->type;
  7798. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7799. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7800. // we don't support permuted src0 or src1
  7801. GGML_ASSERT(nb00 == ggml_type_size(type));
  7802. GGML_ASSERT(nb10 == sizeof(float));
  7803. // dst cannot be transposed or permuted
  7804. GGML_ASSERT(nb0 <= nb1);
  7805. GGML_ASSERT(nb1 <= nb2);
  7806. GGML_ASSERT(nb2 <= nb3);
  7807. GGML_ASSERT(ggml_is_quantized(src0->type));
  7808. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7809. // rows per thread
  7810. const int dr = (nr + nth - 1)/nth;
  7811. // row range for this thread
  7812. const int ir0 = dr*ith;
  7813. const int ir1 = MIN(ir0 + dr, nr);
  7814. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7815. for (int ir = ir0; ir < ir1; ++ir) {
  7816. // src0 indices
  7817. const int i03 = ir/(ne02*ne01);
  7818. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7819. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7820. // src1 and dst are same shape as src0 => same indices
  7821. const int i13 = i03;
  7822. const int i12 = i02;
  7823. const int i11 = i01;
  7824. const int i3 = i03;
  7825. const int i2 = i02;
  7826. const int i1 = i01;
  7827. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7828. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7829. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7830. assert(ne00 % 32 == 0);
  7831. // unquantize row from src0 to temp buffer
  7832. dequantize_row_q(src0_row, wdata, ne00);
  7833. // add src1
  7834. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7835. // quantize row to dst
  7836. if (quantize_row_q != NULL) {
  7837. quantize_row_q(wdata, dst_row, ne00);
  7838. } else {
  7839. memcpy(dst_row, wdata, ne0*nb0);
  7840. }
  7841. }
  7842. }
  7843. static void ggml_compute_forward_add(
  7844. const struct ggml_compute_params * params,
  7845. struct ggml_tensor * dst) {
  7846. const struct ggml_tensor * src0 = dst->src[0];
  7847. const struct ggml_tensor * src1 = dst->src[1];
  7848. switch (src0->type) {
  7849. case GGML_TYPE_F32:
  7850. {
  7851. if (src1->type == GGML_TYPE_F32) {
  7852. ggml_compute_forward_add_f32(params, dst);
  7853. }
  7854. else {
  7855. GGML_ASSERT(false);
  7856. }
  7857. } break;
  7858. case GGML_TYPE_F16:
  7859. {
  7860. if (src1->type == GGML_TYPE_F16) {
  7861. ggml_compute_forward_add_f16_f16(params, dst);
  7862. }
  7863. else if (src1->type == GGML_TYPE_F32) {
  7864. ggml_compute_forward_add_f16_f32(params, dst);
  7865. }
  7866. else {
  7867. GGML_ASSERT(false);
  7868. }
  7869. } break;
  7870. case GGML_TYPE_BF16:
  7871. {
  7872. if (src1->type == GGML_TYPE_BF16) {
  7873. ggml_compute_forward_add_bf16_bf16(params, dst);
  7874. }
  7875. else if (src1->type == GGML_TYPE_F32) {
  7876. ggml_compute_forward_add_bf16_f32(params, dst);
  7877. }
  7878. else {
  7879. GGML_ASSERT(false);
  7880. }
  7881. } break;
  7882. case GGML_TYPE_Q4_0:
  7883. case GGML_TYPE_Q4_1:
  7884. case GGML_TYPE_Q5_0:
  7885. case GGML_TYPE_Q5_1:
  7886. case GGML_TYPE_Q8_0:
  7887. case GGML_TYPE_Q2_K:
  7888. case GGML_TYPE_Q3_K:
  7889. case GGML_TYPE_Q4_K:
  7890. case GGML_TYPE_Q5_K:
  7891. case GGML_TYPE_Q6_K:
  7892. case GGML_TYPE_IQ2_XXS:
  7893. case GGML_TYPE_IQ2_XS:
  7894. case GGML_TYPE_IQ3_XXS:
  7895. case GGML_TYPE_IQ1_S:
  7896. case GGML_TYPE_IQ1_M:
  7897. case GGML_TYPE_IQ4_NL:
  7898. case GGML_TYPE_IQ4_XS:
  7899. case GGML_TYPE_IQ3_S:
  7900. case GGML_TYPE_IQ2_S:
  7901. {
  7902. ggml_compute_forward_add_q_f32(params, dst);
  7903. } break;
  7904. default:
  7905. {
  7906. GGML_ASSERT(false);
  7907. } break;
  7908. }
  7909. }
  7910. // ggml_compute_forward_add1
  7911. static void ggml_compute_forward_add1_f32(
  7912. const struct ggml_compute_params * params,
  7913. struct ggml_tensor * dst) {
  7914. const struct ggml_tensor * src0 = dst->src[0];
  7915. const struct ggml_tensor * src1 = dst->src[1];
  7916. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7917. GGML_ASSERT(ggml_is_scalar(src1));
  7918. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7919. return;
  7920. }
  7921. const int ith = params->ith;
  7922. const int nth = params->nth;
  7923. const int nr = ggml_nrows(src0);
  7924. GGML_TENSOR_UNARY_OP_LOCALS
  7925. GGML_ASSERT( nb0 == sizeof(float));
  7926. GGML_ASSERT(nb00 == sizeof(float));
  7927. // rows per thread
  7928. const int dr = (nr + nth - 1)/nth;
  7929. // row range for this thread
  7930. const int ir0 = dr*ith;
  7931. const int ir1 = MIN(ir0 + dr, nr);
  7932. for (int ir = ir0; ir < ir1; ++ir) {
  7933. // src0 and dst are same shape => same indices
  7934. const int i3 = ir/(ne2*ne1);
  7935. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7936. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7937. #ifdef GGML_USE_ACCELERATE
  7938. UNUSED(ggml_vec_add1_f32);
  7939. vDSP_vadd(
  7940. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7941. (float *) ((char *) src1->data), 0,
  7942. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7943. ne0);
  7944. #else
  7945. ggml_vec_add1_f32(ne0,
  7946. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7947. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7948. *(float *) src1->data);
  7949. #endif
  7950. }
  7951. }
  7952. static void ggml_compute_forward_add1_f16_f32(
  7953. const struct ggml_compute_params * params,
  7954. struct ggml_tensor * dst) {
  7955. const struct ggml_tensor * src0 = dst->src[0];
  7956. const struct ggml_tensor * src1 = dst->src[1];
  7957. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7958. GGML_ASSERT(ggml_is_scalar(src1));
  7959. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7960. return;
  7961. }
  7962. // scalar to add
  7963. const float v = *(float *) src1->data;
  7964. const int ith = params->ith;
  7965. const int nth = params->nth;
  7966. const int nr = ggml_nrows(src0);
  7967. GGML_TENSOR_UNARY_OP_LOCALS
  7968. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7969. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7970. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7971. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7972. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7973. // rows per thread
  7974. const int dr = (nr + nth - 1)/nth;
  7975. // row range for this thread
  7976. const int ir0 = dr*ith;
  7977. const int ir1 = MIN(ir0 + dr, nr);
  7978. for (int ir = ir0; ir < ir1; ++ir) {
  7979. // src0 and dst are same shape => same indices
  7980. const int i3 = ir/(ne2*ne1);
  7981. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7982. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7983. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7984. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7985. for (int i = 0; i < ne0; i++) {
  7986. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7987. }
  7988. }
  7989. }
  7990. static void ggml_compute_forward_add1_f16_f16(
  7991. const struct ggml_compute_params * params,
  7992. struct ggml_tensor * dst) {
  7993. const struct ggml_tensor * src0 = dst->src[0];
  7994. const struct ggml_tensor * src1 = dst->src[1];
  7995. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7996. GGML_ASSERT(ggml_is_scalar(src1));
  7997. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7998. return;
  7999. }
  8000. // scalar to add
  8001. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8002. const int ith = params->ith;
  8003. const int nth = params->nth;
  8004. const int nr = ggml_nrows(src0);
  8005. GGML_TENSOR_UNARY_OP_LOCALS
  8006. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8007. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8008. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8009. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8010. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8011. // rows per thread
  8012. const int dr = (nr + nth - 1)/nth;
  8013. // row range for this thread
  8014. const int ir0 = dr*ith;
  8015. const int ir1 = MIN(ir0 + dr, nr);
  8016. for (int ir = ir0; ir < ir1; ++ir) {
  8017. // src0 and dst are same shape => same indices
  8018. const int i3 = ir/(ne2*ne1);
  8019. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8020. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8021. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8022. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8023. for (int i = 0; i < ne0; i++) {
  8024. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8025. }
  8026. }
  8027. }
  8028. static void ggml_compute_forward_add1_q_f32(
  8029. const struct ggml_compute_params * params,
  8030. struct ggml_tensor * dst) {
  8031. const struct ggml_tensor * src0 = dst->src[0];
  8032. const struct ggml_tensor * src1 = dst->src[1];
  8033. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8034. GGML_ASSERT(ggml_is_scalar(src1));
  8035. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8036. return;
  8037. }
  8038. // scalar to add
  8039. const float v = *(float *) src1->data;
  8040. const int ith = params->ith;
  8041. const int nth = params->nth;
  8042. const int nr = ggml_nrows(src0);
  8043. GGML_TENSOR_UNARY_OP_LOCALS
  8044. const enum ggml_type type = src0->type;
  8045. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8046. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8047. // we don't support permuted src0
  8048. GGML_ASSERT(nb00 == ggml_type_size(type));
  8049. // dst cannot be transposed or permuted
  8050. GGML_ASSERT(nb0 <= nb1);
  8051. GGML_ASSERT(nb1 <= nb2);
  8052. GGML_ASSERT(nb2 <= nb3);
  8053. GGML_ASSERT(ggml_is_quantized(src0->type));
  8054. GGML_ASSERT(dst->type == src0->type);
  8055. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8056. // rows per thread
  8057. const int dr = (nr + nth - 1)/nth;
  8058. // row range for this thread
  8059. const int ir0 = dr*ith;
  8060. const int ir1 = MIN(ir0 + dr, nr);
  8061. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8062. for (int ir = ir0; ir < ir1; ++ir) {
  8063. // src0 and dst are same shape => same indices
  8064. const int i3 = ir/(ne2*ne1);
  8065. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8066. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8067. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8068. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8069. assert(ne0 % 32 == 0);
  8070. // unquantize row from src0 to temp buffer
  8071. dequantize_row_q(src0_row, wdata, ne0);
  8072. // add src1
  8073. ggml_vec_acc1_f32(ne0, wdata, v);
  8074. // quantize row to dst
  8075. quantize_row_q(wdata, dst_row, ne0);
  8076. }
  8077. }
  8078. static void ggml_compute_forward_add1_bf16_f32(
  8079. const struct ggml_compute_params * params,
  8080. struct ggml_tensor * dst) {
  8081. const struct ggml_tensor * src0 = dst->src[0];
  8082. const struct ggml_tensor * src1 = dst->src[1];
  8083. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8084. GGML_ASSERT(ggml_is_scalar(src1));
  8085. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8086. return;
  8087. }
  8088. // scalar to add
  8089. const float v = *(float *) src1->data;
  8090. const int ith = params->ith;
  8091. const int nth = params->nth;
  8092. const int nr = ggml_nrows(src0);
  8093. GGML_TENSOR_UNARY_OP_LOCALS
  8094. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8095. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8096. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8097. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8098. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8099. // rows per thread
  8100. const int dr = (nr + nth - 1)/nth;
  8101. // row range for this thread
  8102. const int ir0 = dr*ith;
  8103. const int ir1 = MIN(ir0 + dr, nr);
  8104. for (int ir = ir0; ir < ir1; ++ir) {
  8105. // src0 and dst are same shape => same indices
  8106. const int i3 = ir/(ne2*ne1);
  8107. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8108. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8109. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8110. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8111. for (int i = 0; i < ne0; i++) {
  8112. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8113. }
  8114. }
  8115. }
  8116. static void ggml_compute_forward_add1_bf16_bf16(
  8117. const struct ggml_compute_params * params,
  8118. struct ggml_tensor * dst) {
  8119. const struct ggml_tensor * src0 = dst->src[0];
  8120. const struct ggml_tensor * src1 = dst->src[1];
  8121. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8122. GGML_ASSERT(ggml_is_scalar(src1));
  8123. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8124. return;
  8125. }
  8126. // scalar to add
  8127. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8128. const int ith = params->ith;
  8129. const int nth = params->nth;
  8130. const int nr = ggml_nrows(src0);
  8131. GGML_TENSOR_UNARY_OP_LOCALS
  8132. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8133. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8134. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8135. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8136. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8137. // rows per thread
  8138. const int dr = (nr + nth - 1)/nth;
  8139. // row range for this thread
  8140. const int ir0 = dr*ith;
  8141. const int ir1 = MIN(ir0 + dr, nr);
  8142. for (int ir = ir0; ir < ir1; ++ir) {
  8143. // src0 and dst are same shape => same indices
  8144. const int i3 = ir/(ne2*ne1);
  8145. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8146. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8147. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8148. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8149. for (int i = 0; i < ne0; i++) {
  8150. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8151. }
  8152. }
  8153. }
  8154. static void ggml_compute_forward_add1(
  8155. const struct ggml_compute_params * params,
  8156. struct ggml_tensor * dst) {
  8157. const struct ggml_tensor * src0 = dst->src[0];
  8158. const struct ggml_tensor * src1 = dst->src[1];
  8159. switch (src0->type) {
  8160. case GGML_TYPE_F32:
  8161. {
  8162. ggml_compute_forward_add1_f32(params, dst);
  8163. } break;
  8164. case GGML_TYPE_F16:
  8165. {
  8166. if (src1->type == GGML_TYPE_F16) {
  8167. ggml_compute_forward_add1_f16_f16(params, dst);
  8168. }
  8169. else if (src1->type == GGML_TYPE_F32) {
  8170. ggml_compute_forward_add1_f16_f32(params, dst);
  8171. }
  8172. else {
  8173. GGML_ASSERT(false);
  8174. }
  8175. } break;
  8176. case GGML_TYPE_BF16:
  8177. {
  8178. if (src1->type == GGML_TYPE_BF16) {
  8179. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8180. }
  8181. else if (src1->type == GGML_TYPE_F32) {
  8182. ggml_compute_forward_add1_bf16_f32(params, dst);
  8183. }
  8184. else {
  8185. GGML_ASSERT(false);
  8186. }
  8187. } break;
  8188. case GGML_TYPE_Q4_0:
  8189. case GGML_TYPE_Q4_1:
  8190. case GGML_TYPE_Q5_0:
  8191. case GGML_TYPE_Q5_1:
  8192. case GGML_TYPE_Q8_0:
  8193. case GGML_TYPE_Q8_1:
  8194. case GGML_TYPE_Q2_K:
  8195. case GGML_TYPE_Q3_K:
  8196. case GGML_TYPE_Q4_K:
  8197. case GGML_TYPE_Q5_K:
  8198. case GGML_TYPE_Q6_K:
  8199. case GGML_TYPE_IQ2_XXS:
  8200. case GGML_TYPE_IQ2_XS:
  8201. case GGML_TYPE_IQ3_XXS:
  8202. case GGML_TYPE_IQ1_S:
  8203. case GGML_TYPE_IQ1_M:
  8204. case GGML_TYPE_IQ4_NL:
  8205. case GGML_TYPE_IQ4_XS:
  8206. case GGML_TYPE_IQ3_S:
  8207. case GGML_TYPE_IQ2_S:
  8208. {
  8209. ggml_compute_forward_add1_q_f32(params, dst);
  8210. } break;
  8211. default:
  8212. {
  8213. GGML_ASSERT(false);
  8214. } break;
  8215. }
  8216. }
  8217. // ggml_compute_forward_acc
  8218. static void ggml_compute_forward_acc_f32(
  8219. const struct ggml_compute_params * params,
  8220. struct ggml_tensor * dst) {
  8221. const struct ggml_tensor * src0 = dst->src[0];
  8222. const struct ggml_tensor * src1 = dst->src[1];
  8223. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8224. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8225. // view src0 and dst with these strides and data offset inbytes during acc
  8226. // nb0 is implicitly element_size because src0 and dst are contiguous
  8227. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8228. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8229. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8230. size_t offset = ((int32_t *) dst->op_params)[3];
  8231. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8232. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  8233. if (params->ith != 0) {
  8234. return;
  8235. }
  8236. // memcpy needs to be synchronized across threads to avoid race conditions.
  8237. // => do it in INIT phase
  8238. memcpy(
  8239. ((char *) dst->data),
  8240. ((char *) src0->data),
  8241. ggml_nbytes(dst));
  8242. }
  8243. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8244. return;
  8245. }
  8246. const int ith = params->ith;
  8247. const int nth = params->nth;
  8248. const int nr = ggml_nrows(src1);
  8249. const int nc = src1->ne[0];
  8250. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8251. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8252. // src0 and dst as viewed during acc
  8253. const size_t nb0 = ggml_element_size(src0);
  8254. const size_t nb00 = nb0;
  8255. const size_t nb01 = nb1;
  8256. const size_t nb02 = nb2;
  8257. const size_t nb03 = nb3;
  8258. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8259. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8260. GGML_ASSERT(nb10 == sizeof(float));
  8261. // rows per thread
  8262. const int dr = (nr + nth - 1)/nth;
  8263. // row range for this thread
  8264. const int ir0 = dr*ith;
  8265. const int ir1 = MIN(ir0 + dr, nr);
  8266. for (int ir = ir0; ir < ir1; ++ir) {
  8267. // src0 and dst are viewed with shape of src1 and offset
  8268. // => same indices
  8269. const int i3 = ir/(ne12*ne11);
  8270. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8271. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8272. #ifdef GGML_USE_ACCELERATE
  8273. vDSP_vadd(
  8274. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8275. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8276. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8277. #else
  8278. ggml_vec_add_f32(nc,
  8279. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8280. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8281. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8282. #endif
  8283. }
  8284. }
  8285. static void ggml_compute_forward_acc(
  8286. const struct ggml_compute_params * params,
  8287. struct ggml_tensor * dst) {
  8288. const struct ggml_tensor * src0 = dst->src[0];
  8289. switch (src0->type) {
  8290. case GGML_TYPE_F32:
  8291. {
  8292. ggml_compute_forward_acc_f32(params, dst);
  8293. } break;
  8294. case GGML_TYPE_F16:
  8295. case GGML_TYPE_BF16:
  8296. case GGML_TYPE_Q4_0:
  8297. case GGML_TYPE_Q4_1:
  8298. case GGML_TYPE_Q5_0:
  8299. case GGML_TYPE_Q5_1:
  8300. case GGML_TYPE_Q8_0:
  8301. case GGML_TYPE_Q8_1:
  8302. case GGML_TYPE_Q2_K:
  8303. case GGML_TYPE_Q3_K:
  8304. case GGML_TYPE_Q4_K:
  8305. case GGML_TYPE_Q5_K:
  8306. case GGML_TYPE_Q6_K:
  8307. case GGML_TYPE_IQ2_XXS:
  8308. case GGML_TYPE_IQ2_XS:
  8309. case GGML_TYPE_IQ3_XXS:
  8310. case GGML_TYPE_IQ1_S:
  8311. case GGML_TYPE_IQ1_M:
  8312. case GGML_TYPE_IQ4_NL:
  8313. case GGML_TYPE_IQ4_XS:
  8314. case GGML_TYPE_IQ3_S:
  8315. case GGML_TYPE_IQ2_S:
  8316. default:
  8317. {
  8318. GGML_ASSERT(false);
  8319. } break;
  8320. }
  8321. }
  8322. // ggml_compute_forward_sub
  8323. static void ggml_compute_forward_sub_f32(
  8324. const struct ggml_compute_params * params,
  8325. struct ggml_tensor * dst) {
  8326. const struct ggml_tensor * src0 = dst->src[0];
  8327. const struct ggml_tensor * src1 = dst->src[1];
  8328. assert(params->ith == 0);
  8329. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8330. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8331. return;
  8332. }
  8333. const int nr = ggml_nrows(src0);
  8334. GGML_TENSOR_BINARY_OP_LOCALS
  8335. GGML_ASSERT( nb0 == sizeof(float));
  8336. GGML_ASSERT(nb00 == sizeof(float));
  8337. if (nb10 == sizeof(float)) {
  8338. for (int ir = 0; ir < nr; ++ir) {
  8339. // src0, src1 and dst are same shape => same indices
  8340. const int i3 = ir/(ne2*ne1);
  8341. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8342. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8343. #ifdef GGML_USE_ACCELERATE
  8344. vDSP_vsub(
  8345. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8346. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8347. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8348. ne0);
  8349. #else
  8350. ggml_vec_sub_f32(ne0,
  8351. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8352. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8353. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8354. #endif
  8355. // }
  8356. // }
  8357. }
  8358. } else {
  8359. // src1 is not contiguous
  8360. for (int ir = 0; ir < nr; ++ir) {
  8361. // src0, src1 and dst are same shape => same indices
  8362. const int i3 = ir/(ne2*ne1);
  8363. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8364. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8365. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8366. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8367. for (int i0 = 0; i0 < ne0; i0++) {
  8368. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8369. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8370. }
  8371. }
  8372. }
  8373. }
  8374. static void ggml_compute_forward_sub(
  8375. const struct ggml_compute_params * params,
  8376. struct ggml_tensor * dst) {
  8377. const struct ggml_tensor * src0 = dst->src[0];
  8378. switch (src0->type) {
  8379. case GGML_TYPE_F32:
  8380. {
  8381. ggml_compute_forward_sub_f32(params, dst);
  8382. } break;
  8383. default:
  8384. {
  8385. GGML_ASSERT(false);
  8386. } break;
  8387. }
  8388. }
  8389. // ggml_compute_forward_mul
  8390. static void ggml_compute_forward_mul_f32(
  8391. const struct ggml_compute_params * params,
  8392. struct ggml_tensor * dst) {
  8393. const struct ggml_tensor * src0 = dst->src[0];
  8394. const struct ggml_tensor * src1 = dst->src[1];
  8395. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8396. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8397. return;
  8398. }
  8399. const int ith = params->ith;
  8400. const int nth = params->nth;
  8401. const int64_t nr = ggml_nrows(src0);
  8402. GGML_TENSOR_BINARY_OP_LOCALS
  8403. GGML_ASSERT( nb0 == sizeof(float));
  8404. GGML_ASSERT(nb00 == sizeof(float));
  8405. if (nb10 == sizeof(float)) {
  8406. for (int64_t ir = ith; ir < nr; ir += nth) {
  8407. // src0 and dst are same shape => same indices
  8408. const int64_t i03 = ir/(ne02*ne01);
  8409. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8410. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8411. const int64_t i13 = i03 % ne13;
  8412. const int64_t i12 = i02 % ne12;
  8413. const int64_t i11 = i01 % ne11;
  8414. const int64_t nr0 = ne00 / ne10;
  8415. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8416. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8417. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8418. for (int64_t r = 0 ; r < nr0; ++r) {
  8419. #ifdef GGML_USE_ACCELERATE
  8420. UNUSED(ggml_vec_mul_f32);
  8421. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8422. #else
  8423. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8424. #endif
  8425. }
  8426. }
  8427. } else {
  8428. // src1 is not contiguous
  8429. for (int64_t ir = ith; ir < nr; ir += nth) {
  8430. // src0 and dst are same shape => same indices
  8431. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8432. const int64_t i03 = ir/(ne02*ne01);
  8433. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8434. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8435. const int64_t i13 = i03 % ne13;
  8436. const int64_t i12 = i02 % ne12;
  8437. const int64_t i11 = i01 % ne11;
  8438. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8439. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8440. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8441. const int64_t i10 = i0 % ne10;
  8442. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8443. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8444. }
  8445. }
  8446. }
  8447. }
  8448. static void ggml_compute_forward_mul(
  8449. const struct ggml_compute_params * params,
  8450. struct ggml_tensor * dst) {
  8451. const struct ggml_tensor * src0 = dst->src[0];
  8452. const struct ggml_tensor * src1 = dst->src[1];
  8453. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8454. switch (src0->type) {
  8455. case GGML_TYPE_F32:
  8456. {
  8457. ggml_compute_forward_mul_f32(params, dst);
  8458. } break;
  8459. default:
  8460. {
  8461. GGML_ASSERT(false);
  8462. } break;
  8463. }
  8464. }
  8465. // ggml_compute_forward_div
  8466. static void ggml_compute_forward_div_f32(
  8467. const struct ggml_compute_params * params,
  8468. struct ggml_tensor * dst) {
  8469. const struct ggml_tensor * src0 = dst->src[0];
  8470. const struct ggml_tensor * src1 = dst->src[1];
  8471. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8472. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8473. return;
  8474. }
  8475. const int ith = params->ith;
  8476. const int nth = params->nth;
  8477. const int64_t nr = ggml_nrows(src0);
  8478. GGML_TENSOR_BINARY_OP_LOCALS
  8479. GGML_ASSERT( nb0 == sizeof(float));
  8480. GGML_ASSERT(nb00 == sizeof(float));
  8481. if (nb10 == sizeof(float)) {
  8482. for (int64_t ir = ith; ir < nr; ir += nth) {
  8483. // src0 and dst are same shape => same indices
  8484. const int64_t i03 = ir/(ne02*ne01);
  8485. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8486. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8487. const int64_t i13 = i03 % ne13;
  8488. const int64_t i12 = i02 % ne12;
  8489. const int64_t i11 = i01 % ne11;
  8490. const int64_t nr0 = ne00 / ne10;
  8491. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8492. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8493. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8494. for (int64_t r = 0; r < nr0; ++r) {
  8495. #ifdef GGML_USE_ACCELERATE
  8496. UNUSED(ggml_vec_div_f32);
  8497. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8498. #else
  8499. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8500. #endif
  8501. }
  8502. }
  8503. } else {
  8504. // src1 is not contiguous
  8505. for (int64_t ir = ith; ir < nr; ir += nth) {
  8506. // src0 and dst are same shape => same indices
  8507. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8508. const int64_t i03 = ir/(ne02*ne01);
  8509. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8510. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8511. const int64_t i13 = i03 % ne13;
  8512. const int64_t i12 = i02 % ne12;
  8513. const int64_t i11 = i01 % ne11;
  8514. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8515. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8516. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8517. const int64_t i10 = i0 % ne10;
  8518. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8519. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8520. }
  8521. }
  8522. }
  8523. }
  8524. static void ggml_compute_forward_div(
  8525. const struct ggml_compute_params * params,
  8526. struct ggml_tensor * dst) {
  8527. const struct ggml_tensor * src0 = dst->src[0];
  8528. switch (src0->type) {
  8529. case GGML_TYPE_F32:
  8530. {
  8531. ggml_compute_forward_div_f32(params, dst);
  8532. } break;
  8533. default:
  8534. {
  8535. GGML_ASSERT(false);
  8536. } break;
  8537. }
  8538. }
  8539. // ggml_compute_forward_sqr
  8540. static void ggml_compute_forward_sqr_f32(
  8541. const struct ggml_compute_params * params,
  8542. struct ggml_tensor * dst) {
  8543. const struct ggml_tensor * src0 = dst->src[0];
  8544. assert(params->ith == 0);
  8545. assert(ggml_are_same_shape(src0, dst));
  8546. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8547. return;
  8548. }
  8549. const int n = ggml_nrows(src0);
  8550. const int nc = src0->ne[0];
  8551. assert( dst->nb[0] == sizeof(float));
  8552. assert(src0->nb[0] == sizeof(float));
  8553. for (int i = 0; i < n; i++) {
  8554. ggml_vec_sqr_f32(nc,
  8555. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8556. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8557. }
  8558. }
  8559. static void ggml_compute_forward_sqr(
  8560. const struct ggml_compute_params * params,
  8561. struct ggml_tensor * dst) {
  8562. const struct ggml_tensor * src0 = dst->src[0];
  8563. switch (src0->type) {
  8564. case GGML_TYPE_F32:
  8565. {
  8566. ggml_compute_forward_sqr_f32(params, dst);
  8567. } break;
  8568. default:
  8569. {
  8570. GGML_ASSERT(false);
  8571. } break;
  8572. }
  8573. }
  8574. // ggml_compute_forward_sqrt
  8575. static void ggml_compute_forward_sqrt_f32(
  8576. const struct ggml_compute_params * params,
  8577. struct ggml_tensor * dst) {
  8578. const struct ggml_tensor * src0 = dst->src[0];
  8579. assert(params->ith == 0);
  8580. assert(ggml_are_same_shape(src0, dst));
  8581. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8582. return;
  8583. }
  8584. const int n = ggml_nrows(src0);
  8585. const int nc = src0->ne[0];
  8586. assert( dst->nb[0] == sizeof(float));
  8587. assert(src0->nb[0] == sizeof(float));
  8588. for (int i = 0; i < n; i++) {
  8589. ggml_vec_sqrt_f32(nc,
  8590. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8591. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8592. }
  8593. }
  8594. static void ggml_compute_forward_sqrt(
  8595. const struct ggml_compute_params * params,
  8596. struct ggml_tensor * dst) {
  8597. const struct ggml_tensor * src0 = dst->src[0];
  8598. switch (src0->type) {
  8599. case GGML_TYPE_F32:
  8600. {
  8601. ggml_compute_forward_sqrt_f32(params, dst);
  8602. } break;
  8603. default:
  8604. {
  8605. GGML_ASSERT(false);
  8606. } break;
  8607. }
  8608. }
  8609. // ggml_compute_forward_log
  8610. static void ggml_compute_forward_log_f32(
  8611. const struct ggml_compute_params * params,
  8612. struct ggml_tensor * dst) {
  8613. const struct ggml_tensor * src0 = dst->src[0];
  8614. GGML_ASSERT(params->ith == 0);
  8615. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8616. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8617. return;
  8618. }
  8619. const int n = ggml_nrows(src0);
  8620. const int nc = src0->ne[0];
  8621. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8622. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8623. for (int i = 0; i < n; i++) {
  8624. ggml_vec_log_f32(nc,
  8625. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8626. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8627. }
  8628. }
  8629. static void ggml_compute_forward_log(
  8630. const struct ggml_compute_params * params,
  8631. struct ggml_tensor * dst) {
  8632. const struct ggml_tensor * src0 = dst->src[0];
  8633. switch (src0->type) {
  8634. case GGML_TYPE_F32:
  8635. {
  8636. ggml_compute_forward_log_f32(params, dst);
  8637. } break;
  8638. default:
  8639. {
  8640. GGML_ASSERT(false);
  8641. } break;
  8642. }
  8643. }
  8644. // ggml_compute_forward_sum
  8645. static void ggml_compute_forward_sum_f32(
  8646. const struct ggml_compute_params * params,
  8647. struct ggml_tensor * dst) {
  8648. const struct ggml_tensor * src0 = dst->src[0];
  8649. assert(params->ith == 0);
  8650. assert(ggml_is_scalar(dst));
  8651. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8652. return;
  8653. }
  8654. assert(ggml_is_scalar(dst));
  8655. assert(src0->nb[0] == sizeof(float));
  8656. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8657. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8658. ggml_float sum = 0;
  8659. ggml_float row_sum = 0;
  8660. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8661. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8662. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8663. ggml_vec_sum_f32_ggf(ne00,
  8664. &row_sum,
  8665. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8666. sum += row_sum;
  8667. }
  8668. }
  8669. }
  8670. ((float *) dst->data)[0] = sum;
  8671. }
  8672. static void ggml_compute_forward_sum_f16(
  8673. const struct ggml_compute_params * params,
  8674. struct ggml_tensor * dst) {
  8675. const struct ggml_tensor * src0 = dst->src[0];
  8676. assert(params->ith == 0);
  8677. assert(ggml_is_scalar(dst));
  8678. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8679. return;
  8680. }
  8681. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8682. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8683. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8684. float sum = 0;
  8685. float row_sum = 0;
  8686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8688. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8689. ggml_vec_sum_f16_ggf(ne00,
  8690. &row_sum,
  8691. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8692. sum += row_sum;
  8693. }
  8694. }
  8695. }
  8696. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8697. }
  8698. static void ggml_compute_forward_sum_bf16(
  8699. const struct ggml_compute_params * params,
  8700. struct ggml_tensor * dst) {
  8701. const struct ggml_tensor * src0 = dst->src[0];
  8702. assert(params->ith == 0);
  8703. assert(ggml_is_scalar(dst));
  8704. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8705. return;
  8706. }
  8707. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8708. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8709. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8710. float sum = 0;
  8711. float row_sum = 0;
  8712. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8713. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8714. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8715. ggml_vec_sum_bf16_ggf(ne00,
  8716. &row_sum,
  8717. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8718. sum += row_sum;
  8719. }
  8720. }
  8721. }
  8722. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8723. }
  8724. static void ggml_compute_forward_sum(
  8725. const struct ggml_compute_params * params,
  8726. struct ggml_tensor * dst) {
  8727. const struct ggml_tensor * src0 = dst->src[0];
  8728. switch (src0->type) {
  8729. case GGML_TYPE_F32:
  8730. {
  8731. ggml_compute_forward_sum_f32(params, dst);
  8732. } break;
  8733. case GGML_TYPE_F16:
  8734. {
  8735. ggml_compute_forward_sum_f16(params, dst);
  8736. } break;
  8737. case GGML_TYPE_BF16:
  8738. {
  8739. ggml_compute_forward_sum_bf16(params, dst);
  8740. } break;
  8741. default:
  8742. {
  8743. GGML_ASSERT(false);
  8744. } break;
  8745. }
  8746. }
  8747. // ggml_compute_forward_sum_rows
  8748. static void ggml_compute_forward_sum_rows_f32(
  8749. const struct ggml_compute_params * params,
  8750. struct ggml_tensor * dst) {
  8751. const struct ggml_tensor * src0 = dst->src[0];
  8752. GGML_ASSERT(params->ith == 0);
  8753. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8754. return;
  8755. }
  8756. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8757. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8758. GGML_TENSOR_UNARY_OP_LOCALS
  8759. GGML_ASSERT(ne0 == 1);
  8760. GGML_ASSERT(ne1 == ne01);
  8761. GGML_ASSERT(ne2 == ne02);
  8762. GGML_ASSERT(ne3 == ne03);
  8763. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8764. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8765. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8766. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8767. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8768. float row_sum = 0;
  8769. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8770. dst_row[0] = row_sum;
  8771. }
  8772. }
  8773. }
  8774. }
  8775. static void ggml_compute_forward_sum_rows(
  8776. const struct ggml_compute_params * params,
  8777. struct ggml_tensor * dst) {
  8778. const struct ggml_tensor * src0 = dst->src[0];
  8779. switch (src0->type) {
  8780. case GGML_TYPE_F32:
  8781. {
  8782. ggml_compute_forward_sum_rows_f32(params, dst);
  8783. } break;
  8784. default:
  8785. {
  8786. GGML_ASSERT(false);
  8787. } break;
  8788. }
  8789. }
  8790. // ggml_compute_forward_mean
  8791. static void ggml_compute_forward_mean_f32(
  8792. const struct ggml_compute_params * params,
  8793. struct ggml_tensor * dst) {
  8794. const struct ggml_tensor * src0 = dst->src[0];
  8795. assert(params->ith == 0);
  8796. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8797. return;
  8798. }
  8799. assert(src0->nb[0] == sizeof(float));
  8800. GGML_TENSOR_UNARY_OP_LOCALS
  8801. assert(ne0 == 1);
  8802. assert(ne1 == ne01);
  8803. assert(ne2 == ne02);
  8804. assert(ne3 == ne03);
  8805. UNUSED(ne0);
  8806. UNUSED(ne1);
  8807. UNUSED(ne2);
  8808. UNUSED(ne3);
  8809. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8810. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8811. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8812. ggml_vec_sum_f32(ne00,
  8813. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8814. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8815. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8816. }
  8817. }
  8818. }
  8819. }
  8820. static void ggml_compute_forward_mean(
  8821. const struct ggml_compute_params * params,
  8822. struct ggml_tensor * dst) {
  8823. const struct ggml_tensor * src0 = dst->src[0];
  8824. switch (src0->type) {
  8825. case GGML_TYPE_F32:
  8826. {
  8827. ggml_compute_forward_mean_f32(params, dst);
  8828. } break;
  8829. default:
  8830. {
  8831. GGML_ASSERT(false);
  8832. } break;
  8833. }
  8834. }
  8835. // ggml_compute_forward_argmax
  8836. static void ggml_compute_forward_argmax_f32(
  8837. const struct ggml_compute_params * params,
  8838. struct ggml_tensor * dst) {
  8839. const struct ggml_tensor * src0 = dst->src[0];
  8840. assert(params->ith == 0);
  8841. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8842. return;
  8843. }
  8844. assert(src0->nb[0] == sizeof(float));
  8845. assert(dst->nb[0] == sizeof(float));
  8846. const int64_t ne00 = src0->ne[0];
  8847. const int64_t ne01 = src0->ne[1];
  8848. const size_t nb01 = src0->nb[1];
  8849. const size_t nb0 = dst->nb[0];
  8850. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8851. float * src = (float *) ((char *) src0->data + i1*nb01);
  8852. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8853. int v = 0;
  8854. ggml_vec_argmax_f32(ne00, &v, src);
  8855. dst_[0] = v;
  8856. }
  8857. }
  8858. static void ggml_compute_forward_argmax(
  8859. const struct ggml_compute_params * params,
  8860. struct ggml_tensor * dst) {
  8861. const struct ggml_tensor * src0 = dst->src[0];
  8862. switch (src0->type) {
  8863. case GGML_TYPE_F32:
  8864. {
  8865. ggml_compute_forward_argmax_f32(params, dst);
  8866. } break;
  8867. default:
  8868. {
  8869. GGML_ASSERT(false);
  8870. } break;
  8871. }
  8872. }
  8873. // ggml_compute_forward_repeat
  8874. static void ggml_compute_forward_repeat_f32(
  8875. const struct ggml_compute_params * params,
  8876. struct ggml_tensor * dst) {
  8877. const struct ggml_tensor * src0 = dst->src[0];
  8878. GGML_ASSERT(params->ith == 0);
  8879. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8880. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8881. return;
  8882. }
  8883. GGML_TENSOR_UNARY_OP_LOCALS
  8884. // guaranteed to be an integer due to the check in ggml_can_repeat
  8885. const int nr0 = (int)(ne0/ne00);
  8886. const int nr1 = (int)(ne1/ne01);
  8887. const int nr2 = (int)(ne2/ne02);
  8888. const int nr3 = (int)(ne3/ne03);
  8889. // TODO: support for transposed / permuted tensors
  8890. GGML_ASSERT(nb0 == sizeof(float));
  8891. GGML_ASSERT(nb00 == sizeof(float));
  8892. // TODO: maybe this is not optimal?
  8893. for (int i3 = 0; i3 < nr3; i3++) {
  8894. for (int k3 = 0; k3 < ne03; k3++) {
  8895. for (int i2 = 0; i2 < nr2; i2++) {
  8896. for (int k2 = 0; k2 < ne02; k2++) {
  8897. for (int i1 = 0; i1 < nr1; i1++) {
  8898. for (int k1 = 0; k1 < ne01; k1++) {
  8899. for (int i0 = 0; i0 < nr0; i0++) {
  8900. ggml_vec_cpy_f32(ne00,
  8901. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8902. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8903. }
  8904. }
  8905. }
  8906. }
  8907. }
  8908. }
  8909. }
  8910. }
  8911. static void ggml_compute_forward_repeat_f16(
  8912. const struct ggml_compute_params * params,
  8913. struct ggml_tensor * dst) {
  8914. const struct ggml_tensor * src0 = dst->src[0];
  8915. GGML_ASSERT(params->ith == 0);
  8916. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8917. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8918. return;
  8919. }
  8920. GGML_TENSOR_UNARY_OP_LOCALS
  8921. // guaranteed to be an integer due to the check in ggml_can_repeat
  8922. const int nr0 = (int)(ne0/ne00);
  8923. const int nr1 = (int)(ne1/ne01);
  8924. const int nr2 = (int)(ne2/ne02);
  8925. const int nr3 = (int)(ne3/ne03);
  8926. // TODO: support for transposed / permuted tensors
  8927. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8928. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8929. // TODO: maybe this is not optimal?
  8930. for (int i3 = 0; i3 < nr3; i3++) {
  8931. for (int k3 = 0; k3 < ne03; k3++) {
  8932. for (int i2 = 0; i2 < nr2; i2++) {
  8933. for (int k2 = 0; k2 < ne02; k2++) {
  8934. for (int i1 = 0; i1 < nr1; i1++) {
  8935. for (int k1 = 0; k1 < ne01; k1++) {
  8936. for (int i0 = 0; i0 < nr0; i0++) {
  8937. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8938. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8939. // ggml_vec_cpy_f16(ne00, y, x)
  8940. for (int i = 0; i < ne00; ++i) {
  8941. y[i] = x[i];
  8942. }
  8943. }
  8944. }
  8945. }
  8946. }
  8947. }
  8948. }
  8949. }
  8950. }
  8951. static void ggml_compute_forward_repeat(
  8952. const struct ggml_compute_params * params,
  8953. struct ggml_tensor * dst) {
  8954. const struct ggml_tensor * src0 = dst->src[0];
  8955. switch (src0->type) {
  8956. case GGML_TYPE_F16:
  8957. case GGML_TYPE_BF16:
  8958. case GGML_TYPE_I16:
  8959. {
  8960. ggml_compute_forward_repeat_f16(params, dst);
  8961. } break;
  8962. case GGML_TYPE_F32:
  8963. case GGML_TYPE_I32:
  8964. {
  8965. ggml_compute_forward_repeat_f32(params, dst);
  8966. } break;
  8967. default:
  8968. {
  8969. GGML_ASSERT(false);
  8970. } break;
  8971. }
  8972. }
  8973. // ggml_compute_forward_repeat_back
  8974. static void ggml_compute_forward_repeat_back_f32(
  8975. const struct ggml_compute_params * params,
  8976. struct ggml_tensor * dst) {
  8977. const struct ggml_tensor * src0 = dst->src[0];
  8978. GGML_ASSERT(params->ith == 0);
  8979. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8980. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8981. return;
  8982. }
  8983. GGML_TENSOR_UNARY_OP_LOCALS
  8984. // guaranteed to be an integer due to the check in ggml_can_repeat
  8985. const int nr0 = (int)(ne00/ne0);
  8986. const int nr1 = (int)(ne01/ne1);
  8987. const int nr2 = (int)(ne02/ne2);
  8988. const int nr3 = (int)(ne03/ne3);
  8989. // TODO: support for transposed / permuted tensors
  8990. GGML_ASSERT(nb0 == sizeof(float));
  8991. GGML_ASSERT(nb00 == sizeof(float));
  8992. if (ggml_is_contiguous(dst)) {
  8993. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8994. } else {
  8995. for (int k3 = 0; k3 < ne3; k3++) {
  8996. for (int k2 = 0; k2 < ne2; k2++) {
  8997. for (int k1 = 0; k1 < ne1; k1++) {
  8998. ggml_vec_set_f32(ne0,
  8999. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9000. 0);
  9001. }
  9002. }
  9003. }
  9004. }
  9005. // TODO: maybe this is not optimal?
