llama-graph.cpp 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619
  1. #include "llama-graph.h"
  2. #include "llama-impl.h"
  3. #include "llama-batch.h"
  4. #include "llama-cparams.h"
  5. #include "llama-kv-cache.h"
  6. #include <cassert>
  7. #include <cmath>
  8. #include <cstring>
  9. void llm_graph_input_embd::set_input(const llama_ubatch * ubatch) {
  10. if (ubatch->token) {
  11. const int64_t n_tokens = ubatch->n_tokens;
  12. ggml_backend_tensor_set(tokens, ubatch->token, 0, n_tokens*ggml_element_size(tokens));
  13. }
  14. if (ubatch->embd) {
  15. const int64_t n_embd = embd->ne[0];
  16. const int64_t n_tokens = ubatch->n_tokens;
  17. ggml_backend_tensor_set(embd, ubatch->embd, 0, n_tokens*n_embd*ggml_element_size(embd));
  18. }
  19. }
  20. void llm_graph_input_pos::set_input(const llama_ubatch * ubatch) {
  21. if (ubatch->pos && pos) {
  22. const int64_t n_tokens = ubatch->n_tokens;
  23. if (ubatch->token && n_pos_per_embd == 4) {
  24. // in case we're using M-RoPE with text tokens, convert the 1D positions to 4D
  25. // the 3 first dims are the same, and 4th dim is all 0
  26. std::vector<llama_pos> pos_data(n_tokens*n_pos_per_embd);
  27. // copy the first dimension
  28. for (int i = 0; i < n_tokens; ++i) {
  29. pos_data[ i] = ubatch->pos[i];
  30. pos_data[ n_tokens + i] = ubatch->pos[i];
  31. pos_data[2 * n_tokens + i] = ubatch->pos[i];
  32. pos_data[3 * n_tokens + i] = 0; // 4th dim is 0
  33. }
  34. ggml_backend_tensor_set(pos, pos_data.data(), 0, pos_data.size()*ggml_element_size(pos));
  35. } else {
  36. ggml_backend_tensor_set(pos, ubatch->pos, 0, n_tokens*n_pos_per_embd*ggml_element_size(pos));
  37. }
  38. }
  39. }
  40. void llm_graph_input_attn_temp::set_input(const llama_ubatch * ubatch) {
  41. if (ubatch->pos && attn_scale) {
  42. const int64_t n_tokens = ubatch->n_tokens;
  43. std::vector<float> attn_scale_data(n_tokens, 0.0f);
  44. for (int i = 0; i < n_tokens; ++i) {
  45. const float pos = ubatch->pos[i];
  46. attn_scale_data[i] = std::log(
  47. std::floor((pos + 1.0f) / n_attn_temp_floor_scale) + 1.0
  48. ) * f_attn_temp_scale + 1.0;
  49. }
  50. ggml_backend_tensor_set(attn_scale, attn_scale_data.data(), 0, n_tokens*ggml_element_size(attn_scale));
  51. }
  52. }
  53. void llm_graph_input_pos_bucket::set_input(const llama_ubatch * ubatch) {
  54. if (pos_bucket) {
  55. const int64_t n_tokens = ubatch->n_tokens;
  56. GGML_ASSERT(ggml_backend_buffer_is_host(pos_bucket->buffer));
  57. GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
  58. int32_t * data = (int32_t *) pos_bucket->data;
  59. for (int h = 0; h < 1; ++h) {
  60. for (int j = 0; j < n_tokens; ++j) {
  61. for (int i = 0; i < n_tokens; ++i) {
  62. data[h*(n_tokens*n_tokens) + j*n_tokens + i] = llama_relative_position_bucket(ubatch->pos[i], ubatch->pos[j], hparams.n_rel_attn_bkts, true);
  63. }
  64. }
  65. }
  66. }
  67. }
  68. void llm_graph_input_pos_bucket_kv::set_input(const llama_ubatch * ubatch) {
  69. if (pos_bucket) {
  70. kv_self->set_input_pos_bucket(pos_bucket, ubatch);
  71. }
  72. }
  73. void llm_graph_input_out_ids::set_input(const llama_ubatch * ubatch) {
  74. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  75. //GGML_ASSERT(out_ids && "every model that can must skip unused outputs");
  76. if (!out_ids) {
  77. LLAMA_LOG_WARN("%s: 'out_ids' is not created\n", __func__);
  78. } else {
  79. const int64_t n_tokens = ubatch->n_tokens;
  80. GGML_ASSERT(ggml_backend_buffer_is_host(out_ids->buffer));
  81. int32_t * data = (int32_t *) out_ids->data;
  82. if (n_outputs == n_tokens) {
  83. for (int i = 0; i < n_tokens; ++i) {
  84. data[i] = i;
  85. }
  86. } else if (ubatch->output) {
  87. int32_t n_outputs = 0;
  88. for (int i = 0; i < n_tokens; ++i) {
  89. if (ubatch->output[i]) {
  90. data[n_outputs++] = i;
  91. }
  92. }
  93. // the graph needs to have been passed the correct number of outputs
  94. GGML_ASSERT(n_outputs == n_outputs);
  95. } else if (n_outputs == 1) {
  96. // only keep last output
  97. data[0] = n_tokens - 1;
  98. } else {
  99. GGML_ASSERT(n_outputs == 0);
  100. }
  101. }
  102. }
  103. }
  104. void llm_graph_input_mean::set_input(const llama_ubatch * ubatch) {
  105. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  106. const int64_t n_tokens = ubatch->n_tokens;
  107. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  108. const int64_t n_seqs = ubatch->n_seqs;
  109. GGML_ASSERT(mean);
  110. GGML_ASSERT(ggml_backend_buffer_is_host(mean->buffer));
  111. float * data = (float *) mean->data;
  112. memset(mean->data, 0, n_tokens * n_tokens * ggml_element_size(mean));
  113. std::vector<uint64_t> sum(n_tokens, 0);
  114. for (int s = 0; s < n_seqs; ++s) {
  115. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  116. // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
  117. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  118. sum[seq_id] += ubatch->n_seq_tokens;
  119. }
  120. std::vector<float> div(n_tokens, 0.0f);
  121. for (int i = 0; i < n_tokens; ++i) {
  122. const uint64_t s = sum[i];
  123. if (s > 0) {
  124. div[i] = 1.0f/float(s);
  125. }
  126. }
  127. for (int s = 0; s < n_seqs; ++s) {
  128. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  129. for (int i = 0; i < n_seq_tokens; ++i) {
  130. data[seq_id*n_tokens + s*n_seq_tokens + i] = div[seq_id];
  131. }
  132. }
  133. }
  134. }
  135. void llm_graph_input_cls::set_input(const llama_ubatch * ubatch) {
  136. if (cparams.embeddings && (
  137. cparams.pooling_type == LLAMA_POOLING_TYPE_CLS ||
  138. cparams.pooling_type == LLAMA_POOLING_TYPE_RANK)) {
  139. const int64_t n_tokens = ubatch->n_tokens;
  140. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  141. const int64_t n_seqs = ubatch->n_seqs;
  142. GGML_ASSERT(cls);
  143. GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
  144. uint32_t * data = (uint32_t *) cls->data;
  145. memset(cls->data, 0, n_tokens * ggml_element_size(cls));
  146. for (int s = 0; s < n_seqs; ++s) {
  147. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  148. // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
  149. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS or RANK");
  150. for (int i = 0; i < n_seq_tokens; ++i) {
  151. const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
  152. if (pos == 0) {
  153. data[seq_id] = s*n_seq_tokens + i;
  154. }
  155. }
  156. }
  157. }
  158. if (cparams.embeddings && cparams.pooling_type == LLAMA_POOLING_TYPE_LAST) {
  159. const int64_t n_tokens = ubatch->n_tokens;
  160. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  161. const int64_t n_seqs = ubatch->n_seqs;
  162. GGML_ASSERT(cls);
