clip.cpp 119 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "ggml.h"
  7. #include "ggml-cpu.h"
  8. #include "ggml-alloc.h"
  9. #include "ggml-backend.h"
  10. #include "gguf.h"
  11. //#ifdef GGML_USE_CUDA
  12. //#include "ggml-cuda.h"
  13. //#endif
  14. //
  15. //#ifdef GGML_USE_SYCL
  16. //#include "ggml-sycl.h"
  17. //#endif
  18. //
  19. //#ifdef GGML_USE_METAL
  20. //#include "ggml-metal.h"
  21. //#endif
  22. //
  23. //#ifdef GGML_USE_CANN
  24. //#include "ggml-cann.h"
  25. //#endif
  26. //
  27. //#ifdef GGML_USE_VULKAN
  28. //#include "ggml-vulkan.h"
  29. //#endif
  30. #define STB_IMAGE_IMPLEMENTATION
  31. #include "stb_image.h"
  32. #include <cassert>
  33. #include <cmath>
  34. #include <cstdlib>
  35. #include <cstring>
  36. #include <fstream>
  37. #include <map>
  38. #include <regex>
  39. #include <stdexcept>
  40. #include <vector>
  41. #include <sstream>
  42. #include <cinttypes>
  43. #include <limits>
  44. #if defined(LLAVA_LOG_OFF)
  45. # define LOG_INF(...)
  46. # define LOG_WRN(...)
  47. # define LOG_ERR(...)
  48. # define LOG_DBG(...)
  49. #else // defined(LLAVA_LOG_OFF)
  50. # define LOG_INF(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  51. # define LOG_WRN(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  52. # define LOG_ERR(...) do { fprintf(stderr, __VA_ARGS__); } while (0)
  53. # define LOG_DBG(...) do { fprintf(stdout, __VA_ARGS__); } while (0)
  54. #endif // defined(LLAVA_LOG_OFF)
  55. //#define CLIP_DEBUG_FUNCTIONS
  56. // RGB uint8 image
  57. struct clip_image_u8 {
  58. int nx;
  59. int ny;
  60. std::vector<uint8_t> buf;
  61. };
  62. // RGB float32 image (NHWC)
  63. // Memory layout: RGBRGBRGB...
  64. struct clip_image_f32 {
  65. int nx;
  66. int ny;
  67. std::vector<float> buf;
  68. };
  69. static std::string format(const char * fmt, ...) {
  70. va_list ap;
  71. va_list ap2;
  72. va_start(ap, fmt);
  73. va_copy(ap2, ap);
  74. int size = vsnprintf(NULL, 0, fmt, ap);
  75. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  76. std::vector<char> buf(size + 1);
  77. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  78. GGML_ASSERT(size2 == size);
  79. va_end(ap2);
  80. va_end(ap);
  81. return std::string(buf.data(), buf.size());
  82. }
  83. //
  84. // key constants
  85. //
  86. #define KEY_FTYPE "general.file_type"
  87. #define KEY_NAME "general.name"
  88. #define KEY_DESCRIPTION "general.description"
  89. #define KEY_HAS_TEXT_ENC "clip.has_text_encoder"
  90. #define KEY_HAS_VIS_ENC "clip.has_vision_encoder"
  91. #define KEY_HAS_LLAVA_PROJ "clip.has_llava_projector"
  92. #define KEY_HAS_MINICPMV_PROJ "clip.has_minicpmv_projector"
  93. #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
  94. #define KEY_HAS_QWEN2VL_MERGER "clip.has_qwen2vl_merger"
  95. #define KEY_USE_GELU "clip.use_gelu"
  96. #define KEY_USE_SILU "clip.use_silu"
  97. #define KEY_N_EMBD "clip.%s.embedding_length"
  98. #define KEY_N_FF "clip.%s.feed_forward_length"
  99. #define KEY_N_BLOCK "clip.%s.block_count"
  100. #define KEY_N_HEAD "clip.%s.attention.head_count"
  101. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  102. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  103. #define KEY_TOKENS "tokenizer.ggml.tokens"
  104. #define KEY_N_POSITIONS "clip.text.context_length"
  105. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  106. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  107. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  108. #define KEY_IMAGE_STD "clip.vision.image_std"
  109. #define KEY_PROJ_TYPE "clip.projector_type"
  110. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  111. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  112. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  113. //
  114. // tensor name constants
  115. //
  116. #define TN_TOKEN_EMBD "%s.token_embd.weight"
  117. #define TN_POS_EMBD "%s.position_embd.weight"
  118. #define TN_CLASS_EMBD "v.class_embd"
  119. #define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
  120. #define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
  121. #define TN_PATCH_BIAS "v.patch_embd.bias"
  122. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  123. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  124. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  125. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  126. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  127. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  128. #define TN_LN_1 "%s.blk.%d.ln1.%s"
  129. #define TN_LN_2 "%s.blk.%d.ln2.%s"
  130. #define TN_LN_PRE "%s.pre_ln.%s"
  131. #define TN_LN_POST "%s.post_ln.%s"
  132. #define TN_TEXT_PROJ "text_projection.weight"
  133. #define TN_VIS_PROJ "visual_projection.weight"
  134. #define TN_LLAVA_PROJ "mm.%d.%s"
  135. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  136. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  137. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  138. #define TN_IMAGE_NEWLINE "model.image_newline"
  139. #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
  140. #define TN_MINICPMV_QUERY "resampler.query"
  141. #define TN_MINICPMV_PROJ "resampler.proj.weight"
  142. #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
  143. #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
  144. #define TN_MINICPMV_LN "resampler.ln_%s.%s"
  145. enum projector_type {
  146. PROJECTOR_TYPE_MLP,
  147. PROJECTOR_TYPE_MLP_NORM,
  148. PROJECTOR_TYPE_LDP,
  149. PROJECTOR_TYPE_LDPV2,
  150. PROJECTOR_TYPE_RESAMPLER,
  151. PROJECTOR_TYPE_MERGER,
  152. PROJECTOR_TYPE_UNKNOWN,
  153. };
  154. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  155. { PROJECTOR_TYPE_MLP, "mlp" },
  156. { PROJECTOR_TYPE_LDP, "ldp" },
  157. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  158. { PROJECTOR_TYPE_RESAMPLER, "resampler"},
  159. { PROJECTOR_TYPE_MERGER, "qwen2vl_merger"},
  160. };
  161. //
  162. // utilities to get data from a gguf file
  163. //
  164. static int get_key_idx(const gguf_context * ctx, const char * key) {
  165. int i = gguf_find_key(ctx, key);
  166. if (i == -1) {
  167. LOG_ERR("key %s not found in file\n", key);
  168. throw std::runtime_error(format("Missing required key: %s", key));
  169. }
  170. return i;
  171. }
  172. static uint32_t get_u32(const gguf_context * ctx, const std::string & key) {
  173. const int i = get_key_idx(ctx, key.c_str());
  174. return gguf_get_val_u32(ctx, i);
  175. }
  176. static float get_f32(const gguf_context * ctx, const std::string & key) {
  177. const int i = get_key_idx(ctx, key.c_str());
  178. return gguf_get_val_f32(ctx, i);
  179. }
  180. static struct ggml_tensor * get_tensor(struct ggml_context * ctx, const std::string & name) {
  181. struct ggml_tensor * cur = ggml_get_tensor(ctx, name.c_str());
  182. if (!cur) {
  183. throw std::runtime_error(format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  184. }
  185. return cur;
  186. }
  187. static std::string get_ftype(int ftype) {
  188. return ggml_type_name(static_cast<ggml_type>(ftype));
  189. }
  190. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  191. switch (type) {
  192. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  193. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  194. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  195. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  196. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  197. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  198. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  199. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  200. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  201. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  202. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  203. default: return format("unknown type %d", type);
  204. }
  205. }
  206. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  207. if (search.empty()) {
  208. return;
  209. }
  210. std::string builder;
  211. builder.reserve(s.length());
  212. size_t pos = 0;
  213. size_t last_pos = 0;
  214. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  215. builder.append(s, last_pos, pos - last_pos);
  216. builder.append(replace);
  217. last_pos = pos + search.length();
  218. }
  219. builder.append(s, last_pos, std::string::npos);
  220. s = std::move(builder);
  221. }
  222. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  223. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  224. switch (type) {
  225. case GGUF_TYPE_STRING:
  226. return gguf_get_val_str(ctx_gguf, i);
  227. case GGUF_TYPE_ARRAY:
  228. {
  229. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  230. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  231. const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
  232. std::stringstream ss;
  233. ss << "[";
  234. for (int j = 0; j < arr_n; j++) {
  235. if (arr_type == GGUF_TYPE_STRING) {
  236. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  237. // escape quotes
  238. replace_all(val, "\\", "\\\\");
  239. replace_all(val, "\"", "\\\"");
  240. ss << '"' << val << '"';
  241. } else if (arr_type == GGUF_TYPE_ARRAY) {
  242. ss << "???";
  243. } else {
  244. ss << gguf_data_to_str(arr_type, data, j);
  245. }
  246. if (j < arr_n - 1) {
  247. ss << ", ";
  248. }
  249. }
  250. ss << "]";
  251. return ss.str();
  252. }
  253. default:
  254. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  255. }
  256. }
  257. static void print_tensor_info(const ggml_tensor * tensor, const char * prefix = "") {
  258. size_t tensor_size = ggml_nbytes(tensor);
  259. LOG_INF("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%" PRId64 ", %" PRId64 ", %" PRId64 ", %" PRId64 "], type = %s\n",
  260. prefix, ggml_n_dims(tensor), tensor->name, tensor_size,
  261. tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], ggml_type_name(tensor->type));
  262. }
  263. static projector_type clip_projector_type_from_string(const std::string & name) {
  264. for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT
  265. if (kv.second == name) {
  266. return kv.first;
  267. }
  268. }
  269. return PROJECTOR_TYPE_UNKNOWN;
  270. }
  271. #ifdef CLIP_DEBUG_FUNCTIONS
  272. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  273. std::ofstream file(filename, std::ios::binary);
  274. if (!file.is_open()) {
  275. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  276. return;
  277. }
  278. // PPM header: P6 format, width, height, and max color value
  279. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  280. // Write pixel data
  281. for (size_t i = 0; i < img.buf.size(); i += 3) {
  282. // PPM expects binary data in RGB format, which matches our image buffer
  283. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  284. }
  285. file.close();
  286. }
  287. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  288. std::ofstream file(filename, std::ios::binary);
  289. if (!file.is_open()) {
  290. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  291. return;
  292. }
  293. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  294. int bytesPerPixel = 3;
  295. int widthInBytes = img.nx * bytesPerPixel;
  296. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  297. int stride = widthInBytes + paddingAmount;
  298. // Bitmap file header
  299. unsigned char fileHeader[14] = {
  300. 'B','M', // Signature
  301. 0,0,0,0, // Image file size in bytes
  302. 0,0,0,0, // Reserved
  303. 54,0,0,0 // Start of pixel array
  304. };
  305. // Total file size
  306. fileSize = 54 + (stride * img.ny);
  307. fileHeader[2] = (unsigned char)(fileSize);
  308. fileHeader[3] = (unsigned char)(fileSize >> 8);
  309. fileHeader[4] = (unsigned char)(fileSize >> 16);
  310. fileHeader[5] = (unsigned char)(fileSize >> 24);
  311. // Bitmap information header (BITMAPINFOHEADER)
  312. unsigned char infoHeader[40] = {
  313. 40,0,0,0, // Size of this header (40 bytes)
  314. 0,0,0,0, // Image width
  315. 0,0,0,0, // Image height
  316. 1,0, // Number of color planes
  317. 24,0, // Bits per pixel
  318. 0,0,0,0, // No compression
  319. 0,0,0,0, // Image size (can be 0 for no compression)
  320. 0,0,0,0, // X pixels per meter (not specified)
  321. 0,0,0,0, // Y pixels per meter (not specified)
  322. 0,0,0,0, // Total colors (color table not used)
  323. 0,0,0,0 // Important colors (all are important)
  324. };
  325. // Width and height in the information header
  326. infoHeader[4] = (unsigned char)(img.nx);
  327. infoHeader[5] = (unsigned char)(img.nx >> 8);
  328. infoHeader[6] = (unsigned char)(img.nx >> 16);
  329. infoHeader[7] = (unsigned char)(img.nx >> 24);
  330. infoHeader[8] = (unsigned char)(img.ny);
  331. infoHeader[9] = (unsigned char)(img.ny >> 8);