  9006. for (int i3 = 0; i3 < nr3; i3++) {
  9007. for (int k3 = 0; k3 < ne3; k3++) {
  9008. for (int i2 = 0; i2 < nr2; i2++) {
  9009. for (int k2 = 0; k2 < ne2; k2++) {
  9010. for (int i1 = 0; i1 < nr1; i1++) {
  9011. for (int k1 = 0; k1 < ne1; k1++) {
  9012. for (int i0 = 0; i0 < nr0; i0++) {
  9013. ggml_vec_acc_f32(ne0,
  9014. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9015. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9016. }
  9017. }
  9018. }
  9019. }
  9020. }
  9021. }
  9022. }
  9023. }
  9024. static void ggml_compute_forward_repeat_back(
  9025. const struct ggml_compute_params * params,
  9026. struct ggml_tensor * dst) {
  9027. const struct ggml_tensor * src0 = dst->src[0];
  9028. switch (src0->type) {
  9029. case GGML_TYPE_F32:
  9030. {
  9031. ggml_compute_forward_repeat_back_f32(params, dst);
  9032. } break;
  9033. default:
  9034. {
  9035. GGML_ASSERT(false);
  9036. } break;
  9037. }
  9038. }
  9039. // ggml_compute_forward_concat
  9040. static void ggml_compute_forward_concat_f32(
  9041. const struct ggml_compute_params * params,
  9042. struct ggml_tensor * dst) {
  9043. const struct ggml_tensor * src0 = dst->src[0];
  9044. const struct ggml_tensor * src1 = dst->src[1];
  9045. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9046. return;
  9047. }
  9048. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9049. const int ith = params->ith;
  9050. const int nth = params->nth;
  9051. GGML_TENSOR_BINARY_OP_LOCALS
  9052. // TODO: support for transposed / permuted tensors
  9053. GGML_ASSERT(nb0 == sizeof(float));
  9054. GGML_ASSERT(nb00 == sizeof(float));
  9055. GGML_ASSERT(nb10 == sizeof(float));
  9056. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9057. GGML_ASSERT(dim >= 0 && dim < 4);
  9058. int64_t o[4] = {0, 0, 0, 0};
  9059. o[dim] = src0->ne[dim];
  9060. const float * x;
  9061. // TODO: smarter multi-theading
  9062. for (int i3 = 0; i3 < ne3; i3++) {
  9063. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9064. for (int i1 = 0; i1 < ne1; i1++) {
  9065. for (int i0 = 0; i0 < ne0; i0++) {
  9066. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9067. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9068. } else {
  9069. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9070. }
  9071. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9072. *y = *x;
  9073. }
  9074. }
  9075. }
  9076. }
  9077. }
  9078. static void ggml_compute_forward_concat(
  9079. const struct ggml_compute_params * params,
  9080. struct ggml_tensor * dst) {
  9081. const struct ggml_tensor * src0 = dst->src[0];
  9082. switch (src0->type) {
  9083. case GGML_TYPE_F32:
  9084. case GGML_TYPE_I32:
  9085. {
  9086. ggml_compute_forward_concat_f32(params, dst);
  9087. } break;
  9088. default:
  9089. {
  9090. GGML_ASSERT(false);
  9091. } break;
  9092. }
  9093. }
  9094. // ggml_compute_forward_abs
  9095. static void ggml_compute_forward_abs_f32(
  9096. const struct ggml_compute_params * params,
  9097. struct ggml_tensor * dst) {
  9098. const struct ggml_tensor * src0 = dst->src[0];
  9099. assert(params->ith == 0);
  9100. assert(ggml_are_same_shape(src0, dst));
  9101. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9102. return;
  9103. }
  9104. const int n = ggml_nrows(src0);
  9105. const int nc = src0->ne[0];
  9106. assert(dst->nb[0] == sizeof(float));
  9107. assert(src0->nb[0] == sizeof(float));
  9108. for (int i = 0; i < n; i++) {
  9109. ggml_vec_abs_f32(nc,
  9110. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9111. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9112. }
  9113. }
  9114. static void ggml_compute_forward_abs(
  9115. const struct ggml_compute_params * params,
  9116. struct ggml_tensor * dst) {
  9117. const struct ggml_tensor * src0 = dst->src[0];
  9118. switch (src0->type) {
  9119. case GGML_TYPE_F32:
  9120. {
  9121. ggml_compute_forward_abs_f32(params, dst);
  9122. } break;
  9123. default:
  9124. {
  9125. GGML_ASSERT(false);
  9126. } break;
  9127. }
  9128. }
  9129. // ggml_compute_forward_sgn
  9130. static void ggml_compute_forward_sgn_f32(
  9131. const struct ggml_compute_params * params,
  9132. struct ggml_tensor * dst) {
  9133. const struct ggml_tensor * src0 = dst->src[0];
  9134. assert(params->ith == 0);
  9135. assert(ggml_are_same_shape(src0, dst));
  9136. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9137. return;
  9138. }
  9139. const int n = ggml_nrows(src0);
  9140. const int nc = src0->ne[0];
  9141. assert(dst->nb[0] == sizeof(float));
  9142. assert(src0->nb[0] == sizeof(float));
  9143. for (int i = 0; i < n; i++) {
  9144. ggml_vec_sgn_f32(nc,
  9145. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9146. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9147. }
  9148. }
  9149. static void ggml_compute_forward_sgn(
  9150. const struct ggml_compute_params * params,
  9151. struct ggml_tensor * dst) {
  9152. const struct ggml_tensor * src0 = dst->src[0];
  9153. switch (src0->type) {
  9154. case GGML_TYPE_F32:
  9155. {
  9156. ggml_compute_forward_sgn_f32(params, dst);
  9157. } break;
  9158. default:
  9159. {
  9160. GGML_ASSERT(false);
  9161. } break;
  9162. }
  9163. }
  9164. // ggml_compute_forward_neg
  9165. static void ggml_compute_forward_neg_f32(
  9166. const struct ggml_compute_params * params,
  9167. struct ggml_tensor * dst) {
  9168. const struct ggml_tensor * src0 = dst->src[0];
  9169. assert(params->ith == 0);
  9170. assert(ggml_are_same_shape(src0, dst));
  9171. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9172. return;
  9173. }
  9174. const int n = ggml_nrows(src0);
  9175. const int nc = src0->ne[0];
  9176. assert(dst->nb[0] == sizeof(float));
  9177. assert(src0->nb[0] == sizeof(float));
  9178. for (int i = 0; i < n; i++) {
  9179. ggml_vec_neg_f32(nc,
  9180. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9181. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9182. }
  9183. }
  9184. static void ggml_compute_forward_neg(
  9185. const struct ggml_compute_params * params,
  9186. struct ggml_tensor * dst) {
  9187. const struct ggml_tensor * src0 = dst->src[0];
  9188. switch (src0->type) {
  9189. case GGML_TYPE_F32:
  9190. {
  9191. ggml_compute_forward_neg_f32(params, dst);
  9192. } break;
  9193. default:
  9194. {
  9195. GGML_ASSERT(false);
  9196. } break;
  9197. }
  9198. }
  9199. // ggml_compute_forward_step
  9200. static void ggml_compute_forward_step_f32(
  9201. const struct ggml_compute_params * params,
  9202. struct ggml_tensor * dst) {
  9203. const struct ggml_tensor * src0 = dst->src[0];
  9204. assert(params->ith == 0);
  9205. assert(ggml_are_same_shape(src0, dst));
  9206. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9207. return;
  9208. }
  9209. const int n = ggml_nrows(src0);
  9210. const int nc = src0->ne[0];
  9211. assert(dst->nb[0] == sizeof(float));
  9212. assert(src0->nb[0] == sizeof(float));
  9213. for (int i = 0; i < n; i++) {
  9214. ggml_vec_step_f32(nc,
  9215. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9216. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9217. }
  9218. }
  9219. static void ggml_compute_forward_step(
  9220. const struct ggml_compute_params * params,
  9221. struct ggml_tensor * dst) {
  9222. const struct ggml_tensor * src0 = dst->src[0];
  9223. switch (src0->type) {
  9224. case GGML_TYPE_F32:
  9225. {
  9226. ggml_compute_forward_step_f32(params, dst);
  9227. } break;
  9228. default:
  9229. {
  9230. GGML_ASSERT(false);
  9231. } break;
  9232. }
  9233. }
  9234. // ggml_compute_forward_tanh
  9235. static void ggml_compute_forward_tanh_f32(
  9236. const struct ggml_compute_params * params,
  9237. struct ggml_tensor * dst) {
  9238. const struct ggml_tensor * src0 = dst->src[0];
  9239. assert(params->ith == 0);
  9240. assert(ggml_are_same_shape(src0, dst));
  9241. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9242. return;
  9243. }
  9244. const int n = ggml_nrows(src0);
  9245. const int nc = src0->ne[0];
  9246. assert(dst->nb[0] == sizeof(float));
  9247. assert(src0->nb[0] == sizeof(float));
  9248. for (int i = 0; i < n; i++) {
  9249. ggml_vec_tanh_f32(nc,
  9250. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9251. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9252. }
  9253. }
  9254. static void ggml_compute_forward_tanh(
  9255. const struct ggml_compute_params * params,
  9256. struct ggml_tensor * dst) {
  9257. const struct ggml_tensor * src0 = dst->src[0];
  9258. switch (src0->type) {
  9259. case GGML_TYPE_F32:
  9260. {
  9261. ggml_compute_forward_tanh_f32(params, dst);
  9262. } break;
  9263. default:
  9264. {
  9265. GGML_ASSERT(false);
  9266. } break;
  9267. }
  9268. }
  9269. // ggml_compute_forward_elu
  9270. static void ggml_compute_forward_elu_f32(
  9271. const struct ggml_compute_params * params,
  9272. struct ggml_tensor * dst) {
  9273. const struct ggml_tensor * src0 = dst->src[0];
  9274. assert(params->ith == 0);
  9275. assert(ggml_are_same_shape(src0, dst));
  9276. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9277. return;
  9278. }
  9279. const int n = ggml_nrows(src0);
  9280. const int nc = src0->ne[0];
  9281. assert(dst->nb[0] == sizeof(float));
  9282. assert(src0->nb[0] == sizeof(float));
  9283. for (int i = 0; i < n; i++) {
  9284. ggml_vec_elu_f32(nc,
  9285. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9286. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9287. }
  9288. }
  9289. static void ggml_compute_forward_elu(
  9290. const struct ggml_compute_params * params,
  9291. struct ggml_tensor * dst) {
  9292. const struct ggml_tensor * src0 = dst->src[0];
  9293. switch (src0->type) {
  9294. case GGML_TYPE_F32:
  9295. {
  9296. ggml_compute_forward_elu_f32(params, dst);
  9297. } break;
  9298. default:
  9299. {
  9300. GGML_ASSERT(false);
  9301. } break;
  9302. }
  9303. }
  9304. // ggml_compute_forward_relu
  9305. static void ggml_compute_forward_relu_f32(
  9306. const struct ggml_compute_params * params,
  9307. struct ggml_tensor * dst) {
  9308. const struct ggml_tensor * src0 = dst->src[0];
  9309. assert(params->ith == 0);
  9310. assert(ggml_are_same_shape(src0, dst));
  9311. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9312. return;
  9313. }
  9314. const int n = ggml_nrows(src0);
  9315. const int nc = src0->ne[0];
  9316. assert(dst->nb[0] == sizeof(float));
  9317. assert(src0->nb[0] == sizeof(float));
  9318. for (int i = 0; i < n; i++) {
  9319. ggml_vec_relu_f32(nc,
  9320. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9321. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9322. }
  9323. }
  9324. static void ggml_compute_forward_relu(
  9325. const struct ggml_compute_params * params,
  9326. struct ggml_tensor * dst) {
  9327. const struct ggml_tensor * src0 = dst->src[0];
  9328. switch (src0->type) {
  9329. case GGML_TYPE_F32:
  9330. {
  9331. ggml_compute_forward_relu_f32(params, dst);
  9332. } break;
  9333. default:
  9334. {
  9335. GGML_ASSERT(false);
  9336. } break;
  9337. }
  9338. }
  9339. // ggml_compute_forward_sigmoid
  9340. static void ggml_compute_forward_sigmoid_f32(
  9341. const struct ggml_compute_params * params,
  9342. struct ggml_tensor * dst) {
  9343. const struct ggml_tensor * src0 = dst->src[0];
  9344. assert(params->ith == 0);
  9345. assert(ggml_are_same_shape(src0, dst));
  9346. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9347. return;
  9348. }
  9349. const int n = ggml_nrows(src0);
  9350. const int nc = src0->ne[0];
  9351. assert(dst->nb[0] == sizeof(float));
  9352. assert(src0->nb[0] == sizeof(float));
  9353. for (int i = 0; i < n; i++) {
  9354. ggml_vec_sigmoid_f32(nc,
  9355. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9356. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9357. }
  9358. }
  9359. static void ggml_compute_forward_sigmoid(
  9360. const struct ggml_compute_params * params,
  9361. struct ggml_tensor * dst) {
  9362. const struct ggml_tensor * src0 = dst->src[0];
  9363. switch (src0->type) {
  9364. case GGML_TYPE_F32:
  9365. {
  9366. ggml_compute_forward_sigmoid_f32(params, dst);
  9367. } break;
  9368. default:
  9369. {
  9370. GGML_ASSERT(false);
  9371. } break;
  9372. }
  9373. }
  9374. // ggml_compute_forward_gelu
  9375. static void ggml_compute_forward_gelu_f32(
  9376. const struct ggml_compute_params * params,
  9377. struct ggml_tensor * dst) {
  9378. const struct ggml_tensor * src0 = dst->src[0];
  9379. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9380. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9381. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9382. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9383. return;
  9384. }
  9385. const int ith = params->ith;
  9386. const int nth = params->nth;
  9387. const int nc = src0->ne[0];
  9388. const int nr = ggml_nrows(src0);
  9389. // rows per thread
  9390. const int dr = (nr + nth - 1)/nth;
  9391. // row range for this thread
  9392. const int ir0 = dr*ith;
  9393. const int ir1 = MIN(ir0 + dr, nr);
  9394. for (int i1 = ir0; i1 < ir1; i1++) {
  9395. ggml_vec_gelu_f32(nc,
  9396. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9397. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9398. #ifndef NDEBUG
  9399. for (int k = 0; k < nc; k++) {
  9400. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9401. UNUSED(x);
  9402. assert(!isnan(x));
  9403. assert(!isinf(x));
  9404. }
  9405. #endif
  9406. }
  9407. }
  9408. static void ggml_compute_forward_gelu(
  9409. const struct ggml_compute_params * params,
  9410. struct ggml_tensor * dst) {
  9411. const struct ggml_tensor * src0 = dst->src[0];
  9412. switch (src0->type) {
  9413. case GGML_TYPE_F32:
  9414. {
  9415. ggml_compute_forward_gelu_f32(params, dst);
  9416. } break;
  9417. default:
  9418. {
  9419. GGML_ASSERT(false);
  9420. } break;
  9421. }
  9422. }
  9423. // ggml_compute_forward_gelu_quick
  9424. static void ggml_compute_forward_gelu_quick_f32(
  9425. const struct ggml_compute_params * params,
  9426. struct ggml_tensor * dst) {
  9427. const struct ggml_tensor * src0 = dst->src[0];
  9428. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9429. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9430. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9431. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9432. return;
  9433. }
  9434. const int ith = params->ith;
  9435. const int nth = params->nth;
  9436. const int nc = src0->ne[0];
  9437. const int nr = ggml_nrows(src0);
  9438. // rows per thread
  9439. const int dr = (nr + nth - 1)/nth;
  9440. // row range for this thread
  9441. const int ir0 = dr*ith;
  9442. const int ir1 = MIN(ir0 + dr, nr);
  9443. for (int i1 = ir0; i1 < ir1; i1++) {
  9444. ggml_vec_gelu_quick_f32(nc,
  9445. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9446. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9447. #ifndef NDEBUG
  9448. for (int k = 0; k < nc; k++) {
  9449. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9450. UNUSED(x);
  9451. assert(!isnan(x));
  9452. assert(!isinf(x));
  9453. }
  9454. #endif
  9455. }
  9456. }
  9457. static void ggml_compute_forward_gelu_quick(
  9458. const struct ggml_compute_params * params,
  9459. struct ggml_tensor * dst) {
  9460. const struct ggml_tensor * src0 = dst->src[0];
  9461. switch (src0->type) {
  9462. case GGML_TYPE_F32:
  9463. {
  9464. ggml_compute_forward_gelu_quick_f32(params, dst);
  9465. } break;
  9466. default:
  9467. {
  9468. GGML_ASSERT(false);
  9469. } break;
  9470. }
  9471. }
  9472. // ggml_compute_forward_silu
  9473. static void ggml_compute_forward_silu_f32(
  9474. const struct ggml_compute_params * params,
  9475. struct ggml_tensor * dst) {
  9476. const struct ggml_tensor * src0 = dst->src[0];
  9477. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9478. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9479. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9480. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9481. return;
  9482. }
  9483. const int ith = params->ith;
  9484. const int nth = params->nth;
  9485. const int nc = src0->ne[0];
  9486. const int nr = ggml_nrows(src0);
  9487. // rows per thread
  9488. const int dr = (nr + nth - 1)/nth;
  9489. // row range for this thread
  9490. const int ir0 = dr*ith;
  9491. const int ir1 = MIN(ir0 + dr, nr);
  9492. for (int i1 = ir0; i1 < ir1; i1++) {
  9493. ggml_vec_silu_f32(nc,
  9494. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9495. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9496. #ifndef NDEBUG
  9497. for (int k = 0; k < nc; k++) {
  9498. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9499. UNUSED(x);
  9500. assert(!isnan(x));
  9501. assert(!isinf(x));
  9502. }
  9503. #endif
  9504. }
  9505. }
  9506. static void ggml_compute_forward_silu(
  9507. const struct ggml_compute_params * params,
  9508. struct ggml_tensor * dst) {
  9509. const struct ggml_tensor * src0 = dst->src[0];
  9510. switch (src0->type) {
  9511. case GGML_TYPE_F32:
  9512. {
  9513. ggml_compute_forward_silu_f32(params, dst);
  9514. } break;
  9515. default:
  9516. {
  9517. GGML_ASSERT(false);
  9518. } break;
  9519. }
  9520. }
  9521. // ggml_compute_forward_leaky_relu
  9522. static void ggml_compute_forward_leaky_relu_f32(
  9523. const struct ggml_compute_params * params,
  9524. struct ggml_tensor * dst) {
  9525. const struct ggml_tensor * src0 = dst->src[0];
  9526. assert(params->ith == 0);
  9527. assert(ggml_are_same_shape(src0, dst));
  9528. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9529. return;
  9530. }
  9531. const int n = ggml_nrows(src0);
  9532. const int nc = src0->ne[0];
  9533. float negative_slope;
  9534. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9535. assert(dst->nb[0] == sizeof(float));
  9536. assert(src0->nb[0] == sizeof(float));
  9537. for (int i = 0; i < n; i++) {
  9538. ggml_vec_leaky_relu_f32(nc,
  9539. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9540. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9541. }
  9542. }
  9543. static void ggml_compute_forward_leaky_relu(
  9544. const struct ggml_compute_params * params,
  9545. struct ggml_tensor * dst) {
  9546. const struct ggml_tensor * src0 = dst->src[0];
  9547. switch (src0->type) {
  9548. case GGML_TYPE_F32:
  9549. {
  9550. ggml_compute_forward_leaky_relu_f32(params, dst);
  9551. } break;
  9552. default:
  9553. {
  9554. GGML_ASSERT(false);
  9555. } break;
  9556. }
  9557. }
  9558. // ggml_compute_forward_silu_back
  9559. static void ggml_compute_forward_silu_back_f32(
  9560. const struct ggml_compute_params * params,
  9561. struct ggml_tensor * dst) {
  9562. const struct ggml_tensor * src0 = dst->src[0];
  9563. const struct ggml_tensor * grad = dst->src[1];
  9564. GGML_ASSERT(ggml_is_contiguous_1(grad));
  9565. GGML_ASSERT(ggml_is_contiguous_1(src0));
  9566. GGML_ASSERT(ggml_is_contiguous_1(dst));
  9567. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9568. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9569. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9570. return;
  9571. }
  9572. const int ith = params->ith;
  9573. const int nth = params->nth;
  9574. const int nc = src0->ne[0];
  9575. const int nr = ggml_nrows(src0);
  9576. // rows per thread
  9577. const int dr = (nr + nth - 1)/nth;
  9578. // row range for this thread
  9579. const int ir0 = dr*ith;
  9580. const int ir1 = MIN(ir0 + dr, nr);
  9581. for (int i1 = ir0; i1 < ir1; i1++) {
  9582. ggml_vec_silu_backward_f32(nc,
  9583. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9584. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9585. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9586. #ifndef NDEBUG
  9587. for (int k = 0; k < nc; k++) {
  9588. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9589. UNUSED(x);
  9590. assert(!isnan(x));
  9591. assert(!isinf(x));
  9592. }
  9593. #endif
  9594. }
  9595. }
  9596. static void ggml_compute_forward_silu_back(
  9597. const struct ggml_compute_params * params,
  9598. struct ggml_tensor * dst) {
  9599. const struct ggml_tensor * src0 = dst->src[0];
  9600. switch (src0->type) {
  9601. case GGML_TYPE_F32:
  9602. {
  9603. ggml_compute_forward_silu_back_f32(params, dst);
  9604. } break;
  9605. default:
  9606. {
  9607. GGML_ASSERT(false);
  9608. } break;
  9609. }
  9610. }
  9611. static void ggml_compute_forward_hardswish_f32(
  9612. const struct ggml_compute_params * params,
  9613. struct ggml_tensor * dst) {
  9614. const struct ggml_tensor * src0 = dst->src[0];
  9615. assert(params->ith == 0);
  9616. assert(ggml_are_same_shape(src0, dst));
  9617. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9618. return;
  9619. }
  9620. const int n = ggml_nrows(src0);
  9621. const int nc = src0->ne[0];
  9622. assert(dst->nb[0] == sizeof(float));
  9623. assert(src0->nb[0] == sizeof(float));
  9624. for (int i = 0; i < n; i++) {
  9625. ggml_vec_hardswish_f32(nc,
  9626. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9627. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9628. }
  9629. }
  9630. static void ggml_compute_forward_hardswish(
  9631. const struct ggml_compute_params * params,
  9632. struct ggml_tensor * dst) {
  9633. const struct ggml_tensor * src0 = dst->src[0];
  9634. switch (src0->type) {
  9635. case GGML_TYPE_F32:
  9636. {
  9637. ggml_compute_forward_hardswish_f32(params, dst);
  9638. } break;
  9639. default:
  9640. {
  9641. GGML_ASSERT(false);
  9642. } break;
  9643. }
  9644. }
  9645. static void ggml_compute_forward_hardsigmoid_f32(
  9646. const struct ggml_compute_params * params,
  9647. struct ggml_tensor * dst) {
  9648. const struct ggml_tensor * src0 = dst->src[0];
  9649. assert(params->ith == 0);
  9650. assert(ggml_are_same_shape(src0, dst));
  9651. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9652. return;
  9653. }
  9654. const int n = ggml_nrows(src0);
  9655. const int nc = src0->ne[0];
  9656. assert(dst->nb[0] == sizeof(float));
  9657. assert(src0->nb[0] == sizeof(float));
  9658. for (int i = 0; i < n; i++) {
  9659. ggml_vec_hardsigmoid_f32(nc,
  9660. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9661. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9662. }
  9663. }
  9664. static void ggml_compute_forward_hardsigmoid(
  9665. const struct ggml_compute_params * params,
  9666. struct ggml_tensor * dst) {
  9667. const struct ggml_tensor * src0 = dst->src[0];
  9668. switch (src0->type) {
  9669. case GGML_TYPE_F32:
  9670. {
  9671. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9672. } break;
  9673. default:
  9674. {
  9675. GGML_ASSERT(false);
  9676. } break;
  9677. }
  9678. }
  9679. // ggml_compute_forward_norm
  9680. static void ggml_compute_forward_norm_f32(
  9681. const struct ggml_compute_params * params,
  9682. struct ggml_tensor * dst) {
  9683. const struct ggml_tensor * src0 = dst->src[0];
  9684. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9685. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9686. return;
  9687. }
  9688. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9689. const int ith = params->ith;
  9690. const int nth = params->nth;
  9691. GGML_TENSOR_UNARY_OP_LOCALS
  9692. float eps;
  9693. memcpy(&eps, dst->op_params, sizeof(float));
  9694. GGML_ASSERT(eps > 0.0f);
  9695. // TODO: optimize
  9696. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9697. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9698. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9699. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9700. ggml_float sum = 0.0;
  9701. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9702. sum += (ggml_float)x[i00];
  9703. }
  9704. float mean = sum/ne00;
  9705. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9706. ggml_float sum2 = 0.0;
  9707. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9708. float v = x[i00] - mean;
  9709. y[i00] = v;
  9710. sum2 += (ggml_float)(v*v);
  9711. }
  9712. float variance = sum2/ne00;
  9713. const float scale = 1.0f/sqrtf(variance + eps);
  9714. ggml_vec_scale_f32(ne00, y, scale);
  9715. }
  9716. }
  9717. }
  9718. }
  9719. static void ggml_compute_forward_norm(
  9720. const struct ggml_compute_params * params,
  9721. struct ggml_tensor * dst) {
  9722. const struct ggml_tensor * src0 = dst->src[0];
  9723. switch (src0->type) {
  9724. case GGML_TYPE_F32:
  9725. {
  9726. ggml_compute_forward_norm_f32(params, dst);
  9727. } break;
  9728. default:
  9729. {
  9730. GGML_ASSERT(false);
  9731. } break;
  9732. }
  9733. }
  9734. // ggml_compute_forward_group_rms_norm
  9735. static void ggml_compute_forward_rms_norm_f32(
  9736. const struct ggml_compute_params * params,
  9737. struct ggml_tensor * dst) {
  9738. const struct ggml_tensor * src0 = dst->src[0];
  9739. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9740. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9741. return;
  9742. }
  9743. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9744. const int ith = params->ith;
  9745. const int nth = params->nth;
  9746. GGML_TENSOR_UNARY_OP_LOCALS
  9747. float eps;
  9748. memcpy(&eps, dst->op_params, sizeof(float));
  9749. GGML_ASSERT(eps > 0.0f);
  9750. // TODO: optimize
  9751. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9752. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9753. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9754. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9755. ggml_float sum = 0.0;
  9756. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9757. sum += (ggml_float)(x[i00] * x[i00]);
  9758. }
  9759. const float mean = sum/ne00;
  9760. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9761. memcpy(y, x, ne00 * sizeof(float));
  9762. // for (int i00 = 0; i00 < ne00; i00++) {
  9763. // y[i00] = x[i00];
  9764. // }
  9765. const float scale = 1.0f/sqrtf(mean + eps);
  9766. ggml_vec_scale_f32(ne00, y, scale);
  9767. }
  9768. }
  9769. }
  9770. }
  9771. static void ggml_compute_forward_rms_norm(
  9772. const struct ggml_compute_params * params,
  9773. struct ggml_tensor * dst) {
  9774. const struct ggml_tensor * src0 = dst->src[0];
  9775. switch (src0->type) {
  9776. case GGML_TYPE_F32:
  9777. {
  9778. ggml_compute_forward_rms_norm_f32(params, dst);
  9779. } break;
  9780. default:
  9781. {
  9782. GGML_ASSERT(false);
  9783. } break;
  9784. }
  9785. }
  9786. static void ggml_compute_forward_rms_norm_back_f32(
  9787. const struct ggml_compute_params * params,
  9788. struct ggml_tensor * dst) {
  9789. const struct ggml_tensor * src0 = dst->src[0];
  9790. const struct ggml_tensor * src1 = dst->src[1];
  9791. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9792. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9793. return;
  9794. }
  9795. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9796. const int ith = params->ith;
  9797. const int nth = params->nth;
  9798. GGML_TENSOR_BINARY_OP_LOCALS
  9799. float eps;
  9800. memcpy(&eps, dst->op_params, sizeof(float));
  9801. // TODO: optimize
  9802. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9803. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9804. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9805. // src1 is same shape as src0 => same indices
  9806. const int64_t i11 = i01;
  9807. const int64_t i12 = i02;
  9808. const int64_t i13 = i03;
  9809. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9810. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9811. ggml_float sum_xx = 0.0;
  9812. ggml_float sum_xdz = 0.0;
  9813. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9814. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9815. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9816. }
  9817. //const float mean = (float)(sum_xx)/ne00;
  9818. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9819. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9820. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9821. // we could cache rms from forward pass to improve performance.
  9822. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9823. //const float rms = sqrtf(mean_eps);
  9824. const float rrms = 1.0f / sqrtf(mean_eps);
  9825. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9826. {
  9827. // z = rms_norm(x)
  9828. //
  9829. // rms_norm(src0) =
  9830. // scale(
  9831. // src0,
  9832. // div(
  9833. // 1,
  9834. // sqrt(
  9835. // add(
  9836. // scale(
  9837. // sum(
  9838. // sqr(
  9839. // src0)),
  9840. // (1.0/N)),
  9841. // eps))));
  9842. // postorder:
  9843. // ## op args grad
  9844. // 00 param src0 grad[#00]
  9845. // 01 const 1
  9846. // 02 sqr (#00) grad[#02]
  9847. // 03 sum (#02) grad[#03]
  9848. // 04 const 1/N
  9849. // 05 scale (#03, #04) grad[#05]
  9850. // 06 const eps
  9851. // 07 add (#05, #06) grad[#07]
  9852. // 08 sqrt (#07) grad[#08]
  9853. // 09 div (#01,#08) grad[#09]
  9854. // 10 scale (#00,#09) grad[#10]
  9855. //
  9856. // backward pass, given grad[#10]
  9857. // #10: scale
  9858. // grad[#00] += scale(grad[#10],#09)
  9859. // grad[#09] += sum(mul(grad[#10],#00))
  9860. // #09: div
  9861. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9862. // #08: sqrt
  9863. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9864. // #07: add
  9865. // grad[#05] += grad[#07]
  9866. // #05: scale
  9867. // grad[#03] += scale(grad[#05],#04)
  9868. // #03: sum
  9869. // grad[#02] += repeat(grad[#03], #02)
  9870. // #02:
  9871. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9872. //
  9873. // substitute and simplify:
  9874. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9875. // grad[#02] = repeat(grad[#03], #02)
  9876. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9877. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9878. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9879. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9880. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9881. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9882. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9883. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9884. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9885. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9886. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9887. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9888. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9889. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9890. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9891. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9892. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9893. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9894. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9895. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9896. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9897. // a = b*c + d*e
  9898. // a = b*c*f/f + d*e*f/f
  9899. // a = (b*c*f + d*e*f)*(1/f)
  9900. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9901. // a = (b + d*e/c)*c
  9902. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9903. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9904. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9905. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9906. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9907. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9908. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9909. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9910. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9911. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9912. }
  9913. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9914. // post-order:
  9915. // dx := x
  9916. // dx := scale(dx,-mean_xdz/mean_eps)
  9917. // dx := add(dx, dz)
  9918. // dx := scale(dx, rrms)
  9919. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9920. ggml_vec_cpy_f32 (ne00, dx, x);
  9921. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9922. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9923. ggml_vec_acc_f32 (ne00, dx, dz);
  9924. ggml_vec_scale_f32(ne00, dx, rrms);
  9925. }
  9926. }
  9927. }
  9928. }
  9929. static void ggml_compute_forward_rms_norm_back(
  9930. const struct ggml_compute_params * params,
  9931. struct ggml_tensor * dst) {
  9932. const struct ggml_tensor * src0 = dst->src[0];
  9933. switch (src0->type) {
  9934. case GGML_TYPE_F32:
  9935. {
  9936. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9937. } break;
  9938. default:
  9939. {
  9940. GGML_ASSERT(false);
  9941. } break;
  9942. }
  9943. }
  9944. // ggml_compute_forward_group_norm
  9945. static void ggml_compute_forward_group_norm_f32(
  9946. const struct ggml_compute_params * params,
  9947. struct ggml_tensor * dst) {
  9948. const struct ggml_tensor * src0 = dst->src[0];
  9949. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9950. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9951. return;
  9952. }
  9953. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9954. const int ith = params->ith;
  9955. const int nth = params->nth;
  9956. GGML_TENSOR_UNARY_OP_LOCALS
  9957. const float eps = 1e-6f; // TODO: make this a parameter
  9958. // TODO: optimize
  9959. int n_channels = src0->ne[2];
  9960. int n_groups = dst->op_params[0];
  9961. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9962. for (int i = ith; i < n_groups; i += nth) {
  9963. int start = i * n_channels_per_group;
  9964. int end = start + n_channels_per_group;
  9965. if (end > n_channels) {
  9966. end = n_channels;
  9967. }
  9968. int step = end - start;
  9969. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9970. ggml_float sum = 0.0;
  9971. for (int64_t i02 = start; i02 < end; i02++) {
  9972. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9973. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9974. ggml_float sumr = 0.0;
  9975. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9976. sumr += (ggml_float)x[i00];
  9977. }
  9978. sum += sumr;
  9979. }
  9980. }
  9981. const float mean = sum / (ne00 * ne01 * step);
  9982. ggml_float sum2 = 0.0;
  9983. for (int64_t i02 = start; i02 < end; i02++) {
  9984. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9985. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9986. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9987. ggml_float sumr = 0.0;
  9988. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9989. float v = x[i00] - mean;
  9990. y[i00] = v;
  9991. sumr += (ggml_float)(v * v);
  9992. }
  9993. sum2 += sumr;
  9994. }
  9995. }
  9996. const float variance = sum2 / (ne00 * ne01 * step);
  9997. const float scale = 1.0f / sqrtf(variance + eps);
  9998. for (int64_t i02 = start; i02 < end; i02++) {
  9999. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10000. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  10001. ggml_vec_scale_f32(ne00, y, scale);
  10002. }
  10003. }
  10004. }
  10005. }
  10006. }
  10007. static void ggml_compute_forward_group_norm(
  10008. const struct ggml_compute_params * params,
  10009. struct ggml_tensor * dst) {
  10010. const struct ggml_tensor * src0 = dst->src[0];
  10011. switch (src0->type) {
  10012. case GGML_TYPE_F32:
  10013. {
  10014. ggml_compute_forward_group_norm_f32(params, dst);
  10015. } break;
  10016. default:
  10017. {
  10018. GGML_ASSERT(false);
  10019. } break;
  10020. }
  10021. }
  10022. // ggml_compute_forward_mul_mat
  10023. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10024. // helper function to determine if it is better to use BLAS or not
  10025. // for large matrices, BLAS is faster
  10026. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  10027. const struct ggml_tensor * src0 = dst->src[0];
  10028. const struct ggml_tensor * src1 = dst->src[1];
  10029. //const int64_t ne00 = src0->ne[0];
  10030. //const int64_t ne01 = src0->ne[1];
  10031. const int64_t ne10 = src1->ne[0];
  10032. const int64_t ne0 = dst->ne[0];
  10033. const int64_t ne1 = dst->ne[1];
  10034. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  10035. // all the experts for each batch element and the processing would become incredibly slow
  10036. // TODO: find the optimal values for these
  10037. if (dst->op != GGML_OP_MUL_MAT_ID &&
  10038. ggml_is_contiguous(src0) &&
  10039. ggml_is_contiguous(src1) &&
  10040. //src0->type == GGML_TYPE_F32 &&
  10041. src1->type == GGML_TYPE_F32 &&
  10042. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  10043. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  10044. return true;
  10045. }
  10046. return false;
  10047. }
  10048. #endif
  10049. static void ggml_compute_forward_mul_mat_one_chunk(
  10050. const struct ggml_compute_params * params,
  10051. struct ggml_tensor * dst,
  10052. const int64_t num_rows_per_vec_dot,
  10053. const int64_t ir0_start,
  10054. const int64_t ir0_end,
  10055. const int64_t ir1_start,
  10056. const int64_t ir1_end) {
  10057. const struct ggml_tensor * src0 = dst->src[0];
  10058. const struct ggml_tensor * src1 = dst->src[1];
  10059. GGML_TENSOR_BINARY_OP_LOCALS
  10060. const enum ggml_type type = src0->type;
  10061. const bool src1_cont = ggml_is_contiguous(src1);
  10062. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10063. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10064. // broadcast factors
  10065. const int64_t r2 = ne12 / ne02;
  10066. const int64_t r3 = ne13 / ne03;
  10067. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10068. // threads with no work simply yield (not sure if it helps)
  10069. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10070. return;
  10071. }
  10072. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10073. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10074. assert(ne12 % ne02 == 0);
  10075. assert(ne13 % ne03 == 0);
  10076. // block-tiling attempt
  10077. const int64_t blck_0 = 16;
  10078. const int64_t blck_1 = 16;
  10079. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10080. // attempt to reduce false-sharing (does not seem to make a difference)
  10081. // 16 * 2, accounting for mmla kernels
  10082. float tmp[32];
  10083. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10084. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10085. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10086. const int64_t i13 = (ir1 / (ne12 * ne1));
  10087. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10088. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10089. // broadcast src0 into src1
  10090. const int64_t i03 = i13 / r3;
  10091. const int64_t i02 = i12 / r2;
  10092. const int64_t i1 = i11;
  10093. const int64_t i2 = i12;
  10094. const int64_t i3 = i13;
  10095. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10096. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10097. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10098. // the original src1 data pointer, so we should index using the indices directly
  10099. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10100. const char * src1_col = (const char*)wdata +
  10101. (src1_cont || src1->type != vec_dot_type
  10102. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10103. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10104. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10105. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10106. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10107. //}
  10108. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10109. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10110. }
  10111. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10112. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10113. }
  10114. }
  10115. }
  10116. }
  10117. }
  10118. static void ggml_compute_forward_mul_mat(
  10119. const struct ggml_compute_params * params,
  10120. struct ggml_tensor * dst,
  10121. struct ggml_compute_state * state) {
  10122. const struct ggml_tensor * src0 = dst->src[0];
  10123. const struct ggml_tensor * src1 = dst->src[1];
  10124. int64_t t0 = ggml_perf_time_us();
  10125. UNUSED(t0);
  10126. GGML_TENSOR_BINARY_OP_LOCALS
  10127. const int ith = params->ith;
  10128. const int nth = params->nth;
  10129. const enum ggml_type type = src0->type;
  10130. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10131. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10132. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10133. GGML_ASSERT(ne0 == ne01);
  10134. GGML_ASSERT(ne1 == ne11);
  10135. GGML_ASSERT(ne2 == ne12);
  10136. GGML_ASSERT(ne3 == ne13);
  10137. // we don't support permuted src0 or src1
  10138. GGML_ASSERT(nb00 == ggml_type_size(type));
  10139. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10140. // dst cannot be transposed or permuted
  10141. GGML_ASSERT(nb0 == sizeof(float));
  10142. GGML_ASSERT(nb0 <= nb1);
  10143. GGML_ASSERT(nb1 <= nb2);
  10144. GGML_ASSERT(nb2 <= nb3);
  10145. // broadcast factors
  10146. const int64_t r2 = ne12 / ne02;
  10147. const int64_t r3 = ne13 / ne03;
  10148. UNUSED(r2);
  10149. UNUSED(r3);
  10150. // nb01 >= nb00 - src0 is not transposed
  10151. // compute by src0 rows
  10152. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10153. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  10154. const int64_t ne_plane = ne01*ne00;
  10155. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  10156. UNUSED(desired_wsize);
  10157. if (params->type == GGML_TASK_TYPE_INIT) {
  10158. if (type != GGML_TYPE_F32) {
  10159. assert(params->wsize >= desired_wsize);
  10160. // parallelize by src0 rows
  10161. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10162. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10163. // broadcast src0 into src1 across 2nd,3rd dimension
  10164. const int64_t i03 = i13/r3;
  10165. const int64_t i02 = i12/r2;
  10166. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10167. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10168. ggml_to_float_t const to_float = type_traits[type].to_float;
  10169. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  10170. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  10171. }
  10172. }
  10173. }
  10174. }
  10175. return;
  10176. }
  10177. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10178. return;
  10179. }
  10180. // perform sgemm, parallelization controlled by blas lib
  10181. if (ith != 0) {
  10182. return;
  10183. }
  10184. //const int64_t tgemm0 = ggml_perf_time_us();
  10185. for (int64_t i13 = 0; i13 < ne13; i13++) {
  10186. for (int64_t i12 = 0; i12 < ne12; i12++) {
  10187. const int64_t i03 = i13/r3;
  10188. const int64_t i02 = i12/r2;
  10189. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  10190. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  10191. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  10192. if (type != GGML_TYPE_F32) {
  10193. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  10194. }
  10195. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  10196. ne1, ne01, ne10,
  10197. 1.0f, y, ne10,
  10198. x, ne00,
  10199. 0.0f, d, ne01);
  10200. }
  10201. }
  10202. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  10203. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  10204. return;
  10205. }
  10206. #endif
  10207. #if GGML_USE_LLAMAFILE
  10208. const bool src1_cont = ggml_is_contiguous(src1);
  10209. if (src1_cont) {
  10210. for (int64_t i13 = 0; i13 < ne13; i13++)
  10211. for (int64_t i12 = 0; i12 < ne12; i12++)
  10212. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10213. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10214. nb01/ggml_type_size(src0->type),
  10215. (const char *)src1->data + i12*nb12 + i13*nb13,
  10216. nb11/ggml_type_size(src1->type),
  10217. (char *)dst->data + i12*nb2 + i13*nb3,
  10218. nb1/ggml_type_size(dst->type),
  10219. ith, nth,
  10220. params->type,
  10221. src0->type,
  10222. src1->type,
  10223. dst->type))
  10224. goto UseGgmlGemm1;
  10225. return;
  10226. }
  10227. UseGgmlGemm1:;
  10228. #endif
  10229. if (params->type == GGML_TASK_TYPE_INIT) {
  10230. if (ith != 0) {
  10231. return;
  10232. }
  10233. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10234. atomic_store(&state->shared->current_chunk, nth);
  10235. if (src1->type != vec_dot_type) {
  10236. char * wdata = params->wdata;
  10237. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10238. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10239. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10240. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10241. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10242. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10243. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10244. wdata += row_size;
  10245. }
  10246. }
  10247. }
  10248. }
  10249. return;
  10250. }
  10251. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10252. return;
  10253. }
  10254. #if GGML_USE_LLAMAFILE
  10255. if (src1->type != vec_dot_type) {
  10256. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10257. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10258. for (int64_t i13 = 0; i13 < ne13; i13++)
  10259. for (int64_t i12 = 0; i12 < ne12; i12++)
  10260. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10261. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10262. nb01/ggml_type_size(src0->type),
  10263. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10264. row_size/ggml_type_size(vec_dot_type),
  10265. (char *)dst->data + i12*nb2 + i13*nb3,
  10266. nb1/ggml_type_size(dst->type),
  10267. ith, nth,
  10268. params->type,
  10269. src0->type,
  10270. vec_dot_type,
  10271. dst->type))
  10272. goto UseGgmlGemm2;
  10273. return;
  10274. }
  10275. UseGgmlGemm2:;
  10276. #endif
  10277. #ifdef GGML_PERF
  10278. int chunks_executed = 0;
  10279. UNUSED(chunks_executed);
  10280. #endif
  10281. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10282. const int64_t nr0 = ne0;
  10283. // This is the size of the rest of the dimensions of the result
  10284. const int64_t nr1 = ne1 * ne2 * ne3;
  10285. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10286. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10287. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10288. // this check can be removed once they are extended to support odd numbered rows/cols too
  10289. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10290. num_rows_per_vec_dot = 1;
  10291. }
  10292. // Now select a reasonable chunk size.
  10293. int chunk_size = 16;
  10294. // We need to step up the size if it's small
  10295. if (nr0 == 1 || nr1 == 1) {
  10296. chunk_size = 64;
  10297. }
  10298. // distribute the work across the inner or outer loop based on which one is larger
  10299. // The number of chunks in the 0/1 dim.
  10300. // CEIL(nr0/chunk_size)
  10301. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10302. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10303. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10304. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10305. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10306. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10307. // distribute the thread work across the inner or outer loop based on which one is larger
  10308. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10309. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10310. }
  10311. // The number of elements in each chunk
  10312. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10313. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10314. //if (ith == 0)
  10315. // printf("MUL_MAT = [%d, %d, %d, %d] x [%d, %d, %d, %d] = %d x %d = %d. Fp Ops/Ch %d\n", ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, nchunk0, nchunk1, nchunk0 * nchunk1, ne00 * nr0 * nr1 / nchunk0 / nchunk1);
  10316. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10317. int current_chunk = ith;
  10318. while (current_chunk < nchunk0 * nchunk1) {
  10319. const int64_t ith0 = current_chunk % nchunk0;
  10320. const int64_t ith1 = current_chunk / nchunk0;
  10321. const int64_t ir0_start = dr0 * ith0;
  10322. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10323. const int64_t ir1_start = dr1 * ith1;
  10324. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10325. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10326. #ifdef GGML_PERF
  10327. chunks_executed++;
  10328. #endif
  10329. if (nth >= nchunk0 * nchunk1) {
  10330. break;
  10331. }
  10332. current_chunk = atomic_fetch_add(&state->shared->current_chunk, 1);
  10333. }
  10334. #ifdef GGML_PERF
  10335. // These numbers are useful when trying to measure how well the threading scheduling works.
  10336. //int64_t workSize = (ne01 * ne11 * ne12 * ne13 * ne00) / nchunk0 / nchunk1;
  10337. //float time = (ggml_perf_time_us() - t0);
  10338. //printf("MUL_MAT = %f ms, [%d, %d, %d, %d] x [%d, %d, %d, %d] = %I64u, %f ops/usec in %d chunks.\n", time / 1000.0, ne00, ne01, ne02, ne03, ne10, ne11, ne12, ne13, workSize, (float)workSize/time, chunks_executed);
  10339. #endif
  10340. }
  10341. // ggml_compute_forward_mul_mat_id
  10342. static void ggml_compute_forward_mul_mat_id(
  10343. const struct ggml_compute_params * params,
  10344. struct ggml_tensor * dst) {
  10345. const struct ggml_tensor * src0 = dst->src[0];
  10346. const struct ggml_tensor * src1 = dst->src[1];
  10347. const struct ggml_tensor * ids = dst->src[2];
  10348. GGML_TENSOR_BINARY_OP_LOCALS
  10349. const int ith = params->ith;
  10350. const int nth = params->nth;
  10351. const enum ggml_type type = src0->type;
  10352. const bool src1_cont = ggml_is_contiguous(src1);
  10353. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10354. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10355. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10356. // we don't support permuted src0 or src1
  10357. GGML_ASSERT(nb00 == ggml_type_size(type));
  10358. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10359. // dst cannot be transposed or permuted
  10360. GGML_ASSERT(nb0 == sizeof(float));
  10361. GGML_ASSERT(nb0 <= nb1);
  10362. GGML_ASSERT(nb1 <= nb2);
  10363. GGML_ASSERT(nb2 <= nb3);
  10364. // row groups
  10365. const int n_ids = ids->ne[0]; // n_expert_used
  10366. const int n_as = ne02; // n_expert
  10367. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10368. (char *) params->wdata :
  10369. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10370. struct mmid_row_mapping {
  10371. int32_t i1;
  10372. int32_t i2;
  10373. };
  10374. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10375. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10376. if (params->type == GGML_TASK_TYPE_INIT) {
  10377. if (ith != 0) {
  10378. return;
  10379. }
  10380. char * wdata = params->wdata;
  10381. if (src1->type != vec_dot_type) {
  10382. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10383. assert(params->wsize >= ne11*ne12*ne13*row_size);
  10384. assert(src1->type == GGML_TYPE_F32);
  10385. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10386. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10387. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  10388. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  10389. wdata += row_size;
  10390. }
  10391. }
  10392. }
  10393. }
  10394. // initialize matrix_row_counts
  10395. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10396. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10397. // group rows by src0 matrix
  10398. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10399. for (int id = 0; id < n_ids; ++id) {
  10400. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10401. assert(i02 >= 0 && i02 < n_as);
  10402. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10403. matrix_row_counts[i02] += 1;
  10404. }
  10405. }
  10406. return;
  10407. }
  10408. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10409. return;
  10410. }
  10411. // compute each matrix multiplication in sequence
  10412. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10413. const int64_t cne1 = matrix_row_counts[cur_a];
  10414. if (cne1 == 0) {
  10415. continue;
  10416. }
  10417. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10418. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10419. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10420. const int64_t nr0 = ne01; // src0 rows
  10421. const int64_t nr1 = cne1; // src1 rows
  10422. // distribute the thread work across the inner or outer loop based on which one is larger
  10423. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10424. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10425. const int64_t ith0 = ith % nth0;
  10426. const int64_t ith1 = ith / nth0;
  10427. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10428. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10429. const int64_t ir010 = dr0*ith0;
  10430. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10431. const int64_t ir110 = dr1*ith1;
  10432. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10433. // threads with no work simply yield (not sure if it helps)
  10434. //if (ir010 >= ir011 || ir110 >= ir111) {
  10435. // sched_yield();
  10436. // continue;
  10437. //}
  10438. // block-tiling attempt
  10439. const int64_t blck_0 = 16;
  10440. const int64_t blck_1 = 16;
  10441. // attempt to reduce false-sharing (does not seem to make a difference)
  10442. float tmp[16];
  10443. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10444. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10445. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10446. const int64_t _i12 = ir1; // logical row index for this expert
  10447. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10448. const int id = row_mapping.i1; // selected expert index
  10449. const int64_t i11 = id % ne11;
  10450. const int64_t i12 = row_mapping.i2; // row index in src1
  10451. const int64_t i1 = id; // selected expert index
  10452. const int64_t i2 = i12; // row
  10453. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10454. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10455. // the original src1 data pointer, so we should index using the indices directly
  10456. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10457. const char * src1_col = (const char *) wdata +
  10458. (src1_cont || src1->type != vec_dot_type
  10459. ? (i11 + i12*ne11)*row_size
  10460. : (i11*nb11 + i12*nb12));
  10461. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10462. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10463. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10464. //}
  10465. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10466. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10467. }
  10468. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10469. }
  10470. }
  10471. }
  10472. }
  10473. #undef MMID_MATRIX_ROW
  10474. }
  10475. // ggml_compute_forward_out_prod
  10476. static void ggml_compute_forward_out_prod_f32(
  10477. const struct ggml_compute_params * params,
  10478. struct ggml_tensor * dst) {
  10479. const struct ggml_tensor * src0 = dst->src[0];
  10480. const struct ggml_tensor * src1 = dst->src[1];
  10481. // int64_t t0 = ggml_perf_time_us();
  10482. // UNUSED(t0);
  10483. GGML_TENSOR_BINARY_OP_LOCALS
  10484. const int ith = params->ith;
  10485. const int nth = params->nth;
  10486. GGML_ASSERT(ne0 == ne00);
  10487. GGML_ASSERT(ne1 == ne10);
  10488. GGML_ASSERT(ne2 == ne02);
  10489. GGML_ASSERT(ne02 == ne12);
  10490. GGML_ASSERT(ne3 == ne13);
  10491. GGML_ASSERT(ne03 == ne13);
  10492. // we don't support permuted src0 or src1
  10493. GGML_ASSERT(nb00 == sizeof(float));
  10494. // dst cannot be transposed or permuted
  10495. GGML_ASSERT(nb0 == sizeof(float));
  10496. // GGML_ASSERT(nb0 <= nb1);
  10497. // GGML_ASSERT(nb1 <= nb2);
  10498. // GGML_ASSERT(nb2 <= nb3);
  10499. // nb01 >= nb00 - src0 is not transposed
  10500. // compute by src0 rows
  10501. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10502. bool use_blas = ggml_is_matrix(src0) &&
  10503. ggml_is_matrix(src1) &&
  10504. ggml_is_contiguous(src0) &&
  10505. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  10506. #endif
  10507. if (params->type == GGML_TASK_TYPE_INIT) {
  10508. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  10509. if (use_blas) {
  10510. return;
  10511. }
  10512. #endif
  10513. if (ith != 0) {
  10514. return;
  10515. }
  10516. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10517. return;
  10518. }
  10519. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10520. return;
  10521. }
  10522. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10523. if (use_blas) {
  10524. if (params->ith != 0) { // All threads other than the first do no work.
