| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845 |
- #include "common.h"
- #include "llama.h"
- #include "build-info.h"
- #include "grammar-parser.h"
- #ifndef NDEBUG
- // crash the server in debug mode, otherwise send an http 500 error
- #define CPPHTTPLIB_NO_EXCEPTIONS 1
- #endif
- #include "httplib.h"
- #include "json.hpp"
- // auto generated files (update with ./deps.sh)
- #include "index.html.hpp"
- #include "index.js.hpp"
- #include "completion.js.hpp"
- #include "json-schema-to-grammar.mjs.hpp"
- #include <cstddef>
- #ifndef SERVER_VERBOSE
- #define SERVER_VERBOSE 1
- #endif
- using namespace httplib;
- using json = nlohmann::json;
- struct server_params
- {
- std::string hostname = "127.0.0.1";
- std::string public_path = "examples/server/public";
- int32_t port = 8080;
- int32_t read_timeout = 600;
- int32_t write_timeout = 600;
- };
- // completion token output with probabilities
- struct completion_token_output
- {
- struct token_prob
- {
- llama_token tok;
- float prob;
- };
- std::vector<token_prob> probs;
- llama_token tok;
- };
- static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
- {
- size_t i;
- for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
- {
- }
- return i;
- }
- enum stop_type
- {
- STOP_FULL,
- STOP_PARTIAL,
- };
- static bool ends_with(const std::string &str, const std::string &suffix)
- {
- return str.size() >= suffix.size() &&
- 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
- }
- static size_t find_partial_stop_string(const std::string &stop,
- const std::string &text)
- {
- if (!text.empty() && !stop.empty())
- {
- const char text_last_char = text.back();
- for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
- {
- if (stop[char_index] == text_last_char)
- {
- const std::string current_partial = stop.substr(0, char_index + 1);
- if (ends_with(text, current_partial))
- {
- return text.size() - char_index - 1;
- }
- }
- }
- }
- return std::string::npos;
- }
- template <class Iter>
- static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
- {
- std::string ret;
- for (; begin != end; ++begin)
- {
- ret += llama_token_to_piece(ctx, *begin);
- }
- return ret;
- }
- static void server_log(const char *level, const char *function, int line,
- const char *message, const nlohmann::ordered_json &extra)
- {
- nlohmann::ordered_json log{
- {"timestamp", time(nullptr)},
- {"level", level},
- {"function", function},
- {"line", line},
- {"message", message},
- };
- if (!extra.empty())
- {
- log.merge_patch(extra);
- }
- const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
- printf("%.*s\n", (int)str.size(), str.data());
- fflush(stdout);
- }
- // format incomplete utf-8 multibyte character for output
- static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
- {
- std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
- // if the size is 1 and first bit is 1, meaning it's a partial character
- // (size > 1 meaning it's already a known token)
- if (out.size() == 1 && (out[0] & 0x80) == 0x80)
- {
- std::stringstream ss;
- ss << std::hex << (out[0] & 0xff);
- std::string res(ss.str());
- out = "byte: \\x" + res;
- }
- return out;
- }
- // convert a vector of completion_token_output to json
- static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> & probs)
- {
- json out = json::array();
- for (const auto &prob : probs)
- {
- json probs_for_token = json::array();
- for (const auto &p : prob.probs)
- {
- std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
- probs_for_token.push_back(json{
- {"tok_str", tok_str},
- {"prob", p.prob},
- });
- }
- std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
- out.push_back(json{
- {"content", tok_str},
- {"probs", probs_for_token},
- });
- }
- return out;
- }
- static bool server_verbose = false;
- #if SERVER_VERBOSE != 1
- #define LOG_VERBOSE(MSG, ...)
- #else
- #define LOG_VERBOSE(MSG, ...) \
- do \
- { \
- if (server_verbose) \
- { \
- server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
- } \
- } while (0)
- #endif
- #define LOG_ERROR(MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
- #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
- #define LOG_INFO(MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
- struct llama_server_context
- {
- bool stream = false;
- bool has_next_token = false;
- std::string generated_text;
- std::vector<completion_token_output> generated_token_probs;
- size_t num_prompt_tokens = 0;
- size_t num_tokens_predicted = 0;
- size_t n_past = 0;
- size_t n_remain = 0;
- json prompt;
- std::vector<llama_token> embd;
- std::vector<llama_token> last_n_tokens;
- llama_model *model = nullptr;
- llama_context *ctx = nullptr;
- gpt_params params;
- int n_ctx;
- grammar_parser::parse_state parsed_grammar;
- llama_grammar *grammar = nullptr;
- bool truncated = false;
- bool stopped_eos = false;
- bool stopped_word = false;
- bool stopped_limit = false;
- std::string stopping_word;
- int32_t multibyte_pending = 0;
- std::mutex mutex;
- std::unique_lock<std::mutex> lock()
- {
- return std::unique_lock<std::mutex>(mutex);
- }
- ~llama_server_context()
- {
- if (ctx)
- {
- llama_free(ctx);
- ctx = nullptr;
- }
- if (model)
- {
- llama_free_model(model);
- model = nullptr;
- }
- }
- void rewind()
- {
- params.antiprompt.clear();
- params.grammar.clear();
- num_prompt_tokens = 0;
- num_tokens_predicted = 0;
- generated_text = "";
- generated_text.reserve(n_ctx);
- generated_token_probs.clear();
- truncated = false;
- stopped_eos = false;
- stopped_word = false;
- stopped_limit = false;
- stopping_word = "";
- multibyte_pending = 0;
- n_remain = 0;
- n_past = 0;
- if (grammar != nullptr) {
- llama_grammar_free(grammar);
- grammar = nullptr;
- }
- }
- bool loadModel(const gpt_params ¶ms_)
- {
- params = params_;
- std::tie(model, ctx) = llama_init_from_gpt_params(params);
- if (model == nullptr)
- {
- LOG_ERROR("unable to load model", {{"model", params_.model}});
- return false;
- }
- n_ctx = llama_n_ctx(ctx);
- last_n_tokens.resize(n_ctx);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- return true;
- }
- std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
- {
- // If `add_bos` is true, we only add BOS, when json_prompt is a string,
- // or the first element of the json_prompt array is a string.
