1
0

server.cpp 110 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067
  1. #include "common.h"
  2. #include "llama.h"
  3. #include "grammar-parser.h"
  4. #include "../llava/clip.h"
  5. #include "stb_image.h"
  6. #ifndef NDEBUG
  7. // crash the server in debug mode, otherwise send an http 500 error
  8. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  9. #endif
  10. #include "httplib.h"
  11. #include "json.hpp"
  12. // auto generated files (update with ./deps.sh)
  13. #include "index.html.hpp"
  14. #include "index.js.hpp"
  15. #include "completion.js.hpp"
  16. #include "json-schema-to-grammar.mjs.hpp"
  17. #include <cstddef>
  18. #include <thread>
  19. #include <mutex>
  20. #include <chrono>
  21. #ifndef SERVER_VERBOSE
  22. #define SERVER_VERBOSE 1
  23. #endif
  24. #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
  25. using json = nlohmann::json;
  26. struct server_params
  27. {
  28. std::string hostname = "127.0.0.1";
  29. std::string public_path = "examples/server/public";
  30. int32_t port = 8080;
  31. int32_t read_timeout = 600;
  32. int32_t write_timeout = 600;
  33. };
  34. static bool server_verbose = false;
  35. #if SERVER_VERBOSE != 1
  36. #define LOG_VERBOSE(MSG, ...)
  37. #else
  38. #define LOG_VERBOSE(MSG, ...) \
  39. do \
  40. { \
  41. if (server_verbose) \
  42. { \
  43. server_log("VERBOSE", __func__, __LINE__, MSG, __VA_ARGS__); \
  44. } \
  45. } while (0)
  46. #endif
  47. #define LOG_ERROR( MSG, ...) server_log("ERROR", __func__, __LINE__, MSG, __VA_ARGS__)
  48. #define LOG_WARNING(MSG, ...) server_log("WARNING", __func__, __LINE__, MSG, __VA_ARGS__)
  49. #define LOG_INFO( MSG, ...) server_log("INFO", __func__, __LINE__, MSG, __VA_ARGS__)
  50. json oaicompat_completion_params_parse(const json &body);
  51. std::string format_chatml(std::vector<json> messages);
  52. //
  53. // base64 utils (TODO: move to common in the future)
  54. //
  55. static const std::string base64_chars =
  56. "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
  57. "abcdefghijklmnopqrstuvwxyz"
  58. "0123456789+/";
  59. static inline bool is_base64(uint8_t c)
  60. {
  61. return (isalnum(c) || (c == '+') || (c == '/'));
  62. }
  63. static std::vector<uint8_t> base64_decode(std::string const &encoded_string)
  64. {
  65. int i = 0;
  66. int j = 0;
  67. int in_ = 0;
  68. int in_len = encoded_string.size();
  69. uint8_t char_array_4[4];
  70. uint8_t char_array_3[3];
  71. std::vector<uint8_t> ret;
  72. while (in_len-- && (encoded_string[in_] != '=') && is_base64(encoded_string[in_]))
  73. {
  74. char_array_4[i++] = encoded_string[in_]; in_++;
  75. if (i == 4)
  76. {
  77. for (i = 0; i <4; i++)
  78. {
  79. char_array_4[i] = base64_chars.find(char_array_4[i]);
  80. }
  81. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  82. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  83. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  84. for (i = 0; (i < 3); i++)
  85. {
  86. ret.push_back(char_array_3[i]);
  87. }
  88. i = 0;
  89. }
  90. }
  91. if (i)
  92. {
  93. for (j = i; j <4; j++)
  94. {
  95. char_array_4[j] = 0;
  96. }
  97. for (j = 0; j <4; j++)
  98. {
  99. char_array_4[j] = base64_chars.find(char_array_4[j]);
  100. }
  101. char_array_3[0] = ((char_array_4[0] ) << 2) + ((char_array_4[1] & 0x30) >> 4);
  102. char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
  103. char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
  104. for (j = 0; (j < i - 1); j++)
  105. {
  106. ret.push_back(char_array_3[j]);
  107. }
  108. }
  109. return ret;
  110. }
  111. //
  112. // parallel
  113. //
  114. enum task_type {
  115. COMPLETION_TASK,
  116. CANCEL_TASK
  117. };
  118. struct task_server {
  119. int id;
  120. int target_id;
  121. task_type type;
  122. json data;
  123. bool infill_mode = false;
  124. bool embedding_mode = false;
  125. int multitask_id = -1;
  126. };
  127. struct task_result {
  128. int id;
  129. int multitask_id = -1;
  130. bool stop;
  131. bool error;
  132. json result_json;
  133. };
  134. struct task_multi {
  135. int id;
  136. std::set<int> subtasks_remaining{};
  137. std::vector<task_result> results{};
  138. };
  139. // TODO: can become bool if we can't find use of more states
  140. enum slot_state
  141. {
  142. IDLE,
  143. PROCESSING,
  144. };
  145. enum slot_command
  146. {
  147. NONE,
  148. LOAD_PROMPT,
  149. RELEASE,
  150. };
  151. struct slot_params
  152. {
  153. bool stream = true;
  154. bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
  155. uint32_t seed = -1; // RNG seed
  156. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  157. int32_t n_predict = -1; // new tokens to predict
  158. std::vector<std::string> antiprompt;
  159. json input_prefix;
  160. json input_suffix;
  161. };
  162. struct slot_image
  163. {
  164. int32_t id;
  165. bool request_encode_image = false;
  166. float* image_embedding = nullptr;
  167. int32_t image_tokens = 0;
  168. clip_image_u8 img_data;
  169. std::string prefix_prompt; // before of this image
  170. };
  171. // completion token output with probabilities
  172. struct completion_token_output
  173. {
  174. struct token_prob
  175. {
  176. llama_token tok;
  177. float prob;
  178. };
  179. std::vector<token_prob> probs;
  180. llama_token tok;
  181. std::string text_to_send;
  182. };
  183. static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
  184. {
  185. size_t i;
  186. for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
  187. {
  188. }
  189. return i;
  190. }
  191. enum stop_type
  192. {
  193. STOP_FULL,
  194. STOP_PARTIAL,
  195. };
  196. static bool ends_with(const std::string &str, const std::string &suffix)
  197. {
  198. return str.size() >= suffix.size() &&
  199. 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
  200. }
  201. static size_t find_partial_stop_string(const std::string &stop,
  202. const std::string &text)
  203. {
  204. if (!text.empty() && !stop.empty())
  205. {
  206. const char text_last_char = text.back();
  207. for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
  208. {
  209. if (stop[char_index] == text_last_char)
  210. {
  211. const std::string current_partial = stop.substr(0, char_index + 1);
  212. if (ends_with(text, current_partial))
  213. {
  214. return text.size() - char_index - 1;
  215. }
  216. }
  217. }
  218. }
  219. return std::string::npos;
  220. }
  221. // TODO: reuse llama_detokenize
  222. template <class Iter>
  223. static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
  224. {
  225. std::string ret;
  226. for (; begin != end; ++begin)
  227. {
  228. ret += llama_token_to_piece(ctx, *begin);
  229. }
  230. return ret;
  231. }
  232. static void server_log(const char *level, const char *function, int line,
  233. const char *message, const nlohmann::ordered_json &extra)
  234. {
  235. nlohmann::ordered_json log
  236. {
  237. {"timestamp", time(nullptr)},
  238. {"level", level},
  239. {"function", function},
  240. {"line", line},
  241. {"message", message},
  242. };
  243. if (!extra.empty())
  244. {
  245. log.merge_patch(extra);
  246. }
  247. const std::string str = log.dump(-1, ' ', false, json::error_handler_t::replace);
  248. printf("%.*s\n", (int)str.size(), str.data());
  249. fflush(stdout);
  250. }
  251. // format incomplete utf-8 multibyte character for output
  252. static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
  253. {
  254. std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
  255. // if the size is 1 and first bit is 1, meaning it's a partial character
  256. // (size > 1 meaning it's already a known token)
  257. if (out.size() == 1 && (out[0] & 0x80) == 0x80)
  258. {
  259. std::stringstream ss;
  260. ss << std::hex << (out[0] & 0xff);
  261. std::string res(ss.str());
  262. out = "byte: \\x" + res;
  263. }
  264. return out;
  265. }
  266. // convert a vector of completion_token_output to json
  267. static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
  268. {
  269. json out = json::array();
  270. for (const auto &prob : probs)
  271. {
  272. json probs_for_token = json::array();
  273. for (const auto &p : prob.probs)
  274. {
  275. std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
  276. probs_for_token.push_back(json
  277. {
  278. {"tok_str", tok_str},
  279. {"prob", p.prob},
  280. });
  281. }
  282. std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
  283. out.push_back(json{
  284. {"content", tok_str},
  285. {"probs", probs_for_token},
  286. });
  287. }
  288. return out;
  289. }
  290. template <typename T>
  291. static T json_value(const json &body, const std::string &key, const T &default_value)
  292. {
  293. // Fallback null to default value
  294. return body.contains(key) && !body.at(key).is_null()
  295. ? body.value(key, default_value)
  296. : default_value;
  297. }
  298. struct llama_client_slot
  299. {
  300. int id;
  301. int task_id = -1;
  302. struct slot_params params;
  303. slot_state state = IDLE;
  304. slot_command command = NONE;
  305. // used to determine the slot that has been used the longest
  306. int64_t t_last_used = -1;
  307. // generation props
  308. int32_t n_ctx = 0; // context size per slot
  309. int32_t n_past = 0;
  310. int32_t n_decoded = 0;
  311. int32_t n_remaining = -1;
  312. int32_t i_batch = -1;
  313. int32_t num_prompt_tokens = 0;
  314. int32_t num_prompt_tokens_processed = 0;
  315. json prompt;
  316. std::string generated_text;
  317. llama_token sampled;
  318. std::vector<llama_token> cache_tokens;
  319. std::vector<completion_token_output> generated_token_probs;
  320. bool infill = false;
  321. bool embedding = false;
  322. bool has_next_token = true;
  323. bool truncated = false;
  324. bool stopped_eos = false;
  325. bool stopped_word = false;
  326. bool stopped_limit = false;
  327. bool oaicompat = false;
  328. std::string oaicompat_model;
  329. std::string stopping_word;
  330. // sampling
  331. struct llama_sampling_params sparams;
  332. llama_sampling_context *ctx_sampling = nullptr;
  333. // multimodal
  334. std::vector<slot_image> images;
  335. // stats
  336. size_t sent_count = 0;
  337. size_t sent_token_probs_index = 0;
  338. int64_t t_start_process_prompt;
  339. int64_t t_start_genereration;
  340. double t_prompt_processing; // ms
  341. double t_token_generation; // ms
  342. // multitasks
  343. int multitask_id = -1;
  344. void reset() {
  345. num_prompt_tokens = 0;
  346. generated_text = "";
  347. truncated = false;
  348. stopped_eos = false;
  349. stopped_word = false;
  350. stopped_limit = false;
  351. stopping_word = "";
  352. n_past = 0;
  353. sent_count = 0;
  354. sent_token_probs_index = 0;
  355. infill = false;
  356. generated_token_probs.clear();
  357. for (slot_image &img : images)
  358. {
  359. free(img.image_embedding);
  360. delete[] img.img_data.data;
  361. img.prefix_prompt = "";
  362. }
  363. images.clear();
  364. // llama_set_rng_seed(ctx, params.seed); in batched the seed matter???????
