ggml.c 628 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #ifdef GGML_USE_METAL
  24. #include <unistd.h>
  25. #endif
  26. #if defined(_MSC_VER)
  27. // disable "possible loss of data" to avoid hundreds of casts
  28. // we should just be careful :)
  29. #pragma warning(disable: 4244 4267)
  30. // disable POSIX deprecation warnings
  31. // these functions are never going away, anyway
  32. #pragma warning(disable: 4996)
  33. #endif
  34. #if defined(_WIN32)
  35. #include <windows.h>
  36. typedef volatile LONG atomic_int;
  37. typedef atomic_int atomic_bool;
  38. static void atomic_store(atomic_int * ptr, LONG val) {
  39. InterlockedExchange(ptr, val);
  40. }
  41. static LONG atomic_load(atomic_int * ptr) {
  42. return InterlockedCompareExchange(ptr, 0, 0);
  43. }
  44. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  45. return InterlockedExchangeAdd(ptr, inc);
  46. }
  47. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  48. return atomic_fetch_add(ptr, -(dec));
  49. }
  50. typedef HANDLE pthread_t;
  51. typedef DWORD thread_ret_t;
  52. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  53. (void) unused;
  54. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  55. if (handle == NULL)
  56. {
  57. return EAGAIN;
  58. }
  59. *out = handle;
  60. return 0;
  61. }
  62. static int pthread_join(pthread_t thread, void * unused) {
  63. (void) unused;
  64. int ret = (int) WaitForSingleObject(thread, INFINITE);
  65. CloseHandle(thread);
  66. return ret;
  67. }
  68. static int sched_yield (void) {
  69. Sleep (0);
  70. return 0;
  71. }
  72. #else
  73. #include <pthread.h>
  74. #include <stdatomic.h>
  75. typedef void * thread_ret_t;
  76. #include <sys/types.h>
  77. #include <sys/stat.h>
  78. #include <unistd.h>
  79. #endif
  80. #ifdef GGML_USE_CPU_HBM
  81. #include <hbwmalloc.h>
  82. #endif
  83. #if defined(__APPLE__)
  84. #include <TargetConditionals.h>
  85. #endif
  86. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  87. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  88. #include <sys/wait.h>
  89. void ggml_print_backtrace(void) {
  90. /*
  91. #include <execinfo.h>
  92. #include <dlfcn.h>
  93. void * trace[100];
  94. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  95. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  96. */
  97. // backtrack_symbols does not show line numbers, use gdb instead
  98. char attach[32];
  99. snprintf(attach, sizeof(attach), "attach %d", getpid());
  100. int pid = fork();
  101. if (pid == 0) {
  102. execlp("gdb", "gdb", "--batch",
  103. "-ex", "set style enabled on",
  104. "-ex", attach,
  105. "-ex", "bt -frame-info source-and-location",
  106. "-ex", "detach",
  107. "-ex", "quit",
  108. NULL);
  109. } else {
  110. waitpid(pid, NULL, 0);
  111. }
  112. }
  113. #else
  114. void ggml_print_backtrace(void) {
  115. // platform not supported
  116. }
  117. #endif
  118. /*#define GGML_PERF*/
  119. #define GGML_DEBUG 0
  120. #define GGML_GELU_FP16
  121. #define GGML_GELU_QUICK_FP16
  122. #define GGML_SILU_FP16
  123. // #define GGML_CROSS_ENTROPY_EXP_FP16
  124. // #define GGML_FLASH_ATTN_EXP_FP16
  125. #define GGML_SOFT_MAX_UNROLL 4
  126. #define GGML_VEC_DOT_UNROLL 2
  127. #define GGML_VEC_MAD_UNROLL 32
  128. //
  129. // logging
  130. //
  131. #if (GGML_DEBUG >= 1)
  132. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  133. #else
  134. #define GGML_PRINT_DEBUG(...)
  135. #endif
  136. #if (GGML_DEBUG >= 5)
  137. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG_5(...)
  140. #endif
  141. #if (GGML_DEBUG >= 10)
  142. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_10(...)