  10525. return;
  10526. }
  10527. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  10528. // src0: (k,n)
  10529. // src1: (k,m)
  10530. // dst: (m,n)
  10531. //
  10532. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  10533. // Also expressed as (major,minor)
  10534. // a: (m,k): so src1 transposed
  10535. // b: (k,n): so src0
  10536. // c: (m,n)
  10537. //
  10538. // However, if ggml_is_transposed(src1) is true, then
  10539. // src1->data already contains a transposed version, so sgemm mustn't
  10540. // transpose it further.
  10541. int n = src0->ne[0];
  10542. int k = src0->ne[1];
  10543. int m = src1->ne[0];
  10544. int transposeA, lda;
  10545. if (!ggml_is_transposed(src1)) {
  10546. transposeA = CblasTrans;
  10547. lda = m;
  10548. } else {
  10549. transposeA = CblasNoTrans;
  10550. lda = k;
  10551. }
  10552. float * a = (float *) ((char *) src1->data);
  10553. float * b = (float *) ((char *) src0->data);
  10554. float * c = (float *) ((char *) dst->data);
  10555. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  10556. return;
  10557. }
  10558. #endif
  10559. // dst[:,:,:,:] = 0
  10560. // for i2,i3:
  10561. // for i1:
  10562. // for i01:
  10563. // for i0:
  10564. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10565. // parallelize by last three dimensions
  10566. // total rows in dst
  10567. const int64_t nr = ne1*ne2*ne3;
  10568. // rows per thread
  10569. const int64_t dr = (nr + nth - 1)/nth;
  10570. // row range for this thread
  10571. const int64_t ir0 = dr*ith;
  10572. const int64_t ir1 = MIN(ir0 + dr, nr);
  10573. // block-tiling attempt
  10574. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10575. const int64_t blck_1 = 16;
  10576. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10577. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10578. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10579. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10580. for (int64_t ir = bir; ir < bir1; ++ir) {
  10581. // dst indices
  10582. const int64_t i3 = ir/(ne2*ne1);
  10583. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10584. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10585. const int64_t i02 = i2;
  10586. const int64_t i03 = i3;
  10587. //const int64_t i10 = i1;
  10588. const int64_t i12 = i2;
  10589. const int64_t i13 = i3;
  10590. #if GGML_VEC_MAD_UNROLL > 2
  10591. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10592. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10593. const int64_t i11 = i01;
  10594. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10595. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10596. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10597. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10598. }
  10599. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10600. const int64_t i11 = i01;
  10601. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10602. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10603. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10604. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10605. }
  10606. #else
  10607. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10608. const int64_t i11 = i01;
  10609. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10610. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10611. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10612. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10613. }
  10614. #endif
  10615. }
  10616. }
  10617. }
  10618. //int64_t t1 = ggml_perf_time_us();
  10619. //static int64_t acc = 0;
  10620. //acc += t1 - t0;
  10621. //if (t1 - t0 > 10) {
  10622. // printf("\n");
  10623. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10624. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10625. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10626. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10627. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10628. //}
  10629. }
  10630. static void ggml_compute_forward_out_prod_q_f32(
  10631. const struct ggml_compute_params * params,
  10632. struct ggml_tensor * dst) {
  10633. const struct ggml_tensor * src0 = dst->src[0];
  10634. const struct ggml_tensor * src1 = dst->src[1];
  10635. // int64_t t0 = ggml_perf_time_us();
  10636. // UNUSED(t0);
  10637. GGML_TENSOR_BINARY_OP_LOCALS;
  10638. const int ith = params->ith;
  10639. const int nth = params->nth;
  10640. const enum ggml_type type = src0->type;
  10641. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10642. GGML_ASSERT(ne02 == ne12);
  10643. GGML_ASSERT(ne03 == ne13);
  10644. GGML_ASSERT(ne2 == ne12);
  10645. GGML_ASSERT(ne3 == ne13);
  10646. // we don't support permuted src0 dim0
  10647. GGML_ASSERT(nb00 == ggml_type_size(type));
  10648. // dst dim0 cannot be transposed or permuted
  10649. GGML_ASSERT(nb0 == sizeof(float));
  10650. // GGML_ASSERT(nb0 <= nb1);
  10651. // GGML_ASSERT(nb1 <= nb2);
  10652. // GGML_ASSERT(nb2 <= nb3);
  10653. GGML_ASSERT(ne0 == ne00);
  10654. GGML_ASSERT(ne1 == ne10);
  10655. GGML_ASSERT(ne2 == ne02);
  10656. GGML_ASSERT(ne3 == ne03);
  10657. // nb01 >= nb00 - src0 is not transposed
  10658. // compute by src0 rows
  10659. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  10660. if (params->type == GGML_TASK_TYPE_INIT) {
  10661. if (ith != 0) {
  10662. return;
  10663. }
  10664. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10665. return;
  10666. }
  10667. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10668. return;
  10669. }
  10670. // parallelize by last three dimensions
  10671. // total rows in dst
  10672. const int64_t nr = ne1*ne2*ne3;
  10673. // rows per thread
  10674. const int64_t dr = (nr + nth - 1)/nth;
  10675. // row range for this thread
  10676. const int64_t ir0 = dr*ith;
  10677. const int64_t ir1 = MIN(ir0 + dr, nr);
  10678. // dst[:,:,:,:] = 0
  10679. // for i2,i3:
  10680. // for i1:
  10681. // for i01:
  10682. // for i0:
  10683. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10684. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10685. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10686. // dst indices
  10687. const int64_t i3 = ir/(ne2*ne1);
  10688. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10689. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10690. const int64_t i02 = i2;
  10691. const int64_t i03 = i3;
  10692. //const int64_t i10 = i1;
  10693. const int64_t i12 = i2;
  10694. const int64_t i13 = i3;
  10695. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10696. const int64_t i11 = i01;
  10697. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10698. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10699. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10700. dequantize_row_q(s0, wdata, ne0);
  10701. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10702. }
  10703. }
  10704. //int64_t t1 = ggml_perf_time_us();
  10705. //static int64_t acc = 0;
  10706. //acc += t1 - t0;
  10707. //if (t1 - t0 > 10) {
  10708. // printf("\n");
  10709. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  10710. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  10711. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  10712. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  10713. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  10714. //}
  10715. }
  10716. static void ggml_compute_forward_out_prod(
  10717. const struct ggml_compute_params * params,
  10718. struct ggml_tensor * dst) {
  10719. const struct ggml_tensor * src0 = dst->src[0];
  10720. switch (src0->type) {
  10721. case GGML_TYPE_Q4_0:
  10722. case GGML_TYPE_Q4_1:
  10723. case GGML_TYPE_Q5_0:
  10724. case GGML_TYPE_Q5_1:
  10725. case GGML_TYPE_Q8_0:
  10726. case GGML_TYPE_Q2_K:
  10727. case GGML_TYPE_Q3_K:
  10728. case GGML_TYPE_Q4_K:
  10729. case GGML_TYPE_Q5_K:
  10730. case GGML_TYPE_Q6_K:
  10731. case GGML_TYPE_IQ2_XXS:
  10732. case GGML_TYPE_IQ2_XS:
  10733. case GGML_TYPE_IQ3_XXS:
  10734. case GGML_TYPE_IQ1_S:
  10735. case GGML_TYPE_IQ1_M:
  10736. case GGML_TYPE_IQ4_NL:
  10737. case GGML_TYPE_IQ4_XS:
  10738. case GGML_TYPE_IQ3_S:
  10739. case GGML_TYPE_IQ2_S:
  10740. {
  10741. ggml_compute_forward_out_prod_q_f32(params, dst);
  10742. } break;
  10743. case GGML_TYPE_F16:
  10744. {
  10745. GGML_ASSERT(false); // todo
  10746. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10747. } break;
  10748. case GGML_TYPE_F32:
  10749. {
  10750. ggml_compute_forward_out_prod_f32(params, dst);
  10751. } break;
  10752. default:
  10753. {
  10754. GGML_ASSERT(false);
  10755. } break;
  10756. }
  10757. }
  10758. // ggml_compute_forward_scale
  10759. static void ggml_compute_forward_scale_f32(
  10760. const struct ggml_compute_params * params,
  10761. struct ggml_tensor * dst) {
  10762. const struct ggml_tensor * src0 = dst->src[0];
  10763. GGML_ASSERT(ggml_is_contiguous(src0));
  10764. GGML_ASSERT(ggml_is_contiguous(dst));
  10765. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10766. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10767. return;
  10768. }
  10769. // scale factor
  10770. float v;
  10771. memcpy(&v, dst->op_params, sizeof(float));
  10772. const int ith = params->ith;
  10773. const int nth = params->nth;
  10774. const int nc = src0->ne[0];
  10775. const int nr = ggml_nrows(src0);
  10776. // rows per thread
  10777. const int dr = (nr + nth - 1)/nth;
  10778. // row range for this thread
  10779. const int ir0 = dr*ith;
  10780. const int ir1 = MIN(ir0 + dr, nr);
  10781. const size_t nb01 = src0->nb[1];
  10782. const size_t nb1 = dst->nb[1];
  10783. for (int i1 = ir0; i1 < ir1; i1++) {
  10784. if (dst->data != src0->data) {
  10785. // src0 is same shape as dst => same indices
  10786. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10787. }
  10788. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10789. }
  10790. }
  10791. static void ggml_compute_forward_scale(
  10792. const struct ggml_compute_params * params,
  10793. struct ggml_tensor * dst) {
  10794. const struct ggml_tensor * src0 = dst->src[0];
  10795. switch (src0->type) {
  10796. case GGML_TYPE_F32:
  10797. {
  10798. ggml_compute_forward_scale_f32(params, dst);
  10799. } break;
  10800. default:
  10801. {
  10802. GGML_ASSERT(false);
  10803. } break;
  10804. }
  10805. }
  10806. // ggml_compute_forward_set
  10807. static void ggml_compute_forward_set_f32(
  10808. const struct ggml_compute_params * params,
  10809. struct ggml_tensor * dst) {
  10810. const struct ggml_tensor * src0 = dst->src[0];
  10811. const struct ggml_tensor * src1 = dst->src[1];
  10812. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10813. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10814. // view src0 and dst with these strides and data offset inbytes during set
  10815. // nb0 is implicitly element_size because src0 and dst are contiguous
  10816. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10817. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10818. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10819. size_t offset = ((int32_t *) dst->op_params)[3];
  10820. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10821. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  10822. if (params->ith != 0) {
  10823. return;
  10824. }
  10825. // memcpy needs to be synchronized across threads to avoid race conditions.
  10826. // => do it in INIT phase
  10827. memcpy(
  10828. ((char *) dst->data),
  10829. ((char *) src0->data),
  10830. ggml_nbytes(dst));
  10831. }
  10832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10833. return;
  10834. }
  10835. const int ith = params->ith;
  10836. const int nth = params->nth;
  10837. const int nr = ggml_nrows(src1);
  10838. const int nc = src1->ne[0];
  10839. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10840. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10841. // src0 and dst as viewed during set
  10842. const size_t nb0 = ggml_element_size(src0);
  10843. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10844. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10845. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10846. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10847. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10848. GGML_ASSERT(nb10 == sizeof(float));
  10849. // rows per thread
  10850. const int dr = (nr + nth - 1)/nth;
  10851. // row range for this thread
  10852. const int ir0 = dr*ith;
  10853. const int ir1 = MIN(ir0 + dr, nr);
  10854. for (int ir = ir0; ir < ir1; ++ir) {
  10855. // src0 and dst are viewed with shape of src1 and offset
  10856. // => same indices
  10857. const int i3 = ir/(ne12*ne11);
  10858. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10859. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10860. ggml_vec_cpy_f32(nc,
  10861. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10862. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10863. }
  10864. }
  10865. static void ggml_compute_forward_set(
  10866. const struct ggml_compute_params * params,
  10867. struct ggml_tensor * dst) {
  10868. const struct ggml_tensor * src0 = dst->src[0];
  10869. switch (src0->type) {
  10870. case GGML_TYPE_F32:
  10871. {
  10872. ggml_compute_forward_set_f32(params, dst);
  10873. } break;
  10874. case GGML_TYPE_F16:
  10875. case GGML_TYPE_BF16:
  10876. case GGML_TYPE_Q4_0:
  10877. case GGML_TYPE_Q4_1:
  10878. case GGML_TYPE_Q5_0:
  10879. case GGML_TYPE_Q5_1:
  10880. case GGML_TYPE_Q8_0:
  10881. case GGML_TYPE_Q8_1:
  10882. case GGML_TYPE_Q2_K:
  10883. case GGML_TYPE_Q3_K:
  10884. case GGML_TYPE_Q4_K:
  10885. case GGML_TYPE_Q5_K:
  10886. case GGML_TYPE_Q6_K:
  10887. case GGML_TYPE_IQ2_XXS:
  10888. case GGML_TYPE_IQ2_XS:
  10889. case GGML_TYPE_IQ3_XXS:
  10890. case GGML_TYPE_IQ1_S:
  10891. case GGML_TYPE_IQ1_M:
  10892. case GGML_TYPE_IQ4_NL:
  10893. case GGML_TYPE_IQ4_XS:
  10894. case GGML_TYPE_IQ3_S:
  10895. case GGML_TYPE_IQ2_S:
  10896. default:
  10897. {
  10898. GGML_ASSERT(false);
  10899. } break;
  10900. }
  10901. }
  10902. // ggml_compute_forward_cpy
  10903. static void ggml_compute_forward_cpy(
  10904. const struct ggml_compute_params * params,
  10905. struct ggml_tensor * dst) {
  10906. ggml_compute_forward_dup(params, dst);
  10907. }
  10908. // ggml_compute_forward_cont
  10909. static void ggml_compute_forward_cont(
  10910. const struct ggml_compute_params * params,
  10911. struct ggml_tensor * dst) {
  10912. ggml_compute_forward_dup(params, dst);
  10913. }
  10914. // ggml_compute_forward_reshape
  10915. static void ggml_compute_forward_reshape(
  10916. const struct ggml_compute_params * params,
  10917. struct ggml_tensor * dst) {
  10918. // NOP
  10919. UNUSED(params);
  10920. UNUSED(dst);
  10921. }
  10922. // ggml_compute_forward_view
  10923. static void ggml_compute_forward_view(
  10924. const struct ggml_compute_params * params,
  10925. const struct ggml_tensor * dst) {
  10926. // NOP
  10927. UNUSED(params);
  10928. UNUSED(dst);
  10929. }
  10930. // ggml_compute_forward_permute
  10931. static void ggml_compute_forward_permute(
  10932. const struct ggml_compute_params * params,
  10933. const struct ggml_tensor * dst) {
  10934. // NOP
  10935. UNUSED(params);
  10936. UNUSED(dst);
  10937. }
  10938. // ggml_compute_forward_transpose
  10939. static void ggml_compute_forward_transpose(
  10940. const struct ggml_compute_params * params,
  10941. const struct ggml_tensor * dst) {
  10942. // NOP
  10943. UNUSED(params);
  10944. UNUSED(dst);
  10945. }
  10946. // ggml_compute_forward_get_rows
  10947. static void ggml_compute_forward_get_rows_q(
  10948. const struct ggml_compute_params * params,
  10949. struct ggml_tensor * dst) {
  10950. const struct ggml_tensor * src0 = dst->src[0];
  10951. const struct ggml_tensor * src1 = dst->src[1];
  10952. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10953. return;
  10954. }
  10955. GGML_TENSOR_BINARY_OP_LOCALS
  10956. const int64_t nc = ne00;
  10957. const int64_t nr = ggml_nelements(src1);
  10958. const enum ggml_type type = src0->type;
  10959. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10960. assert(ne0 == nc);
  10961. assert(ne02 == ne11);
  10962. assert(nb00 == ggml_type_size(type));
  10963. assert(ggml_nrows(dst) == nr);
  10964. const int ith = params->ith;
  10965. const int nth = params->nth;
  10966. // rows per thread
  10967. const int dr = (nr + nth - 1)/nth;
  10968. // row range for this thread
  10969. const int ir0 = dr*ith;
  10970. const int ir1 = MIN(ir0 + dr, nr);
  10971. for (int64_t i = ir0; i < ir1; ++i) {
  10972. const int64_t i12 = i/(ne11*ne10);
  10973. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10974. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10975. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10976. dequantize_row_q(
  10977. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10978. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10979. }
  10980. }
  10981. static void ggml_compute_forward_get_rows_f16(
  10982. const struct ggml_compute_params * params,
  10983. struct ggml_tensor * dst) {
  10984. const struct ggml_tensor * src0 = dst->src[0];
  10985. const struct ggml_tensor * src1 = dst->src[1];
  10986. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10987. return;
  10988. }
  10989. GGML_TENSOR_BINARY_OP_LOCALS
  10990. const int64_t nc = ne00;
  10991. const int64_t nr = ggml_nelements(src1);
  10992. assert(ne0 == nc);
  10993. assert(ne02 == ne11);
  10994. assert(nb00 == sizeof(ggml_fp16_t));
  10995. assert(ggml_nrows(dst) == nr);
  10996. const int ith = params->ith;
  10997. const int nth = params->nth;
  10998. // rows per thread
  10999. const int dr = (nr + nth - 1)/nth;
  11000. // row range for this thread
  11001. const int ir0 = dr*ith;
  11002. const int ir1 = MIN(ir0 + dr, nr);
  11003. for (int64_t i = ir0; i < ir1; ++i) {
  11004. const int64_t i12 = i/(ne11*ne10);
  11005. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11006. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11007. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11008. ggml_fp16_to_fp32_row(
  11009. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11010. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11011. }
  11012. }
  11013. static void ggml_compute_forward_get_rows_bf16(
  11014. const struct ggml_compute_params * params,
  11015. struct ggml_tensor * dst) {
  11016. const struct ggml_tensor * src0 = dst->src[0];
  11017. const struct ggml_tensor * src1 = dst->src[1];
  11018. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11019. return;
  11020. }
  11021. GGML_TENSOR_BINARY_OP_LOCALS
  11022. const int64_t nc = ne00;
  11023. const int64_t nr = ggml_nelements(src1);
  11024. assert(ne0 == nc);
  11025. assert(ne02 == ne11);
  11026. assert(nb00 == sizeof(ggml_bf16_t));
  11027. assert(ggml_nrows(dst) == nr);
  11028. const int ith = params->ith;
  11029. const int nth = params->nth;
  11030. // rows per thread
  11031. const int dr = (nr + nth - 1)/nth;
  11032. // row range for this thread
  11033. const int ir0 = dr*ith;
  11034. const int ir1 = MIN(ir0 + dr, nr);
  11035. for (int64_t i = ir0; i < ir1; ++i) {
  11036. const int64_t i12 = i/(ne11*ne10);
  11037. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11038. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11039. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11040. ggml_bf16_to_fp32_row(
  11041. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  11042. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  11043. }
  11044. }
  11045. static void ggml_compute_forward_get_rows_f32(
  11046. const struct ggml_compute_params * params,
  11047. struct ggml_tensor * dst) {
  11048. const struct ggml_tensor * src0 = dst->src[0];
  11049. const struct ggml_tensor * src1 = dst->src[1];
  11050. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11051. return;
  11052. }
  11053. GGML_TENSOR_BINARY_OP_LOCALS
  11054. const int64_t nc = ne00;
  11055. const int64_t nr = ggml_nelements(src1);
  11056. assert(ne0 == nc);
  11057. assert(ne02 == ne11);
  11058. assert(nb00 == sizeof(float));
  11059. assert(ggml_nrows(dst) == nr);
  11060. const int ith = params->ith;
  11061. const int nth = params->nth;
  11062. // rows per thread
  11063. const int dr = (nr + nth - 1)/nth;
  11064. // row range for this thread
  11065. const int ir0 = dr*ith;
  11066. const int ir1 = MIN(ir0 + dr, nr);
  11067. for (int64_t i = ir0; i < ir1; ++i) {
  11068. const int64_t i12 = i/(ne11*ne10);
  11069. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  11070. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  11071. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  11072. ggml_vec_cpy_f32(nc,
  11073. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  11074. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  11075. }
  11076. }
  11077. static void ggml_compute_forward_get_rows(
  11078. const struct ggml_compute_params * params,
  11079. struct ggml_tensor * dst) {
  11080. const struct ggml_tensor * src0 = dst->src[0];
  11081. switch (src0->type) {
  11082. case GGML_TYPE_Q4_0:
  11083. case GGML_TYPE_Q4_1:
  11084. case GGML_TYPE_Q5_0:
  11085. case GGML_TYPE_Q5_1:
  11086. case GGML_TYPE_Q8_0:
  11087. case GGML_TYPE_Q8_1:
  11088. case GGML_TYPE_Q2_K:
  11089. case GGML_TYPE_Q3_K:
  11090. case GGML_TYPE_Q4_K:
  11091. case GGML_TYPE_Q5_K:
  11092. case GGML_TYPE_Q6_K:
  11093. case GGML_TYPE_IQ2_XXS:
  11094. case GGML_TYPE_IQ2_XS:
  11095. case GGML_TYPE_IQ3_XXS:
  11096. case GGML_TYPE_IQ1_S:
  11097. case GGML_TYPE_IQ1_M:
  11098. case GGML_TYPE_IQ4_NL:
  11099. case GGML_TYPE_IQ4_XS:
  11100. case GGML_TYPE_IQ3_S:
  11101. case GGML_TYPE_IQ2_S:
  11102. {
  11103. ggml_compute_forward_get_rows_q(params, dst);
  11104. } break;
  11105. case GGML_TYPE_F16:
  11106. {
  11107. ggml_compute_forward_get_rows_f16(params, dst);
  11108. } break;
  11109. case GGML_TYPE_BF16:
  11110. {
  11111. ggml_compute_forward_get_rows_bf16(params, dst);
  11112. } break;
  11113. case GGML_TYPE_F32:
  11114. case GGML_TYPE_I32:
  11115. {
  11116. ggml_compute_forward_get_rows_f32(params, dst);
  11117. } break;
  11118. default:
  11119. {
  11120. GGML_ASSERT(false);
  11121. } break;
  11122. }
  11123. //static bool first = true;
  11124. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11125. //if (first) {
  11126. // first = false;
  11127. //} else {
  11128. // for (int k = 0; k < dst->ne[1]; ++k) {
  11129. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11130. // for (int i = 0; i < 16; ++i) {
  11131. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11132. // }
  11133. // printf("\n");
  11134. // }
  11135. // printf("\n");
  11136. // }
  11137. // printf("\n");
  11138. // exit(0);
  11139. //}
  11140. }
  11141. // ggml_compute_forward_get_rows_back
  11142. static void ggml_compute_forward_get_rows_back_f32_f16(
  11143. const struct ggml_compute_params * params,
  11144. struct ggml_tensor * dst) {
  11145. const struct ggml_tensor * src0 = dst->src[0];
  11146. const struct ggml_tensor * src1 = dst->src[1];
  11147. GGML_ASSERT(params->ith == 0);
  11148. GGML_ASSERT(ggml_is_contiguous(dst));
  11149. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11150. if (params->type == GGML_TASK_TYPE_INIT) {
  11151. if (params->ith != 0) {
  11152. return;
  11153. }
  11154. memset(dst->data, 0, ggml_nbytes(dst));
  11155. }
  11156. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11157. return;
  11158. }
  11159. const int nc = src0->ne[0];
  11160. const int nr = ggml_nelements(src1);
  11161. GGML_ASSERT( dst->ne[0] == nc);
  11162. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11163. for (int i = 0; i < nr; ++i) {
  11164. const int r = ((int32_t *) src1->data)[i];
  11165. for (int j = 0; j < nc; ++j) {
  11166. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11167. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11168. }
  11169. }
  11170. }
  11171. static void ggml_compute_forward_get_rows_back_f32(
  11172. const struct ggml_compute_params * params,
  11173. struct ggml_tensor * dst) {
  11174. const struct ggml_tensor * src0 = dst->src[0];
  11175. const struct ggml_tensor * src1 = dst->src[1];
  11176. GGML_ASSERT(params->ith == 0);
  11177. GGML_ASSERT(ggml_is_contiguous(dst));
  11178. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11179. if (params->type == GGML_TASK_TYPE_INIT) {
  11180. if (params->ith != 0) {
  11181. return;
  11182. }
  11183. memset(dst->data, 0, ggml_nbytes(dst));
  11184. }
  11185. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11186. return;
  11187. }
  11188. const int nc = src0->ne[0];
  11189. const int nr = ggml_nelements(src1);
  11190. GGML_ASSERT( dst->ne[0] == nc);
  11191. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11192. for (int i = 0; i < nr; ++i) {
  11193. const int r = ((int32_t *) src1->data)[i];
  11194. ggml_vec_add_f32(nc,
  11195. (float *) ((char *) dst->data + r*dst->nb[1]),
  11196. (float *) ((char *) dst->data + r*dst->nb[1]),
  11197. (float *) ((char *) src0->data + i*src0->nb[1]));
  11198. }
  11199. }
  11200. static void ggml_compute_forward_get_rows_back(
  11201. const struct ggml_compute_params * params,
  11202. struct ggml_tensor * dst) {
  11203. const struct ggml_tensor * src0 = dst->src[0];
  11204. switch (src0->type) {
  11205. case GGML_TYPE_F16:
  11206. {
  11207. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11208. } break;
  11209. case GGML_TYPE_F32:
  11210. {
  11211. ggml_compute_forward_get_rows_back_f32(params, dst);
  11212. } break;
  11213. default:
  11214. {
  11215. GGML_ASSERT(false);
  11216. } break;
  11217. }
  11218. //static bool first = true;
  11219. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11220. //if (first) {
  11221. // first = false;
  11222. //} else {
  11223. // for (int k = 0; k < dst->ne[1]; ++k) {
  11224. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11225. // for (int i = 0; i < 16; ++i) {
  11226. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11227. // }
  11228. // printf("\n");
  11229. // }
  11230. // printf("\n");
  11231. // }
  11232. // printf("\n");
  11233. // exit(0);
  11234. //}
  11235. }
  11236. // ggml_compute_forward_diag
  11237. static void ggml_compute_forward_diag_f32(
  11238. const struct ggml_compute_params * params,
  11239. struct ggml_tensor * dst) {
  11240. const struct ggml_tensor * src0 = dst->src[0];
  11241. GGML_ASSERT(params->ith == 0);
  11242. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11243. return;
  11244. }
  11245. // TODO: handle transposed/permuted matrices
  11246. GGML_TENSOR_UNARY_OP_LOCALS
  11247. GGML_ASSERT(ne00 == ne0);
  11248. GGML_ASSERT(ne00 == ne1);
  11249. GGML_ASSERT(ne01 == 1);
  11250. GGML_ASSERT(ne02 == ne2);
  11251. GGML_ASSERT(ne03 == ne3);
  11252. GGML_ASSERT(nb00 == sizeof(float));
  11253. GGML_ASSERT(nb0 == sizeof(float));
  11254. for (int i3 = 0; i3 < ne3; i3++) {
  11255. for (int i2 = 0; i2 < ne2; i2++) {
  11256. for (int i1 = 0; i1 < ne1; i1++) {
  11257. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11258. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11259. for (int i0 = 0; i0 < i1; i0++) {
  11260. d[i0] = 0;
  11261. }
  11262. d[i1] = s[i1];
  11263. for (int i0 = i1+1; i0 < ne0; i0++) {
  11264. d[i0] = 0;
  11265. }
  11266. }
  11267. }
  11268. }
  11269. }
  11270. static void ggml_compute_forward_diag(
  11271. const struct ggml_compute_params * params,
  11272. struct ggml_tensor * dst) {
  11273. const struct ggml_tensor * src0 = dst->src[0];
  11274. switch (src0->type) {
  11275. case GGML_TYPE_F32:
  11276. {
  11277. ggml_compute_forward_diag_f32(params, dst);
  11278. } break;
  11279. default:
  11280. {
  11281. GGML_ASSERT(false);
  11282. } break;
  11283. }
  11284. }
  11285. // ggml_compute_forward_diag_mask_inf
  11286. static void ggml_compute_forward_diag_mask_f32(
  11287. const struct ggml_compute_params * params,
  11288. struct ggml_tensor * dst,
  11289. const float value) {
  11290. const struct ggml_tensor * src0 = dst->src[0];
  11291. const int ith = params->ith;
  11292. const int nth = params->nth;
  11293. const int n_past = ((int32_t *) dst->op_params)[0];
  11294. const bool inplace = src0->data == dst->data;
  11295. GGML_ASSERT(n_past >= 0);
  11296. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  11297. if (ith != 0) {
  11298. return;
  11299. }
  11300. // memcpy needs to be synchronized across threads to avoid race conditions.
  11301. // => do it in INIT phase
  11302. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11303. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11304. memcpy(
  11305. ((char *) dst->data),
  11306. ((char *) src0->data),
  11307. ggml_nbytes(dst));
  11308. }
  11309. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11310. return;
  11311. }
  11312. // TODO: handle transposed/permuted matrices
  11313. const int n = ggml_nrows(src0);
  11314. const int nc = src0->ne[0];
  11315. const int nr = src0->ne[1];
  11316. const int nz = n/nr;
  11317. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11318. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11319. for (int k = 0; k < nz; k++) {
  11320. for (int j = ith; j < nr; j += nth) {
  11321. for (int i = n_past; i < nc; i++) {
  11322. if (i > n_past + j) {
  11323. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11324. }
  11325. }
  11326. }
  11327. }
  11328. }
  11329. static void ggml_compute_forward_diag_mask_inf(
  11330. const struct ggml_compute_params * params,
  11331. struct ggml_tensor * dst) {
  11332. const struct ggml_tensor * src0 = dst->src[0];
  11333. switch (src0->type) {
  11334. case GGML_TYPE_F32:
  11335. {
  11336. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11337. } break;
  11338. default:
  11339. {
  11340. GGML_ASSERT(false);
  11341. } break;
  11342. }
  11343. }
  11344. static void ggml_compute_forward_diag_mask_zero(
  11345. const struct ggml_compute_params * params,
  11346. struct ggml_tensor * dst) {
  11347. const struct ggml_tensor * src0 = dst->src[0];
  11348. switch (src0->type) {
  11349. case GGML_TYPE_F32:
  11350. {
  11351. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11352. } break;
  11353. default:
  11354. {
  11355. GGML_ASSERT(false);
  11356. } break;
  11357. }
  11358. }
  11359. // ggml_compute_forward_soft_max
  11360. static void ggml_compute_forward_soft_max_f32(
  11361. const struct ggml_compute_params * params,
  11362. struct ggml_tensor * dst) {
  11363. const struct ggml_tensor * src0 = dst->src[0];
  11364. const struct ggml_tensor * src1 = dst->src[1];
  11365. assert(ggml_is_contiguous(dst));
  11366. assert(ggml_are_same_shape(src0, dst));
  11367. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11368. return;
  11369. }
  11370. float scale = 1.0f;
  11371. float max_bias = 0.0f;
  11372. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11373. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11374. // TODO: handle transposed/permuted matrices
  11375. const int ith = params->ith;
  11376. const int nth = params->nth;
  11377. GGML_TENSOR_UNARY_OP_LOCALS
  11378. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11379. // TODO: is this supposed to be ceil instead of floor?
  11380. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11381. const uint32_t n_head = ne02;
  11382. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11383. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11384. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11385. const int nc = src0->ne[0];
  11386. const int nr = ggml_nrows(src0);
  11387. // rows per thread
  11388. const int dr = (nr + nth - 1)/nth;
  11389. // row range for this thread
  11390. const int ir0 = dr*ith;
  11391. const int ir1 = MIN(ir0 + dr, nr);
  11392. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11393. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11394. for (int i1 = ir0; i1 < ir1; i1++) {
  11395. // ALiBi
  11396. const uint32_t h = (i1/ne01)%ne02; // head
  11397. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11398. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11399. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11400. // broadcast the mask across rows
  11401. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11402. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11403. ggml_vec_cpy_f32 (nc, wp, sp);
  11404. ggml_vec_scale_f32(nc, wp, scale);
  11405. if (mp_f32) {
  11406. if (use_f16) {
  11407. for (int i = 0; i < nc; ++i) {
  11408. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11409. }
  11410. } else {
  11411. for (int i = 0; i < nc; ++i) {
  11412. wp[i] += slope*mp_f32[i];
  11413. }
  11414. }
  11415. }
  11416. #ifndef NDEBUG
  11417. for (int i = 0; i < nc; ++i) {
  11418. //printf("p[%d] = %f\n", i, p[i]);
  11419. assert(!isnan(wp[i]));
  11420. }
  11421. #endif
  11422. float max = -INFINITY;
  11423. ggml_vec_max_f32(nc, &max, wp);
  11424. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11425. assert(sum > 0.0);
  11426. sum = 1.0/sum;
  11427. ggml_vec_scale_f32(nc, dp, sum);
  11428. #ifndef NDEBUG
  11429. for (int i = 0; i < nc; ++i) {
  11430. assert(!isnan(dp[i]));
  11431. assert(!isinf(dp[i]));
  11432. }
  11433. #endif
  11434. }
  11435. }
  11436. static void ggml_compute_forward_soft_max(
  11437. const struct ggml_compute_params * params,
  11438. struct ggml_tensor * dst) {
  11439. const struct ggml_tensor * src0 = dst->src[0];
  11440. switch (src0->type) {
  11441. case GGML_TYPE_F32:
  11442. {
  11443. ggml_compute_forward_soft_max_f32(params, dst);
  11444. } break;
  11445. default:
  11446. {
  11447. GGML_ASSERT(false);
  11448. } break;
  11449. }
  11450. }
  11451. // ggml_compute_forward_soft_max_back
  11452. static void ggml_compute_forward_soft_max_back_f32(
  11453. const struct ggml_compute_params * params,
  11454. struct ggml_tensor * dst) {
  11455. const struct ggml_tensor * src0 = dst->src[0];
  11456. const struct ggml_tensor * src1 = dst->src[1];
  11457. GGML_ASSERT(ggml_is_contiguous(src0));
  11458. GGML_ASSERT(ggml_is_contiguous(src1));
  11459. GGML_ASSERT(ggml_is_contiguous(dst));
  11460. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11461. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11462. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11463. return;
  11464. }
  11465. // TODO: handle transposed/permuted matrices
  11466. const int ith = params->ith;
  11467. const int nth = params->nth;
  11468. const int nc = src0->ne[0];
  11469. const int nr = ggml_nrows(src0);
  11470. // rows per thread
  11471. const int dr = (nr + nth - 1)/nth;
  11472. // row range for this thread
  11473. const int ir0 = dr*ith;
  11474. const int ir1 = MIN(ir0 + dr, nr);
  11475. for (int i1 = ir0; i1 < ir1; i1++) {
  11476. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11477. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11478. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11479. #ifndef NDEBUG
  11480. for (int i = 0; i < nc; ++i) {
  11481. //printf("p[%d] = %f\n", i, p[i]);
  11482. assert(!isnan(dy[i]));
  11483. assert(!isnan(y[i]));
  11484. }
  11485. #endif
  11486. // Jii = yi - yi*yi
  11487. // Jij = -yi*yj
  11488. // J = diag(y)-y.T*y
  11489. // dx = J * dy
  11490. // dxk = sum_i(Jki * dyi)
  11491. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11492. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11493. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11494. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11495. // dxk = -yk * dot(y, dy) + yk*dyk
  11496. // dxk = yk * (- dot(y, dy) + dyk)
  11497. // dxk = yk * (dyk - dot(y, dy))
  11498. //
  11499. // post-order:
  11500. // dot_y_dy := dot(y, dy)
  11501. // dx := dy
  11502. // dx := dx - dot_y_dy
  11503. // dx := dx * y
  11504. // linear runtime, no additional memory
  11505. float dot_y_dy = 0;
  11506. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11507. ggml_vec_cpy_f32 (nc, dx, dy);
  11508. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11509. ggml_vec_mul_f32 (nc, dx, dx, y);
  11510. #ifndef NDEBUG
  11511. for (int i = 0; i < nc; ++i) {
  11512. assert(!isnan(dx[i]));
  11513. assert(!isinf(dx[i]));
  11514. }
  11515. #endif
  11516. }
  11517. }
  11518. static void ggml_compute_forward_soft_max_back(
  11519. const struct ggml_compute_params * params,
  11520. struct ggml_tensor * dst) {
  11521. const struct ggml_tensor * src0 = dst->src[0];
  11522. switch (src0->type) {
  11523. case GGML_TYPE_F32:
  11524. {
  11525. ggml_compute_forward_soft_max_back_f32(params, dst);
  11526. } break;
  11527. default:
  11528. {
  11529. GGML_ASSERT(false);
  11530. } break;
  11531. }
  11532. }
  11533. // ggml_compute_forward_clamp
  11534. static void ggml_compute_forward_clamp_f32(
  11535. const struct ggml_compute_params * params,
  11536. struct ggml_tensor * dst) {
  11537. const struct ggml_tensor * src0 = dst->src[0];
  11538. assert(params->ith == 0);
  11539. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11540. return;
  11541. }
  11542. float min;
  11543. float max;
  11544. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11545. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11546. const int ith = params->ith;
  11547. const int nth = params->nth;
  11548. const int n = ggml_nrows(src0);
  11549. const int nc = src0->ne[0];
  11550. const size_t nb00 = src0->nb[0];
  11551. const size_t nb01 = src0->nb[1];
  11552. const size_t nb0 = dst->nb[0];
  11553. const size_t nb1 = dst->nb[1];
  11554. GGML_ASSERT( nb0 == sizeof(float));
  11555. GGML_ASSERT(nb00 == sizeof(float));
  11556. for (int j = ith; j < n; j += nth) {
  11557. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11558. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11559. for (int i = 0; i < nc; i++) {
  11560. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11561. }
  11562. }
  11563. }
  11564. static void ggml_compute_forward_clamp(
  11565. const struct ggml_compute_params * params,
  11566. struct ggml_tensor * dst) {
  11567. const struct ggml_tensor * src0 = dst->src[0];
  11568. switch (src0->type) {
  11569. case GGML_TYPE_F32:
  11570. {
  11571. ggml_compute_forward_clamp_f32(params, dst);
  11572. } break;
  11573. case GGML_TYPE_F16:
  11574. case GGML_TYPE_BF16:
  11575. case GGML_TYPE_Q4_0:
  11576. case GGML_TYPE_Q4_1:
  11577. case GGML_TYPE_Q5_0:
  11578. case GGML_TYPE_Q5_1:
  11579. case GGML_TYPE_Q8_0:
  11580. case GGML_TYPE_Q8_1:
  11581. case GGML_TYPE_Q2_K:
  11582. case GGML_TYPE_Q3_K:
  11583. case GGML_TYPE_Q4_K:
  11584. case GGML_TYPE_Q5_K:
  11585. case GGML_TYPE_Q6_K:
  11586. case GGML_TYPE_IQ2_XXS:
  11587. case GGML_TYPE_IQ2_XS:
  11588. case GGML_TYPE_IQ3_XXS:
  11589. case GGML_TYPE_IQ1_S:
  11590. case GGML_TYPE_IQ1_M:
  11591. case GGML_TYPE_IQ4_NL:
  11592. case GGML_TYPE_IQ4_XS:
  11593. case GGML_TYPE_IQ3_S:
  11594. case GGML_TYPE_IQ2_S:
  11595. case GGML_TYPE_Q8_K:
  11596. case GGML_TYPE_I8:
  11597. case GGML_TYPE_I16:
  11598. case GGML_TYPE_I32:
  11599. case GGML_TYPE_I64:
  11600. case GGML_TYPE_F64:
  11601. case GGML_TYPE_COUNT:
  11602. {
  11603. GGML_ASSERT(false);
  11604. } break;
  11605. }
  11606. }
  11607. // ggml_compute_forward_rope
  11608. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11609. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11610. return 1 - MIN(1, MAX(0, y));
  11611. }
  11612. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11613. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11614. static void rope_yarn(
  11615. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11616. float * cos_theta, float * sin_theta
  11617. ) {
  11618. // Get n-d rotational scaling corrected for extrapolation
  11619. float theta_interp = freq_scale * theta_extrap;
  11620. float theta = theta_interp;
  11621. if (ext_factor != 0.0f) {
  11622. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11623. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11624. // Get n-d magnitude scaling corrected for interpolation
  11625. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11626. }
  11627. *cos_theta = cosf(theta) * mscale;
  11628. *sin_theta = sinf(theta) * mscale;
  11629. }
  11630. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11631. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11632. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  11633. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11634. }
  11635. static void ggml_rope_cache_init(
  11636. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11637. float * cache, float sin_sign, float theta_scale
  11638. ) {
  11639. float theta = theta_base;
  11640. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11641. rope_yarn(
  11642. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11643. );
  11644. cache[i0 + 1] *= sin_sign;
  11645. theta *= theta_scale;
  11646. }
  11647. }
  11648. GGML_CALL void ggml_rope_yarn_corr_dims(
  11649. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11650. ) {
  11651. // start and end correction dims
  11652. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  11653. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  11654. dims[0] = MAX(0, start);
  11655. dims[1] = MIN(n_dims - 1, end);
  11656. }
  11657. static void ggml_compute_forward_rope_f32(
  11658. const struct ggml_compute_params * params,
  11659. struct ggml_tensor * dst,
  11660. const bool forward) {
  11661. const struct ggml_tensor * src0 = dst->src[0];
  11662. const struct ggml_tensor * src1 = dst->src[1];
  11663. const struct ggml_tensor * src2 = dst->src[2];
  11664. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11665. return;
  11666. }
  11667. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11668. // these two only relevant for xPos RoPE:
  11669. float xpos_base;
  11670. bool xpos_down;
  11671. //const int n_past = ((int32_t *) dst->op_params)[0];
  11672. const int n_dims = ((int32_t *) dst->op_params)[1];
  11673. const int mode = ((int32_t *) dst->op_params)[2];
  11674. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11675. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11676. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11677. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11678. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11679. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11680. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11681. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11682. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  11683. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  11684. GGML_TENSOR_UNARY_OP_LOCALS
  11685. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11686. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11687. GGML_ASSERT(nb00 == sizeof(float));
  11688. const int ith = params->ith;
  11689. const int nth = params->nth;
  11690. const int nr = ggml_nrows(dst);
  11691. GGML_ASSERT(n_dims <= ne0);
  11692. GGML_ASSERT(n_dims % 2 == 0);
  11693. // rows per thread
  11694. const int dr = (nr + nth - 1)/nth;
  11695. // row range for this thread
  11696. const int ir0 = dr*ith;
  11697. const int ir1 = MIN(ir0 + dr, nr);
  11698. // row index used to determine which thread to use
  11699. int ir = 0;
  11700. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11701. float corr_dims[2];
  11702. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11703. const bool is_neox = mode & 2;
  11704. const bool is_glm = mode & 4;
  11705. const float * freq_factors = NULL;
  11706. if (is_neox) {
  11707. if (src2 != NULL) {
  11708. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11709. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11710. freq_factors = (const float *) src2->data;
  11711. }
  11712. } else {
  11713. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11714. }
  11715. // backward process uses inverse rotation by cos and sin.
  11716. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11717. // this essentially just switches the sign of sin.
  11718. const float sin_sign = forward ? 1.0f : -1.0f;
  11719. const int32_t * pos = (const int32_t *) src1->data;
  11720. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11721. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11722. const int64_t p = pos[i2];
  11723. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11724. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11725. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11726. }
  11727. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11728. if (ir++ < ir0) continue;
  11729. if (ir > ir1) break;
  11730. float theta_base = (float)p;
  11731. if (is_glm) {
  11732. theta_base = MIN(p, n_ctx - 2);
  11733. float block_theta = MAX(p - (n_ctx - 2), 0);
  11734. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11735. const float cos_theta = cosf(theta_base);
  11736. const float sin_theta = sinf(theta_base) * sin_sign;
  11737. const float cos_block_theta = cosf(block_theta);
  11738. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11739. theta_base *= theta_scale;
  11740. block_theta *= theta_scale;
  11741. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11742. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11743. const float x0 = src[0];
  11744. const float x1 = src[n_dims/2];
  11745. const float x2 = src[n_dims];
  11746. const float x3 = src[n_dims/2*3];
  11747. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11748. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11749. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  11750. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  11751. }
  11752. } else if (!is_neox) {
  11753. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11754. const float cos_theta = cache[i0 + 0];
  11755. const float sin_theta = cache[i0 + 1];
  11756. // zeta scaling for xPos only:
  11757. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11758. if (xpos_down) zeta = 1.0f / zeta;
  11759. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11760. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11761. const float x0 = src[0];
  11762. const float x1 = src[1];
  11763. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  11764. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  11765. }
  11766. } else {
  11767. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11768. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11769. if (ic < n_dims) {
  11770. const int64_t i0 = ic/2;
  11771. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11772. float cos_theta, sin_theta;
  11773. rope_yarn(
  11774. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11775. &cos_theta, &sin_theta
  11776. );
  11777. sin_theta *= sin_sign;
  11778. theta_base *= theta_scale;
  11779. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11780. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11781. const float x0 = src[0];
  11782. const float x1 = src[n_dims/2];
  11783. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11784. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11785. } else {
  11786. const int64_t i0 = ic;
  11787. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11788. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11789. dst_data[0] = src[0];
  11790. dst_data[1] = src[1];
  11791. }
  11792. }
  11793. }
  11794. }
  11795. }
  11796. }
  11797. }
  11798. // TODO: deduplicate f16/f32 code
  11799. static void ggml_compute_forward_rope_f16(
  11800. const struct ggml_compute_params * params,
  11801. struct ggml_tensor * dst,
  11802. const bool forward) {
  11803. const struct ggml_tensor * src0 = dst->src[0];
  11804. const struct ggml_tensor * src1 = dst->src[1];
  11805. const struct ggml_tensor * src2 = dst->src[2];
  11806. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11807. return;
  11808. }
  11809. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11810. //const int n_past = ((int32_t *) dst->op_params)[0];
  11811. const int n_dims = ((int32_t *) dst->op_params)[1];
  11812. const int mode = ((int32_t *) dst->op_params)[2];
  11813. const int n_ctx = ((int32_t *) dst->op_params)[3];
  11814. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  11815. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11816. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11817. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11818. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11819. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11820. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11821. GGML_TENSOR_UNARY_OP_LOCALS
  11822. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11823. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11824. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11825. const int ith = params->ith;
  11826. const int nth = params->nth;
  11827. const int nr = ggml_nrows(dst);
  11828. GGML_ASSERT(n_dims <= ne0);
  11829. GGML_ASSERT(n_dims % 2 == 0);
  11830. // rows per thread
  11831. const int dr = (nr + nth - 1)/nth;
  11832. // row range for this thread
  11833. const int ir0 = dr*ith;
  11834. const int ir1 = MIN(ir0 + dr, nr);
  11835. // row index used to determine which thread to use
  11836. int ir = 0;
  11837. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11838. float corr_dims[2];
  11839. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  11840. const bool is_neox = mode & 2;
  11841. const bool is_glm = mode & 4;
  11842. const float * freq_factors = NULL;
  11843. if (is_neox) {
  11844. if (src2 != NULL) {
  11845. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11846. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11847. freq_factors = (const float *) src2->data;
  11848. }
  11849. } else {
  11850. GGML_ASSERT(src2 == NULL && "TODO: freq_factors not implemented for !is_neox");
  11851. }
  11852. // backward process uses inverse rotation by cos and sin.