  365. }
  366. bool has_budget(gpt_params &global_params) {
  367. n_remaining = -1;
  368. if(params.n_predict != -1)
  369. {
  370. n_remaining = params.n_predict - n_decoded;
  371. }
  372. else if (global_params.n_predict != -1)
  373. {
  374. n_remaining = global_params.n_predict - n_decoded;
  375. }
  376. return n_remaining > 0 || n_remaining == -1; // no budget || limitless
  377. }
  378. bool available() const {
  379. return state == IDLE && command == NONE;
  380. }
  381. bool is_processing() const {
  382. return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
  383. }
  384. void add_token_string(const completion_token_output &token) {
  385. if (command == RELEASE)
  386. {
  387. return;
  388. }
  389. cache_tokens.push_back(token.tok);
  390. generated_token_probs.push_back(token);
  391. }
  392. void release() {
  393. if (state == IDLE || state == PROCESSING)
  394. {
  395. t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
  396. command = RELEASE;
  397. }
  398. }
  399. json get_formated_timings() {
  400. return json
  401. {
  402. {"prompt_n", num_prompt_tokens_processed},
  403. {"prompt_ms", t_prompt_processing},
  404. {"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
  405. {"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
  406. {"predicted_n", n_decoded},
  407. {"predicted_ms", t_token_generation},
  408. {"predicted_per_token_ms", t_token_generation / n_decoded},
  409. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  410. };
  411. }
  412. void print_timings() const {
  413. LOG_TEE("\n");
  414. LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  415. __func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
  416. LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  417. __func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
  418. LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
  419. }
  420. };
  421. struct llama_server_context
  422. {
  423. llama_model *model = nullptr;
  424. llama_context *ctx = nullptr;
  425. clip_ctx *clp_ctx = nullptr;
  426. gpt_params params;
  427. llama_batch batch;
  428. bool multimodal = false;
  429. bool clean_kv_cache = true;
  430. bool all_slots_are_idle = false;
  431. bool add_bos_token = true;
  432. int32_t id_gen;
  433. int32_t n_ctx; // total context for all clients / slots
  434. // system prompt
  435. bool system_need_update = false;
  436. std::string system_prompt;
  437. std::vector<llama_token> system_tokens;
  438. std::string name_user; // this should be the antiprompt
  439. std::string name_assistant;
  440. // slots / clients
  441. std::vector<llama_client_slot> slots;
  442. std::vector<task_server> queue_tasks;
  443. std::vector<task_result> queue_results;
  444. std::vector<task_multi> queue_multitasks;
  445. std::mutex mutex_tasks; // also guards id_gen, and queue_multitasks
  446. std::mutex mutex_results;
  447. ~llama_server_context()
  448. {
  449. if (ctx)
  450. {
  451. llama_free(ctx);
  452. ctx = nullptr;
  453. }
  454. if (model)
  455. {
  456. llama_free_model(model);
  457. model = nullptr;
  458. }
  459. }
  460. bool load_model(const gpt_params &params_)
  461. {
  462. params = params_;
  463. if (!params.mmproj.empty()) {
  464. multimodal = true;
  465. LOG_TEE("Multi Modal Mode Enabled");
  466. clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
  467. if(clp_ctx == nullptr) {
  468. LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
  469. return false;
  470. }
  471. if (params.n_ctx < 2048) { // request larger context for the image embedding
  472. params.n_ctx = 2048;
  473. }
  474. }
  475. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  476. if (model == nullptr)
  477. {
  478. LOG_ERROR("unable to load model", {{"model", params.model}});
  479. return false;
  480. }
  481. if (multimodal) {
  482. const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
  483. const int n_embd_llm = llama_n_embd(model);
  484. if (n_embd_clip != n_embd_llm) {
  485. LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
  486. llama_free(ctx);
  487. llama_free_model(model);
  488. return false;
  489. }
  490. }
  491. n_ctx = llama_n_ctx(ctx);
  492. add_bos_token = llama_should_add_bos_token(model);
  493. return true;
  494. }
  495. void initialize() {
  496. id_gen = 0;
  497. // create slots
  498. all_slots_are_idle = true;
  499. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  500. LOG_TEE("Available slots:\n");
  501. for (int i = 0; i < params.n_parallel; i++)
  502. {
  503. llama_client_slot slot;
  504. slot.id = i;
  505. slot.n_ctx = n_ctx_slot;
  506. slot.reset();
  507. LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
  508. slots.push_back(slot);
  509. }
  510. batch = llama_batch_init(n_ctx, 0, params.n_parallel);
  511. // empty system prompt
  512. system_prompt = "";
  513. system_tokens.clear();
  514. }
  515. std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
  516. {
  517. // TODO: currently, we tokenize using special tokens by default
  518. // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
  519. // but it's better compared to completely ignoring ChatML and other chat templates
  520. const bool TMP_FORCE_SPECIAL = true;
  521. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  522. // or the first element of the json_prompt array is a string.
  523. std::vector<llama_token> prompt_tokens;
  524. if (json_prompt.is_array())
  525. {
  526. bool first = true;
  527. for (const auto& p : json_prompt)
  528. {
  529. if (p.is_string())
  530. {
  531. auto s = p.template get<std::string>();
  532. std::vector<llama_token> p;
  533. if (first)
  534. {
  535. p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  536. first = false;
  537. }
  538. else
  539. {
  540. p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
  541. }
  542. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  543. }
  544. else
  545. {
  546. if (first)
  547. {
  548. first = false;
  549. }
  550. prompt_tokens.push_back(p.template get<llama_token>());
  551. }
  552. }
  553. }
  554. else
  555. {
  556. auto s = json_prompt.template get<std::string>();
  557. prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  558. }
  559. return prompt_tokens;
  560. }
  561. llama_client_slot* get_slot(int id) {
  562. int64_t t_last = ggml_time_us();
  563. llama_client_slot *last_used = nullptr;
  564. for (llama_client_slot & slot : slots)
  565. {
  566. if (slot.id == id && slot.available())
  567. {
  568. return &slot;
  569. }
  570. if (slot.available() && slot.t_last_used < t_last)
  571. {
  572. last_used = &slot;
  573. t_last = slot.t_last_used;
  574. }
  575. }
  576. return last_used;
  577. }
  578. bool launch_slot_with_data(llama_client_slot* &slot, json data) {
  579. slot_params default_params;
  580. llama_sampling_params default_sparams;
  581. if (data.count("__oaicompat") != 0) {
  582. slot->oaicompat = true;
  583. slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  584. } else {
  585. slot->oaicompat = false;
  586. slot->oaicompat_model = "";
  587. }
  588. slot->params.stream = json_value(data, "stream", false);
  589. slot->params.cache_prompt = json_value(data, "cache_prompt", false);
  590. slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
  591. slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  592. slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  593. slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  594. slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  595. slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
  596. slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
  597. slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  598. slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  599. slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  600. slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  601. slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  602. slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  603. slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  604. slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  605. slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
  606. slot->params.seed = json_value(data, "seed", default_params.seed);
  607. slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  608. slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  609. // infill
  610. if (data.count("input_prefix") != 0)
  611. {
  612. slot->params.input_prefix = data["input_prefix"];
  613. }
  614. else
  615. {
  616. slot->params.input_prefix = "";
  617. }
  618. if (data.count("input_suffix") != 0)
  619. {
  620. slot->params.input_suffix = data["input_suffix"];
  621. }
  622. else
  623. {
  624. slot->params.input_suffix = "";
  625. }
  626. if (data.count("prompt") != 0)
  627. {
  628. slot->prompt = data["prompt"];
  629. }
  630. else
  631. {
  632. slot->prompt = "";
  633. }
  634. slot->sparams.logit_bias.clear();
  635. if (json_value(data, "ignore_eos", false))
  636. {
  637. slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  638. }
  639. const auto &logit_bias = data.find("logit_bias");
  640. if (logit_bias != data.end() && logit_bias->is_array())
  641. {
  642. const int n_vocab = llama_n_vocab(model);
  643. for (const auto &el : *logit_bias)
  644. {
  645. if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
  646. {
  647. llama_token tok = el[0].get<llama_token>();
  648. if (tok >= 0 && tok < n_vocab)
  649. {
  650. if (el[1].is_number())
  651. {
  652. slot->sparams.logit_bias[tok] = el[1].get<float>();
  653. }
  654. else if (el[1].is_boolean() && !el[1].get<bool>())
  655. {
  656. slot->sparams.logit_bias[tok] = -INFINITY;
  657. }
  658. }
  659. }
  660. }
  661. }
  662. slot->params.antiprompt.clear();
  663. const auto &stop = data.find("stop");
  664. if (stop != data.end() && stop->is_array())
  665. {
  666. for (const auto &word : *stop)
  667. {
  668. if (!word.empty())
  669. {
  670. slot->params.antiprompt.push_back(word);
  671. }
  672. }
  673. }
  674. if (multimodal)
  675. {
  676. const auto &images_data = data.find("image_data");
  677. if (images_data != data.end() && images_data->is_array())
  678. {