  163. GGML_ASSERT(ggml_backend_buffer_is_host(cls->buffer));
  164. uint32_t * data = (uint32_t *) cls->data;
  165. memset(cls->data, 0, n_tokens * ggml_element_size(cls));
  166. std::vector<int> last_pos(n_tokens, -1);
  167. std::vector<int> last_row(n_tokens, -1);
  168. for (int s = 0; s < n_seqs; ++s) {
  169. const llama_seq_id seq_id = ubatch->seq_id[s][0];
  170. // TODO: adapt limits to n_seqs when ubatch->equal_seqs is true
  171. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == LAST");
  172. for (int i = 0; i < n_seq_tokens; ++i) {
  173. const llama_pos pos = ubatch->pos[s*n_seq_tokens + i];
  174. if (pos >= last_pos[seq_id]) {
  175. last_pos[seq_id] = pos;
  176. last_row[seq_id] = s*n_seq_tokens + i;
  177. }
  178. }
  179. }
  180. for (int i = 0; i < n_tokens; ++i) {
  181. if (last_row[i] >= 0) {
  182. data[i] = last_row[i];
  183. }
  184. }
  185. }
  186. }
  187. void llm_graph_input_s_copy::set_input(const llama_ubatch * ubatch) {
  188. GGML_UNUSED(ubatch);
  189. const int64_t n_kv = kv_self->n;
  190. if (s_copy) {
  191. GGML_ASSERT(ggml_backend_buffer_is_host(s_copy->buffer));
  192. int32_t * data = (int32_t *) s_copy->data;
  193. // assuming copy destinations ALWAYS happen ONLY on the cells between head and head+n
  194. for (uint32_t i = 0; i < n_kv; ++i) {
  195. data[i] = kv_self->s_copy(i);
  196. }
  197. }
  198. }
  199. void llm_graph_input_s_mask::set_input(const llama_ubatch * ubatch) {
  200. GGML_UNUSED(ubatch);
  201. const int64_t n_kv = kv_self->n;
  202. if (s_mask) {
  203. GGML_ASSERT(ggml_backend_buffer_is_host(s_mask->buffer));
  204. float * data = (float *) s_mask->data;
  205. // clear unused states
  206. for (int i = 0; i < n_kv; ++i) {
  207. data[i] = kv_self->s_mask(i);
  208. }
  209. }
  210. }
  211. void llm_graph_input_cross_embd::set_input(const llama_ubatch * ubatch) {
  212. GGML_UNUSED(ubatch);
  213. if (cross_embd && !cross->v_embd.empty()) {
  214. assert(cross_embd->type == GGML_TYPE_F32);
  215. ggml_backend_tensor_set(cross_embd, cross->v_embd.data(), 0, ggml_nbytes(cross_embd));
  216. }
  217. }
  218. void llm_graph_input_attn_no_cache::set_input(const llama_ubatch * ubatch) {
  219. if (kq_mask) {
  220. if (cparams.causal_attn) {
  221. const int64_t n_kv = ubatch->n_tokens;
  222. const int64_t n_tokens = ubatch->n_tokens;
  223. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  224. const int64_t n_seqs = ubatch->n_seqs;
  225. GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
  226. float * data = (float *) kq_mask->data;
  227. for (int h = 0; h < 1; ++h) {
  228. for (int s1 = 0; s1 < n_seqs; ++s1) {
  229. const llama_seq_id seq_id = ubatch->seq_id[s1][0];
  230. for (int j = 0; j < n_seq_tokens; ++j) {
  231. const int32_t tj = s1*n_seq_tokens + j;
  232. for (int s0 = 0; s0 < n_seqs; ++s0) {
  233. for (int i = 0; i < n_seq_tokens; ++i) {
  234. const int32_t ti = s0*n_seq_tokens + i;
  235. float f = -INFINITY;
  236. for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
  237. if (ubatch->seq_id[s0][s] == seq_id && ubatch->pos[ti] <= ubatch->pos[tj]) {
  238. if (hparams.use_alibi) {
  239. f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
  240. } else {
  241. f = 0.0f;
  242. }
  243. break;
  244. }
  245. }
  246. data[h*(n_kv*n_tokens) + tj*n_kv + ti] = f;
  247. }
  248. }
  249. }
  250. }
  251. }
  252. } else {
  253. const int64_t n_tokens = ubatch->n_tokens;
  254. const int64_t n_seq_tokens = ubatch->n_seq_tokens;
  255. const int64_t n_seqs = ubatch->n_seqs;
  256. const int64_t n_stride = ubatch->n_tokens;
  257. GGML_ASSERT(ggml_backend_buffer_is_host(kq_mask->buffer));
  258. float * data = (float *) kq_mask->data;
  259. for (int h = 0; h < 1; ++h) {
  260. for (int s1 = 0; s1 < n_seqs; ++s1) {
  261. const llama_seq_id seq_id = ubatch->seq_id[s1][0];
  262. for (int j = 0; j < n_seq_tokens; ++j) {
  263. const int32_t tj = s1*n_seq_tokens + j;
  264. for (int s0 = 0; s0 < n_seqs; ++s0) {
  265. for (int i = 0; i < n_seq_tokens; ++i) {
  266. const int32_t ti = s0*n_seq_tokens + i;
  267. float f = -INFINITY;
  268. for (int s = 0; s < ubatch->n_seq_id[s0]; ++s) {
  269. if (ubatch->seq_id[s0][s] == seq_id) {
  270. if (hparams.use_alibi) {
  271. f = -std::abs(ubatch->pos[ti] - ubatch->pos[tj]);
  272. } else {
  273. f = 0.0f;
  274. }
  275. break;
  276. }
  277. }
  278. data[h*(n_tokens*n_tokens) + tj*n_stride + ti] = f;
  279. }
  280. }
  281. for (int i = n_tokens; i < n_stride; ++i) {
  282. data[h*(n_tokens*n_tokens) + tj*n_stride + i] = -INFINITY;
  283. }
  284. }
  285. }
  286. }
  287. }
  288. }
  289. }
  290. void llm_graph_input_attn_kv_unified::set_input(const llama_ubatch * ubatch) {
  291. if (self_kq_mask) {
  292. kv_self->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
  293. }
  294. }
  295. void llm_graph_input_attn_kv_unified_iswa::set_input(const llama_ubatch * ubatch) {
  296. if (self_kq_mask) {
  297. kv_self->get_kv_base()->set_input_kq_mask(self_kq_mask, ubatch, cparams.causal_attn);
  298. }
  299. if (self_kq_mask_swa) {
  300. kv_self->get_kv_swa()->set_input_kq_mask(self_kq_mask_swa, ubatch, cparams.causal_attn);
  301. }
  302. }
  303. void llm_graph_input_attn_cross::set_input(const llama_ubatch * ubatch) {
  304. if (cross_kq_mask) {
  305. const int64_t n_enc = cross_kq_mask->ne[0];
  306. const int64_t n_tokens = ubatch->n_tokens;
  307. GGML_ASSERT(ggml_backend_buffer_is_host(cross_kq_mask->buffer));
  308. GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing
  309. float * data = (float *) cross_kq_mask->data;
  310. for (int h = 0; h < 1; ++h) {
  311. for (int j = 0; j < n_tokens; ++j) {
  312. for (int i = 0; i < n_enc; ++i) {
  313. float f = -INFINITY;
  314. for (int s = 0; s < ubatch->n_seq_id[j]; ++s) {
  315. const llama_seq_id seq_id = ubatch->seq_id[j][s];
  316. if (cross->seq_ids_enc[i].find(seq_id) != cross->seq_ids_enc[i].end()) {
  317. f = 0.0f;
  318. }
  319. }
  320. data[h*(n_enc*n_tokens) + j*n_enc + i] = f;
  321. }
  322. }
  323. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  324. for (int j = 0; j < n_enc; ++j) {
  325. data[h*(n_enc*n_tokens) + i*n_enc + j] = -INFINITY;
  326. }
  327. }
  328. }
  329. }
  330. }
  331. //
  332. // llm_graph_context
  333. //
  334. llm_graph_context::llm_graph_context(const llm_graph_params & params) :
  335. arch (params.arch),
  336. hparams (params.hparams),
  337. cparams (params.cparams),
  338. ubatch (params.ubatch),
  339. n_embd (hparams.n_embd),
  340. n_layer (hparams.n_layer),
  341. n_rot (hparams.n_rot),
  342. n_ctx (cparams.n_ctx),
  343. n_head (hparams.n_head()),
  344. n_head_kv (hparams.n_head_kv()),
  345. n_embd_head_k (hparams.n_embd_head_k),