  332. infoHeader[10] = (unsigned char)(img.ny >> 16);
  333. infoHeader[11] = (unsigned char)(img.ny >> 24);
  334. // Write file headers
  335. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  336. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  337. // Pixel data
  338. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  339. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  340. for (int x = 0; x < img.nx; ++x) {
  341. // Each pixel
  342. size_t pixelIndex = (y * img.nx + x) * 3;
  343. unsigned char pixel[3] = {
  344. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  345. img.buf[pixelIndex + 1],
  346. img.buf[pixelIndex]
  347. };
  348. file.write(reinterpret_cast<char*>(pixel), 3);
  349. }
  350. // Write padding for the row
  351. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  352. }
  353. file.close();
  354. }
  355. // debug function to convert f32 to u8
  356. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  357. dst.nx = src.nx;
  358. dst.ny = src.ny;
  359. dst.buf.resize(3 * src.nx * src.ny);
  360. for (size_t i = 0; i < src.buf.size(); ++i) {
  361. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  362. }
  363. }
  364. #endif
  365. //
  366. // clip layers
  367. //
  368. struct clip_hparams {
  369. int32_t image_size;
  370. int32_t patch_size;
  371. int32_t hidden_size;
  372. int32_t n_intermediate;
  373. int32_t projection_dim;
  374. int32_t n_head;
  375. int32_t n_layer;
  376. float eps;
  377. char mm_patch_merge_type[32] = "flat"; // spatial_unpad or flat (default)
  378. int32_t image_grid_pinpoints[32];
  379. int32_t image_crop_resolution;
  380. };
  381. struct clip_layer {
  382. // attention
  383. struct ggml_tensor * k_w;
  384. struct ggml_tensor * k_b;
  385. struct ggml_tensor * q_w;
  386. struct ggml_tensor * q_b;
  387. struct ggml_tensor * v_w;
  388. struct ggml_tensor * v_b;
  389. struct ggml_tensor * o_w;
  390. struct ggml_tensor * o_b;
  391. // layernorm 1
  392. struct ggml_tensor * ln_1_w;
  393. struct ggml_tensor * ln_1_b;
  394. // ff
  395. struct ggml_tensor * ff_i_w;
  396. struct ggml_tensor * ff_i_b;
  397. struct ggml_tensor * ff_o_w;
  398. struct ggml_tensor * ff_o_b;
  399. // layernorm 2
  400. struct ggml_tensor * ln_2_w;
  401. struct ggml_tensor * ln_2_b;
  402. };
  403. struct clip_vision_model {
  404. struct clip_hparams hparams;
  405. // embeddings
  406. struct ggml_tensor * class_embedding;
  407. struct ggml_tensor * patch_embeddings_0;
  408. struct ggml_tensor * patch_embeddings_1; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  409. struct ggml_tensor * patch_bias;
  410. struct ggml_tensor * position_embeddings;
  411. struct ggml_tensor * pre_ln_w;
  412. struct ggml_tensor * pre_ln_b;
  413. std::vector<clip_layer> layers;
  414. struct ggml_tensor * post_ln_w;
  415. struct ggml_tensor * post_ln_b;
  416. struct ggml_tensor * projection;
  417. // LLaVA projection
  418. struct ggml_tensor * mm_0_w = NULL;
  419. struct ggml_tensor * mm_0_b = NULL;
  420. struct ggml_tensor * mm_2_w = NULL;
  421. struct ggml_tensor * mm_2_b = NULL;
  422. struct ggml_tensor * image_newline = NULL;
  423. // Yi type models with mlp+normalization projection
  424. struct ggml_tensor * mm_1_w = NULL; // Yi type models have 0, 1, 3, 4
  425. struct ggml_tensor * mm_1_b = NULL;
  426. struct ggml_tensor * mm_3_w = NULL;
  427. struct ggml_tensor * mm_3_b = NULL;
  428. struct ggml_tensor * mm_4_w = NULL;
  429. struct ggml_tensor * mm_4_b = NULL;
  430. // MobileVLM projection
  431. struct ggml_tensor * mm_model_mlp_1_w;
  432. struct ggml_tensor * mm_model_mlp_1_b;
  433. struct ggml_tensor * mm_model_mlp_3_w;
  434. struct ggml_tensor * mm_model_mlp_3_b;
  435. struct ggml_tensor * mm_model_block_1_block_0_0_w;
  436. struct ggml_tensor * mm_model_block_1_block_0_1_w;
  437. struct ggml_tensor * mm_model_block_1_block_0_1_b;
  438. struct ggml_tensor * mm_model_block_1_block_1_fc1_w;
  439. struct ggml_tensor * mm_model_block_1_block_1_fc1_b;
  440. struct ggml_tensor * mm_model_block_1_block_1_fc2_w;
  441. struct ggml_tensor * mm_model_block_1_block_1_fc2_b;
  442. struct ggml_tensor * mm_model_block_1_block_2_0_w;
  443. struct ggml_tensor * mm_model_block_1_block_2_1_w;
  444. struct ggml_tensor * mm_model_block_1_block_2_1_b;
  445. struct ggml_tensor * mm_model_block_2_block_0_0_w;
  446. struct ggml_tensor * mm_model_block_2_block_0_1_w;
  447. struct ggml_tensor * mm_model_block_2_block_0_1_b;
  448. struct ggml_tensor * mm_model_block_2_block_1_fc1_w;
  449. struct ggml_tensor * mm_model_block_2_block_1_fc1_b;
  450. struct ggml_tensor * mm_model_block_2_block_1_fc2_w;
  451. struct ggml_tensor * mm_model_block_2_block_1_fc2_b;
  452. struct ggml_tensor * mm_model_block_2_block_2_0_w;
  453. struct ggml_tensor * mm_model_block_2_block_2_1_w;
  454. struct ggml_tensor * mm_model_block_2_block_2_1_b;
  455. // MobileVLM_V2 projection
  456. struct ggml_tensor * mm_model_mlp_0_w;
  457. struct ggml_tensor * mm_model_mlp_0_b;
  458. struct ggml_tensor * mm_model_mlp_2_w;
  459. struct ggml_tensor * mm_model_mlp_2_b;
  460. struct ggml_tensor * mm_model_peg_0_w;
  461. struct ggml_tensor * mm_model_peg_0_b;
  462. // MINICPMV projection
  463. struct ggml_tensor * mm_model_pos_embed_k;
  464. struct ggml_tensor * mm_model_query;
  465. struct ggml_tensor * mm_model_proj;
  466. struct ggml_tensor * mm_model_kv_proj;
  467. struct ggml_tensor * mm_model_attn_q_w;
  468. struct ggml_tensor * mm_model_attn_q_b;
  469. struct ggml_tensor * mm_model_attn_k_w;
  470. struct ggml_tensor * mm_model_attn_k_b;
  471. struct ggml_tensor * mm_model_attn_v_w;
  472. struct ggml_tensor * mm_model_attn_v_b;
  473. struct ggml_tensor * mm_model_attn_o_w;
  474. struct ggml_tensor * mm_model_attn_o_b;
  475. struct ggml_tensor * mm_model_ln_q_w;
  476. struct ggml_tensor * mm_model_ln_q_b;
  477. struct ggml_tensor * mm_model_ln_kv_w;
  478. struct ggml_tensor * mm_model_ln_kv_b;
  479. struct ggml_tensor * mm_model_ln_post_w;
  480. struct ggml_tensor * mm_model_ln_post_b;
  481. };
  482. struct clip_ctx {
  483. bool has_text_encoder = false;
  484. bool has_vision_encoder = false;
  485. bool has_llava_projector = false;
  486. bool has_minicpmv_projector = false;
  487. bool has_qwen2vl_merger = false;
  488. int minicpmv_version = 2;
  489. struct clip_vision_model vision_model;
  490. projector_type proj_type = PROJECTOR_TYPE_MLP;
  491. float image_mean[3];
  492. float image_std[3];
  493. bool use_gelu = false;
  494. bool use_silu = false;
  495. int32_t ftype = 1;
  496. bool has_class_embedding = true;
  497. bool has_pre_norm = true;
  498. bool has_post_norm = false;
  499. bool has_patch_bias = false;
  500. struct gguf_context * ctx_gguf;
  501. struct ggml_context * ctx_data;
  502. std::vector<uint8_t> buf_compute_meta;
  503. // memory buffers to evaluate the model
  504. ggml_backend_buffer_t params_buffer = NULL;
  505. ggml_backend_t backend = NULL;
  506. ggml_gallocr_t compute_alloc = NULL;
  507. struct clip_image_size * load_image_size;
  508. };
  509. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch * imgs, struct clip_image_size * load_image_size, bool is_inf = false) {
  510. if (!ctx->has_vision_encoder) {
  511. LOG_ERR("This gguf file seems to have no vision encoder\n");
  512. return nullptr;
  513. }
  514. const auto & model = ctx->vision_model;
  515. const auto & hparams = model.hparams;
  516. const int image_size = hparams.image_size;
  517. int image_size_width = image_size;
  518. int image_size_height = image_size;
  519. if (ctx->has_minicpmv_projector) {
  520. if (load_image_size == nullptr) {
  521. load_image_size = clip_image_size_init();
  522. }
  523. LOG_DBG("%s: %d %d\n", __func__, load_image_size->width, load_image_size->height);
  524. image_size_width = load_image_size->width;
  525. image_size_height = load_image_size->height;
  526. if (is_inf) {
  527. image_size_width = imgs->data->nx;
  528. image_size_height = imgs->data->ny;
  529. }
  530. }
  531. else if (ctx->has_qwen2vl_merger) {
  532. // use the image's native resolution when image is avaible
  533. if (is_inf) {
  534. // if (imgs->data->nx && imgs->data->ny) {
  535. image_size_width = imgs->data->nx;
  536. image_size_height = imgs->data->ny;
  537. }
  538. }
  539. const int patch_size = hparams.patch_size;
  540. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  541. const int patches_w = image_size_width / patch_size;
  542. const int patches_h = image_size_height / patch_size;
  543. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  544. const int num_position_ids = ctx->has_qwen2vl_merger ? num_positions * 4 : num_positions;
  545. const int hidden_size = hparams.hidden_size;
  546. const int n_head = hparams.n_head;
  547. const int d_head = hidden_size / n_head;
  548. int n_layer = hparams.n_layer;
  549. const float eps = hparams.eps;
  550. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  551. const int batch_size = imgs->size;
  552. if (ctx->has_llava_projector || ctx->has_minicpmv_projector) {
  553. GGML_ASSERT(batch_size == 1);
  554. }
  555. struct ggml_init_params params = {
  556. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  557. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  558. /*.no_alloc =*/ true,
  559. };
  560. struct ggml_context * ctx0 = ggml_init(params);
  561. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  562. struct ggml_tensor * inp_raw = ggml_new_tensor_4d(ctx0, GGML_TYPE_F32, image_size_width, image_size_height, 3, batch_size);
  563. ggml_set_name(inp_raw, "inp_raw");
  564. ggml_set_input(inp_raw);
  565. struct ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  566. if (ctx->has_qwen2vl_merger) {
  567. GGML_ASSERT(image_size_width % (patch_size * 2) == 0);
  568. GGML_ASSERT(image_size_height % (patch_size * 2) == 0);
  569. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  570. inp = ggml_add(ctx0, inp, inp_1);
  571. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  572. inp = ggml_reshape_4d(
  573. ctx0, inp,
  574. hidden_size * 2, patches_w / 2, patches_h, batch_size);
  575. inp = ggml_reshape_4d(
  576. ctx0, inp,
  577. hidden_size * 2, patches_w / 2, 2, batch_size * (patches_h / 2));
  578. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  579. inp = ggml_reshape_3d(
  580. ctx0, inp,
  581. hidden_size, patches_w * patches_h, batch_size);
  582. }
  583. else {
  584. inp = ggml_reshape_3d(ctx0, inp, num_patches, hidden_size, batch_size);
  585. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 0, 2, 3));
  586. }
  587. if (ctx->has_patch_bias) {
  588. // inp = ggml_add(ctx0, inp, ggml_repeat(ctx0, model.patch_bias, inp));
  589. inp = ggml_add(ctx0, inp, model.patch_bias);
  590. }
  591. struct ggml_tensor * embeddings = inp;
  592. struct ggml_tensor * pos_embed = nullptr;
  593. if (ctx->has_llava_projector) {
  594. // concat class_embeddings and patch_embeddings
  595. if (ctx->has_class_embedding) {
  596. embeddings = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, hidden_size, num_positions, batch_size);
  597. ggml_set_name(embeddings, "embeddings");
  598. ggml_set_input(embeddings);
  599. embeddings = ggml_acc(ctx0, embeddings, model.class_embedding,
  600. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], 0);
  601. embeddings = ggml_acc(ctx0, embeddings, inp,
  602. embeddings->nb[1], embeddings->nb[2], embeddings->nb[3], model.class_embedding->nb[1]);
  603. }
  604. }
  605. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  606. ggml_set_name(positions, "positions");
  607. ggml_set_input(positions);
  608. if (!ctx->has_qwen2vl_merger) { // qwen2vl use rope position embedding
  609. embeddings =
  610. ggml_add(ctx0, embeddings, ggml_get_rows(ctx0, model.position_embeddings, positions));
  611. }
  612. if (ctx->has_minicpmv_projector) {
  613. int pos_w = image_size_width/patch_size;
  614. int pos_h = image_size_height/patch_size;
  615. if (ctx->minicpmv_version == 2) {
  616. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 4096, pos_w * pos_h, 1);
  617. }
  618. else if (ctx->minicpmv_version == 3) {
  619. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  620. }
  621. else if (ctx->minicpmv_version == 4) {
  622. pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, 3584, pos_w * pos_h, 1);
  623. }
  624. ggml_set_name(pos_embed, "pos_embed");
  625. ggml_set_input(pos_embed);
  626. }
  627. // pre-layernorm
  628. if (ctx->has_pre_norm) {
  629. embeddings = ggml_norm(ctx0, embeddings, eps);
  630. ggml_set_name(embeddings, "pre_ln");
  631. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.pre_ln_w), model.pre_ln_b);
  632. }
  633. // loop over layers
  634. if (ctx->has_minicpmv_projector || ctx->has_qwen2vl_merger) {
  635. // TODO: figure out why we doing thing in this way ???