  679. for (const auto &img : *images_data)
  680. {
  681. std::string data_b64 = img["data"].get<std::string>();
  682. slot_image img_sl;
  683. img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
  684. int width, height, channels;
  685. std::vector<uint8_t> image_buffer = base64_decode(data_b64);
  686. data_b64.clear();
  687. auto data = stbi_load_from_memory(image_buffer.data(), image_buffer.size(), &width, &height, &channels, 3);
  688. if (!data) {
  689. LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
  690. return false;
  691. }
  692. LOG_TEE("slot %i - image loaded [id: %i] resolution (%i x %i)\n", slot->id, img_sl.id, width, height);
  693. img_sl.img_data.nx = width;
  694. img_sl.img_data.ny = height;
  695. img_sl.img_data.size = width * height * 3;
  696. img_sl.img_data.data = new uint8_t[width * height * 3]();
  697. memcpy(img_sl.img_data.data, data, width * height * 3);
  698. stbi_image_free(data);
  699. img_sl.request_encode_image = true;
  700. slot->images.push_back(img_sl);
  701. }
  702. // process prompt
  703. // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
  704. if (slot->images.size() > 0 && !slot->prompt.is_array())
  705. {
  706. std::string prompt = slot->prompt.get<std::string>();
  707. size_t pos = 0, begin_prefix = 0;
  708. std::string pattern = "[img-";
  709. while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
  710. size_t end_prefix = pos;
  711. pos += pattern.length();
  712. size_t end_pos = prompt.find("]", pos);
  713. if (end_pos != std::string::npos)
  714. {
  715. std::string image_id = prompt.substr(pos, end_pos - pos);
  716. try
  717. {
  718. int img_id = std::stoi(image_id);
  719. bool found = false;
  720. for (slot_image &img : slot->images)
  721. {
  722. if (img.id == img_id) {
  723. found = true;
  724. img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
  725. begin_prefix = end_pos + 1;
  726. break;
  727. }
  728. }
  729. if (!found) {
  730. LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
  731. slot->images.clear();
  732. return false;
  733. }
  734. } catch (const std::invalid_argument& e) {
  735. LOG_TEE("Invalid image number id in prompt\n");
  736. slot->images.clear();
  737. return false;
  738. }
  739. }
  740. }
  741. slot->prompt = "";
  742. slot->params.input_suffix = prompt.substr(begin_prefix);
  743. slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
  744. }
  745. }
  746. }
  747. if (slot->ctx_sampling != nullptr)
  748. {
  749. llama_sampling_free(slot->ctx_sampling);
  750. }
  751. slot->ctx_sampling = llama_sampling_init(slot->sparams);
  752. slot->command = LOAD_PROMPT;
  753. all_slots_are_idle = false;
  754. LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
  755. return true;
  756. }
  757. void kv_cache_clear() {
  758. // clear the entire KV cache
  759. llama_kv_cache_clear(ctx);
  760. clean_kv_cache = false;
  761. }
  762. void update_system_prompt() {
  763. system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
  764. llama_batch_clear(batch);
  765. kv_cache_clear();
  766. for (int i = 0; i < (int) system_tokens.size(); ++i)
  767. {
  768. llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
  769. }
  770. if (llama_decode(ctx, batch) != 0)
  771. {
  772. LOG_TEE("%s: llama_decode() failed\n", __func__);
  773. return;
  774. }
  775. // assign the system KV cache to all parallel sequences
  776. for (int32_t i = 1; i < params.n_parallel; ++i)
  777. {
  778. llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
  779. }
  780. LOG_TEE("system prompt updated\n");
  781. system_need_update = false;
  782. }
  783. void notify_system_prompt_changed() {
  784. // release all slots
  785. for (llama_client_slot &slot : slots)
  786. {
  787. slot.release();
  788. }
  789. system_need_update = true;
  790. }
  791. void process_system_prompt_data(const json &sys_props) {
  792. system_prompt = sys_props.value("prompt", "");
  793. name_user = sys_props.value("anti_prompt", "");
  794. name_assistant = sys_props.value("assistant_name", "");
  795. if (slots.size() > 0)
  796. {
  797. notify_system_prompt_changed();
  798. }
  799. }
  800. static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
  801. const stop_type type, llama_client_slot &slot)
  802. {
  803. size_t stop_pos = std::string::npos;
  804. for (const std::string &word : slot.params.antiprompt)
  805. {
  806. size_t pos;
  807. if (type == STOP_FULL)
  808. {
  809. const size_t tmp = word.size() + last_token_size;
  810. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  811. pos = text.find(word, from_pos);
  812. }
  813. else
  814. {
  815. pos = find_partial_stop_string(word, text);
  816. }
  817. if (pos != std::string::npos &&
  818. (stop_pos == std::string::npos || pos < stop_pos))
  819. {
  820. if (type == STOP_FULL)
  821. {
  822. slot.stopped_word = true;
  823. slot.stopping_word = word;
  824. slot.has_next_token = false;
  825. }
  826. stop_pos = pos;
  827. }
  828. }
  829. return stop_pos;
  830. }
  831. bool process_token(completion_token_output &result, llama_client_slot &slot) {
  832. // remember which tokens were sampled - used for repetition penalties during sampling
  833. const std::string token_str = llama_token_to_piece(ctx, result.tok);
  834. slot.sampled = result.tok;
  835. // search stop word and delete it
  836. slot.generated_text += token_str;
  837. slot.has_next_token = true;
  838. // check if there is incomplete UTF-8 character at the end
  839. bool incomplete = false;
  840. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
  841. {
  842. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  843. if ((c & 0xC0) == 0x80)
  844. {
  845. // continuation byte: 10xxxxxx
  846. continue;
  847. }
  848. if ((c & 0xE0) == 0xC0)
  849. {
  850. // 2-byte character: 110xxxxx ...
  851. incomplete = i < 2;
  852. }
  853. else if ((c & 0xF0) == 0xE0)
  854. {
  855. // 3-byte character: 1110xxxx ...
  856. incomplete = i < 3;
  857. }
  858. else if ((c & 0xF8) == 0xF0)
  859. {
  860. // 4-byte character: 11110xxx ...
  861. incomplete = i < 4;
  862. }
  863. // else 1-byte character or invalid byte
  864. break;
  865. }
  866. if (!incomplete)
  867. {
  868. size_t pos = std::min(slot.sent_count, slot.generated_text.size());
  869. const std::string str_test = slot.generated_text.substr(pos);
  870. bool is_stop_full = false;
  871. size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
  872. if (stop_pos != std::string::npos)
  873. {
  874. is_stop_full = true;
  875. slot.generated_text.erase(
  876. slot.generated_text.begin() + pos + stop_pos,
  877. slot.generated_text.end());
  878. pos = std::min(slot.sent_count, slot.generated_text.size());
  879. }
  880. else
  881. {
  882. is_stop_full = false;
  883. stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
  884. }
  885. // check if there is any token to predict
  886. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
  887. {
  888. // no send the stop word in the response
  889. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  890. slot.sent_count += result.text_to_send.size();
  891. // add the token to slot queue and cache
  892. }
  893. slot.add_token_string(result);
  894. if (slot.params.stream)
  895. {
  896. send_partial_response(slot, result);
  897. }
  898. }
  899. if (incomplete)
  900. {
  901. slot.has_next_token = true;
  902. }
  903. // check the limits
  904. if (slot.n_decoded > 2 && slot.has_next_token && !slot.has_budget(params))
  905. {
  906. slot.stopped_limit = true;
  907. slot.has_next_token = false;
  908. }
  909. if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
  910. {
  911. slot.stopped_eos = true;
  912. slot.has_next_token = false;
  913. LOG_VERBOSE("eos token found", {});
  914. }
  915. LOG_VERBOSE("next token", {
  916. {"token", result.tok},
  917. {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
  918. {"has_next_token", slot.has_next_token},
  919. {"n_remain", slot.n_remaining},
  920. {"num_tokens_predicted", slot.n_decoded},
  921. {"stopped_eos", slot.stopped_eos},
  922. {"stopped_word", slot.stopped_word},
  923. {"stopped_limit", slot.stopped_limit},
  924. {"stopping_word", slot.stopping_word},
  925. });
  926. return slot.has_next_token; // continue
  927. }
  928. bool process_images(llama_client_slot &slot) const
  929. {
  930. for (slot_image &img : slot.images)
  931. {
  932. if (!img.request_encode_image)
  933. {
  934. continue;
  935. }
  936. clip_image_f32 img_res;
  937. if (!clip_image_preprocess(clp_ctx, &img.img_data, &img_res, /*pad2square =*/ true))
  938. {
  939. LOG_TEE("Error processing the given image");
  940. clip_free(clp_ctx);
  941. return false;
  942. }
  943. img.image_tokens = clip_n_patches(clp_ctx);
  944. img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
  945. if (!img.image_embedding)
  946. {
  947. LOG_TEE("Unable to allocate memory for image embeddings\n");
  948. clip_free(clp_ctx);
  949. return false;
  950. }
  951. LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
  952. if (!clip_image_encode(clp_ctx, params.n_threads, &img_res, img.image_embedding))
  953. {
  954. LOG_TEE("Unable to encode image\n");
  955. return false;
  956. }
  957. img.request_encode_image = false;
  958. }
  959. return slot.images.size() > 0;
  960. }
  961. void send_error(task_server& task, std::string error)
  962. {
  963. std::lock_guard<std::mutex> lock(mutex_results);
  964. task_result res;
  965. res.id = task.id;
  966. res.multitask_id = task.multitask_id;
  967. res.stop = false;
  968. res.error = true;
  969. res.result_json = { { "content", error } };
  970. queue_results.push_back(res);
  971. }
  972. void add_multi_task(int id, std::vector<int>& sub_ids)
  973. {
  974. std::lock_guard<std::mutex> lock(mutex_tasks);
  975. task_multi multi;
  976. multi.id = id;
  977. std::copy(sub_ids.begin(), sub_ids.end(), std::inserter(multi.subtasks_remaining, multi.subtasks_remaining.end()));
  978. queue_multitasks.push_back(multi);
  979. }
  980. void update_multi_task(int multitask_id, int subtask_id, task_result& result)
  981. {
  982. std::lock_guard<std::mutex> lock(mutex_tasks);
  983. for (auto& multitask : queue_multitasks)
  984. {
  985. if (multitask.id == multitask_id)