- std::vector<llama_token> prompt_tokens;
- if (json_prompt.is_array())
- {
- bool first = true;
- for (const auto& p : json_prompt)
- {
- if (p.is_string())
- {
- auto s = p.template get<std::string>();
- std::vector<llama_token> p;
- if (first)
- {
- p = ::llama_tokenize(ctx, s, add_bos);
- first = false;
- }
- else
- {
- p = ::llama_tokenize(ctx, s, false);
- }
- prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
- }
- else
- {
- if (first)
- {
- first = false;
- }
- prompt_tokens.push_back(p.template get<llama_token>());
- }
- }
- }
- else
- {
- auto s = json_prompt.template get<std::string>();
- prompt_tokens = ::llama_tokenize(ctx, s, add_bos);
- }
- return prompt_tokens;
- }
- bool loadGrammar()
- {
- if (!params.grammar.empty()) {
- parsed_grammar = grammar_parser::parse(params.grammar.c_str());
- // will be empty (default) if there are parse errors
- if (parsed_grammar.rules.empty()) {
- LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
- return false;
- }
- grammar_parser::print_grammar(stderr, parsed_grammar);
- {
- auto it = params.logit_bias.find(llama_token_eos(ctx));
- if (it != params.logit_bias.end() && it->second == -INFINITY) {
- LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
- }
- }
- std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
- grammar = llama_grammar_init(
- grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
- }
- return true;
- }
- void loadInfill()
- {
- auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS
- auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS
- prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
- prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
- prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
- prefix_tokens.push_back(llama_token_middle(ctx));
- auto prompt_tokens = prefix_tokens;
- num_prompt_tokens = prompt_tokens.size();
- if (params.n_keep < 0)
- {
- params.n_keep = (int)num_prompt_tokens;
- }
- params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
- // if input prompt is too big, truncate like normal
- if (num_prompt_tokens >= (size_t)params.n_ctx)
- {
- printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
- // todo we probably want to cut from both sides
- const int n_left = (params.n_ctx - params.n_keep) / 2;
- std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
- const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
- new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
- std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
- LOG_VERBOSE("input truncated", {
- {"n_ctx", params.n_ctx},
- {"n_keep", params.n_keep},
- {"n_left", n_left},
- {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
- });
- truncated = true;
- prompt_tokens = new_tokens;
- }
- else
- {
- const size_t ps = num_prompt_tokens;
- std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
- std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
- }
- // compare the evaluated prompt with the new prompt
- n_past = common_part(embd, prompt_tokens);
- embd = prompt_tokens;
- if (n_past == num_prompt_tokens)
- {
- // we have to evaluate at least 1 token to generate logits.
- printf("we have to evaluate at least 1 token to generate logits\n");
- n_past--;
- }
- LOG_VERBOSE("prompt ingested", {
- {"n_past", n_past},
- {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
- {"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
- });
- has_next_token = true;
- }
- void loadPrompt()
- {
- auto prompt_tokens = tokenize(prompt, true); // always add BOS
- num_prompt_tokens = prompt_tokens.size();
- if (params.n_keep < 0)
- {
- params.n_keep = (int)num_prompt_tokens;
- }
- params.n_keep = std::min(n_ctx - 4, params.n_keep);
- // if input prompt is too big, truncate like normal
- if (num_prompt_tokens >= (size_t)n_ctx)
- {
- const int n_left = (n_ctx - params.n_keep) / 2;
- std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
- const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
- new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
- std::copy(prompt_tokens.end() - n_ctx, prompt_tokens.end(), last_n_tokens.begin());
- LOG_VERBOSE("input truncated", {
- {"n_ctx", n_ctx},
- {"n_keep", params.n_keep},
- {"n_left", n_left},
- {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
- });
- truncated = true;
- prompt_tokens = new_tokens;
- }
- else
- {
- const size_t ps = num_prompt_tokens;
- std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
- std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
- }
- // compare the evaluated prompt with the new prompt
- n_past = common_part(embd, prompt_tokens);
- // since #3228 we now have to manually manage the KV cache
- llama_kv_cache_seq_rm(ctx, 0, n_past, params.n_ctx);
- embd = prompt_tokens;
- if (n_past == num_prompt_tokens)
- {
- // we have to evaluate at least 1 token to generate logits.