  11853. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11854. // this essentially just switches the sign of sin.
  11855. const float sin_sign = forward ? 1.0f : -1.0f;
  11856. const int32_t * pos = (const int32_t *) src1->data;
  11857. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11858. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11859. const int64_t p = pos[i2];
  11860. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11861. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  11862. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11863. }
  11864. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11865. if (ir++ < ir0) continue;
  11866. if (ir > ir1) break;
  11867. float theta_base = (float)p;
  11868. if (is_glm) {
  11869. theta_base = MIN(p, n_ctx - 2);
  11870. float block_theta = MAX(p - (n_ctx - 2), 0);
  11871. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  11872. const float cos_theta = cosf(theta_base);
  11873. const float sin_theta = sinf(theta_base) * sin_sign;
  11874. const float cos_block_theta = cosf(block_theta);
  11875. const float sin_block_theta = sinf(block_theta) * sin_sign;
  11876. theta_base *= theta_scale;
  11877. block_theta *= theta_scale;
  11878. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11879. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11880. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11881. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11882. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  11883. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  11884. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11885. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11886. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  11887. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  11888. }
  11889. } else if (!is_neox) {
  11890. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11891. const float cos_theta = cache[i0 + 0];
  11892. const float sin_theta = cache[i0 + 1];
  11893. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11894. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11895. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11896. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11897. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11898. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11899. }
  11900. } else {
  11901. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11902. for (int64_t ic = 0; ic < ne0; ic += 2) {
  11903. if (ic < n_dims) {
  11904. const int64_t i0 = ic/2;
  11905. const float freq_factor = freq_factors ? freq_factors[i0] : 1.0f;
  11906. float cos_theta, sin_theta;
  11907. rope_yarn(
  11908. theta_base/freq_factor, freq_scale, corr_dims, ic, ext_factor, attn_factor,
  11909. &cos_theta, &sin_theta
  11910. );
  11911. sin_theta *= sin_sign;
  11912. theta_base *= theta_scale;
  11913. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11914. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11915. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11916. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11917. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11918. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11919. } else {
  11920. const int64_t i0 = ic;
  11921. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11922. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11923. dst_data[0] = src[0];
  11924. dst_data[1] = src[1];
  11925. }
  11926. }
  11927. }
  11928. }
  11929. }
  11930. }
  11931. }
  11932. static void ggml_compute_forward_rope(
  11933. const struct ggml_compute_params * params,
  11934. struct ggml_tensor * dst) {
  11935. const struct ggml_tensor * src0 = dst->src[0];
  11936. switch (src0->type) {
  11937. case GGML_TYPE_F16:
  11938. {
  11939. ggml_compute_forward_rope_f16(params, dst, true);
  11940. } break;
  11941. case GGML_TYPE_F32:
  11942. {
  11943. ggml_compute_forward_rope_f32(params, dst, true);
  11944. } break;
  11945. default:
  11946. {
  11947. GGML_ASSERT(false);
  11948. } break;
  11949. }
  11950. }
  11951. // ggml_compute_forward_rope_back
  11952. static void ggml_compute_forward_rope_back(
  11953. const struct ggml_compute_params * params,
  11954. struct ggml_tensor * dst) {
  11955. const struct ggml_tensor * src0 = dst->src[0];
  11956. switch (src0->type) {
  11957. case GGML_TYPE_F16:
  11958. {
  11959. ggml_compute_forward_rope_f16(params, dst, false);
  11960. } break;
  11961. case GGML_TYPE_F32:
  11962. {
  11963. ggml_compute_forward_rope_f32(params, dst, false);
  11964. } break;
  11965. default:
  11966. {
  11967. GGML_ASSERT(false);
  11968. } break;
  11969. }
  11970. }
  11971. // ggml_compute_forward_conv_transpose_1d
  11972. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11973. const struct ggml_compute_params * params,
  11974. struct ggml_tensor * dst) {
  11975. const struct ggml_tensor * src0 = dst->src[0];
  11976. const struct ggml_tensor * src1 = dst->src[1];
  11977. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11978. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11979. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11980. int64_t t0 = ggml_perf_time_us();
  11981. UNUSED(t0);
  11982. GGML_TENSOR_BINARY_OP_LOCALS
  11983. const int ith = params->ith;
  11984. const int nth = params->nth;
  11985. const int nk = ne00*ne01*ne02;
  11986. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11987. GGML_ASSERT(nb10 == sizeof(float));
  11988. if (params->type == GGML_TASK_TYPE_INIT) {
  11989. if (ith != 0) {
  11990. return;
  11991. }
  11992. memset(params->wdata, 0, params->wsize);
  11993. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11994. {
  11995. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11996. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11997. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11998. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11999. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  12000. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12001. dst_data[i00*ne02 + i02] = src[i00];
  12002. }
  12003. }
  12004. }
  12005. }
  12006. // permute source data (src1) from (L x Cin) to (Cin x L)
  12007. {
  12008. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12009. ggml_fp16_t * dst_data = wdata;
  12010. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12011. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12012. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12013. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  12014. }
  12015. }
  12016. }
  12017. // need to zero dst since we are accumulating into it
  12018. memset(dst->data, 0, ggml_nbytes(dst));
  12019. return;
  12020. }
  12021. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12022. return;
  12023. }
  12024. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12025. // total rows in dst
  12026. const int nr = ne1;
  12027. // rows per thread
  12028. const int dr = (nr + nth - 1)/nth;
  12029. // row range for this thread
  12030. const int ir0 = dr*ith;
  12031. const int ir1 = MIN(ir0 + dr, nr);
  12032. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12033. ggml_fp16_t * const wdata_src = wdata + nk;
  12034. for (int i1 = ir0; i1 < ir1; i1++) {
  12035. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12036. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  12037. for (int i10 = 0; i10 < ne10; i10++) {
  12038. const int i1n = i10*ne11;
  12039. for (int i00 = 0; i00 < ne00; i00++) {
  12040. float v = 0;
  12041. ggml_vec_dot_f16(ne02, &v, 0,
  12042. (ggml_fp16_t *) wdata_src + i1n, 0,
  12043. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  12044. dst_data[i10*s0 + i00] += v;
  12045. }
  12046. }
  12047. }
  12048. }
  12049. static void ggml_compute_forward_conv_transpose_1d_f32(
  12050. const struct ggml_compute_params * params,
  12051. struct ggml_tensor * dst) {
  12052. const struct ggml_tensor * src0 = dst->src[0];
  12053. const struct ggml_tensor * src1 = dst->src[1];
  12054. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12055. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12056. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12057. int64_t t0 = ggml_perf_time_us();
  12058. UNUSED(t0);
  12059. GGML_TENSOR_BINARY_OP_LOCALS
  12060. const int ith = params->ith;
  12061. const int nth = params->nth;
  12062. const int nk = ne00*ne01*ne02;
  12063. GGML_ASSERT(nb00 == sizeof(float));
  12064. GGML_ASSERT(nb10 == sizeof(float));
  12065. if (params->type == GGML_TASK_TYPE_INIT) {
  12066. if (ith != 0) {
  12067. return;
  12068. }
  12069. memset(params->wdata, 0, params->wsize);
  12070. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  12071. {
  12072. float * const wdata = (float *) params->wdata + 0;
  12073. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12074. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12075. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  12076. float * dst_data = wdata + i01*ne00*ne02;
  12077. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12078. dst_data[i00*ne02 + i02] = src[i00];
  12079. }
  12080. }
  12081. }
  12082. }
  12083. // prepare source data (src1)
  12084. {
  12085. float * const wdata = (float *) params->wdata + nk;
  12086. float * dst_data = wdata;
  12087. for (int64_t i11 = 0; i11 < ne11; i11++) {
  12088. const float * const src = (float *)((char *) src1->data + i11*nb11);
  12089. for (int64_t i10 = 0; i10 < ne10; i10++) {
  12090. dst_data[i10*ne11 + i11] = src[i10];
  12091. }
  12092. }
  12093. }
  12094. // need to zero dst since we are accumulating into it
  12095. memset(dst->data, 0, ggml_nbytes(dst));
  12096. return;
  12097. }
  12098. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12099. return;
  12100. }
  12101. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  12102. // total rows in dst
  12103. const int nr = ne1;
  12104. // rows per thread
  12105. const int dr = (nr + nth - 1)/nth;
  12106. // row range for this thread
  12107. const int ir0 = dr*ith;
  12108. const int ir1 = MIN(ir0 + dr, nr);
  12109. float * const wdata = (float *) params->wdata + 0;
  12110. float * const wdata_src = wdata + nk;
  12111. for (int i1 = ir0; i1 < ir1; i1++) {
  12112. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  12113. float * wdata_kernel = wdata + i1*ne02*ne00;
  12114. for (int i10 = 0; i10 < ne10; i10++) {
  12115. const int i1n = i10*ne11;
  12116. for (int i00 = 0; i00 < ne00; i00++) {
  12117. float v = 0;
  12118. ggml_vec_dot_f32(ne02, &v, 0,
  12119. wdata_src + i1n, 0,
  12120. wdata_kernel + i00*ne02, 0, 1);
  12121. dst_data[i10*s0 + i00] += v;
  12122. }
  12123. }
  12124. }
  12125. }
  12126. static void ggml_compute_forward_conv_transpose_1d(
  12127. const struct ggml_compute_params * params,
  12128. struct ggml_tensor * dst) {
  12129. const struct ggml_tensor * src0 = dst->src[0];
  12130. switch (src0->type) {
  12131. case GGML_TYPE_F16:
  12132. {
  12133. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  12134. } break;
  12135. case GGML_TYPE_F32:
  12136. {
  12137. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  12138. } break;
  12139. default:
  12140. {
  12141. GGML_ASSERT(false);
  12142. } break;
  12143. }
  12144. }
  12145. // src0: kernel [OC, IC, KH, KW]
  12146. // src1: image [N, IC, IH, IW]
  12147. // dst: result [N, OH, OW, IC*KH*KW]
  12148. static void ggml_compute_forward_im2col_f32(
  12149. const struct ggml_compute_params * params,
  12150. struct ggml_tensor * dst) {
  12151. const struct ggml_tensor * src0 = dst->src[0];
  12152. const struct ggml_tensor * src1 = dst->src[1];
  12153. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12154. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12155. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12156. int64_t t0 = ggml_perf_time_us();
  12157. UNUSED(t0);
  12158. GGML_TENSOR_BINARY_OP_LOCALS;
  12159. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12160. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12161. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12162. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12163. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12164. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12165. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12166. const int ith = params->ith;
  12167. const int nth = params->nth;
  12168. const int64_t N = is_2D ? ne13 : ne12;
  12169. const int64_t IC = is_2D ? ne12 : ne11;
  12170. const int64_t IH = is_2D ? ne11 : 1;
  12171. const int64_t IW = ne10;
  12172. const int64_t KH = is_2D ? ne01 : 1;
  12173. const int64_t KW = ne00;
  12174. const int64_t OH = is_2D ? ne2 : 1;
  12175. const int64_t OW = ne1;
  12176. int ofs0 = is_2D ? nb13 : nb12;
  12177. int ofs1 = is_2D ? nb12 : nb11;
  12178. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12179. GGML_ASSERT(nb10 == sizeof(float));
  12180. if (params->type == GGML_TASK_TYPE_INIT) {
  12181. return;
  12182. }
  12183. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12184. return;
  12185. }
  12186. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12187. {
  12188. float * const wdata = (float *) dst->data;
  12189. for (int64_t in = 0; in < N; in++) {
  12190. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12191. for (int64_t iow = 0; iow < OW; iow++) {
  12192. for (int64_t iic = ith; iic < IC; iic += nth) {
  12193. // micro kernel
  12194. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12195. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12196. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12197. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12198. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12199. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12200. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12201. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12202. } else {
  12203. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  12204. }
  12205. }
  12206. }
  12207. }
  12208. }
  12209. }
  12210. }
  12211. }
  12212. }
  12213. // src0: kernel [OC, IC, KH, KW]
  12214. // src1: image [N, IC, IH, IW]
  12215. // dst: result [N, OH, OW, IC*KH*KW]
  12216. static void ggml_compute_forward_im2col_f16(
  12217. const struct ggml_compute_params * params,
  12218. struct ggml_tensor * dst) {
  12219. const struct ggml_tensor * src0 = dst->src[0];
  12220. const struct ggml_tensor * src1 = dst->src[1];
  12221. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12222. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12223. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  12224. int64_t t0 = ggml_perf_time_us();
  12225. UNUSED(t0);
  12226. GGML_TENSOR_BINARY_OP_LOCALS;
  12227. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  12228. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  12229. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  12230. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  12231. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  12232. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  12233. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  12234. const int ith = params->ith;
  12235. const int nth = params->nth;
  12236. const int64_t N = is_2D ? ne13 : ne12;
  12237. const int64_t IC = is_2D ? ne12 : ne11;
  12238. const int64_t IH = is_2D ? ne11 : 1;
  12239. const int64_t IW = ne10;
  12240. const int64_t KH = is_2D ? ne01 : 1;
  12241. const int64_t KW = ne00;
  12242. const int64_t OH = is_2D ? ne2 : 1;
  12243. const int64_t OW = ne1;
  12244. int ofs0 = is_2D ? nb13 : nb12;
  12245. int ofs1 = is_2D ? nb12 : nb11;
  12246. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12247. GGML_ASSERT(nb10 == sizeof(float));
  12248. if (params->type == GGML_TASK_TYPE_INIT) {
  12249. return;
  12250. }
  12251. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12252. return;
  12253. }
  12254. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  12255. {
  12256. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  12257. for (int64_t in = 0; in < N; in++) {
  12258. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  12259. for (int64_t iow = 0; iow < OW; iow++) {
  12260. for (int64_t iic = ith; iic < IC; iic += nth) {
  12261. // micro kernel
  12262. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  12263. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  12264. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  12265. for (int64_t ikw = 0; ikw < KW; ikw++) {
  12266. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  12267. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  12268. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  12269. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  12270. } else {
  12271. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  12272. }
  12273. }
  12274. }
  12275. }
  12276. }
  12277. }
  12278. }
  12279. }
  12280. }
  12281. static void ggml_compute_forward_im2col(
  12282. const struct ggml_compute_params * params,
  12283. struct ggml_tensor * dst) {
  12284. switch (dst->type) {
  12285. case GGML_TYPE_F16:
  12286. {
  12287. ggml_compute_forward_im2col_f16(params, dst);
  12288. } break;
  12289. case GGML_TYPE_F32:
  12290. {
  12291. ggml_compute_forward_im2col_f32(params, dst);
  12292. } break;
  12293. default:
  12294. {
  12295. GGML_ASSERT(false);
  12296. } break;
  12297. }
  12298. }
  12299. // ggml_compute_forward_conv_transpose_2d
  12300. static void ggml_compute_forward_conv_transpose_2d(
  12301. const struct ggml_compute_params * params,
  12302. struct ggml_tensor * dst) {
  12303. const struct ggml_tensor * src0 = dst->src[0];
  12304. const struct ggml_tensor * src1 = dst->src[1];
  12305. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12306. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12307. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12308. int64_t t0 = ggml_perf_time_us();
  12309. UNUSED(t0);
  12310. GGML_TENSOR_BINARY_OP_LOCALS
  12311. const int ith = params->ith;
  12312. const int nth = params->nth;
  12313. const int nk = ne00*ne01*ne02*ne03;
  12314. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12315. GGML_ASSERT(nb10 == sizeof(float));
  12316. if (params->type == GGML_TASK_TYPE_INIT) {
  12317. if (ith != 0) {
  12318. return;
  12319. }
  12320. memset(params->wdata, 0, params->wsize);
  12321. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12322. {
  12323. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12324. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12325. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12326. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12327. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12328. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12329. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12330. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12331. }
  12332. }
  12333. }
  12334. }
  12335. }
  12336. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12337. {
  12338. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12339. for (int i12 = 0; i12 < ne12; i12++) {
  12340. for (int i11 = 0; i11 < ne11; i11++) {
  12341. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12342. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12343. for (int i10 = 0; i10 < ne10; i10++) {
  12344. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12345. }
  12346. }
  12347. }
  12348. }
  12349. memset(dst->data, 0, ggml_nbytes(dst));
  12350. return;
  12351. }
  12352. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12353. return;
  12354. }
  12355. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12356. // total patches in dst
  12357. const int np = ne2;
  12358. // patches per thread
  12359. const int dp = (np + nth - 1)/nth;
  12360. // patch range for this thread
  12361. const int ip0 = dp*ith;
  12362. const int ip1 = MIN(ip0 + dp, np);
  12363. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12364. ggml_fp16_t * const wdata_src = wdata + nk;
  12365. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12366. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12367. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12368. for (int i11 = 0; i11 < ne11; i11++) {
  12369. for (int i10 = 0; i10 < ne10; i10++) {
  12370. const int i1n = i11*ne10*ne12 + i10*ne12;
  12371. for (int i01 = 0; i01 < ne01; i01++) {
  12372. for (int i00 = 0; i00 < ne00; i00++) {
  12373. float v = 0;
  12374. ggml_vec_dot_f16(ne03, &v, 0,
  12375. wdata_src + i1n, 0,
  12376. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12377. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12378. }
  12379. }
  12380. }
  12381. }
  12382. }
  12383. }
  12384. // ggml_compute_forward_pool_1d_sk_p0
  12385. static void ggml_compute_forward_pool_1d_sk_p0(
  12386. const struct ggml_compute_params * params,
  12387. const enum ggml_op_pool op,
  12388. const int k,
  12389. struct ggml_tensor * dst) {
  12390. const struct ggml_tensor * src = dst->src[0];
  12391. assert(src->type == GGML_TYPE_F32);
  12392. assert(params->ith == 0);
  12393. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12394. return;
  12395. }
  12396. const char * cdata = (const char *)src->data;
  12397. const char * const data_end = cdata + ggml_nbytes(src);
  12398. float * drow = (float *)dst->data;
  12399. const int64_t rs = dst->ne[0];
  12400. while (cdata < data_end) {
  12401. const float * const srow = (const float *)cdata;
  12402. int j = 0;
  12403. for (int64_t i = 0; i < rs; ++i) {
  12404. switch (op) {
  12405. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12406. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12407. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12408. }
  12409. for (int ki = 0; ki < k; ++ki) {
  12410. switch (op) {
  12411. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  12412. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  12413. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12414. }
  12415. ++j;
  12416. }
  12417. switch (op) {
  12418. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12419. case GGML_OP_POOL_MAX: break;
  12420. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12421. }
  12422. }
  12423. cdata += src->nb[1];
  12424. drow += rs;
  12425. }
  12426. }
  12427. // ggml_compute_forward_pool_1d
  12428. static void ggml_compute_forward_pool_1d(
  12429. const struct ggml_compute_params * params,
  12430. struct ggml_tensor * dst) {
  12431. const int32_t * opts = (const int32_t *)dst->op_params;
  12432. enum ggml_op_pool op = opts[0];
  12433. const int k0 = opts[1];
  12434. const int s0 = opts[2];
  12435. const int p0 = opts[3];
  12436. GGML_ASSERT(p0 == 0); // padding not supported
  12437. GGML_ASSERT(k0 == s0); // only s = k supported
  12438. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12439. }
  12440. // ggml_compute_forward_pool_2d
  12441. static void ggml_compute_forward_pool_2d(
  12442. const struct ggml_compute_params * params,
  12443. struct ggml_tensor * dst) {
  12444. const struct ggml_tensor * src = dst->src[0];
  12445. GGML_ASSERT(src->type == GGML_TYPE_F32);
  12446. GGML_ASSERT(params->ith == 0);
  12447. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12448. return;
  12449. }
  12450. const int32_t * opts = (const int32_t *)dst->op_params;
  12451. enum ggml_op_pool op = opts[0];
  12452. const int k0 = opts[1];
  12453. const int k1 = opts[2];
  12454. const int s0 = opts[3];
  12455. const int s1 = opts[4];
  12456. const int p0 = opts[5];
  12457. const int p1 = opts[6];
  12458. const char * cdata = (const char*)src->data;
  12459. const char * const data_end = cdata + ggml_nbytes(src);
  12460. const int64_t px = dst->ne[0];
  12461. const int64_t py = dst->ne[1];
  12462. const int64_t pa = px * py;
  12463. float * dplane = (float *)dst->data;
  12464. const int ka = k0 * k1;
  12465. const int offset0 = -p0;
  12466. const int offset1 = -p1;
  12467. while (cdata < data_end) {
  12468. for (int oy = 0; oy < py; ++oy) {
  12469. float * const drow = dplane + oy * px;
  12470. for (int ox = 0; ox < px; ++ox) {
  12471. float * const out = drow + ox;
  12472. switch (op) {
  12473. case GGML_OP_POOL_AVG: *out = 0; break;
  12474. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12475. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12476. }
  12477. const int ix = offset0 + ox * s0;
  12478. const int iy = offset1 + oy * s1;
  12479. for (int ky = 0; ky < k1; ++ky) {
  12480. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12481. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  12482. for (int kx = 0; kx < k0; ++kx) {
  12483. int j = ix + kx;
  12484. if (j < 0 || j >= src->ne[0]) continue;
  12485. switch (op) {
  12486. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  12487. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  12488. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12489. }
  12490. }
  12491. }
  12492. switch (op) {
  12493. case GGML_OP_POOL_AVG: *out /= ka; break;
  12494. case GGML_OP_POOL_MAX: break;
  12495. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  12496. }
  12497. }
  12498. }
  12499. cdata += src->nb[2];
  12500. dplane += pa;
  12501. }
  12502. }
  12503. // ggml_compute_forward_upscale
  12504. static void ggml_compute_forward_upscale_f32(
  12505. const struct ggml_compute_params * params,
  12506. struct ggml_tensor * dst) {
  12507. const struct ggml_tensor * src0 = dst->src[0];
  12508. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12509. return;
  12510. }
  12511. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12512. const int ith = params->ith;
  12513. const int nth = params->nth;
  12514. GGML_TENSOR_UNARY_OP_LOCALS
  12515. const float sf0 = (float)ne0/src0->ne[0];
  12516. const float sf1 = (float)ne1/src0->ne[1];
  12517. const float sf2 = (float)ne2/src0->ne[2];
  12518. const float sf3 = (float)ne3/src0->ne[3];
  12519. // TODO: optimize
  12520. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12521. const int64_t i03 = i3 / sf3;
  12522. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12523. const int64_t i02 = i2 / sf2;
  12524. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12525. const int64_t i01 = i1 / sf1;
  12526. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12527. const int64_t i00 = i0 / sf0;
  12528. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12529. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12530. *y = *x;
  12531. }
  12532. }
  12533. }
  12534. }
  12535. }
  12536. static void ggml_compute_forward_upscale(
  12537. const struct ggml_compute_params * params,
  12538. struct ggml_tensor * dst) {
  12539. const struct ggml_tensor * src0 = dst->src[0];
  12540. switch (src0->type) {
  12541. case GGML_TYPE_F32:
  12542. {
  12543. ggml_compute_forward_upscale_f32(params, dst);
  12544. } break;
  12545. default:
  12546. {
  12547. GGML_ASSERT(false);
  12548. } break;
  12549. }
  12550. }
  12551. // ggml_compute_forward_pad
  12552. static void ggml_compute_forward_pad_f32(
  12553. const struct ggml_compute_params * params,
  12554. struct ggml_tensor * dst) {
  12555. const struct ggml_tensor * src0 = dst->src[0];
  12556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12557. return;
  12558. }
  12559. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12560. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12561. const int ith = params->ith;
  12562. const int nth = params->nth;
  12563. GGML_TENSOR_UNARY_OP_LOCALS
  12564. float * dst_ptr = (float *) dst->data;
  12565. // TODO: optimize
  12566. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12567. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12568. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12569. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12570. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12571. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12572. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12573. dst_ptr[dst_idx] = *src_ptr;
  12574. } else {
  12575. dst_ptr[dst_idx] = 0;
  12576. }
  12577. }
  12578. }
  12579. }
  12580. }
  12581. }
  12582. static void ggml_compute_forward_pad(
  12583. const struct ggml_compute_params * params,
  12584. struct ggml_tensor * dst) {
  12585. const struct ggml_tensor * src0 = dst->src[0];
  12586. switch (src0->type) {
  12587. case GGML_TYPE_F32:
  12588. {
  12589. ggml_compute_forward_pad_f32(params, dst);
  12590. } break;
  12591. default:
  12592. {
  12593. GGML_ASSERT(false);
  12594. } break;
  12595. }
  12596. }
  12597. // ggml_compute_forward_arange
  12598. static void ggml_compute_forward_arange_f32(
  12599. const struct ggml_compute_params * params,
  12600. struct ggml_tensor * dst) {
  12601. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12602. return;
  12603. }
  12604. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12605. const int ith = params->ith;
  12606. const int nth = params->nth;
  12607. const float start = ggml_get_op_params_f32(dst, 0);
  12608. const float stop = ggml_get_op_params_f32(dst, 1);
  12609. const float step = ggml_get_op_params_f32(dst, 2);
  12610. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12611. GGML_ASSERT(ggml_nelements(dst) == steps);
  12612. for (int64_t i = ith; i < steps; i+= nth) {
  12613. float value = start + step * i;
  12614. ((float *)dst->data)[i] = value;
  12615. }
  12616. }
  12617. static void ggml_compute_forward_arange(
  12618. const struct ggml_compute_params * params,
  12619. struct ggml_tensor * dst) {
  12620. switch (dst->type) {
  12621. case GGML_TYPE_F32:
  12622. {
  12623. ggml_compute_forward_arange_f32(params, dst);
  12624. } break;
  12625. default:
  12626. {
  12627. GGML_ASSERT(false);
  12628. } break;
  12629. }
  12630. }
  12631. static void ggml_compute_forward_timestep_embedding_f32(
  12632. const struct ggml_compute_params * params,
  12633. struct ggml_tensor * dst) {
  12634. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12635. return;
  12636. }
  12637. const struct ggml_tensor * src0 = dst->src[0];
  12638. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12639. const int ith = params->ith;
  12640. const int nth = params->nth;
  12641. GGML_TENSOR_UNARY_OP_LOCALS
  12642. const int dim = ggml_get_op_params_i32(dst, 0);
  12643. const int max_period = ggml_get_op_params_i32(dst, 1);
  12644. int half = dim / 2;
  12645. for (int64_t i = 0; i < ne00; i++) {
  12646. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12647. for (int64_t j = ith; j < half; j += nth) {
  12648. float timestep = ((float *)src0->data)[i];
  12649. float freq = (float)expf(-logf(max_period) * j / half);
  12650. float arg = timestep * freq;
  12651. embed_data[j] = cosf(arg);
  12652. embed_data[j + half] = sinf(arg);
  12653. }
  12654. if (dim % 2 != 0 && ith == 0) {
  12655. embed_data[dim] = 0.f;
  12656. }
  12657. }
  12658. }
  12659. static void ggml_compute_forward_timestep_embedding(
  12660. const struct ggml_compute_params * params,
  12661. struct ggml_tensor * dst) {
  12662. const struct ggml_tensor * src0 = dst->src[0];
  12663. switch (src0->type) {
  12664. case GGML_TYPE_F32:
  12665. {
  12666. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12667. } break;
  12668. default:
  12669. {
  12670. GGML_ASSERT(false);
  12671. } break;
  12672. }
  12673. }
  12674. // ggml_compute_forward_argsort
  12675. static void ggml_compute_forward_argsort_f32(
  12676. const struct ggml_compute_params * params,
  12677. struct ggml_tensor * dst) {
  12678. const struct ggml_tensor * src0 = dst->src[0];
  12679. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12680. return;
  12681. }
  12682. GGML_TENSOR_UNARY_OP_LOCALS
  12683. GGML_ASSERT(nb0 == sizeof(float));
  12684. const int ith = params->ith;
  12685. const int nth = params->nth;
  12686. const int64_t nr = ggml_nrows(src0);
  12687. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12688. for (int64_t i = ith; i < nr; i += nth) {
  12689. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12690. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12691. for (int64_t j = 0; j < ne0; j++) {
  12692. dst_data[j] = j;
  12693. }
  12694. // C doesn't have a functional sort, so we do a bubble sort instead
  12695. for (int64_t j = 0; j < ne0; j++) {
  12696. for (int64_t k = j + 1; k < ne0; k++) {
  12697. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12698. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12699. int32_t tmp = dst_data[j];
  12700. dst_data[j] = dst_data[k];
  12701. dst_data[k] = tmp;
  12702. }
  12703. }
  12704. }
  12705. }
  12706. }
  12707. static void ggml_compute_forward_argsort(
  12708. const struct ggml_compute_params * params,
  12709. struct ggml_tensor * dst) {
  12710. const struct ggml_tensor * src0 = dst->src[0];
  12711. switch (src0->type) {
  12712. case GGML_TYPE_F32:
  12713. {
  12714. ggml_compute_forward_argsort_f32(params, dst);
  12715. } break;
  12716. default:
  12717. {
  12718. GGML_ASSERT(false);
  12719. } break;
  12720. }
  12721. }
  12722. // ggml_compute_forward_flash_attn_ext
  12723. static void ggml_compute_forward_flash_attn_ext_f16(
  12724. const struct ggml_compute_params * params,
  12725. const struct ggml_tensor * q,
  12726. const struct ggml_tensor * k,
  12727. const struct ggml_tensor * v,
  12728. const struct ggml_tensor * mask,
  12729. struct ggml_tensor * dst) {
  12730. int64_t t0 = ggml_perf_time_us();
  12731. UNUSED(t0);
  12732. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12733. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12734. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12735. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12736. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12737. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12738. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12739. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12740. const int ith = params->ith;
  12741. const int nth = params->nth;
  12742. const int64_t D = neq0;
  12743. const int64_t N = neq1;
  12744. GGML_ASSERT(ne0 == D);
  12745. GGML_ASSERT(ne2 == N);
  12746. // input tensor rows must be contiguous
  12747. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12748. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12749. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12750. GGML_ASSERT(neq0 == D);
  12751. GGML_ASSERT(nek0 == D);
  12752. GGML_ASSERT(nev0 == D);
  12753. GGML_ASSERT(neq1 == N);
  12754. GGML_ASSERT(nev0 == D);
  12755. // dst cannot be transposed or permuted
  12756. GGML_ASSERT(nb0 == sizeof(float));
  12757. GGML_ASSERT(nb0 <= nb1);
  12758. GGML_ASSERT(nb1 <= nb2);
  12759. GGML_ASSERT(nb2 <= nb3);
  12760. // broadcast factors
  12761. const int64_t rk2 = neq2/nek2;
  12762. const int64_t rk3 = neq3/nek3;
  12763. const int64_t rv2 = neq2/nev2;
  12764. const int64_t rv3 = neq3/nev3;
  12765. if (params->type == GGML_TASK_TYPE_INIT) {
  12766. return;
  12767. }
  12768. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12769. return;
  12770. }
  12771. // parallelize by q rows using ggml_vec_dot_f32
  12772. // total rows in q
  12773. const int nr = neq1*neq2*neq3;
  12774. // rows per thread
  12775. const int dr = (nr + nth - 1)/nth;
  12776. // row range for this thread
  12777. const int ir0 = dr*ith;
  12778. const int ir1 = MIN(ir0 + dr, nr);
  12779. float scale = 1.0f;
  12780. float max_bias = 0.0f;
  12781. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12782. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12783. const uint32_t n_head = neq2;
  12784. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12785. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12786. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12787. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12788. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12789. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12790. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12791. // loop over n_batch and n_head
  12792. for (int ir = ir0; ir < ir1; ++ir) {
  12793. // q indices
  12794. const int iq3 = ir/(neq2*neq1);
  12795. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12796. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12797. const uint32_t h = iq2; // head index
  12798. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12799. float S = 0.0f; // sum
  12800. float M = -INFINITY; // maximum KQ value
  12801. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12802. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12803. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12804. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12805. if (v->type == GGML_TYPE_F16) {
  12806. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12807. } else {
  12808. memset(VKQ32, 0, D*sizeof(float));
  12809. }
  12810. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12811. // k indices
  12812. const int ik3 = iq3 / rk3;
  12813. const int ik2 = iq2 / rk2;
  12814. // v indices
  12815. const int iv3 = iq3 / rv3;
  12816. const int iv2 = iq2 / rv2;
  12817. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12818. q_to_vec_dot(pq, Q_q, D);
  12819. // online softmax / attention
  12820. // loop over n_kv and n_head_kv
  12821. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12822. for (int64_t ic = 0; ic < nek1; ++ic) {
  12823. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12824. if (mv == -INFINITY) {
  12825. continue;
  12826. }
  12827. float s; // KQ value
  12828. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12829. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12830. s = s*scale + mv; // scale KQ value and apply mask
  12831. const float Mold = M;
  12832. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12833. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12834. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12835. if (v->type== GGML_TYPE_F16) {
  12836. if (s > M) {
  12837. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12838. M = s;
  12839. ms = expf(Mold - M);
  12840. // V = V*expf(Mold - M)
  12841. ggml_vec_scale_f16(D, VKQ16, ms);
  12842. } else {
  12843. // no new maximum, ms == 1.0f, vs != 1.0f
  12844. vs = expf(s - M);
  12845. }
  12846. // V += v*expf(s - M)
  12847. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12848. } else {
  12849. if (s > M) {
  12850. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12851. M = s;
  12852. ms = expf(Mold - M);
  12853. // V = V*expf(Mold - M)
  12854. ggml_vec_scale_f32(D, VKQ32, ms);
  12855. } else {
  12856. // no new maximum, ms == 1.0f, vs != 1.0f
  12857. vs = expf(s - M);
  12858. }
  12859. v_to_float(v_data, V32, D);
  12860. // V += v*expf(s - M)
  12861. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12862. }
  12863. S = S*ms + vs; // scale and increment sum with partial sum
  12864. }
  12865. if (v->type == GGML_TYPE_F16) {
  12866. for (int64_t d = 0; d < D; ++d) {
  12867. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12868. }
  12869. }
  12870. // V /= S
  12871. const float S_inv = 1.0f/S;
  12872. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12873. // dst indices
  12874. const int i1 = iq1;
  12875. const int i2 = iq2;
  12876. const int i3 = iq3;
  12877. // original
  12878. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12879. // permute(0, 2, 1, 3)
  12880. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12881. }
  12882. }
  12883. static void ggml_compute_forward_flash_attn_ext(
  12884. const struct ggml_compute_params * params,
  12885. const struct ggml_tensor * q,
  12886. const struct ggml_tensor * k,
  12887. const struct ggml_tensor * v,
  12888. const struct ggml_tensor * mask,
  12889. struct ggml_tensor * dst) {
  12890. switch (dst->op_params[2]) {
  12891. case GGML_PREC_DEFAULT:
  12892. case GGML_PREC_F32:
  12893. {
  12894. // uses F32 accumulators
  12895. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12896. } break;
  12897. default:
  12898. {
  12899. GGML_ASSERT(false);
  12900. } break;
  12901. }
  12902. }
  12903. // ggml_compute_forward_flash_attn_back
  12904. static void ggml_compute_forward_flash_attn_back_f32(
  12905. const struct ggml_compute_params * params,
  12906. const bool masked,
  12907. struct ggml_tensor * dst) {
  12908. const struct ggml_tensor * q = dst->src[0];
  12909. const struct ggml_tensor * k = dst->src[1];
  12910. const struct ggml_tensor * v = dst->src[2];
  12911. const struct ggml_tensor * d = dst->src[3];
  12912. int64_t t0 = ggml_perf_time_us();
  12913. UNUSED(t0);
  12914. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12915. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12916. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12917. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12918. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12919. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12920. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12921. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12922. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12923. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12924. const int ith = params->ith;
  12925. const int nth = params->nth;
  12926. const int64_t D = neq0;
  12927. const int64_t N = neq1;
  12928. const int64_t P = nek1 - N;
  12929. const int64_t M = P + N;
  12930. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12931. const int mxDM = MAX(D, Mup);
  12932. // GGML_ASSERT(ne0 == D);
  12933. // GGML_ASSERT(ne1 == N);
  12934. GGML_ASSERT(P >= 0);
  12935. GGML_ASSERT(nbq0 == sizeof(float));
  12936. GGML_ASSERT(nbk0 == sizeof(float));
  12937. GGML_ASSERT(nbv0 == sizeof(float));
  12938. GGML_ASSERT(neq0 == D);
  12939. GGML_ASSERT(nek0 == D);
  12940. GGML_ASSERT(nev1 == D);
  12941. GGML_ASSERT(ned0 == D);
  12942. GGML_ASSERT(neq1 == N);
  12943. GGML_ASSERT(nek1 == N + P);
  12944. GGML_ASSERT(nev1 == D);
  12945. GGML_ASSERT(ned1 == N);
  12946. // dst cannot be transposed or permuted
  12947. GGML_ASSERT(nb0 == sizeof(float));
  12948. GGML_ASSERT(nb0 <= nb1);
  12949. GGML_ASSERT(nb1 <= nb2);
  12950. GGML_ASSERT(nb2 <= nb3);
  12951. if (params->type == GGML_TASK_TYPE_INIT) {
  12952. if (ith == 0) {
  12953. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12954. }
  12955. return;
  12956. }
  12957. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12958. return;
  12959. }
  12960. const int64_t elem_q = ggml_nelements(q);
  12961. const int64_t elem_k = ggml_nelements(k);
  12962. enum ggml_type result_type = dst->type;
  12963. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12964. const size_t tsize = ggml_type_size(result_type);
  12965. const size_t offs_q = 0;
  12966. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12967. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12968. void * grad_q = (char *) dst->data;
  12969. void * grad_k = (char *) dst->data + offs_k;
  12970. void * grad_v = (char *) dst->data + offs_v;
  12971. const size_t nbgq1 = nb0*neq0;
  12972. const size_t nbgq2 = nb0*neq0*neq1;
  12973. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12974. const size_t nbgk1 = nb0*nek0;
  12975. const size_t nbgk2 = nb0*nek0*nek1;
  12976. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12977. const size_t nbgv1 = nb0*nev0;
  12978. const size_t nbgv2 = nb0*nev0*nev1;
  12979. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12980. // parallelize by k rows using ggml_vec_dot_f32
  12981. // total rows in k
  12982. const int nr = nek2*nek3;
  12983. // rows per thread
  12984. const int dr = (nr + nth - 1)/nth;
  12985. // row range for this thread
  12986. const int ir0 = dr*ith;
  12987. const int ir1 = MIN(ir0 + dr, nr);
  12988. const float scale = 1.0f/sqrtf(D);
  12989. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12990. // how often k2 (and v2) is repeated in q2
  12991. int nrep = neq2/nek2;
  12992. for (int ir = ir0; ir < ir1; ++ir) {
  12993. // q indices
  12994. const int ik3 = ir/(nek2);
  12995. const int ik2 = ir - ik3*nek2;
  12996. const int iq3 = ik3;
  12997. const int id3 = ik3;
  12998. const int iv3 = ik3;
  12999. const int iv2 = ik2;
  13000. for (int irep = 0; irep < nrep; ++irep) {
  13001. const int iq2 = ik2 + irep*nek2;
  13002. const int id2 = iq2;
  13003. // (ik2 + irep*nek2) % nek2 == ik2
  13004. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  13005. const int id1 = iq1;
  13006. // not sure about CACHE_LINE_SIZE_F32..
  13007. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  13008. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  13009. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  13010. for (int i = M; i < Mup; ++i) {
  13011. S[i] = -INFINITY;
  13012. }
  13013. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  13014. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13015. // k indices
  13016. const int ik1 = ic;
  13017. // S indices
  13018. const int i1 = ik1;
  13019. ggml_vec_dot_f32(neq0,
  13020. S + i1, 0,
  13021. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  13022. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  13023. }
  13024. // scale
  13025. ggml_vec_scale_f32(masked_begin, S, scale);
  13026. for (int64_t i = masked_begin; i < M; i++) {
  13027. S[i] = -INFINITY;
  13028. }
  13029. // softmax
  13030. // exclude known -INF S[..] values from max and loop
  13031. // dont forget to set their SM values to zero
  13032. {
  13033. float max = -INFINITY;
  13034. ggml_vec_max_f32(masked_begin, &max, S);
  13035. ggml_float sum = 0.0;
  13036. {
  13037. #ifdef GGML_SOFT_MAX_ACCELERATE
  13038. max = -max;
  13039. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  13040. vvexpf(SM, SM, &Mup);
  13041. ggml_vec_sum_f32(Mup, &sum, SM);
  13042. #else
  13043. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  13044. #endif
  13045. }
  13046. assert(sum > 0.0);
  13047. sum = 1.0/sum;
  13048. ggml_vec_scale_f32(masked_begin, SM, sum);
  13049. }
  13050. // step-by-step explanation
  13051. {
  13052. // forward-process shape grads from backward process
  13053. // parallel_for ik2,ik3:
  13054. // for irep:
  13055. // iq2 = ik2 + irep*nek2
  13056. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  13057. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  13058. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  13059. // for iq1:
  13060. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  13061. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  13062. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  13063. // S0 = -Inf [D,1,1,1]
  13064. // ~S1[i] = dot(kcur[:D,i], qcur)
  13065. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  13066. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  13067. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13068. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  13069. // ~S5[i] = dot(vcur[:,i], S4)
  13070. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  13071. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  13072. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  13073. // dst backward-/ grad[dst] = d
  13074. //
  13075. // output gradients with their dependencies:
  13076. //
  13077. // grad[kcur] = grad[S1].T @ qcur
  13078. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13079. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13080. // grad[S4] = grad[S5] @ vcur
  13081. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13082. // grad[qcur] = grad[S1] @ kcur
  13083. // grad[vcur] = grad[S5].T @ S4
  13084. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13085. //
  13086. // in post-order:
  13087. //
  13088. // S1 = qcur @ kcur.T
  13089. // S2 = S1 * scale
  13090. // S3 = diag_mask_inf(S2, P)
  13091. // S4 = softmax(S3)
  13092. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  13093. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  13094. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  13095. // grad[qcur] = grad[S1] @ kcur
  13096. // grad[kcur] = grad[S1].T @ qcur
  13097. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  13098. //
  13099. // using less variables (SM=S4):
  13100. //
  13101. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  13102. // SM = softmax(S)
  13103. // S = d[:D,iq1,iq2,iq3] @ vcur
  13104. // dot_SM_gradSM = dot(SM, S)
  13105. // S = SM * (S - dot(SM, S))
  13106. // S = diag_mask_zero(S, P) * scale
  13107. //
  13108. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13109. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  13110. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13111. }
  13112. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13113. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  13114. // for ic:
  13115. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  13116. // exclude known future zero S[..] values from operation
  13117. ggml_vec_set_f32(masked_begin, S, 0);
  13118. for (int64_t ic = 0; ic < D; ++ic) {
  13119. ggml_vec_mad_f32(masked_begin,
  13120. S,
  13121. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  13122. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13123. }
  13124. // S = SM * (S - dot(SM, S))
  13125. float dot_SM_gradSM = 0;
  13126. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  13127. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  13128. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  13129. // S = diag_mask_zero(S, P) * scale
  13130. // already done by above ggml_vec_set_f32
  13131. // exclude known zero S[..] values from operation
  13132. ggml_vec_scale_f32(masked_begin, S, scale);
  13133. // S shape [M,1]
  13134. // SM shape [M,1]
  13135. // kcur shape [D,M]
  13136. // qcur shape [D,1]
  13137. // vcur shape [M,D]
  13138. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  13139. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  13140. // for ic:
  13141. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  13142. // exclude known zero S[..] values from loop
  13143. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13144. ggml_vec_mad_f32(D,
  13145. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  13146. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  13147. S[ic]);
  13148. }
  13149. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  13150. // for ic:
  13151. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  13152. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  13153. // exclude known zero S[..] values from loop
  13154. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  13155. ggml_vec_mad_f32(D,
  13156. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  13157. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  13158. S[ic]);
  13159. }
  13160. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  13161. // for ic:
  13162. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  13163. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  13164. // exclude known zero SM[..] values from mad
  13165. for (int64_t ic = 0; ic < D; ++ic) {
  13166. ggml_vec_mad_f32(masked_begin,
  13167. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  13168. SM,
  13169. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  13170. }
  13171. }
  13172. }
  13173. }
  13174. }
  13175. static void ggml_compute_forward_flash_attn_back(
  13176. const struct ggml_compute_params * params,
  13177. const bool masked,
  13178. struct ggml_tensor * dst) {
  13179. const struct ggml_tensor * q = dst->src[0];
  13180. switch (q->type) {
  13181. case GGML_TYPE_F32:
  13182. {
  13183. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  13184. } break;
  13185. default:
  13186. {
  13187. GGML_ASSERT(false);
  13188. } break;
  13189. }
  13190. }
  13191. // ggml_compute_forward_ssm_conv
  13192. static void ggml_compute_forward_ssm_conv_f32(
  13193. const struct ggml_compute_params * params,
  13194. struct ggml_tensor * dst) {
  13195. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13196. return;
  13197. }
  13198. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  13199. const struct ggml_tensor * src1 = dst->src[1]; // x
  13200. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  13201. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  13202. const int ith = params->ith;
  13203. const int nth = params->nth;
  13204. const int nc = src2->ne[0]; // d_conv
  13205. const int nr = src0->ne[1]; // d_inner
  13206. const int n_t = src1->ne[1]; // n_tokens
  13207. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  13208. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  13209. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13210. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13211. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13212. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  13213. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13214. // for use with the destination state offset between sequences
  13215. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  13216. // rows per thread
  13217. const int dr = (nr + nth - 1)/nth;
  13218. // row range for this thread
  13219. const int ir0 = dr*ith;
  13220. const int ir1 = MIN(ir0 + dr, nr);
  13221. const int ir = ir1 - ir0;
  13222. if (n_kv > 1) {
  13223. // multiple sequences means it's hard to know when it's the first time a state is read,
  13224. // so copy them all over to the destination, just to be sure.