  986. {
  987. multitask.subtasks_remaining.erase(subtask_id);
  988. multitask.results.push_back(result);
  989. }
  990. }
  991. }
  992. json get_model_props()
  993. {
  994. return get_formated_generation(slots[0]);
  995. }
  996. json get_formated_generation(llama_client_slot &slot)
  997. {
  998. const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
  999. const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
  1000. eos_bias->second < 0.0f && std::isinf(eos_bias->second);
  1001. return json {
  1002. {"n_ctx", slot.n_ctx},
  1003. {"model", params.model_alias},
  1004. {"seed", slot.params.seed},
  1005. {"temp", slot.sparams.temp},
  1006. {"top_k", slot.sparams.top_k},
  1007. {"top_p", slot.sparams.top_p},
  1008. {"min_p", slot.sparams.min_p},
  1009. {"tfs_z", slot.sparams.tfs_z},
  1010. {"typical_p", slot.sparams.typical_p},
  1011. {"repeat_last_n", slot.sparams.penalty_last_n},
  1012. {"repeat_penalty", slot.sparams.penalty_repeat},
  1013. {"presence_penalty", slot.sparams.penalty_present},
  1014. {"frequency_penalty", slot.sparams.penalty_freq},
  1015. {"mirostat", slot.sparams.mirostat},
  1016. {"mirostat_tau", slot.sparams.mirostat_tau},
  1017. {"mirostat_eta", slot.sparams.mirostat_eta},
  1018. {"penalize_nl", slot.sparams.penalize_nl},
  1019. {"stop", slot.params.antiprompt},
  1020. {"n_predict", slot.params.n_predict},
  1021. {"n_keep", params.n_keep},
  1022. {"ignore_eos", ignore_eos},
  1023. {"stream", slot.params.stream},
  1024. {"logit_bias", slot.sparams.logit_bias},
  1025. {"n_probs", slot.sparams.n_probs},
  1026. {"grammar", slot.sparams.grammar},
  1027. };
  1028. }
  1029. void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
  1030. {
  1031. std::lock_guard<std::mutex> lock(mutex_results);
  1032. task_result res;
  1033. res.id = slot.task_id;
  1034. res.multitask_id = slot.multitask_id;
  1035. res.error = false;
  1036. res.stop = false;
  1037. res.result_json = json
  1038. {
  1039. {"content", tkn.text_to_send},
  1040. {"stop", false},
  1041. {"slot_id", slot.id},
  1042. {"multimodal", multimodal}
  1043. };
  1044. if (slot.sparams.n_probs > 0)
  1045. {
  1046. std::vector<completion_token_output> probs_output = {};
  1047. const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
  1048. size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
  1049. size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
  1050. if (probs_pos < probs_stop_pos)
  1051. {
  1052. probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
  1053. }
  1054. slot.sent_token_probs_index = probs_stop_pos;
  1055. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  1056. }
  1057. if (slot.oaicompat)
  1058. {
  1059. res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
  1060. res.result_json["model"] = slot.oaicompat_model;
  1061. }
  1062. queue_results.push_back(res);
  1063. }
  1064. void send_final_response(llama_client_slot &slot)
  1065. {
  1066. std::lock_guard<std::mutex> lock(mutex_results);
  1067. task_result res;
  1068. res.id = slot.task_id;
  1069. res.multitask_id = slot.multitask_id;
  1070. res.error = false;
  1071. res.stop = true;
  1072. res.result_json = json
  1073. {
  1074. {"content", !slot.params.stream ? slot.generated_text : ""},
  1075. {"slot_id", slot.id},
  1076. {"stop", true},
  1077. {"model", params.model_alias},
  1078. {"tokens_predicted", slot.n_decoded},
  1079. {"tokens_evaluated", slot.num_prompt_tokens},
  1080. {"generation_settings", get_formated_generation(slot)},
  1081. {"prompt", slot.prompt},
  1082. {"truncated", slot.truncated},
  1083. {"stopped_eos", slot.stopped_eos},
  1084. {"stopped_word", slot.stopped_word},
  1085. {"stopped_limit", slot.stopped_limit},
  1086. {"stopping_word", slot.stopping_word},
  1087. {"tokens_cached", slot.n_past},
  1088. {"timings", slot.get_formated_timings()}
  1089. };
  1090. if (slot.sparams.n_probs > 0)
  1091. {
  1092. std::vector<completion_token_output> probs = {};
  1093. if (!slot.params.stream && slot.stopped_word)
  1094. {
  1095. const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
  1096. probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
  1097. }
  1098. else
  1099. {
  1100. probs = std::vector<completion_token_output>(
  1101. slot.generated_token_probs.begin(),
  1102. slot.generated_token_probs.begin() + slot.sent_token_probs_index);
  1103. }
  1104. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  1105. }
  1106. if (slot.oaicompat)
  1107. {
  1108. res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
  1109. res.result_json["model"] = slot.oaicompat_model;
  1110. }
  1111. // parent multitask, if any, needs to be updated
  1112. if (slot.multitask_id != -1)
  1113. {
  1114. update_multi_task(slot.multitask_id, slot.task_id, res);
  1115. }
  1116. queue_results.push_back(res);
  1117. }
  1118. void send_embedding(llama_client_slot &slot)
  1119. {
  1120. std::lock_guard<std::mutex> lock(mutex_results);
  1121. task_result res;
  1122. res.id = slot.task_id;
  1123. res.multitask_id = slot.multitask_id;
  1124. res.error = false;
  1125. res.stop = true;
  1126. const int n_embd = llama_n_embd(model);
  1127. if (!params.embedding)
  1128. {
  1129. LOG_WARNING("embedding disabled", {
  1130. {"params.embedding", params.embedding},
  1131. });
  1132. res.result_json = json
  1133. {
  1134. {"embedding", std::vector<float>(n_embd, 0.0f)},
  1135. };
  1136. }
  1137. else
  1138. {
  1139. const float *data = llama_get_embeddings(ctx);
  1140. std::vector<float> embedding(data, data + n_embd);
  1141. res.result_json = json
  1142. {
  1143. {"embedding", embedding },
  1144. };
  1145. }
  1146. queue_results.push_back(res);
  1147. }
  1148. int request_completion(json data, bool infill, bool embedding, int multitask_id)
  1149. {
  1150. std::unique_lock<std::mutex> lock(mutex_tasks);
  1151. task_server task;
  1152. task.id = id_gen++;
  1153. task.target_id = 0;
  1154. task.data = std::move(data);
  1155. task.infill_mode = infill;
  1156. task.embedding_mode = embedding;
  1157. task.type = COMPLETION_TASK;
  1158. task.multitask_id = multitask_id;
  1159. // when a completion task's prompt array is not a singleton, we split it into multiple requests
  1160. if (task.data.at("prompt").size() > 1)
  1161. {
  1162. lock.unlock(); // entering new func scope
  1163. return split_multiprompt_task(task);
  1164. }
  1165. // otherwise, it's a single-prompt task, we actually queue it
  1166. queue_tasks.push_back(task);
  1167. return task.id;
  1168. }
  1169. task_result next_result(int task_id)
  1170. {
  1171. while (true)
  1172. {
  1173. std::this_thread::sleep_for(std::chrono::microseconds(5));
  1174. std::lock_guard<std::mutex> lock(mutex_results);
  1175. if (queue_results.empty())
  1176. {
  1177. continue;
  1178. }
  1179. for (int i = 0; i < (int) queue_results.size(); i++)
  1180. {
  1181. // for now, tasks that have associated parent multitasks just get erased once multitask picks up the result
  1182. if (queue_results[i].multitask_id == task_id)
  1183. {
  1184. update_multi_task(task_id, queue_results[i].id, queue_results[i]);
  1185. queue_results.erase(queue_results.begin() + i);
  1186. continue;
  1187. }
  1188. if (queue_results[i].id == task_id)
  1189. {
  1190. assert(queue_results[i].multitask_id == -1);
  1191. task_result res = queue_results[i];
  1192. queue_results.erase(queue_results.begin() + i);
  1193. return res;
  1194. }
  1195. }
  1196. }
  1197. // never reached
  1198. //return task_result{-1, false, false, {}};
  1199. }
  1200. // for multiple images processing
  1201. bool ingest_images(llama_client_slot &slot, int n_batch)
  1202. {
  1203. int image_idx = 0;
  1204. while (image_idx < (int) slot.images.size())
  1205. {
  1206. slot_image &img = slot.images[image_idx];
  1207. // process prefix prompt
  1208. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1209. {
  1210. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1211. llama_batch batch_view = {
  1212. n_tokens,
  1213. batch.token + i,
  1214. nullptr,
  1215. batch.pos + i,
  1216. batch.n_seq_id + i,
  1217. batch.seq_id + i,
  1218. batch.logits + i,
  1219. 0, 0, 0, // unused
  1220. };
  1221. if (llama_decode(ctx, batch_view))
  1222. {
  1223. LOG_TEE("%s : failed to eval\n", __func__);
  1224. return false;
  1225. }
  1226. }
  1227. // process image with llm
  1228. for (int i = 0; i < img.image_tokens; i += n_batch)
  1229. {
  1230. int n_eval = img.image_tokens - i;
  1231. if (n_eval > n_batch)
  1232. {
  1233. n_eval = n_batch;
  1234. }
  1235. const int n_embd = llama_n_embd(model);
  1236. llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
  1237. if (llama_decode(ctx, batch_img))
  1238. {
  1239. LOG_TEE("%s : failed to eval image\n", __func__);
  1240. return false;
  1241. }
  1242. slot.n_past += n_eval;
  1243. }
  1244. image_idx++;
  1245. llama_batch_clear(batch);
  1246. // append prefix of next image
  1247. const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
  1248. slot.params.input_suffix : // no more images, then process suffix prompt
  1249. (json)(slot.images[image_idx].prefix_prompt);
  1250. std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
  1251. for (int i = 0; i < (int) append_tokens.size(); ++i)
  1252. {
  1253. llama_batch_add(batch, append_tokens[i], slot.n_past, { slot.id }, true);
  1254. slot.n_past += 1;
  1255. }
  1256. }
  1257. return true;
  1258. }
  1259. void request_cancel(int task_id)
  1260. {
  1261. std::lock_guard<std::mutex> lock(mutex_tasks);
  1262. task_server task;
  1263. task.id = id_gen++;
  1264. task.type = CANCEL_TASK;
  1265. task.target_id = task_id;
  1266. queue_tasks.push_back(task);
  1267. }
  1268. int split_multiprompt_task(task_server& multiprompt_task)
  1269. {
  1270. int prompt_count = multiprompt_task.data.at("prompt").size();
  1271. assert(prompt_count > 1);
  1272. int multitask_id = id_gen++;
  1273. std::vector<int> subtask_ids(prompt_count);
  1274. for (int i = 0; i < prompt_count; i++)
  1275. {
  1276. json subtask_data = multiprompt_task.data;
  1277. subtask_data["prompt"] = subtask_data["prompt"][i];
  1278. // subtasks inherit everything else (infill mode, embedding mode, etc.)