- n_past--;
- }
- LOG_VERBOSE("prompt ingested", {
- {"n_past", n_past},
- {"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
- {"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
- });
- has_next_token = true;
- }
- void beginCompletion()
- {
- // number of tokens to keep when resetting context
- n_remain = params.n_predict;
- llama_set_rng_seed(ctx, params.seed);
- }
- completion_token_output nextToken()
- {
- completion_token_output result;
- result.tok = -1;
- if (embd.size() >= (size_t)n_ctx)
- {
- // Shift context
- const int n_left = n_past - params.n_keep - 1;
- const int n_discard = n_left/2;
- llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
- llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
- for (size_t i = params.n_keep + 1 + n_discard; i < embd.size(); i++)
- {
- embd[i - n_discard] = embd[i];
- }
- embd.resize(embd.size() - n_discard);
- n_past -= n_discard;
- truncated = true;
- LOG_VERBOSE("input truncated", {
- {"n_ctx", n_ctx},
- {"n_keep", params.n_keep},
- {"n_left", n_left},
- });
- }
- while (n_past < embd.size())
- {
- int n_eval = (int)embd.size() - n_past;
- if (n_eval > params.n_batch)
- {
- n_eval = params.n_batch;
- }
- if (llama_decode(ctx, llama_batch_get_one(&embd[n_past], n_eval, n_past, 0)))
- {
- LOG_ERROR("failed to eval", {
- {"n_eval", n_eval},
- {"n_past", n_past},
- {"embd", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
- });
- has_next_token = false;
- return result;
- }
- n_past += n_eval;
- }
- if (params.n_predict == 0)
- {
- has_next_token = false;
- result.tok = llama_token_eos(ctx);
- return result;
- }
- // out of user input, sample next token
- const float temp = params.temp;
- const int32_t top_k = params.top_k <= 0 ? llama_n_vocab(model) : params.top_k;
- const float top_p = params.top_p;
- const float tfs_z = params.tfs_z;
- const float typical_p = params.typical_p;
- const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
- const float repeat_penalty = params.repeat_penalty;
- const float alpha_presence = params.presence_penalty;
- const float alpha_frequency = params.frequency_penalty;
- const int mirostat = params.mirostat;
- const float mirostat_tau = params.mirostat_tau;
- const float mirostat_eta = params.mirostat_eta;
- const bool penalize_nl = params.penalize_nl;
- const int32_t n_probs = params.n_probs;
- {
- auto *logits = llama_get_logits(ctx);
- auto n_vocab = llama_n_vocab(model);
- // Apply params.logit_bias map
- for (const auto &it : params.logit_bias)
- {
- logits[it.first] += it.second;
- }
- std::vector<llama_token_data> candidates;
- candidates.reserve(n_vocab);
- for (llama_token token_id = 0; token_id < n_vocab; token_id++)
- {
- candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
- }
- llama_token_data_array candidates_p = {candidates.data(), candidates.size(), false};
- // Apply penalties
- float nl_logit = logits[llama_token_nl(ctx)];
- auto last_n_repeat = std::min(std::min((int)last_n_tokens.size(), repeat_last_n), n_ctx);
- llama_sample_repetition_penalty(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, repeat_penalty);
- llama_sample_frequency_and_presence_penalties(ctx, &candidates_p,
- last_n_tokens.data() + last_n_tokens.size() - last_n_repeat,
- last_n_repeat, alpha_frequency, alpha_presence);
- if (!penalize_nl)
- {
- logits[llama_token_nl(ctx)] = nl_logit;
- }
- if (grammar != nullptr) {
- llama_sample_grammar(ctx, &candidates_p, grammar);
- }
- if (temp <= 0)
- {
- // Greedy sampling
- result.tok = llama_sample_token_greedy(ctx, &candidates_p);
- if (n_probs > 0)
- {
- llama_sample_softmax(ctx, &candidates_p);
- }
- }
- else
- {
- if (mirostat == 1)
- {
- static float mirostat_mu = 2.0f * mirostat_tau;
- const int mirostat_m = 100;
- llama_sample_temp(ctx, &candidates_p, temp);
- result.tok = llama_sample_token_mirostat(ctx, &candidates_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
- }
- else if (mirostat == 2)
- {
- static float mirostat_mu = 2.0f * mirostat_tau;
- llama_sample_temp(ctx, &candidates_p, temp);
- result.tok = llama_sample_token_mirostat_v2(ctx, &candidates_p, mirostat_tau, mirostat_eta, &mirostat_mu);
- }
- else
- {
- // Temperature sampling
- size_t min_keep = std::max(1, n_probs);
- llama_sample_top_k(ctx, &candidates_p, top_k, min_keep);
- llama_sample_tail_free(ctx, &candidates_p, tfs_z, min_keep);
- llama_sample_typical(ctx, &candidates_p, typical_p, min_keep);
- llama_sample_top_p(ctx, &candidates_p, top_p, min_keep);
- llama_sample_temp(ctx, &candidates_p, temp);
- result.tok = llama_sample_token(ctx, &candidates_p);
- }
- }
- if (grammar != nullptr) {
- llama_grammar_accept_token(ctx, grammar, result.tok);
- }
- for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
- {
- result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
- }
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(result.tok);
- num_tokens_predicted++;
- }
- // add it to the context
- embd.push_back(result.tok);
- // decrement remaining sampling budget
- --n_remain;
- if (!embd.empty() && embd.back() == llama_token_eos(ctx))
- {
- // stopping_word = llama_token_to_piece(ctx, embd.back());
- has_next_token = false;
- stopped_eos = true;
- LOG_VERBOSE("eos token found", {});
- return result;
- }
- has_next_token = params.n_predict == -1 || n_remain != 0;
- return result;
- }
- size_t findStoppingStrings(const std::string &text, const size_t last_token_size,
- const stop_type type)
- {
- size_t stop_pos = std::string::npos;
- for (const std::string &word : params.antiprompt)
- {
- size_t pos;
- if (type == STOP_FULL)
- {
- const size_t tmp = word.size() + last_token_size;
- const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