  346. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  347. n_embd_head_v (hparams.n_embd_head_v),
  348. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  349. n_expert (hparams.n_expert),
  350. n_expert_used (cparams.warmup ? hparams.n_expert : hparams.n_expert_used),
  351. freq_base (cparams.rope_freq_base),
  352. freq_scale (cparams.rope_freq_scale),
  353. ext_factor (cparams.yarn_ext_factor),
  354. attn_factor (cparams.yarn_attn_factor),
  355. beta_fast (cparams.yarn_beta_fast),
  356. beta_slow (cparams.yarn_beta_slow),
  357. norm_eps (hparams.f_norm_eps),
  358. norm_rms_eps (hparams.f_norm_rms_eps),
  359. n_tokens (ubatch.n_tokens),
  360. n_outputs (params.n_outputs),
  361. n_ctx_orig (cparams.n_ctx_orig_yarn),
  362. pooling_type (cparams.pooling_type),
  363. rope_type (hparams.rope_type),
  364. ctx0 (params.ctx),
  365. sched (params.sched),
  366. backend_cpu (params.backend_cpu),
  367. cvec (params.cvec),
  368. loras (params.loras),
  369. memory (params.memory),
  370. cross (params.cross),
  371. cb_func (params.cb),
  372. res (std::make_unique<llm_graph_result>()) {
  373. }
  374. int64_t llm_graph_context::n_pos_per_embd() const {
  375. return arch == LLM_ARCH_QWEN2VL ? 4 : 1;
  376. }
  377. void llm_graph_context::cb(ggml_tensor * cur, const char * name, int il) const {
  378. if (cb_func) {
  379. cb_func(ubatch, cur, name, il);
  380. }
  381. }
  382. ggml_tensor * llm_graph_context::build_cvec(
  383. ggml_tensor * cur,
  384. int il) const {
  385. return cvec->apply_to(ctx0, cur, il);
  386. }
  387. ggml_tensor * llm_graph_context::build_lora_mm(
  388. ggml_tensor * w,
  389. ggml_tensor * cur) const {
  390. ggml_tensor * res = ggml_mul_mat(ctx0, w, cur);
  391. for (const auto & lora : *loras) {
  392. llama_adapter_lora_weight * lw = lora.first->get_weight(w);
  393. if (lw == nullptr) {
  394. continue;
  395. }
  396. const float adapter_scale = lora.second;
  397. const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
  398. ggml_tensor * ab_cur = ggml_mul_mat(
  399. ctx0, lw->b,
  400. ggml_mul_mat(ctx0, lw->a, cur)
  401. );
  402. ab_cur = ggml_scale(ctx0, ab_cur, scale);
  403. res = ggml_add(ctx0, res, ab_cur);
  404. }
  405. return res;
  406. }
  407. ggml_tensor * llm_graph_context::build_lora_mm_id(
  408. ggml_tensor * w, // ggml_tensor * as
  409. ggml_tensor * cur, // ggml_tensor * b
  410. ggml_tensor * ids) const {
  411. ggml_tensor * res = ggml_mul_mat_id(ctx0, w, cur, ids);
  412. for (const auto & lora : *loras) {
  413. llama_adapter_lora_weight * lw = lora.first->get_weight(w);
  414. if (lw == nullptr) {
  415. continue;
  416. }
  417. const float alpha = lora.first->alpha;
  418. const float rank = (float) lw->b->ne[0];
  419. const float scale = alpha ? lora.second * alpha / rank : lora.second;
  420. ggml_tensor * ab_cur = ggml_mul_mat_id(
  421. ctx0, lw->b,
  422. ggml_mul_mat_id(ctx0, lw->a, cur, ids),
  423. ids
  424. );
  425. ab_cur = ggml_scale(ctx0, ab_cur, scale);
  426. res = ggml_add(ctx0, res, ab_cur);
  427. }
  428. return res;
  429. }
  430. ggml_tensor * llm_graph_context::build_norm(
  431. ggml_tensor * cur,
  432. ggml_tensor * mw,
  433. ggml_tensor * mb,
  434. llm_norm_type type,
  435. int il) const {
  436. switch (type) {
  437. case LLM_NORM: cur = ggml_norm (ctx0, cur, hparams.f_norm_eps); break;
  438. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx0, cur, hparams.f_norm_rms_eps); break;
  439. case LLM_NORM_GROUP:
  440. {
  441. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0], 1, cur->ne[1]);
  442. cur = ggml_group_norm(ctx0, cur, hparams.n_norm_groups, hparams.f_norm_group_eps);
  443. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[2]);
  444. } break;
  445. }
  446. if (mw || mb) {
  447. cb(cur, "norm", il);
  448. }
  449. if (mw) {
  450. cur = ggml_mul(ctx0, cur, mw);
  451. if (mb) {
  452. cb(cur, "norm_w", il);
  453. }
  454. }
  455. if (mb) {
  456. cur = ggml_add(ctx0, cur, mb);
  457. }
  458. return cur;
  459. }
  460. ggml_tensor * llm_graph_context::build_ffn(
  461. ggml_tensor * cur,
  462. ggml_tensor * up,
  463. ggml_tensor * up_b,
  464. ggml_tensor * up_s,
  465. ggml_tensor * gate,
  466. ggml_tensor * gate_b,
  467. ggml_tensor * gate_s,
  468. ggml_tensor * down,
  469. ggml_tensor * down_b,
  470. ggml_tensor * down_s,
  471. ggml_tensor * act_scales,
  472. llm_ffn_op_type type_op,
  473. llm_ffn_gate_type type_gate,
  474. int il) const {
  475. ggml_tensor * tmp = up ? build_lora_mm(up, cur) : cur;
  476. cb(tmp, "ffn_up", il);
  477. if (up_b) {
  478. tmp = ggml_add(ctx0, tmp, up_b);
  479. cb(tmp, "ffn_up_b", il);
  480. }
  481. if (up_s) {
  482. tmp = ggml_mul(ctx0, tmp, up_s);
  483. cb(tmp, "ffn_up_s", il);
  484. }
  485. if (gate) {
  486. switch (type_gate) {
  487. case LLM_FFN_SEQ:
  488. {
  489. cur = build_lora_mm(gate, tmp);
  490. cb(cur, "ffn_gate", il);
  491. } break;
  492. case LLM_FFN_PAR:
  493. {
  494. cur = build_lora_mm(gate, cur);
  495. cb(cur, "ffn_gate", il);
  496. } break;
  497. }
  498. if (gate_b) {
  499. cur = ggml_add(ctx0, cur, gate_b);
  500. cb(cur, "ffn_gate_b", il);
  501. }
  502. if (gate_s) {
  503. cur = ggml_mul(ctx0, cur, gate_s);
  504. cb(cur, "ffn_gate_s", il);
  505. }
  506. } else {
  507. cur = tmp;
  508. }
  509. switch (type_op) {
  510. case LLM_FFN_SILU:
  511. {
  512. cur = ggml_silu(ctx0, cur);
  513. cb(cur, "ffn_silu", il);
  514. } break;
  515. case LLM_FFN_GELU:
  516. {
  517. cur = ggml_gelu(ctx0, cur);
  518. cb(cur, "ffn_gelu", il);
  519. if (act_scales != NULL) {
  520. cur = ggml_div(ctx0, cur, act_scales);
  521. cb(cur, "ffn_act", il);
  522. }
  523. } break;
  524. case LLM_FFN_RELU:
  525. {
  526. cur = ggml_relu(ctx0, cur);
  527. cb(cur, "ffn_relu", il);
  528. } break;
  529. case LLM_FFN_RELU_SQR:
  530. {
  531. cur = ggml_relu(ctx0, cur);
  532. cb(cur, "ffn_relu", il);
  533. cur = ggml_sqr(ctx0, cur);
  534. cb(cur, "ffn_sqr(relu)", il);
  535. } break;
  536. case LLM_FFN_SWIGLU:
  537. {
  538. // Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
  539. int64_t split_point = cur->ne[0] / 2;
  540. ggml_tensor * x0 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], 0));
  541. ggml_tensor * x1 = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, split_point, cur->ne[1], cur->nb[1], split_point * ggml_element_size(cur)));
  542. x0 = ggml_silu(ctx0, x0);
  543. cb(cur, "ffn_silu", il);
  544. cur = ggml_mul(ctx0, x0, x1);
  545. cb(cur, "ffn_mul", il);
  546. } break;
  547. }
  548. if (gate && type_gate == LLM_FFN_PAR) {
  549. cur = ggml_mul(ctx0, cur, tmp);
  550. cb(cur, "ffn_gate_par", il);
  551. }
  552. if (down) {
  553. cur = build_lora_mm(down, cur);
