common.h 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include "llama-cpp.h"
  4. #include <set>
  5. #include <string>
  6. #include <string_view>
  7. #include <vector>
  8. #include <map>
  9. #include <sstream>
  10. #ifdef _WIN32
  11. #define DIRECTORY_SEPARATOR '\\'
  12. #else
  13. #define DIRECTORY_SEPARATOR '/'
  14. #endif // _WIN32
  15. #define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
  16. #define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
  17. #define print_build_info() do { \
  18. fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
  19. fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
  20. } while(0)
  21. #define DEFAULT_MODEL_PATH "models/7B/ggml-model-f16.gguf"
  22. struct common_adapter_lora_info {
  23. std::string path;
  24. float scale;
  25. struct llama_adapter_lora * ptr;
  26. };
  27. using llama_tokens = std::vector<llama_token>;
  28. // build info
  29. extern int LLAMA_BUILD_NUMBER;
  30. extern const char * LLAMA_COMMIT;
  31. extern const char * LLAMA_COMPILER;
  32. extern const char * LLAMA_BUILD_TARGET;
  33. struct common_control_vector_load_info;
  34. //
  35. // CPU utils
  36. //
  37. struct cpu_params {
  38. int n_threads = -1;
  39. bool cpumask[GGML_MAX_N_THREADS] = {false}; // CPU affinity mask.
  40. bool mask_valid = false; // Default: any CPU
  41. enum ggml_sched_priority priority = GGML_SCHED_PRIO_NORMAL; // Scheduling prio : (0 - normal, 1 - medium, 2 - high, 3 - realtime)
  42. bool strict_cpu = false; // Use strict CPU placement
  43. uint32_t poll = 50; // Polling (busywait) level (0 - no polling, 100 - mostly polling)
  44. };
  45. int32_t cpu_get_num_physical_cores();
  46. int32_t cpu_get_num_math();
  47. //
  48. // Common params
  49. //
  50. enum llama_example {
  51. LLAMA_EXAMPLE_COMMON,
  52. LLAMA_EXAMPLE_SPECULATIVE,
  53. LLAMA_EXAMPLE_MAIN,
  54. LLAMA_EXAMPLE_EMBEDDING,
  55. LLAMA_EXAMPLE_PERPLEXITY,
  56. LLAMA_EXAMPLE_RETRIEVAL,
  57. LLAMA_EXAMPLE_PASSKEY,
  58. LLAMA_EXAMPLE_IMATRIX,
  59. LLAMA_EXAMPLE_BENCH,
  60. LLAMA_EXAMPLE_SERVER,
  61. LLAMA_EXAMPLE_CVECTOR_GENERATOR,
  62. LLAMA_EXAMPLE_EXPORT_LORA,
  63. LLAMA_EXAMPLE_MTMD,
  64. LLAMA_EXAMPLE_LOOKUP,
  65. LLAMA_EXAMPLE_PARALLEL,
  66. LLAMA_EXAMPLE_TTS,
  67. LLAMA_EXAMPLE_COUNT,
  68. };
  69. enum common_sampler_type {
  70. COMMON_SAMPLER_TYPE_NONE = 0,
  71. COMMON_SAMPLER_TYPE_DRY = 1,
  72. COMMON_SAMPLER_TYPE_TOP_K = 2,
  73. COMMON_SAMPLER_TYPE_TOP_P = 3,
  74. COMMON_SAMPLER_TYPE_MIN_P = 4,
  75. //COMMON_SAMPLER_TYPE_TFS_Z = 5,
  76. COMMON_SAMPLER_TYPE_TYPICAL_P = 6,
  77. COMMON_SAMPLER_TYPE_TEMPERATURE = 7,
  78. COMMON_SAMPLER_TYPE_XTC = 8,
  79. COMMON_SAMPLER_TYPE_INFILL = 9,
  80. COMMON_SAMPLER_TYPE_PENALTIES = 10,
  81. COMMON_SAMPLER_TYPE_TOP_N_SIGMA = 11,
  82. };
  83. // dimensionality reduction methods, used by cvector-generator
  84. enum dimre_method {
  85. DIMRE_METHOD_PCA,
  86. DIMRE_METHOD_MEAN,
  87. };
  88. enum common_conversation_mode {
  89. COMMON_CONVERSATION_MODE_DISABLED = 0,
  90. COMMON_CONVERSATION_MODE_ENABLED = 1,
  91. COMMON_CONVERSATION_MODE_AUTO = 2,
  92. };
  93. enum common_grammar_trigger_type {
  94. COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN,
  95. COMMON_GRAMMAR_TRIGGER_TYPE_WORD,
  96. COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN,
  97. COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL,
  98. };
  99. struct common_grammar_trigger {
  100. common_grammar_trigger_type type;
  101. std::string value;
  102. llama_token token = LLAMA_TOKEN_NULL;
  103. };
  104. // sampling parameters
  105. struct common_params_sampling {
  106. uint32_t seed = LLAMA_DEFAULT_SEED; // the seed used to initialize llama_sampler
  107. int32_t n_prev = 64; // number of previous tokens to remember
  108. int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