- pos = text.find(word, from_pos);
- }
- else
- {
- pos = find_partial_stop_string(word, text);
- }
- if (pos != std::string::npos &&
- (stop_pos == std::string::npos || pos < stop_pos))
- {
- if (type == STOP_FULL)
- {
- stopping_word = word;
- stopped_word = true;
- has_next_token = false;
- }
- stop_pos = pos;
- }
- }
- return stop_pos;
- }
- completion_token_output doCompletion()
- {
- auto token_with_probs = nextToken();
- const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
- generated_text += token_text;
- if (params.n_probs > 0)
- {
- generated_token_probs.push_back(token_with_probs);
- }
- if (multibyte_pending > 0)
- {
- multibyte_pending -= token_text.size();
- }
- else if (token_text.size() == 1)
- {
- const char c = token_text[0];
- // 2-byte characters: 110xxxxx 10xxxxxx
- if ((c & 0xE0) == 0xC0)
- {
- multibyte_pending = 1;
- // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
- }
- else if ((c & 0xF0) == 0xE0)
- {
- multibyte_pending = 2;
- // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
- }
- else if ((c & 0xF8) == 0xF0)
- {
- multibyte_pending = 3;
- }
- else
- {
- multibyte_pending = 0;
- }
- }
- if (multibyte_pending > 0 && !has_next_token)
- {
- has_next_token = true;
- n_remain++;
- }
- if (!has_next_token && n_remain == 0)
- {
- stopped_limit = true;
- }
- LOG_VERBOSE("next token", {
- {"token", token_with_probs.tok},
- {"token_text", tokens_to_output_formatted_string(ctx, token_with_probs.tok)},
- {"has_next_token", has_next_token},
- {"n_remain", n_remain},
- {"num_tokens_predicted", num_tokens_predicted},
- {"stopped_eos", stopped_eos},
- {"stopped_word", stopped_word},
- {"stopped_limit", stopped_limit},
- {"stopping_word", stopping_word},
- });
- return token_with_probs;
- }
- std::vector<float> getEmbedding()
- {
- static const int n_embd = llama_n_embd(model);
- if (!params.embedding)
- {
- LOG_WARNING("embedding disabled", {
- {"params.embedding", params.embedding},
- });
- return std::vector<float>(n_embd, 0.0f);
- }
- const float *data = llama_get_embeddings(ctx);
- std::vector<float> embedding(data, data + n_embd);
- return embedding;
- }
- };
- static void server_print_usage(const char *argv0, const gpt_params ¶ms,
- const server_params &sparams)
- {
- printf("usage: %s [options]\n", argv0);
- printf("\n");
- printf("options:\n");
- printf(" -h, --help show this help message and exit\n");
- printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
- printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
- printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
- printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
- printf(" --rope-freq-scale N RoPE frequency scaling factor (default: loaded from model)\n");
- printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
- printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
- printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
- if (llama_mlock_supported())
- {
- printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
- }
- if (llama_mmap_supported())
- {
- printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
- }
- printf(" --numa attempt optimizations that help on some NUMA systems\n");
- #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- printf(" -ngl N, --n-gpu-layers N\n");
- printf(" number of layers to store in VRAM\n");
- printf(" -ts SPLIT --tensor-split SPLIT\n");
- printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
- printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
- printf(" -nommq, --no-mul-mat-q\n");
- printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
- printf(" Not recommended since this is both slower and uses more VRAM.\n");
- #endif
- printf(" -m FNAME, --model FNAME\n");
- printf(" model path (default: %s)\n", params.model.c_str());
- printf(" -a ALIAS, --alias ALIAS\n");
- printf(" set an alias for the model, will be added as `model` field in completion response\n");
- printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
- printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
- printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
- printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
- printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
- printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
- printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
- printf("\n");
- }
- static void server_params_parse(int argc, char **argv, server_params &sparams,
- gpt_params ¶ms)
- {
- gpt_params default_params;
- server_params default_sparams;
- std::string arg;
- bool invalid_param = false;
- for (int i = 1; i < argc; i++)
- {
- arg = argv[i];
- if (arg == "--port")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.port = std::stoi(argv[i]);
- }
- else if (arg == "--host")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.hostname = argv[i];
- }
- else if (arg == "--path")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.public_path = argv[i];
- }
- else if (arg == "--timeout" || arg == "-to")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- sparams.read_timeout = std::stoi(argv[i]);
- sparams.write_timeout = std::stoi(argv[i]);
- }
- else if (arg == "-m" || arg == "--model")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model = argv[i];
- }
- else if (arg == "-a" || arg == "--alias")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.model_alias = argv[i];
- }
- else if (arg == "-h" || arg == "--help")
- {
- server_print_usage(argv[0], default_params, default_sparams);
- exit(0);
- }
- else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_ctx = std::stoi(argv[i]);
- }
- else if (arg == "--rope-freq-base")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.rope_freq_base = std::stof(argv[i]);