  1279. subtask_ids[i] = request_completion(subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
  1280. }
  1281. // queue up the multitask so we can track its subtask progression
  1282. add_multi_task(multitask_id, subtask_ids);
  1283. return multitask_id;
  1284. }
  1285. void process_tasks()
  1286. {
  1287. std::lock_guard<std::mutex> lock(mutex_tasks);
  1288. while (!queue_tasks.empty())
  1289. {
  1290. task_server task = queue_tasks.front();
  1291. queue_tasks.erase(queue_tasks.begin());
  1292. switch (task.type)
  1293. {
  1294. case COMPLETION_TASK: {
  1295. llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
  1296. if (slot == nullptr)
  1297. {
  1298. LOG_TEE("slot unavailable\n");
  1299. // send error result
  1300. send_error(task, "slot unavailable");
  1301. return;
  1302. }
  1303. if (task.data.contains("system_prompt"))
  1304. {
  1305. process_system_prompt_data(task.data["system_prompt"]);
  1306. }
  1307. slot->reset();
  1308. slot->infill = task.infill_mode;
  1309. slot->embedding = task.embedding_mode;
  1310. slot->task_id = task.id;
  1311. slot->multitask_id = task.multitask_id;
  1312. if (!launch_slot_with_data(slot, task.data))
  1313. {
  1314. // send error result
  1315. send_error(task, "internal_error");
  1316. break;
  1317. }
  1318. } break;
  1319. case CANCEL_TASK: { // release slot linked with the task id
  1320. for (auto & slot : slots)
  1321. {
  1322. if (slot.task_id == task.target_id)
  1323. {
  1324. slot.release();
  1325. break;
  1326. }
  1327. }
  1328. } break;
  1329. }
  1330. }
  1331. // remove finished multitasks from the queue of multitasks, and add the corresponding result to the result queue
  1332. auto queue_iterator = queue_multitasks.begin();
  1333. while (queue_iterator != queue_multitasks.end())
  1334. {
  1335. if (queue_iterator->subtasks_remaining.empty())
  1336. {
  1337. // all subtasks done == multitask is done
  1338. task_result aggregate_result;
  1339. aggregate_result.id = queue_iterator->id;
  1340. aggregate_result.stop = true;
  1341. aggregate_result.error = false;
  1342. // collect json results into one json result
  1343. std::vector<json> result_jsons;
  1344. for (auto& subres : queue_iterator->results)
  1345. {
  1346. result_jsons.push_back(subres.result_json);
  1347. aggregate_result.error = aggregate_result.error && subres.error;
  1348. }
  1349. aggregate_result.result_json = json{ "results", result_jsons };
  1350. std::lock_guard<std::mutex> lock(mutex_results);
  1351. queue_results.push_back(aggregate_result);
  1352. queue_iterator = queue_multitasks.erase(queue_iterator);
  1353. }
  1354. else
  1355. {
  1356. ++queue_iterator;
  1357. }
  1358. }
  1359. }
  1360. bool update_slots() {
  1361. // attend tasks
  1362. process_tasks();
  1363. // update the system prompt wait until all slots are idle state
  1364. if (system_need_update && all_slots_are_idle)
  1365. {
  1366. LOG_TEE("updating system prompt\n");
  1367. update_system_prompt();
  1368. }
  1369. llama_batch_clear(batch);
  1370. if (all_slots_are_idle)
  1371. {
  1372. if (system_prompt.empty() && clean_kv_cache)
  1373. {
  1374. LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
  1375. kv_cache_clear();
  1376. }
  1377. // avoid 100% usage of cpu all time
  1378. std::this_thread::sleep_for(std::chrono::milliseconds(5));
  1379. }
  1380. for (llama_client_slot &slot : slots)
  1381. {
  1382. if (slot.is_processing() && slot.cache_tokens.size() >= (size_t) slot.n_ctx)
  1383. {
  1384. // Shift context
  1385. const int n_left = slot.n_past - slot.params.n_keep - 1;
  1386. const int n_discard = n_left / 2;
  1387. LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
  1388. llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
  1389. llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, slot.n_past, -n_discard);
  1390. for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
  1391. {
  1392. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1393. }
  1394. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1395. slot.n_past -= n_discard;
  1396. slot.truncated = true;
  1397. LOG_VERBOSE("context shift", {
  1398. {"n_ctx", n_ctx},
  1399. {"n_keep", params.n_keep},
  1400. {"n_left", n_left},
  1401. });
  1402. }
  1403. }
  1404. // decode any currently ongoing sequences
  1405. for (auto & slot : slots)
  1406. {
  1407. // release the slot
  1408. if (slot.command == RELEASE)
  1409. {
  1410. slot.state = IDLE;
  1411. slot.command = NONE;
  1412. slot.t_last_used = ggml_time_us();
  1413. LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
  1414. continue;
  1415. }
  1416. if (slot.state == IDLE)
  1417. {
  1418. continue;
  1419. }
  1420. slot.i_batch = batch.n_tokens;
  1421. llama_batch_add(batch, slot.sampled, system_tokens.size() + slot.n_past, { slot.id }, true);
  1422. slot.n_decoded += 1;
  1423. slot.n_past += 1;
  1424. }
  1425. // process in chunks of params.n_batch
  1426. int32_t n_batch = params.n_batch;
  1427. // assign workload to the slots
  1428. if (params.cont_batching || batch.n_tokens == 0)
  1429. {
  1430. for (auto & slot : slots)
  1431. {
  1432. const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
  1433. // empty prompt passed -> release the slot and send empty response
  1434. if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt)
  1435. {
  1436. slot.release();
  1437. slot.print_timings();
  1438. send_final_response(slot);
  1439. continue;
  1440. }
  1441. // need process the prompt
  1442. if (slot.state == IDLE && slot.command == LOAD_PROMPT)
  1443. {
  1444. slot.state = PROCESSING;
  1445. slot.command = NONE;
  1446. std::vector<llama_token> prompt_tokens;
  1447. slot.t_start_process_prompt = ggml_time_us();
  1448. slot.t_start_genereration = 0;
  1449. if (slot.infill)
  1450. {
  1451. bool suff_rm_leading_spc = true;
  1452. if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
  1453. {
  1454. params.input_suffix.erase(0, 1);
  1455. suff_rm_leading_spc = false;
  1456. }
  1457. auto prefix_tokens = tokenize(slot.params.input_prefix, false);
  1458. auto suffix_tokens = tokenize(slot.params.input_suffix, false);
  1459. const int space_token = 29871; // TODO: this should not be hardcoded
  1460. if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
  1461. suffix_tokens.erase(suffix_tokens.begin());
  1462. }
  1463. prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
  1464. prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
  1465. prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
  1466. prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
  1467. prefix_tokens.push_back(llama_token_middle(model));
  1468. prompt_tokens = prefix_tokens;
  1469. }
  1470. else
  1471. {
  1472. prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
  1473. }
  1474. slot.num_prompt_tokens = prompt_tokens.size();
  1475. if (slot.params.n_keep < 0)
  1476. {
  1477. slot.params.n_keep = slot.num_prompt_tokens;
  1478. }
  1479. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1480. // if input prompt is too big, truncate it
  1481. if (slot.num_prompt_tokens >= slot.n_ctx)
  1482. {
  1483. const int n_left = slot.n_ctx - slot.params.n_keep;
  1484. const int n_block_size = n_left / 2;
  1485. const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1486. std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
  1487. new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
  1488. LOG_VERBOSE("input truncated", {
  1489. {"n_ctx", slot.n_ctx},
  1490. {"n_keep", slot.params.n_keep},
  1491. {"n_left", n_left},
  1492. {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
  1493. });
  1494. slot.truncated = true;
  1495. prompt_tokens = new_tokens;
  1496. slot.num_prompt_tokens = prompt_tokens.size();
  1497. GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
  1498. }
  1499. if (!slot.params.cache_prompt)
  1500. {
  1501. llama_sampling_reset(slot.ctx_sampling);
  1502. slot.n_past = 0;
  1503. slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
  1504. }
  1505. else
  1506. {
  1507. // push the prompt into the sampling context (do not apply grammar)
  1508. for (auto &token : prompt_tokens)
  1509. {
  1510. llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
  1511. }
  1512. slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
  1513. slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
  1514. LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
  1515. }
  1516. LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
  1517. llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
  1518. slot.cache_tokens = prompt_tokens;
  1519. if (slot.n_past == slot.num_prompt_tokens)
  1520. {
  1521. // we have to evaluate at least 1 token to generate logits.
  1522. LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
  1523. slot.n_past--;
  1524. }
  1525. LOG_VERBOSE("prompt ingested", {
  1526. {"n_past", slot.n_past},
  1527. {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
  1528. {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
  1529. });
  1530. const bool has_images = process_images(slot);
  1531. // process the prefix of first image
  1532. std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
  1533. for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
  1534. {
  1535. llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot.n_past, { slot.id }, false);
  1536. }
  1537. if (has_images && !ingest_images(slot, n_batch))
  1538. {
  1539. LOG_TEE("failed processing images\n");
  1540. return false;
  1541. }
  1542. // extract the logits only for the last token
  1543. if (batch.n_tokens > 0)
  1544. {
  1545. batch.logits[batch.n_tokens - 1] = true;
  1546. }
  1547. slot.n_decoded = 0;
  1548. slot.i_batch = batch.n_tokens - 1;
  1549. }
  1550. }
  1551. }
  1552. if (batch.n_tokens == 0)
  1553. {
  1554. all_slots_are_idle = true;
  1555. return true;
  1556. }
  1557. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1558. {
  1559. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1560. llama_batch batch_view =
  1561. {
  1562. n_tokens,
  1563. batch.token + i,
  1564. nullptr,
  1565. batch.pos + i,
  1566. batch.n_seq_id + i,
  1567. batch.seq_id + i,
  1568. batch.logits + i,
  1569. 0, 0, 0, // unused
  1570. };
  1571. const int ret = llama_decode(ctx, batch_view);
  1572. if (ret != 0)
  1573. {
  1574. if (n_batch == 1 || ret < 0)
  1575. {
  1576. // if you get here, it means the KV cache is full - try increasing it via the context size
  1577. LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
  1578. return false;
  1579. }
  1580. LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
  1581. // retry with half the batch size to try to find a free slot in the KV cache
  1582. n_batch /= 2;
  1583. i -= n_batch;
  1584. continue;
  1585. }
  1586. for (auto & slot : slots)
  1587. {
  1588. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
  1589. {
  1590. continue;
  1591. }
  1592. // prompt evaluated for embedding
  1593. if (slot.embedding)
  1594. {
  1595. send_embedding(slot);
  1596. slot.release();
  1597. slot.i_batch = -1;
  1598. return true;
  1599. }
  1600. completion_token_output result;
  1601. const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
  1602. llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
  1603. if (slot.n_decoded == 1)
  1604. {
  1605. slot.t_start_genereration = ggml_time_us();
  1606. slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
  1607. }
  1608. llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
  1609. result.tok = id;
  1610. const int32_t n_probs = slot.sparams.n_probs;
  1611. if (slot.sparams.temp <= 0 && n_probs > 0)
  1612. {
  1613. // for llama_sample_token_greedy we need to sort candidates