  145. #endif
  146. #define GGML_PRINT(...) printf(__VA_ARGS__)
  147. //
  148. // end of logging block
  149. //
  150. #ifdef GGML_USE_ACCELERATE
  151. // uncomment to use vDSP for soft max computation
  152. // note: not sure if it is actually faster
  153. //#define GGML_SOFT_MAX_ACCELERATE
  154. #endif
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void * ggml_aligned_malloc(size_t size) {
  160. if (size == 0) {
  161. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  162. return NULL;
  163. }
  164. void * aligned_memory = NULL;
  165. #ifdef GGML_USE_CPU_HBM
  166. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  167. #elif GGML_USE_METAL
  168. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  169. #else
  170. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  171. #endif
  172. if (result != 0) {
  173. // Handle allocation failure
  174. const char *error_desc = "unknown allocation error";
  175. switch (result) {
  176. case EINVAL:
  177. error_desc = "invalid alignment value";
  178. break;
  179. case ENOMEM:
  180. error_desc = "insufficient memory";
  181. break;
  182. }
  183. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  184. return NULL;
  185. }
  186. return aligned_memory;
  187. }
  188. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  189. #ifdef GGML_USE_CPU_HBM
  190. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  191. #else
  192. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  193. #endif
  194. #endif
  195. #define UNUSED GGML_UNUSED
  196. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  197. #if defined(GGML_USE_ACCELERATE)
  198. #include <Accelerate/Accelerate.h>
  199. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  200. #include "ggml-opencl.h"
  201. #endif
  202. #elif defined(GGML_USE_OPENBLAS)
  203. #if defined(GGML_BLAS_USE_MKL)
  204. #include <mkl.h>
  205. #else
  206. #include <cblas.h>
  207. #endif
  208. #elif defined(GGML_USE_CUBLAS)
  209. #include "ggml-cuda.h"
  210. #elif defined(GGML_USE_CLBLAST)
  211. #include "ggml-opencl.h"
  212. #endif
  213. // floating point type used to accumulate sums
  214. typedef double ggml_float;
  215. #undef MIN
  216. #undef MAX
  217. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  218. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  219. //
  220. // global data
  221. //
  222. // precomputed gelu table for f16 (128 KB)
  223. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  224. // precomputed quick gelu table for f16 (128 KB)
  225. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  226. // precomputed silu table for f16 (128 KB)
  227. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  228. // precomputed exp table for f16 (128 KB)
  229. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  230. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  231. float ggml_table_f32_f16[1 << 16];
  232. // note: do not use these inside ggml.c
  233. // these are meant to be used via the ggml.h API
  234. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  235. return (float) GGML_FP16_TO_FP32(x);
  236. }
  237. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  238. return GGML_FP32_TO_FP16(x);
  239. }
  240. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  241. for (int i = 0; i < n; i++) {
  242. y[i] = GGML_FP16_TO_FP32(x[i]);
  243. }
  244. }
  245. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  246. int i = 0;
  247. #if defined(__F16C__)
  248. for (; i + 7 < n; i += 8) {
  249. __m256 x_vec = _mm256_loadu_ps(x + i);
  250. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  251. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  252. }
  253. for(; i + 3 < n; i += 4) {
  254. __m128 x_vec = _mm_loadu_ps(x + i);
  255. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  256. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  257. }
  258. #endif
  259. for (; i < n; i++) {
  260. y[i] = GGML_FP32_TO_FP16(x[i]);
  261. }
  262. }
  263. //
  264. // timing
  265. //
  266. #if defined(_MSC_VER) || defined(__MINGW32__)
  267. static int64_t timer_freq, timer_start;
  268. void ggml_time_init(void) {
  269. LARGE_INTEGER t;
  270. QueryPerformanceFrequency(&t);
  271. timer_freq = t.QuadPart;
  272. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  273. // and the uptime is high enough.
  274. // We subtract the program start time to reduce the likelihood of that happening.
  275. QueryPerformanceCounter(&t);
  276. timer_start = t.QuadPart;
  277. }
  278. int64_t ggml_time_ms(void) {
  279. LARGE_INTEGER t;
  280. QueryPerformanceCounter(&t);
  281. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  282. }
  283. int64_t ggml_time_us(void) {
  284. LARGE_INTEGER t;
  285. QueryPerformanceCounter(&t);
  286. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  287. }
  288. #else
  289. void ggml_time_init(void) {}
  290. int64_t ggml_time_ms(void) {
  291. struct timespec ts;
  292. clock_gettime(CLOCK_MONOTONIC, &ts);
  293. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  294. }
  295. int64_t ggml_time_us(void) {
  296. struct timespec ts;
  297. clock_gettime(CLOCK_MONOTONIC, &ts);
  298. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  299. }
  300. #endif
  301. int64_t ggml_cycles(void) {
  302. return clock();
  303. }
  304. int64_t ggml_cycles_per_ms(void) {
  305. return CLOCKS_PER_SEC/1000;
  306. }
  307. #ifdef GGML_PERF
  308. #define ggml_perf_time_ms() ggml_time_ms()
  309. #define ggml_perf_time_us() ggml_time_us()
  310. #define ggml_perf_cycles() ggml_cycles()
  311. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  312. #else
  313. #define ggml_perf_time_ms() 0
  314. #define ggml_perf_time_us() 0
  315. #define ggml_perf_cycles() 0
  316. #define ggml_perf_cycles_per_ms() 0
  317. #endif
  318. //
  319. // cache line
  320. //
  321. #if defined(__cpp_lib_hardware_interference_size)
  322. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  323. #else
  324. #if defined(__POWER9_VECTOR__)
  325. #define CACHE_LINE_SIZE 128
  326. #else
  327. #define CACHE_LINE_SIZE 64
  328. #endif
  329. #endif
  330. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  331. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  332. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  333. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  334. [GGML_TYPE_I8] = {
  335. .type_name = "i8",
  336. .blck_size = 1,
  337. .type_size = sizeof(int8_t),
  338. .is_quantized = false,
  339. },