- }
- else if (arg == "--rope-freq-scale")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.rope_freq_scale = std::stof(argv[i]);
- }
- else if (arg == "--memory-f32" || arg == "--memory_f32")
- {
- params.memory_f16 = false;
- }
- else if (arg == "--threads" || arg == "-t")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_threads = std::stoi(argv[i]);
- }
- else if (arg == "-b" || arg == "--batch-size")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.n_batch = std::stoi(argv[i]);
- params.n_batch = std::min(512, params.n_batch);
- }
- else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
- params.n_gpu_layers = std::stoi(argv[i]);
- #else
- LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
- "See main README.md for information on enabling GPU BLAS support",
- {{"n_gpu_layers", params.n_gpu_layers}});
- #endif
- }
- else if (arg == "--tensor-split" || arg == "-ts")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #ifdef GGML_USE_CUBLAS
- std::string arg_next = argv[i];
- // split string by , and /
- const std::regex regex{R"([,/]+)"};
- std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
- std::vector<std::string> split_arg{it, {}};
- GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
- for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
- {
- if (i_device < split_arg.size())
- {
- params.tensor_split[i_device] = std::stof(split_arg[i_device]);
- }
- else
- {
- params.tensor_split[i_device] = 0.0f;
- }
- }
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--no-mul-mat-q" || arg == "-nommq")
- {
- #ifdef GGML_USE_CUBLAS
- params.mul_mat_q = false;
- #else
- LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
- #endif // GGML_USE_CUBLAS
- }
- else if (arg == "--main-gpu" || arg == "-mg")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- #ifdef GGML_USE_CUBLAS
- params.main_gpu = std::stoi(argv[i]);
- #else
- LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
- #endif
- }
- else if (arg == "--lora")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_adapter.push_back({argv[i], 1.0f});
- params.use_mmap = false;
- }
- else if (arg == "--lora-scaled")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- const char * lora_adapter = argv[i];
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_adapter.push_back({lora_adapter, std::stof(argv[i])});
- params.use_mmap = false;
- }
- else if (arg == "--lora-base")
- {
- if (++i >= argc)
- {
- invalid_param = true;
- break;
- }
- params.lora_base = argv[i];
- }
- else if (arg == "-v" || arg == "--verbose")
- {
- #if SERVER_VERBOSE != 1
- LOG_WARNING("server.cpp is not built with verbose logging.", {});
- #else
- server_verbose = true;
- #endif
- }
- else if (arg == "--mlock")
- {
- params.use_mlock = true;
- }
- else if (arg == "--no-mmap")
- {
- params.use_mmap = false;
- }
- else if (arg == "--numa")
- {
- params.numa = true;
- }
- else if (arg == "--embedding")
- {
- params.embedding = true;
- }
- else
- {
- fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- if (invalid_param)
- {
- fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
- server_print_usage(argv[0], default_params, default_sparams);
- exit(1);
- }
- }
- static json format_generation_settings(llama_server_context &llama)
- {
- const auto eos_bias = llama.params.logit_bias.find(llama_token_eos(llama.ctx));
- const bool ignore_eos = eos_bias != llama.params.logit_bias.end() &&
- eos_bias->second < 0.0f && std::isinf(eos_bias->second);
- return json{
- {"n_ctx", llama.n_ctx},
- {"model", llama.params.model_alias},
- {"seed", llama.params.seed},
- {"temp", llama.params.temp},
- {"top_k", llama.params.top_k},
- {"top_p", llama.params.top_p},
- {"tfs_z", llama.params.tfs_z},
- {"typical_p", llama.params.typical_p},
- {"repeat_last_n", llama.params.repeat_last_n},
- {"repeat_penalty", llama.params.repeat_penalty},
- {"presence_penalty", llama.params.presence_penalty},
- {"frequency_penalty", llama.params.frequency_penalty},
- {"mirostat", llama.params.mirostat},
- {"mirostat_tau", llama.params.mirostat_tau},
- {"mirostat_eta", llama.params.mirostat_eta},
- {"penalize_nl", llama.params.penalize_nl},
- {"stop", llama.params.antiprompt},
- {"n_predict", llama.params.n_predict},
- {"n_keep", llama.params.n_keep},
- {"ignore_eos", ignore_eos},
- {"stream", llama.stream},
- {"logit_bias", llama.params.logit_bias},
- {"n_probs", llama.params.n_probs},
- {"grammar", llama.params.grammar},
- };
- }
- static json format_embedding_response(llama_server_context &llama)
- {
- return json{
- {"embedding", llama.getEmbedding()},
- };
- }
- static json format_timings(llama_server_context &llama)
- {
- const auto timings = llama_get_timings(llama.ctx);
- assert(timings.n_eval == ptrdiff_t(llama.num_tokens_predicted));
- return json{
- {"prompt_n", timings.n_p_eval},
- {"prompt_ms", timings.t_p_eval_ms},
- {"prompt_per_token_ms", timings.t_p_eval_ms / timings.n_p_eval},
- {"prompt_per_second", 1e3 / timings.t_p_eval_ms * timings.n_p_eval},
- {"predicted_n", timings.n_eval},
- {"predicted_ms", timings.t_eval_ms},
- {"predicted_per_token_ms", timings.t_eval_ms / timings.n_eval},
- {"predicted_per_second", 1e3 / timings.t_eval_ms * timings.n_eval},
- };
- }
- static json format_final_response(llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs)
- {
- json res = json{
- {"content", content},
- {"stop", true},
- {"model", llama.params.model_alias},
- {"tokens_predicted", llama.num_tokens_predicted},
- {"tokens_evaluated", llama.num_prompt_tokens},
- {"generation_settings", format_generation_settings(llama)},
- {"prompt", llama.prompt},
- {"truncated", llama.truncated},