  1614. llama_sample_softmax(ctx, &cur_p);
  1615. }
  1616. for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
  1617. {
  1618. result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
  1619. }
  1620. if (!process_token(result, slot))
  1621. {
  1622. slot.release();
  1623. slot.print_timings();
  1624. send_final_response(slot);
  1625. }
  1626. slot.i_batch = -1;
  1627. }
  1628. }
  1629. return true;
  1630. }
  1631. };
  1632. static void server_print_usage(const char *argv0, const gpt_params &params,
  1633. const server_params &sparams)
  1634. {
  1635. printf("usage: %s [options]\n", argv0);
  1636. printf("\n");
  1637. printf("options:\n");
  1638. printf(" -h, --help show this help message and exit\n");
  1639. printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
  1640. printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
  1641. printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
  1642. printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
  1643. printf(" --rope-scaling {none,linear,yarn}\n");
  1644. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  1645. printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
  1646. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  1647. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  1648. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  1649. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  1650. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  1651. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  1652. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  1653. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  1654. if (llama_mlock_supported())
  1655. {
  1656. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  1657. }
  1658. if (llama_mmap_supported())
  1659. {
  1660. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  1661. }
  1662. printf(" --numa attempt optimizations that help on some NUMA systems\n");
  1663. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  1664. printf(" -ngl N, --n-gpu-layers N\n");
  1665. printf(" number of layers to store in VRAM\n");
  1666. printf(" -ts SPLIT --tensor-split SPLIT\n");
  1667. printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
  1668. printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
  1669. printf(" -nommq, --no-mul-mat-q\n");
  1670. printf(" use cuBLAS instead of custom mul_mat_q CUDA kernels.\n");
  1671. printf(" Not recommended since this is both slower and uses more VRAM.\n");
  1672. #endif
  1673. printf(" -m FNAME, --model FNAME\n");
  1674. printf(" model path (default: %s)\n", params.model.c_str());
  1675. printf(" -a ALIAS, --alias ALIAS\n");
  1676. printf(" set an alias for the model, will be added as `model` field in completion response\n");
  1677. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  1678. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  1679. printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
  1680. printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
  1681. printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
  1682. printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
  1683. printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
  1684. printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
  1685. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  1686. printf(" -spf FNAME, --system-prompt-file FNAME\n");
  1687. printf(" Set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
  1688. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
  1689. printf(" --log-disable disables logging to a file.\n");
  1690. printf("\n");
  1691. }
  1692. static void server_params_parse(int argc, char **argv, server_params &sparams,
  1693. gpt_params &params, llama_server_context& llama)
  1694. {
  1695. gpt_params default_params;
  1696. server_params default_sparams;
  1697. std::string arg;
  1698. bool invalid_param = false;
  1699. for (int i = 1; i < argc; i++)
  1700. {
  1701. arg = argv[i];
  1702. if (arg == "--port")
  1703. {
  1704. if (++i >= argc)
  1705. {
  1706. invalid_param = true;
  1707. break;
  1708. }
  1709. sparams.port = std::stoi(argv[i]);
  1710. }
  1711. else if (arg == "--host")
  1712. {
  1713. if (++i >= argc)
  1714. {
  1715. invalid_param = true;
  1716. break;
  1717. }
  1718. sparams.hostname = argv[i];
  1719. }
  1720. else if (arg == "--path")
  1721. {
  1722. if (++i >= argc)
  1723. {
  1724. invalid_param = true;
  1725. break;
  1726. }
  1727. sparams.public_path = argv[i];
  1728. }
  1729. else if (arg == "--timeout" || arg == "-to")
  1730. {
  1731. if (++i >= argc)
  1732. {
  1733. invalid_param = true;
  1734. break;
  1735. }
  1736. sparams.read_timeout = std::stoi(argv[i]);
  1737. sparams.write_timeout = std::stoi(argv[i]);
  1738. }
  1739. else if (arg == "-m" || arg == "--model")
  1740. {
  1741. if (++i >= argc)
  1742. {
  1743. invalid_param = true;
  1744. break;
  1745. }
  1746. params.model = argv[i];
  1747. }
  1748. else if (arg == "-a" || arg == "--alias")
  1749. {
  1750. if (++i >= argc)
  1751. {
  1752. invalid_param = true;
  1753. break;
  1754. }
  1755. params.model_alias = argv[i];
  1756. }
  1757. else if (arg == "-h" || arg == "--help")
  1758. {
  1759. server_print_usage(argv[0], default_params, default_sparams);
  1760. exit(0);
  1761. }
  1762. else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
  1763. {
  1764. if (++i >= argc)
  1765. {
  1766. invalid_param = true;
  1767. break;
  1768. }
  1769. params.n_ctx = std::stoi(argv[i]);
  1770. }
  1771. else if (arg == "--rope-scaling")
  1772. {
  1773. if (++i >= argc)
  1774. {
  1775. invalid_param = true;
  1776. break;
  1777. }
  1778. std::string value(argv[i]);
  1779. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
  1780. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
  1781. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
  1782. else { invalid_param = true; break; }
  1783. }
  1784. else if (arg == "--rope-freq-base")
  1785. {
  1786. if (++i >= argc)
  1787. {
  1788. invalid_param = true;
  1789. break;
  1790. }
  1791. params.rope_freq_base = std::stof(argv[i]);
  1792. }
  1793. else if (arg == "--rope-freq-scale")
  1794. {
  1795. if (++i >= argc)
  1796. {
  1797. invalid_param = true;
  1798. break;
  1799. }
  1800. params.rope_freq_scale = std::stof(argv[i]);
  1801. }
  1802. else if (arg == "--yarn-ext-factor")
  1803. {
  1804. if (++i >= argc) {
  1805. invalid_param = true;
  1806. break;
  1807. }
  1808. params.yarn_ext_factor = std::stof(argv[i]);
  1809. }
  1810. else if (arg == "--yarn-attn-factor")
  1811. {
  1812. if (++i >= argc) {
  1813. invalid_param = true;
  1814. break;
  1815. }
  1816. params.yarn_attn_factor = std::stof(argv[i]);
  1817. }
  1818. else if (arg == "--yarn-beta-fast")
  1819. {
  1820. if (++i >= argc) {
  1821. invalid_param = true;
  1822. break;
  1823. }
  1824. params.yarn_beta_fast = std::stof(argv[i]);
  1825. }
  1826. else if (arg == "--yarn-beta-slow")
  1827. {
  1828. if (++i >= argc) {
  1829. invalid_param = true;
  1830. break;
  1831. }
  1832. params.yarn_beta_slow = std::stof(argv[i]);
  1833. }
  1834. else if (arg == "--threads" || arg == "-t")
  1835. {
  1836. if (++i >= argc)
  1837. {
  1838. invalid_param = true;
  1839. break;
  1840. }
  1841. params.n_threads = std::stoi(argv[i]);
  1842. }
  1843. else if (arg == "--threads-batch" || arg == "-tb")
  1844. {
  1845. if (++i >= argc)
  1846. {
  1847. invalid_param = true;
  1848. break;
  1849. }
  1850. params.n_threads_batch = std::stoi(argv[i]);
  1851. }
  1852. else if (arg == "-b" || arg == "--batch-size")
  1853. {
  1854. if (++i >= argc)
  1855. {
  1856. invalid_param = true;
  1857. break;
  1858. }
  1859. params.n_batch = std::stoi(argv[i]);
  1860. params.n_batch = std::min(512, params.n_batch);
  1861. }
  1862. else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
  1863. {
  1864. if (++i >= argc)
  1865. {
  1866. invalid_param = true;
  1867. break;
  1868. }
  1869. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  1870. params.n_gpu_layers = std::stoi(argv[i]);
  1871. #else
  1872. LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
  1873. "See main README.md for information on enabling GPU BLAS support",
  1874. {{"n_gpu_layers", params.n_gpu_layers}});
  1875. #endif
  1876. }
  1877. else if (arg == "--tensor-split" || arg == "-ts")
  1878. {
  1879. if (++i >= argc)
  1880. {
  1881. invalid_param = true;
  1882. break;
  1883. }
  1884. #ifdef GGML_USE_CUBLAS
  1885. std::string arg_next = argv[i];
  1886. // split string by , and /
  1887. const std::regex regex{R"([,/]+)"};
  1888. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  1889. std::vector<std::string> split_arg{it, {}};
  1890. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  1891. for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
  1892. {
  1893. if (i_device < split_arg.size())
  1894. {
  1895. params.tensor_split[i_device] = std::stof(split_arg[i_device]);
  1896. }
  1897. else
  1898. {
  1899. params.tensor_split[i_device] = 0.0f;
  1900. }
  1901. }
  1902. #else
  1903. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
  1904. #endif // GGML_USE_CUBLAS
  1905. }
  1906. else if (arg == "--no-mul-mat-q" || arg == "-nommq")
  1907. {
  1908. #ifdef GGML_USE_CUBLAS
  1909. params.mul_mat_q = false;
  1910. #else
  1911. LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
  1912. #endif // GGML_USE_CUBLAS
  1913. }
  1914. else if (arg == "--main-gpu" || arg == "-mg")
  1915. {
  1916. if (++i >= argc)
  1917. {
  1918. invalid_param = true;
  1919. break;
  1920. }
  1921. #ifdef GGML_USE_CUBLAS
  1922. params.main_gpu = std::stoi(argv[i]);
  1923. #else
  1924. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
  1925. #endif
  1926. }
  1927. else if (arg == "--lora")
  1928. {
  1929. if (++i >= argc)
  1930. {
  1931. invalid_param = true;
  1932. break;
  1933. }
  1934. params.lora_adapter.push_back(std::make_tuple(argv[i], 1.0f));
  1935. params.use_mmap = false;
  1936. }
  1937. else if (arg == "--lora-scaled")
  1938. {
  1939. if (++i >= argc)
  1940. {
  1941. invalid_param = true;
  1942. break;
  1943. }
  1944. const char * lora_adapter = argv[i];
  1945. if (++i >= argc)
  1946. {
  1947. invalid_param = true;
  1948. break;
  1949. }
  1950. params.lora_adapter.push_back(std::make_tuple(lora_adapter, std::stof(argv[i])));
  1951. params.use_mmap = false;
  1952. }
  1953. else if (arg == "--lora-base")
  1954. {
  1955. if (++i >= argc)
  1956. {
  1957. invalid_param = true;
  1958. break;
  1959. }
  1960. params.lora_base = argv[i];
  1961. }
  1962. else if (arg == "-v" || arg == "--verbose")
  1963. {
  1964. #if SERVER_VERBOSE != 1
  1965. LOG_WARNING("server.cpp is not built with verbose logging.", {});
  1966. #else
  1967. server_verbose = true;
  1968. #endif
  1969. }
  1970. else if (arg == "--mlock")
  1971. {
  1972. params.use_mlock = true;
  1973. }
  1974. else if (arg == "--no-mmap")
  1975. {
  1976. params.use_mmap = false;
  1977. }
  1978. else if (arg == "--numa")
  1979. {
  1980. params.numa = true;
  1981. }
  1982. else if (arg == "--embedding")
  1983. {
  1984. params.embedding = true;
  1985. }
  1986. else if (arg == "-cb" || arg == "--cont-batching")
  1987. {
  1988. params.cont_batching = true;
  1989. }
  1990. else if (arg == "-np" || arg == "--parallel")
  1991. {
  1992. if (++i >= argc)
  1993. {
  1994. invalid_param = true;
  1995. break;
  1996. }
  1997. params.n_parallel = std::stoi(argv[i]);
  1998. } else if (arg == "-n" || arg == "--n-predict")
  1999. {
  2000. if (++i >= argc)
  2001. {
  2002. invalid_param = true;
  2003. break;
  2004. }