  13225. for (int i3 = 0; i3 < n_kv; ++i3) {
  13226. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13227. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  13228. // can't use memcpy because of d_conv vs d_conv - 1
  13229. for (int i1 = 0; i1 < ir; ++i1) {
  13230. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13231. // copy s0 to last (d_conv - 1) columns of s
  13232. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  13233. }
  13234. }
  13235. }
  13236. }
  13237. for (int i2 = 0; i2 < n_t; ++i2) {
  13238. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  13239. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  13240. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  13241. float * s0; // {d_conv - 1, d_inner, n_kv}
  13242. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13243. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  13244. int ne0s0;
  13245. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13246. // avoid needing to copy the state for the first token
  13247. if (i2 == 0) {
  13248. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  13249. ne0s0 = src0->ne[0];
  13250. } else {
  13251. // the source is the last (d_conv - 1) columns of the destination
  13252. s0 = s + 1;
  13253. ne0s0 = nc;
  13254. }
  13255. // d_inner
  13256. for (int i1 = 0; i1 < ir; ++i1) {
  13257. // shift state left
  13258. for (int i0 = 0; i0 < nc - 1; ++i0) {
  13259. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  13260. }
  13261. // insert x on the last column
  13262. s[(nc - 1) + i1*nc] = x0[i1];
  13263. }
  13264. // handle copies when there are multiple output states
  13265. for (int i3 = 1; i3 < n_kv; ++i3) {
  13266. int32_t seq = sq[i3];
  13267. if (0 <= seq && seq < n_kv) {
  13268. float * s1 = s + (seq - sq[0])*nc*nr;
  13269. memcpy(s1, s, nc*ir*sizeof(float));
  13270. } else {
  13271. // stop at negative or too big seq_ids
  13272. break;
  13273. }
  13274. }
  13275. // it seems a little faster when this is separate from the state shift
  13276. for (int i1 = 0; i1 < ir; ++i1) {
  13277. // rowwise dot product
  13278. float sumf = 0.0f;
  13279. for (int i0 = 0; i0 < nc; ++i0) {
  13280. int i = i0 + i1*nc;
  13281. sumf += s[i] * c[i];
  13282. }
  13283. x[i1] = sumf;
  13284. }
  13285. }
  13286. }
  13287. static void ggml_compute_forward_ssm_conv(
  13288. const struct ggml_compute_params * params,
  13289. struct ggml_tensor * dst) {
  13290. switch (dst->src[0]->type) {
  13291. case GGML_TYPE_F32:
  13292. {
  13293. ggml_compute_forward_ssm_conv_f32(params, dst);
  13294. } break;
  13295. default:
  13296. {
  13297. GGML_ASSERT(false);
  13298. } break;
  13299. }
  13300. }
  13301. // ggml_compute_forward_ssm_scan
  13302. static void ggml_compute_forward_ssm_scan_f32(
  13303. const struct ggml_compute_params * params,
  13304. struct ggml_tensor * dst) {
  13305. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13306. return;
  13307. }
  13308. const struct ggml_tensor * src0 = dst->src[0]; // s
  13309. const struct ggml_tensor * src1 = dst->src[1]; // x
  13310. const struct ggml_tensor * src2 = dst->src[2]; // dt
  13311. const struct ggml_tensor * src3 = dst->src[3]; // A
  13312. const struct ggml_tensor * src4 = dst->src[4]; // B
  13313. const struct ggml_tensor * src5 = dst->src[5]; // C
  13314. const struct ggml_tensor * src6 = dst->src[6]; // sq
  13315. const int ith = params->ith;
  13316. const int nth = params->nth;
  13317. const int64_t nc = src0->ne[0]; // d_state
  13318. const int64_t nr = src0->ne[1]; // d_inner
  13319. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  13320. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  13321. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  13322. GGML_ASSERT(src0->nb[0] == sizeof(float));
  13323. GGML_ASSERT(src1->nb[0] == sizeof(float));
  13324. GGML_ASSERT(src2->nb[0] == sizeof(float));
  13325. GGML_ASSERT(src3->nb[0] == sizeof(float));
  13326. GGML_ASSERT(src4->nb[0] == sizeof(float));
  13327. GGML_ASSERT(src5->nb[0] == sizeof(float));
  13328. // required for the dot product between s and C, and when copying the states
  13329. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  13330. // required for per-sequence offsets for states
  13331. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13332. // required to get correct offset for state destination (i.e. src1->nb[2])
  13333. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13334. // rows per thread
  13335. const int dr = (nr + nth - 1)/nth;
  13336. // row range for this thread
  13337. const int ir0 = dr*ith;
  13338. const int ir1 = MIN(ir0 + dr, nr);
  13339. const int ir = ir1 - ir0;
  13340. if (n_kv > 1) {
  13341. // it's hard to know if the source states have already been copied
  13342. // when there are multiple, so copy them already.
  13343. for (int i3 = 0; i3 < n_kv; ++i3) {
  13344. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13345. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13346. memcpy(s, s0, nc*ir*sizeof(float));
  13347. }
  13348. }
  13349. for (int i2 = 0; i2 < n_t; ++i2) {
  13350. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13351. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13352. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13353. float * s0;
  13354. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13355. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13356. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13357. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13358. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13359. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13360. // avoid needing to copy the state for the first token
  13361. if (i2 == 0) {
  13362. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13363. } else {
  13364. // otherwise the source is the same as the destination
  13365. s0 = s;
  13366. }
  13367. // d_inner
  13368. for (int i1 = 0; i1 < ir; ++i1) {
  13369. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13370. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13371. float x_dt = x[i1] * dt_soft_plus;
  13372. float sumf = 0.0f;
  13373. // d_state
  13374. for (int i0 = 0; i0 < nc; ++i0) {
  13375. int i = i0 + i1*nc;
  13376. // state = prev_state * dA + dB * x
  13377. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13378. // y = rowwise_dotprod(state, C)
  13379. sumf += state * C[i0];
  13380. s[i] = state;
  13381. }
  13382. y[i1] = sumf;
  13383. }
  13384. // handle copies when there are multiple output states
  13385. for (int i3 = 1; i3 < n_kv; ++i3) {
  13386. int32_t seq = sq[i3];
  13387. if (0 <= seq && seq < n_kv) {
  13388. float * s1 = s + (seq - sq[0])*nc*nr;
  13389. memcpy(s1, s, nc*ir*sizeof(float));
  13390. } else {
  13391. // stop at negative or too big seq_ids
  13392. break;
  13393. }
  13394. }
  13395. }
  13396. }
  13397. static void ggml_compute_forward_ssm_scan(
  13398. const struct ggml_compute_params * params,
  13399. struct ggml_tensor * dst) {
  13400. switch (dst->src[0]->type) {
  13401. case GGML_TYPE_F32:
  13402. {
  13403. ggml_compute_forward_ssm_scan_f32(params, dst);
  13404. } break;
  13405. default:
  13406. {
  13407. GGML_ASSERT(false);
  13408. } break;
  13409. }
  13410. }
  13411. // ggml_compute_forward_win_part
  13412. static void ggml_compute_forward_win_part_f32(
  13413. const struct ggml_compute_params * params,
  13414. struct ggml_tensor * dst) {
  13415. const struct ggml_tensor * src0 = dst->src[0];
  13416. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13417. return;
  13418. }
  13419. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13420. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13421. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13422. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13423. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13424. assert(ne00 == ne0);
  13425. assert(ne3 == nep0*nep1);
  13426. // TODO: optimize / multi-thread
  13427. for (int py = 0; py < nep1; ++py) {
  13428. for (int px = 0; px < nep0; ++px) {
  13429. const int64_t i3 = py*nep0 + px;
  13430. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13431. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13432. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13433. const int64_t i02 = py*w + i2;
  13434. const int64_t i01 = px*w + i1;
  13435. const int64_t i00 = i0;
  13436. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13437. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13438. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13439. ((float *) dst->data)[i] = 0.0f;
  13440. } else {
  13441. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13442. }
  13443. }
  13444. }
  13445. }
  13446. }
  13447. }
  13448. }
  13449. static void ggml_compute_forward_win_part(
  13450. const struct ggml_compute_params * params,
  13451. struct ggml_tensor * dst) {
  13452. const struct ggml_tensor * src0 = dst->src[0];
  13453. switch (src0->type) {
  13454. case GGML_TYPE_F32:
  13455. {
  13456. ggml_compute_forward_win_part_f32(params, dst);
  13457. } break;
  13458. default:
  13459. {
  13460. GGML_ASSERT(false);
  13461. } break;
  13462. }
  13463. }
  13464. // ggml_compute_forward_win_unpart
  13465. static void ggml_compute_forward_win_unpart_f32(
  13466. const struct ggml_compute_params * params,
  13467. struct ggml_tensor * dst) {
  13468. const struct ggml_tensor * src0 = dst->src[0];
  13469. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13470. return;
  13471. }
  13472. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13473. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13474. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13475. // padding
  13476. const int px = (w - ne1%w)%w;
  13477. //const int py = (w - ne2%w)%w;
  13478. const int npx = (px + ne1)/w;
  13479. //const int npy = (py + ne2)/w;
  13480. assert(ne0 == ne00);
  13481. // TODO: optimize / multi-thread
  13482. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13483. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13484. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13485. const int ip2 = i2/w;
  13486. const int ip1 = i1/w;
  13487. const int64_t i02 = i2%w;
  13488. const int64_t i01 = i1%w;
  13489. const int64_t i00 = i0;
  13490. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13491. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13492. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13493. }
  13494. }
  13495. }
  13496. }
  13497. static void ggml_compute_forward_win_unpart(
  13498. const struct ggml_compute_params * params,
  13499. struct ggml_tensor * dst) {
  13500. const struct ggml_tensor * src0 = dst->src[0];
  13501. switch (src0->type) {
  13502. case GGML_TYPE_F32:
  13503. {
  13504. ggml_compute_forward_win_unpart_f32(params, dst);
  13505. } break;
  13506. default:
  13507. {
  13508. GGML_ASSERT(false);
  13509. } break;
  13510. }
  13511. }
  13512. //gmml_compute_forward_unary
  13513. static void ggml_compute_forward_unary(
  13514. const struct ggml_compute_params * params,
  13515. struct ggml_tensor * dst) {
  13516. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13517. switch (op) {
  13518. case GGML_UNARY_OP_ABS:
  13519. {
  13520. ggml_compute_forward_abs(params, dst);
  13521. } break;
  13522. case GGML_UNARY_OP_SGN:
  13523. {
  13524. ggml_compute_forward_sgn(params, dst);
  13525. } break;
  13526. case GGML_UNARY_OP_NEG:
  13527. {
  13528. ggml_compute_forward_neg(params, dst);
  13529. } break;
  13530. case GGML_UNARY_OP_STEP:
  13531. {
  13532. ggml_compute_forward_step(params, dst);
  13533. } break;
  13534. case GGML_UNARY_OP_TANH:
  13535. {
  13536. ggml_compute_forward_tanh(params, dst);
  13537. } break;
  13538. case GGML_UNARY_OP_ELU:
  13539. {
  13540. ggml_compute_forward_elu(params, dst);
  13541. } break;
  13542. case GGML_UNARY_OP_RELU:
  13543. {
  13544. ggml_compute_forward_relu(params, dst);
  13545. } break;
  13546. case GGML_UNARY_OP_SIGMOID:
  13547. {
  13548. ggml_compute_forward_sigmoid(params, dst);
  13549. } break;
  13550. case GGML_UNARY_OP_GELU:
  13551. {
  13552. ggml_compute_forward_gelu(params, dst);
  13553. } break;
  13554. case GGML_UNARY_OP_GELU_QUICK:
  13555. {
  13556. ggml_compute_forward_gelu_quick(params, dst);
  13557. } break;
  13558. case GGML_UNARY_OP_SILU:
  13559. {
  13560. ggml_compute_forward_silu(params, dst);
  13561. } break;
  13562. case GGML_UNARY_OP_HARDSWISH:
  13563. {
  13564. ggml_compute_forward_hardswish(params, dst);
  13565. } break;
  13566. case GGML_UNARY_OP_HARDSIGMOID:
  13567. {
  13568. ggml_compute_forward_hardsigmoid(params, dst);
  13569. } break;
  13570. default:
  13571. {
  13572. GGML_ASSERT(false);
  13573. } break;
  13574. }
  13575. }
  13576. // ggml_compute_forward_get_rel_pos
  13577. static void ggml_compute_forward_get_rel_pos_f16(
  13578. const struct ggml_compute_params * params,
  13579. struct ggml_tensor * dst) {
  13580. const struct ggml_tensor * src0 = dst->src[0];
  13581. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13582. return;
  13583. }
  13584. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13585. GGML_TENSOR_UNARY_OP_LOCALS
  13586. const int64_t w = ne1;
  13587. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13588. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13589. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13590. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13591. const int64_t pos = (w - i1 - 1) + i2;
  13592. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13593. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13594. }
  13595. }
  13596. }
  13597. }
  13598. static void ggml_compute_forward_get_rel_pos(
  13599. const struct ggml_compute_params * params,
  13600. struct ggml_tensor * dst) {
  13601. const struct ggml_tensor * src0 = dst->src[0];
  13602. switch (src0->type) {
  13603. case GGML_TYPE_F16:
  13604. case GGML_TYPE_BF16:
  13605. {
  13606. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13607. } break;
  13608. default:
  13609. {
  13610. GGML_ASSERT(false);
  13611. } break;
  13612. }
  13613. }
  13614. // ggml_compute_forward_add_rel_pos
  13615. static void ggml_compute_forward_add_rel_pos_f32(
  13616. const struct ggml_compute_params * params,
  13617. struct ggml_tensor * dst) {
  13618. const struct ggml_tensor * src0 = dst->src[0];
  13619. const struct ggml_tensor * src1 = dst->src[1];
  13620. const struct ggml_tensor * src2 = dst->src[2];
  13621. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13622. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  13623. if (params->ith != 0) {
  13624. return;
  13625. }
  13626. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13627. return;
  13628. }
  13629. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13630. return;
  13631. }
  13632. int64_t t0 = ggml_perf_time_us();
  13633. UNUSED(t0);
  13634. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13635. float * src1_data = (float *) src1->data;
  13636. float * src2_data = (float *) src2->data;
  13637. float * dst_data = (float *) dst->data;
  13638. const int64_t ne10 = src1->ne[0];
  13639. const int64_t ne11 = src1->ne[1];
  13640. const int64_t ne12 = src1->ne[2];
  13641. const int64_t ne13 = src1->ne[3];
  13642. const int ith = params->ith;
  13643. const int nth = params->nth;
  13644. // total patches in dst
  13645. const int np = ne13;
  13646. // patches per thread
  13647. const int dp = (np + nth - 1)/nth;
  13648. // patch range for this thread
  13649. const int ip0 = dp*ith;
  13650. const int ip1 = MIN(ip0 + dp, np);
  13651. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13652. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13653. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13654. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13655. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13656. const int64_t jp0 = jp1 + i10;
  13657. const float src1_e = src1_data[jp0];
  13658. const float src2_e = src2_data[jp0];
  13659. const int64_t jdh = jp0 * ne10;
  13660. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13661. for (int64_t j = 0; j < ne10; ++j) {
  13662. dst_data[jdh + j ] += src2_e;
  13663. dst_data[jdw + j*ne10] += src1_e;
  13664. }
  13665. }
  13666. }
  13667. }
  13668. }
  13669. }
  13670. static void ggml_compute_forward_add_rel_pos(
  13671. const struct ggml_compute_params * params,
  13672. struct ggml_tensor * dst) {
  13673. const struct ggml_tensor * src0 = dst->src[0];
  13674. switch (src0->type) {
  13675. case GGML_TYPE_F32:
  13676. {
  13677. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13678. } break;
  13679. default:
  13680. {
  13681. GGML_ASSERT(false);
  13682. } break;
  13683. }
  13684. }
  13685. // ggml_compute_forward_map_unary
  13686. static void ggml_compute_forward_map_unary_f32(
  13687. const struct ggml_compute_params * params,
  13688. struct ggml_tensor * dst,
  13689. const ggml_unary_op_f32_t fun) {
  13690. const struct ggml_tensor * src0 = dst->src[0];
  13691. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13692. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13693. return;
  13694. }
  13695. const int n = ggml_nrows(src0);
  13696. const int nc = src0->ne[0];
  13697. assert( dst->nb[0] == sizeof(float));
  13698. assert(src0->nb[0] == sizeof(float));
  13699. for (int i = 0; i < n; i++) {
  13700. fun(nc,
  13701. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13702. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13703. }
  13704. }
  13705. static void ggml_compute_forward_map_unary(
  13706. const struct ggml_compute_params * params,
  13707. struct ggml_tensor * dst,
  13708. const ggml_unary_op_f32_t fun) {
  13709. const struct ggml_tensor * src0 = dst->src[0];
  13710. switch (src0->type) {
  13711. case GGML_TYPE_F32:
  13712. {
  13713. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13714. } break;
  13715. default:
  13716. {
  13717. GGML_ASSERT(false);
  13718. } break;
  13719. }
  13720. }
  13721. // ggml_compute_forward_map_binary
  13722. static void ggml_compute_forward_map_binary_f32(
  13723. const struct ggml_compute_params * params,
  13724. struct ggml_tensor * dst,
  13725. const ggml_binary_op_f32_t fun) {
  13726. const struct ggml_tensor * src0 = dst->src[0];
  13727. const struct ggml_tensor * src1 = dst->src[1];
  13728. assert(params->ith == 0);
  13729. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13730. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13731. return;
  13732. }
  13733. const int n = ggml_nrows(src0);
  13734. const int nc = src0->ne[0];
  13735. assert( dst->nb[0] == sizeof(float));
  13736. assert(src0->nb[0] == sizeof(float));
  13737. assert(src1->nb[0] == sizeof(float));
  13738. for (int i = 0; i < n; i++) {
  13739. fun(nc,
  13740. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13741. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13742. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13743. }
  13744. }
  13745. static void ggml_compute_forward_map_binary(
  13746. const struct ggml_compute_params * params,
  13747. struct ggml_tensor * dst,
  13748. const ggml_binary_op_f32_t fun) {
  13749. const struct ggml_tensor * src0 = dst->src[0];
  13750. switch (src0->type) {
  13751. case GGML_TYPE_F32:
  13752. {
  13753. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13754. } break;
  13755. default:
  13756. {
  13757. GGML_ASSERT(false);
  13758. } break;
  13759. }
  13760. }
  13761. // ggml_compute_forward_map_custom1
  13762. static void ggml_compute_forward_map_custom1_f32(
  13763. const struct ggml_compute_params * params,
  13764. struct ggml_tensor * dst,
  13765. const ggml_custom1_op_f32_t fun) {
  13766. const struct ggml_tensor * a = dst->src[0];
  13767. assert(params->ith == 0);
  13768. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13769. return;
  13770. }
  13771. fun(dst, a);
  13772. }
  13773. // ggml_compute_forward_map_custom2
  13774. static void ggml_compute_forward_map_custom2_f32(
  13775. const struct ggml_compute_params * params,
  13776. struct ggml_tensor * dst,
  13777. const ggml_custom2_op_f32_t fun) {
  13778. const struct ggml_tensor * a = dst->src[0];
  13779. const struct ggml_tensor * b = dst->src[1];
  13780. assert(params->ith == 0);
  13781. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13782. return;
  13783. }
  13784. fun(dst, a, b);
  13785. }
  13786. // ggml_compute_forward_map_custom3
  13787. static void ggml_compute_forward_map_custom3_f32(
  13788. const struct ggml_compute_params * params,
  13789. struct ggml_tensor * dst,
  13790. const ggml_custom3_op_f32_t fun) {
  13791. const struct ggml_tensor * a = dst->src[0];
  13792. const struct ggml_tensor * b = dst->src[1];
  13793. const struct ggml_tensor * c = dst->src[1];
  13794. assert(params->ith == 0);
  13795. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13796. return;
  13797. }
  13798. fun(dst, a, b, c);
  13799. }
  13800. // ggml_compute_forward_map_custom1
  13801. static void ggml_compute_forward_map_custom1(
  13802. const struct ggml_compute_params * params,
  13803. struct ggml_tensor * dst) {
  13804. const struct ggml_tensor * a = dst->src[0];
  13805. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13806. return;
  13807. }
  13808. struct ggml_map_custom1_op_params p;
  13809. memcpy(&p, dst->op_params, sizeof(p));
  13810. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13811. }
  13812. // ggml_compute_forward_map_custom2
  13813. static void ggml_compute_forward_map_custom2(
  13814. const struct ggml_compute_params * params,
  13815. struct ggml_tensor * dst) {
  13816. const struct ggml_tensor * a = dst->src[0];
  13817. const struct ggml_tensor * b = dst->src[1];
  13818. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13819. return;
  13820. }
  13821. struct ggml_map_custom2_op_params p;
  13822. memcpy(&p, dst->op_params, sizeof(p));
  13823. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13824. }
  13825. // ggml_compute_forward_map_custom3
  13826. static void ggml_compute_forward_map_custom3(
  13827. const struct ggml_compute_params * params,
  13828. struct ggml_tensor * dst) {
  13829. const struct ggml_tensor * a = dst->src[0];
  13830. const struct ggml_tensor * b = dst->src[1];
  13831. const struct ggml_tensor * c = dst->src[2];
  13832. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13833. return;
  13834. }
  13835. struct ggml_map_custom3_op_params p;
  13836. memcpy(&p, dst->op_params, sizeof(p));
  13837. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13838. }
  13839. // ggml_compute_forward_cross_entropy_loss
  13840. static void ggml_compute_forward_cross_entropy_loss_f32(
  13841. const struct ggml_compute_params * params,
  13842. struct ggml_tensor * dst) {
  13843. const struct ggml_tensor * src0 = dst->src[0];
  13844. const struct ggml_tensor * src1 = dst->src[1];
  13845. GGML_ASSERT(ggml_is_contiguous(src0));
  13846. GGML_ASSERT(ggml_is_contiguous(src1));
  13847. GGML_ASSERT(ggml_is_scalar(dst));
  13848. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13849. const int ith = params->ith;
  13850. const int nth = params->nth;
  13851. float * sums = (float *) params->wdata;
  13852. // TODO: handle transposed/permuted matrices
  13853. const int nc = src0->ne[0];
  13854. const int nr = ggml_nrows(src0);
  13855. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13856. if (params->type == GGML_TASK_TYPE_INIT) {
  13857. if (ith == 0) {
  13858. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13859. }
  13860. return;
  13861. }
  13862. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  13863. if (ith == 0) {
  13864. float * dp = (float *) dst->data;
  13865. ggml_vec_sum_f32(nth, dp, sums);
  13866. dp[0] *= -1.0f / (float) nr;
  13867. }
  13868. return;
  13869. }
  13870. const double eps = 1e-9;
  13871. // rows per thread
  13872. const int dr = (nr + nth - 1)/nth;
  13873. // row range for this thread
  13874. const int ir0 = dr*ith;
  13875. const int ir1 = MIN(ir0 + dr, nr);
  13876. for (int i1 = ir0; i1 < ir1; i1++) {
  13877. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13878. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13879. float * st = ((float *) params->wdata) + nth + ith*nc;
  13880. #ifndef NDEBUG
  13881. for (int i = 0; i < nc; ++i) {
  13882. //printf("p[%d] = %f\n", i, p[i]);
  13883. assert(!isnan(s0[i]));
  13884. assert(!isnan(s1[i]));
  13885. }
  13886. #endif
  13887. // soft_max
  13888. float max = -INFINITY;
  13889. ggml_vec_max_f32(nc, &max, s0);
  13890. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13891. assert(sum > 0.0);
  13892. sum = (1.0 - eps) / sum;
  13893. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13894. ggml_vec_scale_f32(nc, st, sum);
  13895. ggml_vec_add1_f32(nc, st, st, eps);
  13896. ggml_vec_log_f32(nc, st, st);
  13897. ggml_vec_mul_f32(nc, st, st, s1);
  13898. float st_sum = 0;
  13899. ggml_vec_sum_f32(nc, &st_sum, st);
  13900. sums[ith] += st_sum;
  13901. #ifndef NDEBUG
  13902. for (int i = 0; i < nc; ++i) {
  13903. assert(!isnan(st[i]));
  13904. assert(!isinf(st[i]));
  13905. }
  13906. #endif
  13907. }
  13908. }
  13909. static void ggml_compute_forward_cross_entropy_loss(
  13910. const struct ggml_compute_params * params,
  13911. struct ggml_tensor * dst) {
  13912. const struct ggml_tensor * src0 = dst->src[0];
  13913. switch (src0->type) {
  13914. case GGML_TYPE_F32:
  13915. {
  13916. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13917. } break;
  13918. default:
  13919. {
  13920. GGML_ASSERT(false);
  13921. } break;
  13922. }
  13923. }
  13924. // ggml_compute_forward_cross_entropy_loss_back
  13925. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13926. const struct ggml_compute_params * params,
  13927. struct ggml_tensor * dst) {
  13928. const struct ggml_tensor * src0 = dst->src[0];
  13929. const struct ggml_tensor * src1 = dst->src[1];
  13930. const struct ggml_tensor * opt0 = dst->src[2];
  13931. GGML_ASSERT(ggml_is_contiguous(dst));
  13932. GGML_ASSERT(ggml_is_contiguous(src0));
  13933. GGML_ASSERT(ggml_is_contiguous(src1));
  13934. GGML_ASSERT(ggml_is_contiguous(opt0));
  13935. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13936. const int64_t ith = params->ith;
  13937. const int64_t nth = params->nth;
  13938. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  13939. return;
  13940. }
  13941. const double eps = 1e-9;
  13942. // TODO: handle transposed/permuted matrices
  13943. const int64_t nc = src0->ne[0];
  13944. const int64_t nr = ggml_nrows(src0);
  13945. // rows per thread
  13946. const int64_t dr = (nr + nth - 1)/nth;
  13947. // row range for this thread
  13948. const int64_t ir0 = dr*ith;
  13949. const int64_t ir1 = MIN(ir0 + dr, nr);
  13950. float * d = (float *) opt0->data;
  13951. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13952. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13953. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13954. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13955. #ifndef NDEBUG
  13956. for (int i = 0; i < nc; ++i) {
  13957. //printf("p[%d] = %f\n", i, p[i]);
  13958. assert(!isnan(s0[i]));
  13959. assert(!isnan(s1[i]));
  13960. }
  13961. #endif
  13962. // soft_max
  13963. float max = -INFINITY;
  13964. ggml_vec_max_f32(nc, &max, s0);
  13965. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13966. assert(sum > 0.0);
  13967. sum = (1.0 - eps) / sum;
  13968. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13969. ggml_vec_scale_f32(nc, ds0, sum);
  13970. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13971. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13972. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13973. #ifndef NDEBUG
  13974. for (int i = 0; i < nc; ++i) {
  13975. assert(!isnan(ds0[i]));
  13976. assert(!isinf(ds0[i]));
  13977. }
  13978. #endif
  13979. }
  13980. }
  13981. static void ggml_compute_forward_cross_entropy_loss_back(
  13982. const struct ggml_compute_params * params,
  13983. struct ggml_tensor * dst) {
  13984. const struct ggml_tensor * src0 = dst->src[0];
  13985. switch (src0->type) {
  13986. case GGML_TYPE_F32:
  13987. {
  13988. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13989. } break;
  13990. default:
  13991. {
  13992. GGML_ASSERT(false);
  13993. } break;
  13994. }
  13995. }
  13996. /////////////////////////////////
  13997. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor, struct ggml_compute_state * state) {
  13998. GGML_ASSERT(params);
  13999. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  14000. return;
  14001. }
  14002. switch (tensor->op) {
  14003. case GGML_OP_DUP:
  14004. {
  14005. ggml_compute_forward_dup(params, tensor);
  14006. } break;
  14007. case GGML_OP_ADD:
  14008. {
  14009. ggml_compute_forward_add(params, tensor);
  14010. } break;
  14011. case GGML_OP_ADD1:
  14012. {
  14013. ggml_compute_forward_add1(params, tensor);
  14014. } break;
  14015. case GGML_OP_ACC:
  14016. {
  14017. ggml_compute_forward_acc(params, tensor);
  14018. } break;
  14019. case GGML_OP_SUB:
  14020. {
  14021. ggml_compute_forward_sub(params, tensor);
  14022. } break;
  14023. case GGML_OP_MUL:
  14024. {
  14025. ggml_compute_forward_mul(params, tensor);
  14026. } break;
  14027. case GGML_OP_DIV:
  14028. {
  14029. ggml_compute_forward_div(params, tensor);
  14030. } break;
  14031. case GGML_OP_SQR:
  14032. {
  14033. ggml_compute_forward_sqr(params, tensor);
  14034. } break;
  14035. case GGML_OP_SQRT:
  14036. {
  14037. ggml_compute_forward_sqrt(params, tensor);
  14038. } break;
  14039. case GGML_OP_LOG:
  14040. {
  14041. ggml_compute_forward_log(params, tensor);
  14042. } break;
  14043. case GGML_OP_SUM:
  14044. {
  14045. ggml_compute_forward_sum(params, tensor);
  14046. } break;
  14047. case GGML_OP_SUM_ROWS:
  14048. {
  14049. ggml_compute_forward_sum_rows(params, tensor);
  14050. } break;
  14051. case GGML_OP_MEAN:
  14052. {
  14053. ggml_compute_forward_mean(params, tensor);
  14054. } break;
  14055. case GGML_OP_ARGMAX:
  14056. {
  14057. ggml_compute_forward_argmax(params, tensor);
  14058. } break;
  14059. case GGML_OP_REPEAT:
  14060. {
  14061. ggml_compute_forward_repeat(params, tensor);
  14062. } break;
  14063. case GGML_OP_REPEAT_BACK:
  14064. {
  14065. ggml_compute_forward_repeat_back(params, tensor);
  14066. } break;
  14067. case GGML_OP_CONCAT:
  14068. {
  14069. ggml_compute_forward_concat(params, tensor);
  14070. } break;
  14071. case GGML_OP_SILU_BACK:
  14072. {
  14073. ggml_compute_forward_silu_back(params, tensor);
  14074. } break;
  14075. case GGML_OP_NORM:
  14076. {
  14077. ggml_compute_forward_norm(params, tensor);
  14078. } break;
  14079. case GGML_OP_RMS_NORM:
  14080. {
  14081. ggml_compute_forward_rms_norm(params, tensor);
  14082. } break;
  14083. case GGML_OP_RMS_NORM_BACK:
  14084. {
  14085. ggml_compute_forward_rms_norm_back(params, tensor);
  14086. } break;
  14087. case GGML_OP_GROUP_NORM:
  14088. {
  14089. ggml_compute_forward_group_norm(params, tensor);
  14090. } break;
  14091. case GGML_OP_MUL_MAT:
  14092. {
  14093. ggml_compute_forward_mul_mat(params, tensor, state);
  14094. } break;
  14095. case GGML_OP_MUL_MAT_ID:
  14096. {
  14097. ggml_compute_forward_mul_mat_id(params, tensor);
  14098. } break;
  14099. case GGML_OP_OUT_PROD:
  14100. {
  14101. ggml_compute_forward_out_prod(params, tensor);
  14102. } break;
  14103. case GGML_OP_SCALE:
  14104. {
  14105. ggml_compute_forward_scale(params, tensor);
  14106. } break;
  14107. case GGML_OP_SET:
  14108. {
  14109. ggml_compute_forward_set(params, tensor);
  14110. } break;
  14111. case GGML_OP_CPY:
  14112. {
  14113. ggml_compute_forward_cpy(params, tensor);
  14114. } break;
  14115. case GGML_OP_CONT:
  14116. {
  14117. ggml_compute_forward_cont(params, tensor);
  14118. } break;
  14119. case GGML_OP_RESHAPE:
  14120. {
  14121. ggml_compute_forward_reshape(params, tensor);
  14122. } break;
  14123. case GGML_OP_VIEW:
  14124. {
  14125. ggml_compute_forward_view(params, tensor);
  14126. } break;
  14127. case GGML_OP_PERMUTE:
  14128. {
  14129. ggml_compute_forward_permute(params, tensor);
  14130. } break;
  14131. case GGML_OP_TRANSPOSE:
  14132. {
  14133. ggml_compute_forward_transpose(params, tensor);
  14134. } break;
  14135. case GGML_OP_GET_ROWS:
  14136. {
  14137. ggml_compute_forward_get_rows(params, tensor);
  14138. } break;
  14139. case GGML_OP_GET_ROWS_BACK:
  14140. {
  14141. ggml_compute_forward_get_rows_back(params, tensor);
  14142. } break;
  14143. case GGML_OP_DIAG:
  14144. {
  14145. ggml_compute_forward_diag(params, tensor);
  14146. } break;
  14147. case GGML_OP_DIAG_MASK_INF:
  14148. {
  14149. ggml_compute_forward_diag_mask_inf(params, tensor);
  14150. } break;
  14151. case GGML_OP_DIAG_MASK_ZERO:
  14152. {
  14153. ggml_compute_forward_diag_mask_zero(params, tensor);
  14154. } break;
  14155. case GGML_OP_SOFT_MAX:
  14156. {
  14157. ggml_compute_forward_soft_max(params, tensor);
  14158. } break;
  14159. case GGML_OP_SOFT_MAX_BACK:
  14160. {
  14161. ggml_compute_forward_soft_max_back(params, tensor);
  14162. } break;
  14163. case GGML_OP_ROPE:
  14164. {
  14165. ggml_compute_forward_rope(params, tensor);
  14166. } break;
  14167. case GGML_OP_ROPE_BACK:
  14168. {
  14169. ggml_compute_forward_rope_back(params, tensor);
  14170. } break;
  14171. case GGML_OP_CLAMP:
  14172. {
  14173. ggml_compute_forward_clamp(params, tensor);
  14174. } break;
  14175. case GGML_OP_CONV_TRANSPOSE_1D:
  14176. {
  14177. ggml_compute_forward_conv_transpose_1d(params, tensor);
  14178. } break;
  14179. case GGML_OP_IM2COL:
  14180. {
  14181. ggml_compute_forward_im2col(params, tensor);
  14182. } break;
  14183. case GGML_OP_CONV_TRANSPOSE_2D:
  14184. {
  14185. ggml_compute_forward_conv_transpose_2d(params, tensor);
  14186. } break;
  14187. case GGML_OP_POOL_1D:
  14188. {
  14189. ggml_compute_forward_pool_1d(params, tensor);
  14190. } break;
  14191. case GGML_OP_POOL_2D:
  14192. {
  14193. ggml_compute_forward_pool_2d(params, tensor);
  14194. } break;
  14195. case GGML_OP_UPSCALE:
  14196. {
  14197. ggml_compute_forward_upscale(params, tensor);
  14198. } break;
  14199. case GGML_OP_PAD:
  14200. {
  14201. ggml_compute_forward_pad(params, tensor);
  14202. } break;
  14203. case GGML_OP_ARANGE:
  14204. {
  14205. ggml_compute_forward_arange(params, tensor);
  14206. } break;
  14207. case GGML_OP_TIMESTEP_EMBEDDING:
  14208. {
  14209. ggml_compute_forward_timestep_embedding(params, tensor);
  14210. } break;
  14211. case GGML_OP_ARGSORT:
  14212. {
  14213. ggml_compute_forward_argsort(params, tensor);
  14214. } break;
  14215. case GGML_OP_LEAKY_RELU:
  14216. {
  14217. ggml_compute_forward_leaky_relu(params, tensor);
  14218. } break;
  14219. case GGML_OP_FLASH_ATTN_EXT:
  14220. {
  14221. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  14222. } break;
  14223. case GGML_OP_FLASH_ATTN_BACK:
  14224. {
  14225. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14226. GGML_ASSERT(t == 0 || t == 1);
  14227. bool masked = t != 0;
  14228. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  14229. } break;
  14230. case GGML_OP_SSM_CONV:
  14231. {
  14232. ggml_compute_forward_ssm_conv(params, tensor);
  14233. } break;
  14234. case GGML_OP_SSM_SCAN:
  14235. {
  14236. ggml_compute_forward_ssm_scan(params, tensor);
  14237. } break;
  14238. case GGML_OP_WIN_PART:
  14239. {
  14240. ggml_compute_forward_win_part(params, tensor);
  14241. } break;
  14242. case GGML_OP_WIN_UNPART:
  14243. {
  14244. ggml_compute_forward_win_unpart(params, tensor);
  14245. } break;
  14246. case GGML_OP_UNARY:
  14247. {
  14248. ggml_compute_forward_unary(params, tensor);
  14249. } break;
  14250. case GGML_OP_GET_REL_POS:
  14251. {
  14252. ggml_compute_forward_get_rel_pos(params, tensor);
  14253. } break;
  14254. case GGML_OP_ADD_REL_POS:
  14255. {
  14256. ggml_compute_forward_add_rel_pos(params, tensor);
  14257. } break;
  14258. case GGML_OP_MAP_UNARY:
  14259. {
  14260. ggml_unary_op_f32_t fun;
  14261. memcpy(&fun, tensor->op_params, sizeof(fun));
  14262. ggml_compute_forward_map_unary(params, tensor, fun);
  14263. }
  14264. break;
  14265. case GGML_OP_MAP_BINARY:
  14266. {
  14267. ggml_binary_op_f32_t fun;
  14268. memcpy(&fun, tensor->op_params, sizeof(fun));
  14269. ggml_compute_forward_map_binary(params, tensor, fun);
  14270. }
  14271. break;
  14272. case GGML_OP_MAP_CUSTOM1_F32:
  14273. {
  14274. ggml_custom1_op_f32_t fun;
  14275. memcpy(&fun, tensor->op_params, sizeof(fun));
  14276. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  14277. }
  14278. break;
  14279. case GGML_OP_MAP_CUSTOM2_F32:
  14280. {
  14281. ggml_custom2_op_f32_t fun;
  14282. memcpy(&fun, tensor->op_params, sizeof(fun));
  14283. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  14284. }
  14285. break;
  14286. case GGML_OP_MAP_CUSTOM3_F32:
  14287. {
  14288. ggml_custom3_op_f32_t fun;
  14289. memcpy(&fun, tensor->op_params, sizeof(fun));
  14290. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  14291. }
  14292. break;
  14293. case GGML_OP_MAP_CUSTOM1:
  14294. {
  14295. ggml_compute_forward_map_custom1(params, tensor);
  14296. }
  14297. break;
  14298. case GGML_OP_MAP_CUSTOM2:
  14299. {
  14300. ggml_compute_forward_map_custom2(params, tensor);
  14301. }
  14302. break;
  14303. case GGML_OP_MAP_CUSTOM3:
  14304. {
  14305. ggml_compute_forward_map_custom3(params, tensor);
  14306. }
  14307. break;
  14308. case GGML_OP_CROSS_ENTROPY_LOSS:
  14309. {
  14310. ggml_compute_forward_cross_entropy_loss(params, tensor);
  14311. }
  14312. break;
  14313. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14314. {
  14315. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  14316. }
  14317. break;
  14318. case GGML_OP_NONE:
  14319. {
  14320. // nop
  14321. } break;
  14322. case GGML_OP_COUNT:
  14323. {
  14324. GGML_ASSERT(false);
  14325. } break;
  14326. }
  14327. }
  14328. ////////////////////////////////////////////////////////////////////////////////
  14329. static size_t ggml_hash_size(size_t min_sz) {
  14330. // next primes after powers of two
  14331. static const size_t primes[] = {
  14332. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  14333. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  14334. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  14335. 16777259, 33554467, 67108879, 134217757, 268435459,
  14336. 536870923, 1073741827, 2147483659
  14337. };
  14338. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  14339. // find the smallest prime that is larger or equal to min_sz
  14340. size_t l = 0;
  14341. size_t r = n_primes;
  14342. while (l < r) {
  14343. size_t m = (l + r)/2;
  14344. if (primes[m] < min_sz) {
  14345. l = m + 1;
  14346. } else {
  14347. r = m;
  14348. }
  14349. }
  14350. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14351. return sz;
  14352. }
  14353. static size_t ggml_hash(const void * p) {
  14354. return (size_t)p;
  14355. }
  14356. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14357. size_t h = ggml_hash(key) % hash_set.size;
  14358. // linear probing
  14359. size_t i = h;
  14360. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  14361. i = (i + 1) % hash_set.size;
  14362. if (i == h) {
  14363. // visited all hash table entries -> not found
  14364. return GGML_HASHTABLE_FULL;
  14365. }
  14366. }
  14367. return i;
  14368. }
  14369. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14370. size_t i = ggml_hash_find(hash_set, key);
  14371. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  14372. }
  14373. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14374. size_t i = ggml_hash_find(hash_set, key);
  14375. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14376. if (hash_set.keys[i] == key) {
  14377. return GGML_HASHTABLE_ALREADY_EXISTS;
  14378. }
  14379. // insert
  14380. GGML_ASSERT(hash_set.keys[i] == NULL);
  14381. hash_set.keys[i] = key;
  14382. return i;
  14383. }
  14384. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  14385. size_t i = ggml_hash_find(hash_set, key);
  14386. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  14387. hash_set.keys[i] = key;
  14388. return i;
  14389. }
  14390. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  14391. size = ggml_hash_size(size);
  14392. struct ggml_hash_set result;
  14393. result.size = size;
  14394. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  14395. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  14396. return result;
  14397. }
  14398. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  14399. GGML_FREE(hash_set.keys);
  14400. }
  14401. struct hash_map {
  14402. struct ggml_hash_set set;
  14403. struct ggml_tensor ** vals;
  14404. };
  14405. static struct hash_map * ggml_new_hash_map(size_t size) {
  14406. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14407. result->set = ggml_hash_set_new(size);
  14408. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  14409. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  14410. return result;
  14411. }
  14412. static void ggml_hash_map_free(struct hash_map * map) {
  14413. ggml_hash_set_free(map->set);
  14414. GGML_FREE(map->vals);
  14415. GGML_FREE(map);
  14416. }
  14417. // gradient checkpointing
  14418. static struct ggml_tensor * ggml_recompute_graph_node(
  14419. struct ggml_context * ctx,
  14420. struct ggml_cgraph * graph,
  14421. struct hash_map * replacements,
  14422. struct ggml_tensor * node) {
  14423. if (node == NULL) {
  14424. return NULL;
  14425. }
  14426. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14427. return node;
  14428. }
  14429. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  14430. return node;
  14431. }
  14432. int count_children = 0;
  14433. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14434. if (node->src[k]) {
  14435. ++count_children;
  14436. }
  14437. }
  14438. if (count_children == 0) {
  14439. return node;
  14440. }
  14441. size_t i = ggml_hash_find(replacements->set, node);
  14442. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  14443. if (replacements->set.keys[i] == node) {
  14444. return replacements->vals[i];
  14445. }
  14446. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14447. // insert clone into replacements
  14448. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14449. replacements->set.keys[i] = node;
  14450. replacements->vals[i] = clone;
  14451. clone->op = node->op;
  14452. clone->grad = node->grad;
  14453. clone->flags = node->flags;
  14454. clone->extra = node->extra;
  14455. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14456. clone->nb[k] = node->nb[k];
  14457. }
  14458. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14459. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14460. }
  14461. if (node->view_src != NULL) {
  14462. clone->data = (node->view_src->data == NULL)
  14463. ? NULL // view_src not yet allocated
  14464. : (char *) node->view_src->data // view_src already allocated
  14465. + node->view_offs;
  14466. clone->view_src = node->view_src;
  14467. clone->view_offs = node->view_offs;
  14468. }
  14469. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14470. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14471. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14472. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14473. return clone;
  14474. }
  14475. void ggml_build_backward_gradient_checkpointing(
  14476. struct ggml_context * ctx,
  14477. struct ggml_cgraph * gf,
  14478. struct ggml_cgraph * gb,
  14479. struct ggml_cgraph * gb_tmp,
  14480. struct ggml_tensor * * checkpoints,
  14481. int n_checkpoints) {
  14482. ggml_graph_cpy(gf, gb_tmp);
  14483. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14484. if (n_checkpoints <= 0) {
  14485. ggml_graph_cpy(gb_tmp, gb);
  14486. return;
  14487. }
  14488. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14489. // insert checkpoints in replacements
  14490. for (int i = 0; i < n_checkpoints; ++i) {
  14491. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  14492. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  14493. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14494. replacements->set.keys[k] = checkpoints[i];
  14495. replacements->vals[k] = checkpoints[i];
  14496. }
  14497. ggml_graph_cpy(gf, gb);
  14498. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14499. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14500. // by recomputing them from checkpoints
  14501. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14502. struct ggml_tensor * node = gb_tmp->nodes[i];
  14503. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14504. // insert new tensors recomputing src, reusing already made replacements,
  14505. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14506. // recurse for input tensors,