  554. if (arch == LLM_ARCH_GLM4) {
  555. // GLM4 seems to have numerical issues with half-precision accumulators
  556. ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
  557. }
  558. }
  559. if (down_b) {
  560. cb(cur, "ffn_down", il);
  561. }
  562. if (down_b) {
  563. cur = ggml_add(ctx0, cur, down_b);
  564. }
  565. if (down_s) {
  566. cur = ggml_mul(ctx0, cur, down_s);
  567. cb(cur, "ffn_down_s", il);
  568. }
  569. return cur;
  570. }
  571. ggml_tensor * llm_graph_context::build_moe_ffn(
  572. ggml_tensor * cur,
  573. ggml_tensor * gate_inp,
  574. ggml_tensor * up_exps,
  575. ggml_tensor * gate_exps,
  576. ggml_tensor * down_exps,
  577. ggml_tensor * exp_probs_b,
  578. int64_t n_expert,
  579. int64_t n_expert_used,
  580. llm_ffn_op_type type_op,
  581. bool norm_w,
  582. bool scale_w,
  583. float w_scale,
  584. llama_expert_gating_func_type gating_op,
  585. int il) const {
  586. const int64_t n_embd = cur->ne[0];
  587. const int64_t n_tokens = cur->ne[1];
  588. const bool weight_before_ffn = arch == LLM_ARCH_LLAMA4; // for llama4, we apply the sigmoid-ed weights before the FFN
  589. ggml_tensor * logits = build_lora_mm(gate_inp, cur); // [n_expert, n_tokens]
  590. cb(logits, "ffn_moe_logits", il);
  591. ggml_tensor * probs = nullptr;
  592. switch (gating_op) {
  593. case LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX:
  594. {
  595. probs = ggml_soft_max(ctx0, logits); // [n_expert, n_tokens]
  596. } break;
  597. case LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID:
  598. {
  599. probs = ggml_sigmoid(ctx0, logits); // [n_expert, n_tokens]
  600. } break;
  601. default:
  602. GGML_ABORT("fatal error");
  603. }
  604. cb(probs, "ffn_moe_probs", il);
  605. // add experts selection bias - introduced in DeepSeek V3
  606. // leave probs unbiased as it's later used to get expert weights
  607. ggml_tensor * selection_probs = probs;
  608. if (exp_probs_b != nullptr) {
  609. selection_probs = ggml_add(ctx0, probs, exp_probs_b);
  610. cb(selection_probs, "ffn_moe_probs_biased", il);
  611. }
  612. // llama4 doesn't have exp_probs_b, and sigmoid is only used after top_k
  613. // see: https://github.com/meta-llama/llama-models/blob/699a02993512fb36936b1b0741e13c06790bcf98/models/llama4/moe.py#L183-L198
  614. if (arch == LLM_ARCH_LLAMA4) {
  615. selection_probs = logits;
  616. }
  617. // select experts
  618. ggml_tensor * selected_experts = ggml_top_k(ctx0, selection_probs, n_expert_used); // [n_expert_used, n_tokens]
  619. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  620. cb(selected_experts, "ffn_moe_topk", il);
  621. ggml_tensor * weights = ggml_get_rows(ctx0,
  622. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  623. cb(weights, "ffn_moe_weights", il);
  624. if (norm_w) {
  625. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens);
  626. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights); // [1, n_tokens]
  627. cb(weights_sum, "ffn_moe_weights_sum", il);
  628. weights = ggml_div(ctx0, weights, weights_sum); // [n_expert_used, n_tokens]
  629. cb(weights, "ffn_moe_weights_norm", il);
  630. weights = ggml_reshape_3d(ctx0, weights, 1, n_expert_used, n_tokens);
  631. }
  632. if (scale_w) {
  633. weights = ggml_scale(ctx0, weights, w_scale);
  634. cb(weights, "ffn_moe_weights_scaled", il);
  635. }
  636. cur = ggml_reshape_3d(ctx0, cur, n_embd, 1, n_tokens);
  637. if (weight_before_ffn) {
  638. // TODO: this is a workaround as we don't yet have a repeat op that takes custom dim (ggml_repeat_4d)
  639. ggml_tensor * repeated = ggml_new_tensor_3d(ctx0, cur->type, n_embd, n_expert_used, n_tokens);
  640. repeated = ggml_repeat(ctx0, cur, repeated); // [n_embd, n_expert_used, n_tokens]
  641. cur = ggml_mul(ctx0, repeated, weights);
  642. cb(cur, "ffn_moe_weighted", il);
  643. }
  644. ggml_tensor * up = build_lora_mm_id(up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  645. cb(up, "ffn_moe_up", il);
  646. ggml_tensor * experts = nullptr;
  647. if (gate_exps) {
  648. cur = build_lora_mm_id(gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  649. cb(cur, "ffn_moe_gate", il);
  650. } else {
  651. cur = up;
  652. }
  653. switch (type_op) {
  654. case LLM_FFN_SILU:
  655. {
  656. cur = ggml_silu(ctx0, cur);
  657. cb(cur, "ffn_moe_silu", il);
  658. } break;
  659. case LLM_FFN_GELU:
  660. {
  661. cur = ggml_gelu(ctx0, cur);
  662. cb(cur, "ffn_moe_gelu", il);
  663. } break;
  664. default:
  665. GGML_ABORT("fatal error");
  666. }
  667. if (gate_exps) {
  668. cur = ggml_mul(ctx0, cur, up); // [n_ff, n_expert_used, n_tokens]
  669. cb(cur, "ffn_moe_gate_par", il);
  670. }
  671. experts = build_lora_mm_id(down_exps, cur, selected_experts); // [n_embd, n_expert_used, n_tokens]
  672. cb(experts, "ffn_moe_down", il);
  673. if (!weight_before_ffn) {
  674. experts = ggml_mul(ctx0, experts, weights);
  675. cb(cur, "ffn_moe_weighted", il);
  676. }
  677. // aggregate experts
  678. ggml_tensor * moe_out = nullptr;
  679. for (int i = 0; i < n_expert_used; ++i) {
  680. ggml_tensor * cur_expert = ggml_view_2d(ctx0, experts, n_embd, n_tokens,
  681. experts->nb[2], i*experts->nb[1]);
  682. if (i == 0) {
  683. moe_out = cur_expert;
  684. } else {
  685. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  686. }
  687. }
  688. if (n_expert_used == 1) {
  689. // avoid returning a non-contiguous tensor
  690. moe_out = ggml_cont(ctx0, moe_out);
  691. }
  692. cb(moe_out, "ffn_moe_out", il);
  693. return moe_out;
  694. }
  695. // input embeddings with optional lora
  696. ggml_tensor * llm_graph_context::build_inp_embd(ggml_tensor * tok_embd) const {
  697. const int64_t n_embd = hparams.n_embd;
  698. auto inp = std::make_unique<llm_graph_input_embd>();
  699. ggml_tensor * cur = nullptr;
  700. if (ubatch.token) {
  701. inp->tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, ubatch.n_tokens);
  702. //cb(inp->tokens, "inp_tokens", -1);
  703. ggml_set_input(inp->tokens);
  704. res->t_tokens = inp->tokens;
  705. cur = ggml_get_rows(ctx0, tok_embd, inp->tokens);
  706. // apply lora for embedding tokens if needed
  707. for (const auto & lora : *loras) {
  708. llama_adapter_lora_weight * lw = lora.first->get_weight(tok_embd);
  709. if (lw == nullptr) {
  710. continue;
  711. }
  712. const float adapter_scale = lora.second;
  713. const float scale = lw->get_scale(lora.first->alpha, adapter_scale);
  714. ggml_tensor * inpL_delta = ggml_scale(ctx0, ggml_mul_mat(
  715. ctx0, lw->b, // non-transposed lora_b
  716. ggml_get_rows(ctx0, lw->a, inp->tokens)
  717. ), scale);
  718. cur = ggml_add(ctx0, cur, inpL_delta);
  719. }
  720. } else {
  721. inp->embd = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, ubatch.n_tokens);