  340. [GGML_TYPE_I16] = {
  341. .type_name = "i16",
  342. .blck_size = 1,
  343. .type_size = sizeof(int16_t),
  344. .is_quantized = false,
  345. },
  346. [GGML_TYPE_I32] = {
  347. .type_name = "i32",
  348. .blck_size = 1,
  349. .type_size = sizeof(int32_t),
  350. .is_quantized = false,
  351. },
  352. [GGML_TYPE_F32] = {
  353. .type_name = "f32",
  354. .blck_size = 1,
  355. .type_size = sizeof(float),
  356. .is_quantized = false,
  357. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  358. .vec_dot_type = GGML_TYPE_F32,
  359. },
  360. [GGML_TYPE_F16] = {
  361. .type_name = "f16",
  362. .blck_size = 1,
  363. .type_size = sizeof(ggml_fp16_t),
  364. .is_quantized = false,
  365. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  366. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  367. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  368. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  369. .vec_dot_type = GGML_TYPE_F16,
  370. },
  371. [GGML_TYPE_Q4_0] = {
  372. .type_name = "q4_0",
  373. .blck_size = QK4_0,
  374. .type_size = sizeof(block_q4_0),
  375. .is_quantized = true,
  376. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  377. .from_float = quantize_row_q4_0,
  378. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  379. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  380. .vec_dot_type = GGML_TYPE_Q8_0,
  381. },
  382. [GGML_TYPE_Q4_1] = {
  383. .type_name = "q4_1",
  384. .blck_size = QK4_1,
  385. .type_size = sizeof(block_q4_1),
  386. .is_quantized = true,
  387. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  388. .from_float = quantize_row_q4_1,
  389. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  390. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  391. .vec_dot_type = GGML_TYPE_Q8_1,
  392. },
  393. [4] = { // GGML_TYPE_Q4_2
  394. .type_name = "DEPRECATED",
  395. .blck_size = 0,
  396. .type_size = 0,
  397. .is_quantized = false,
  398. .to_float = NULL,
  399. .from_float = NULL,
  400. .from_float_reference = NULL,
  401. .vec_dot = NULL,
  402. .vec_dot_type = GGML_TYPE_COUNT,
  403. },
  404. [5] = { // GGML_TYPE_Q4_3
  405. .type_name = "DEPRECATED",
  406. .blck_size = 0,
  407. .type_size = 0,
  408. .is_quantized = false,
  409. .to_float = NULL,
  410. .from_float = NULL,
  411. .from_float_reference = NULL,
  412. .vec_dot = NULL,
  413. .vec_dot_type = GGML_TYPE_COUNT,
  414. },
  415. [GGML_TYPE_Q5_0] = {
  416. .type_name = "q5_0",
  417. .blck_size = QK5_0,
  418. .type_size = sizeof(block_q5_0),
  419. .is_quantized = true,
  420. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  421. .from_float = quantize_row_q5_0,
  422. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  423. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  424. .vec_dot_type = GGML_TYPE_Q8_0,
  425. },
  426. [GGML_TYPE_Q5_1] = {
  427. .type_name = "q5_1",
  428. .blck_size = QK5_1,
  429. .type_size = sizeof(block_q5_1),
  430. .is_quantized = true,
  431. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  432. .from_float = quantize_row_q5_1,
  433. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  434. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  435. .vec_dot_type = GGML_TYPE_Q8_1,
  436. },
  437. [GGML_TYPE_Q8_0] = {
  438. .type_name = "q8_0",
  439. .blck_size = QK8_0,
  440. .type_size = sizeof(block_q8_0),
  441. .is_quantized = true,
  442. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  443. .from_float = quantize_row_q8_0,
  444. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  445. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  446. .vec_dot_type = GGML_TYPE_Q8_0,
  447. },
  448. [GGML_TYPE_Q8_1] = {
  449. .type_name = "q8_1",
  450. .blck_size = QK8_1,
  451. .type_size = sizeof(block_q8_1),
  452. .is_quantized = true,
  453. .from_float = quantize_row_q8_1,
  454. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  455. .vec_dot_type = GGML_TYPE_Q8_1,
  456. },
  457. [GGML_TYPE_Q2_K] = {
  458. .type_name = "q2_K",
  459. .blck_size = QK_K,
  460. .type_size = sizeof(block_q2_K),
  461. .is_quantized = true,
  462. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  463. .from_float = quantize_row_q2_K,
  464. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  465. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  466. .vec_dot_type = GGML_TYPE_Q8_K,
  467. },
  468. [GGML_TYPE_Q3_K] = {
  469. .type_name = "q3_K",
  470. .blck_size = QK_K,
  471. .type_size = sizeof(block_q3_K),
  472. .is_quantized = true,
  473. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  474. .from_float = quantize_row_q3_K,
  475. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  476. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  477. .vec_dot_type = GGML_TYPE_Q8_K,
  478. },
  479. [GGML_TYPE_Q4_K] = {
  480. .type_name = "q4_K",
  481. .blck_size = QK_K,
  482. .type_size = sizeof(block_q4_K),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  485. .from_float = quantize_row_q4_K,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  487. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  488. .vec_dot_type = GGML_TYPE_Q8_K,
  489. },
  490. [GGML_TYPE_Q5_K] = {
  491. .type_name = "q5_K",
  492. .blck_size = QK_K,
  493. .type_size = sizeof(block_q5_K),
  494. .is_quantized = true,
  495. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  496. .from_float = quantize_row_q5_K,
  497. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  498. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  499. .vec_dot_type = GGML_TYPE_Q8_K,
  500. },
  501. [GGML_TYPE_Q6_K] = {
  502. .type_name = "q6_K",
  503. .blck_size = QK_K,
  504. .type_size = sizeof(block_q6_K),
  505. .is_quantized = true,
  506. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  507. .from_float = quantize_row_q6_K,
  508. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  509. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  510. .vec_dot_type = GGML_TYPE_Q8_K,
  511. },
  512. [GGML_TYPE_Q8_K] = {
  513. .type_name = "q8_K",
  514. .blck_size = QK_K,
  515. .type_size = sizeof(block_q8_K),
  516. .is_quantized = true,
  517. .from_float = quantize_row_q8_K,
  518. }
  519. };
  520. // For internal test use
  521. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  522. GGML_ASSERT(type < GGML_TYPE_COUNT);
  523. return type_traits[type];
  524. }
  525. //
  526. // simd mappings
  527. //
  528. #if defined(__ARM_NEON)
  529. #if !defined(__aarch64__)
  530. // 64-bit compatibility