  109. int32_t min_keep = 0; // 0 = disabled, otherwise samplers should return at least min_keep tokens
  110. int32_t top_k = 40; // <= 0 to use vocab size
  111. float top_p = 0.95f; // 1.0 = disabled
  112. float min_p = 0.05f; // 0.0 = disabled
  113. float xtc_probability = 0.00f; // 0.0 = disabled
  114. float xtc_threshold = 0.10f; // > 0.5 disables XTC
  115. float typ_p = 1.00f; // typical_p, 1.0 = disabled
  116. float temp = 0.80f; // <= 0.0 to sample greedily, 0.0 to not output probabilities
  117. float dynatemp_range = 0.00f; // 0.0 = disabled
  118. float dynatemp_exponent = 1.00f; // controls how entropy maps to temperature in dynamic temperature sampler
  119. int32_t penalty_last_n = 64; // last n tokens to penalize (0 = disable penalty, -1 = context size)
  120. float penalty_repeat = 1.00f; // 1.0 = disabled
  121. float penalty_freq = 0.00f; // 0.0 = disabled
  122. float penalty_present = 0.00f; // 0.0 = disabled
  123. float dry_multiplier = 0.0f; // 0.0 = disabled; DRY repetition penalty for tokens extending repetition:
  124. float dry_base = 1.75f; // 0.0 = disabled; multiplier * base ^ (length of sequence before token - allowed length)
  125. int32_t dry_allowed_length = 2; // tokens extending repetitions beyond this receive penalty
  126. int32_t dry_penalty_last_n = -1; // how many tokens to scan for repetitions (0 = disable penalty, -1 = context size)
  127. int32_t mirostat = 0; // 0 = disabled, 1 = mirostat, 2 = mirostat 2.0
  128. float top_n_sigma = -1.00f;// -1.0 = disabled
  129. float mirostat_tau = 5.00f; // target entropy
  130. float mirostat_eta = 0.10f; // learning rate
  131. bool ignore_eos = false;
  132. bool no_perf = false; // disable performance metrics
  133. bool timing_per_token = false;
  134. std::vector<std::string> dry_sequence_breakers = {"\n", ":", "\"", "*"}; // default sequence breakers for DRY
  135. std::vector<enum common_sampler_type> samplers = {
  136. COMMON_SAMPLER_TYPE_PENALTIES,
  137. COMMON_SAMPLER_TYPE_DRY,
  138. COMMON_SAMPLER_TYPE_TOP_N_SIGMA,
  139. COMMON_SAMPLER_TYPE_TOP_K,
  140. COMMON_SAMPLER_TYPE_TYPICAL_P,
  141. COMMON_SAMPLER_TYPE_TOP_P,
  142. COMMON_SAMPLER_TYPE_MIN_P,
  143. COMMON_SAMPLER_TYPE_XTC,
  144. COMMON_SAMPLER_TYPE_TEMPERATURE,
  145. };
  146. std::string grammar; // optional BNF-like grammar to constrain sampling
  147. bool grammar_lazy = false;
  148. std::vector<common_grammar_trigger> grammar_triggers; // optional triggers (for lazy grammars)
  149. std::set<llama_token> preserved_tokens;
  150. std::vector<llama_logit_bias> logit_bias; // logit biases to apply
  151. // print the parameters into a string
  152. std::string print() const;
  153. };
  154. struct common_params_model {
  155. std::string path = ""; // model local path // NOLINT
  156. std::string url = ""; // model url to download // NOLINT
  157. std::string hf_repo = ""; // HF repo // NOLINT
  158. std::string hf_file = ""; // HF file // NOLINT
  159. };
  160. struct common_params_speculative {
  161. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  162. int32_t n_ctx = 0; // draft context size
  163. int32_t n_max = 16; // maximum number of tokens to draft during speculative decoding
  164. int32_t n_min = 0; // minimum number of draft tokens to use for speculative decoding
  165. int32_t n_gpu_layers = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
  166. float p_split = 0.1f; // speculative decoding split probability
  167. float p_min = 0.75f; // minimum speculative decoding probability (greedy)
  168. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  169. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  170. struct cpu_params cpuparams;
  171. struct cpu_params cpuparams_batch;
  172. struct common_params_model model;
  173. };
  174. struct common_params_vocoder {
  175. struct common_params_model model;
  176. std::string speaker_file = ""; // speaker file path // NOLINT