- {"stopped_eos", llama.stopped_eos},
- {"stopped_word", llama.stopped_word},
- {"stopped_limit", llama.stopped_limit},
- {"stopping_word", llama.stopping_word},
- {"tokens_cached", llama.n_past},
- {"timings", format_timings(llama)},
- };
- if (llama.params.n_probs > 0)
- {
- res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
- }
- return res;
- }
- static json format_partial_response(
- llama_server_context &llama, const std::string &content, const std::vector<completion_token_output> &probs
- ) {
- json res = json{
- {"content", content},
- {"stop", false},
- };
- if (llama.params.n_probs > 0)
- {
- res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
- }
- return res;
- }
- static json format_tokenizer_response(const std::vector<llama_token> &tokens)
- {
- return json{
- {"tokens", tokens}};
- }
- static json format_detokenized_response(std::string content)
- {
- return json{
- {"content", content}};
- }
- template <typename T>
- static T json_value(const json &body, const std::string &key, const T &default_value)
- {
- // Fallback null to default value
- return body.contains(key) && !body.at(key).is_null()
- ? body.value(key, default_value)
- : default_value;
- }
- static void parse_options_completion(const json &body, llama_server_context &llama)
- {
- gpt_params default_params;
- llama.stream = json_value(body, "stream", false);
- llama.params.n_predict = json_value(body, "n_predict", default_params.n_predict);
- llama.params.top_k = json_value(body, "top_k", default_params.top_k);
- llama.params.top_p = json_value(body, "top_p", default_params.top_p);
- llama.params.tfs_z = json_value(body, "tfs_z", default_params.tfs_z);
- llama.params.typical_p = json_value(body, "typical_p", default_params.typical_p);
- llama.params.repeat_last_n = json_value(body, "repeat_last_n", default_params.repeat_last_n);
- llama.params.temp = json_value(body, "temperature", default_params.temp);
- llama.params.repeat_penalty = json_value(body, "repeat_penalty", default_params.repeat_penalty);
- llama.params.presence_penalty = json_value(body, "presence_penalty", default_params.presence_penalty);
- llama.params.frequency_penalty = json_value(body, "frequency_penalty", default_params.frequency_penalty);
- llama.params.mirostat = json_value(body, "mirostat", default_params.mirostat);
- llama.params.mirostat_tau = json_value(body, "mirostat_tau", default_params.mirostat_tau);
- llama.params.mirostat_eta = json_value(body, "mirostat_eta", default_params.mirostat_eta);
- llama.params.penalize_nl = json_value(body, "penalize_nl", default_params.penalize_nl);
- llama.params.n_keep = json_value(body, "n_keep", default_params.n_keep);
- llama.params.seed = json_value(body, "seed", default_params.seed);
- llama.params.grammar = json_value(body, "grammar", default_params.grammar);
- llama.params.n_probs = json_value(body, "n_probs", default_params.n_probs);
- if (body.count("prompt") != 0)
- {
- llama.prompt = body["prompt"];
- }
- else
- {
- llama.prompt = "";
- }
- llama.params.logit_bias.clear();
- if (json_value(body, "ignore_eos", false))
- {
- llama.params.logit_bias[llama_token_eos(llama.ctx)] = -INFINITY;
- }
- const auto &logit_bias = body.find("logit_bias");
- if (logit_bias != body.end() && logit_bias->is_array())
- {
- const int n_vocab = llama_n_vocab(llama.model);
- for (const auto &el : *logit_bias)
- {
- if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
- {
- llama_token tok = el[0].get<llama_token>();
- if (tok >= 0 && tok < n_vocab)
- {
- if (el[1].is_number())
- {
- llama.params.logit_bias[tok] = el[1].get<float>();
- }
- else if (el[1].is_boolean() && !el[1].get<bool>())
- {
- llama.params.logit_bias[tok] = -INFINITY;
- }
- }
- }
- }
- }
- llama.params.antiprompt.clear();
- const auto &stop = body.find("stop");
- if (stop != body.end() && stop->is_array())
- {
- for (const auto &word : *stop)
- {
- if (!word.empty())
- {
- llama.params.antiprompt.push_back(word);
- }
- }
- }
- LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
- }
- static void parse_options_infill(const json &body, llama_server_context &llama)
- {
- if (body.count("input_prefix") != 0)
- {
- llama.params.input_prefix = body["input_prefix"];
- }
- else
- {
- llama.params.input_prefix = "";
- }
- if (body.count("input_suffix") != 0)
- {
- llama.params.input_suffix = body["input_suffix"];
- }
- else
- {
- llama.params.input_suffix = "";
- }
- parse_options_completion(body, llama);
- }
- static void log_server_request(const Request &req, const Response &res)
- {
- LOG_INFO("request", {
- {"remote_addr", req.remote_addr},
- {"remote_port", req.remote_port},
- {"status", res.status},
- {"method", req.method},
- {"path", req.path},
- {"params", req.params},
- });
- LOG_VERBOSE("request", {
- {"request", req.body},
- {"response", res.body},
- });
- }
- static bool is_at_eob(llama_server_context &server_context, const llama_token *tokens, const size_t n_tokens) {
- return n_tokens && tokens[n_tokens-1] == llama_token_eos(server_context.ctx);
- }
- // Function matching type llama_beam_search_callback_fn_t.
- // Custom callback example is called each time the beams lengths increase:
- // * Show progress by printing ',' following by number of convergent beam tokens if any.
- // * When all beams converge to a common prefix, they are made available in beams_state.beams[0].
- // This is also called when the stop condition is met.
- // Collect tokens into std::vector<llama_token> response which is pointed to by callback_data.
- static void beam_search_callback(void *callback_data, llama_beams_state beams_state) {
- auto & llama = *static_cast<llama_server_context*>(callback_data);
- // Mark beams as EOS as needed.