  531. inline static float vaddvq_f32(float32x4_t v) {
  532. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  533. }
  534. #endif
  535. #endif
  536. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  537. // we then implement the fundamental computation operations below using only these macros
  538. // adding support for new architectures requires to define the corresponding SIMD macros
  539. //
  540. // GGML_F32_STEP / GGML_F16_STEP
  541. // number of elements to process in a single step
  542. //
  543. // GGML_F32_EPR / GGML_F16_EPR
  544. // number of elements to fit in a single register
  545. //
  546. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  547. #define GGML_SIMD
  548. // F32 NEON
  549. #define GGML_F32_STEP 16
  550. #define GGML_F32_EPR 4
  551. #define GGML_F32x4 float32x4_t
  552. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  553. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  554. #define GGML_F32x4_LOAD vld1q_f32
  555. #define GGML_F32x4_STORE vst1q_f32
  556. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  557. #define GGML_F32x4_ADD vaddq_f32
  558. #define GGML_F32x4_MUL vmulq_f32
  559. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  560. #define GGML_F32x4_REDUCE(res, x) \
  561. { \
  562. int offset = GGML_F32_ARR >> 1; \
  563. for (int i = 0; i < offset; ++i) { \
  564. x[i] = vaddq_f32(x[i], x[offset+i]); \
  565. } \
  566. offset >>= 1; \
  567. for (int i = 0; i < offset; ++i) { \
  568. x[i] = vaddq_f32(x[i], x[offset+i]); \
  569. } \
  570. offset >>= 1; \
  571. for (int i = 0; i < offset; ++i) { \
  572. x[i] = vaddq_f32(x[i], x[offset+i]); \
  573. } \
  574. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  575. }
  576. #define GGML_F32_VEC GGML_F32x4
  577. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  578. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  579. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  580. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  581. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  582. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  583. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  584. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  585. // F16 NEON
  586. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  587. #define GGML_F16_STEP 32
  588. #define GGML_F16_EPR 8
  589. #define GGML_F16x8 float16x8_t
  590. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  591. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  592. #define GGML_F16x8_LOAD vld1q_f16
  593. #define GGML_F16x8_STORE vst1q_f16
  594. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  595. #define GGML_F16x8_ADD vaddq_f16
  596. #define GGML_F16x8_MUL vmulq_f16
  597. #define GGML_F16x8_REDUCE(res, x) \
  598. do { \
  599. int offset = GGML_F16_ARR >> 1; \
  600. for (int i = 0; i < offset; ++i) { \
  601. x[i] = vaddq_f16(x[i], x[offset+i]); \
  602. } \
  603. offset >>= 1; \
  604. for (int i = 0; i < offset; ++i) { \
  605. x[i] = vaddq_f16(x[i], x[offset+i]); \
  606. } \
  607. offset >>= 1; \
  608. for (int i = 0; i < offset; ++i) { \
  609. x[i] = vaddq_f16(x[i], x[offset+i]); \
  610. } \
  611. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  612. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  613. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  614. } while (0)
  615. #define GGML_F16_VEC GGML_F16x8
  616. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  617. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  618. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  619. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  620. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  621. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  622. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  623. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  624. #else
  625. // if FP16 vector arithmetic is not supported, we use FP32 instead
  626. // and take advantage of the vcvt_ functions to convert to/from FP16
  627. #define GGML_F16_STEP 16
  628. #define GGML_F16_EPR 4
  629. #define GGML_F32Cx4 float32x4_t
  630. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  631. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  632. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  633. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  634. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  635. #define GGML_F32Cx4_ADD vaddq_f32
  636. #define GGML_F32Cx4_MUL vmulq_f32
  637. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  638. #define GGML_F16_VEC GGML_F32Cx4
  639. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  640. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  641. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  642. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  643. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  644. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  645. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  646. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  647. #endif
  648. #elif defined(__AVX__)
  649. #define GGML_SIMD
  650. // F32 AVX
  651. #define GGML_F32_STEP 32
  652. #define GGML_F32_EPR 8
  653. #define GGML_F32x8 __m256
  654. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  655. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  656. #define GGML_F32x8_LOAD _mm256_loadu_ps
  657. #define GGML_F32x8_STORE _mm256_storeu_ps
  658. #if defined(__FMA__)
  659. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  660. #else
  661. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  662. #endif
  663. #define GGML_F32x8_ADD _mm256_add_ps
  664. #define GGML_F32x8_MUL _mm256_mul_ps
  665. #define GGML_F32x8_REDUCE(res, x) \
  666. do { \
  667. int offset = GGML_F32_ARR >> 1; \
  668. for (int i = 0; i < offset; ++i) { \
  669. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  670. } \
  671. offset >>= 1; \
  672. for (int i = 0; i < offset; ++i) { \
  673. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  674. } \
  675. offset >>= 1; \
  676. for (int i = 0; i < offset; ++i) { \
  677. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  678. } \
  679. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  680. _mm256_extractf128_ps(x[0], 1)); \
  681. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  682. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  683. } while (0)
  684. // TODO: is this optimal ?