  2005. params.n_predict = std::stoi(argv[i]);
  2006. } else if (arg == "-spf" || arg == "--system-prompt-file")
  2007. {
  2008. if (++i >= argc)
  2009. {
  2010. invalid_param = true;
  2011. break;
  2012. }
  2013. std::ifstream file(argv[i]);
  2014. if (!file) {
  2015. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  2016. invalid_param = true;
  2017. break;
  2018. }
  2019. std::string systm_content;
  2020. std::copy(
  2021. std::istreambuf_iterator<char>(file),
  2022. std::istreambuf_iterator<char>(),
  2023. std::back_inserter(systm_content)
  2024. );
  2025. llama.process_system_prompt_data(json::parse(systm_content));
  2026. }
  2027. else if(arg == "--mmproj")
  2028. {
  2029. if (++i >= argc)
  2030. {
  2031. invalid_param = true;
  2032. break;
  2033. }
  2034. params.mmproj = argv[i];
  2035. }
  2036. else if (arg == "--log-disable")
  2037. {
  2038. log_set_target(stdout);
  2039. LOG_INFO("logging to file is disabled.", {});
  2040. }
  2041. else
  2042. {
  2043. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  2044. server_print_usage(argv[0], default_params, default_sparams);
  2045. exit(1);
  2046. }
  2047. }
  2048. if (invalid_param)
  2049. {
  2050. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  2051. server_print_usage(argv[0], default_params, default_sparams);
  2052. exit(1);
  2053. }
  2054. }
  2055. static std::string random_string()
  2056. {
  2057. static const std::string str("0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz");
  2058. std::random_device rd;
  2059. std::mt19937 generator(rd());
  2060. std::string result(32, ' ');
  2061. for (int i = 0; i < 32; ++i) {
  2062. result[i] = str[generator() % str.size()];
  2063. }
  2064. return result;
  2065. }
  2066. static std::string gen_chatcmplid()
  2067. {
  2068. std::stringstream chatcmplid;
  2069. chatcmplid << "chatcmpl-" << random_string();
  2070. return chatcmplid.str();
  2071. }
  2072. std::string format_chatml(std::vector<json> messages)
  2073. {
  2074. std::ostringstream chatml_msgs;
  2075. for (auto it = messages.begin(); it != messages.end(); ++it) {
  2076. chatml_msgs << "<|im_start|>"
  2077. << json_value(*it, "role", std::string("user")) << '\n';
  2078. chatml_msgs << json_value(*it, "content", std::string(""))
  2079. << "<|im_end|>\n";
  2080. }
  2081. chatml_msgs << "<|im_start|>assistant" << '\n';
  2082. return chatml_msgs.str();
  2083. }
  2084. /* llama.cpp completion api semantics */
  2085. json oaicompat_completion_params_parse(
  2086. const json &body /* openai api json semantics */)
  2087. {
  2088. json llama_params;
  2089. llama_params["__oaicompat"] = true;
  2090. // Map OpenAI parameters to llama.cpp parameters
  2091. llama_params["model"] = json_value(body, "model", std::string("uknown"));
  2092. llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
  2093. llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
  2094. llama_params["temperature"] = json_value(body, "temperature", 0.8);
  2095. llama_params["top_k"] = json_value(body, "top_k", 40);
  2096. llama_params["top_p"] = json_value(body, "top_p", 0.95);
  2097. llama_params["n_predict"] = json_value(body, "max_tokens", -1);
  2098. llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
  2099. llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
  2100. llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
  2101. llama_params["seed"] = json_value(body, "seed", 0);
  2102. llama_params["stream"] = json_value(body, "stream", false);
  2103. llama_params["mirostat"] = json_value(body, "mirostat", false);
  2104. llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", 0.0);
  2105. llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", 0.0);
  2106. llama_params["penalize_nl"] = json_value(body, "penalize_nl", false);
  2107. llama_params["typical_p"] = json_value(body, "typical_p", 0.0);
  2108. llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", 0);
  2109. llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
  2110. llama_params["tfs_z"] = json_value(body, "tfs_z", 0.0);
  2111. if (llama_params.count("grammar") != 0) {
  2112. llama_params["grammar"] = json_value(body, "grammar", json::object());
  2113. }
  2114. // Handle 'stop' field
  2115. if (body.contains("stop") && body["stop"].is_string()) {
  2116. llama_params["stop"] = json::array({body["stop"].get<std::string>()});
  2117. } else {
  2118. llama_params["stop"] = json_value(body, "stop", json::array());
  2119. }
  2120. // Ensure there is ChatML-specific end sequence among stop words
  2121. llama_params["stop"].push_back("<|im_end|>");
  2122. return llama_params;
  2123. }
  2124. static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
  2125. {
  2126. json result = response.result_json;
  2127. bool stopped_word = result.count("stopped_word") != 0;
  2128. bool stopped_eos = json_value(result, "stopped_eos", false);
  2129. int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
  2130. int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
  2131. std::string content = json_value(result, "content", std::string(""));
  2132. std::string finish_reason = "length";
  2133. if (stopped_word || stopped_eos) {
  2134. finish_reason = "stop";
  2135. }
  2136. json choices =
  2137. streaming ? json::array({json{{"finish_reason", finish_reason},
  2138. {"index", 0},
  2139. {"delta", json::object()}}})
  2140. : json::array({json{{"finish_reason", finish_reason},
  2141. {"index", 0},
  2142. {"message", json{{"content", content},
  2143. {"role", "assistant"}}}}});
  2144. std::time_t t = std::time(0);
  2145. json res =
  2146. json{{"choices", choices},
  2147. {"created", t},
  2148. {"model",
  2149. json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  2150. {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
  2151. {"usage",
  2152. json{{"completion_tokens", num_tokens_predicted},
  2153. {"prompt_tokens", num_prompt_tokens},
  2154. {"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
  2155. {"id", gen_chatcmplid()}};
  2156. if (server_verbose) {
  2157. res["__verbose"] = result;
  2158. }
  2159. if (result.contains("completion_probabilities")) {
  2160. res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
  2161. }
  2162. return res;
  2163. }
  2164. // return value is vector as there is one case where we might need to generate two responses
  2165. static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
  2166. json result = response.result_json;
  2167. if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
  2168. return std::vector<json>({response.result_json});
  2169. }
  2170. bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
  2171. std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  2172. bool stopped_word = json_value(result, "stopped_word", false);
  2173. bool stopped_eos = json_value(result, "stopped_eos", false);
  2174. bool stopped_limit = json_value(result, "stopped_limit", false);
  2175. std::string content = json_value(result, "content", std::string(""));
  2176. std::string finish_reason;
  2177. if (stopped_word || stopped_eos) {
  2178. finish_reason = "stop";
  2179. }
  2180. if (stopped_limit) {
  2181. finish_reason = "length";
  2182. }
  2183. std::time_t t = std::time(0);
  2184. json choices;
  2185. if (!finish_reason.empty()) {
  2186. choices = json::array({json{{"finish_reason", finish_reason},
  2187. {"index", 0},
  2188. {"delta", json::object()}}});
  2189. } else {
  2190. if (first) {
  2191. if (content.empty()) {
  2192. choices = json::array({json{{"finish_reason", nullptr},
  2193. {"index", 0},
  2194. {"delta", json{{"role", "assistant"}}}}});
  2195. } else {
  2196. // We have to send this as two updates to conform to openai behavior
  2197. json initial_ret = json{{"choices", json::array({json{
  2198. {"finish_reason", nullptr},
  2199. {"index", 0},
  2200. {"delta", json{
  2201. {"role", "assistant"}
  2202. }}}})},
  2203. {"created", t},
  2204. {"id", gen_chatcmplid()},
  2205. {"model", modelname},
  2206. {"object", "chat.completion.chunk"}};
  2207. json second_ret = json{
  2208. {"choices", json::array({json{{"finish_reason", nullptr},
  2209. {"index", 0},
  2210. {"delta", json{
  2211. {"content", content}}}
  2212. }})},
  2213. {"created", t},
  2214. {"id", gen_chatcmplid()},
  2215. {"model", modelname},
  2216. {"object", "chat.completion.chunk"}};
  2217. return std::vector<json>({initial_ret, second_ret});
  2218. }
  2219. } else {
  2220. // Some idiosyncrasy in task processing logic makes several trailing calls
  2221. // with empty content, we ignore these at the calee site.
  2222. if (content.empty()) {
  2223. return std::vector<json>({json::object()});
  2224. }
  2225. choices = json::array({json{
  2226. {"finish_reason", nullptr},
  2227. {"index", 0},
  2228. {"delta",
  2229. json{
  2230. {"content", content},
  2231. }},
  2232. }});
  2233. }
  2234. }
  2235. json ret = json{{"choices", choices},
  2236. {"created", t},
  2237. {"id", gen_chatcmplid()},
  2238. {"model", modelname},
  2239. {"object", "chat.completion.chunk"}};
  2240. return std::vector<json>({ret});
  2241. }
  2242. static json format_partial_response(
  2243. llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
  2244. ) {
  2245. json res = json
  2246. {
  2247. {"content", content },
  2248. {"stop", false},
  2249. {"slot_id", slot->id },
  2250. {"multimodal", llama.multimodal }
  2251. };
  2252. if (slot->sparams.n_probs > 0)
  2253. {
  2254. res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
  2255. }
  2256. return res;
  2257. }
  2258. static json format_tokenizer_response(const std::vector<llama_token> &tokens)
  2259. {
  2260. return json{
  2261. {"tokens", tokens}};
  2262. }
  2263. static json format_detokenized_response(std::string content)
  2264. {
  2265. return json{
  2266. {"content", content}};
  2267. }
  2268. static void log_server_request(const httplib::Request &req, const httplib::Response &res)
  2269. {
  2270. LOG_INFO("request", {
  2271. {"remote_addr", req.remote_addr},
  2272. {"remote_port", req.remote_port},
  2273. {"status", res.status},
  2274. {"method", req.method},
  2275. {"path", req.path},
  2276. {"params", req.params},
  2277. });
  2278. LOG_VERBOSE("request", {
  2279. {"request", req.body},
  2280. {"response", res.body},
  2281. });
  2282. }
  2283. struct token_translator
  2284. {
  2285. llama_context * ctx;
  2286. std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
  2287. std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
  2288. };
  2289. static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
  2290. {
  2291. auto & gtps = slot->generated_token_probs;
  2292. auto translator = token_translator{llama.ctx};
  2293. auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
  2294. const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
  2295. if (slot->generated_text.capacity() < slot->generated_text.size() + len)
  2296. {
  2297. slot->generated_text.reserve(slot->generated_text.size() + len);
  2298. }
  2299. for (const completion_token_output & cto : gtps)
  2300. {
  2301. slot->generated_text += translator(cto);
  2302. }
  2303. }
  2304. int main(int argc, char **argv)
  2305. {
  2306. // own arguments required by this example
  2307. gpt_params params;
  2308. server_params sparams;
  2309. // struct that contains llama context and inference
  2310. llama_server_context llama;
  2311. server_params_parse(argc, argv, sparams, params, llama);
  2312. if (params.model_alias == "unknown")
  2313. {
  2314. params.model_alias = params.model;
  2315. }
  2316. llama_backend_init(params.numa);
  2317. LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
  2318. {"commit", LLAMA_COMMIT}});
  2319. LOG_INFO("system info", {