  722. ggml_set_input(inp->embd);
  723. cur = inp->embd;
  724. }
  725. // For Granite architecture
  726. if (hparams.f_embedding_scale != 0.0f) {
  727. cur = ggml_scale(ctx0, cur, hparams.f_embedding_scale);
  728. }
  729. cb(cur, "inp_embd", -1);
  730. res->add_input(std::move(inp));
  731. return cur;
  732. }
  733. ggml_tensor * llm_graph_context::build_inp_pos() const {
  734. auto inp = std::make_unique<llm_graph_input_pos>(n_pos_per_embd());
  735. auto & cur = inp->pos;
  736. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens*n_pos_per_embd());
  737. ggml_set_input(cur);
  738. res->add_input(std::move(inp));
  739. return cur;
  740. }
  741. ggml_tensor * llm_graph_context::build_inp_attn_scale() const {
  742. auto inp = std::make_unique<llm_graph_input_attn_temp>(hparams.n_attn_temp_floor_scale, hparams.f_attn_temp_scale);
  743. auto & cur = inp->attn_scale;
  744. // this need to be 1x1xN for broadcasting
  745. cur = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 1, 1, n_tokens);
  746. ggml_set_input(cur);
  747. res->add_input(std::move(inp));
  748. return cur;
  749. }
  750. ggml_tensor * llm_graph_context::build_inp_out_ids() const {
  751. auto inp = std::make_unique<llm_graph_input_out_ids>(hparams, cparams, n_outputs);
  752. auto & cur = inp->out_ids;
  753. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  754. ggml_set_input(cur);
  755. res->add_input(std::move(inp));
  756. return cur;
  757. }
  758. ggml_tensor * llm_graph_context::build_inp_mean() const {
  759. auto inp = std::make_unique<llm_graph_input_mean>(cparams);
  760. auto & cur = inp->mean;
  761. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  762. ggml_set_input(cur);
  763. res->add_input(std::move(inp));
  764. return cur;
  765. }
  766. ggml_tensor * llm_graph_context::build_inp_cls() const {
  767. auto inp = std::make_unique<llm_graph_input_cls>(cparams);
  768. auto & cur = inp->cls;
  769. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  770. ggml_set_input(cur);
  771. res->add_input(std::move(inp));
  772. return cur;
  773. }
  774. ggml_tensor * llm_graph_context::build_inp_s_copy() const {
  775. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  776. auto inp = std::make_unique<llm_graph_input_s_copy>(kv_self);
  777. const auto n_kv = kv_self->n;
  778. auto & cur = inp->s_copy;
  779. cur = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_kv);
  780. ggml_set_input(cur);
  781. res->add_input(std::move(inp));
  782. return cur;
  783. }
  784. ggml_tensor * llm_graph_context::build_inp_s_mask() const {
  785. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  786. auto inp = std::make_unique<llm_graph_input_s_mask>(kv_self);
  787. const auto n_kv = kv_self->n;
  788. auto & cur = inp->s_mask;
  789. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  790. ggml_set_input(cur);
  791. res->add_input(std::move(inp));
  792. return cur;
  793. }
  794. ggml_tensor * llm_graph_context::build_inp_cross_embd() const {
  795. auto inp = std::make_unique<llm_graph_input_cross_embd>(cross);
  796. auto & cur = inp->cross_embd;
  797. // if we have the output embeddings from the encoder, use them directly
  798. // TODO: needs more work to be correct, for now just use the tensor shape
  799. //if (cross->t_embd) {
  800. // cur = ggml_view_tensor(ctx0, cross->t_embd);
  801. // return cur;
  802. //}
  803. const auto n_embd = !cross->v_embd.empty() ? cross->n_embd : hparams.n_embd;
  804. const auto n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
  805. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, n_enc);
  806. ggml_set_input(cur);
  807. res->add_input(std::move(inp));
  808. return cur;
  809. }
  810. ggml_tensor * llm_graph_context::build_inp_pos_bucket_enc() const {
  811. auto inp = std::make_unique<llm_graph_input_pos_bucket>(hparams);
  812. auto & cur = inp->pos_bucket;
  813. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_tokens, n_tokens);
  814. ggml_set_input(cur);
  815. res->add_input(std::move(inp));
  816. return cur;
  817. }
  818. ggml_tensor * llm_graph_context::build_inp_pos_bucket_dec() const {
  819. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  820. auto inp = std::make_unique<llm_graph_input_pos_bucket_kv>(hparams, kv_self);
  821. const auto n_kv = kv_self->get_n();
  822. auto & cur = inp->pos_bucket;
  823. cur = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  824. ggml_set_input(cur);
  825. res->add_input(std::move(inp));
  826. return cur;
  827. }
  828. ggml_tensor * llm_graph_context::build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const {
  829. ggml_tensor * pos_bucket_1d = ggml_reshape_1d(ctx0, pos_bucket, pos_bucket->ne[0] * pos_bucket->ne[1]);
  830. cb(pos_bucket_1d, "pos_bucket_1d", -1);
  831. ggml_tensor * pos_bias = ggml_get_rows(ctx0, attn_rel_b, pos_bucket_1d);
  832. pos_bias = ggml_reshape_3d(ctx0, pos_bias, pos_bias->ne[0], pos_bucket->ne[0], pos_bucket->ne[1]);
  833. pos_bias = ggml_permute (ctx0, pos_bias, 2, 0, 1, 3);
  834. pos_bias = ggml_cont (ctx0, pos_bias);
  835. cb(pos_bias, "pos_bias", -1);
  836. return pos_bias;
  837. }
  838. ggml_tensor * llm_graph_context::build_attn_mha(
  839. ggml_cgraph * gf,
  840. ggml_tensor * q,
  841. ggml_tensor * k,
  842. ggml_tensor * v,
  843. ggml_tensor * kq_b,
  844. ggml_tensor * kq_mask,
  845. ggml_tensor * v_mla,
  846. float kq_scale) const {
  847. const bool v_trans = v->nb[1] > v->nb[2];
  848. q = ggml_permute(ctx0, q, 0, 2, 1, 3);
  849. k = ggml_permute(ctx0, k, 0, 2, 1, 3);
  850. v = ggml_permute(ctx0, v, 0, 2, 1, 3);
  851. const auto n_tokens = q->ne[1];
  852. const auto n_head = q->ne[2];
  853. const auto n_kv = k->ne[1];
  854. ggml_tensor * cur;
  855. // TODO: replace hardcoded padding with ggml-provided padding
  856. if (cparams.flash_attn && (n_kv % 256 == 0) && kq_b == nullptr) {
  857. GGML_ASSERT(kq_b == nullptr && "Flash attention does not support KQ bias yet");
  858. if (v_trans) {
  859. v = ggml_transpose(ctx0, v);
  860. }
  861. // this can happen when KV cache is not used (e.g. an embedding model with non-causal attn)
  862. if (k->type == GGML_TYPE_F32) {
  863. k = ggml_cast(ctx0, k, GGML_TYPE_F16);
  864. }
  865. if (v->type == GGML_TYPE_F32) {
  866. v = ggml_cast(ctx0, v, GGML_TYPE_F16);
  867. }
  868. cur = ggml_flash_attn_ext(ctx0, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias,
  869. hparams.attn_soft_cap ? hparams.f_attn_logit_softcapping : 0.0f);
  870. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  871. if (v_mla) {
  872. #if 0
  873. // v_mla can be applied as a matrix-vector multiplication with broadcasting across dimension 3 == n_tokens.