  685. #define GGML_F32_VEC GGML_F32x8
  686. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  687. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  688. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  689. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  690. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  691. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  692. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  693. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  694. // F16 AVX
  695. #define GGML_F16_STEP 32
  696. #define GGML_F16_EPR 8
  697. // F16 arithmetic is not supported by AVX, so we use F32 instead
  698. #define GGML_F32Cx8 __m256
  699. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  700. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  701. #if defined(__F16C__)
  702. // the _mm256_cvt intrinsics require F16C
  703. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  704. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  705. #else
  706. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  707. float tmp[8];
  708. for (int i = 0; i < 8; i++) {
  709. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  710. }
  711. return _mm256_loadu_ps(tmp);
  712. }
  713. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  714. float arr[8];
  715. _mm256_storeu_ps(arr, y);
  716. for (int i = 0; i < 8; i++)
  717. x[i] = GGML_FP32_TO_FP16(arr[i]);
  718. }
  719. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  720. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  721. #endif
  722. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  723. #define GGML_F32Cx8_ADD _mm256_add_ps
  724. #define GGML_F32Cx8_MUL _mm256_mul_ps
  725. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  726. #define GGML_F16_VEC GGML_F32Cx8
  727. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  728. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  729. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  730. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  731. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  732. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  733. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  734. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  735. #elif defined(__POWER9_VECTOR__)
  736. #define GGML_SIMD
  737. // F32 POWER9
  738. #define GGML_F32_STEP 32
  739. #define GGML_F32_EPR 4
  740. #define GGML_F32x4 vector float
  741. #define GGML_F32x4_ZERO 0.0f
  742. #define GGML_F32x4_SET1 vec_splats
  743. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  744. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  745. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  746. #define GGML_F32x4_ADD vec_add
  747. #define GGML_F32x4_MUL vec_mul
  748. #define GGML_F32x4_REDUCE(res, x) \
  749. { \
  750. int offset = GGML_F32_ARR >> 1; \
  751. for (int i = 0; i < offset; ++i) { \
  752. x[i] = vec_add(x[i], x[offset+i]); \
  753. } \
  754. offset >>= 1; \
  755. for (int i = 0; i < offset; ++i) { \
  756. x[i] = vec_add(x[i], x[offset+i]); \
  757. } \
  758. offset >>= 1; \
  759. for (int i = 0; i < offset; ++i) { \
  760. x[i] = vec_add(x[i], x[offset+i]); \
  761. } \
  762. res = vec_extract(x[0], 0) + \
  763. vec_extract(x[0], 1) + \
  764. vec_extract(x[0], 2) + \
  765. vec_extract(x[0], 3); \
  766. }
  767. #define GGML_F32_VEC GGML_F32x4
  768. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  769. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  770. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  771. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  772. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  773. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  774. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  775. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  776. // F16 POWER9
  777. #define GGML_F16_STEP GGML_F32_STEP
  778. #define GGML_F16_EPR GGML_F32_EPR
  779. #define GGML_F16_VEC GGML_F32x4
  780. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  781. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  782. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  783. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  784. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  785. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  786. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  787. vec_extract_fp32_from_shortl(vec_xl(0, p))
  788. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  789. #define GGML_F16_VEC_STORE(p, r, i) \
  790. if (i & 0x1) \
  791. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  792. r[i - GGML_ENDIAN_BYTE(0)]), \
  793. 0, p - GGML_F16_EPR)
  794. #elif defined(__wasm_simd128__)
  795. #define GGML_SIMD
  796. // F32 WASM
  797. #define GGML_F32_STEP 16
  798. #define GGML_F32_EPR 4
  799. #define GGML_F32x4 v128_t
  800. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  801. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  802. #define GGML_F32x4_LOAD wasm_v128_load
  803. #define GGML_F32x4_STORE wasm_v128_store
  804. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  805. #define GGML_F32x4_ADD wasm_f32x4_add
  806. #define GGML_F32x4_MUL wasm_f32x4_mul
  807. #define GGML_F32x4_REDUCE(res, x) \
  808. { \
  809. int offset = GGML_F32_ARR >> 1; \
  810. for (int i = 0; i < offset; ++i) { \
  811. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  812. } \
  813. offset >>= 1; \
  814. for (int i = 0; i < offset; ++i) { \
  815. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  816. } \
  817. offset >>= 1; \
  818. for (int i = 0; i < offset; ++i) { \
  819. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  820. } \
  821. res = wasm_f32x4_extract_lane(x[0], 0) + \
  822. wasm_f32x4_extract_lane(x[0], 1) + \
  823. wasm_f32x4_extract_lane(x[0], 2) + \
  824. wasm_f32x4_extract_lane(x[0], 3); \
  825. }
  826. #define GGML_F32_VEC GGML_F32x4
  827. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  828. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  829. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  830. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  831. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  832. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  833. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  834. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  835. // F16 WASM
  836. #define GGML_F16_STEP 16
  837. #define GGML_F16_EPR 4
  838. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  839. float tmp[4];