  636. n_layer += 1;
  637. }
  638. for (int il = 0; il < n_layer - 1; il++) {
  639. struct ggml_tensor * cur = embeddings; // embeddings = residual, cur = hidden_states
  640. //const size_t nb_q_w = model.layers[il].q_w->nb[0];
  641. // layernorm1
  642. {
  643. cur = ggml_norm(ctx0, cur, eps);
  644. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_1_w),
  645. model.layers[il].ln_1_b);
  646. }
  647. // self-attention
  648. {
  649. struct ggml_tensor * Q =
  650. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].q_w, cur), model.layers[il].q_b);
  651. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_positions, batch_size);
  652. if (ctx->has_qwen2vl_merger) {
  653. Q = ggml_rope_multi(
  654. ctx0, Q, positions, nullptr,
  655. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  656. }
  657. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  658. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  659. Q = ggml_reshape_3d(ctx0, Q, d_head, num_positions, n_head * batch_size);
  660. struct ggml_tensor * K =
  661. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].k_w, cur), model.layers[il].k_b);
  662. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  663. if (ctx->has_qwen2vl_merger) {
  664. K = ggml_rope_multi(
  665. ctx0, K, positions, nullptr,
  666. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  667. }
  668. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  669. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  670. struct ggml_tensor * V =
  671. ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].v_w, cur), model.layers[il].v_b);
  672. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  673. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  674. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  675. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  676. KQ = ggml_soft_max_inplace(ctx0, KQ);
  677. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  678. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_positions, n_head, batch_size);
  679. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  680. cur = ggml_cont_3d(ctx0, KQV, hidden_size, num_positions, batch_size);
  681. }
  682. // attention output
  683. cur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].o_w, cur), model.layers[il].o_b);
  684. // re-add the layer input, e.g., residual
  685. cur = ggml_add(ctx0, cur, embeddings);
  686. embeddings = cur; // embeddings = residual, cur = hidden_states
  687. // layernorm2
  688. {
  689. cur = ggml_norm(ctx0, cur, eps);
  690. cur = ggml_add(ctx0, ggml_mul(ctx0, cur, model.layers[il].ln_2_w), model.layers[il].ln_2_b);
  691. }
  692. cur = ggml_mul_mat(ctx0, model.layers[il].ff_i_w, cur);
  693. cur = ggml_add(ctx0, cur, model.layers[il].ff_i_b);
  694. if (ctx->use_gelu) {
  695. cur = ggml_gelu_inplace(ctx0, cur);
  696. } else if (ctx->use_silu) {
  697. cur = ggml_silu_inplace(ctx0, cur);
  698. } else {
  699. cur = ggml_gelu_quick_inplace(ctx0, cur);
  700. }
  701. cur = ggml_mul_mat(ctx0, model.layers[il].ff_o_w, cur);
  702. cur = ggml_add(ctx0, cur, model.layers[il].ff_o_b);
  703. // residual 2
  704. cur = ggml_add(ctx0, embeddings, cur);
  705. embeddings = cur;
  706. }
  707. // post-layernorm
  708. if (ctx->has_post_norm) {
  709. embeddings = ggml_norm(ctx0, embeddings, eps);
  710. ggml_set_name(embeddings, "post_ln");
  711. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.post_ln_w), model.post_ln_b);
  712. }
  713. // llava projector
  714. if (ctx->has_llava_projector) {
  715. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  716. struct ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_patches);
  717. ggml_set_name(patches, "patches");
  718. ggml_set_input(patches);
  719. // shape [1, 576, 1024]
  720. // ne is whcn, ne = [1024, 576, 1, 1]
  721. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  722. // print_tensor_info(embeddings, "embeddings");
  723. // llava projector
  724. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  725. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  726. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  727. embeddings = ggml_gelu(ctx0, embeddings);
  728. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  729. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  730. }
  731. else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  732. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  733. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  734. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  735. // First LayerNorm
  736. embeddings = ggml_norm(ctx0, embeddings, eps);
  737. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  738. model.mm_1_b);
  739. // GELU activation
  740. embeddings = ggml_gelu(ctx0, embeddings);
  741. // Second linear layer
  742. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  743. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  744. // Second LayerNorm
  745. embeddings = ggml_norm(ctx0, embeddings, eps);
  746. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  747. model.mm_4_b);
  748. }
  749. else if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  750. // MobileVLM projector
  751. int n_patch = 24;
  752. struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  753. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  754. mlp_1 = ggml_gelu(ctx0, mlp_1);
  755. struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  756. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  757. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  758. // block 1
  759. struct ggml_tensor * block_1 = nullptr;
  760. {
  761. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  762. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  763. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  764. // stride = 1, padding = 1, bias is nullptr
  765. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  766. // layer norm
  767. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  768. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  769. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  770. block_1 = ggml_norm(ctx0, block_1, eps);
  771. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  772. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  773. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  774. // hardswish
  775. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  776. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  777. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  778. // pointwise conv
  779. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  780. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  781. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  782. block_1 = ggml_relu(ctx0, block_1);
  783. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  784. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  785. block_1 = ggml_hardsigmoid(ctx0, block_1);
  786. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  787. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  788. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  789. int w = block_1->ne[0], h = block_1->ne[1];
  790. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  791. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  792. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  793. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  794. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  795. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  796. block_1 = ggml_norm(ctx0, block_1, eps);
  797. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  798. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  799. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  800. // residual
  801. block_1 = ggml_add(ctx0, mlp_3, block_1);
  802. }
  803. // block_2
  804. {
  805. // stride = 2
  806. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  807. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  808. // layer norm
  809. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  810. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  811. block_1 = ggml_norm(ctx0, block_1, eps);
  812. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  813. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  814. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  815. // hardswish
  816. struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  817. // not sure the parameters is right for globalAvgPooling
  818. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  819. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  820. // pointwise conv
  821. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  822. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  823. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  824. block_1 = ggml_relu(ctx0, block_1);
  825. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  826. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  827. block_1 = ggml_hardsigmoid(ctx0, block_1);
  828. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  829. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  830. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  831. int w = block_1->ne[0], h = block_1->ne[1];
  832. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  833. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  834. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  835. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  836. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  837. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  838. block_1 = ggml_norm(ctx0, block_1, eps);
  839. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  840. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  841. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  842. }
  843. embeddings = block_1;
  844. }
  845. else if (ctx->proj_type == PROJECTOR_TYPE_LDPV2)
  846. {
  847. int n_patch = 24;
  848. struct ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  849. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  850. mlp_0 = ggml_gelu(ctx0, mlp_0);
  851. struct ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  852. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  853. // mlp_2 ne = [2048, 576, 1, 1]
  854. // // AVG Pool Layer 2*2, strides = 2
  855. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  856. // mlp_2 ne = [576, 2048, 1, 1]
  857. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  858. // mlp_2 ne [24, 24, 2048, 1]
  859. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  860. // weight ne = [3, 3, 2048, 1]
  861. struct ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  862. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  863. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  864. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  865. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  866. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  867. embeddings = peg_0;
  868. }
  869. else {
  870. GGML_ABORT("fatal error");
  871. }
  872. }
  873. // minicpmv projector
  874. else if (ctx->has_minicpmv_projector)
  875. {
  876. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  877. struct ggml_tensor * q = model.mm_model_query;
  878. { // layernorm
  879. q = ggml_norm(ctx0, q, eps);
  880. q = ggml_add(ctx0, ggml_mul(ctx0, q, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  881. }
  882. struct ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  883. { // layernorm
  884. v = ggml_norm(ctx0, v, eps);
  885. v = ggml_add(ctx0, ggml_mul(ctx0, v, model.mm_model_ln_kv_w), model.mm_model_ln_kv_b);
  886. }
  887. struct ggml_tensor * k;
  888. { // position
  889. // q = ggml_add(ctx0, q, model.mm_model_pos_embed);
  890. k = ggml_add(ctx0, v, pos_embed);
  891. }
  892. { // attention
  893. int hidden_size = 4096;
  894. const int d_head = 128;
  895. int n_head = hidden_size/d_head;
  896. int num_query = 96;
  897. if (ctx->minicpmv_version == 2) {
  898. hidden_size = 4096;
  899. n_head = hidden_size/d_head;
  900. num_query = 96;
  901. }
  902. else if (ctx->minicpmv_version == 3) {
  903. hidden_size = 3584;
  904. n_head = hidden_size/d_head;
  905. num_query = 64;
  906. }
  907. else if (ctx->minicpmv_version == 4) {
  908. hidden_size = 3584;
  909. n_head = hidden_size/d_head;
  910. num_query = 64;
  911. }
  912. struct ggml_tensor * Q = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q), model.mm_model_attn_q_b);
  913. Q = ggml_scale_inplace(ctx0, Q, 1.0f / sqrt((float)d_head));
  914. struct ggml_tensor * K = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k), model.mm_model_attn_k_b);
  915. struct ggml_tensor * V = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v), model.mm_model_attn_v_b);
  916. // permute
  917. Q = ggml_reshape_4d(ctx0, Q, d_head, n_head, num_query, batch_size);
  918. Q = ggml_cont(ctx0, ggml_permute(ctx0, Q, 0, 2, 1, 3));
  919. Q = ggml_reshape_3d(ctx0, Q, d_head, num_query, n_head * batch_size);
  920. K = ggml_reshape_4d(ctx0, K, d_head, n_head, num_positions, batch_size);
  921. K = ggml_cont(ctx0, ggml_permute(ctx0, K, 0, 2, 1, 3));
  922. K = ggml_reshape_3d(ctx0, K, d_head, num_positions, n_head * batch_size);
  923. V = ggml_reshape_4d(ctx0, V, d_head, n_head, num_positions, batch_size);
  924. V = ggml_cont(ctx0, ggml_permute(ctx0, V, 1, 2, 0, 3));
  925. V = ggml_reshape_3d(ctx0, V, num_positions, d_head, n_head * batch_size);
  926. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  927. KQ = ggml_soft_max_inplace(ctx0, KQ);
  928. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ);
  929. KQV = ggml_reshape_4d(ctx0, KQV, d_head, num_query, n_head, batch_size);
  930. KQV = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  931. KQV = ggml_cont_3d(ctx0, KQV, hidden_size, num_query, batch_size);
  932. embeddings = ggml_add(ctx0, ggml_mul_mat(ctx0, model.mm_model_attn_o_w, KQV), model.mm_model_attn_o_b);
  933. }
  934. { // layernorm
  935. embeddings = ggml_norm(ctx0, embeddings, eps);
  936. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_post_w), model.mm_model_ln_post_b);
  937. }
  938. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  939. }
  940. else {
  941. GGML_ASSERT(false);
  942. }
  943. }
  944. else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  945. embeddings = ggml_reshape_3d(ctx0, embeddings, hidden_size * 4, num_positions / 4, batch_size);
  946. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  947. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  948. // GELU activation
  949. embeddings = ggml_gelu(ctx0, embeddings);
  950. // Second linear layer
  951. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  952. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  953. }
  954. // build the graph
  955. ggml_build_forward_expand(gf, embeddings);
  956. ggml_free(ctx0);
  957. return gf;
  958. }
  959. // read and create ggml_context containing the tensors and their data
  960. struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
  961. struct ggml_context * meta = NULL;
  962. struct gguf_init_params params = {
  963. /*.no_alloc = */ true,
  964. /*.ctx = */ &meta,
  965. };
  966. struct gguf_context * ctx = gguf_init_from_file(fname, params);
  967. if (!ctx) {