  14507. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14508. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14509. }
  14510. // insert rewritten backward node with replacements made into resulting backward graph gb
  14511. ggml_build_forward_expand(gb, node);
  14512. }
  14513. ggml_hash_map_free(replacements);
  14514. }
  14515. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14516. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14517. if (ggml_hash_contains(zero_table, a)) {
  14518. return b;
  14519. } else {
  14520. return ggml_add_impl(ctx, a, b, false);
  14521. }
  14522. }
  14523. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  14524. if (ggml_hash_contains(zero_table, a)) {
  14525. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14526. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14527. } else {
  14528. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14529. }
  14530. }
  14531. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14532. if (ggml_hash_contains(zero_table, a)) {
  14533. return ggml_repeat(ctx, b, a);
  14534. } else {
  14535. return ggml_add1_impl(ctx, a, b, false);
  14536. }
  14537. }
  14538. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  14539. if (ggml_hash_contains(zero_table, a)) {
  14540. return ggml_neg(ctx, b);
  14541. } else {
  14542. return ggml_sub_impl(ctx, a, b, false);
  14543. }
  14544. }
  14545. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  14546. struct ggml_tensor * src0 = tensor->src[0];
  14547. struct ggml_tensor * src1 = tensor->src[1];
  14548. struct ggml_tensor * src2 = tensor->src[2];
  14549. switch (tensor->op) {
  14550. case GGML_OP_DUP:
  14551. {
  14552. if (src0->grad) {
  14553. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14554. }
  14555. } break;
  14556. case GGML_OP_ADD:
  14557. {
  14558. if (src0->grad) {
  14559. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14560. }
  14561. if (src1->grad) {
  14562. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14563. }
  14564. } break;
  14565. case GGML_OP_ADD1:
  14566. {
  14567. if (src0->grad) {
  14568. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14569. }
  14570. if (src1->grad) {
  14571. src1->grad = ggml_add_or_set(ctx,
  14572. src1->grad,
  14573. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14574. zero_table);
  14575. }
  14576. } break;
  14577. case GGML_OP_ACC:
  14578. {
  14579. if (src0->grad) {
  14580. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14581. }
  14582. if (src1->grad) {
  14583. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14584. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14585. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14586. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14587. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14588. tensor->grad,
  14589. src1->grad->ne[0],
  14590. src1->grad->ne[1],
  14591. src1->grad->ne[2],
  14592. src1->grad->ne[3],
  14593. nb1, nb2, nb3, offset);
  14594. src1->grad =
  14595. ggml_add_or_set(ctx,
  14596. src1->grad,
  14597. ggml_reshape(ctx,
  14598. ggml_cont(ctx, tensor_grad_view),
  14599. src1->grad),
  14600. zero_table);
  14601. }
  14602. } break;
  14603. case GGML_OP_SUB:
  14604. {
  14605. if (src0->grad) {
  14606. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14607. }
  14608. if (src1->grad) {
  14609. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14610. }
  14611. } break;
  14612. case GGML_OP_MUL:
  14613. {
  14614. if (src0->grad) {
  14615. src0->grad =
  14616. ggml_add_or_set(ctx,
  14617. src0->grad,
  14618. ggml_mul(ctx, src1, tensor->grad),
  14619. zero_table);
  14620. }
  14621. if (src1->grad) {
  14622. src1->grad =
  14623. ggml_add_or_set(ctx,
  14624. src1->grad,
  14625. ggml_mul(ctx, src0, tensor->grad),
  14626. zero_table);
  14627. }
  14628. } break;
  14629. case GGML_OP_DIV:
  14630. {
  14631. if (src0->grad) {
  14632. src0->grad =
  14633. ggml_add_or_set(ctx,
  14634. src0->grad,
  14635. ggml_div(ctx, tensor->grad, src1),
  14636. zero_table);
  14637. }
  14638. if (src1->grad) {
  14639. src1->grad =
  14640. ggml_sub_or_set(ctx,
  14641. src1->grad,
  14642. ggml_mul(ctx,
  14643. tensor->grad,
  14644. ggml_div(ctx, tensor, src1)),
  14645. zero_table);
  14646. }
  14647. } break;
  14648. case GGML_OP_SQR:
  14649. {
  14650. if (src0->grad) {
  14651. src0->grad =
  14652. ggml_add_or_set(ctx,
  14653. src0->grad,
  14654. ggml_scale(ctx,
  14655. ggml_mul(ctx, src0, tensor->grad),
  14656. 2.0f),
  14657. zero_table);
  14658. }
  14659. } break;
  14660. case GGML_OP_SQRT:
  14661. {
  14662. if (src0->grad) {
  14663. src0->grad =
  14664. ggml_add_or_set(ctx,
  14665. src0->grad,
  14666. ggml_scale(ctx,
  14667. ggml_div(ctx,
  14668. tensor->grad,
  14669. tensor),
  14670. 0.5f),
  14671. zero_table);
  14672. }
  14673. } break;
  14674. case GGML_OP_LOG:
  14675. {
  14676. if (src0->grad) {
  14677. src0->grad =
  14678. ggml_add_or_set(ctx,
  14679. src0->grad,
  14680. ggml_div(ctx,
  14681. tensor->grad,
  14682. src0),
  14683. zero_table);
  14684. }
  14685. } break;
  14686. case GGML_OP_SUM:
  14687. {
  14688. if (src0->grad) {
  14689. src0->grad =
  14690. ggml_add1_or_set(ctx,
  14691. src0->grad,
  14692. tensor->grad,
  14693. zero_table);
  14694. }
  14695. } break;
  14696. case GGML_OP_SUM_ROWS:
  14697. {
  14698. if (src0->grad) {
  14699. src0->grad =
  14700. ggml_add_or_set(ctx,
  14701. src0->grad,
  14702. ggml_repeat(ctx,
  14703. tensor->grad,
  14704. src0->grad),
  14705. zero_table);
  14706. }
  14707. } break;
  14708. case GGML_OP_MEAN:
  14709. case GGML_OP_ARGMAX:
  14710. {
  14711. GGML_ASSERT(false); // TODO: implement
  14712. } break;
  14713. case GGML_OP_REPEAT:
  14714. {
  14715. // necessary for llama
  14716. if (src0->grad) {
  14717. src0->grad = ggml_add_or_set(ctx,
  14718. src0->grad,
  14719. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14720. zero_table);
  14721. }
  14722. } break;
  14723. case GGML_OP_REPEAT_BACK:
  14724. {
  14725. if (src0->grad) {
  14726. // TODO: test this
  14727. src0->grad = ggml_add_or_set(ctx,
  14728. src0->grad,
  14729. ggml_repeat(ctx, tensor->grad, src0->grad),
  14730. zero_table);
  14731. }
  14732. } break;
  14733. case GGML_OP_CONCAT:
  14734. {
  14735. GGML_ASSERT(false); // TODO: implement
  14736. } break;
  14737. case GGML_OP_SILU_BACK:
  14738. {
  14739. GGML_ASSERT(false); // TODO: not implemented
  14740. } break;
  14741. case GGML_OP_NORM:
  14742. {
  14743. GGML_ASSERT(false); // TODO: not implemented
  14744. } break;
  14745. case GGML_OP_RMS_NORM:
  14746. {
  14747. // necessary for llama
  14748. if (src0->grad) {
  14749. float eps;
  14750. memcpy(&eps, tensor->op_params, sizeof(float));
  14751. src0->grad = ggml_add_or_set(ctx,
  14752. src0->grad,
  14753. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14754. zero_table);
  14755. }
  14756. } break;
  14757. case GGML_OP_RMS_NORM_BACK:
  14758. {
  14759. GGML_ASSERT(false); // TODO: not implemented
  14760. } break;
  14761. case GGML_OP_GROUP_NORM:
  14762. {
  14763. GGML_ASSERT(false); // TODO: not implemented
  14764. } break;
  14765. case GGML_OP_MUL_MAT:
  14766. {
  14767. // https://cs231n.github.io/optimization-2/#staged
  14768. // # forward pass
  14769. // s0 = np.random.randn(5, 10)
  14770. // s1 = np.random.randn(10, 3)
  14771. // t = s0.dot(s1)
  14772. // # now suppose we had the gradient on t from above in the circuit
  14773. // dt = np.random.randn(*t.shape) # same shape as t
  14774. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14775. // ds1 = t.T.dot(dt)
  14776. // tensor.shape [m,p,qq,rr]
  14777. // src0.shape [n,m,q1,r1]
  14778. // src1.shape [n,p,qq,rr]
  14779. // necessary for llama
  14780. if (src0->grad) {
  14781. struct ggml_tensor * s1_tg =
  14782. ggml_out_prod(ctx, // [n,m,qq,rr]
  14783. src1, // [n,p,qq,rr]
  14784. tensor->grad); // [m,p,qq,rr]
  14785. const int64_t qq = s1_tg->ne[2];
  14786. const int64_t rr = s1_tg->ne[3];
  14787. const int64_t q1 = src0->ne[2];
  14788. const int64_t r1 = src0->ne[3];
  14789. const bool ne2_broadcasted = qq > q1;
  14790. const bool ne3_broadcasted = rr > r1;
  14791. if (ne2_broadcasted || ne3_broadcasted) {
  14792. // sum broadcast repetitions of s1_tg into shape of src0
  14793. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14794. }
  14795. src0->grad =
  14796. ggml_add_or_set(ctx,
  14797. src0->grad, // [n,m,q1,r1]
  14798. s1_tg, // [n,m,q1,r1]
  14799. zero_table);
  14800. }
  14801. if (src1->grad) {
  14802. src1->grad =
  14803. ggml_add_or_set(ctx,
  14804. src1->grad, // [n,p,qq,rr]
  14805. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14806. // ggml_cont(ctx, // [m,n,q1,r1]
  14807. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14808. // tensor->grad), // [m,p,qq,rr]
  14809. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14810. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14811. // // and then use ggml_out_prod
  14812. ggml_out_prod(ctx, // [n,p,qq,rr]
  14813. src0, // [n,m,q1,r1]
  14814. ggml_transpose(ctx, // [p,m,qq,rr]
  14815. tensor->grad)), // [m,p,qq,rr]
  14816. zero_table);
  14817. }
  14818. } break;
  14819. case GGML_OP_MUL_MAT_ID:
  14820. {
  14821. GGML_ASSERT(false); // TODO: not implemented
  14822. } break;
  14823. case GGML_OP_OUT_PROD:
  14824. {
  14825. GGML_ASSERT(false); // TODO: not implemented
  14826. } break;
  14827. case GGML_OP_SCALE:
  14828. {
  14829. // necessary for llama
  14830. if (src0->grad) {
  14831. float s;
  14832. memcpy(&s, tensor->op_params, sizeof(float));
  14833. src0->grad =
  14834. ggml_add_or_set(ctx,
  14835. src0->grad,
  14836. ggml_scale_impl(ctx, tensor->grad, s, false),
  14837. zero_table);
  14838. }
  14839. } break;
  14840. case GGML_OP_SET:
  14841. {
  14842. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14843. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14844. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14845. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14846. struct ggml_tensor * tensor_grad_view = NULL;
  14847. if (src0->grad || src1->grad) {
  14848. GGML_ASSERT(src0->type == tensor->type);
  14849. GGML_ASSERT(tensor->grad->type == tensor->type);
  14850. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14851. tensor_grad_view = ggml_view_4d(ctx,
  14852. tensor->grad,
  14853. src1->grad->ne[0],
  14854. src1->grad->ne[1],
  14855. src1->grad->ne[2],
  14856. src1->grad->ne[3],
  14857. nb1, nb2, nb3, offset);
  14858. }
  14859. if (src0->grad) {
  14860. src0->grad = ggml_add_or_set(ctx,
  14861. src0->grad,
  14862. ggml_acc_impl(ctx,
  14863. tensor->grad,
  14864. ggml_neg(ctx, tensor_grad_view),
  14865. nb1, nb2, nb3, offset, false),
  14866. zero_table);
  14867. }
  14868. if (src1->grad) {
  14869. src1->grad =
  14870. ggml_add_or_set(ctx,
  14871. src1->grad,
  14872. ggml_reshape(ctx,
  14873. ggml_cont(ctx, tensor_grad_view),
  14874. src1->grad),
  14875. zero_table);
  14876. }
  14877. } break;
  14878. case GGML_OP_CPY:
  14879. {
  14880. // necessary for llama
  14881. // cpy overwrites value of src1 by src0 and returns view(src1)
  14882. // the overwriting is mathematically equivalent to:
  14883. // tensor = src0 * 1 + src1 * 0
  14884. if (src0->grad) {
  14885. // dsrc0 = dtensor * 1
  14886. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14887. }
  14888. if (src1->grad) {
  14889. // dsrc1 = dtensor * 0 -> noop
  14890. }
  14891. } break;
  14892. case GGML_OP_CONT:
  14893. {
  14894. // same as cpy
  14895. if (src0->grad) {
  14896. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14897. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14898. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14899. }
  14900. } break;
  14901. case GGML_OP_RESHAPE:
  14902. {
  14903. // necessary for llama
  14904. if (src0->grad) {
  14905. src0->grad =
  14906. ggml_add_or_set(ctx, src0->grad,
  14907. ggml_reshape(ctx,
  14908. ggml_is_contiguous(tensor->grad)
  14909. ? tensor->grad
  14910. : ggml_cont(ctx, tensor->grad),
  14911. src0->grad),
  14912. zero_table);
  14913. }
  14914. } break;
  14915. case GGML_OP_VIEW:
  14916. {
  14917. // necessary for llama
  14918. if (src0->grad) {
  14919. size_t offset;
  14920. memcpy(&offset, tensor->op_params, sizeof(offset));
  14921. size_t nb1 = tensor->nb[1];
  14922. size_t nb2 = tensor->nb[2];
  14923. size_t nb3 = tensor->nb[3];
  14924. if (src0->type != src0->grad->type) {
  14925. // gradient is typically F32, but src0 could be other type
  14926. size_t ng = ggml_element_size(src0->grad);
  14927. size_t n0 = ggml_element_size(src0);
  14928. GGML_ASSERT(offset % n0 == 0);
  14929. GGML_ASSERT(nb1 % n0 == 0);
  14930. GGML_ASSERT(nb2 % n0 == 0);
  14931. GGML_ASSERT(nb3 % n0 == 0);
  14932. offset = (offset / n0) * ng;
  14933. nb1 = (nb1 / n0) * ng;
  14934. nb2 = (nb2 / n0) * ng;
  14935. nb3 = (nb3 / n0) * ng;
  14936. }
  14937. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14938. }
  14939. } break;
  14940. case GGML_OP_PERMUTE:
  14941. {
  14942. // necessary for llama
  14943. if (src0->grad) {
  14944. int32_t * axes = (int32_t *) tensor->op_params;
  14945. int axis0 = axes[0] & 0x3;
  14946. int axis1 = axes[1] & 0x3;
  14947. int axis2 = axes[2] & 0x3;
  14948. int axis3 = axes[3] & 0x3;
  14949. int axes_backward[4] = {0,0,0,0};
  14950. axes_backward[axis0] = 0;
  14951. axes_backward[axis1] = 1;
  14952. axes_backward[axis2] = 2;
  14953. axes_backward[axis3] = 3;
  14954. src0->grad =
  14955. ggml_add_or_set(ctx, src0->grad,
  14956. ggml_permute(ctx,
  14957. tensor->grad,
  14958. axes_backward[0],
  14959. axes_backward[1],
  14960. axes_backward[2],
  14961. axes_backward[3]),
  14962. zero_table);
  14963. }
  14964. } break;
  14965. case GGML_OP_TRANSPOSE:
  14966. {
  14967. // necessary for llama
  14968. if (src0->grad) {
  14969. src0->grad =
  14970. ggml_add_or_set(ctx, src0->grad,
  14971. ggml_transpose(ctx, tensor->grad),
  14972. zero_table);
  14973. }
  14974. } break;
  14975. case GGML_OP_GET_ROWS:
  14976. {
  14977. // necessary for llama (only for tokenizer)
  14978. if (src0->grad) {
  14979. src0->grad =
  14980. ggml_add_or_set(ctx, src0->grad,
  14981. // last ggml_get_rows_back argument src0->grad is only
  14982. // necessary to setup correct output shape
  14983. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14984. zero_table);
  14985. }
  14986. if (src1->grad) {
  14987. // noop
  14988. }
  14989. } break;
  14990. case GGML_OP_GET_ROWS_BACK:
  14991. {
  14992. GGML_ASSERT(false); // TODO: not implemented
  14993. } break;
  14994. case GGML_OP_DIAG:
  14995. {
  14996. GGML_ASSERT(false); // TODO: not implemented
  14997. } break;
  14998. case GGML_OP_DIAG_MASK_INF:
  14999. {
  15000. // necessary for llama
  15001. if (src0->grad) {
  15002. const int n_past = ((int32_t *) tensor->op_params)[0];
  15003. src0->grad =
  15004. ggml_add_or_set(ctx, src0->grad,
  15005. /* ggml_diag_mask_inf_impl() shouldn't be here */
  15006. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  15007. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15008. zero_table);
  15009. }
  15010. } break;
  15011. case GGML_OP_DIAG_MASK_ZERO:
  15012. {
  15013. // necessary for llama
  15014. if (src0->grad) {
  15015. const int n_past = ((int32_t *) tensor->op_params)[0];
  15016. src0->grad =
  15017. ggml_add_or_set(ctx, src0->grad,
  15018. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  15019. zero_table);
  15020. }
  15021. } break;
  15022. case GGML_OP_SOFT_MAX:
  15023. {
  15024. // necessary for llama
  15025. if (src0->grad) {
  15026. src0->grad =
  15027. ggml_add_or_set(ctx, src0->grad,
  15028. ggml_soft_max_back(ctx, tensor->grad, tensor),
  15029. zero_table);
  15030. }
  15031. } break;
  15032. case GGML_OP_SOFT_MAX_BACK:
  15033. {
  15034. GGML_ASSERT(false); // TODO: not implemented
  15035. } break;
  15036. case GGML_OP_ROPE:
  15037. {
  15038. // necessary for llama
  15039. if (src0->grad) {
  15040. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15041. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15042. const int mode = ((int32_t *) tensor->op_params)[2];
  15043. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15044. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15045. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15046. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15047. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15048. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15049. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15050. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15051. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15052. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15053. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15054. src0->grad = ggml_add_or_set(ctx,
  15055. src0->grad,
  15056. ggml_rope_back(ctx,
  15057. tensor->grad,
  15058. src1,
  15059. src2,
  15060. n_dims,
  15061. mode,
  15062. n_ctx,
  15063. n_orig_ctx,
  15064. freq_base,
  15065. freq_scale,
  15066. ext_factor,
  15067. attn_factor,
  15068. beta_fast,
  15069. beta_slow,
  15070. xpos_base,
  15071. xpos_down),
  15072. zero_table);
  15073. }
  15074. } break;
  15075. case GGML_OP_ROPE_BACK:
  15076. {
  15077. if (src0->grad) {
  15078. //const int n_past = ((int32_t *) tensor->op_params)[0];
  15079. const int n_dims = ((int32_t *) tensor->op_params)[1];
  15080. const int mode = ((int32_t *) tensor->op_params)[2];
  15081. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  15082. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  15083. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  15084. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  15085. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  15086. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  15087. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  15088. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  15089. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  15090. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  15091. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  15092. src0->grad = ggml_add_or_set(ctx,
  15093. src0->grad,
  15094. ggml_rope_impl(ctx,
  15095. tensor->grad,
  15096. src1,
  15097. src2,
  15098. n_dims,
  15099. mode,
  15100. n_ctx,
  15101. n_orig_ctx,
  15102. freq_base,
  15103. freq_scale,
  15104. ext_factor,
  15105. attn_factor,
  15106. beta_fast,
  15107. beta_slow,
  15108. xpos_base,
  15109. xpos_down,
  15110. false),
  15111. zero_table);
  15112. }
  15113. } break;
  15114. case GGML_OP_CLAMP:
  15115. {
  15116. GGML_ASSERT(false); // TODO: not implemented
  15117. } break;
  15118. case GGML_OP_CONV_TRANSPOSE_1D:
  15119. {
  15120. GGML_ASSERT(false); // TODO: not implemented
  15121. } break;
  15122. case GGML_OP_IM2COL:
  15123. {
  15124. GGML_ASSERT(false); // TODO: not implemented
  15125. } break;
  15126. case GGML_OP_CONV_TRANSPOSE_2D:
  15127. {
  15128. GGML_ASSERT(false); // TODO: not implemented
  15129. } break;
  15130. case GGML_OP_POOL_1D:
  15131. {
  15132. GGML_ASSERT(false); // TODO: not implemented
  15133. } break;
  15134. case GGML_OP_POOL_2D:
  15135. {
  15136. GGML_ASSERT(false); // TODO: not implemented
  15137. } break;
  15138. case GGML_OP_UPSCALE:
  15139. {
  15140. GGML_ASSERT(false); // TODO: not implemented
  15141. } break;
  15142. case GGML_OP_PAD:
  15143. {
  15144. GGML_ASSERT(false); // TODO: not implemented
  15145. } break;
  15146. case GGML_OP_ARANGE:
  15147. {
  15148. GGML_ASSERT(false); // TODO: not implemented
  15149. } break;
  15150. case GGML_OP_TIMESTEP_EMBEDDING:
  15151. {
  15152. GGML_ASSERT(false); // TODO: not implemented
  15153. } break;
  15154. case GGML_OP_ARGSORT:
  15155. {
  15156. GGML_ASSERT(false); // TODO: not implemented
  15157. } break;
  15158. case GGML_OP_LEAKY_RELU:
  15159. {
  15160. GGML_ASSERT(false); // TODO: not implemented
  15161. } break;
  15162. case GGML_OP_FLASH_ATTN_EXT:
  15163. {
  15164. struct ggml_tensor * flash_grad = NULL;
  15165. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  15166. int32_t t = ggml_get_op_params_i32(tensor, 0);
  15167. GGML_ASSERT(t == 0 || t == 1);
  15168. bool masked = t != 0;
  15169. flash_grad =
  15170. ggml_flash_attn_back(ctx,
  15171. src0,
  15172. src1,
  15173. tensor->src[2],
  15174. tensor->grad,
  15175. masked);
  15176. }
  15177. const int64_t elem_q = ggml_nelements(src0);
  15178. const int64_t elem_k = ggml_nelements(src1);
  15179. const int64_t elem_v = ggml_nelements(src2);
  15180. enum ggml_type result_type = flash_grad->type;
  15181. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  15182. const size_t tsize = ggml_type_size(result_type);
  15183. const size_t offs_q = 0;
  15184. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  15185. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  15186. if (src0->grad) {
  15187. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  15188. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  15189. src0->grad = ggml_add_or_set(ctx,
  15190. src0->grad,
  15191. grad_q,
  15192. zero_table);
  15193. }
  15194. if (src1->grad) {
  15195. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  15196. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  15197. src1->grad = ggml_add_or_set(ctx,
  15198. src1->grad,
  15199. grad_k,
  15200. zero_table);
  15201. }
  15202. if (src2->grad) {
  15203. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  15204. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  15205. src2->grad = ggml_add_or_set(ctx,
  15206. src2->grad,
  15207. grad_v,
  15208. zero_table);
  15209. }
  15210. } break;
  15211. case GGML_OP_FLASH_ATTN_BACK:
  15212. {
  15213. GGML_ASSERT(false); // not supported
  15214. } break;
  15215. case GGML_OP_SSM_CONV:
  15216. case GGML_OP_SSM_SCAN:
  15217. {
  15218. GGML_ASSERT(false); // TODO: not implemented
  15219. } break;
  15220. case GGML_OP_WIN_PART:
  15221. case GGML_OP_WIN_UNPART:
  15222. case GGML_OP_UNARY:
  15223. {
  15224. switch (ggml_get_unary_op(tensor)) {
  15225. case GGML_UNARY_OP_ABS:
  15226. {
  15227. if (src0->grad) {
  15228. src0->grad =
  15229. ggml_add_or_set(ctx,
  15230. src0->grad,
  15231. ggml_mul(ctx,
  15232. ggml_sgn(ctx, src0),
  15233. tensor->grad),
  15234. zero_table);
  15235. }
  15236. } break;
  15237. case GGML_UNARY_OP_SGN:
  15238. {
  15239. if (src0->grad) {
  15240. // noop
  15241. }
  15242. } break;
  15243. case GGML_UNARY_OP_NEG:
  15244. {
  15245. if (src0->grad) {
  15246. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  15247. }
  15248. } break;
  15249. case GGML_UNARY_OP_STEP:
  15250. {
  15251. if (src0->grad) {
  15252. // noop
  15253. }
  15254. } break;
  15255. case GGML_UNARY_OP_TANH:
  15256. {
  15257. GGML_ASSERT(false); // TODO: not implemented
  15258. } break;
  15259. case GGML_UNARY_OP_ELU:
  15260. {
  15261. GGML_ASSERT(false); // TODO: not implemented
  15262. } break;
  15263. case GGML_UNARY_OP_RELU:
  15264. {
  15265. if (src0->grad) {
  15266. src0->grad = ggml_add_or_set(ctx,
  15267. src0->grad,
  15268. ggml_mul(ctx,
  15269. ggml_step(ctx, src0),
  15270. tensor->grad),
  15271. zero_table);
  15272. }
  15273. } break;
  15274. case GGML_UNARY_OP_SIGMOID:
  15275. {
  15276. GGML_ASSERT(false); // TODO: not implemented
  15277. } break;
  15278. case GGML_UNARY_OP_GELU:
  15279. {
  15280. GGML_ASSERT(false); // TODO: not implemented
  15281. } break;
  15282. case GGML_UNARY_OP_GELU_QUICK:
  15283. {
  15284. GGML_ASSERT(false); // TODO: not implemented
  15285. } break;
  15286. case GGML_UNARY_OP_SILU:
  15287. {
  15288. // necessary for llama
  15289. if (src0->grad) {
  15290. src0->grad = ggml_add_or_set(ctx,
  15291. src0->grad,
  15292. ggml_silu_back(ctx, src0, tensor->grad),
  15293. zero_table);
  15294. }
  15295. } break;
  15296. default:
  15297. GGML_ASSERT(false);
  15298. }
  15299. } break;
  15300. case GGML_OP_GET_REL_POS:
  15301. case GGML_OP_ADD_REL_POS:
  15302. case GGML_OP_MAP_UNARY:
  15303. case GGML_OP_MAP_BINARY:
  15304. case GGML_OP_MAP_CUSTOM1_F32:
  15305. case GGML_OP_MAP_CUSTOM2_F32:
  15306. case GGML_OP_MAP_CUSTOM3_F32:
  15307. case GGML_OP_MAP_CUSTOM1:
  15308. case GGML_OP_MAP_CUSTOM2:
  15309. case GGML_OP_MAP_CUSTOM3:
  15310. {
  15311. GGML_ASSERT(false); // not supported
  15312. } break;
  15313. case GGML_OP_CROSS_ENTROPY_LOSS:
  15314. {
  15315. if (src0->grad) {
  15316. src0->grad = ggml_add_or_set(ctx,
  15317. src0->grad,
  15318. ggml_cross_entropy_loss_back(ctx,
  15319. src0,
  15320. src1,
  15321. tensor->grad),
  15322. zero_table);
  15323. }
  15324. } break;
  15325. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15326. {
  15327. GGML_ASSERT(false); // not supported
  15328. } break;
  15329. case GGML_OP_NONE:
  15330. {
  15331. // nop
  15332. } break;
  15333. case GGML_OP_COUNT:
  15334. {
  15335. GGML_ASSERT(false);
  15336. } break;
  15337. }
  15338. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15339. if (tensor->src[i] && tensor->src[i]->grad) {
  15340. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  15341. }
  15342. }
  15343. }
  15344. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  15345. if (node->grad == NULL) {
  15346. // this usually happens when we generate intermediate nodes from constants in the backward pass
  15347. // it can also happen during forward pass, if the user performs computations with constants
  15348. if (node->op != GGML_OP_NONE) {
  15349. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  15350. }
  15351. }
  15352. // check if already visited
  15353. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  15354. return;
  15355. }
  15356. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  15357. const int k =
  15358. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  15359. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  15360. /* unknown order, just fall back to using i*/ i;
  15361. if (node->src[k]) {
  15362. ggml_visit_parents(cgraph, node->src[k]);
  15363. }
  15364. }
  15365. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  15366. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  15367. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  15368. if (strlen(node->name) == 0) {
  15369. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  15370. }
  15371. cgraph->leafs[cgraph->n_leafs] = node;
  15372. cgraph->n_leafs++;
  15373. } else {
  15374. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  15375. if (strlen(node->name) == 0) {
  15376. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  15377. }
  15378. cgraph->nodes[cgraph->n_nodes] = node;
  15379. if (cgraph->grads) {
  15380. cgraph->grads[cgraph->n_nodes] = node->grad;
  15381. }
  15382. cgraph->n_nodes++;
  15383. }
  15384. }
  15385. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  15386. if (!expand) {
  15387. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  15388. ggml_graph_clear(cgraph);
  15389. }
  15390. const int n0 = cgraph->n_nodes;
  15391. UNUSED(n0);
  15392. ggml_visit_parents(cgraph, tensor);
  15393. const int n_new = cgraph->n_nodes - n0;
  15394. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  15395. if (n_new > 0) {
  15396. // the last added node should always be starting point
  15397. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  15398. }
  15399. }
  15400. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  15401. ggml_build_forward_impl(cgraph, tensor, true);
  15402. }
  15403. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  15404. GGML_ASSERT(gf->n_nodes > 0);
  15405. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  15406. if (keep) {
  15407. for (int i = 0; i < gf->n_nodes; i++) {
  15408. struct ggml_tensor * node = gf->nodes[i];
  15409. if (node->grad) {
  15410. node->grad = ggml_dup_tensor(ctx, node);
  15411. gf->grads[i] = node->grad;
  15412. }
  15413. }
  15414. }
  15415. // remember original gradients which start with zero values
  15416. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15417. for (int i = 0; i < gf->n_nodes; i++) {
  15418. if (gf->grads[i]) {
  15419. ggml_hash_insert(zero_table, gf->grads[i]);
  15420. }
  15421. }
  15422. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15423. struct ggml_tensor * node = gf->nodes[i];
  15424. // inplace operations to add gradients are not created by ggml_compute_backward
  15425. // use allocator to automatically make inplace operations
  15426. if (node->grad) {
  15427. ggml_compute_backward(ctx, node, zero_table);
  15428. }
  15429. }
  15430. for (int i = 0; i < gf->n_nodes; i++) {
  15431. struct ggml_tensor * node = gf->nodes[i];
  15432. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15433. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15434. ggml_build_forward_expand(gb, node->grad);
  15435. }
  15436. }
  15437. ggml_hash_set_free(zero_table);
  15438. }
  15439. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15440. size_t nbytes = sizeof(struct ggml_cgraph);
  15441. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  15442. if (grads) {
  15443. nbytes += size * sizeof(struct ggml_tensor *); // grads
  15444. }
  15445. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  15446. return nbytes;
  15447. }
  15448. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15449. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15450. }
  15451. size_t ggml_graph_overhead(void) {
  15452. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15453. }
  15454. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15455. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15456. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15457. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15458. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  15459. size_t hash_size = ggml_hash_size(size * 2);
  15460. struct ggml_tensor ** nodes_ptr = data_start;
  15461. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  15462. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  15463. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  15464. // check that we allocated the correct amount of memory
  15465. assert(obj_size == (size_t) (
  15466. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  15467. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  15468. *cgraph = (struct ggml_cgraph) {
  15469. /*.size =*/ size,
  15470. /*.n_nodes =*/ 0,
  15471. /*.n_leafs =*/ 0,
  15472. /*.nodes =*/ nodes_ptr,
  15473. /*.grads =*/ grads_ptr,
  15474. /*.leafs =*/ leafs_ptr,
  15475. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  15476. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15477. /*.perf_runs =*/ 0,
  15478. /*.perf_cycles =*/ 0,
  15479. /*.perf_time_us =*/ 0,
  15480. };
  15481. return cgraph;
  15482. }
  15483. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15484. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15485. }
  15486. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15487. struct ggml_cgraph cgraph = {
  15488. /*.size =*/ 0,
  15489. /*.n_nodes =*/ i1 - i0,
  15490. /*.n_leafs =*/ 0,
  15491. /*.nodes =*/ cgraph0->nodes + i0,
  15492. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15493. /*.leafs =*/ NULL,
  15494. /*.hash_table =*/ { 0, NULL },
  15495. /*.order =*/ cgraph0->order,
  15496. /*.perf_runs =*/ 0,
  15497. /*.perf_cycles =*/ 0,
  15498. /*.perf_time_us =*/ 0,
  15499. };
  15500. return cgraph;
  15501. }
  15502. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15503. GGML_ASSERT(dst->size >= src->n_leafs);
  15504. GGML_ASSERT(dst->size >= src->n_nodes);
  15505. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  15506. dst->n_leafs = src->n_leafs;
  15507. dst->n_nodes = src->n_nodes;
  15508. dst->order = src->order;
  15509. for (int i = 0; i < src->n_leafs; ++i) {
  15510. dst->leafs[i] = src->leafs[i];
  15511. }
  15512. for (int i = 0; i < src->n_nodes; ++i) {
  15513. dst->nodes[i] = src->nodes[i];
  15514. }
  15515. if (src->grads) {
  15516. GGML_ASSERT(dst->grads != NULL);
  15517. for (int i = 0; i < src->n_nodes; ++i) {
  15518. dst->grads[i] = src->grads[i];
  15519. }
  15520. }
  15521. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  15522. if (src->visited_hash_table.keys[i]) {
  15523. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  15524. }
  15525. }
  15526. }
  15527. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15528. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15529. ggml_graph_cpy(cgraph, result);
  15530. return result;
  15531. }
  15532. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15533. GGML_ASSERT(cgraph->grads != NULL);
  15534. for (int i = 0; i < cgraph->n_nodes; i++) {
  15535. struct ggml_tensor * grad = cgraph->grads[i];
  15536. if (grad) {
  15537. ggml_set_zero(grad);
  15538. }
  15539. }
  15540. }
  15541. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15542. cgraph->n_leafs = 0;
  15543. cgraph->n_nodes = 0;
  15544. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  15545. }
  15546. //
  15547. // thread data
  15548. //
  15549. // synchronization is done via busy loops
  15550. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15551. //
  15552. #ifdef __APPLE__
  15553. //#include <os/lock.h>
  15554. //
  15555. //typedef os_unfair_lock ggml_lock_t;
  15556. //
  15557. //#define ggml_lock_init(x) UNUSED(x)
  15558. //#define ggml_lock_destroy(x) UNUSED(x)
  15559. //#define ggml_lock_lock os_unfair_lock_lock
  15560. //#define ggml_lock_unlock os_unfair_lock_unlock
  15561. //
  15562. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15563. typedef int ggml_lock_t;
  15564. #define ggml_lock_init(x) UNUSED(x)
  15565. #define ggml_lock_destroy(x) UNUSED(x)
  15566. #define ggml_lock_lock(x) UNUSED(x)
  15567. #define ggml_lock_unlock(x) UNUSED(x)
  15568. #define GGML_LOCK_INITIALIZER 0
  15569. #define ggml_thread_create pthread_create
  15570. #define ggml_thread_join pthread_join
  15571. #else
  15572. //typedef pthread_spinlock_t ggml_lock_t;
  15573. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15574. //#define ggml_lock_destroy pthread_spin_destroy
  15575. //#define ggml_lock_lock pthread_spin_lock
  15576. //#define ggml_lock_unlock pthread_spin_unlock
  15577. typedef int ggml_lock_t;
  15578. #define ggml_lock_init(x) UNUSED(x)
  15579. #define ggml_lock_destroy(x) UNUSED(x)
  15580. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15581. #define ggml_lock_lock(x) _mm_pause()
  15582. #else
  15583. #define ggml_lock_lock(x) UNUSED(x)
  15584. #endif
  15585. #define ggml_lock_unlock(x) UNUSED(x)
  15586. #define GGML_LOCK_INITIALIZER 0
  15587. #define ggml_thread_create pthread_create
  15588. #define ggml_thread_join pthread_join
  15589. #endif
  15590. // Android's libc implementation "bionic" does not support setting affinity
  15591. #if defined(__gnu_linux__)
  15592. static void set_numa_thread_affinity(int thread_n) {
  15593. if (!ggml_is_numa()) {
  15594. return;
  15595. }
  15596. int node_num;
  15597. int rv;
  15598. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15599. switch(g_state.numa.numa_strategy) {
  15600. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15601. // run thread on node_num thread_n / (threads per node)
  15602. node_num = thread_n % g_state.numa.n_nodes;
  15603. break;
  15604. case GGML_NUMA_STRATEGY_ISOLATE:
  15605. // run thread on current_node
  15606. node_num = g_state.numa.current_node;
  15607. break;
  15608. case GGML_NUMA_STRATEGY_NUMACTL:
  15609. // use the cpuset that numactl gave us
  15610. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15611. if (rv) {
  15612. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15613. }
  15614. return;
  15615. default:
  15616. return;
  15617. }
  15618. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15619. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15620. CPU_ZERO_S(setsize, cpus);
  15621. for (size_t i = 0; i < node->n_cpus; ++i) {
  15622. CPU_SET_S(node->cpus[i], setsize, cpus);
  15623. }
  15624. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15625. if (rv) {
  15626. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15627. }
  15628. CPU_FREE(cpus);
  15629. }
  15630. static void clear_numa_thread_affinity(void) {
  15631. if (!ggml_is_numa()) {
  15632. return;
  15633. }
  15634. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15635. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15636. CPU_ZERO_S(setsize, cpus);
  15637. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15638. CPU_SET_S(i, setsize, cpus);
  15639. }
  15640. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15641. if (rv) {
  15642. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15643. }
  15644. CPU_FREE(cpus);
  15645. }
  15646. #else
  15647. // TODO: Windows etc.
  15648. // (the linux implementation may also work on BSD, someone should test)
  15649. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15650. static void clear_numa_thread_affinity(void) {}
  15651. #endif
  15652. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  15653. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  15654. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  15655. node->perf_runs++;
  15656. node->perf_cycles += cycles_cur;
  15657. node->perf_time_us += time_us_cur;
  15658. }
  15659. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  15660. int n_tasks = 0;
  15661. if (ggml_is_empty(node)) {
  15662. // no need to multi-thread a no-op
  15663. n_tasks = 1;
  15664. return n_tasks;
  15665. }
  15666. switch (node->op) {
  15667. case GGML_OP_CPY:
  15668. case GGML_OP_DUP:
  15669. case GGML_OP_ADD:
  15670. case GGML_OP_ADD1:
  15671. case GGML_OP_ACC:
  15672. {
  15673. n_tasks = n_threads;
  15674. } break;
  15675. case GGML_OP_SUB:
  15676. case GGML_OP_SQR:
  15677. case GGML_OP_SQRT:
  15678. case GGML_OP_LOG:
  15679. case GGML_OP_SUM:
  15680. case GGML_OP_SUM_ROWS:
  15681. case GGML_OP_MEAN:
  15682. case GGML_OP_ARGMAX:
  15683. case GGML_OP_REPEAT:
  15684. case GGML_OP_REPEAT_BACK:
  15685. case GGML_OP_LEAKY_RELU:
  15686. {
  15687. n_tasks = 1;
  15688. } break;
  15689. case GGML_OP_UNARY:
  15690. switch (ggml_get_unary_op(node)) {
  15691. case GGML_UNARY_OP_ABS:
  15692. case GGML_UNARY_OP_SGN:
  15693. case GGML_UNARY_OP_NEG:
  15694. case GGML_UNARY_OP_STEP:
  15695. case GGML_UNARY_OP_TANH:
  15696. case GGML_UNARY_OP_ELU:
  15697. case GGML_UNARY_OP_RELU:
  15698. case GGML_UNARY_OP_SIGMOID:
  15699. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  15700. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  15701. {
  15702. n_tasks = 1;
  15703. } break;
  15704. case GGML_UNARY_OP_GELU:
  15705. case GGML_UNARY_OP_GELU_QUICK:
  15706. case GGML_UNARY_OP_SILU:
  15707. {
  15708. n_tasks = n_threads;
  15709. } break;
  15710. default:
  15711. GGML_ASSERT(false);
  15712. }
  15713. break;
  15714. case GGML_OP_SILU_BACK:
  15715. case GGML_OP_MUL:
  15716. case GGML_OP_DIV:
  15717. case GGML_OP_NORM:
  15718. case GGML_OP_RMS_NORM:
  15719. case GGML_OP_RMS_NORM_BACK:
  15720. case GGML_OP_GROUP_NORM:
  15721. case GGML_OP_CONCAT:
  15722. {
  15723. n_tasks = n_threads;
  15724. } break;
  15725. case GGML_OP_MUL_MAT:
  15726. {
  15727. n_tasks = n_threads;
  15728. // TODO: use different scheduling for different matrix sizes
  15729. //const int nr0 = ggml_nrows(node->src[0]);
  15730. //const int nr1 = ggml_nrows(node->src[1]);
  15731. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15732. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15733. } break;
  15734. case GGML_OP_MUL_MAT_ID:
  15735. {
  15736. n_tasks = n_threads;
  15737. } break;
  15738. case GGML_OP_OUT_PROD:
  15739. {
  15740. n_tasks = n_threads;
  15741. } break;
  15742. case GGML_OP_GET_ROWS:
  15743. {
  15744. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  15745. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  15746. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  15747. } break;
  15748. case GGML_OP_SCALE:
  15749. case GGML_OP_SET:
  15750. case GGML_OP_CONT:
  15751. case GGML_OP_RESHAPE:
  15752. case GGML_OP_VIEW:
  15753. case GGML_OP_PERMUTE:
  15754. case GGML_OP_TRANSPOSE:
  15755. case GGML_OP_GET_ROWS_BACK:
  15756. case GGML_OP_DIAG:
  15757. {
  15758. n_tasks = 1;
  15759. } break;
  15760. case GGML_OP_DIAG_MASK_ZERO:
  15761. case GGML_OP_DIAG_MASK_INF:
  15762. case GGML_OP_SOFT_MAX_BACK:
  15763. case GGML_OP_ROPE:
  15764. case GGML_OP_ROPE_BACK:
  15765. case GGML_OP_ADD_REL_POS:
  15766. {
  15767. n_tasks = n_threads;
  15768. } break;
  15769. case GGML_OP_CLAMP:
  15770. {
  15771. n_tasks = 1; //TODO
  15772. } break;
  15773. case GGML_OP_SOFT_MAX:
  15774. {
  15775. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15776. } break;
  15777. case GGML_OP_CONV_TRANSPOSE_1D:
  15778. {
  15779. n_tasks = n_threads;
  15780. } break;
  15781. case GGML_OP_IM2COL:
  15782. {
  15783. n_tasks = n_threads;
  15784. } break;
  15785. case GGML_OP_CONV_TRANSPOSE_2D:
  15786. {
  15787. n_tasks = n_threads;
  15788. } break;
  15789. case GGML_OP_POOL_1D:
  15790. case GGML_OP_POOL_2D:
  15791. {
  15792. n_tasks = 1;
  15793. } break;
  15794. case GGML_OP_UPSCALE:
  15795. {
  15796. n_tasks = n_threads;
  15797. } break;
  15798. case GGML_OP_PAD:
  15799. {
  15800. n_tasks = n_threads;
  15801. } break;
  15802. case GGML_OP_ARANGE:
  15803. {
  15804. n_tasks = n_threads;
  15805. } break;
  15806. case GGML_OP_TIMESTEP_EMBEDDING:
  15807. {
  15808. n_tasks = n_threads;
  15809. } break;
  15810. case GGML_OP_ARGSORT:
  15811. {
  15812. n_tasks = n_threads;
  15813. } break;
  15814. case GGML_OP_FLASH_ATTN_EXT:
  15815. {
  15816. n_tasks = n_threads;
  15817. } break;
  15818. case GGML_OP_FLASH_ATTN_BACK:
  15819. {
  15820. n_tasks = n_threads;
  15821. } break;
  15822. case GGML_OP_SSM_CONV:
  15823. case GGML_OP_SSM_SCAN:
  15824. {
  15825. n_tasks = n_threads;
  15826. } break;
  15827. case GGML_OP_WIN_PART:
  15828. case GGML_OP_WIN_UNPART:
  15829. case GGML_OP_GET_REL_POS:
  15830. case GGML_OP_MAP_UNARY:
  15831. case GGML_OP_MAP_BINARY:
  15832. case GGML_OP_MAP_CUSTOM1_F32:
  15833. case GGML_OP_MAP_CUSTOM2_F32:
  15834. case GGML_OP_MAP_CUSTOM3_F32:
  15835. {
  15836. n_tasks = 1;
  15837. } break;
  15838. case GGML_OP_MAP_CUSTOM1:
  15839. {
  15840. struct ggml_map_custom1_op_params p;
  15841. memcpy(&p, node->op_params, sizeof(p));
  15842. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15843. n_tasks = n_threads;
  15844. } else {
  15845. n_tasks = MIN(p.n_tasks, n_threads);
  15846. }
  15847. } break;
  15848. case GGML_OP_MAP_CUSTOM2:
  15849. {
  15850. struct ggml_map_custom2_op_params p;
  15851. memcpy(&p, node->op_params, sizeof(p));
  15852. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15853. n_tasks = n_threads;
  15854. } else {
  15855. n_tasks = MIN(p.n_tasks, n_threads);
  15856. }
  15857. } break;
  15858. case GGML_OP_MAP_CUSTOM3:
  15859. {
  15860. struct ggml_map_custom3_op_params p;
  15861. memcpy(&p, node->op_params, sizeof(p));
  15862. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15863. n_tasks = n_threads;
  15864. } else {
  15865. n_tasks = MIN(p.n_tasks, n_threads);
  15866. }
  15867. } break;
  15868. case GGML_OP_CROSS_ENTROPY_LOSS:
  15869. {
  15870. n_tasks = n_threads;
  15871. } break;
  15872. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15873. {
  15874. n_tasks = n_threads;
  15875. } break;
  15876. case GGML_OP_NONE:
  15877. {
  15878. n_tasks = 1;
  15879. } break;
  15880. case GGML_OP_COUNT:
  15881. {
  15882. GGML_ASSERT(false);
  15883. } break;
  15884. default:
  15885. {
  15886. fprintf(stderr, "%s: op not implemented: ", __func__);
  15887. if (node->op < GGML_OP_COUNT) {
  15888. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15889. } else {
  15890. fprintf(stderr, "%d\n", node->op);
  15891. }
  15892. GGML_ASSERT(false);
  15893. } break;
  15894. }
  15895. assert(n_tasks > 0);
  15896. return n_tasks;
  15897. }
  15898. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  15899. // wait for other threads to finish
  15900. const int last_node_n = * node_n;
  15901. while (true) {
  15902. if (do_yield) {
  15903. sched_yield();
  15904. }
  15905. * node_n = atomic_load(&state->shared->node_n);
  15906. if (* node_n != last_node_n) break;
  15907. #if defined(__SSE3__)
  15908. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15909. _mm_pause();
  15910. #endif
  15911. }
  15912. }
  15913. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  15914. // wait for other threads to finish
  15915. const int last_task_phase = * task_phase;
  15916. while (true) {
  15917. if (do_yield) {
  15918. sched_yield();
  15919. }
  15920. * task_phase = atomic_load(&state->shared->node_task);
  15921. if (* task_phase != last_task_phase) break;
  15922. #if defined(__SSE3__)
  15923. // Tell the processor we're spinning. It's a processor hint for spinlocks.