  177. bool use_guide_tokens = false; // enable guide tokens to improve TTS accuracy // NOLINT
  178. };
  179. enum common_reasoning_format {
  180. COMMON_REASONING_FORMAT_NONE,
  181. COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY, // Extract thinking tag contents and return as `message.reasoning_content`, or leave inline in <think> tags in stream mode
  182. COMMON_REASONING_FORMAT_DEEPSEEK, // Extract thinking tag contents and return as `message.reasoning_content`, including in streaming deltas.
  183. };
  184. struct common_params {
  185. int32_t n_predict = -1; // new tokens to predict
  186. int32_t n_ctx = 4096; // context size
  187. int32_t n_batch = 2048; // logical batch size for prompt processing (must be >=32 to use BLAS)
  188. int32_t n_ubatch = 512; // physical batch size for prompt processing (must be >=32 to use BLAS)
  189. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  190. int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
  191. int32_t n_parallel = 1; // number of parallel sequences to decode
  192. int32_t n_sequences = 1; // number of sequences to decode
  193. int32_t grp_attn_n = 1; // group-attention factor
  194. int32_t grp_attn_w = 512; // group-attention width
  195. int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
  196. float rope_freq_base = 0.0f; // RoPE base frequency
  197. float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
  198. float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
  199. float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
  200. float yarn_beta_fast = 32.0f; // YaRN low correction dim
  201. float yarn_beta_slow = 1.0f; // YaRN high correction dim
  202. int32_t yarn_orig_ctx = 0; // YaRN original context length
  203. float defrag_thold = 0.1f; // KV cache defragmentation threshold
  204. // offload params
  205. std::vector<ggml_backend_dev_t> devices; // devices to use for offloading
  206. int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
  207. int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
  208. float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
  209. enum llama_split_mode split_mode = LLAMA_SPLIT_MODE_LAYER; // how to split the model across GPUs
  210. struct cpu_params cpuparams;
  211. struct cpu_params cpuparams_batch;
  212. ggml_backend_sched_eval_callback cb_eval = nullptr;
  213. void * cb_eval_user_data = nullptr;
  214. ggml_numa_strategy numa = GGML_NUMA_STRATEGY_DISABLED;
  215. enum llama_rope_scaling_type rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  216. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_UNSPECIFIED; // pooling type for embeddings
  217. enum llama_attention_type attention_type = LLAMA_ATTENTION_TYPE_UNSPECIFIED; // attention type for embeddings
  218. struct common_params_sampling sampling;
  219. struct common_params_speculative speculative;
  220. struct common_params_vocoder vocoder;
  221. struct common_params_model model;
  222. std::string model_alias = ""; // model alias // NOLINT
  223. std::string hf_token = ""; // HF token // NOLINT
  224. std::string prompt = ""; // NOLINT
  225. std::string system_prompt = ""; // NOLINT
  226. std::string prompt_file = ""; // store the external prompt file name // NOLINT
  227. std::string path_prompt_cache = ""; // path to file for saving/loading prompt eval state // NOLINT
  228. std::string input_prefix = ""; // string to prefix user inputs with // NOLINT
  229. std::string input_suffix = ""; // string to suffix user inputs with // NOLINT
  230. std::string lookup_cache_static = ""; // path of static ngram cache file for lookup decoding // NOLINT
  231. std::string lookup_cache_dynamic = ""; // path of dynamic ngram cache file for lookup decoding // NOLINT
  232. std::string logits_file = ""; // file for saving *all* logits // NOLINT
  233. std::vector<std::string> in_files; // all input files