  968. throw std::runtime_error(format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  969. }
  970. if (verbosity >= 1) {
  971. const int n_tensors = gguf_get_n_tensors(ctx);
  972. const int n_kv = gguf_get_n_kv(ctx);
  973. const int ftype = get_u32(ctx, KEY_FTYPE);
  974. const std::string ftype_str = get_ftype(ftype);
  975. const int idx_desc = get_key_idx(ctx, KEY_DESCRIPTION);
  976. const std::string description = gguf_get_val_str(ctx, idx_desc);
  977. const int idx_name = gguf_find_key(ctx, KEY_NAME);
  978. if (idx_name != -1) { // make name optional temporarily as some of the uploaded models missing it due to a bug
  979. const std::string name = gguf_get_val_str(ctx, idx_name);
  980. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  981. }
  982. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  983. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx));
  984. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx));
  985. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  986. LOG_INF("%s: n_kv: %d\n", __func__, n_kv);
  987. LOG_INF("%s: ftype: %s\n", __func__, ftype_str.c_str());
  988. LOG_INF("\n");
  989. }
  990. const int n_tensors = gguf_get_n_tensors(ctx);
  991. // kv
  992. const int n_kv = gguf_get_n_kv(ctx);
  993. LOG_INF("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n",
  994. __func__, n_kv, n_tensors, fname);
  995. {
  996. std::map<enum ggml_type, uint32_t> n_type;
  997. for (int i = 0; i < n_tensors; i++) {
  998. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  999. n_type[type]++;
  1000. }
  1001. LOG_INF("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  1002. for (int i = 0; i < n_kv; i++) {
  1003. const char * name = gguf_get_key(ctx, i);
  1004. const enum gguf_type type = gguf_get_kv_type(ctx, i);
  1005. const std::string type_name =
  1006. type == GGUF_TYPE_ARRAY
  1007. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i))
  1008. : gguf_type_name(type);
  1009. std::string value = gguf_kv_to_str(ctx, i);
  1010. const size_t MAX_VALUE_LEN = 40;
  1011. if (value.size() > MAX_VALUE_LEN) {
  1012. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  1013. }
  1014. replace_all(value, "\n", "\\n");
  1015. LOG_INF("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  1016. }
  1017. // print type counts
  1018. for (auto & kv : n_type) {
  1019. if (kv.second == 0) {
  1020. continue;
  1021. }
  1022. LOG_INF("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  1023. }
  1024. }
  1025. // data
  1026. size_t model_size = 0;
  1027. {
  1028. for (int i = 0; i < n_tensors; ++i) {
  1029. const char * name = gguf_get_tensor_name(ctx, i);
  1030. const size_t offset = gguf_get_tensor_offset(ctx, i);
  1031. enum ggml_type type = gguf_get_tensor_type(ctx, i);
  1032. struct ggml_tensor * cur = ggml_get_tensor(meta, name);
  1033. size_t tensor_size = ggml_nbytes(cur);
  1034. model_size += tensor_size;
  1035. if (verbosity >= 3) {
  1036. LOG_INF("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1037. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1038. }
  1039. }
  1040. }
  1041. clip_ctx * new_clip = new clip_ctx{};
  1042. // update projector type
  1043. {
  1044. int idx = gguf_find_key(ctx, KEY_PROJ_TYPE);
  1045. if (idx != -1) {
  1046. const std::string proj_type = gguf_get_val_str(ctx, idx);
  1047. new_clip->proj_type = clip_projector_type_from_string(proj_type);
  1048. } else {
  1049. new_clip->proj_type = PROJECTOR_TYPE_MLP;
  1050. }
  1051. if (new_clip->proj_type == PROJECTOR_TYPE_MLP) {
  1052. if (gguf_find_tensor(ctx, format(TN_LLAVA_PROJ, 3, "weight").c_str()) != -1) {
  1053. new_clip->proj_type = PROJECTOR_TYPE_MLP_NORM;
  1054. }
  1055. }
  1056. }
  1057. //#ifdef GGML_USE_CUDA
  1058. // new_clip->backend = ggml_backend_cuda_init(0);
  1059. // LOG_INF("%s: CLIP using CUDA backend\n", __func__);
  1060. //#endif
  1061. //
  1062. //#ifdef GGML_USE_METAL
  1063. // new_clip->backend = ggml_backend_metal_init();
  1064. // LOG_INF("%s: CLIP using Metal backend\n", __func__);
  1065. //#endif
  1066. //
  1067. //#ifdef GGML_USE_CANN
  1068. // new_clip->backend = ggml_backend_cann_init(0);
  1069. // LOG_INF("%s: CLIP using CANN backend\n", __func__);
  1070. //#endif
  1071. //
  1072. //#ifdef GGML_USE_VULKAN
  1073. // new_clip->backend = ggml_backend_vk_init(0);
  1074. // LOG_INF("%s: CLIP using Vulkan backend\n", __func__);
  1075. //#endif
  1076. //
  1077. //#ifdef GGML_USE_SYCL
  1078. // new_clip->backend = ggml_backend_sycl_init(0);
  1079. // LOG_INF("%s: CLIP using SYCL backend\n", __func__);
  1080. //#endif
  1081. if (!new_clip->backend) {
  1082. new_clip->backend = ggml_backend_cpu_init();
  1083. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  1084. }
  1085. // model size and capabilities
  1086. {
  1087. int idx = get_key_idx(ctx, KEY_HAS_TEXT_ENC);
  1088. new_clip->has_text_encoder = gguf_get_val_bool(ctx, idx);
  1089. idx = get_key_idx(ctx, KEY_HAS_VIS_ENC);
  1090. new_clip->has_vision_encoder = gguf_get_val_bool(ctx, idx);
  1091. idx = gguf_find_key(ctx, KEY_HAS_LLAVA_PROJ);
  1092. if (idx != -1) {
  1093. new_clip->has_llava_projector = gguf_get_val_bool(ctx, idx);
  1094. }
  1095. idx = gguf_find_key(ctx, KEY_HAS_MINICPMV_PROJ);
  1096. if (idx != -1) {
  1097. new_clip->has_minicpmv_projector = gguf_get_val_bool(ctx, idx);
  1098. }
  1099. idx = gguf_find_key(ctx, KEY_MINICPMV_VERSION);
  1100. if (idx != -1) {
  1101. new_clip->minicpmv_version = gguf_get_val_i32(ctx, idx);
  1102. }
  1103. idx = gguf_find_key(ctx, KEY_HAS_QWEN2VL_MERGER);
  1104. if (idx != -1) {
  1105. new_clip->has_qwen2vl_merger = gguf_get_val_bool(ctx, idx);
  1106. }
  1107. // GGML_ASSERT(new_clip->has_llava_projector); // see monatis/clip.cpp for image and/or text encoding for semantic search
  1108. GGML_ASSERT(new_clip->has_vision_encoder);
  1109. GGML_ASSERT(!new_clip->has_text_encoder);
  1110. idx = get_key_idx(ctx, KEY_USE_GELU);
  1111. new_clip->use_gelu = gguf_get_val_bool(ctx, idx);
  1112. try {
  1113. idx = get_key_idx(ctx, KEY_USE_SILU);
  1114. new_clip->use_silu = gguf_get_val_bool(ctx, idx);
  1115. } catch (std::runtime_error & /*e*/) {
  1116. new_clip->use_silu = false;
  1117. }
  1118. if (verbosity >= 1) {
  1119. LOG_INF("%s: text_encoder: %d\n", __func__, new_clip->has_text_encoder);
  1120. LOG_INF("%s: vision_encoder: %d\n", __func__, new_clip->has_vision_encoder);
  1121. LOG_INF("%s: llava_projector: %d\n", __func__, new_clip->has_llava_projector);
  1122. LOG_INF("%s: minicpmv_projector: %d\n", __func__, new_clip->has_minicpmv_projector);
  1123. LOG_INF("%s: model size: %.2f MB\n", __func__, model_size / 1024.0 / 1024.0);
  1124. LOG_INF("%s: metadata size: %.2f MB\n", __func__, ggml_get_mem_size(meta) / 1024.0 / 1024.0);
  1125. }
  1126. }
  1127. LOG_INF("%s: params backend buffer size = % 6.2f MB (%i tensors)\n", __func__, model_size / (1024.0 * 1024.0), n_tensors);
  1128. // load tensors
  1129. {
  1130. std::vector<uint8_t> read_buf;
  1131. struct ggml_init_params params = {
  1132. /*.mem_size =*/ (n_tensors + 1) * ggml_tensor_overhead(),
  1133. /*.mem_buffer =*/ NULL,
  1134. /*.no_alloc =*/ true,
  1135. };
  1136. new_clip->ctx_data = ggml_init(params);
  1137. if (!new_clip->ctx_data) {
  1138. LOG_ERR("%s: ggml_init() failed\n", __func__);
  1139. clip_free(new_clip);
  1140. gguf_free(ctx);
  1141. return nullptr;
  1142. }
  1143. auto fin = std::ifstream(fname, std::ios::binary);
  1144. if (!fin) {
  1145. LOG_ERR("cannot open model file for loading tensors\n");
  1146. clip_free(new_clip);
  1147. gguf_free(ctx);
  1148. return nullptr;
  1149. }
  1150. // add tensors to context
  1151. for (int i = 0; i < n_tensors; ++i) {
  1152. const char * name = gguf_get_tensor_name(ctx, i);
  1153. struct ggml_tensor * t = ggml_get_tensor(meta, name);
  1154. struct ggml_tensor * cur = ggml_dup_tensor(new_clip->ctx_data, t);
  1155. ggml_set_name(cur, name);
  1156. }
  1157. // alloc memory and offload data
  1158. new_clip->params_buffer = ggml_backend_alloc_ctx_tensors(new_clip->ctx_data, new_clip->backend);
  1159. for (int i = 0; i < n_tensors; ++i) {
  1160. const char * name = gguf_get_tensor_name(ctx, i);
  1161. struct ggml_tensor * cur = ggml_get_tensor(new_clip->ctx_data, name);
  1162. const size_t offset = gguf_get_data_offset(ctx) + gguf_get_tensor_offset(ctx, i);
  1163. fin.seekg(offset, std::ios::beg);
  1164. if (!fin) {
  1165. LOG_ERR("%s: failed to seek for tensor %s\n", __func__, name);
  1166. clip_free(new_clip);
  1167. gguf_free(ctx);
  1168. return nullptr;
  1169. }
  1170. int num_bytes = ggml_nbytes(cur);
  1171. if (ggml_backend_buffer_is_host(new_clip->params_buffer)) {
  1172. // for the CPU and Metal backend, we can read directly into the tensor
  1173. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  1174. } else {
  1175. // read into a temporary buffer first, then copy to device memory
  1176. read_buf.resize(num_bytes);
  1177. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  1178. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  1179. }
  1180. }
  1181. fin.close();
  1182. }
  1183. // vision model
  1184. if (new_clip->has_vision_encoder) {
  1185. // load vision model
  1186. auto & vision_model = new_clip->vision_model;
  1187. auto & hparams = vision_model.hparams;
  1188. hparams.hidden_size = get_u32(ctx, format(KEY_N_EMBD, "vision"));
  1189. hparams.n_head = get_u32(ctx, format(KEY_N_HEAD, "vision"));
  1190. hparams.n_intermediate = get_u32(ctx, format(KEY_N_FF, "vision"));
  1191. hparams.n_layer = get_u32(ctx, format(KEY_N_BLOCK, "vision"));
  1192. hparams.image_size = get_u32(ctx, KEY_IMAGE_SIZE);
  1193. hparams.patch_size = get_u32(ctx, KEY_PATCH_SIZE);
  1194. hparams.projection_dim = get_u32(ctx, format(KEY_PROJ_DIM, "vision"));
  1195. hparams.eps = get_f32(ctx, format(KEY_LAYER_NORM_EPS, "vision"));
  1196. try {
  1197. int idx = get_key_idx(ctx, KEY_IMAGE_GRID_PINPOINTS);
  1198. int n = gguf_get_arr_n(ctx, idx);
  1199. const int32_t * pinpoints = (const int32_t *)gguf_get_arr_data(ctx, idx);
  1200. for (int i = 0; i < 32 && i < n && pinpoints[i] != 0; ++i) {
  1201. hparams.image_grid_pinpoints[i] = pinpoints[i];
  1202. }
  1203. if (n < 32)
  1204. hparams.image_grid_pinpoints[n] = 0;
  1205. } catch (std::runtime_error & /*e*/) {
  1206. hparams.image_grid_pinpoints[0]=0;
  1207. }
  1208. try {
  1209. int idx = get_key_idx(ctx, KEY_MM_PATCH_MERGE_TYPE);
  1210. strcpy(hparams.mm_patch_merge_type, gguf_get_val_str(ctx, idx));
  1211. } catch (std::runtime_error & /*e*/) {
  1212. strcpy(hparams.mm_patch_merge_type, "flat");
  1213. }
  1214. try {
  1215. hparams.image_crop_resolution = get_u32(ctx, KEY_IMAGE_CROP_RESOLUTION); // llava-1.6
  1216. } catch(const std::exception& /*e*/) {
  1217. hparams.image_crop_resolution = hparams.image_size;
  1218. }
  1219. int idx_mean = get_key_idx(ctx, KEY_IMAGE_MEAN);
  1220. int idx_std = get_key_idx(ctx, KEY_IMAGE_STD);
  1221. const float * mean_data = (const float *)gguf_get_arr_data(ctx, idx_mean);
  1222. const float * std_data = (const float *)gguf_get_arr_data(ctx, idx_std);
  1223. for (int i = 0; i < 3; ++i) {
  1224. new_clip->image_mean[i] = mean_data[i];
  1225. new_clip->image_std[i] = std_data[i];
  1226. }
  1227. if (verbosity >= 2) {
  1228. LOG_INF("\n%s: vision model hparams\n", __func__);
  1229. LOG_INF("image_size %d\n", hparams.image_size);
  1230. LOG_INF("patch_size %d\n", hparams.patch_size);
  1231. LOG_INF("v_hidden_size %d\n", hparams.hidden_size);
  1232. LOG_INF("v_n_intermediate %d\n", hparams.n_intermediate);
  1233. LOG_INF("v_projection_dim %d\n", hparams.projection_dim);
  1234. LOG_INF("v_n_head %d\n", hparams.n_head);
  1235. LOG_INF("v_n_layer %d\n", hparams.n_layer);
  1236. LOG_INF("v_eps %f\n", hparams.eps);
  1237. LOG_INF("v_image_mean %f %f %f\n", new_clip->image_mean[0], new_clip->image_mean[1], new_clip->image_mean[2]);
  1238. LOG_INF("v_image_std %f %f %f\n", new_clip->image_std[0], new_clip->image_std[1], new_clip->image_std[2]);
  1239. LOG_INF("v_image_grid_pinpoints: ");
  1240. for (int i = 0; i < 32 && (hparams.image_grid_pinpoints[i] != 0); ++i) {
  1241. LOG_INF("%d ", hparams.image_grid_pinpoints[i]);
  1242. }
  1243. LOG_INF("\n");
  1244. LOG_INF("v_mm_patch_merge_type: %s\n", hparams.mm_patch_merge_type);
  1245. }
  1246. try {
  1247. vision_model.class_embedding = get_tensor(new_clip->ctx_data, TN_CLASS_EMBD);
  1248. new_clip->has_class_embedding = true;
  1249. } catch (const std::exception& /*e*/) {
  1250. new_clip->has_class_embedding = false;
  1251. }
  1252. try {
  1253. vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight"));
  1254. vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias"));
  1255. new_clip->has_pre_norm = true;
  1256. } catch (std::exception & /*e*/) {
  1257. new_clip->has_pre_norm = false;
  1258. }
  1259. try {
  1260. vision_model.post_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "weight"));
  1261. vision_model.post_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_POST, "v", "bias"));
  1262. new_clip->has_post_norm = true;
  1263. } catch (std::exception & /*e*/) {
  1264. new_clip->has_post_norm = false;
  1265. }
  1266. try {
  1267. vision_model.patch_bias = get_tensor(new_clip->ctx_data, TN_PATCH_BIAS);
  1268. new_clip->has_patch_bias = true;
  1269. } catch (std::exception & /*e*/) {
  1270. new_clip->has_patch_bias = false;
  1271. }
  1272. try {
  1273. vision_model.patch_embeddings_0 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD);
  1274. vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v"));
  1275. } catch(const std::exception& /*e*/) {
  1276. LOG_ERR("%s: failed to load vision model tensors\n", __func__);
  1277. }
  1278. try {
  1279. vision_model.patch_embeddings_1 = get_tensor(new_clip->ctx_data, TN_PATCH_EMBD_1);
  1280. } catch(const std::exception& /*e*/) {
  1281. new_clip->has_qwen2vl_merger = false;
  1282. }
  1283. // LLaVA projection
  1284. if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  1285. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1286. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1287. try {
  1288. // Yi-type llava
  1289. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "weight"));
  1290. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 1, "bias"));
  1291. } catch (std::runtime_error & /*e*/) { }
  1292. try {
  1293. // missing in Yi-type llava
  1294. vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1295. vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1296. } catch (std::runtime_error & /*e*/) { }
  1297. try {
  1298. // Yi-type llava
  1299. vision_model.mm_3_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "weight"));
  1300. vision_model.mm_3_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 3, "bias"));
  1301. } catch (std::runtime_error & /*e*/) { }
  1302. try {
  1303. // Yi-type llava
  1304. vision_model.mm_4_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "weight"));
  1305. vision_model.mm_4_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 4, "bias"));
  1306. } catch (std::runtime_error & /*e*/) { }
  1307. try {
  1308. vision_model.image_newline = get_tensor(new_clip->ctx_data, TN_IMAGE_NEWLINE);
  1309. // LOG_INF("%s: image_newline tensor (llava-1.6) found\n", __func__);