  874. // However, the code is optimized for dimensions 0 and 1 being large, so this is ineffient.
  875. cur = ggml_reshape_4d(ctx0, cur, v_mla->ne[0], 1, n_head, n_tokens);
  876. cur = ggml_mul_mat(ctx0, v_mla, cur);
  877. #else
  878. // It's preferable to do the calculation as a matrix-matrix multiplication with n_tokens in dimension 1.
  879. // The permutations are noops and only change how the tensor data is interpreted.
  880. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  881. cur = ggml_mul_mat(ctx0, v_mla, cur);
  882. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  883. cur = ggml_cont(ctx0, cur); // Needed because ggml_reshape_2d expects contiguous inputs.
  884. #endif
  885. }
  886. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  887. } else {
  888. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  889. // note: this op tends to require high floating point range
  890. // while for some models F16 is enough, for others it is not, so we default to F32 here
  891. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  892. if (arch == LLM_ARCH_GROK) {
  893. // need to do the following:
  894. // multiply by attn_output_multiplyer of 0.08838834764831845
  895. // and then :
  896. // kq = 30 * tanh(kq / 30)
  897. // before the softmax below
  898. kq = ggml_tanh(ctx0, ggml_scale(ctx0, kq, 0.08838834764831845f/30.0f));
  899. kq = ggml_scale(ctx0, kq, 30);
  900. }
  901. if (hparams.attn_soft_cap) {
  902. kq = ggml_scale(ctx0, kq, 1.0f / hparams.f_attn_logit_softcapping);
  903. kq = ggml_tanh (ctx0, kq);
  904. kq = ggml_scale(ctx0, kq, hparams.f_attn_logit_softcapping);
  905. }
  906. if (kq_b) {
  907. kq = ggml_add(ctx0, kq, kq_b);
  908. }
  909. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  910. if (!v_trans) {
  911. // note: avoid this branch
  912. v = ggml_cont(ctx0, ggml_transpose(ctx0, v));
  913. }
  914. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  915. // for MLA with the absorption optimization, we need to "decompress" from MQA back to MHA
  916. if (v_mla) {
  917. kqv = ggml_mul_mat(ctx0, v_mla, kqv);
  918. }
  919. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  920. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  921. if (!cparams.offload_kqv) {
  922. // all nodes between the KV store and the attention output are run on the CPU
  923. ggml_backend_sched_set_tensor_backend(sched, cur, backend_cpu);
  924. }
  925. }
  926. ggml_build_forward_expand(gf, cur);
  927. return cur;
  928. }
  929. llm_graph_input_attn_no_cache * llm_graph_context::build_attn_inp_no_cache() const {
  930. auto inp = std::make_unique<llm_graph_input_attn_no_cache>(hparams, cparams);
  931. // note: there is no KV cache, so the number of KV values is equal to the number of tokens in the batch
  932. inp->kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  933. //cb(inp_kq_mask, "KQ_mask", -1);
  934. ggml_set_input(inp->kq_mask);
  935. inp->kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->kq_mask, GGML_TYPE_F16) : inp->kq_mask;
  936. return (llm_graph_input_attn_no_cache *) res->add_input(std::move(inp));
  937. }
  938. ggml_tensor * llm_graph_context::build_attn(
  939. llm_graph_input_attn_no_cache * inp,
  940. ggml_cgraph * gf,
  941. ggml_tensor * wo,
  942. ggml_tensor * wo_b,
  943. ggml_tensor * q_cur,
  944. ggml_tensor * k_cur,
  945. ggml_tensor * v_cur,
  946. ggml_tensor * kq_b,
  947. ggml_tensor * v_mla,
  948. float kq_scale,
  949. int il) const {
  950. GGML_UNUSED(n_tokens);
  951. // these nodes are added to the graph together so that they are not reordered
  952. // by doing so, the number of splits in the graph is reduced
  953. ggml_build_forward_expand(gf, q_cur);
  954. ggml_build_forward_expand(gf, k_cur);
  955. ggml_build_forward_expand(gf, v_cur);
  956. const auto & kq_mask = inp->get_kq_mask();
  957. ggml_tensor * q = q_cur;
  958. ggml_tensor * k = k_cur;
  959. ggml_tensor * v = v_cur;
  960. ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
  961. cb(cur, "kqv_out", il);
  962. if (wo) {
  963. cur = build_lora_mm(wo, cur);
  964. }
  965. if (wo_b) {
  966. //cb(cur, "kqv_wo", il);
  967. }
  968. if (wo_b) {
  969. cur = ggml_add(ctx0, cur, wo_b);
  970. }
  971. return cur;
  972. }
  973. llm_graph_input_attn_kv_unified * llm_graph_context::build_attn_inp_kv_unified() const {
  974. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  975. auto inp = std::make_unique<llm_graph_input_attn_kv_unified>(hparams, cparams, kv_self);
  976. {
  977. GGML_ASSERT(hparams.n_swa_pattern == 1 && "Use llama_kv_cache_unified_iswa for SWA");
  978. GGML_ASSERT(hparams.n_swa == 0 && "Use llama_kv_cache_unified_iswa for SWA");
  979. const auto n_kv = kv_self->get_n();
  980. inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  981. //cb(inp->self_kq_mask, "KQ_mask", -1);
  982. ggml_set_input(inp->self_kq_mask);
  983. inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
  984. }
  985. return (llm_graph_input_attn_kv_unified *) res->add_input(std::move(inp));
  986. }
  987. ggml_tensor * llm_graph_context::build_attn(
  988. llm_graph_input_attn_kv_unified * inp,
  989. ggml_cgraph * gf,
  990. ggml_tensor * wo,
  991. ggml_tensor * wo_b,
  992. ggml_tensor * q_cur,
  993. ggml_tensor * k_cur,
  994. ggml_tensor * v_cur,
  995. ggml_tensor * kq_b,
  996. ggml_tensor * v_mla,
  997. float kq_scale,
  998. int il) const {
  999. // these nodes are added to the graph together so that they are not reordered
  1000. // by doing so, the number of splits in the graph is reduced
  1001. ggml_build_forward_expand(gf, q_cur);
  1002. ggml_build_forward_expand(gf, k_cur);
  1003. ggml_build_forward_expand(gf, v_cur);
  1004. const llama_kv_cache_unified * kv_self = static_cast<const llama_kv_cache_unified *>(memory);
  1005. // store to KV cache
  1006. {
  1007. ggml_build_forward_expand(gf, kv_self->cpy_k(ctx0, k_cur, il));
  1008. ggml_build_forward_expand(gf, kv_self->cpy_v(ctx0, v_cur, il));
  1009. }
  1010. const auto & kq_mask = inp->get_kq_mask();
  1011. ggml_tensor * q = q_cur;
