common.h 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama.h"
  4. #define LOG_NO_FILE_LINE_FUNCTION
  5. #include "log.h"
  6. #include <string>
  7. #include <vector>
  8. #include <random>
  9. #include <thread>
  10. #include <unordered_map>
  11. #include <tuple>
  12. #ifdef _WIN32
  13. #define DIRECTORY_SEPARATOR '\\'
  14. #else
  15. #define DIRECTORY_SEPARATOR '/'
  16. #endif // _WIN32
  17. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  18. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  19. #define print_build_info() do { \
  20. fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT); \
  21. fprintf(stderr, "%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET); \
  22. } while(0)
  23. //
  24. // CLI argument parsing
  25. //
  26. int32_t get_num_physical_cores();
  27. struct gpt_params {
  28. uint32_t seed = -1; // RNG seed
  29. int32_t n_threads = get_num_physical_cores();
  30. int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
  31. int32_t n_predict = -1; // new tokens to predict
  32. int32_t n_ctx = 512; // context size
  33. int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
  34. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  35. int32_t n_draft = 16; // number of tokens to draft during speculative decoding
  36. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  37. int32_t n_parallel = 1; // number of parallel sequences to decode
  38. int32_t n_sequences = 1; // number of sequences to decode
  39. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  40. int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  41. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  42. float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
  43. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  44. int32_t n_beams = 0; // if non-zero then use beam search of given width.
  45. float rope_freq_base = 0.0f; // RoPE base frequency
  46. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  47. // sampling parameters
  48. int32_t top_k = 40; // <= 0 to use vocab size
  49. float top_p = 0.95f; // 1.0 = disabled
  50. float tfs_z = 1.00f; // 1.0 = disabled
  51. float typical_p = 1.00f; // 1.0 = disabled
  52. float temp = 0.80f; // 1.0 = disabled
  53. float repeat_penalty = 1.10f; // 1.0 = disabled
  54. int32_t repeat_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  55. float frequency_penalty = 0.00f; // 0.0 = disabled
  56. float presence_penalty = 0.00f; // 0.0 = disabled
  57. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  58. float mirostat_tau = 5.00f; // target entropy
  59. float mirostat_eta = 0.10f; // learning rate
  60. std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens
  61. // Classifier-Free Guidance
  62. // https://arxiv.org/abs/2306.17806
  63. std::string cfg_negative_prompt; // string to help guidance
  64. float cfg_scale = 1.f; // How strong is guidance
  65. std::string model = "models/7B/ggml-model-f16.gguf"; // model path
  66. std::string model_draft = ""; // draft model for speculative decoding
  67. std::string model_alias = "unknown"; // model alias
  68. std::string prompt = "";
  69. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state
  70. std::string input_prefix = ""; // string to prefix user inputs with
  71. std::string input_suffix = ""; // string to suffix user inputs with
  72. std::string grammar = ""; // optional BNF-like grammar to constrain sampling
  73. std::vector<std::string> antiprompt; // string upon seeing which more user input is prompted
  74. std::string logdir = ""; // directory in which to save YAML log files
  75. std::vector<std::tuple<std::string, float>> lora_adapter; // lora adapter path with user defined scale
  76. std::string lora_base = ""; // base model path for the lora adapter
  77. int ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  78. int ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  79. // (which is more convenient to use for plotting)
  80. //
  81. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  82. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  83. bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS
  84. bool memory_f16 = true; // use f16 instead of f32 for memory kv
  85. bool random_prompt = false; // do not randomize prompt if none provided
  86. bool use_color = false; // use color to distinguish generations and inputs
  87. bool interactive = false; // interactive mode
  88. bool prompt_cache_all = false; // save user input and generations to prompt cache
  89. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  90. bool embedding = false; // get only sentence embedding