  1310. } catch (std::runtime_error & /*e*/) { }
  1311. } else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) {
  1312. // MobileVLM projection
  1313. vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight"));
  1314. vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias"));
  1315. vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight"));
  1316. vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias"));
  1317. vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  1318. vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  1319. vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  1320. vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  1321. vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  1322. vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  1323. vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  1324. vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  1325. vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  1326. vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  1327. vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  1328. vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  1329. vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  1330. vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  1331. vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  1332. vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  1333. vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  1334. vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  1335. vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  1336. vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  1337. }
  1338. else if (new_clip->proj_type == PROJECTOR_TYPE_LDPV2)
  1339. {
  1340. // MobilVLM_V2 projection
  1341. vision_model.mm_model_mlp_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "weight"));
  1342. vision_model.mm_model_mlp_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 0, "bias"));
  1343. vision_model.mm_model_mlp_2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "weight"));
  1344. vision_model.mm_model_mlp_2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 2, "bias"));
  1345. vision_model.mm_model_peg_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "weight"));
  1346. vision_model.mm_model_peg_0_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_PEG, 0, "bias"));
  1347. }
  1348. else if (new_clip->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  1349. // vision_model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  1350. vision_model.mm_model_pos_embed_k = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD_K);
  1351. vision_model.mm_model_query = get_tensor(new_clip->ctx_data, TN_MINICPMV_QUERY);
  1352. vision_model.mm_model_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_PROJ);
  1353. vision_model.mm_model_kv_proj = get_tensor(new_clip->ctx_data, TN_MINICPMV_KV_PROJ);
  1354. vision_model.mm_model_attn_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "weight"));
  1355. vision_model.mm_model_attn_k_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "weight"));
  1356. vision_model.mm_model_attn_v_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "weight"));
  1357. vision_model.mm_model_attn_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "q", "bias"));
  1358. vision_model.mm_model_attn_k_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "k", "bias"));
  1359. vision_model.mm_model_attn_v_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "v", "bias"));
  1360. vision_model.mm_model_attn_o_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "weight"));
  1361. vision_model.mm_model_attn_o_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_ATTN, "out", "bias"));
  1362. vision_model.mm_model_ln_q_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "weight"));
  1363. vision_model.mm_model_ln_q_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "q", "bias"));
  1364. vision_model.mm_model_ln_kv_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "weight"));
  1365. vision_model.mm_model_ln_kv_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "kv", "bias"));
  1366. vision_model.mm_model_ln_post_w = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "weight"));
  1367. vision_model.mm_model_ln_post_b = get_tensor(new_clip->ctx_data, format(TN_MINICPMV_LN, "post", "bias"));
  1368. }
  1369. else if (new_clip->proj_type == PROJECTOR_TYPE_MERGER) {
  1370. vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
  1371. vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
  1372. vision_model.mm_1_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight"));
  1373. vision_model.mm_1_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias"));
  1374. }
  1375. else {
  1376. std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type];
  1377. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  1378. }
  1379. vision_model.layers.resize(hparams.n_layer);
  1380. for (int il = 0; il < hparams.n_layer; ++il) {
  1381. auto & layer = vision_model.layers[il];
  1382. layer.k_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "weight"));
  1383. layer.q_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "weight"));
  1384. layer.v_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "weight"));
  1385. layer.o_w = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "weight"));
  1386. layer.ln_1_w = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "weight"));
  1387. layer.ln_2_w = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "weight"));
  1388. layer.ff_i_w = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "weight"));
  1389. layer.ff_o_w = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "weight"));
  1390. layer.k_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_K, "v", il, "bias"));
  1391. layer.q_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_Q, "v", il, "bias"));
  1392. layer.v_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_V, "v", il, "bias"));
  1393. layer.o_b = get_tensor(new_clip->ctx_data, format(TN_ATTN_OUTPUT, "v", il, "bias"));
  1394. layer.ln_1_b = get_tensor(new_clip->ctx_data, format(TN_LN_1, "v", il, "bias"));
  1395. layer.ln_2_b = get_tensor(new_clip->ctx_data, format(TN_LN_2, "v", il, "bias"));
  1396. layer.ff_i_b = get_tensor(new_clip->ctx_data, format(TN_FFN_DOWN, "v", il, "bias"));
  1397. layer.ff_o_b = get_tensor(new_clip->ctx_data, format(TN_FFN_UP, "v", il, "bias"));
  1398. }
  1399. }
  1400. ggml_free(meta);
  1401. new_clip->ctx_gguf = ctx;
  1402. // measure mem requirement and allocate
  1403. {
  1404. new_clip->buf_compute_meta.resize(GGML_DEFAULT_GRAPH_SIZE * ggml_tensor_overhead() + ggml_graph_overhead());
  1405. new_clip->compute_alloc = ggml_gallocr_new(ggml_backend_get_default_buffer_type(new_clip->backend));
  1406. clip_image_f32_batch batch;
  1407. batch.size = 1;
  1408. batch.data = nullptr;
  1409. ggml_cgraph * gf = clip_image_build_graph(new_clip, &batch, nullptr, false);
  1410. ggml_gallocr_reserve(new_clip->compute_alloc, gf);
  1411. size_t compute_memory_buffer_size = ggml_gallocr_get_buffer_size(new_clip->compute_alloc, 0);
  1412. LOG_INF("%s: compute allocated memory: %.2f MB\n", __func__, compute_memory_buffer_size /1024.0/1024.0);
  1413. }
  1414. return new_clip;
  1415. }
  1416. void clip_add_load_image_size(struct clip_ctx * ctx_clip, struct clip_image_size * load_image_size) {
  1417. ctx_clip->load_image_size = load_image_size;
  1418. }
  1419. struct clip_image_size * clip_get_load_image_size(struct clip_ctx * ctx_clip) {
  1420. return ctx_clip->load_image_size;
  1421. }
  1422. struct clip_image_size * clip_image_size_init() {
  1423. struct clip_image_size * load_image_size = new struct clip_image_size();
  1424. load_image_size->width = 448;
  1425. load_image_size->height = 448;
  1426. return load_image_size;
  1427. }
  1428. struct clip_image_u8 * clip_image_u8_init() {
  1429. return new clip_image_u8();
  1430. }
  1431. struct clip_image_f32 * clip_image_f32_init() {
  1432. return new clip_image_f32();
  1433. }
  1434. void clip_image_u8_free(struct clip_image_u8 * img) { delete img; }
  1435. void clip_image_f32_free(struct clip_image_f32 * img) { delete img; }
  1436. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) {
  1437. if (batch->size > 0) {
  1438. delete[] batch->data;
  1439. batch->size = 0;
  1440. }
  1441. }
  1442. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) {
  1443. if (batch->size > 0) {
  1444. delete[] batch->data;
  1445. batch->size = 0;
  1446. }
  1447. }
  1448. static void build_clip_img_from_data(const stbi_uc * data, int nx, int ny, clip_image_u8 * img) {
  1449. img->nx = nx;
  1450. img->ny = ny;
  1451. img->buf.resize(3 * nx * ny);
  1452. memcpy(img->buf.data(), data, img->buf.size());
  1453. }
  1454. bool clip_image_load_from_file(const char * fname, clip_image_u8 * img) {
  1455. int nx, ny, nc;
  1456. auto * data = stbi_load(fname, &nx, &ny, &nc, 3);
  1457. if (!data) {
  1458. LOG_ERR("%s: failed to load image '%s'\n", __func__, fname);
  1459. return false;
  1460. }
  1461. build_clip_img_from_data(data, nx, ny, img);
  1462. stbi_image_free(data);
  1463. return true;
  1464. }
  1465. bool clip_image_load_from_bytes(const unsigned char * bytes, size_t bytes_length, struct clip_image_u8 * img) {
  1466. int nx, ny, nc;
  1467. auto * data = stbi_load_from_memory(bytes, bytes_length, &nx, &ny, &nc, 3);
  1468. if (!data) {
  1469. LOG_ERR("%s: failed to decode image bytes\n", __func__);
  1470. return false;
  1471. }
  1472. build_clip_img_from_data(data, nx, ny, img);
  1473. stbi_image_free(data);
  1474. return true;
  1475. }
  1476. // Linear interpolation between two points
  1477. inline float clip_lerp(float s, float e, float t) {
  1478. return s + (e - s) * t;
  1479. }
  1480. // Bilinear resize function
  1481. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  1482. dst.nx = target_width;
  1483. dst.ny = target_height;
  1484. dst.buf.resize(3 * target_width * target_height);
  1485. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  1486. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  1487. for (int y = 0; y < target_height; y++) {
  1488. for (int x = 0; x < target_width; x++) {
  1489. float px = x_ratio * x;
  1490. float py = y_ratio * y;
  1491. int x_floor = static_cast<int>(px);
  1492. int y_floor = static_cast<int>(py);
  1493. float x_lerp = px - x_floor;
  1494. float y_lerp = py - y_floor;
  1495. for (int c = 0; c < 3; c++) {
  1496. float top = clip_lerp(
  1497. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  1498. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  1499. x_lerp
  1500. );
  1501. float bottom = clip_lerp(
  1502. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  1503. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  1504. x_lerp
  1505. );
  1506. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(clip_lerp(top, bottom, y_lerp));
  1507. }
  1508. }
  1509. }
  1510. }
  1511. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  1512. static void normalize_image_u8_to_f32(const clip_image_u8* src, clip_image_f32* dst, const float mean[3], const float std[3]) {
  1513. dst->nx = src->nx;
  1514. dst->ny = src->ny;
  1515. dst->buf.resize(src->buf.size());
  1516. for (size_t i = 0; i < src->buf.size(); ++i) {
  1517. int c = i % 3; // rgb
  1518. dst->buf[i] = (static_cast<float>(src->buf[i]) / 255.0f - mean[c]) / std[c];
  1519. }
  1520. }
  1521. inline int clip(int x, int lower, int upper) {
  1522. return std::max(lower, std::min(x, upper));
  1523. }
  1524. static bool bicubic_resize(const clip_image_u8 &img, clip_image_u8 &dst, int target_width, int target_height) {
  1525. const int nx = img.nx;
  1526. const int ny = img.ny;
  1527. dst.nx = target_width;
  1528. dst.ny = target_height;
  1529. dst.buf.resize(3 * target_width * target_height);
  1530. float Cc;
  1531. float C[5];
  1532. float d0, d2, d3, a0, a1, a2, a3;
  1533. int i, j, k, jj;
  1534. int x, y;
  1535. float dx, dy;
  1536. float tx, ty;
  1537. tx = (float)nx / (float)target_width;
  1538. ty = (float)ny / (float)target_height;
  1539. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  1540. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  1541. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  1542. for (i = 0; i < target_height; i++) {
  1543. for (j = 0; j < target_width; j++) {
  1544. x = (int)(tx * j);
  1545. y = (int)(ty * i);
  1546. dx = tx * j - x;
  1547. dy = ty * i - y;
  1548. for (k = 0; k < 3; k++) {
  1549. for (jj = 0; jj <= 3; jj++) {
  1550. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1551. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1552. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1553. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  1554. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1555. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1556. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1557. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  1558. d0 = C[0] - C[1];
  1559. d2 = C[2] - C[1];
  1560. d3 = C[3] - C[1];
  1561. a0 = C[1];
  1562. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  1563. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  1564. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  1565. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  1566. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  1567. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  1568. }
  1569. }
  1570. }
  1571. }
  1572. return true;
  1573. }
  1574. // llava-1.6 type of resize_and_pad (black)
  1575. static void resize_and_pad_image(const clip_image_u8& image, clip_image_u8 &image_output, const std::pair<int, int>& target_resolution) {
  1576. int target_width = target_resolution.first;
  1577. int target_height = target_resolution.second;
  1578. float scale_w = static_cast<float>(target_width) / image.nx;
  1579. float scale_h = static_cast<float>(target_height) / image.ny;
  1580. int new_width, new_height;
  1581. if (scale_w < scale_h) {
  1582. new_width = target_width;
  1583. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  1584. } else {
  1585. new_height = target_height;
  1586. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  1587. }
  1588. clip_image_u8 resized_image;
  1589. // bilinear_resize(image, resized_image, new_width, new_height);
  1590. bicubic_resize(image, resized_image, new_width, new_height);
  1591. clip_image_u8 padded_image;
  1592. padded_image.nx = target_width;
  1593. padded_image.ny = target_height;
  1594. padded_image.buf.resize(3 * target_width * target_height, 0); // Initialize with black
  1595. // Calculate padding offsets
  1596. int pad_x = (target_width - new_width) / 2;
  1597. int pad_y = (target_height - new_height) / 2;
  1598. // Copy the resized image into the center of the padded buffer
  1599. for (int y = 0; y < new_height; ++y) {
  1600. for (int x = 0; x < new_width; ++x) {
  1601. for (int c = 0; c < 3; ++c) {
  1602. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  1603. }
  1604. }
  1605. }
  1606. image_output = std::move(padded_image);
  1607. }
  1608. /**
  1609. * Selects the best resolution from a list of possible resolutions based on the original size.