- for (size_t i = 0 ; i < beams_state.n_beams ; ++i) {
- llama_beam_view& beam_view = beams_state.beam_views[i];
- if (!beam_view.eob && is_at_eob(llama, beam_view.tokens, beam_view.n_tokens)) {
- beam_view.eob = true;
- }
- }
- printf(","); // Show progress
- if (const size_t n = beams_state.common_prefix_length) {
- llama.generated_token_probs.resize(llama.generated_token_probs.size() + n);
- assert(0u < beams_state.n_beams);
- const llama_token * tokens = beams_state.beam_views[0].tokens;
- const auto map = [](llama_token tok) { return completion_token_output{{},tok}; };
- std::transform(tokens, tokens + n, llama.generated_token_probs.end() - n, map);
- printf("%zu", n);
- }
- fflush(stdout);
- #if 0 // DEBUG: print current beams for this iteration
- std::cout << "\n\nCurrent beams:\n";
- for (size_t i=0 ; i < beams_state.n_beams ; ++i) {
- std::cout << "beams["<<i<<"]: " << ostream_beam_view{state.ctx,beams_state.beam_views[i]} << std::endl;
- }
- #endif
- }
- struct token_translator {
- llama_context * ctx;
- std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
- std::string operator()(const completion_token_output & cto) const { return (*this)(cto.tok); }
- };
- static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama)
- {
- auto & gtps = llama.generated_token_probs;
- auto translator = token_translator{llama.ctx};
- auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
- const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
- if (llama.generated_text.capacity() < llama.generated_text.size() + len) {
- llama.generated_text.reserve(llama.generated_text.size() + len);
- }
- for (const completion_token_output & cto : gtps) {
- llama.generated_text += translator(cto);
- }
- }
- int main(int argc, char **argv)
- {
- // own arguments required by this example
- gpt_params params;
- server_params sparams;
- // struct that contains llama context and inference
- llama_server_context llama;
- server_params_parse(argc, argv, sparams, params);
- if (params.model_alias == "unknown")
- {
- params.model_alias = params.model;
- }
- llama_backend_init(params.numa);
- LOG_INFO("build info", {{"build", BUILD_NUMBER},
- {"commit", BUILD_COMMIT}});
- LOG_INFO("system info", {
- {"n_threads", params.n_threads},
- {"n_threads_batch", params.n_threads_batch},
- {"total_threads", std::thread::hardware_concurrency()},
- {"system_info", llama_print_system_info()},
- });
- // load the model
- if (!llama.loadModel(params))
- {
- return 1;
- }
- Server svr;
- svr.set_default_headers({{"Server", "llama.cpp"},
- {"Access-Control-Allow-Origin", "*"},
- {"Access-Control-Allow-Headers", "content-type"}});
- // this is only called if no index.html is found in the public --path
- svr.Get("/", [](const Request &, Response &res)
- {
- res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
- return false; });
- // this is only called if no index.js is found in the public --path
- svr.Get("/index.js", [](const Request &, Response &res)
- {
- res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
- return false; });
- // this is only called if no index.html is found in the public --path
- svr.Get("/completion.js", [](const Request &, Response &res)
- {
- res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
- return false; });
- // this is only called if no index.html is found in the public --path
- svr.Get("/json-schema-to-grammar.mjs", [](const Request &, Response &res)
- {
- res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
- return false; });
- svr.Post("/completion", [&llama](const Request &req, Response &res)
- {
- auto lock = llama.lock();
- llama.rewind();
- llama_reset_timings(llama.ctx);
- parse_options_completion(json::parse(req.body), llama);
- if (!llama.loadGrammar())
- {
- res.status = 400;
- return;
- }
- llama.loadPrompt();
- llama.beginCompletion();
- if (!llama.stream) {
- if (llama.params.n_beams) {
- // Fill llama.generated_token_probs vector with final beam.
- llama_beam_search(llama.ctx, beam_search_callback, &llama, llama.params.n_beams,
- llama.n_past, llama.n_remain);
- // Translate llama.generated_token_probs to llama.generated_text.
- append_to_generated_text_from_generated_token_probs(llama);
- } else {
- size_t stop_pos = std::string::npos;
- while (llama.has_next_token) {
- const completion_token_output token_with_probs = llama.doCompletion();
- const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(llama.ctx, token_with_probs.tok);
- stop_pos = llama.findStoppingStrings(llama.generated_text,
- token_text.size(), STOP_FULL);
- }
- if (stop_pos == std::string::npos) {
- stop_pos = llama.findStoppingStrings(llama.generated_text, 0, STOP_PARTIAL);
- }
- if (stop_pos != std::string::npos) {
- llama.generated_text.erase(llama.generated_text.begin() + stop_pos,
- llama.generated_text.end());
- }
- }
- auto probs = llama.generated_token_probs;
- if (llama.params.n_probs > 0 && llama.stopped_word) {
- const std::vector<llama_token> stop_word_toks = llama_tokenize(llama.ctx, llama.stopping_word, false);
- probs = std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.end() - stop_word_toks.size());
- }
- const json data = format_final_response(llama, llama.generated_text, probs);
- llama_print_timings(llama.ctx);
- res.set_content(data.dump(-1, ' ', false, json::error_handler_t::replace),
- "application/json");
- } else {
- const auto chunked_content_provider = [&](size_t, DataSink & sink) {
- size_t sent_count = 0;
- size_t sent_token_probs_index = 0;
- while (llama.has_next_token) {
- const completion_token_output token_with_probs = llama.doCompletion();
- if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
- continue;
- }
- const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
- size_t pos = std::min(sent_count, llama.generated_text.size());
- const std::string str_test = llama.generated_text.substr(pos);
- bool is_stop_full = false;
- size_t stop_pos =
- llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
- if (stop_pos != std::string::npos) {
- is_stop_full = true;
- llama.generated_text.erase(
- llama.generated_text.begin() + pos + stop_pos,
- llama.generated_text.end());
- pos = std::min(sent_count, llama.generated_text.size());
- } else {
- is_stop_full = false;
- stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
- STOP_PARTIAL);
- }
- if (
- stop_pos == std::string::npos ||
- // Send rest of the text if we are at the end of the generation
- (!llama.has_next_token && !is_stop_full && stop_pos > 0)
- ) {
- const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
- sent_count += to_send.size();
- std::vector<completion_token_output> probs_output = {};
- if (llama.params.n_probs > 0) {
- const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
- size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
- size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
- if (probs_pos < probs_stop_pos) {
- probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
- }
- sent_token_probs_index = probs_stop_pos;
- }
- const json data = format_partial_response(llama, to_send, probs_output);
- const std::string str =
- "data: " +
- data.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.data(), str.size())) {
- LOG_VERBOSE("stream closed", {});
- llama_print_timings(llama.ctx);
- return false;
- }
- }
- if (!llama.has_next_token) {
- // Generation is done, send extra information.