  2320. {"n_threads", params.n_threads},
  2321. {"n_threads_batch", params.n_threads_batch},
  2322. {"total_threads", std::thread::hardware_concurrency()},
  2323. {"system_info", llama_print_system_info()},
  2324. });
  2325. // load the model
  2326. if (!llama.load_model(params))
  2327. {
  2328. return 1;
  2329. }
  2330. llama.initialize();
  2331. httplib::Server svr;
  2332. svr.set_default_headers({{"Server", "llama.cpp"},
  2333. {"Access-Control-Allow-Origin", "*"},
  2334. {"Access-Control-Allow-Headers", "content-type"}});
  2335. // this is only called if no index.html is found in the public --path
  2336. svr.Get("/", [](const httplib::Request &, httplib::Response &res)
  2337. {
  2338. res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html");
  2339. return false;
  2340. });
  2341. // this is only called if no index.js is found in the public --path
  2342. svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
  2343. {
  2344. res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript");
  2345. return false;
  2346. });
  2347. // this is only called if no index.html is found in the public --path
  2348. svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
  2349. {
  2350. res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript");
  2351. return false;
  2352. });
  2353. // this is only called if no index.html is found in the public --path
  2354. svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
  2355. {
  2356. res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript");
  2357. return false;
  2358. });
  2359. svr.Get("/props", [&llama](const httplib::Request & /*req*/, httplib::Response &res)
  2360. {
  2361. res.set_header("Access-Control-Allow-Origin", "*");
  2362. json data = {
  2363. { "user_name", llama.name_user.c_str() },
  2364. { "assistant_name", llama.name_assistant.c_str() }
  2365. };
  2366. res.set_content(data.dump(), "application/json");
  2367. });
  2368. svr.Post("/completion", [&llama](const httplib::Request &req, httplib::Response &res)
  2369. {
  2370. json data = json::parse(req.body);
  2371. const int task_id = llama.request_completion(data, false, false, -1);
  2372. if (!json_value(data, "stream", false)) {
  2373. std::string completion_text;
  2374. task_result result = llama.next_result(task_id);
  2375. if (!result.error && result.stop) {
  2376. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json");
  2377. }
  2378. else
  2379. {
  2380. res.status = 404;
  2381. res.set_content(result.result_json["content"], "text/plain");
  2382. return;
  2383. }
  2384. } else {
  2385. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
  2386. {
  2387. while (true)
  2388. {
  2389. task_result result = llama.next_result(task_id);
  2390. if (!result.error) {
  2391. const std::string str =
  2392. "data: " +
  2393. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2394. "\n\n";
  2395. LOG_VERBOSE("data stream", {
  2396. { "to_send", str }
  2397. });
  2398. if (!sink.write(str.c_str(), str.size()))
  2399. {
  2400. return false;
  2401. }
  2402. if (result.stop) {
  2403. break;
  2404. }
  2405. } else {
  2406. const std::string str =
  2407. "error: " +
  2408. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2409. "\n\n";
  2410. LOG_VERBOSE("data stream", {
  2411. { "to_send", str }
  2412. });
  2413. if (!sink.write(str.c_str(), str.size()))
  2414. {
  2415. return false;
  2416. }
  2417. break;
  2418. }
  2419. }
  2420. sink.done();
  2421. return true;
  2422. };
  2423. auto on_complete = [task_id, &llama] (bool)
  2424. {
  2425. // cancel
  2426. llama.request_cancel(task_id);
  2427. };
  2428. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2429. }
  2430. });
  2431. svr.Get("/v1/models", [&params](const httplib::Request&, httplib::Response& res)
  2432. {
  2433. std::time_t t = std::time(0);
  2434. json models = {
  2435. {"object", "list"},
  2436. {"data", {
  2437. {
  2438. {"id", params.model_alias},
  2439. {"object", "model"},
  2440. {"created", t},
  2441. {"owned_by", "llamacpp"}
  2442. },
  2443. }}
  2444. };
  2445. res.set_content(models.dump(), "application/json");
  2446. });
  2447. // TODO: add mount point without "/v1" prefix -- how?
  2448. svr.Post("/v1/chat/completions", [&llama](const httplib::Request &req, httplib::Response &res)
  2449. {
  2450. json data = oaicompat_completion_params_parse(json::parse(req.body));
  2451. const int task_id = llama.request_completion(data, false, false, -1);
  2452. if (!json_value(data, "stream", false)) {
  2453. std::string completion_text;
  2454. task_result result = llama.next_result(task_id);
  2455. if (!result.error && result.stop) {
  2456. json oaicompat_result = format_final_response_oaicompat(data, result);
  2457. res.set_content(oaicompat_result.dump(-1, ' ', false,
  2458. json::error_handler_t::replace),
  2459. "application/json");
  2460. } else {
  2461. res.status = 500;
  2462. res.set_content(result.result_json["content"], "text/plain");
  2463. return;
  2464. }
  2465. } else {
  2466. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
  2467. while (true) {
  2468. task_result llama_result = llama.next_result(task_id);
  2469. if (!llama_result.error) {
  2470. std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
  2471. for (auto it = result_array.begin(); it != result_array.end(); ++it)
  2472. {
  2473. if (!it->empty()) {
  2474. const std::string str =
  2475. "data: " +
  2476. it->dump(-1, ' ', false, json::error_handler_t::replace) +
  2477. "\n\n";
  2478. LOG_VERBOSE("data stream", {{"to_send", str}});
  2479. if (!sink.write(str.c_str(), str.size())) {
  2480. return false;
  2481. }
  2482. }
  2483. }
  2484. if (llama_result.stop) {
  2485. break;
  2486. }
  2487. } else {
  2488. const std::string str =
  2489. "error: " +
  2490. llama_result.result_json.dump(-1, ' ', false,
  2491. json::error_handler_t::replace) +
  2492. "\n\n";
  2493. LOG_VERBOSE("data stream", {{"to_send", str}});
  2494. if (!sink.write(str.c_str(), str.size())) {
  2495. return false;
  2496. }
  2497. break;
  2498. }
  2499. }
  2500. sink.done();
  2501. return true;
  2502. };
  2503. auto on_complete = [task_id, &llama](bool) {
  2504. // cancel request
  2505. llama.request_cancel(task_id);
  2506. };
  2507. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2508. }
  2509. });
  2510. svr.Post("/infill", [&llama](const httplib::Request &req, httplib::Response &res)
  2511. {
  2512. json data = json::parse(req.body);
  2513. const int task_id = llama.request_completion(data, true, false, -1);
  2514. if (!json_value(data, "stream", false)) {
  2515. std::string completion_text;
  2516. task_result result = llama.next_result(task_id);
  2517. if (!result.error && result.stop)
  2518. {
  2519. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json");
  2520. }
  2521. else
  2522. {
  2523. res.status = 404;
  2524. res.set_content(result.result_json["content"], "text/plain");
  2525. return;
  2526. }
  2527. } else {
  2528. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) {
  2529. while (true)
  2530. {
  2531. task_result result = llama.next_result(task_id);
  2532. if (!result.error) {
  2533. const std::string str =
  2534. "data: " +
  2535. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2536. "\n\n";
  2537. LOG_VERBOSE("data stream", {
  2538. { "to_send", str }
  2539. });
  2540. if (!sink.write(str.c_str(), str.size()))
  2541. {
  2542. return false;
  2543. }
  2544. if (result.stop)
  2545. {
  2546. break;
  2547. }
  2548. }
  2549. else
  2550. {
  2551. break;
  2552. }
  2553. }
  2554. sink.done();
  2555. return true;
  2556. };
  2557. auto on_complete = [task_id, &llama] (bool)
  2558. {
  2559. // cancel
  2560. llama.request_cancel(task_id);
  2561. };
  2562. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2563. }
  2564. });
  2565. svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
  2566. {
  2567. const json data = llama.get_model_props();
  2568. return res.set_content(data.dump(), "application/json");
  2569. });
  2570. svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
  2571. { return res.set_content("", "application/json"); });
  2572. svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2573. {
  2574. const json body = json::parse(req.body);
  2575. std::vector<llama_token> tokens;
  2576. if (body.count("content") != 0)
  2577. {
  2578. tokens = llama.tokenize(body["content"], false);
  2579. }
  2580. const json data = format_tokenizer_response(tokens);
  2581. return res.set_content(data.dump(), "application/json");
  2582. });
  2583. svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2584. {
  2585. const json body = json::parse(req.body);
  2586. std::string content;
  2587. if (body.count("tokens") != 0)
  2588. {
  2589. const std::vector<llama_token> tokens = body["tokens"];
  2590. content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
  2591. }
  2592. const json data = format_detokenized_response(content);
  2593. return res.set_content(data.dump(), "application/json");
  2594. });
  2595. svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
  2596. {
  2597. const json body = json::parse(req.body);
  2598. json prompt;
  2599. if (body.count("content") != 0)
  2600. {
  2601. prompt = body["content"];
  2602. }
  2603. else
  2604. {
  2605. prompt = "";
  2606. }
  2607. const int task_id = llama.request_completion({ {"prompt", prompt}, { "n_predict", 0} }, false, true, -1);
  2608. task_result result = llama.next_result(task_id);
  2609. return res.set_content(result.result_json.dump(), "application/json");
  2610. });
  2611. svr.set_logger(log_server_request);
  2612. svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
  2613. {
  2614. const char fmt[] = "500 Internal Server Error\n%s";
  2615. char buf[BUFSIZ];
  2616. try
  2617. {
  2618. std::rethrow_exception(std::move(ep));
  2619. }
  2620. catch (std::exception &e)
  2621. {
  2622. snprintf(buf, sizeof(buf), fmt, e.what());
  2623. }
  2624. catch (...)
  2625. {
  2626. snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
  2627. }
  2628. res.set_content(buf, "text/plain");
  2629. res.status = 500;
  2630. });
  2631. svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
  2632. {
  2633. if (res.status == 400)
  2634. {
  2635. res.set_content("Invalid request", "text/plain");
  2636. }
  2637. else if (res.status != 500)
  2638. {
  2639. res.set_content("File Not Found", "text/plain");
  2640. res.status = 404;
  2641. }
  2642. });
  2643. // set timeouts and change hostname and port
  2644. svr.set_read_timeout (sparams.read_timeout);
  2645. svr.set_write_timeout(sparams.write_timeout);
  2646. if (!svr.bind_to_port(sparams.hostname, sparams.port))
  2647. {
  2648. fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
  2649. return 1;
  2650. }
  2651. // Set the base directory for serving static files
  2652. svr.set_base_dir(sparams.public_path);
  2653. // to make it ctrl+clickable:
  2654. LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
  2655. LOG_INFO("HTTP server listening", {
  2656. {"hostname", sparams.hostname},
  2657. {"port", sparams.port},
  2658. });
  2659. // run the HTTP server in a thread - see comment below
  2660. std::thread t([&]()
  2661. {
  2662. if (!svr.listen_after_bind())
  2663. {
  2664. return 1;
  2665. }
  2666. return 0;
  2667. });
  2668. // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
  2669. // "Bus error: 10" - this is on macOS, it does not crash on Linux
  2670. //std::thread t2([&]()
  2671. {
  2672. bool running = true;
  2673. while (running)
  2674. {
  2675. running = llama.update_slots();
  2676. }
  2677. }
  2678. //);
  2679. t.join();
  2680. llama_backend_free();
  2681. return 0;
  2682. }