  1610. *
  1611. * @param original_size The original size of the image in the format (width, height).
  1612. * @param possible_resolutions A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
  1613. * @return The best fit resolution in the format (width, height).
  1614. */
  1615. static std::pair<int, int> select_best_resolution(const std::pair<int, int> & original_size, const std::vector<std::pair<int, int>> & possible_resolutions) {
  1616. int original_width = original_size.first;
  1617. int original_height = original_size.second;
  1618. std::pair<int, int> best_fit;
  1619. int max_effective_resolution = 0;
  1620. int min_wasted_resolution = std::numeric_limits<int>::max();
  1621. for (const auto& resolution : possible_resolutions) {
  1622. int width = resolution.first;
  1623. int height = resolution.second;
  1624. float scale = std::min(static_cast<float>(width) / original_width, static_cast<float>(height) / original_height);
  1625. int downscaled_width = static_cast<int>(original_width * scale);
  1626. int downscaled_height = static_cast<int>(original_height * scale);
  1627. int effective_resolution = std::min(downscaled_width * downscaled_height, original_width * original_height);
  1628. int wasted_resolution = (width * height) - effective_resolution;
  1629. // LOG_INF("resolution: %d %d, scale: %f, downscaled: %d %d, effective: %d, wasted: %d\n", width, height, scale, downscaled_width, downscaled_height, effective_resolution, wasted_resolution);
  1630. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_resolution < min_wasted_resolution)) {
  1631. max_effective_resolution = effective_resolution;
  1632. min_wasted_resolution = wasted_resolution;
  1633. best_fit = resolution;
  1634. }
  1635. }
  1636. return best_fit;
  1637. }
  1638. static std::vector<clip_image_u8*> divide_to_patches_u8(const clip_image_u8 & image, int patch_size) {
  1639. std::vector<clip_image_u8*> patches;
  1640. int width = image.nx;
  1641. int height = image.ny;
  1642. for (int i = 0; i < height; i += patch_size) {
  1643. for (int j = 0; j < width; j += patch_size) {
  1644. clip_image_u8 *patch = clip_image_u8_init();
  1645. patch->nx = std::min(patch_size, width - j);
  1646. patch->ny = std::min(patch_size, height - i);
  1647. patch->buf.resize(3 * patch->nx * patch->ny);
  1648. for (int y = 0; y < patch->ny; ++y) {
  1649. for (int x = 0; x < patch->nx; ++x) {
  1650. for (int c = 0; c < 3; ++c) {
  1651. patch->buf[3 * (y * patch->nx + x) + c] = image.buf[3 * ((i + y) * width + (j + x)) + c];
  1652. }
  1653. }
  1654. }
  1655. patches.push_back(patch);
  1656. }
  1657. }
  1658. return patches;
  1659. }
  1660. static int ensure_divide(int length, int patch_size) {
  1661. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  1662. }
  1663. static std::pair<int, int> uhd_find_best_resize(std::pair<int, int> original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1664. int width = original_size.first;
  1665. int height = original_size.second;
  1666. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  1667. float r = static_cast<float>(width) / height;
  1668. height = static_cast<int>(scale_resolution / std::sqrt(r));
  1669. width = static_cast<int>(height * r);
  1670. }
  1671. int best_width = ensure_divide(width, patch_size);
  1672. int best_height = ensure_divide(height, patch_size);
  1673. return std::make_pair(best_width, best_height);
  1674. }
  1675. static std::pair<int, int> uhd_get_refine_size(std::pair<int, int> original_size, std::pair<int, int> grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  1676. int width, height;
  1677. std::tie(width, height) = original_size;
  1678. int grid_x, grid_y;
  1679. std::tie(grid_x, grid_y) = grid;
  1680. int refine_width = ensure_divide(width, grid_x);
  1681. int refine_height = ensure_divide(height, grid_y);
  1682. int grid_width = refine_width / grid_x;
  1683. int grid_height = refine_height / grid_y;
  1684. // auto best_grid_size = find_best_resize(std::make_tuple(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); (old line)
  1685. auto best_grid_size = uhd_find_best_resize(std::make_pair(grid_width, grid_height), scale_resolution, patch_size, allow_upscale); // (new line) => fixes conversion for make_tuple to make_pair
  1686. int best_grid_width, best_grid_height;
  1687. std::tie(best_grid_width, best_grid_height) = best_grid_size;
  1688. // std::pair<int, int> refine_size = std::make_tuple(best_grid_width * grid_x, best_grid_height * grid_y); (old line)
  1689. std::pair<int, int> refine_size = std::make_pair(best_grid_width * grid_x, best_grid_height * grid_y); // (new line)
  1690. return refine_size;
  1691. }
  1692. static std::pair<int, int> uhd_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  1693. std::vector<int> candidate_split_grids_nums;
  1694. for (int i : {multiple - 1, multiple, multiple + 1}) {
  1695. if (i == 1 || i > max_slice_nums) {
  1696. continue;
  1697. }
  1698. candidate_split_grids_nums.push_back(i);
  1699. }
  1700. std::vector<std::pair<int, int>> candidate_grids;
  1701. for (int split_grids_nums : candidate_split_grids_nums) {
  1702. int m = 1;
  1703. while (m <= split_grids_nums) {
  1704. if (split_grids_nums % m == 0) {
  1705. candidate_grids.emplace_back(m, split_grids_nums / m);
  1706. }
  1707. ++m;
  1708. }
  1709. }
  1710. std::pair<int, int> best_grid{1, 1};
  1711. float min_error = std::numeric_limits<float>::infinity();
  1712. for (const auto& grid : candidate_grids) {
  1713. float error = std::abs(log_ratio - std::log(1.0 * grid.first / grid.second));
  1714. if (error < min_error) {
  1715. best_grid = grid;
  1716. min_error = error;
  1717. }
  1718. }
  1719. return best_grid;
  1720. }
  1721. // inspired from LLaVA-UHD:
  1722. // -> https://arxiv.org/pdf/2403.11703
  1723. // -> https://github.com/thunlp/LLaVA-UHD
  1724. // -> https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  1725. static std::vector<std::vector<clip_image_u8 *>> uhd_slice_image(const clip_image_u8 * img, const int max_slice_nums=9, const int scale_resolution=448, const int patch_size=14) {
  1726. const std::pair<int, int> original_size={img->nx,img->ny};
  1727. const int original_width = img->nx;
  1728. const int original_height = img->ny;
  1729. const float log_ratio = log(1.0*original_width/original_height);
  1730. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1731. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1732. std::vector<std::vector<clip_image_u8 *>> images;
  1733. LOG_INF("%s: multiple %d\n", __func__, multiple);
  1734. images.push_back(std::vector<clip_image_u8 *>());
  1735. if (multiple <= 1) {
  1736. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size, true);
  1737. clip_image_u8 * source_image = clip_image_u8_init();
  1738. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1739. // source_image = image.resize(best_size, Image.Resampling.BICUBIC)
  1740. images[images.size()-1].push_back(source_image);
  1741. }
  1742. else if (multiple > 1) {
  1743. auto best_size = uhd_find_best_resize(original_size, scale_resolution, patch_size);
  1744. clip_image_u8 * source_image = clip_image_u8_init();
  1745. bicubic_resize(*img, *source_image, best_size.first, best_size.second);
  1746. // source_image = image.copy().resize(best_resize, Image.Resampling.BICUBIC)
  1747. LOG_INF("%s: image_size: %d %d; source_image size: %d %d\n", __func__, img->nx, img->ny, best_size.first, best_size.second);
  1748. images[images.size()-1].push_back(source_image);
  1749. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1750. LOG_INF("%s: image_size: %d %d; best_grid: %d %d\n", __func__, img->nx, img->ny, best_grid.first, best_grid.second);
  1751. auto refine_size = uhd_get_refine_size(original_size, best_grid, scale_resolution, patch_size, true);
  1752. clip_image_u8 * refine_image = clip_image_u8_init();
  1753. bicubic_resize(*img, *refine_image, refine_size.first, refine_size.second);
  1754. LOG_INF("%s: refine_image_size: %d %d; refine_size: %d %d\n", __func__, refine_image->nx, refine_image->ny, refine_size.first, refine_size.second);
  1755. // split_to_patches
  1756. int width = refine_image->nx;
  1757. int height = refine_image->ny;
  1758. int grid_x = int(width / best_grid.first);
  1759. int grid_y = int(height / best_grid.second);
  1760. for (int patches_i = 0, ic = 0; patches_i < height && ic < best_grid.second; patches_i += grid_y, ic += 1){
  1761. images.push_back(std::vector<clip_image_u8 *>());
  1762. for(int patches_j = 0, jc = 0; patches_j < width && jc < best_grid.first; patches_j += grid_x, jc += 1){
  1763. clip_image_u8 * patch = clip_image_u8_init();
  1764. patch->nx = grid_x;
  1765. patch->ny = grid_y;
  1766. patch->buf.resize(3 * patch->nx * patch->ny);
  1767. for (int y = patches_i; y < patches_i + grid_y; ++y) {
  1768. for (int x = patches_j; x < patches_j + grid_x; ++x) {
  1769. const int i = 3 * (y * refine_image->nx + x);
  1770. const int j = 3 * ((y-patches_i) * patch->nx + (x-patches_j));
  1771. patch->buf[j] = refine_image->buf[i];
  1772. patch->buf[j+1] = refine_image->buf[i+1];
  1773. patch->buf[j+2] = refine_image->buf[i+2];
  1774. }
  1775. }
  1776. images[images.size()-1].push_back(patch);
  1777. }
  1778. }
  1779. clip_image_u8_free(refine_image);
  1780. }
  1781. return images;
  1782. }
  1783. int clip_uhd_num_image_embeds_col(struct clip_ctx * ctx_clip) {
  1784. const int max_slice_nums=9;
  1785. const int scale_resolution=448;
  1786. const int original_width = ctx_clip->load_image_size->width;
  1787. const int original_height = ctx_clip->load_image_size->height;
  1788. const float log_ratio = log(1.0*original_width/original_height);
  1789. const float ratio = 1.0 * original_width * original_height/ (scale_resolution * scale_resolution);
  1790. const int multiple = fmin(ceil(ratio), max_slice_nums);
  1791. std::pair<int, int> best_grid = uhd_best_grid(max_slice_nums, multiple, log_ratio);
  1792. return best_grid.first;
  1793. }
  1794. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  1795. // res_imgs memory is being allocated here, previous allocations will be freed if found
  1796. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, clip_image_f32_batch * res_imgs) {
  1797. if(clip_is_minicpmv(ctx)){
  1798. int max_slice_nums = 9;
  1799. std::vector<std::vector<clip_image_u8 *>> imgs = uhd_slice_image(img, max_slice_nums);
  1800. res_imgs->size = 0;
  1801. for (size_t i = 0; i < imgs.size(); ++i){
  1802. res_imgs->size += imgs[i].size();
  1803. }
  1804. res_imgs->data = new clip_image_f32[res_imgs->size];
  1805. int idx = 0;
  1806. for (size_t i = 0; i < imgs.size(); ++i) {
  1807. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1808. LOG_DBG("%s: %d %d\n", __func__,imgs[i][j]->nx,imgs[i][j]->ny);
  1809. clip_image_f32 * res = clip_image_f32_init();
  1810. normalize_image_u8_to_f32(imgs[i][j], res, ctx->image_mean, ctx->image_std);
  1811. res_imgs->data[idx++] = *res;
  1812. clip_image_f32_free(res);
  1813. }
  1814. }
  1815. for (size_t i = 0; i < imgs.size(); ++i) {
  1816. for (size_t j = 0; j < imgs[i].size(); ++j) {
  1817. if (imgs[i][j] != nullptr) {
  1818. clip_image_u8_free(imgs[i][j]);
  1819. }
  1820. }
  1821. }
  1822. return true;
  1823. }
  1824. else if (ctx->has_qwen2vl_merger) {
  1825. clip_image_u8 * resized = clip_image_u8_init();
  1826. auto patch_size = clip_patch_size(ctx) * 2;
  1827. int nx = ceil((float)img->nx / patch_size) * patch_size;
  1828. int ny = ceil((float)img->ny / patch_size) * patch_size;
  1829. bicubic_resize(*img, *resized, nx, ny);
  1830. res_imgs->data = new clip_image_f32[1];
  1831. // clip_image_f32 * res = clip_image_f32_init();
  1832. normalize_image_u8_to_f32(resized, res_imgs->data, ctx->image_mean, ctx->image_std);
  1833. // res_imgs->data[0] = *res;
  1834. res_imgs->size = 1;
  1835. // clip_image_f32_free(res);
  1836. clip_image_u8_free(resized);
  1837. return true;
  1838. }
  1839. bool pad_to_square = true;
  1840. if (!ctx->has_vision_encoder) {
  1841. LOG_ERR("This gguf file seems to have no vision encoder\n");
  1842. return false;
  1843. }
  1844. auto & params = ctx->vision_model.hparams;
  1845. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  1846. if (strcmp(params.mm_patch_merge_type, "spatial_unpad") == 0) {