  840. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  841. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  842. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  843. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  844. return wasm_v128_load(tmp);
  845. }
  846. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  847. float tmp[4];
  848. wasm_v128_store(tmp, x);
  849. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  850. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  851. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  852. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  853. }
  854. #define GGML_F16x4 v128_t
  855. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  856. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  857. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  858. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  859. #define GGML_F16x4_FMA GGML_F32x4_FMA
  860. #define GGML_F16x4_ADD wasm_f32x4_add
  861. #define GGML_F16x4_MUL wasm_f32x4_mul
  862. #define GGML_F16x4_REDUCE(res, x) \
  863. { \
  864. int offset = GGML_F16_ARR >> 1; \
  865. for (int i = 0; i < offset; ++i) { \
  866. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  867. } \
  868. offset >>= 1; \
  869. for (int i = 0; i < offset; ++i) { \
  870. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  871. } \
  872. offset >>= 1; \
  873. for (int i = 0; i < offset; ++i) { \
  874. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  875. } \
  876. res = wasm_f32x4_extract_lane(x[0], 0) + \
  877. wasm_f32x4_extract_lane(x[0], 1) + \
  878. wasm_f32x4_extract_lane(x[0], 2) + \
  879. wasm_f32x4_extract_lane(x[0], 3); \
  880. }
  881. #define GGML_F16_VEC GGML_F16x4
  882. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  883. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  884. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  885. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  886. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  887. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  888. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  889. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  890. #elif defined(__SSE3__)
  891. #define GGML_SIMD
  892. // F32 SSE
  893. #define GGML_F32_STEP 32
  894. #define GGML_F32_EPR 4
  895. #define GGML_F32x4 __m128
  896. #define GGML_F32x4_ZERO _mm_setzero_ps()
  897. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  898. #define GGML_F32x4_LOAD _mm_loadu_ps
  899. #define GGML_F32x4_STORE _mm_storeu_ps
  900. #if defined(__FMA__)
  901. // TODO: Does this work?
  902. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  903. #else
  904. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  905. #endif
  906. #define GGML_F32x4_ADD _mm_add_ps
  907. #define GGML_F32x4_MUL _mm_mul_ps
  908. #define GGML_F32x4_REDUCE(res, x) \
  909. { \
  910. int offset = GGML_F32_ARR >> 1; \
  911. for (int i = 0; i < offset; ++i) { \
  912. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  913. } \
  914. offset >>= 1; \
  915. for (int i = 0; i < offset; ++i) { \
  916. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  917. } \
  918. offset >>= 1; \
  919. for (int i = 0; i < offset; ++i) { \
  920. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  921. } \
  922. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  923. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  924. }
  925. // TODO: is this optimal ?
  926. #define GGML_F32_VEC GGML_F32x4
  927. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  928. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  929. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  930. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  931. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  932. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  933. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  934. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  935. // F16 SSE
  936. #define GGML_F16_STEP 32
  937. #define GGML_F16_EPR 4
  938. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  939. float tmp[4];
  940. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  941. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  942. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  943. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  944. return _mm_loadu_ps(tmp);
  945. }
  946. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  947. float arr[4];
  948. _mm_storeu_ps(arr, y);
  949. x[0] = GGML_FP32_TO_FP16(arr[0]);
  950. x[1] = GGML_FP32_TO_FP16(arr[1]);
  951. x[2] = GGML_FP32_TO_FP16(arr[2]);
  952. x[3] = GGML_FP32_TO_FP16(arr[3]);
  953. }
  954. #define GGML_F32Cx4 __m128
  955. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  956. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  957. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  958. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  959. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  960. #define GGML_F32Cx4_ADD _mm_add_ps
  961. #define GGML_F32Cx4_MUL _mm_mul_ps
  962. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  963. #define GGML_F16_VEC GGML_F32Cx4
  964. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  965. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  966. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  967. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  968. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  969. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  970. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  971. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  972. #endif
  973. // GGML_F32_ARR / GGML_F16_ARR
  974. // number of registers to use per step
  975. #ifdef GGML_SIMD
  976. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  977. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  978. #endif
  979. //
  980. // fundamental operations
  981. //
  982. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  983. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  984. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  985. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  986. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  987. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  988. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  989. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  990. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  991. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  992. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  993. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  994. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  995. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  996. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  997. #ifdef GGML_SIMD