  15924. _mm_pause();
  15925. #endif
  15926. }
  15927. }
  15928. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15929. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15930. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15931. const struct ggml_cplan * cplan = state->shared->cplan;
  15932. const int n_threads = state->shared->n_threads;
  15933. set_numa_thread_affinity(state->ith);
  15934. int node_n = -1;
  15935. int task_phase = GGML_TASK_TYPE_FINALIZE;
  15936. while (true) {
  15937. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15938. state->shared->node_n += 1;
  15939. state->ec = GGML_STATUS_ABORTED;
  15940. return 0;
  15941. }
  15942. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15943. // all other threads are finished and spinning
  15944. // do finalize and init here so we don't have synchronize again
  15945. struct ggml_compute_params params = {
  15946. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  15947. /*.ith =*/ 0,
  15948. /*.nth =*/ 0,
  15949. /*.wsize =*/ cplan->work_size,
  15950. /*.wdata =*/ cplan->work_data,
  15951. };
  15952. if (node_n != -1) {
  15953. /* FINALIZE */
  15954. struct ggml_tensor * node = cgraph->nodes[node_n];
  15955. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15956. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15957. ggml_compute_forward(&params, node, state);
  15958. }
  15959. ggml_graph_compute_perf_stats_node(node, state->shared);
  15960. }
  15961. // distribute new work or execute it direct if 1T
  15962. while (++node_n < cgraph->n_nodes) {
  15963. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15964. struct ggml_tensor * node = cgraph->nodes[node_n];
  15965. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15966. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15967. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15968. params.nth = n_tasks;
  15969. if (n_tasks == 1) {
  15970. /* INIT */
  15971. if (GGML_OP_HAS_INIT[node->op]) {
  15972. params.type = GGML_TASK_TYPE_INIT;
  15973. ggml_compute_forward(&params, node, state);
  15974. }
  15975. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15976. // they do something more efficient than spinning (?)
  15977. params.type = GGML_TASK_TYPE_COMPUTE;
  15978. ggml_compute_forward(&params, node, state);
  15979. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15980. params.type = GGML_TASK_TYPE_FINALIZE;
  15981. ggml_compute_forward(&params, node, state);
  15982. }
  15983. ggml_graph_compute_perf_stats_node(node, state->shared);
  15984. } else {
  15985. break;
  15986. }
  15987. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15988. break;
  15989. }
  15990. }
  15991. task_phase = GGML_TASK_TYPE_INIT;
  15992. atomic_store(&state->shared->n_active, n_threads);
  15993. atomic_store(&state->shared->node_n, node_n);
  15994. atomic_store(&state->shared->node_task, task_phase);
  15995. } else {
  15996. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15997. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15998. }
  15999. // check if we should stop
  16000. if (node_n >= cgraph->n_nodes) break;
  16001. /* INIT & COMPUTE */
  16002. struct ggml_tensor * node = cgraph->nodes[node_n];
  16003. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  16004. struct ggml_compute_params params = {
  16005. /*.type =*/ GGML_TASK_TYPE_INIT,
  16006. /*.ith =*/ state->ith,
  16007. /*.nth =*/ n_tasks,
  16008. /*.wsize =*/ cplan->work_size,
  16009. /*.wdata =*/ cplan->work_data,
  16010. };
  16011. if (state->ith < n_tasks) {
  16012. if (GGML_OP_HAS_INIT[node->op]) {
  16013. ggml_compute_forward(&params, node, state);
  16014. }
  16015. }
  16016. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16017. task_phase = GGML_TASK_TYPE_COMPUTE;
  16018. atomic_store(&state->shared->n_active, n_threads);
  16019. atomic_store(&state->shared->node_task, task_phase);
  16020. }
  16021. else {
  16022. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  16023. // depending on the workload and the operating system.
  16024. // since it is not clear what is the best approach, it should potentially become user-configurable
  16025. // ref: https://github.com/ggerganov/ggml/issues/291
  16026. // UPD: adding the do_yield flag seems to resolve the issue universally
  16027. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  16028. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  16029. }
  16030. if (state->ith < n_tasks) {
  16031. params.type = GGML_TASK_TYPE_COMPUTE;
  16032. ggml_compute_forward(&params, node, state);
  16033. }
  16034. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  16035. task_phase = GGML_TASK_TYPE_FINALIZE;
  16036. atomic_store(&state->shared->n_active, n_threads);
  16037. atomic_store(&state->shared->node_task, task_phase);
  16038. }
  16039. else {
  16040. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  16041. }
  16042. }
  16043. return 0;
  16044. }
  16045. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  16046. if (n_threads <= 0) {
  16047. n_threads = GGML_DEFAULT_N_THREADS;
  16048. }
  16049. size_t work_size = 0;
  16050. struct ggml_cplan cplan;
  16051. memset(&cplan, 0, sizeof(struct ggml_cplan));
  16052. int max_tasks = 1;
  16053. // thread scheduling for the different operations + work buffer size estimation
  16054. for (int i = 0; i < cgraph->n_nodes; i++) {
  16055. struct ggml_tensor * node = cgraph->nodes[i];
  16056. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  16057. max_tasks = MAX(max_tasks, n_tasks);
  16058. size_t cur = 0;
  16059. switch (node->op) {
  16060. case GGML_OP_CPY:
  16061. case GGML_OP_DUP:
  16062. {
  16063. if (ggml_is_quantized(node->type) ||
  16064. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  16065. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  16066. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  16067. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16068. }
  16069. } break;
  16070. case GGML_OP_ADD:
  16071. case GGML_OP_ADD1:
  16072. {
  16073. if (ggml_is_quantized(node->src[0]->type)) {
  16074. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16075. }
  16076. } break;
  16077. case GGML_OP_ACC:
  16078. {
  16079. if (ggml_is_quantized(node->src[0]->type)) {
  16080. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  16081. }
  16082. } break;
  16083. case GGML_OP_MUL_MAT:
  16084. {
  16085. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  16086. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  16087. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  16088. if (node->src[0]->type != GGML_TYPE_F32) {
  16089. // here we need memory for fully dequantized matrix from src0
  16090. // take into account that src0 can be broadcasted into src1[2,3]
  16091. cur = ggml_type_size(GGML_TYPE_F32)
  16092. * node->src[0]->ne[0]*node->src[0]->ne[1]
  16093. * node->src[1]->ne[2]*node->src[1]->ne[3];
  16094. }
  16095. } else
  16096. #endif
  16097. if (node->src[1]->type != vec_dot_type) {
  16098. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  16099. }
  16100. } break;
  16101. case GGML_OP_MUL_MAT_ID:
  16102. {
  16103. cur = 0;
  16104. const struct ggml_tensor * src0 = node->src[0];
  16105. const struct ggml_tensor * src1 = node->src[1];
  16106. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  16107. if (src1->type != vec_dot_type) {
  16108. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  16109. }
  16110. const int n_as = src0->ne[2];
  16111. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  16112. cur += n_as * sizeof(int64_t); // matrix_row_counts
  16113. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  16114. } break;
  16115. case GGML_OP_OUT_PROD:
  16116. {
  16117. if (ggml_is_quantized(node->src[0]->type)) {
  16118. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  16119. }
  16120. } break;
  16121. case GGML_OP_SOFT_MAX:
  16122. case GGML_OP_ROPE:
  16123. {
  16124. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  16125. } break;
  16126. case GGML_OP_CONV_TRANSPOSE_1D:
  16127. {
  16128. GGML_ASSERT(node->src[0]->ne[3] == 1);
  16129. GGML_ASSERT(node->src[1]->ne[2] == 1);
  16130. GGML_ASSERT(node->src[1]->ne[3] == 1);
  16131. const int64_t ne00 = node->src[0]->ne[0]; // K
  16132. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  16133. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  16134. const int64_t ne10 = node->src[1]->ne[0]; // L
  16135. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  16136. if ((node->src[0]->type == GGML_TYPE_F16 ||
  16137. node->src[0]->type == GGML_TYPE_BF16) &&
  16138. node->src[1]->type == GGML_TYPE_F32) {
  16139. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  16140. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  16141. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  16142. node->src[1]->type == GGML_TYPE_F32) {
  16143. cur += sizeof(float)*ne00*ne01*ne02;
  16144. cur += sizeof(float)*ne10*ne11;
  16145. } else {
  16146. GGML_ASSERT(false);
  16147. }
  16148. } break;
  16149. case GGML_OP_CONV_TRANSPOSE_2D:
  16150. {
  16151. const int64_t ne00 = node->src[0]->ne[0]; // W
  16152. const int64_t ne01 = node->src[0]->ne[1]; // H
  16153. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  16154. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  16155. const int64_t ne10 = node->src[1]->ne[0]; // W
  16156. const int64_t ne11 = node->src[1]->ne[1]; // H
  16157. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  16158. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  16159. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  16160. } break;
  16161. case GGML_OP_FLASH_ATTN_EXT:
  16162. {
  16163. const int64_t ne00 = node->src[0]->ne[0]; // D
  16164. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  16165. } break;
  16166. case GGML_OP_FLASH_ATTN_BACK:
  16167. {
  16168. const int64_t D = node->src[0]->ne[0];
  16169. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  16170. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  16171. if (node->src[1]->type == GGML_TYPE_F32) {
  16172. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16173. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16174. } else if (node->src[1]->type == GGML_TYPE_F16) {
  16175. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16176. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16177. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  16178. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  16179. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  16180. }
  16181. } break;
  16182. case GGML_OP_CROSS_ENTROPY_LOSS:
  16183. {
  16184. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  16185. } break;
  16186. case GGML_OP_COUNT:
  16187. {
  16188. GGML_ASSERT(false);
  16189. } break;
  16190. default:
  16191. break;
  16192. }
  16193. work_size = MAX(work_size, cur);
  16194. }
  16195. if (work_size > 0) {
  16196. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  16197. }
  16198. cplan.n_threads = MIN(max_tasks, n_threads);
  16199. cplan.work_size = work_size;
  16200. cplan.work_data = NULL;
  16201. return cplan;
  16202. }
  16203. static enum ggml_status ggml_graph_compute_parallel(struct ggml_compute_state * workers, int n_threads) {
  16204. enum ggml_status compute_status = GGML_STATUS_SUCCESS;
  16205. #ifdef GGML_USE_OPENMP
  16206. if (n_threads > 1) {
  16207. #pragma omp parallel num_threads(n_threads)
  16208. {
  16209. #pragma omp single
  16210. {
  16211. // update the number of threads from the actual number of threads that we got from OpenMP
  16212. n_threads = omp_get_num_threads();
  16213. workers[0].shared->n_threads = n_threads;
  16214. workers[0].shared->n_active = n_threads;
  16215. }
  16216. ggml_graph_compute_thread(&workers[omp_get_thread_num()]);
  16217. }
  16218. } else {
  16219. ggml_graph_compute_thread(&workers[0]);
  16220. }
  16221. #else
  16222. // create thread pool
  16223. if (n_threads > 1) {
  16224. for (int j = 1; j < n_threads; ++j) {
  16225. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  16226. GGML_ASSERT(rc == 0);
  16227. UNUSED(rc);
  16228. }
  16229. }
  16230. // this is a work thread too
  16231. ggml_graph_compute_thread(&workers[0]);
  16232. // join or kill thread pool
  16233. if (n_threads > 1) {
  16234. for (int j = 1; j < n_threads; j++) {
  16235. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  16236. GGML_ASSERT(rc == 0);
  16237. UNUSED(rc);
  16238. }
  16239. }
  16240. #endif
  16241. // don't leave affinity set on the main thread
  16242. clear_numa_thread_affinity();
  16243. for (int j = 0; j < n_threads; j++) {
  16244. if (workers[j].ec != GGML_STATUS_SUCCESS) {
  16245. compute_status = workers[j].ec;
  16246. break;
  16247. }
  16248. }
  16249. return compute_status;
  16250. }
  16251. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  16252. {
  16253. GGML_ASSERT(cplan);
  16254. GGML_ASSERT(cplan->n_threads > 0);
  16255. if (cplan->work_size > 0) {
  16256. GGML_ASSERT(cplan->work_data);
  16257. }
  16258. }
  16259. int n_threads = cplan->n_threads;
  16260. #if defined(GGML_USE_OPENMP)
  16261. n_threads = MIN(n_threads, omp_get_max_threads());
  16262. #endif
  16263. struct ggml_compute_state_shared state_shared = {
  16264. /*.cgraph =*/ cgraph,
  16265. /*.cgraph_plan =*/ cplan,
  16266. /*.perf_node_start_cycles =*/ 0,
  16267. /*.perf_node_start_time_us =*/ 0,
  16268. /*.n_threads =*/ n_threads,
  16269. /*.n_active =*/ n_threads,
  16270. /*.node_n =*/ -1,
  16271. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  16272. /*.abort_callback =*/ NULL,
  16273. /*.abort_callback_data =*/ NULL,
  16274. /*.current_chunk; =*/ 0,
  16275. };
  16276. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  16277. const int64_t perf_start_cycles = ggml_perf_cycles();
  16278. const int64_t perf_start_time_us = ggml_perf_time_us();
  16279. for (int j = 0; j < n_threads; ++j) {
  16280. workers[j] = (struct ggml_compute_state) {
  16281. .thrd = 0,
  16282. .ith = j,
  16283. .shared = &state_shared,
  16284. .ec = GGML_STATUS_SUCCESS,
  16285. };
  16286. }
  16287. enum ggml_status compute_status = ggml_graph_compute_parallel(workers, n_threads);
  16288. // performance stats (graph)
  16289. {
  16290. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  16291. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  16292. cgraph->perf_runs++;
  16293. cgraph->perf_cycles += perf_cycles_cur;
  16294. cgraph->perf_time_us += perf_time_us_cur;
  16295. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  16296. __func__, cgraph->perf_runs,
  16297. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  16298. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  16299. (double) perf_time_us_cur / 1000.0,
  16300. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  16301. }
  16302. return compute_status;
  16303. }
  16304. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  16305. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  16306. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16307. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16308. return ggml_graph_compute(cgraph, &cplan);
  16309. }
  16310. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  16311. for (int i = 0; i < cgraph->n_leafs; i++) {
  16312. struct ggml_tensor * leaf = cgraph->leafs[i];
  16313. if (strcmp(leaf->name, name) == 0) {
  16314. return leaf;
  16315. }
  16316. }
  16317. for (int i = 0; i < cgraph->n_nodes; i++) {
  16318. struct ggml_tensor * node = cgraph->nodes[i];
  16319. if (strcmp(node->name, name) == 0) {
  16320. return node;
  16321. }
  16322. }
  16323. return NULL;
  16324. }
  16325. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  16326. const int64_t * ne = tensor->ne;
  16327. const size_t * nb = tensor->nb;
  16328. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16329. ggml_type_name(tensor->type),
  16330. ggml_op_name (tensor->op),
  16331. ggml_n_dims(tensor),
  16332. ne[0], ne[1], ne[2], ne[3],
  16333. nb[0], nb[1], nb[2], nb[3],
  16334. tensor->data,
  16335. tensor->name);
  16336. }
  16337. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  16338. const int64_t * ne = tensor->ne;
  16339. const size_t * nb = tensor->nb;
  16340. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  16341. arg,
  16342. ggml_type_name(tensor->type),
  16343. ggml_op_name (tensor->op),
  16344. ggml_n_dims(tensor),
  16345. ne[0], ne[1], ne[2], ne[3],
  16346. nb[0], nb[1], nb[2], nb[3],
  16347. tensor->data,
  16348. tensor->name);
  16349. }
  16350. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  16351. uint64_t size_eval = 0;
  16352. // compute size of intermediate results
  16353. // TODO: does not take into account scratch buffers !!!!
  16354. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16355. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  16356. }
  16357. // print
  16358. {
  16359. FILE * fout = stdout;
  16360. fprintf(fout, "\n");
  16361. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  16362. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  16363. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  16364. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  16365. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  16366. // header
  16367. fprintf(fout, "\n");
  16368. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  16369. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  16370. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16371. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  16372. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  16373. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  16374. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  16375. }
  16376. // header
  16377. fprintf(fout, "\n");
  16378. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  16379. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  16380. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16381. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  16382. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16383. if (cgraph->nodes[i]->src[j]) {
  16384. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  16385. }
  16386. }
  16387. fprintf(fout, "\n");
  16388. }
  16389. fprintf(fout, "\n");
  16390. }
  16391. // write binary data
  16392. {
  16393. FILE * fout = ggml_fopen(fname, "wb");
  16394. if (!fout) {
  16395. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16396. return;
  16397. }
  16398. // header
  16399. {
  16400. const uint32_t magic = GGML_FILE_MAGIC;
  16401. const uint32_t version = GGML_FILE_VERSION;
  16402. const uint32_t n_leafs = cgraph->n_leafs;
  16403. const uint32_t n_nodes = cgraph->n_nodes;
  16404. fwrite(&magic, sizeof(uint32_t), 1, fout);
  16405. fwrite(&version, sizeof(uint32_t), 1, fout);
  16406. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  16407. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  16408. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  16409. }
  16410. // leafs
  16411. {
  16412. for (int i = 0; i < cgraph->n_leafs; ++i) {
  16413. const struct ggml_tensor * tensor = cgraph->leafs[i];
  16414. const uint32_t type = tensor->type;
  16415. const uint32_t op = tensor->op;
  16416. fwrite(&type, sizeof(uint32_t), 1, fout);
  16417. fwrite(&op, sizeof(uint32_t), 1, fout);
  16418. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16419. const uint64_t ne = tensor->ne[j];
  16420. const uint64_t nb = tensor->nb[j];
  16421. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16422. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16423. }
  16424. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16425. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16426. // dump the data
  16427. // TODO: pad this to 32 byte boundary
  16428. {
  16429. const size_t size = ggml_nbytes(tensor);
  16430. fwrite(tensor->data, sizeof(char), size, fout);
  16431. }
  16432. }
  16433. }
  16434. // nodes
  16435. {
  16436. for (int i = 0; i < cgraph->n_nodes; ++i) {
  16437. const struct ggml_tensor * tensor = cgraph->nodes[i];
  16438. const uint32_t type = tensor->type;
  16439. const uint32_t op = tensor->op;
  16440. fwrite(&type, sizeof(uint32_t), 1, fout);
  16441. fwrite(&op, sizeof(uint32_t), 1, fout);
  16442. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16443. const uint64_t ne = tensor->ne[j];
  16444. const uint64_t nb = tensor->nb[j];
  16445. fwrite(&ne, sizeof(uint64_t), 1, fout);
  16446. fwrite(&nb, sizeof(uint64_t), 1, fout);
  16447. }
  16448. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  16449. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  16450. // output the op arguments
  16451. {
  16452. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16453. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16454. args[j] = tensor->src[j];
  16455. }
  16456. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16457. if (args[j]) {
  16458. int32_t idx = -1;
  16459. // check if leaf
  16460. {
  16461. for (int k = 0; k < cgraph->n_leafs; ++k) {
  16462. if (args[j] == cgraph->leafs[k]) {
  16463. idx = k;
  16464. break;
  16465. }
  16466. }
  16467. }
  16468. // check if node
  16469. if (idx == -1) {
  16470. for (int k = 0; k < cgraph->n_nodes; ++k) {
  16471. if (args[j] == cgraph->nodes[k]) {
  16472. idx = cgraph->n_leafs + k;
  16473. break;
  16474. }
  16475. }
  16476. }
  16477. if (idx == -1) {
  16478. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  16479. fclose(fout);
  16480. return;
  16481. }
  16482. fwrite(&idx, sizeof(int32_t), 1, fout);
  16483. } else {
  16484. const int32_t nul = -1;
  16485. fwrite(&nul, sizeof(int32_t), 1, fout);
  16486. }
  16487. }
  16488. }
  16489. }
  16490. }
  16491. fclose(fout);
  16492. }
  16493. }
  16494. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  16495. assert(*ctx_data == NULL);
  16496. assert(*ctx_eval == NULL);
  16497. struct ggml_cgraph * result = NULL;
  16498. struct ggml_tensor * data = NULL;
  16499. // read file into data
  16500. {
  16501. FILE * fin = ggml_fopen(fname, "rb");
  16502. if (!fin) {
  16503. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  16504. return result;
  16505. }
  16506. size_t fsize = 0;
  16507. fseek(fin, 0, SEEK_END);
  16508. fsize = ftell(fin);
  16509. fseek(fin, 0, SEEK_SET);
  16510. // create the data context
  16511. {
  16512. const size_t overhead = 1*ggml_tensor_overhead();
  16513. struct ggml_init_params params = {
  16514. .mem_size = fsize + overhead,
  16515. .mem_buffer = NULL,
  16516. .no_alloc = false,
  16517. };
  16518. *ctx_data = ggml_init(params);
  16519. if (!*ctx_data) {
  16520. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16521. fclose(fin);
  16522. return result;
  16523. }
  16524. }
  16525. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  16526. {
  16527. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  16528. if (ret != fsize) {
  16529. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  16530. fclose(fin);
  16531. return result;
  16532. }
  16533. }
  16534. fclose(fin);
  16535. }
  16536. // populate result
  16537. {
  16538. char * ptr = (char *) data->data;
  16539. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  16540. if (magic != GGML_FILE_MAGIC) {
  16541. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  16542. return result;
  16543. }
  16544. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  16545. if (version != GGML_FILE_VERSION) {
  16546. fprintf(stderr, "%s: invalid version number\n", __func__);
  16547. return result;
  16548. }
  16549. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  16550. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  16551. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  16552. const int graph_size = MAX(n_leafs, n_nodes);
  16553. // create the data context
  16554. {
  16555. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  16556. struct ggml_init_params params = {
  16557. .mem_size = size_eval + overhead,
  16558. .mem_buffer = NULL,
  16559. .no_alloc = true,
  16560. };
  16561. *ctx_eval = ggml_init(params);
  16562. if (!*ctx_eval) {
  16563. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  16564. return result;
  16565. }
  16566. }
  16567. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  16568. result->n_leafs = n_leafs;
  16569. result->n_nodes = n_nodes;
  16570. // leafs
  16571. {
  16572. uint32_t type;
  16573. uint32_t op;
  16574. for (uint32_t i = 0; i < n_leafs; ++i) {
  16575. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16576. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16577. int64_t ne[GGML_MAX_DIMS];
  16578. size_t nb[GGML_MAX_DIMS];
  16579. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16580. uint64_t ne_cur;
  16581. uint64_t nb_cur;
  16582. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16583. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16584. ne[j] = ne_cur;
  16585. nb[j] = nb_cur;
  16586. }
  16587. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16588. tensor->op = (enum ggml_op) op;
  16589. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  16590. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  16591. tensor->data = (void *) ptr;
  16592. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16593. tensor->nb[j] = nb[j];
  16594. }
  16595. result->leafs[i] = tensor;
  16596. ptr += ggml_nbytes(tensor);
  16597. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16598. }
  16599. }
  16600. ggml_set_no_alloc(*ctx_eval, false);
  16601. // nodes
  16602. {
  16603. uint32_t type;
  16604. uint32_t op;
  16605. for (uint32_t i = 0; i < n_nodes; ++i) {
  16606. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  16607. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  16608. enum ggml_op eop = (enum ggml_op) op;
  16609. int64_t ne[GGML_MAX_DIMS];
  16610. size_t nb[GGML_MAX_DIMS];
  16611. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16612. uint64_t ne_cur;
  16613. uint64_t nb_cur;
  16614. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  16615. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16616. ne[j] = ne_cur;
  16617. nb[j] = nb_cur;
  16618. }
  16619. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16620. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16621. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16622. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16623. // parse args
  16624. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16625. const int32_t arg_idx = ptr_arg_idx[j];
  16626. if (arg_idx == -1) {
  16627. continue;
  16628. }
  16629. if (arg_idx < result->n_leafs) {
  16630. args[j] = result->leafs[arg_idx];
  16631. } else {
  16632. args[j] = result->nodes[arg_idx - result->n_leafs];
  16633. }
  16634. }
  16635. // create the tensor
  16636. // "view" operations are handled differently
  16637. // TODO: handle inplace ops - currently a copy is always made
  16638. struct ggml_tensor * tensor = NULL;
  16639. switch (eop) {
  16640. // TODO: implement other view ops
  16641. case GGML_OP_RESHAPE:
  16642. {
  16643. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16644. } break;
  16645. case GGML_OP_VIEW:
  16646. {
  16647. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16648. size_t offs;
  16649. memcpy(&offs, ptr_op_params, sizeof(offs));
  16650. tensor->data = ((char *) tensor->data) + offs;
  16651. } break;
  16652. case GGML_OP_TRANSPOSE:
  16653. {
  16654. tensor = ggml_transpose(*ctx_eval, args[0]);
  16655. } break;
  16656. case GGML_OP_PERMUTE:
  16657. {
  16658. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16659. } break;
  16660. default:
  16661. {
  16662. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16663. tensor->op = eop;
  16664. } break;
  16665. }
  16666. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16667. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16668. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16669. tensor->nb[j] = nb[j];
  16670. }
  16671. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16672. tensor->src[j] = args[j];
  16673. }
  16674. result->nodes[i] = tensor;
  16675. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16676. }
  16677. }
  16678. }
  16679. return result;
  16680. }
  16681. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16682. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  16683. GGML_PRINT("=== GRAPH ===\n");
  16684. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16685. for (int i = 0; i < cgraph->n_nodes; i++) {
  16686. struct ggml_tensor * node = cgraph->nodes[i];
  16687. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  16688. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  16689. i,
  16690. node->ne[0], node->ne[1], node->ne[2],
  16691. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  16692. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  16693. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  16694. (double) node->perf_time_us / 1000.0,
  16695. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  16696. }
  16697. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16698. for (int i = 0; i < cgraph->n_leafs; i++) {
  16699. struct ggml_tensor * node = cgraph->leafs[i];
  16700. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16701. i,
  16702. node->ne[0], node->ne[1],
  16703. ggml_op_name(node->op),
  16704. ggml_get_name(node));
  16705. }
  16706. for (int i = 0; i < GGML_OP_COUNT; i++) {
  16707. if (perf_total_per_op_us[i] == 0) {
  16708. continue;
  16709. }
  16710. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  16711. }
  16712. GGML_PRINT("========================================\n");
  16713. }
  16714. // check if node is part of the graph
  16715. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16716. if (cgraph == NULL) {
  16717. return true;
  16718. }
  16719. for (int i = 0; i < cgraph->n_nodes; i++) {
  16720. if (cgraph->nodes[i] == node) {
  16721. return true;
  16722. }
  16723. }
  16724. return false;
  16725. }
  16726. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16727. for (int i = 0; i < cgraph->n_nodes; i++) {
  16728. struct ggml_tensor * parent = cgraph->nodes[i];
  16729. if (parent->grad == node) {
  16730. return parent;
  16731. }
  16732. }
  16733. return NULL;
  16734. }
  16735. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16736. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16737. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16738. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16739. gparent0 ? (void *) gparent0 : (void *) parent,
  16740. gparent0 ? "g" : "x",
  16741. gparent ? (void *) gparent : (void *) node,
  16742. gparent ? "g" : "x",
  16743. gparent ? "empty" : "vee",
  16744. gparent ? "dashed" : "solid",
  16745. label);
  16746. }
  16747. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16748. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16749. (void *) parent, "x",
  16750. (void *) node, "x",
  16751. label);
  16752. }
  16753. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16754. char color[16];
  16755. FILE * fp = ggml_fopen(filename, "w");
  16756. GGML_ASSERT(fp);
  16757. fprintf(fp, "digraph G {\n");
  16758. fprintf(fp, " newrank = true;\n");
  16759. fprintf(fp, " rankdir = LR;\n");
  16760. for (int i = 0; i < gb->n_nodes; i++) {
  16761. struct ggml_tensor * node = gb->nodes[i];
  16762. if (ggml_graph_get_parent(gb, node) != NULL) {
  16763. continue;
  16764. }
  16765. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16766. snprintf(color, sizeof(color), "yellow");
  16767. } else if (node->grad) {
  16768. if (ggml_graph_find(gf, node)) {
  16769. snprintf(color, sizeof(color), "green");
  16770. } else {
  16771. snprintf(color, sizeof(color), "lightblue");
  16772. }
  16773. } else {
  16774. snprintf(color, sizeof(color), "white");
  16775. }
  16776. fprintf(fp, " \"%p\" [ "
  16777. "style = filled; fillcolor = %s; shape = record; "
  16778. "label=\"",
  16779. (void *) node, color);
  16780. if (strlen(node->name) > 0) {
  16781. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16782. } else {
  16783. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16784. }
  16785. if (ggml_is_matrix(node)) {
  16786. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16787. } else {
  16788. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16789. }
  16790. if (node->grad) {
  16791. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16792. } else {
  16793. fprintf(fp, "\"; ]\n");
  16794. }
  16795. }
  16796. for (int i = 0; i < gb->n_leafs; i++) {
  16797. struct ggml_tensor * node = gb->leafs[i];
  16798. snprintf(color, sizeof(color), "pink");
  16799. fprintf(fp, " \"%p\" [ "
  16800. "style = filled; fillcolor = %s; shape = record; "
  16801. "label=\"<x>",
  16802. (void *) node, color);
  16803. if (strlen(node->name) > 0) {
  16804. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16805. } else {
  16806. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16807. }
  16808. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16809. if (ggml_nelements(node) < 5) {
  16810. fprintf(fp, " | (");
  16811. for (int j = 0; j < ggml_nelements(node); j++) {
  16812. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16813. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16814. }
  16815. else if (node->type == GGML_TYPE_F32 ||
  16816. node->type == GGML_TYPE_F16 ||
  16817. node->type == GGML_TYPE_BF16) {
  16818. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16819. }
  16820. else {
  16821. fprintf(fp, "#");
  16822. }
  16823. if (j < ggml_nelements(node) - 1) {
  16824. fprintf(fp, ", ");
  16825. }
  16826. }
  16827. fprintf(fp, ")");
  16828. }
  16829. fprintf(fp, "\"; ]\n");
  16830. }
  16831. for (int i = 0; i < gb->n_nodes; i++) {
  16832. struct ggml_tensor * node = gb->nodes[i];
  16833. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16834. if (node->src[j]) {
  16835. char label[16];
  16836. snprintf(label, sizeof(label), "src %d", j);
  16837. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16838. }
  16839. }
  16840. }
  16841. for (int i = 0; i < gb->n_leafs; i++) {
  16842. struct ggml_tensor * node = gb->leafs[i];
  16843. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16844. if (node->src[j]) {
  16845. char label[16];
  16846. snprintf(label, sizeof(label), "src %d", j);
  16847. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16848. }
  16849. }
  16850. }
  16851. fprintf(fp, "}\n");
  16852. fclose(fp);
  16853. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16854. }
  16855. ////////////////////////////////////////////////////////////////////////////////
  16856. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16857. int i = 0;
  16858. for (int p = 0; p < np; ++p) {
  16859. const int64_t ne = ggml_nelements(ps[p]) ;
  16860. // TODO: add function to set tensor from array
  16861. for (int64_t j = 0; j < ne; ++j) {
  16862. ggml_set_f32_1d(ps[p], j, x[i++]);
  16863. }
  16864. }
  16865. }
  16866. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16867. int i = 0;
  16868. for (int p = 0; p < np; ++p) {
  16869. const int64_t ne = ggml_nelements(ps[p]) ;
  16870. // TODO: add function to get all elements at once
  16871. for (int64_t j = 0; j < ne; ++j) {
  16872. x[i++] = ggml_get_f32_1d(ps[p], j);
  16873. }
  16874. }
  16875. }
  16876. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16877. int64_t i = 0;
  16878. for (int p = 0; p < np; ++p) {
  16879. const int64_t ne = ggml_nelements(ps[p]) ;
  16880. // TODO: add function to get all elements at once
  16881. for (int64_t j = 0; j < ne; ++j) {
  16882. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16883. }
  16884. }
  16885. }
  16886. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16887. int64_t i = 0;
  16888. for (int p = 0; p < np; ++p) {
  16889. const int64_t ne = ggml_nelements(ps[p]) ;
  16890. // TODO: add function to get all elements at once
  16891. for (int64_t j = 0; j < ne; ++j) {
  16892. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16893. }
  16894. }
  16895. }
  16896. //
  16897. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16898. //
  16899. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16900. //
  16901. static enum ggml_opt_result ggml_opt_adam(
  16902. struct ggml_context * ctx,
  16903. struct ggml_opt_context * opt,
  16904. struct ggml_opt_params params,
  16905. struct ggml_tensor * f,
  16906. struct ggml_cgraph * gf,
  16907. struct ggml_cgraph * gb,
  16908. ggml_opt_callback callback,
  16909. void * callback_data) {
  16910. GGML_ASSERT(ggml_is_scalar(f));
  16911. // these will store the parameters we want to optimize
  16912. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16913. int np = 0;
  16914. int64_t nx = 0;
  16915. for (int i = 0; i < gf->n_nodes; ++i) {
  16916. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16917. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16918. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16919. ps[np++] = gf->nodes[i];
  16920. nx += ggml_nelements(gf->nodes[i]);
  16921. }
  16922. }
  16923. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16924. int iter = opt->iter;
  16925. ggml_opt_init(opt->ctx, opt, params, nx);
  16926. opt->iter = iter;
  16927. }
  16928. // constants
  16929. float sched = params.adam.sched;
  16930. const float alpha = params.adam.alpha;
  16931. const float decay = params.adam.decay * alpha;
  16932. const float beta1 = params.adam.beta1;
  16933. const float beta2 = params.adam.beta2;
  16934. const float eps = params.adam.eps;
  16935. const float gclip = params.adam.gclip;
  16936. const int decay_min_ndim = params.adam.decay_min_ndim;
  16937. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16938. const float accum_norm = 1.0f / (float) n_accum;
  16939. float * g = opt->adam.g->data; // gradients
  16940. float * m = opt->adam.m->data; // first moment
  16941. float * v = opt->adam.v->data; // second moment
  16942. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16943. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16944. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16945. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16946. bool cancel = false;
  16947. // compute the function value
  16948. float fx = 0;
  16949. ggml_set_zero(opt->adam.g);
  16950. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16951. if (callback) {
  16952. callback(callback_data, accum_step, &sched, &cancel);
  16953. if (cancel) {
  16954. return GGML_OPT_RESULT_CANCEL;
  16955. }
  16956. }
  16957. // ggml_graph_reset (gf);
  16958. ggml_set_f32 (f->grad, 1.0f);
  16959. ggml_graph_compute(gb, &cplan);
  16960. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16961. fx += ggml_get_f32_1d(f, 0);
  16962. }
  16963. fx *= accum_norm;
  16964. opt->adam.fx_prev = fx;
  16965. opt->adam.fx_best = opt->adam.fx_prev;
  16966. if (pf) {
  16967. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16968. }
  16969. opt->loss_before = opt->adam.fx_prev;
  16970. opt->loss_after = opt->adam.fx_prev;
  16971. // initialize
  16972. if (opt->just_initialized) {
  16973. opt->adam.n_no_improvement = 0;
  16974. opt->just_initialized = false;
  16975. }
  16976. float * fx_best = &opt->adam.fx_best;
  16977. float * fx_prev = &opt->adam.fx_prev;
  16978. int * n_no_improvement = &opt->adam.n_no_improvement;
  16979. int iter0 = opt->iter;
  16980. // run the optimizer
  16981. for (int t = 0; t < params.adam.n_iter; ++t) {
  16982. opt->iter = iter0 + t + 1;
  16983. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16984. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16985. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16986. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16987. for (int i = 0; i < np; ++i) {
  16988. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16989. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16990. }
  16991. const int64_t t_start_wall = ggml_time_us();
  16992. const int64_t t_start_cpu = ggml_cycles();
  16993. UNUSED(t_start_wall);
  16994. UNUSED(t_start_cpu);
  16995. {
  16996. float gnorm = 1.0f;
  16997. if (gclip > 0.0f) {
  16998. // gradient clipping
  16999. ggml_float sum = 0.0;
  17000. for (int64_t i = 0; i < nx; ++i) {
  17001. sum += (ggml_float)(g[i]*g[i]);
  17002. }
  17003. ggml_float norm = sqrt(sum);
  17004. if (norm > (ggml_float) gclip) {
  17005. gnorm = (float) ((ggml_float) gclip / norm);
  17006. }
  17007. }
  17008. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  17009. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  17010. int64_t i = 0;
  17011. for (int p = 0; p < np; ++p) {
  17012. const int64_t ne = ggml_nelements(ps[p]);
  17013. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  17014. for (int64_t j = 0; j < ne; ++j) {
  17015. float x = ggml_get_f32_1d(ps[p], j);
  17016. float g_ = g[i]*gnorm;
  17017. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  17018. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  17019. float mh = m[i]*beta1h;
  17020. float vh = v[i]*beta2h;
  17021. vh = sqrtf(vh) + eps;
  17022. x = x*(1.0f - p_decay) - mh/vh;
  17023. ggml_set_f32_1d(ps[p], j, x);
  17024. ++i;
  17025. }
  17026. }
  17027. }
  17028. fx = 0;
  17029. ggml_set_zero(opt->adam.g);
  17030. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17031. if (callback) {
  17032. callback(callback_data, accum_step, &sched, &cancel);
  17033. if (cancel) {
  17034. return GGML_OPT_RESULT_CANCEL;;
  17035. }
  17036. }
  17037. // ggml_graph_reset (gf);
  17038. ggml_set_f32 (f->grad, 1.0f);
  17039. ggml_graph_compute(gb, &cplan);
  17040. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17041. fx += ggml_get_f32_1d(f, 0);
  17042. }
  17043. fx *= accum_norm;
  17044. opt->loss_after = fx;
  17045. // check convergence
  17046. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  17047. GGML_PRINT_DEBUG("converged\n");
  17048. return GGML_OPT_RESULT_OK;
  17049. }
  17050. // delta-based convergence test
  17051. if (pf != NULL) {
  17052. // need at least params.past iterations to start checking for convergence
  17053. if (params.past <= iter0 + t) {
  17054. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  17055. if (fabsf(rate) < params.delta) {
  17056. return GGML_OPT_RESULT_OK;
  17057. }
  17058. }
  17059. pf[(iter0 + t)%params.past] = fx;
  17060. }
  17061. // check for improvement
  17062. if (params.max_no_improvement > 0) {
  17063. if (fx_best[0] > fx) {
  17064. fx_best[0] = fx;
  17065. n_no_improvement[0] = 0;
  17066. } else {
  17067. ++n_no_improvement[0];
  17068. if (n_no_improvement[0] >= params.max_no_improvement) {
  17069. return GGML_OPT_RESULT_OK;
  17070. }
  17071. }
  17072. }
  17073. fx_prev[0] = fx;
  17074. {
  17075. const int64_t t_end_cpu = ggml_cycles();
  17076. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  17077. UNUSED(t_end_cpu);
  17078. const int64_t t_end_wall = ggml_time_us();
  17079. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  17080. UNUSED(t_end_wall);
  17081. }
  17082. }
  17083. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17084. }
  17085. //
  17086. // L-BFGS
  17087. //
  17088. // the L-BFGS implementation below is based on the following implementation:
  17089. //
  17090. // https://github.com/chokkan/liblbfgs
  17091. //
  17092. struct ggml_lbfgs_iteration_data {
  17093. float alpha;
  17094. float ys;
  17095. float * s;
  17096. float * y;
  17097. };
  17098. static enum ggml_opt_result linesearch_backtracking(
  17099. const struct ggml_opt_params * params,
  17100. int nx,
  17101. float * x,
  17102. float * fx,
  17103. float * g,
  17104. float * d,
  17105. float * step,
  17106. const float * xp,
  17107. struct ggml_tensor * f,
  17108. struct ggml_cgraph * gb,
  17109. struct ggml_cplan * cplan,
  17110. const int np,
  17111. struct ggml_tensor * ps[],
  17112. bool * cancel,
  17113. ggml_opt_callback callback,
  17114. void * callback_data) {
  17115. int count = 0;
  17116. float width = 0.0f;
  17117. float dg = 0.0f;
  17118. float finit = 0.0f;
  17119. float dginit = 0.0f;
  17120. float dgtest = 0.0f;
  17121. const float dec = 0.5f;
  17122. const float inc = 2.1f;
  17123. const int n_accum = MAX(1, params->n_gradient_accumulation);
  17124. const float accum_norm = 1.0f / (float) n_accum;
  17125. if (*step <= 0.f) {
  17126. return GGML_LINESEARCH_INVALID_PARAMETERS;
  17127. }
  17128. // compute the initial gradient in the search direction
  17129. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  17130. // make sure that d points to a descent direction
  17131. if (0 < dginit) {
  17132. return GGML_LINESEARCH_FAIL;
  17133. }
  17134. // initialize local variables
  17135. finit = *fx;
  17136. dgtest = params->lbfgs.ftol*dginit;
  17137. while (true) {
  17138. ggml_vec_cpy_f32(nx, x, xp);
  17139. ggml_vec_mad_f32(nx, x, d, *step);
  17140. // evaluate the function and gradient values
  17141. {
  17142. ggml_opt_set_params(np, ps, x);
  17143. *fx = 0;
  17144. memset(g, 0, sizeof(float)*nx);
  17145. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17146. if (callback) {
  17147. // LBFG-S does not support learning rate -> ignore learning schedule
  17148. float sched = 0;
  17149. callback(callback_data, accum_step, &sched, cancel);
  17150. if (*cancel) {
  17151. return GGML_OPT_RESULT_CANCEL;
  17152. }
  17153. }
  17154. // ggml_graph_reset (gf);
  17155. ggml_set_f32 (f->grad, 1.0f);
  17156. ggml_graph_compute(gb, cplan);
  17157. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17158. *fx += ggml_get_f32_1d(f, 0);
  17159. }
  17160. *fx *= accum_norm;
  17161. }
  17162. ++count;
  17163. if (*fx > finit + (*step)*dgtest) {
  17164. width = dec;
  17165. } else {
  17166. // Armijo condition is satisfied
  17167. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  17168. return count;
  17169. }
  17170. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  17171. // check the Wolfe condition
  17172. if (dg < params->lbfgs.wolfe * dginit) {
  17173. width = inc;
  17174. } else {
  17175. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  17176. // regular Wolfe conditions
  17177. return count;
  17178. }
  17179. if(dg > -params->lbfgs.wolfe*dginit) {
  17180. width = dec;
  17181. } else {
  17182. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  17183. return count;
  17184. }
  17185. }
  17186. }
  17187. if (*step < params->lbfgs.min_step) {
  17188. return GGML_LINESEARCH_MINIMUM_STEP;
  17189. }
  17190. if (*step > params->lbfgs.max_step) {
  17191. return GGML_LINESEARCH_MAXIMUM_STEP;
  17192. }
  17193. if (params->lbfgs.max_linesearch <= count) {
  17194. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  17195. }
  17196. (*step) *= width;
  17197. }
  17198. GGML_ASSERT(false && "line search failed");
  17199. return GGML_LINESEARCH_FAIL;
  17200. }
  17201. static enum ggml_opt_result ggml_opt_lbfgs(
  17202. struct ggml_context * ctx,
  17203. struct ggml_opt_context * opt,
  17204. struct ggml_opt_params params,
  17205. struct ggml_tensor * f,
  17206. struct ggml_cgraph * gf,
  17207. struct ggml_cgraph * gb,
  17208. ggml_opt_callback callback,
  17209. void * callback_data) {
  17210. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  17211. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  17212. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  17213. return GGML_OPT_RESULT_INVALID_WOLFE;
  17214. }
  17215. }
  17216. const int m = params.lbfgs.m;
  17217. // these will store the parameters we want to optimize
  17218. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  17219. int np = 0;
  17220. int nx = 0;
  17221. for (int i = 0; i < gf->n_nodes; ++i) {
  17222. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  17223. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  17224. GGML_ASSERT(np < GGML_MAX_PARAMS);
  17225. ps[np++] = gf->nodes[i];
  17226. nx += ggml_nelements(gf->nodes[i]);
  17227. }
  17228. }
  17229. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  17230. int iter = opt->iter;
  17231. ggml_opt_init(ctx, opt, params, nx);
  17232. opt->iter = iter;
  17233. }
  17234. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  17235. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  17236. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  17237. float * x = opt->lbfgs.x->data; // current parameters
  17238. float * xp = opt->lbfgs.xp->data; // previous parameters
  17239. float * g = opt->lbfgs.g->data; // current gradient
  17240. float * gp = opt->lbfgs.gp->data; // previous gradient
  17241. float * d = opt->lbfgs.d->data; // search direction
  17242. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  17243. const int n_accum = MAX(1, params.n_gradient_accumulation);
  17244. const float accum_norm = 1.0f / (float) n_accum;
  17245. float fx = 0.0f; // cost function value
  17246. float xnorm = 0.0f; // ||x||
  17247. float gnorm = 0.0f; // ||g||
  17248. // initialize x from the graph nodes
  17249. ggml_opt_get_params(np, ps, x);
  17250. // the L-BFGS memory
  17251. float * lm_alpha = opt->lbfgs.lmal->data;
  17252. float * lm_ys = opt->lbfgs.lmys->data;
  17253. float * lm_s = opt->lbfgs.lms->data;
  17254. float * lm_y = opt->lbfgs.lmy->data;
  17255. bool cancel = false;
  17256. // evaluate the function value and its gradient
  17257. {
  17258. ggml_opt_set_params(np, ps, x);
  17259. fx = 0;
  17260. memset(g, 0, sizeof(float)*nx);
  17261. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  17262. if (callback) {
  17263. // LBFG-S does not support learning rate -> ignore learning schedule
  17264. float sched = 0;
  17265. callback(callback_data, accum_step, &sched, &cancel);
  17266. if (cancel) {
  17267. return GGML_OPT_RESULT_CANCEL;
  17268. }
  17269. }
  17270. // ggml_graph_reset (gf);
  17271. ggml_set_f32 (f->grad, 1.0f);
  17272. ggml_graph_compute(gb, &cplan);
  17273. ggml_opt_acc_grad(np, ps, g, accum_norm);
  17274. fx += ggml_get_f32_1d(f, 0);
  17275. }
  17276. fx *= accum_norm;
  17277. opt->loss_before = fx;
  17278. opt->loss_after = fx;
  17279. }
  17280. // search direction = -gradient
  17281. ggml_vec_neg_f32(nx, d, g);
  17282. // ||x||, ||g||
  17283. ggml_vec_norm_f32(nx, &xnorm, x);
  17284. ggml_vec_norm_f32(nx, &gnorm, g);
  17285. if (xnorm < 1.0f) {
  17286. xnorm = 1.0f;
  17287. }
  17288. // already optimized
  17289. if (gnorm/xnorm <= params.lbfgs.eps) {
  17290. return GGML_OPT_RESULT_OK;
  17291. }
  17292. if (opt->just_initialized) {
  17293. if (pf) {
  17294. pf[0] = fx;
  17295. }
  17296. opt->lbfgs.fx_best = fx;
  17297. // initial step
  17298. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  17299. opt->lbfgs.j = 0;
  17300. opt->lbfgs.k = 1;
  17301. opt->lbfgs.end = 0;
  17302. opt->lbfgs.n_no_improvement = 0;
  17303. opt->just_initialized = false;
  17304. }
  17305. float * fx_best = &opt->lbfgs.fx_best;
  17306. float * step = &opt->lbfgs.step;
  17307. int * j = &opt->lbfgs.j;
  17308. int * k = &opt->lbfgs.k;
  17309. int * end = &opt->lbfgs.end;
  17310. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  17311. int ls = 0;
  17312. int bound = 0;
  17313. float ys = 0.0f;
  17314. float yy = 0.0f;
  17315. float beta = 0.0f;
  17316. int it = 0;
  17317. while (true) {
  17318. // store the current position and gradient vectors
  17319. ggml_vec_cpy_f32(nx, xp, x);
  17320. ggml_vec_cpy_f32(nx, gp, g);
  17321. // TODO: instead of passing &cancel here, use the return code of the linesearch
  17322. // to determine if the optimization should be cancelled
  17323. // this is a simple change, but not doing this atm, since I don't have a nice
  17324. // way to test and don't want to break something with so many changes lined up
  17325. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  17326. if (cancel) {
  17327. return GGML_OPT_RESULT_CANCEL;
  17328. }
  17329. if (ls < 0) {
  17330. // linesearch failed - go back to the previous point and return
  17331. ggml_vec_cpy_f32(nx, x, xp);
  17332. ggml_vec_cpy_f32(nx, g, gp);
  17333. return ls;
  17334. }
  17335. opt->loss_after = fx;
  17336. ggml_vec_norm_f32(nx, &xnorm, x);
  17337. ggml_vec_norm_f32(nx, &gnorm, g);
  17338. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  17339. if (xnorm < 1.0f) {
  17340. xnorm = 1.0f;
  17341. }
  17342. if (gnorm/xnorm <= params.lbfgs.eps) {
  17343. // converged
  17344. return GGML_OPT_RESULT_OK;
  17345. }
  17346. // delta-based convergence test
  17347. if (pf != NULL) {
  17348. // need at least params.past iterations to start checking for convergence
  17349. if (params.past <= k[0]) {
  17350. const float rate = (pf[k[0]%params.past] - fx)/fx;
  17351. if (fabsf(rate) < params.delta) {
  17352. return GGML_OPT_RESULT_OK;
  17353. }
  17354. }
  17355. pf[k[0]%params.past] = fx;
  17356. }
  17357. // check for improvement
  17358. if (params.max_no_improvement > 0) {
  17359. if (fx < fx_best[0]) {
  17360. fx_best[0] = fx;
  17361. n_no_improvement[0] = 0;
  17362. } else {
  17363. n_no_improvement[0]++;
  17364. if (n_no_improvement[0] >= params.max_no_improvement) {
  17365. return GGML_OPT_RESULT_OK;
  17366. }
  17367. }
  17368. }
  17369. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  17370. // reached the maximum number of iterations
  17371. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17372. }
  17373. // update vectors s and y:
  17374. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  17375. // y_{k+1} = g_{k+1} - g_{k}.