  1012. ggml_tensor * k = kv_self->get_k(ctx0, il);
  1013. ggml_tensor * v = kv_self->get_v(ctx0, il);
  1014. ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
  1015. cb(cur, "kqv_out", il);
  1016. if (wo) {
  1017. cur = build_lora_mm(wo, cur);
  1018. }
  1019. if (wo_b) {
  1020. cur = ggml_add(ctx0, cur, wo_b);
  1021. }
  1022. return cur;
  1023. }
  1024. llm_graph_input_attn_kv_unified_iswa * llm_graph_context::build_attn_inp_kv_unified_iswa() const {
  1025. const llama_kv_cache_unified_iswa * kv_self = static_cast<const llama_kv_cache_unified_iswa *>(memory);
  1026. auto inp = std::make_unique<llm_graph_input_attn_kv_unified_iswa>(hparams, cparams, kv_self);
  1027. {
  1028. const auto n_kv = kv_self->get_kv_base()->get_n();
  1029. inp->self_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  1030. //cb(inp->self_kq_mask, "KQ_mask", -1);
  1031. ggml_set_input(inp->self_kq_mask);
  1032. inp->self_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask, GGML_TYPE_F16) : inp->self_kq_mask;
  1033. }
  1034. if (hparams.n_swa_pattern > 1) {
  1035. GGML_ASSERT(hparams.n_swa > 0 && "Use llama_kv_cache_unified for non-SWA");
  1036. const auto n_kv = kv_self->get_kv_swa()->get_n();
  1037. inp->self_kq_mask_swa = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  1038. //cb(inp->self_kq_mask_swa, "KQ_mask_swa", -1);
  1039. ggml_set_input(inp->self_kq_mask_swa);
  1040. inp->self_kq_mask_swa_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->self_kq_mask_swa, GGML_TYPE_F16) : inp->self_kq_mask_swa;
  1041. }
  1042. return (llm_graph_input_attn_kv_unified_iswa *) res->add_input(std::move(inp));
  1043. }
  1044. ggml_tensor * llm_graph_context::build_attn(
  1045. llm_graph_input_attn_kv_unified_iswa * inp,
  1046. ggml_cgraph * gf,
  1047. ggml_tensor * wo,
  1048. ggml_tensor * wo_b,
  1049. ggml_tensor * q_cur,
  1050. ggml_tensor * k_cur,
  1051. ggml_tensor * v_cur,
  1052. ggml_tensor * kq_b,
  1053. ggml_tensor * v_mla,
  1054. float kq_scale,
  1055. int il) const {
  1056. // these nodes are added to the graph together so that they are not reordered
  1057. // by doing so, the number of splits in the graph is reduced
  1058. ggml_build_forward_expand(gf, q_cur);
  1059. ggml_build_forward_expand(gf, k_cur);
  1060. ggml_build_forward_expand(gf, v_cur);
  1061. const bool is_swa = hparams.is_swa(il);
  1062. const llama_kv_cache_unified_iswa * kv_self = static_cast<const llama_kv_cache_unified_iswa *>(memory);
  1063. const auto * kv = is_swa ? kv_self->get_kv_swa() : kv_self->get_kv_base();
  1064. // store to KV cache
  1065. {
  1066. ggml_build_forward_expand(gf, kv->cpy_k(ctx0, k_cur, il));
  1067. ggml_build_forward_expand(gf, kv->cpy_v(ctx0, v_cur, il));
  1068. }
  1069. const auto & kq_mask = is_swa ? inp->get_kq_mask_swa() : inp->get_kq_mask();
  1070. ggml_tensor * q = q_cur;
  1071. ggml_tensor * k = kv->get_k(ctx0, il);
  1072. ggml_tensor * v = kv->get_v(ctx0, il);
  1073. ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
  1074. cb(cur, "kqv_out", il);
  1075. if (wo) {
  1076. cur = build_lora_mm(wo, cur);
  1077. if (arch == LLM_ARCH_GLM4) {
  1078. // GLM4 seems to have numerical issues with half-precision accumulators
  1079. ggml_mul_mat_set_prec(cur, GGML_PREC_F32);
  1080. }
  1081. }
  1082. if (wo_b) {
  1083. //cb(cur, "kqv_wo", il);
  1084. }
  1085. if (wo_b) {
  1086. cur = ggml_add(ctx0, cur, wo_b);
  1087. }
  1088. return cur;
  1089. }
  1090. llm_graph_input_attn_cross * llm_graph_context::build_attn_inp_cross() const {
  1091. auto inp = std::make_unique<llm_graph_input_attn_cross>(cross);
  1092. const int32_t n_enc = !cross->v_embd.empty() ? cross->n_enc : hparams.n_ctx_train;
  1093. inp->cross_kq_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_enc, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  1094. ggml_set_input(inp->cross_kq_mask);
  1095. inp->cross_kq_mask_cnv = cparams.flash_attn ? ggml_cast(ctx0, inp->cross_kq_mask, GGML_TYPE_F16) : inp->cross_kq_mask;
  1096. return (llm_graph_input_attn_cross *) res->add_input(std::move(inp));
  1097. }
  1098. ggml_tensor * llm_graph_context::build_attn(
  1099. llm_graph_input_attn_cross * inp,
  1100. ggml_cgraph * gf,
  1101. ggml_tensor * wo,
  1102. ggml_tensor * wo_b,
  1103. ggml_tensor * q_cur,
  1104. ggml_tensor * k_cur,
  1105. ggml_tensor * v_cur,
  1106. ggml_tensor * kq_b,
  1107. ggml_tensor * v_mla,
  1108. float kq_scale,
  1109. int il) const {
  1110. // these nodes are added to the graph together so that they are not reordered
  1111. // by doing so, the number of splits in the graph is reduced
  1112. ggml_build_forward_expand(gf, q_cur);
  1113. ggml_build_forward_expand(gf, k_cur);
  1114. ggml_build_forward_expand(gf, v_cur);
  1115. const auto & kq_mask = inp->get_kq_mask_cross();
  1116. ggml_tensor * q = q_cur;
  1117. ggml_tensor * k = k_cur;
  1118. ggml_tensor * v = v_cur;
  1119. ggml_tensor * cur = build_attn_mha(gf, q, k, v, kq_b, kq_mask, v_mla, kq_scale);
  1120. cb(cur, "kqv_out", il);
  1121. if (wo) {
  1122. cur = build_lora_mm(wo, cur);
  1123. }
  1124. if (wo_b) {
  1125. //cb(cur, "kqv_wo", il);
  1126. }
  1127. if (wo_b) {
  1128. cur = ggml_add(ctx0, cur, wo_b);
  1129. }
  1130. return cur;
  1131. }
  1132. ggml_tensor * llm_graph_context::build_copy_mask_state(
  1133. ggml_cgraph * gf,
  1134. ggml_tensor * s,
  1135. ggml_tensor * state_copy,
  1136. ggml_tensor * state_mask,
  1137. int32_t n_state,
  1138. int32_t n_seqs) const {
  1139. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  1140. const auto n_kv = kv_self->n;
  1141. const auto kv_head = kv_self->head;
  1142. ggml_tensor * states = ggml_reshape_2d(ctx0, s, n_state, kv_self->size);
  1143. // copy states
  1144. // NOTE: assuming the copy destinations are ALL contained between kv_head and kv_head + n_kv
  1145. // this shrinks the tensors's ne[1] to n_kv
  1146. states = ggml_get_rows(ctx0, states, state_copy);
  1147. // clear states of sequences which are starting at the beginning of this batch
  1148. // FIXME: zero-out NANs?