  234. std::vector<std::string> antiprompt; // strings upon which more user input is prompted (a.k.a. reverse prompts)
  235. std::vector<llama_model_kv_override> kv_overrides;
  236. std::vector<llama_model_tensor_buft_override> tensor_buft_overrides;
  237. bool lora_init_without_apply = false; // only load lora to memory, but do not apply it to ctx (user can manually apply lora later using llama_adapter_lora_apply)
  238. std::vector<common_adapter_lora_info> lora_adapters; // lora adapter path with user defined scale
  239. std::vector<common_control_vector_load_info> control_vectors; // control vector with user defined scale
  240. int32_t verbosity = 0;
  241. int32_t control_vector_layer_start = -1; // layer range for control vector
  242. int32_t control_vector_layer_end = -1; // layer range for control vector
  243. bool offline = false;
  244. int32_t ppl_stride = 0; // stride for perplexity calculations. If left at 0, the pre-existing approach will be used.
  245. int32_t ppl_output_type = 0; // = 0 -> ppl output is as usual, = 1 -> ppl output is num_tokens, ppl, one per line
  246. // (which is more convenient to use for plotting)
  247. //
  248. bool hellaswag = false; // compute HellaSwag score over random tasks from datafile supplied in prompt
  249. size_t hellaswag_tasks = 400; // number of tasks to use when computing the HellaSwag score
  250. bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt
  251. size_t winogrande_tasks = 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed
  252. bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt
  253. size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed
  254. bool kl_divergence = false; // compute KL divergence
  255. bool usage = false; // print usage
  256. bool completion = false; // print source-able completion script
  257. bool use_color = false; // use color to distinguish generations and inputs
  258. bool special = false; // enable special token output
  259. bool interactive = false; // interactive mode
  260. bool interactive_first = false; // wait for user input immediately
  261. bool prompt_cache_all = false; // save user input and generations to prompt cache
  262. bool prompt_cache_ro = false; // open the prompt cache read-only and do not update it
  263. bool escape = true; // escape "\n", "\r", "\t", "\'", "\"", and "\\"
  264. bool multiline_input = false; // reverse the usage of `\`
  265. bool simple_io = false; // improves compatibility with subprocesses and limited consoles
  266. bool cont_batching = true; // insert new sequences for decoding on-the-fly
  267. bool flash_attn = false; // flash attention
  268. bool no_perf = false; // disable performance metrics
  269. bool ctx_shift = true; // context shift on inifinite text generation
  270. bool swa_full = false; // use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
  271. bool input_prefix_bos = false; // prefix BOS to user inputs, preceding input_prefix
  272. bool use_mmap = true; // use mmap for faster loads
  273. bool use_mlock = false; // use mlock to keep model in memory
  274. bool verbose_prompt = false; // print prompt tokens before generation
  275. bool display_prompt = true; // print prompt before generation
  276. bool no_kv_offload = false; // disable KV offloading
  277. bool warmup = true; // warmup run
  278. bool check_tensors = false; // validate tensor data
  279. bool no_op_offload = false; // globally disable offload host tensor operations to device
  280. bool single_turn = false; // single turn chat conversation
  281. ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
  282. ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
  283. common_conversation_mode conversation_mode = COMMON_CONVERSATION_MODE_AUTO;
  284. // multimodal models (see tools/mtmd)
  285. struct common_params_model mmproj;
  286. bool mmproj_use_gpu = true; // use GPU for multimodal model