  91. bool escape = false; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  92. bool interactive_first = false; // wait for user input immediately
  93. bool multiline_input = false; // reverse the usage of `\`
  94. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  95. bool cont_batching = false; // insert new sequences for decoding on-the-fly
  96. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  97. bool ignore_eos = false; // ignore generated EOS tokens
  98. bool instruct = false; // instruction mode (used for Alpaca models)
  99. bool penalize_nl = true; // consider newlines as a repeatable token
  100. bool logits_all = false; // return logits for all tokens in the batch
  101. bool use_mmap = true; // use mmap for faster loads
  102. bool use_mlock = false; // use mlock to keep model in memory
  103. bool numa = false; // attempt optimizations that help on some NUMA systems
  104. bool verbose_prompt = false; // print prompt tokens before generation
  105. bool infill = false; // use infill mode
  106. };
  107. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  108. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  109. std::string get_system_info(const gpt_params & params);
  110. std::string gpt_random_prompt(std::mt19937 & rng);
  111. void process_escapes(std::string& input);
  112. //
  113. // Model utils
  114. //
  115. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params);
  116. struct llama_model_params llama_model_params_from_gpt_params(const gpt_params & params);
  117. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params);
  118. //
  119. // Vocab utils
  120. //
  121. // tokenizes a string into a vector of tokens
  122. // should work similar to Python's `tokenizer.encode`
  123. std::vector<llama_token> llama_tokenize(
  124. const struct llama_context * ctx,
  125. const std::string & text,
  126. bool add_bos);
  127. std::vector<llama_token> llama_tokenize(
  128. const struct llama_model * model,
  129. const std::string & text,
  130. bool add_bos);
  131. // tokenizes a token into a piece
  132. // should work similar to Python's `tokenizer.id_to_piece`
  133. std::string llama_token_to_piece(
  134. const struct llama_context * ctx,
  135. llama_token token);
  136. // TODO: these should be moved in llama.h C-style API under single `llama_detokenize` function
  137. // that takes into account the tokenizer type and decides how to handle the leading space
  138. //
  139. // detokenizes a vector of tokens into a string
  140. // should work similar to Python's `tokenizer.decode`
  141. // removes the leading space from the first non-BOS token
  142. std::string llama_detokenize_spm(
  143. llama_context * ctx,
  144. const std::vector<llama_token> & tokens);
  145. // detokenizes a vector of tokens into a string
  146. // should work similar to Python's `tokenizer.decode`
  147. std::string llama_detokenize_bpe(
  148. llama_context * ctx,
  149. const std::vector<llama_token> & tokens);
  150. //
  151. // Sampling utils
  152. //
  153. // this is a common sampling function used across the examples for convenience
  154. // it can serve as a starting point for implementing your own sampling function
  155. //
  156. // required:
  157. // - ctx: context to use for sampling
  158. // - params: sampling parameters
  159. //
  160. // optional:
  161. // - ctx_guidance: context to use for classifier-free guidance, ignore if NULL
  162. // - grammar: grammar to use for sampling, ignore if NULL
  163. // - last_tokens: needed for repetition penalty, ignore if empty
  164. // - idx: sample from llama_get_logits_ith(ctx, idx)
  165. //
  166. // returns:
  167. // - token: sampled token
  168. // - candidates: vector of candidate tokens
  169. //
  170. llama_token llama_sample_token(
  171. struct llama_context * ctx,
  172. struct llama_context * ctx_guidance,
  173. struct llama_grammar * grammar,
  174. const struct gpt_params & params,
  175. const std::vector<llama_token> & last_tokens,
  176. std::vector<llama_token_data> & candidates,
  177. int idx = 0);
  178. //
  179. // YAML utils
  180. //
  181. bool create_directory_with_parents(const std::string & path);
  182. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
  183. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
  184. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
  185. std::string get_sortable_timestamp();
  186. void dump_non_result_info_yaml(
  187. FILE * stream, const gpt_params & params, const llama_context * lctx,
  188. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);