  1149. states = ggml_mul(ctx0, states, state_mask);
  1150. // copy states which won't be changed further (between n_seqs and n_kv)
  1151. ggml_build_forward_expand(gf,
  1152. ggml_cpy(ctx0,
  1153. ggml_view_1d(ctx0, states, n_state*(n_kv - n_seqs), (n_seqs )*n_state*ggml_element_size(states)),
  1154. ggml_view_1d(ctx0, s, n_state*(n_kv - n_seqs), (kv_head + n_seqs)*n_state*ggml_element_size(s))));
  1155. // the part of the states that will be used and modified
  1156. return ggml_view_2d(ctx0, states, n_state, n_seqs, states->nb[1], 0);
  1157. }
  1158. ggml_tensor * llm_graph_context::build_rwkv_token_shift_load(
  1159. ggml_cgraph * gf,
  1160. ggml_tensor * state_copy,
  1161. ggml_tensor * state_mask,
  1162. const llama_ubatch & ubatch,
  1163. int il) const {
  1164. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  1165. const auto token_shift_count = hparams.token_shift_count;
  1166. const int64_t n_seqs = ubatch.n_seqs;
  1167. ggml_tensor * token_shift_all = kv_self->k_l[il];
  1168. ggml_tensor * token_shift = build_copy_mask_state(
  1169. gf, token_shift_all, state_copy, state_mask,
  1170. hparams.n_embd_k_s(), n_seqs);
  1171. token_shift = ggml_reshape_3d(ctx0, token_shift, hparams.n_embd, token_shift_count, n_seqs);
  1172. return token_shift;
  1173. }
  1174. ggml_tensor * llm_graph_context::build_rwkv_token_shift_store(
  1175. ggml_tensor * token_shift,
  1176. const llama_ubatch & ubatch,
  1177. int il) const {
  1178. const llama_kv_cache_recurrent * kv_self = static_cast<const llama_kv_cache_recurrent *>(memory);
  1179. const auto token_shift_count = hparams.token_shift_count;
  1180. const auto n_embd = hparams.n_embd;
  1181. const int64_t n_seqs = ubatch.n_seqs;
  1182. const auto kv_head = kv_self->head;
  1183. return ggml_cpy(
  1184. ctx0,
  1185. ggml_view_1d(ctx0, token_shift, n_embd * n_seqs * token_shift_count, 0),
  1186. ggml_view_1d(ctx0, kv_self->k_l[il], hparams.n_embd_k_s() * n_seqs, hparams.n_embd_k_s() * kv_head * ggml_element_size(kv_self->k_l[il]))
  1187. );
  1188. }
  1189. void llm_graph_context::build_pooling(
  1190. ggml_cgraph * gf,
  1191. ggml_tensor * cls,
  1192. ggml_tensor * cls_b,
  1193. ggml_tensor * cls_out,
  1194. ggml_tensor * cls_out_b) const {
  1195. if (!cparams.embeddings) {
  1196. return;
  1197. }
  1198. ggml_tensor * inp = res->t_embd;
  1199. //// find result_norm tensor for input
  1200. //for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) {
  1201. // inp = ggml_graph_node(gf, i);
  1202. // if (strcmp(inp->name, "result_norm") == 0 || strcmp(inp->name, "result_embd") == 0) {
  1203. // break;
  1204. // }
  1205. // inp = nullptr;
  1206. //}
  1207. GGML_ASSERT(inp != nullptr && "missing result_norm/result_embd tensor");
  1208. ggml_tensor * cur;
  1209. switch (pooling_type) {
  1210. case LLAMA_POOLING_TYPE_NONE:
  1211. {
  1212. cur = inp;
  1213. } break;
  1214. case LLAMA_POOLING_TYPE_MEAN:
  1215. {
  1216. ggml_tensor * inp_mean = build_inp_mean();
  1217. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, inp)), inp_mean);
  1218. } break;
  1219. case LLAMA_POOLING_TYPE_CLS:
  1220. case LLAMA_POOLING_TYPE_LAST:
  1221. {
  1222. ggml_tensor * inp_cls = build_inp_cls();
  1223. cur = ggml_get_rows(ctx0, inp, inp_cls);
  1224. } break;
  1225. case LLAMA_POOLING_TYPE_RANK:
  1226. {
  1227. ggml_tensor * inp_cls = build_inp_cls();
  1228. inp = ggml_get_rows(ctx0, inp, inp_cls);
  1229. // classification head
  1230. // https://github.com/huggingface/transformers/blob/5af7d41e49bbfc8319f462eb45253dcb3863dfb7/src/transformers/models/roberta/modeling_roberta.py#L1566
  1231. GGML_ASSERT(cls != nullptr);
  1232. GGML_ASSERT(cls_b != nullptr);
  1233. cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls, inp), cls_b);
  1234. cur = ggml_tanh(ctx0, cur);
  1235. // some models don't have `cls_out`, for example: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  1236. // https://huggingface.co/jinaai/jina-reranker-v1-tiny-en/blob/cb5347e43979c3084a890e3f99491952603ae1b7/modeling_bert.py#L884-L896
  1237. if (cls_out) {
  1238. GGML_ASSERT(cls_out_b != nullptr);
  1239. cur = ggml_add (ctx0, ggml_mul_mat(ctx0, cls_out, cur), cls_out_b);
  1240. }
  1241. } break;
  1242. default:
  1243. {
  1244. GGML_ABORT("unknown pooling type");
  1245. }
  1246. }
  1247. cb(cur, "result_embd_pooled", -1);
  1248. res->t_embd_pooled = cur;
  1249. ggml_build_forward_expand(gf, cur);
  1250. }
  1251. int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional) {
  1252. // TODO move to hparams if a T5 variant appears that uses a different value
  1253. const int64_t max_distance = 128;
  1254. if (bidirectional) {
  1255. n_buckets >>= 1;
  1256. }
  1257. const int64_t max_exact = n_buckets >> 1;
  1258. int32_t relative_position = x - y;
  1259. int32_t relative_bucket = 0;
  1260. if (bidirectional) {
  1261. relative_bucket += (relative_position > 0) * n_buckets;
  1262. relative_position = abs(relative_position);
  1263. } else {
  1264. relative_position = -std::min<int32_t>(relative_position, 0);
  1265. }
  1266. int32_t relative_position_if_large = floorf(max_exact + logf(1.0 * relative_position / max_exact) * (n_buckets - max_exact) / log(1.0 * max_distance / max_exact));
  1267. relative_position_if_large = std::min<int32_t>(relative_position_if_large, n_buckets - 1);
  1268. relative_bucket += (relative_position < max_exact ? relative_position : relative_position_if_large);
  1269. return relative_bucket;
  1270. }