  287. bool no_mmproj = false; // explicitly disable multimodal model
  288. std::vector<std::string> image; // path to image file(s)
  289. // embedding
  290. bool embedding = false; // get only sentence embedding
  291. int32_t embd_normalize = 2; // normalisation for embeddings (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)
  292. std::string embd_out = ""; // empty = default, "array" = [[],[]...], "json" = openai style, "json+" = same "json" + cosine similarity matrix
  293. std::string embd_sep = "\n"; // separator of embeddings
  294. std::string cls_sep = "\t"; // separator of classification sequences
  295. // server params
  296. int32_t port = 8080; // server listens on this network port
  297. int32_t timeout_read = 600; // http read timeout in seconds
  298. int32_t timeout_write = timeout_read; // http write timeout in seconds
  299. int32_t n_threads_http = -1; // number of threads to process HTTP requests (TODO: support threadpool)
  300. int32_t n_cache_reuse = 0; // min chunk size to reuse from the cache via KV shifting
  301. std::string hostname = "127.0.0.1";
  302. std::string public_path = ""; // NOLINT
  303. std::string chat_template = ""; // NOLINT
  304. bool use_jinja = false; // NOLINT
  305. bool enable_chat_template = true;
  306. common_reasoning_format reasoning_format = COMMON_REASONING_FORMAT_DEEPSEEK;
  307. int reasoning_budget = -1;
  308. bool prefill_assistant = true; // if true, any trailing assistant message will be prefilled into the response
  309. std::vector<std::string> api_keys;
  310. std::string ssl_file_key = ""; // NOLINT
  311. std::string ssl_file_cert = ""; // NOLINT
  312. std::map<std::string, std::string> default_template_kwargs;
  313. // "advanced" endpoints are disabled by default for better security
  314. bool webui = true;
  315. bool endpoint_slots = false;
  316. bool endpoint_props = false; // only control POST requests, not GET
  317. bool endpoint_metrics = false;
  318. bool log_json = false;
  319. std::string slot_save_path;
  320. float slot_prompt_similarity = 0.5f;
  321. // batched-bench params
  322. bool is_pp_shared = false;
  323. std::vector<int32_t> n_pp;
  324. std::vector<int32_t> n_tg;
  325. std::vector<int32_t> n_pl;
  326. // retrieval params
  327. std::vector<std::string> context_files; // context files to embed
  328. int32_t chunk_size = 64; // chunk size for context embedding
  329. std::string chunk_separator = "\n"; // chunk separator for context embedding
  330. // passkey params
  331. int32_t n_junk = 250; // number of times to repeat the junk text
  332. int32_t i_pos = -1; // position of the passkey in the junk text
  333. // imatrix params
  334. int32_t n_out_freq = 10; // output the imatrix every n_out_freq iterations
  335. int32_t n_save_freq = 0; // save the imatrix every n_save_freq iterations
  336. int32_t i_chunk = 0; // start processing from this chunk
  337. bool process_output = false; // collect data for the output tensor
  338. bool compute_ppl = true; // whether to compute perplexity
  339. bool parse_special = false; // whether to parse special tokens during imatrix tokenization
  340. // cvector-generator params
  341. int n_pca_batch = 100;
  342. int n_pca_iterations = 1000;
  343. dimre_method cvector_dimre_method = DIMRE_METHOD_PCA;
  344. std::string cvector_positive_file = "tools/cvector-generator/positive.txt";
  345. std::string cvector_negative_file = "tools/cvector-generator/negative.txt";
  346. bool spm_infill = false; // suffix/prefix/middle pattern for infill
  347. // batched-bench params
  348. bool batched_bench_output_jsonl = false;
  349. // common params
  350. std::string out_file; // output filename for all example programs
  351. // optional callback for model loading progress and cancellation:
  352. // called with a progress value between 0.0 and 1.0.