  998. float sumf = 0.0f;
  999. const int np = (n & ~(GGML_F32_STEP - 1));
  1000. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1001. GGML_F32_VEC ax[GGML_F32_ARR];
  1002. GGML_F32_VEC ay[GGML_F32_ARR];
  1003. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1004. for (int j = 0; j < GGML_F32_ARR; j++) {
  1005. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1006. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1007. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1008. }
  1009. }
  1010. // reduce sum0..sum3 to sum0
  1011. GGML_F32_VEC_REDUCE(sumf, sum);
  1012. // leftovers
  1013. for (int i = np; i < n; ++i) {
  1014. sumf += x[i]*y[i];
  1015. }
  1016. #else
  1017. // scalar
  1018. ggml_float sumf = 0.0;
  1019. for (int i = 0; i < n; ++i) {
  1020. sumf += (ggml_float)(x[i]*y[i]);
  1021. }
  1022. #endif
  1023. *s = sumf;
  1024. }
  1025. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1026. ggml_float sumf = 0.0;
  1027. #if defined(GGML_SIMD)
  1028. const int np = (n & ~(GGML_F16_STEP - 1));
  1029. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1030. GGML_F16_VEC ax[GGML_F16_ARR];
  1031. GGML_F16_VEC ay[GGML_F16_ARR];
  1032. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1033. for (int j = 0; j < GGML_F16_ARR; j++) {
  1034. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1035. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1036. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1037. }
  1038. }
  1039. // reduce sum0..sum3 to sum0
  1040. GGML_F16_VEC_REDUCE(sumf, sum);
  1041. // leftovers
  1042. for (int i = np; i < n; ++i) {
  1043. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1044. }
  1045. #else
  1046. for (int i = 0; i < n; ++i) {
  1047. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1048. }
  1049. #endif
  1050. *s = sumf;
  1051. }
  1052. // compute GGML_VEC_DOT_UNROLL dot products at once
  1053. // xs - x row stride in bytes
  1054. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1055. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1056. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1057. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1058. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1059. }
  1060. #if defined(GGML_SIMD)
  1061. const int np = (n & ~(GGML_F16_STEP - 1));
  1062. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1063. GGML_F16_VEC ax[GGML_F16_ARR];
  1064. GGML_F16_VEC ay[GGML_F16_ARR];
  1065. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1066. for (int j = 0; j < GGML_F16_ARR; j++) {
  1067. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1068. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1069. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1070. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1071. }
  1072. }
  1073. }
  1074. // reduce sum0..sum3 to sum0
  1075. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1076. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1077. }
  1078. // leftovers
  1079. for (int i = np; i < n; ++i) {
  1080. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1081. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1082. }
  1083. }
  1084. #else
  1085. for (int i = 0; i < n; ++i) {
  1086. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1087. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1088. }
  1089. }
  1090. #endif
  1091. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1092. s[i] = sumf[i];
  1093. }
  1094. }
  1095. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1096. #if defined(GGML_SIMD)
  1097. const int np = (n & ~(GGML_F32_STEP - 1));
  1098. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1099. GGML_F32_VEC ax[GGML_F32_ARR];
  1100. GGML_F32_VEC ay[GGML_F32_ARR];
  1101. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1102. for (int j = 0; j < GGML_F32_ARR; j++) {
  1103. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1104. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1105. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1106. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1107. }
  1108. }
  1109. // leftovers
  1110. for (int i = np; i < n; ++i) {
  1111. y[i] += x[i]*v;
  1112. }
  1113. #else
  1114. // scalar
  1115. for (int i = 0; i < n; ++i) {
  1116. y[i] += x[i]*v;
  1117. }
  1118. #endif
  1119. }
  1120. // xs and vs are byte strides of x and v
  1121. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1122. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1123. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1124. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1125. x[i] = (const float *) ((const char *) xv + i*xs);
  1126. v[i] = (const float *) ((const char *) vv + i*vs);
  1127. }
  1128. #if defined(GGML_SIMD)
  1129. const int np = (n & ~(GGML_F32_STEP - 1));
  1130. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1131. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1132. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1133. }
  1134. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1135. GGML_F32_VEC ay[GGML_F32_ARR];
  1136. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1137. for (int j = 0; j < GGML_F32_ARR; j++) {
  1138. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1139. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1140. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1141. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1142. }
  1143. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1144. }
  1145. }
  1146. // leftovers
  1147. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1148. for (int i = np; i < n; ++i) {
  1149. y[i] += x[k][i]*v[k][0];
  1150. }
  1151. }
  1152. #else
  1153. // scalar
  1154. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1155. for (int i = 0; i < n; ++i) {
  1156. y[i] += x[k][i]*v[k][0];
  1157. }
  1158. }
  1159. #endif
  1160. }
  1161. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1162. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1163. #if defined(GGML_USE_ACCELERATE)
  1164. vDSP_vsmul(y, 1, &v, y, 1, n);
  1165. #elif defined(GGML_SIMD)
  1166. const int np = (n & ~(GGML_F32_STEP - 1));
  1167. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1168. GGML_F32_VEC ay[GGML_F32_ARR];