- const json data = format_final_response(
- llama,
- "",
- std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
- );
- const std::string str =
- "data: " +
- data.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.data(), str.size())) {
- LOG_VERBOSE("stream closed", {});
- llama_print_timings(llama.ctx);
- return false;
- }
- }
- }
- llama_print_timings(llama.ctx);
- sink.done();
- return true;
- };
- const auto on_complete = [&](bool) {
- llama.mutex.unlock();
- };
- lock.release();
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
- } });
- svr.Post("/infill", [&llama](const Request &req, Response &res)
- {
- auto lock = llama.lock();
- llama.rewind();
- llama_reset_timings(llama.ctx);
- parse_options_infill(json::parse(req.body), llama);
- if (!llama.loadGrammar())
- {
- res.status = 400;
- return;
- }
- llama.loadInfill();
- llama.beginCompletion();
- const auto chunked_content_provider = [&](size_t, DataSink & sink) {
- size_t sent_count = 0;
- size_t sent_token_probs_index = 0;
- while (llama.has_next_token) {
- const completion_token_output token_with_probs = llama.doCompletion();
- if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
- continue;
- }
- const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
- size_t pos = std::min(sent_count, llama.generated_text.size());
- const std::string str_test = llama.generated_text.substr(pos);
- bool is_stop_full = false;
- size_t stop_pos =
- llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
- if (stop_pos != std::string::npos) {
- is_stop_full = true;
- llama.generated_text.erase(
- llama.generated_text.begin() + pos + stop_pos,
- llama.generated_text.end());
- pos = std::min(sent_count, llama.generated_text.size());
- } else {
- is_stop_full = false;
- stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
- STOP_PARTIAL);
- }
- if (
- stop_pos == std::string::npos ||
- // Send rest of the text if we are at the end of the generation
- (!llama.has_next_token && !is_stop_full && stop_pos > 0)
- ) {
- const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
- sent_count += to_send.size();
- std::vector<completion_token_output> probs_output = {};
- if (llama.params.n_probs > 0) {
- const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
- size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
- size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
- if (probs_pos < probs_stop_pos) {
- probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
- }
- sent_token_probs_index = probs_stop_pos;
- }
- const json data = format_partial_response(llama, to_send, probs_output);
- const std::string str =
- "data: " +
- data.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.data(), str.size())) {
- LOG_VERBOSE("stream closed", {});
- llama_print_timings(llama.ctx);
- return false;
- }
- }
- if (!llama.has_next_token) {
- // Generation is done, send extra information.
- const json data = format_final_response(
- llama,
- "",
- std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
- );
- const std::string str =
- "data: " +
- data.dump(-1, ' ', false, json::error_handler_t::replace) +
- "\n\n";
- LOG_VERBOSE("data stream", {
- { "to_send", str }
- });
- if (!sink.write(str.data(), str.size())) {
- LOG_VERBOSE("stream closed", {});
- llama_print_timings(llama.ctx);
- return false;
- }
- }
- }
- llama_print_timings(llama.ctx);
- sink.done();
- return true;
- };
- const auto on_complete = [&](bool) {
- llama.mutex.unlock();
- };
- lock.release();
- res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
- });
- svr.Get("/model.json", [&llama](const Request &, Response &res)
- {
- const json data = format_generation_settings(llama);
- return res.set_content(data.dump(), "application/json"); });
- svr.Options(R"(/.*)", [](const Request &, Response &res)
- { return res.set_content("", "application/json"); });
- svr.Post("/tokenize", [&llama](const Request &req, Response &res)
- {
- auto lock = llama.lock();
- const json body = json::parse(req.body);
- std::vector<llama_token> tokens;
- if (body.count("content") != 0)
- {
- tokens = llama.tokenize(body["content"], false);
- }
- const json data = format_tokenizer_response(tokens);
- return res.set_content(data.dump(), "application/json"); });
- svr.Post("/detokenize", [&llama](const Request &req, Response &res)
- {
- auto lock = llama.lock();
- const json body = json::parse(req.body);
- std::string content;
- if (body.count("tokens") != 0)
- {
- const std::vector<llama_token> tokens = body["tokens"];
- content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
- }
- const json data = format_detokenized_response(content);
- return res.set_content(data.dump(), "application/json"); });
- svr.Post("/embedding", [&llama](const Request &req, Response &res)
- {
- auto lock = llama.lock();
- const json body = json::parse(req.body);
- llama.rewind();
- llama_reset_timings(llama.ctx);
- if (body.count("content") != 0)
- {
- llama.prompt = body["content"];
- }
- else
- {
- llama.prompt = "";
- }
- llama.params.n_predict = 0;
- llama.loadPrompt();
- llama.beginCompletion();
- llama.doCompletion();
- const json data = format_embedding_response(llama);
- return res.set_content(data.dump(), "application/json"); });
- svr.set_logger(log_server_request);
- svr.set_exception_handler([](const Request &, Response &res, std::exception_ptr ep)
- {
- const char fmt[] = "500 Internal Server Error\n%s";
- char buf[BUFSIZ];
- try {
- std::rethrow_exception(std::move(ep));
- } catch (std::exception & e) {
- snprintf(buf, sizeof(buf), fmt, e.what());
- } catch (...) {
- snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
- }
- res.set_content(buf, "text/plain");
- res.status = 500; });
- svr.set_error_handler([](const Request &, Response &res)
- {
- if (res.status == 400) {
- res.set_content("Invalid request", "text/plain");
- } else if (res.status != 500) {
- res.set_content("File Not Found", "text/plain");
- res.status = 404;
- } });
- // set timeouts and change hostname and port
- svr.set_read_timeout(sparams.read_timeout);
- svr.set_write_timeout(sparams.write_timeout);
- if (!svr.bind_to_port(sparams.hostname, sparams.port))
- {
- fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
- return 1;
- }
- // Set the base directory for serving static files
- svr.set_base_dir(sparams.public_path);
- // to make it ctrl+clickable:
- printf("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
- LOG_INFO("HTTP server listening", {
- {"hostname", sparams.hostname},
- {"port", sparams.port},
- });
- if (!svr.listen_after_bind())
- {
- return 1;
- }
- if (llama.grammar != nullptr) {
- llama_grammar_free(llama.grammar);
- }
- llama_backend_free();
- return 0;
- }
|