  353. // return false from callback to abort model loading or true to continue
  354. llama_progress_callback load_progress_callback = NULL;
  355. void * load_progress_callback_user_data = NULL;
  356. };
  357. // call once at the start of a program if it uses libcommon
  358. // initializes the logging system and prints info about the build
  359. void common_init();
  360. std::string common_params_get_system_info(const common_params & params);
  361. bool parse_cpu_range(const std::string & range, bool(&boolmask)[GGML_MAX_N_THREADS]);
  362. bool parse_cpu_mask(const std::string & mask, bool(&boolmask)[GGML_MAX_N_THREADS]);
  363. void postprocess_cpu_params(cpu_params & cpuparams, const cpu_params * role_model = nullptr);
  364. bool set_process_priority(enum ggml_sched_priority prio);
  365. //
  366. // String utils
  367. //
  368. #ifdef __GNUC__
  369. # if defined(__MINGW32__) && !defined(__clang__)
  370. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  371. # else
  372. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  373. # endif
  374. #else
  375. # define LLAMA_COMMON_ATTRIBUTE_FORMAT(...)
  376. #endif
  377. LLAMA_COMMON_ATTRIBUTE_FORMAT(1, 2)
  378. std::string string_format(const char * fmt, ...);
  379. std::string string_strip(const std::string & str);
  380. std::string string_get_sortable_timestamp();
  381. std::string string_join(const std::vector<std::string> & values, const std::string & separator);
  382. std::vector<std::string> string_split(const std::string & str, const std::string & delimiter);
  383. std::string string_repeat(const std::string & str, size_t n);
  384. void string_replace_all(std::string & s, const std::string & search, const std::string & replace);
  385. std::string regex_escape(const std::string & s);
  386. template<class T>
  387. static std::vector<T> string_split(const std::string & str, char delim) {
  388. static_assert(!std::is_same<T, std::string>::value, "Please use the specialized version for std::string");
  389. std::vector<T> values;
  390. std::istringstream str_stream(str);
  391. std::string token;
  392. while (std::getline(str_stream, token, delim)) {
  393. T value;
  394. std::istringstream token_stream(token);
  395. token_stream >> value;
  396. values.push_back(value);
  397. }
  398. return values;
  399. }
  400. template<>
  401. std::vector<std::string> string_split<std::string>(const std::string & input, char separator)
  402. {
  403. std::vector<std::string> parts;
  404. size_t begin_pos = 0;
  405. size_t separator_pos = input.find(separator);
  406. while (separator_pos != std::string::npos) {
  407. std::string part = input.substr(begin_pos, separator_pos - begin_pos);
  408. parts.emplace_back(part);
  409. begin_pos = separator_pos + 1;
  410. separator_pos = input.find(separator, begin_pos);
  411. }
  412. parts.emplace_back(input.substr(begin_pos, separator_pos - begin_pos));
  413. return parts;
  414. }
  415. static bool string_starts_with(const std::string & str,
  416. const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
  417. return str.rfind(prefix, 0) == 0;
  418. }
  419. // While we wait for C++20's std::string::ends_with...