  1847. pad_to_square = false;
  1848. }
  1849. // free the previous res_imgs if any set
  1850. if (res_imgs->size > 0) {
  1851. clip_image_f32_batch_free(res_imgs);
  1852. }
  1853. res_imgs->data = nullptr;
  1854. res_imgs->size = 0;
  1855. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  1856. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  1857. clip_image_u8 * temp = clip_image_u8_init(); // we will keep the input image data here temporarily
  1858. if (pad_to_square && img->nx != img->ny) {
  1859. int longer_side = std::max(img->nx, img->ny);
  1860. temp->nx = longer_side;
  1861. temp->ny = longer_side;
  1862. temp->buf.resize(3 * longer_side * longer_side);
  1863. const uint8_t bc[3] = {122, 116, 104}; // background color in RGB from LLaVA (this is the mean rgb color * 255)
  1864. // fill with background color
  1865. for (size_t i = 0; i < temp->buf.size(); i++) {
  1866. temp->buf[i] = bc[i % 3];
  1867. }
  1868. // copy from the input image
  1869. for (int y = 0; y < img->ny; y++) {
  1870. for (int x = 0; x < img->nx; x++) {
  1871. const int i = 3 * (y * img->nx + x);
  1872. const int j = 3 * (y * temp->nx + x);
  1873. temp->buf[j] = img->buf[i];
  1874. temp->buf[j+1] = img->buf[i+1];
  1875. temp->buf[j+2] = img->buf[i+2];
  1876. }
  1877. }
  1878. } else {
  1879. if (params.image_grid_pinpoints[0] != 0) {
  1880. // "spatial_unpad" with "anyres" processing for llava-1.6
  1881. std::vector<std::pair<int, int>> possible_resolutions;
  1882. for (int i = 0; i < 32 && params.image_grid_pinpoints[i] != 0; i+=2) {
  1883. possible_resolutions.push_back({params.image_grid_pinpoints[i], params.image_grid_pinpoints[i+1]});
  1884. }
  1885. std::pair<int, int> best_resolution = select_best_resolution({img->nx, img->ny}, possible_resolutions);
  1886. // clip_image_save_to_bmp(*img, "input.bmp");
  1887. resize_and_pad_image(*img, *temp, best_resolution); // we do not pad with mean-bg color anymore in llava-1.6
  1888. // clip_image_save_to_bmp(*temp, "resized.bmp");
  1889. // visually verify normalized image:
  1890. // normalize_image_u8_to_f32(*temp, *res, ctx->image_mean, ctx->image_std);
  1891. // {
  1892. // clip_image_u8 * temp2 = clip_image_u8_init();
  1893. // clip_image_convert_f32_to_u8(*res, *temp2);
  1894. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32.bmp");
  1895. // clip_image_u8_free(temp2);
  1896. // }
  1897. std::vector<clip_image_u8 *> patches = divide_to_patches_u8(*temp, params.image_size); // prepare spatial sorted main patches of image_size each (336 in llava-1.6)
  1898. clip_image_u8 *image_original_resize = clip_image_u8_init();
  1899. // bilinear_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1900. bicubic_resize(*img, *image_original_resize, params.image_size, params.image_size); // in python this is "shortest_edge", but all CLIP are square
  1901. patches.insert(patches.begin(), image_original_resize);
  1902. // clip_image_f32_batch_init(patches.size());
  1903. res_imgs->size = patches.size();
  1904. res_imgs->data = new clip_image_f32[res_imgs->size];
  1905. int num=0;
  1906. for (auto& patch : patches) {
  1907. normalize_image_u8_to_f32(patch, &res_imgs->data[num], ctx->image_mean, ctx->image_std);
  1908. num++;
  1909. }
  1910. for (size_t i = 0; i < patches.size(); i++) {
  1911. // LOG_DBG("patch %d: %d %d\n", i, patches[i]->nx, patches[i]->ny);
  1912. clip_image_u8_free(patches[i]);
  1913. }
  1914. clip_image_u8_free(temp);
  1915. return true;
  1916. } else {
  1917. temp->nx = img->nx;
  1918. temp->ny = img->ny;
  1919. temp->buf.resize(img->buf.size());
  1920. memcpy(temp->buf.data(), img->buf.data(), temp->buf.size());
  1921. }
  1922. }
  1923. const int nx = temp->nx;
  1924. const int ny = temp->ny;
  1925. // clip_image_save_to_bmp(*temp, "resized_vanilla.bmp");
  1926. const int nx2 = ctx->vision_model.hparams.image_size;
  1927. const int ny2 = ctx->vision_model.hparams.image_size;
  1928. clip_image_f32 * res = clip_image_f32_init();
  1929. res->nx = nx2;
  1930. res->ny = ny2;
  1931. res->buf.resize(3 * nx2 * ny2);
  1932. const float scale = std::max(nx, ny) / (float)ctx->vision_model.hparams.image_size;
  1933. const int nx3 = int(nx / scale + 0.5f);
  1934. const int ny3 = int(ny / scale + 0.5f);
  1935. const auto & m3 = ctx->image_mean; // {0.48145466f, 0.4578275f, 0.40821073f};
  1936. const auto & s3 = ctx->image_std; // {0.26862954f, 0.26130258f, 0.27577711f};
  1937. for (int y = 0; y < ny3; y++) {
  1938. for (int x = 0; x < nx3; x++) {
  1939. for (int c = 0; c < 3; c++) {
  1940. // linear interpolation
  1941. const float sx = (x + 0.5f) * scale - 0.5f;
  1942. const float sy = (y + 0.5f) * scale - 0.5f;
  1943. const int x0 = std::max(0, (int)std::floor(sx));
  1944. const int y0 = std::max(0, (int)std::floor(sy));
  1945. const int x1 = std::min(x0 + 1, nx - 1);
  1946. const int y1 = std::min(y0 + 1, ny - 1);
  1947. const float dx = sx - x0;
  1948. const float dy = sy - y0;
  1949. const int j00 = 3 * (y0 * nx + x0) + c;
  1950. const int j01 = 3 * (y0 * nx + x1) + c;
  1951. const int j10 = 3 * (y1 * nx + x0) + c;
  1952. const int j11 = 3 * (y1 * nx + x1) + c;
  1953. const float v00 = temp->buf[j00];
  1954. const float v01 = temp->buf[j01];
  1955. const float v10 = temp->buf[j10];
  1956. const float v11 = temp->buf[j11];
  1957. const float v0 = v00 * (1.0f - dx) + v01 * dx;
  1958. const float v1 = v10 * (1.0f - dx) + v11 * dx;
  1959. const float v = v0 * (1.0f - dy) + v1 * dy;
  1960. const uint8_t v2 = std::min(std::max(std::round(v), 0.0f), 255.0f);
  1961. const int i = 3 * (y * nx3 + x) + c;
  1962. res->buf[i] = ((float(v2) / 255.0f) - m3[c]) / s3[c];
  1963. }
  1964. }
  1965. }
  1966. clip_image_u8_free(temp);
  1967. // {
  1968. // clip_image_u8 * temp2 = clip_image_u8_init();
  1969. // clip_image_convert_f32_to_u8(*res, *temp2);
  1970. // clip_image_save_to_bmp(*temp2, "resized_normalized_f32_vanilla.bmp");
  1971. // clip_image_u8_free(temp2);
  1972. // }
  1973. // res_imgs.push_back(res);
  1974. res_imgs->size = 1;
  1975. res_imgs->data = new clip_image_f32[res_imgs->size];
  1976. res_imgs->data[0] = *res;
  1977. clip_image_f32_free(res);
  1978. return true;
  1979. }
  1980. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  1981. return ctx->vision_model.image_newline;
  1982. }
  1983. void clip_free(clip_ctx * ctx) {
  1984. ggml_free(ctx->ctx_data);
  1985. gguf_free(ctx->ctx_gguf);
  1986. ggml_backend_buffer_free(ctx->params_buffer);
  1987. ggml_backend_free(ctx->backend);
  1988. ggml_gallocr_free(ctx->compute_alloc);
  1989. delete ctx;
  1990. }
  1991. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  1992. return clip_n_patches(ctx) * clip_n_mmproj_embd(ctx) * sizeof(float);
  1993. }
  1994. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_h, int img_w) {
  1995. clip_image_f32 img;
  1996. img.nx = img_w;
  1997. img.ny = img_h;
  1998. return clip_n_patches_by_img(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  1999. }
  2000. int32_t clip_image_size(const struct clip_ctx * ctx) {
  2001. return ctx->vision_model.hparams.image_size;
  2002. }
  2003. int32_t clip_patch_size(const struct clip_ctx * ctx) {
  2004. return ctx->vision_model.hparams.patch_size;
  2005. }
  2006. int32_t clip_hidden_size(const struct clip_ctx * ctx) {
  2007. return ctx->vision_model.hparams.hidden_size;
  2008. }
  2009. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2010. return ctx->vision_model.hparams.mm_patch_merge_type;
  2011. }
  2012. const int32_t * clip_image_grid(const struct clip_ctx * ctx) {
  2013. return ctx->vision_model.hparams.image_grid_pinpoints;
  2014. }
  2015. int clip_n_patches(const struct clip_ctx * ctx) {
  2016. clip_image_f32 img;
  2017. img.nx = ctx->vision_model.hparams.image_size;
  2018. img.ny = ctx->vision_model.hparams.image_size;
  2019. return clip_n_patches_by_img(ctx, &img);
  2020. }
  2021. int clip_n_patches_by_img(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  2022. const auto & params = ctx->vision_model.hparams;
  2023. int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  2024. if (ctx->proj_type == PROJECTOR_TYPE_LDP || ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2025. n_patches /= 4;
  2026. } else if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2027. if (ctx->minicpmv_version == 2) {
  2028. n_patches = 96;
  2029. }
  2030. else if (ctx->minicpmv_version == 3) {
  2031. n_patches = 64;
  2032. }
  2033. else if (ctx->minicpmv_version == 4) {
  2034. n_patches = 64;
  2035. }
  2036. } else if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2037. int patch_size = params.patch_size * 2;
  2038. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  2039. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  2040. n_patches = x_patch * y_patch;
  2041. }
  2042. return n_patches;
  2043. }
  2044. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  2045. assert(embed_dim % 2 == 0);
  2046. int H = pos.size();
  2047. int W = pos[0].size();
  2048. std::vector<float> omega(embed_dim / 2);
  2049. for (int i = 0; i < embed_dim / 2; ++i) {
  2050. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  2051. }
  2052. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2053. for (int h = 0; h < H; ++h) {
  2054. for (int w = 0; w < W; ++w) {
  2055. for (int d = 0; d < embed_dim / 2; ++d) {
  2056. float out_value = pos[h][w] * omega[d];
  2057. emb[h][w][d] = sin(out_value);
  2058. emb[h][w][d + embed_dim / 2] = cos(out_value);
  2059. }
  2060. }
  2061. }
  2062. return emb;
  2063. }
  2064. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  2065. assert(embed_dim % 2 == 0);
  2066. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  2067. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  2068. int H = emb_h.size();
  2069. int W = emb_h[0].size();
  2070. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  2071. for (int h = 0; h < H; ++h) {
  2072. for (int w = 0; w < W; ++w) {
  2073. for (int d = 0; d < embed_dim / 2; ++d) {
  2074. emb[h][w][d] = emb_h[h][w][d];
  2075. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  2076. }
  2077. }
  2078. }
  2079. return emb;
  2080. }
  2081. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  2082. int grid_h_size = image_size.first;
  2083. int grid_w_size = image_size.second;
  2084. std::vector<float> grid_h(grid_h_size);
  2085. std::vector<float> grid_w(grid_w_size);
  2086. for (int i = 0; i < grid_h_size; ++i) {
  2087. grid_h[i] = static_cast<float>(i);
  2088. }
  2089. for (int i = 0; i < grid_w_size; ++i) {
  2090. grid_w[i] = static_cast<float>(i);
  2091. }
  2092. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  2093. for (int h = 0; h < grid_h_size; ++h) {
  2094. for (int w = 0; w < grid_w_size; ++w) {
  2095. grid[h][w] = grid_w[w];
  2096. }
  2097. }
  2098. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  2099. for (int h = 0; h < grid_h_size; ++h) {
  2100. for (int w = 0; w < grid_w_size; ++w) {
  2101. grid_2d[0][h][w] = grid_h[h];
  2102. grid_2d[1][h][w] = grid_w[w];
  2103. }
  2104. }
  2105. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  2106. int H = image_size.first;
  2107. int W = image_size.second;
  2108. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  2109. for (int h = 0; h < H; ++h) {
  2110. for (int w = 0; w < W; ++w) {
  2111. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  2112. }
  2113. }
  2114. return pos_embed_2d;
  2115. }
  2116. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  2117. if (!ctx->has_vision_encoder) {
  2118. LOG_ERR("This gguf file seems to have no vision encoder\n");
  2119. return false;
  2120. }
  2121. clip_image_f32_batch imgs{};
  2122. imgs.size = 1;
  2123. imgs.data = img;
  2124. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  2125. }
  2126. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs, float * vec) {
  2127. if (!ctx->has_vision_encoder) {
  2128. LOG_ERR("This gguf file seems to have no vision encoder\n");
  2129. return false;
  2130. }
  2131. int batch_size = imgs->size;
  2132. if (ctx->has_llava_projector) {
  2133. GGML_ASSERT(batch_size == 1); // TODO: support multiple images
  2134. }
  2135. if (ctx->has_minicpmv_projector) {
  2136. GGML_ASSERT(batch_size == 1);
  2137. }
  2138. // build the inference graph