  17376. //
  17377. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  17378. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  17379. // compute scalars ys and yy:
  17380. // ys = y^t \cdot s -> 1 / \rho.
  17381. // yy = y^t \cdot y.
  17382. //
  17383. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  17384. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  17385. lm_ys[end[0]] = ys;
  17386. // find new search direction
  17387. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  17388. bound = (m <= k[0]) ? m : k[0];
  17389. k[0]++;
  17390. it++;
  17391. end[0] = (end[0] + 1)%m;
  17392. // initialize search direction with -g
  17393. ggml_vec_neg_f32(nx, d, g);
  17394. j[0] = end[0];
  17395. for (int i = 0; i < bound; ++i) {
  17396. j[0] = (j[0] + m - 1) % m;
  17397. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  17398. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  17399. lm_alpha[j[0]] /= lm_ys[j[0]];
  17400. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  17401. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  17402. }
  17403. ggml_vec_scale_f32(nx, d, ys/yy);
  17404. for (int i = 0; i < bound; ++i) {
  17405. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  17406. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  17407. beta /= lm_ys[j[0]];
  17408. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  17409. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  17410. j[0] = (j[0] + 1)%m;
  17411. }
  17412. step[0] = 1.0;
  17413. }
  17414. GGML_ASSERT(false && "lbfgs failed");
  17415. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  17416. }
  17417. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  17418. struct ggml_opt_params result;
  17419. switch (type) {
  17420. case GGML_OPT_TYPE_ADAM:
  17421. {
  17422. result = (struct ggml_opt_params) {
  17423. .type = GGML_OPT_TYPE_ADAM,
  17424. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17425. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  17426. .past = 0,
  17427. .delta = 1e-5f,
  17428. .max_no_improvement = 100,
  17429. .print_forward_graph = true,
  17430. .print_backward_graph = true,
  17431. .n_gradient_accumulation = 1,
  17432. .adam = {
  17433. .n_iter = 10000,
  17434. .sched = 1.000f,
  17435. .decay = 0.0f,
  17436. .decay_min_ndim = 2,
  17437. .alpha = 0.001f,
  17438. .beta1 = 0.9f,
  17439. .beta2 = 0.999f,
  17440. .eps = 1e-8f,
  17441. .eps_f = 1e-5f,
  17442. .eps_g = 1e-3f,
  17443. .gclip = 0.0f,
  17444. },
  17445. };
  17446. } break;
  17447. case GGML_OPT_TYPE_LBFGS:
  17448. {
  17449. result = (struct ggml_opt_params) {
  17450. .type = GGML_OPT_TYPE_LBFGS,
  17451. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  17452. .n_threads = 1,
  17453. .past = 0,
  17454. .delta = 1e-5f,
  17455. .max_no_improvement = 0,
  17456. .print_forward_graph = true,
  17457. .print_backward_graph = true,
  17458. .n_gradient_accumulation = 1,
  17459. .lbfgs = {
  17460. .m = 6,
  17461. .n_iter = 100,
  17462. .max_linesearch = 20,
  17463. .eps = 1e-5f,
  17464. .ftol = 1e-4f,
  17465. .wolfe = 0.9f,
  17466. .min_step = 1e-20f,
  17467. .max_step = 1e+20f,
  17468. .linesearch = GGML_LINESEARCH_DEFAULT,
  17469. },
  17470. };
  17471. } break;
  17472. }
  17473. return result;
  17474. }
  17475. GGML_API void ggml_opt_init(
  17476. struct ggml_context * ctx,
  17477. struct ggml_opt_context * opt,
  17478. struct ggml_opt_params params,
  17479. int64_t nx) {
  17480. opt->ctx = ctx;
  17481. opt->params = params;
  17482. opt->iter = 0;
  17483. opt->nx = nx;
  17484. opt->just_initialized = true;
  17485. if (opt->ctx == NULL) {
  17486. struct ggml_init_params ctx_opt_params;
  17487. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  17488. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  17489. if (opt->params.past > 0) {
  17490. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17491. }
  17492. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  17493. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  17494. if (opt->params.past > 0) {
  17495. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  17496. }
  17497. }
  17498. ctx_opt_params.mem_buffer = NULL;
  17499. ctx_opt_params.no_alloc = false;
  17500. opt->ctx = ggml_init(ctx_opt_params);
  17501. }
  17502. switch (opt->params.type) {
  17503. case GGML_OPT_TYPE_ADAM:
  17504. {
  17505. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17506. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17507. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17508. opt->adam.pf = params.past > 0
  17509. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17510. : NULL;
  17511. ggml_set_zero(opt->adam.m);
  17512. ggml_set_zero(opt->adam.v);
  17513. if (opt->adam.pf) {
  17514. ggml_set_zero(opt->adam.pf);
  17515. }
  17516. } break;
  17517. case GGML_OPT_TYPE_LBFGS:
  17518. {
  17519. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17520. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17521. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17522. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17523. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  17524. opt->lbfgs.pf = params.past > 0
  17525. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  17526. : NULL;
  17527. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17528. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  17529. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17530. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  17531. ggml_set_zero(opt->lbfgs.x);
  17532. ggml_set_zero(opt->lbfgs.xp);
  17533. ggml_set_zero(opt->lbfgs.g);
  17534. ggml_set_zero(opt->lbfgs.gp);
  17535. ggml_set_zero(opt->lbfgs.d);
  17536. if (opt->lbfgs.pf) {
  17537. ggml_set_zero(opt->lbfgs.pf);
  17538. }
  17539. ggml_set_zero(opt->lbfgs.lmal);
  17540. ggml_set_zero(opt->lbfgs.lmys);
  17541. ggml_set_zero(opt->lbfgs.lms);
  17542. ggml_set_zero(opt->lbfgs.lmy);
  17543. } break;
  17544. }
  17545. }
  17546. enum ggml_opt_result ggml_opt(
  17547. struct ggml_context * ctx,
  17548. struct ggml_opt_params params,
  17549. struct ggml_tensor * f) {
  17550. bool free_ctx = false;
  17551. if (ctx == NULL) {
  17552. struct ggml_init_params params_ctx = {
  17553. .mem_size = 16*1024*1024,
  17554. .mem_buffer = NULL,
  17555. .no_alloc = false,
  17556. };
  17557. ctx = ggml_init(params_ctx);
  17558. if (ctx == NULL) {
  17559. return GGML_OPT_RESULT_NO_CONTEXT;
  17560. }
  17561. free_ctx = true;
  17562. }
  17563. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17564. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  17565. ggml_opt_init(ctx, opt, params, 0);
  17566. result = ggml_opt_resume(ctx, opt, f);
  17567. if (free_ctx) {
  17568. ggml_free(ctx);
  17569. }
  17570. return result;
  17571. }
  17572. enum ggml_opt_result ggml_opt_resume(
  17573. struct ggml_context * ctx,
  17574. struct ggml_opt_context * opt,
  17575. struct ggml_tensor * f) {
  17576. // build forward + backward compute graphs
  17577. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  17578. ggml_build_forward_expand(gf, f);
  17579. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  17580. ggml_build_backward_expand(ctx, gf, gb, true);
  17581. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  17582. }
  17583. enum ggml_opt_result ggml_opt_resume_g(
  17584. struct ggml_context * ctx,
  17585. struct ggml_opt_context * opt,
  17586. struct ggml_tensor * f,
  17587. struct ggml_cgraph * gf,
  17588. struct ggml_cgraph * gb,
  17589. ggml_opt_callback callback,
  17590. void * callback_data) {
  17591. // build forward + backward compute graphs
  17592. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  17593. switch (opt->params.type) {
  17594. case GGML_OPT_TYPE_ADAM:
  17595. {
  17596. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17597. } break;
  17598. case GGML_OPT_TYPE_LBFGS:
  17599. {
  17600. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  17601. } break;
  17602. }
  17603. if (opt->params.print_forward_graph) {
  17604. ggml_graph_print (gf);
  17605. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  17606. }
  17607. if (opt->params.print_backward_graph) {
  17608. ggml_graph_print (gb);
  17609. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  17610. }
  17611. return result;
  17612. }
  17613. ////////////////////////////////////////////////////////////////////////////////
  17614. void ggml_set_input(struct ggml_tensor * tensor) {
  17615. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  17616. }
  17617. void ggml_set_output(struct ggml_tensor * tensor) {
  17618. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  17619. }
  17620. ////////////////////////////////////////////////////////////////////////////////
  17621. void ggml_quantize_init(enum ggml_type type) {
  17622. ggml_critical_section_start();
  17623. switch (type) {
  17624. case GGML_TYPE_IQ2_XXS:
  17625. case GGML_TYPE_IQ2_XS:
  17626. case GGML_TYPE_IQ2_S:
  17627. case GGML_TYPE_IQ1_S:
  17628. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17629. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17630. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17631. default: // nothing
  17632. break;
  17633. }
  17634. ggml_critical_section_end();
  17635. }
  17636. void ggml_quantize_free(void) {
  17637. ggml_critical_section_start();
  17638. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17639. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17640. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17641. iq3xs_free_impl(256);
  17642. ggml_critical_section_end();
  17643. }
  17644. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17645. return
  17646. type == GGML_TYPE_IQ2_XXS ||
  17647. type == GGML_TYPE_IQ2_XS ||
  17648. type == GGML_TYPE_IQ1_S;// ||
  17649. //type == GGML_TYPE_IQ1_M;
  17650. }
  17651. size_t ggml_quantize_chunk(
  17652. enum ggml_type type,
  17653. const float * src,
  17654. void * dst,
  17655. int64_t start,
  17656. int64_t nrows,
  17657. int64_t n_per_row,
  17658. const float * imatrix) {
  17659. const int64_t n = (int64_t) nrows * n_per_row;
  17660. if (ggml_quantize_requires_imatrix(type)) {
  17661. GGML_ASSERT(imatrix != NULL);
  17662. }
  17663. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17664. GGML_ASSERT(start % n_per_row == 0);
  17665. ggml_quantize_init(type); // this is noop if already initialized
  17666. const size_t start_row = start / n_per_row;
  17667. const size_t row_size = ggml_row_size(type, n_per_row);
  17668. size_t result = 0;
  17669. switch (type) {
  17670. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17671. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17672. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17673. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17674. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17675. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17676. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17677. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17678. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17679. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17680. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17681. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17682. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17683. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17684. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17685. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17686. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17687. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17688. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17689. case GGML_TYPE_F16:
  17690. {
  17691. size_t elemsize = sizeof(ggml_fp16_t);
  17692. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17693. result = n * elemsize;
  17694. } break;
  17695. case GGML_TYPE_BF16:
  17696. {
  17697. size_t elemsize = sizeof(ggml_bf16_t);
  17698. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  17699. result = n * elemsize;
  17700. } break;
  17701. case GGML_TYPE_F32:
  17702. {
  17703. size_t elemsize = sizeof(float);
  17704. result = n * elemsize;
  17705. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17706. } break;
  17707. default:
  17708. assert(false);
  17709. }
  17710. GGML_ASSERT(result == nrows * row_size);
  17711. return result;
  17712. }
  17713. ////////////////////////////////////////////////////////////////////////////////
  17714. struct gguf_str {
  17715. uint64_t n; // GGUFv2
  17716. char * data;
  17717. };
  17718. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17719. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17720. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17721. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17722. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17723. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17724. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17725. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17726. [GGUF_TYPE_BOOL] = sizeof(bool),
  17727. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17728. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17729. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17730. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17731. [GGUF_TYPE_ARRAY] = 0, // undefined
  17732. };
  17733. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17734. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17735. [GGUF_TYPE_UINT8] = "u8",
  17736. [GGUF_TYPE_INT8] = "i8",
  17737. [GGUF_TYPE_UINT16] = "u16",
  17738. [GGUF_TYPE_INT16] = "i16",
  17739. [GGUF_TYPE_UINT32] = "u32",
  17740. [GGUF_TYPE_INT32] = "i32",
  17741. [GGUF_TYPE_FLOAT32] = "f32",
  17742. [GGUF_TYPE_BOOL] = "bool",
  17743. [GGUF_TYPE_STRING] = "str",
  17744. [GGUF_TYPE_ARRAY] = "arr",
  17745. [GGUF_TYPE_UINT64] = "u64",
  17746. [GGUF_TYPE_INT64] = "i64",
  17747. [GGUF_TYPE_FLOAT64] = "f64",
  17748. };
  17749. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17750. union gguf_value {
  17751. uint8_t uint8;
  17752. int8_t int8;
  17753. uint16_t uint16;
  17754. int16_t int16;
  17755. uint32_t uint32;
  17756. int32_t int32;
  17757. float float32;
  17758. uint64_t uint64;
  17759. int64_t int64;
  17760. double float64;
  17761. bool bool_;
  17762. struct gguf_str str;
  17763. struct {
  17764. enum gguf_type type;
  17765. uint64_t n; // GGUFv2
  17766. void * data;
  17767. } arr;
  17768. };
  17769. struct gguf_kv {
  17770. struct gguf_str key;
  17771. enum gguf_type type;
  17772. union gguf_value value;
  17773. };
  17774. struct gguf_header {
  17775. char magic[4];
  17776. uint32_t version;
  17777. uint64_t n_tensors; // GGUFv2
  17778. uint64_t n_kv; // GGUFv2
  17779. };
  17780. struct gguf_tensor_info {
  17781. struct gguf_str name;
  17782. uint32_t n_dims;
  17783. uint64_t ne[GGML_MAX_DIMS];
  17784. enum ggml_type type;
  17785. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17786. // for writing API
  17787. const void * data;
  17788. size_t size;
  17789. };
  17790. struct gguf_context {
  17791. struct gguf_header header;
  17792. struct gguf_kv * kv;
  17793. struct gguf_tensor_info * infos;
  17794. size_t alignment;
  17795. size_t offset; // offset of `data` from beginning of file
  17796. size_t size; // size of `data` in bytes
  17797. //uint8_t * padding;
  17798. void * data;
  17799. };
  17800. static size_t gguf_type_size(enum gguf_type type) {
  17801. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17802. return GGUF_TYPE_SIZE[type];
  17803. }
  17804. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17805. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17806. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17807. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17808. GGML_ASSERT(info->ne[i] > 0);
  17809. }
  17810. // prevent overflow for total number of elements
  17811. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17812. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17813. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17814. }
  17815. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17816. const size_t n = fread(dst, 1, size, file);
  17817. *offset += n;
  17818. return n == size;
  17819. }
  17820. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17821. p->n = 0;
  17822. p->data = NULL;
  17823. bool ok = true;
  17824. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17825. // early exit if string length is invalid, prevents from integer overflow
  17826. if (p->n == SIZE_MAX) {
  17827. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17828. return false;
  17829. }
  17830. p->data = GGML_CALLOC(p->n + 1, 1);
  17831. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17832. return ok;
  17833. }
  17834. static void gguf_free_kv(struct gguf_kv * kv) {
  17835. if (kv->key.data) {
  17836. GGML_FREE(kv->key.data);
  17837. }
  17838. if (kv->type == GGUF_TYPE_STRING) {
  17839. if (kv->value.str.data) {
  17840. GGML_FREE(kv->value.str.data);
  17841. }
  17842. }
  17843. if (kv->type == GGUF_TYPE_ARRAY) {
  17844. if (kv->value.arr.data) {
  17845. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17846. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17847. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17848. if (str->data) {
  17849. GGML_FREE(str->data);
  17850. }
  17851. }
  17852. }
  17853. GGML_FREE(kv->value.arr.data);
  17854. }
  17855. }
  17856. }
  17857. struct gguf_context * gguf_init_empty(void) {
  17858. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17859. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17860. ctx->header.version = GGUF_VERSION;
  17861. ctx->header.n_tensors = 0;
  17862. ctx->header.n_kv = 0;
  17863. ctx->kv = NULL;
  17864. ctx->infos = NULL;
  17865. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17866. ctx->offset = 0;
  17867. ctx->size = 0;
  17868. ctx->data = NULL;
  17869. return ctx;
  17870. }
  17871. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17872. FILE * file = ggml_fopen(fname, "rb");
  17873. if (!file) {
  17874. return NULL;
  17875. }
  17876. // offset from start of file
  17877. size_t offset = 0;
  17878. char magic[4];
  17879. // check the magic before making allocations
  17880. {
  17881. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17882. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17883. if (magic[i] != GGUF_MAGIC[i]) {
  17884. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17885. fclose(file);
  17886. return NULL;
  17887. }
  17888. }
  17889. }
  17890. bool ok = true;
  17891. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17892. // read the header
  17893. {
  17894. strncpy(ctx->header.magic, magic, 4);
  17895. ctx->kv = NULL;
  17896. ctx->infos = NULL;
  17897. ctx->data = NULL;
  17898. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17899. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17900. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17901. if (ctx->header.version == 1) {
  17902. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17903. fclose(file);
  17904. gguf_free(ctx);
  17905. return NULL;
  17906. }
  17907. // sanity-checks to prevent from integer/buffer overflows
  17908. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17909. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17910. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17911. if (!ok) {
  17912. fprintf(stderr, "%s: failed to read header\n", __func__);
  17913. fclose(file);
  17914. gguf_free(ctx);
  17915. return NULL;
  17916. }
  17917. }
  17918. // read the kv pairs
  17919. {
  17920. const uint64_t n_kv = ctx->header.n_kv;
  17921. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17922. ctx->header.n_kv = 0;
  17923. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17924. for (uint64_t i = 0; i < n_kv; ++i) {
  17925. struct gguf_kv * kv = &ctx->kv[i];
  17926. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17927. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17928. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17929. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17930. switch (kv->type) {
  17931. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17932. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17933. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17934. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17935. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17936. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17937. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17938. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17939. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17940. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17941. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17942. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17943. case GGUF_TYPE_ARRAY:
  17944. {
  17945. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17946. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17947. switch (kv->value.arr.type) {
  17948. case GGUF_TYPE_UINT8:
  17949. case GGUF_TYPE_INT8:
  17950. case GGUF_TYPE_UINT16:
  17951. case GGUF_TYPE_INT16:
  17952. case GGUF_TYPE_UINT32:
  17953. case GGUF_TYPE_INT32:
  17954. case GGUF_TYPE_FLOAT32:
  17955. case GGUF_TYPE_UINT64:
  17956. case GGUF_TYPE_INT64:
  17957. case GGUF_TYPE_FLOAT64:
  17958. case GGUF_TYPE_BOOL:
  17959. {
  17960. // prevent from integer overflow in the malloc below
  17961. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17962. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17963. fclose(file);
  17964. gguf_free(ctx);
  17965. return NULL;
  17966. }
  17967. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17968. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17969. } break;
  17970. case GGUF_TYPE_STRING:
  17971. {
  17972. // prevent from integer overflow in the malloc below
  17973. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17974. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17975. fclose(file);
  17976. gguf_free(ctx);
  17977. return NULL;
  17978. }
  17979. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17980. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17981. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17982. }
  17983. } break;
  17984. case GGUF_TYPE_ARRAY:
  17985. default: GGML_ASSERT(false && "invalid type"); break;
  17986. }
  17987. } break;
  17988. default: GGML_ASSERT(false && "invalid type");
  17989. }
  17990. if (!ok) {
  17991. break;
  17992. }
  17993. ctx->header.n_kv++;
  17994. }
  17995. if (!ok) {
  17996. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17997. fclose(file);
  17998. gguf_free(ctx);
  17999. return NULL;
  18000. }
  18001. }
  18002. // read the tensor infos
  18003. if (ctx->header.n_tensors > 0) {
  18004. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  18005. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18006. struct gguf_tensor_info * info = &ctx->infos[i];
  18007. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  18008. info->ne[j] = 1;
  18009. }
  18010. ok = ok && gguf_fread_str(file, &info->name, &offset);
  18011. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  18012. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  18013. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18014. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  18015. }
  18016. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  18017. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  18018. // TODO: return an error instead of crashing with GGML_ASSERT
  18019. gguf_tensor_info_sanitize(info);
  18020. // make sure there is no duplicated tensor names
  18021. for (uint64_t j = 0; j < i; ++j) {
  18022. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  18023. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  18024. ok = false;
  18025. }
  18026. }
  18027. if (!ok) {
  18028. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  18029. fclose(file);
  18030. gguf_free(ctx);
  18031. return NULL;
  18032. }
  18033. }
  18034. }
  18035. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  18036. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  18037. if (alignment_idx != -1) {
  18038. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  18039. }
  18040. // we require the data section to be aligned, so take into account any padding
  18041. {
  18042. const size_t offset_pad = offset % ctx->alignment;
  18043. if (offset_pad != 0) {
  18044. offset += ctx->alignment - offset_pad;
  18045. fseek(file, offset, SEEK_SET);
  18046. }
  18047. }
  18048. // store the current file offset - this is where the data section starts
  18049. ctx->offset = offset;
  18050. // compute the total size of the data section, taking into account the alignment
  18051. {
  18052. ctx->size = 0;
  18053. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18054. struct gguf_tensor_info * info = &ctx->infos[i];
  18055. const int64_t ne =
  18056. (int64_t) info->ne[0] *
  18057. (int64_t) info->ne[1] *
  18058. (int64_t) info->ne[2] *
  18059. (int64_t) info->ne[3];
  18060. if (ne % ggml_blck_size(info->type) != 0) {
  18061. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  18062. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  18063. fclose(file);
  18064. gguf_free(ctx);
  18065. return NULL;
  18066. }
  18067. const size_t size_cur = ggml_row_size(info->type, ne);
  18068. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  18069. }
  18070. }
  18071. // load the tensor data only if requested
  18072. if (params.ctx != NULL) {
  18073. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  18074. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  18075. // the ggml_tensor structs to the appropriate locations in the binary blob
  18076. // compute the exact size needed for the new ggml_context
  18077. const size_t mem_size =
  18078. params.no_alloc ?
  18079. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  18080. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  18081. struct ggml_init_params pdata = {
  18082. .mem_size = mem_size,
  18083. .mem_buffer = NULL,
  18084. .no_alloc = params.no_alloc,
  18085. };
  18086. *params.ctx = ggml_init(pdata);
  18087. struct ggml_context * ctx_data = *params.ctx;
  18088. struct ggml_tensor * data = NULL;
  18089. if (!params.no_alloc) {
  18090. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  18091. ok = ok && data != NULL;
  18092. // read the binary blob with the tensor data
  18093. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  18094. if (!ok) {
  18095. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  18096. fclose(file);
  18097. ggml_free(ctx_data);
  18098. gguf_free(ctx);
  18099. return NULL;
  18100. }
  18101. ctx->data = data->data;
  18102. }
  18103. ggml_set_no_alloc(ctx_data, true);
  18104. // create the tensors
  18105. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18106. const int64_t ne[GGML_MAX_DIMS] = {
  18107. ctx->infos[i].ne[0],
  18108. ctx->infos[i].ne[1],
  18109. ctx->infos[i].ne[2],
  18110. ctx->infos[i].ne[3],
  18111. };
  18112. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  18113. ok = ok && cur != NULL;
  18114. if (!ok) {
  18115. break;
  18116. }
  18117. ggml_set_name(cur, ctx->infos[i].name.data);
  18118. // point the data member to the appropriate location in the binary blob using the tensor infos
  18119. if (!params.no_alloc) {
  18120. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  18121. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  18122. }
  18123. }
  18124. if (!ok) {
  18125. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  18126. fclose(file);
  18127. ggml_free(ctx_data);
  18128. gguf_free(ctx);
  18129. return NULL;
  18130. }
  18131. ggml_set_no_alloc(ctx_data, params.no_alloc);
  18132. }
  18133. fclose(file);
  18134. return ctx;
  18135. }
  18136. void gguf_free(struct gguf_context * ctx) {
  18137. if (ctx == NULL) {
  18138. return;
  18139. }
  18140. if (ctx->kv) {
  18141. // free string memory - not great..
  18142. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  18143. gguf_free_kv(&ctx->kv[i]);
  18144. }
  18145. GGML_FREE(ctx->kv);
  18146. }
  18147. if (ctx->infos) {
  18148. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  18149. struct gguf_tensor_info * info = &ctx->infos[i];
  18150. if (info->name.data) {
  18151. GGML_FREE(info->name.data);
  18152. }
  18153. }
  18154. GGML_FREE(ctx->infos);
  18155. }
  18156. GGML_FREE(ctx);
  18157. }
  18158. const char * gguf_type_name(enum gguf_type type) {
  18159. return GGUF_TYPE_NAME[type];
  18160. }
  18161. int gguf_get_version(const struct gguf_context * ctx) {
  18162. return ctx->header.version;
  18163. }
  18164. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  18165. return ctx->alignment;
  18166. }
  18167. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  18168. return ctx->offset;
  18169. }
  18170. void * gguf_get_data(const struct gguf_context * ctx) {
  18171. return ctx->data;
  18172. }
  18173. int gguf_get_n_kv(const struct gguf_context * ctx) {
  18174. return ctx->header.n_kv;
  18175. }
  18176. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  18177. // return -1 if key not found
  18178. int keyfound = -1;
  18179. const int n_kv = gguf_get_n_kv(ctx);
  18180. for (int i = 0; i < n_kv; ++i) {
  18181. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  18182. keyfound = i;
  18183. break;
  18184. }
  18185. }
  18186. return keyfound;
  18187. }
  18188. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  18189. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18190. return ctx->kv[key_id].key.data;
  18191. }
  18192. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  18193. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18194. return ctx->kv[key_id].type;
  18195. }
  18196. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  18197. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18198. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18199. return ctx->kv[key_id].value.arr.type;
  18200. }
  18201. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  18202. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18203. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18204. return ctx->kv[key_id].value.arr.data;
  18205. }
  18206. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  18207. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18208. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18209. struct gguf_kv * kv = &ctx->kv[key_id];
  18210. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  18211. return str->data;
  18212. }
  18213. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  18214. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18215. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  18216. return ctx->kv[key_id].value.arr.n;
  18217. }
  18218. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  18219. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18220. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  18221. return ctx->kv[key_id].value.uint8;
  18222. }
  18223. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  18224. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18225. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  18226. return ctx->kv[key_id].value.int8;
  18227. }
  18228. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  18229. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18230. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  18231. return ctx->kv[key_id].value.uint16;
  18232. }
  18233. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  18234. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18235. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  18236. return ctx->kv[key_id].value.int16;
  18237. }
  18238. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  18239. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18240. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  18241. return ctx->kv[key_id].value.uint32;
  18242. }
  18243. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  18244. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18245. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  18246. return ctx->kv[key_id].value.int32;
  18247. }
  18248. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  18249. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18250. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  18251. return ctx->kv[key_id].value.float32;
  18252. }
  18253. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  18254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18255. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  18256. return ctx->kv[key_id].value.uint64;
  18257. }
  18258. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  18259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18260. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  18261. return ctx->kv[key_id].value.int64;
  18262. }
  18263. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  18264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  18266. return ctx->kv[key_id].value.float64;
  18267. }
  18268. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  18269. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18270. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  18271. return ctx->kv[key_id].value.bool_;
  18272. }
  18273. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  18274. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18275. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  18276. return ctx->kv[key_id].value.str.data;
  18277. }
  18278. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  18279. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  18280. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  18281. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  18282. return &ctx->kv[key_id].value;
  18283. }
  18284. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  18285. return ctx->header.n_tensors;
  18286. }
  18287. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  18288. // return -1 if tensor not found
  18289. int tensorfound = -1;
  18290. const int n_tensors = gguf_get_n_tensors(ctx);
  18291. for (int i = 0; i < n_tensors; ++i) {
  18292. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  18293. tensorfound = i;
  18294. break;
  18295. }
  18296. }
  18297. return tensorfound;
  18298. }
  18299. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  18300. return ctx->infos[i].offset;
  18301. }
  18302. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  18303. return ctx->infos[i].name.data;
  18304. }
  18305. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  18306. return ctx->infos[i].type;
  18307. }
  18308. // returns the index
  18309. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  18310. const int idx = gguf_find_key(ctx, key);
  18311. if (idx >= 0) {
  18312. return idx;
  18313. }
  18314. const int n_kv = gguf_get_n_kv(ctx);
  18315. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  18316. ctx->kv[n_kv].key.n = strlen(key);
  18317. ctx->kv[n_kv].key.data = strdup(key);
  18318. ctx->header.n_kv++;
  18319. return n_kv;
  18320. }
  18321. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  18322. const int idx = gguf_find_key(ctx, key);
  18323. if (idx >= 0) {
  18324. const int n_kv = gguf_get_n_kv(ctx);
  18325. gguf_free_kv(&ctx->kv[idx]);
  18326. for (int i = idx; i < n_kv-1; ++i) {
  18327. ctx->kv[i] = ctx->kv[i+1];
  18328. }
  18329. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  18330. ctx->header.n_kv--;
  18331. }
  18332. }
  18333. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  18334. const int idx = gguf_get_or_add_key(ctx, key);
  18335. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  18336. ctx->kv[idx].value.uint8 = val;
  18337. }
  18338. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  18339. const int idx = gguf_get_or_add_key(ctx, key);
  18340. ctx->kv[idx].type = GGUF_TYPE_INT8;
  18341. ctx->kv[idx].value.int8 = val;
  18342. }
  18343. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  18344. const int idx = gguf_get_or_add_key(ctx, key);
  18345. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  18346. ctx->kv[idx].value.uint16 = val;
  18347. }
  18348. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  18349. const int idx = gguf_get_or_add_key(ctx, key);
  18350. ctx->kv[idx].type = GGUF_TYPE_INT16;
  18351. ctx->kv[idx].value.int16 = val;
  18352. }
  18353. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  18354. const int idx = gguf_get_or_add_key(ctx, key);
  18355. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  18356. ctx->kv[idx].value.uint32 = val;
  18357. }
  18358. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  18359. const int idx = gguf_get_or_add_key(ctx, key);
  18360. ctx->kv[idx].type = GGUF_TYPE_INT32;
  18361. ctx->kv[idx].value.int32 = val;
  18362. }
  18363. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  18364. const int idx = gguf_get_or_add_key(ctx, key);
  18365. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  18366. ctx->kv[idx].value.float32 = val;
  18367. }
  18368. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  18369. const int idx = gguf_get_or_add_key(ctx, key);
  18370. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  18371. ctx->kv[idx].value.uint64 = val;
  18372. }
  18373. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  18374. const int idx = gguf_get_or_add_key(ctx, key);
  18375. ctx->kv[idx].type = GGUF_TYPE_INT64;
  18376. ctx->kv[idx].value.int64 = val;
  18377. }
  18378. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  18379. const int idx = gguf_get_or_add_key(ctx, key);
  18380. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  18381. ctx->kv[idx].value.float64 = val;
  18382. }
  18383. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  18384. const int idx = gguf_get_or_add_key(ctx, key);
  18385. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  18386. ctx->kv[idx].value.bool_ = val;
  18387. }
  18388. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  18389. const int idx = gguf_get_or_add_key(ctx, key);
  18390. ctx->kv[idx].type = GGUF_TYPE_STRING;
  18391. ctx->kv[idx].value.str.n = strlen(val);
  18392. ctx->kv[idx].value.str.data = strdup(val);
  18393. }
  18394. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  18395. const int idx = gguf_get_or_add_key(ctx, key);
  18396. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18397. ctx->kv[idx].value.arr.type = type;
  18398. ctx->kv[idx].value.arr.n = n;
  18399. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  18400. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  18401. }
  18402. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  18403. const int idx = gguf_get_or_add_key(ctx, key);
  18404. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  18405. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  18406. ctx->kv[idx].value.arr.n = n;
  18407. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  18408. for (int i = 0; i < n; i++) {
  18409. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  18410. str->n = strlen(data[i]);
  18411. str->data = strdup(data[i]);
  18412. }
  18413. }
  18414. // set or add KV pairs from another context
  18415. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  18416. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  18417. switch (src->kv[i].type) {
  18418. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  18419. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  18420. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  18421. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  18422. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  18423. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  18424. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  18425. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  18426. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  18427. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  18428. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  18429. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  18430. case GGUF_TYPE_ARRAY:
  18431. {
  18432. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  18433. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  18434. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  18435. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  18436. }
  18437. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  18438. GGML_FREE((void *)data);
  18439. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  18440. GGML_ASSERT(false && "nested arrays not supported");
  18441. } else {
  18442. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  18443. }
  18444. } break;
  18445. default: GGML_ASSERT(false && "invalid type"); break;
  18446. }
  18447. }
  18448. }
  18449. void gguf_add_tensor(
  18450. struct gguf_context * ctx,
  18451. const struct ggml_tensor * tensor) {
  18452. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  18453. GGML_ASSERT(false && "duplicated tensor name");
  18454. }
  18455. const int idx = ctx->header.n_tensors;
  18456. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  18457. ctx->infos[idx].name.n = strlen(tensor->name);
  18458. ctx->infos[idx].name.data = strdup(tensor->name);
  18459. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  18460. ctx->infos[idx].ne[i] = 1;
  18461. }
  18462. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  18463. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  18464. ctx->infos[idx].ne[i] = tensor->ne[i];
  18465. }
  18466. ctx->infos[idx].type = tensor->type;
  18467. ctx->infos[idx].offset = 0;
  18468. ctx->infos[idx].data = tensor->data;
  18469. ctx->infos[idx].size = ggml_nbytes(tensor);
  18470. if (ctx->header.n_tensors > 0) {
  18471. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  18472. }
  18473. ctx->header.n_tensors++;
  18474. }
  18475. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  18476. const int idx = gguf_find_tensor(ctx, name);
  18477. if (idx < 0) {
  18478. GGML_ASSERT(false && "tensor not found");
  18479. }
  18480. ctx->infos[idx].type = type;
  18481. }
  18482. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  18483. const int idx = gguf_find_tensor(ctx, name);
  18484. if (idx < 0) {
  18485. GGML_ASSERT(false && "tensor not found");
  18486. }
  18487. ctx->infos[idx].data = data;
  18488. ctx->infos[idx].size = size;
  18489. // update offsets
  18490. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  18491. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  18492. }
  18493. }
  18494. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  18495. // fwrite(&val->n, sizeof(val->n), 1, file);
  18496. // fwrite(val->data, sizeof(char), val->n, file);
  18497. //}
  18498. //
  18499. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  18500. // fwrite(val, sizeof(char), size, file);
  18501. //}
  18502. struct gguf_buf {
  18503. void * data;
  18504. size_t size;
  18505. size_t offset;
  18506. };
  18507. static struct gguf_buf gguf_buf_init(size_t size) {
  18508. struct gguf_buf buf = {
  18509. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  18510. /*buf.size =*/ size,
  18511. /*buf.offset =*/ 0,
  18512. };
  18513. return buf;
  18514. }
  18515. static void gguf_buf_free(struct gguf_buf buf) {
  18516. if (buf.data) {
  18517. GGML_FREE(buf.data);
  18518. }
  18519. }
  18520. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  18521. if (buf->offset + size > buf->size) {
  18522. buf->size = 1.5*(buf->offset + size);
  18523. if (buf->data) {
  18524. buf->data = realloc(buf->data, buf->size);
  18525. }
  18526. }
  18527. }
  18528. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  18529. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  18530. if (buf->data) {
  18531. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  18532. }
  18533. buf->offset += sizeof(val->n);
  18534. if (buf->data) {
  18535. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  18536. }
  18537. buf->offset += val->n;
  18538. }
  18539. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  18540. gguf_buf_grow(buf, el_size);
  18541. if (buf->data) {
  18542. memcpy((char *) buf->data + buf->offset, val, el_size);
  18543. }
  18544. buf->offset += el_size;
  18545. }
  18546. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  18547. // write header
  18548. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  18549. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  18550. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  18551. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  18552. // write key-value pairs
  18553. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  18554. struct gguf_kv * kv = &ctx->kv[i];
  18555. gguf_bwrite_str(buf, &kv->key);
  18556. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  18557. switch (kv->type) {
  18558. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  18559. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  18560. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  18561. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  18562. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  18563. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  18564. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  18565. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  18566. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  18567. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  18568. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  18569. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  18570. case GGUF_TYPE_ARRAY:
  18571. {
  18572. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  18573. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  18574. switch (kv->value.arr.type) {
  18575. case GGUF_TYPE_UINT8:
  18576. case GGUF_TYPE_INT8:
  18577. case GGUF_TYPE_UINT16:
  18578. case GGUF_TYPE_INT16:
  18579. case GGUF_TYPE_UINT32:
  18580. case GGUF_TYPE_INT32:
  18581. case GGUF_TYPE_FLOAT32:
  18582. case GGUF_TYPE_UINT64:
  18583. case GGUF_TYPE_INT64:
  18584. case GGUF_TYPE_FLOAT64:
  18585. case GGUF_TYPE_BOOL:
  18586. {
  18587. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  18588. } break;
  18589. case GGUF_TYPE_STRING:
  18590. {
  18591. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  18592. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  18593. }
  18594. } break;
  18595. case GGUF_TYPE_ARRAY:
  18596. default: GGML_ASSERT(false && "invalid type"); break;
  18597. }
  18598. } break;
  18599. default: GGML_ASSERT(false && "invalid type");
  18600. }
  18601. }
  18602. // write tensor infos
  18603. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18604. struct gguf_tensor_info * info = &ctx->infos[i];
  18605. gguf_bwrite_str(buf, &info->name);
  18606. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  18607. for (uint32_t j = 0; j < info->n_dims; ++j) {
  18608. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  18609. }
  18610. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  18611. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  18612. }
  18613. // we require the data section to be aligned, so take into account any padding
  18614. {
  18615. const size_t offset = buf->offset;
  18616. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  18617. if (offset_pad != offset) {
  18618. uint8_t pad = 0;
  18619. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18620. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18621. }
  18622. }
  18623. }
  18624. if (only_meta) {
  18625. return;
  18626. }
  18627. size_t offset = 0;
  18628. // write tensor data
  18629. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18630. struct gguf_tensor_info * info = &ctx->infos[i];
  18631. const size_t size = info->size;
  18632. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18633. gguf_bwrite_el(buf, info->data, size);
  18634. if (size_pad != size) {
  18635. uint8_t pad = 0;
  18636. for (size_t j = 0; j < size_pad - size; ++j) {
  18637. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18638. }
  18639. }
  18640. GGML_ASSERT(offset == info->offset);
  18641. offset += size_pad;
  18642. }
  18643. }
  18644. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18645. FILE * file = ggml_fopen(fname, "wb");
  18646. if (!file) {
  18647. GGML_ASSERT(false && "failed to open file for writing");
  18648. }
  18649. struct gguf_buf buf = gguf_buf_init(16*1024);
  18650. gguf_write_to_buf(ctx, &buf, only_meta);
  18651. fwrite(buf.data, 1, buf.offset, file);
  18652. gguf_buf_free(buf);
  18653. fclose(file);
  18654. }
  18655. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18656. // no allocs - only compute size
  18657. struct gguf_buf buf = gguf_buf_init(0);
  18658. gguf_write_to_buf(ctx, &buf, true);
  18659. return buf.offset;
  18660. }
  18661. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18662. struct gguf_buf buf = gguf_buf_init(16*1024);
  18663. gguf_write_to_buf(ctx, &buf, true);
  18664. memcpy(data, buf.data, buf.offset);
  18665. gguf_buf_free(buf);
  18666. }
  18667. ////////////////////////////////////////////////////////////////////////////////
  18668. int ggml_cpu_has_avx(void) {
  18669. #if defined(__AVX__)
  18670. return 1;
  18671. #else
  18672. return 0;
  18673. #endif
  18674. }
  18675. int ggml_cpu_has_avx_vnni(void) {
  18676. #if defined(__AVXVNNI__)
  18677. return 1;
  18678. #else
  18679. return 0;
  18680. #endif
  18681. }
  18682. int ggml_cpu_has_avx2(void) {
  18683. #if defined(__AVX2__)
  18684. return 1;
  18685. #else
  18686. return 0;
  18687. #endif
  18688. }
  18689. int ggml_cpu_has_avx512(void) {
  18690. #if defined(__AVX512F__)
  18691. return 1;
  18692. #else
  18693. return 0;
  18694. #endif
  18695. }
  18696. int ggml_cpu_has_avx512_vbmi(void) {
  18697. #if defined(__AVX512VBMI__)
  18698. return 1;
  18699. #else
  18700. return 0;
  18701. #endif
  18702. }
  18703. int ggml_cpu_has_avx512_vnni(void) {
  18704. #if defined(__AVX512VNNI__)
  18705. return 1;
  18706. #else
  18707. return 0;
  18708. #endif
  18709. }
  18710. int ggml_cpu_has_avx512_bf16(void) {
  18711. #if defined(__AVX512BF16__)
  18712. return 1;
  18713. #else
  18714. return 0;
  18715. #endif
  18716. }
  18717. int ggml_cpu_has_fma(void) {
  18718. #if defined(__FMA__)
  18719. return 1;
  18720. #else
  18721. return 0;
  18722. #endif
  18723. }
  18724. int ggml_cpu_has_neon(void) {
  18725. #if defined(__ARM_NEON)
  18726. return 1;
  18727. #else
  18728. return 0;
  18729. #endif
  18730. }
  18731. int ggml_cpu_has_sve(void) {
  18732. #if defined(__ARM_FEATURE_SVE)
  18733. // TODO: Currently, SVE 256 bit is only supported.
  18734. GGML_ASSERT(svcntb() == QK8_0);
  18735. return 1;
  18736. #else
  18737. return 0;
  18738. #endif
  18739. }
  18740. int ggml_cpu_has_arm_fma(void) {
  18741. #if defined(__ARM_FEATURE_FMA)
  18742. return 1;
  18743. #else
  18744. return 0;
  18745. #endif
  18746. }
  18747. int ggml_cpu_has_metal(void) {
  18748. #if defined(GGML_USE_METAL)
  18749. return 1;
  18750. #else
  18751. return 0;
  18752. #endif
  18753. }
  18754. int ggml_cpu_has_f16c(void) {
  18755. #if defined(__F16C__)
  18756. return 1;
  18757. #else
  18758. return 0;
  18759. #endif
  18760. }
  18761. int ggml_cpu_has_fp16_va(void) {
  18762. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18763. return 1;
  18764. #else
  18765. return 0;
  18766. #endif
  18767. }
  18768. int ggml_cpu_has_wasm_simd(void) {
  18769. #if defined(__wasm_simd128__)
  18770. return 1;
  18771. #else
  18772. return 0;
  18773. #endif
  18774. }
  18775. int ggml_cpu_has_blas(void) {
  18776. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18777. return 1;
  18778. #else
  18779. return 0;
  18780. #endif
  18781. }
  18782. int ggml_cpu_has_cuda(void) {
  18783. #if defined(GGML_USE_CUDA)
  18784. return 1;
  18785. #else
  18786. return 0;
  18787. #endif
  18788. }
  18789. int ggml_cpu_has_vulkan(void) {
  18790. #if defined(GGML_USE_VULKAN)
  18791. return 1;
  18792. #else
  18793. return 0;
  18794. #endif
  18795. }
  18796. int ggml_cpu_has_kompute(void) {
  18797. #if defined(GGML_USE_KOMPUTE)
  18798. return 1;
  18799. #else
  18800. return 0;
  18801. #endif
  18802. }
  18803. int ggml_cpu_has_sycl(void) {
  18804. #if defined(GGML_USE_SYCL)
  18805. return 1;
  18806. #else
  18807. return 0;
  18808. #endif
  18809. }
  18810. int ggml_cpu_has_rpc(void) {
  18811. #if defined(GGML_USE_RPC)
  18812. return 1;
  18813. #else
  18814. return 0;
  18815. #endif
  18816. }
  18817. int ggml_cpu_has_gpublas(void) {
  18818. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18819. }
  18820. int ggml_cpu_has_sse3(void) {
  18821. #if defined(__SSE3__)
  18822. return 1;
  18823. #else
  18824. return 0;
  18825. #endif
  18826. }
  18827. int ggml_cpu_has_ssse3(void) {
  18828. #if defined(__SSSE3__)
  18829. return 1;
  18830. #else
  18831. return 0;
  18832. #endif
  18833. }
  18834. int ggml_cpu_has_vsx(void) {
  18835. #if defined(__POWER9_VECTOR__)
  18836. return 1;
  18837. #else
  18838. return 0;
  18839. #endif
  18840. }
  18841. int ggml_cpu_has_matmul_int8(void) {
  18842. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18843. return 1;
  18844. #else
  18845. return 0;
  18846. #endif
  18847. }
  18848. ////////////////////////////////////////////////////////////////////////////////