  420. bool string_ends_with(const std::string_view & str, const std::string_view & suffix);
  421. size_t string_find_partial_stop(const std::string_view & str, const std::string_view & stop);
  422. bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
  423. void string_process_escapes(std::string & input);
  424. std::string string_from(bool value);
  425. std::string string_from(const std::vector<int> & values);
  426. std::string string_from(const struct llama_context * ctx, const std::vector<llama_token> & tokens);
  427. std::string string_from(const struct llama_context * ctx, const struct llama_batch & batch);
  428. //
  429. // Filesystem utils
  430. //
  431. bool fs_validate_filename(const std::string & filename);
  432. bool fs_create_directory_with_parents(const std::string & path);
  433. std::string fs_get_cache_directory();
  434. std::string fs_get_cache_file(const std::string & filename);
  435. //
  436. // Model utils
  437. //
  438. // note: defines object's lifetime
  439. struct common_init_result {
  440. llama_model_ptr model;
  441. llama_context_ptr context;
  442. std::vector<llama_adapter_lora_ptr> lora;
  443. };
  444. struct common_init_result common_init_from_params(common_params & params);
  445. struct llama_model_params common_model_params_to_llama ( common_params & params);
  446. struct llama_context_params common_context_params_to_llama(const common_params & params);
  447. struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_params & params);
  448. // clear LoRA adapters from context, then apply new list of adapters
  449. void common_set_adapter_lora(struct llama_context * ctx, std::vector<common_adapter_lora_info> & lora);
  450. std::string get_model_endpoint();
  451. //
  452. // Batch utils
  453. //
  454. void common_batch_clear(struct llama_batch & batch);
  455. void common_batch_add(
  456. struct llama_batch & batch,
  457. llama_token id,
  458. llama_pos pos,
  459. const std::vector<llama_seq_id> & seq_ids,
  460. bool logits);
  461. //
  462. // Token utils
  463. //
  464. // longest common prefix
  465. size_t common_lcp(const llama_tokens & a, const llama_tokens & b);
  466. // longet common subsequence
  467. size_t common_lcs(const llama_tokens & a, const llama_tokens & b);
  468. //
  469. // Vocab utils
  470. //
  471. // tokenizes a string into a vector of tokens
  472. // should work similar to Python's `tokenizer.encode`
  473. std::vector<llama_token> common_tokenize(
  474. const struct llama_context * ctx,
  475. const std::string & text,
  476. bool add_special,
  477. bool parse_special = false);
  478. std::vector<llama_token> common_tokenize(
  479. const struct llama_vocab * vocab,
  480. const std::string & text,
  481. bool add_special,
  482. bool parse_special = false);
  483. // tokenizes a token into a piece, optionally renders special/control tokens
  484. // should work similar to Python's `tokenizer.id_to_piece`
  485. std::string common_token_to_piece(
  486. const struct llama_context * ctx,
  487. llama_token token,
  488. bool special = true);
  489. std::string common_token_to_piece(
  490. const struct llama_vocab * vocab,
  491. llama_token token,
  492. bool special = true);
  493. // detokenizes a vector of tokens into a string
  494. // should work similar to Python's `tokenizer.decode`
  495. // optionally renders special/control tokens
  496. std::string common_detokenize(
  497. const struct llama_context * ctx,
  498. const std::vector<llama_token> & tokens,
  499. bool special = true);
  500. std::string common_detokenize(
  501. const struct llama_vocab * vocab,
  502. const std::vector<llama_token> & tokens,
  503. bool special = true);
  504. //
  505. // Embedding utils
  506. //
  507. // TODO: repace embd_norm with an enum
  508. void common_embd_normalize(const float * inp, float * out, int n, int embd_norm);
  509. float common_embd_similarity_cos(const float * embd1, const float * embd2, int n);
  510. //
  511. // Control vector utils
  512. //
  513. struct common_control_vector_data {
  514. int n_embd;
  515. // stores data for layers [1, n_layer] where n_layer = data.size() / n_embd
  516. std::vector<float> data;
  517. };
  518. struct common_control_vector_load_info {
  519. float strength;
  520. std::string fname;
  521. };
  522. // Load control vectors, scale each by strength, and add them together.
  523. // On error, returns {-1, empty}
  524. common_control_vector_data common_control_vector_load(const std::vector<common_control_vector_load_info> & load_infos);
  525. //
  526. // Split utils
  527. //
  528. namespace {
  529. const char * const LLM_KV_SPLIT_NO = "split.no";
  530. const char * const LLM_KV_SPLIT_COUNT = "split.count";
  531. const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
  532. }
  533. //
  534. // training utils
  535. //
  536. ggml_opt_dataset_t common_opt_dataset_init(struct llama_context * ctx, const std::vector<llama_token> & tokens, int64_t stride);