  2139. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs, ctx->load_image_size, true);
  2140. ggml_gallocr_alloc_graph(ctx->compute_alloc, gf);
  2141. // set inputs
  2142. const auto & model = ctx->vision_model;
  2143. const auto & hparams = model.hparams;
  2144. const int image_size = hparams.image_size;
  2145. int image_size_width = image_size;
  2146. int image_size_height = image_size;
  2147. if (ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger) {
  2148. image_size_width = imgs->data[0].nx;
  2149. image_size_height = imgs->data[0].ny;
  2150. }
  2151. const int patch_size = hparams.patch_size;
  2152. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  2153. const int num_positions = num_patches + (ctx->has_class_embedding ? 1 : 0);
  2154. if(ctx->load_image_size==nullptr){
  2155. ctx->load_image_size= clip_image_size_init();
  2156. }
  2157. const int pos_w = ctx->load_image_size->width/patch_size;
  2158. const int pos_h = ctx->load_image_size->height/patch_size;
  2159. {
  2160. struct ggml_tensor * inp_raw = ggml_graph_get_tensor(gf, "inp_raw");
  2161. float * data = (float *)malloc(ggml_nbytes(inp_raw));
  2162. for (size_t i = 0; i < imgs->size; i++) {
  2163. const int nx = imgs->data[i].nx;
  2164. const int ny = imgs->data[i].ny;
  2165. if (!(ctx->has_minicpmv_projector | ctx->has_qwen2vl_merger)) {
  2166. GGML_ASSERT(nx == image_size && ny == image_size);
  2167. }
  2168. const int n = nx * ny;
  2169. for (int b = 0; b < batch_size; b++) {
  2170. for (int k = 0; k < 3; k++) {
  2171. for (int y = 0; y < ny; y++) {
  2172. for (int x = 0; x < nx; x++) {
  2173. data[(b * 3 * n) + k * n + y * nx + x] = imgs->data[b].buf[3 * (y * nx + x) + k];
  2174. }
  2175. }
  2176. }
  2177. }
  2178. }
  2179. ggml_backend_tensor_set(inp_raw, data, 0, ggml_nbytes(inp_raw));
  2180. free(data);
  2181. }
  2182. if (ctx->has_minicpmv_projector) {
  2183. {
  2184. // inspired from siglip:
  2185. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  2186. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  2187. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2188. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2189. int bucket_coords_h[1024];
  2190. int bucket_coords_w[1024];
  2191. for (int i = 0; i < pos_h; i++){
  2192. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  2193. }
  2194. for (int i = 0; i < pos_w; i++){
  2195. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  2196. }
  2197. for (int i = 0, id = 0; i < pos_h; i++){
  2198. for (int j = 0; j < pos_w; j++){
  2199. positions_data[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  2200. }
  2201. }
  2202. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2203. free(positions_data);
  2204. }
  2205. {
  2206. // inspired from resampler of Qwen-VL:
  2207. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  2208. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  2209. struct ggml_tensor * pos_embed = ggml_graph_get_tensor(gf, "pos_embed");
  2210. int embed_dim = 4096;
  2211. if (ctx->minicpmv_version == 2) {
  2212. embed_dim = 4096;
  2213. }
  2214. else if (ctx->minicpmv_version == 3) {
  2215. embed_dim = 3584;
  2216. }
  2217. else if (ctx->minicpmv_version == 4) {
  2218. embed_dim = 3584;
  2219. }
  2220. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  2221. float * pos_embed_data = (float *)malloc(ggml_nbytes(pos_embed));
  2222. for(int i=0;i < pos_w * pos_h; ++i){
  2223. for(int j=0; j < embed_dim; ++j){
  2224. pos_embed_data[i * embed_dim + j] = pos_embed_t[i][j];
  2225. }
  2226. }
  2227. ggml_backend_tensor_set(pos_embed, pos_embed_data, 0, ggml_nbytes(pos_embed));
  2228. free(pos_embed_data);
  2229. }
  2230. }
  2231. else{
  2232. {
  2233. if (ctx->has_class_embedding) {
  2234. struct ggml_tensor * embeddings = ggml_graph_get_tensor(gf, "embeddings");
  2235. void* zero_mem = malloc(ggml_nbytes(embeddings));
  2236. memset(zero_mem, 0, ggml_nbytes(embeddings));
  2237. ggml_backend_tensor_set(embeddings, zero_mem, 0, ggml_nbytes(embeddings));
  2238. free(zero_mem);
  2239. }
  2240. }
  2241. if (ctx->has_qwen2vl_merger) {
  2242. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2243. const int pw = image_size_width / patch_size;
  2244. const int ph = image_size_height / patch_size;
  2245. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2246. int ptr = 0;
  2247. for (int y = 0; y < ph; y+=2)
  2248. {
  2249. for (int x = 0; x < pw; x+=2)
  2250. {
  2251. for (int dy = 0; dy < 2; dy++) {
  2252. for (int dx = 0; dx < 2; dx++) {
  2253. positions_data[ptr] = y + dy;
  2254. positions_data[num_patches + ptr] = x + dx;
  2255. positions_data[num_patches * 2 + ptr] = y + dy;
  2256. positions_data[num_patches * 3 + ptr] = x + dx;
  2257. ptr++;
  2258. }
  2259. }
  2260. }
  2261. }
  2262. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2263. free(positions_data);
  2264. }
  2265. else {
  2266. struct ggml_tensor * positions = ggml_graph_get_tensor(gf, "positions");
  2267. int* positions_data = (int*)malloc(ggml_nbytes(positions));
  2268. for (int i = 0; i < num_positions; i++) {
  2269. positions_data[i] = i;
  2270. }
  2271. ggml_backend_tensor_set(positions, positions_data, 0, ggml_nbytes(positions));
  2272. free(positions_data);
  2273. {
  2274. struct ggml_tensor * patches = ggml_graph_get_tensor(gf, "patches");
  2275. int* patches_data = (int*)malloc(ggml_nbytes(patches));
  2276. for (int i = 0; i < num_patches; i++) {
  2277. patches_data[i] = i + 1;
  2278. }
  2279. ggml_backend_tensor_set(patches, patches_data, 0, ggml_nbytes(patches));
  2280. free(patches_data);
  2281. }
  2282. }
  2283. }
  2284. if (ggml_backend_is_cpu(ctx->backend)) {
  2285. ggml_backend_cpu_set_n_threads(ctx->backend, n_threads);
  2286. }
  2287. ggml_backend_graph_compute(ctx->backend, gf);
  2288. // the last node is the embedding tensor
  2289. struct ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  2290. // copy the embeddings to the location passed by the user
  2291. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  2292. return true;
  2293. }
  2294. bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype) {
  2295. ggml_type type = GGML_TYPE_Q4_1;
  2296. assert(itype < GGML_TYPE_COUNT);
  2297. type = static_cast<ggml_type>(itype);
  2298. auto * ctx_clip = clip_model_load(fname_inp, 2);
  2299. const auto & ctx_src = ctx_clip->ctx_gguf;
  2300. const auto & ctx_data = ctx_clip->ctx_data;
  2301. auto * ctx_out = gguf_init_empty();
  2302. gguf_set_kv(ctx_out, ctx_src);
  2303. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  2304. gguf_set_val_u32(ctx_out, "general.file_type", itype);
  2305. auto fout = std::ofstream(fname_out, std::ios::binary);
  2306. const int n_tensors = gguf_get_n_tensors(ctx_src);
  2307. for (int i = 0; i < n_tensors; ++i) {
  2308. const char * name = gguf_get_tensor_name(ctx_src, i);
  2309. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name);
  2310. gguf_add_tensor(ctx_out, cur);
  2311. }
  2312. const size_t meta_size = gguf_get_meta_size(ctx_out);
  2313. for (size_t i = 0; i < meta_size; ++i) {
  2314. fout.put(0);
  2315. }
  2316. // regexes of tensor names to be quantized
  2317. const std::vector<std::string> k_names = {
  2318. ".*weight",
  2319. };
  2320. std::vector<uint8_t> work(512);
  2321. std::vector<float> conv_buf(512);
  2322. size_t total_size_org = 0;
  2323. size_t total_size_new = 0;
  2324. for (int i = 0; i < n_tensors; ++i) {
  2325. const std::string name = gguf_get_tensor_name(ctx_src, i);
  2326. struct ggml_tensor * cur = ggml_get_tensor(ctx_data, name.c_str());
  2327. enum ggml_type new_type;
  2328. void * new_data;
  2329. size_t new_size;
  2330. bool quantize = false;
  2331. for (const auto & s : k_names) {
  2332. if (std::regex_match(name, std::regex(s))) {
  2333. quantize = true;
  2334. break;
  2335. }
  2336. }
  2337. // quantize only 2D tensors
  2338. quantize &= (ggml_n_dims(cur) == 2);
  2339. if (quantize) {
  2340. new_type = type;
  2341. if (new_type >= GGML_TYPE_Q2_K && name.find("embd") != std::string::npos) {
  2342. new_type = GGML_TYPE_Q8_0; // ggml_get_rows needs non K type
  2343. // LOG_ERR("%s: quantizing %s to %s\n", __func__, name.c_str(), ggml_type_name(new_type));
  2344. }
  2345. const size_t n_elms = ggml_nelements(cur);
  2346. float * f32_data;
  2347. switch (cur->type) {
  2348. case GGML_TYPE_F32:
  2349. f32_data = (float *)cur->data;
  2350. break;
  2351. case GGML_TYPE_F16:
  2352. if (conv_buf.size() < n_elms) {
  2353. conv_buf.resize(n_elms);
  2354. }
  2355. for (size_t j = 0; j < n_elms; ++j) {
  2356. conv_buf[j] = ggml_fp16_to_fp32(((ggml_fp16_t *)cur->data)[j]);
  2357. }
  2358. f32_data = (float *)conv_buf.data();
  2359. break;
  2360. default:
  2361. LOG_ERR("Please use an input file in f32 or f16\n");
  2362. gguf_free(ctx_out);
  2363. return false;
  2364. }
  2365. if (work.size() < n_elms * 4) {
  2366. work.resize(n_elms * 4);
  2367. }
  2368. new_data = work.data();
  2369. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, n_elms/cur->ne[0], cur->ne[0], nullptr);
  2370. } else {
  2371. new_type = cur->type;
  2372. new_data = cur->data;
  2373. new_size = ggml_nbytes(cur);
  2374. }
  2375. const size_t orig_size = ggml_nbytes(cur);
  2376. total_size_org += orig_size;
  2377. total_size_new += new_size;
  2378. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  2379. GGML_ASSERT(gguf_get_tensor_size(ctx_out, gguf_find_tensor(ctx_out, name.c_str())) == new_size);
  2380. gguf_set_tensor_data(ctx_out, name.c_str(), new_data);
  2381. fout.write((const char *)new_data, new_size);
  2382. size_t pad = GGML_PAD(new_size, gguf_get_alignment(ctx_out)) - new_size;
  2383. for (size_t j = 0; j < pad; ++j) {
  2384. fout.put(0);
  2385. }
  2386. LOG_INF("%s: n_dims = %d | quantize=%d | size = %f MB -> %f MB\n", name.c_str(), ggml_n_dims(cur), quantize,
  2387. orig_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  2388. }
  2389. // go back to beginning of file and write the updated metadata
  2390. fout.seekp(0, std::ios::beg);
  2391. std::vector<uint8_t> meta(meta_size);
  2392. gguf_get_meta_data(ctx_out, meta.data());
  2393. fout.write((const char *)meta.data(), meta_size);
  2394. fout.close();
  2395. clip_free(ctx_clip);
  2396. gguf_free(ctx_out);
  2397. {
  2398. LOG_INF("%s: original size = %8.2f MB\n", __func__, total_size_org / 1024.0 / 1024.0);
  2399. LOG_INF("%s: quantized size = %8.2f MB\n", __func__, total_size_new / 1024.0 / 1024.0);
  2400. }
  2401. return true;
  2402. }
  2403. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  2404. if (ctx->proj_type == PROJECTOR_TYPE_LDP) {
  2405. return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0];
  2406. }
  2407. if (ctx->proj_type == PROJECTOR_TYPE_LDPV2) {
  2408. return ctx->vision_model.mm_model_peg_0_b->ne[0];
  2409. }
  2410. if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
  2411. return ctx->vision_model.mm_2_b->ne[0];
  2412. }
  2413. if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
  2414. return ctx->vision_model.mm_3_b->ne[0];
  2415. }
  2416. if (ctx->proj_type == PROJECTOR_TYPE_RESAMPLER) {
  2417. if (ctx->minicpmv_version == 2) {
  2418. return 4096;
  2419. }
  2420. else if (ctx->minicpmv_version == 3) {
  2421. return 3584;
  2422. }
  2423. else if (ctx->minicpmv_version == 4) {
  2424. return 3584;
  2425. }
  2426. }
  2427. if (ctx->proj_type == PROJECTOR_TYPE_MERGER) {
  2428. return ctx->vision_model.mm_1_b->ne[0];
  2429. }
  2430. std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type];
  2431. throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str()));
  2432. }
  2433. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  2434. if (ctx->has_minicpmv_projector) {
  2435. return ctx->minicpmv_version;
  2436. }
  2437. return 0;
  2438. }
  2439. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  2440. return ctx->has_qwen2vl_merger;
  2441. }
  2442. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  2443. clip_image_f32 clip_img;
  2444. clip_img.buf.resize(h * w * 3);
  2445. for (int i = 0; i < h*w*3; i++)
  2446. {
  2447. clip_img.buf[i] = img[i];
  2448. }
  2449. clip_img.nx = w;
  2450. clip_img.ny = h;
  2451. clip_image_encode(ctx, n_threads, &clip_img, vec);
  2452. return true;
  2453. }