  1169. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1170. for (int j = 0; j < GGML_F32_ARR; j++) {
  1171. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1172. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1173. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1174. }
  1175. }
  1176. // leftovers
  1177. for (int i = np; i < n; ++i) {
  1178. y[i] *= v;
  1179. }
  1180. #else
  1181. // scalar
  1182. for (int i = 0; i < n; ++i) {
  1183. y[i] *= v;
  1184. }
  1185. #endif
  1186. }
  1187. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1188. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1189. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1190. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1191. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1192. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1193. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1194. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1195. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1196. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1197. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1198. static const float GELU_COEF_A = 0.044715f;
  1199. static const float GELU_QUICK_COEF = -1.702f;
  1200. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1201. inline static float ggml_gelu_f32(float x) {
  1202. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1203. }
  1204. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1205. const uint16_t * i16 = (const uint16_t *) x;
  1206. for (int i = 0; i < n; ++i) {
  1207. y[i] = ggml_table_gelu_f16[i16[i]];
  1208. }
  1209. }
  1210. #ifdef GGML_GELU_FP16
  1211. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1212. uint16_t t;
  1213. for (int i = 0; i < n; ++i) {
  1214. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1215. memcpy(&t, &fp16, sizeof(uint16_t));
  1216. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1217. }
  1218. }
  1219. #else
  1220. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1221. for (int i = 0; i < n; ++i) {
  1222. y[i] = ggml_gelu_f32(x[i]);
  1223. }
  1224. }
  1225. #endif
  1226. inline static float ggml_gelu_quick_f32(float x) {
  1227. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1228. }
  1229. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1230. // const uint16_t * i16 = (const uint16_t *) x;
  1231. // for (int i = 0; i < n; ++i) {
  1232. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1233. // }
  1234. //}
  1235. #ifdef GGML_GELU_QUICK_FP16
  1236. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1237. uint16_t t;
  1238. for (int i = 0; i < n; ++i) {
  1239. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1240. memcpy(&t, &fp16, sizeof(uint16_t));
  1241. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1242. }
  1243. }
  1244. #else
  1245. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1246. for (int i = 0; i < n; ++i) {
  1247. y[i] = ggml_gelu_quick_f32(x[i]);
  1248. }
  1249. }
  1250. #endif
  1251. // Sigmoid Linear Unit (SiLU) function
  1252. inline static float ggml_silu_f32(float x) {
  1253. return x/(1.0f + expf(-x));
  1254. }
  1255. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1256. // const uint16_t * i16 = (const uint16_t *) x;
  1257. // for (int i = 0; i < n; ++i) {
  1258. // y[i] = ggml_table_silu_f16[i16[i]];
  1259. // }
  1260. //}
  1261. #ifdef GGML_SILU_FP16
  1262. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1263. uint16_t t;
  1264. for (int i = 0; i < n; ++i) {
  1265. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1266. memcpy(&t, &fp16, sizeof(uint16_t));
  1267. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1268. }
  1269. }
  1270. #else
  1271. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1272. for (int i = 0; i < n; ++i) {
  1273. y[i] = ggml_silu_f32(x[i]);
  1274. }
  1275. }
  1276. #endif
  1277. inline static float ggml_silu_backward_f32(float x, float dy) {
  1278. const float s = 1.0f/(1.0f + expf(-x));
  1279. return dy*s*(1.0f + x*(1.0f - s));
  1280. }
  1281. #ifdef GGML_SILU_FP16
  1282. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1283. for (int i = 0; i < n; ++i) {
  1284. // we did not use x[i] to compute forward silu but its f16 equivalent
  1285. // take derivative at f16 of x[i]:
  1286. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1287. float usedx = GGML_FP16_TO_FP32(fp16);
  1288. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1289. }
  1290. }
  1291. #else
  1292. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1293. for (int i = 0; i < n; ++i) {
  1294. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1295. }
  1296. }
  1297. #endif
  1298. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1299. #ifndef GGML_USE_ACCELERATE
  1300. ggml_float sum = 0.0;
  1301. for (int i = 0; i < n; ++i) {
  1302. sum += (ggml_float)x[i];
  1303. }
  1304. *s = sum;
  1305. #else
  1306. vDSP_sve(x, 1, s, n);
  1307. #endif
  1308. }
  1309. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1310. ggml_float sum = 0.0;
  1311. for (int i = 0; i < n; ++i) {
  1312. sum += (ggml_float)x[i];
  1313. }
  1314. *s = sum;
  1315. }
  1316. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1317. float sum = 0.0f;
  1318. for (int i = 0; i < n; ++i) {
  1319. sum += GGML_FP16_TO_FP32(x[i]);
  1320. }
  1321. *s = sum;
  1322. }
  1323. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1324. #ifndef GGML_USE_ACCELERATE
  1325. float max = -INFINITY;
  1326. for (int i = 0; i < n; ++i) {
  1327. max = MAX(max, x[i]);
  1328. }
  1329. *s = max;
  1330. #else
  1331. vDSP_maxv(x, 1, s, n);
  1332. #endif
  1333. }
  1334. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1335. ggml_vec_norm_f32(n, s, x);
  1336. *s = 1.f/(*s);
  1337. }
  1338. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1339. float max = -INFINITY;
  1340. int idx = 0;
  1341. for (int i = 0; i < n; ++i) {
  1342. max = MAX(max, x[i]);
  1343. if (max == x[i]) { idx = i; }
  1344. }
  1345. *s = idx;
  1346. }
  1347. //
  1348. // data types
  1349. //
  1350. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1351. "NONE",
  1352. "DUP",
  1353. "ADD",
  1354. "ADD1",
  1355. "ACC",
  1356. "SUB",
  1357. "MUL",
  1358. "DIV",
  1359. "SQR",
  1360. "SQRT",
  1361. "LOG",
  1362. "SUM",
  1363. "SUM_ROWS",
  1364. "MEAN",
  1365. "ARGMAX",
  1366. "REPEAT",
  1367. "REPEAT_BACK",
  1368. "CONCAT",
  1369. "SILU_BACK",
  1370. "NORM",
  1371. "RMS_NORM",
  1372. "RMS_NORM_BACK",
  1373. "GROUP_NORM",
  1374. "MUL_MAT",
  1375. "MUL_MAT_ID",
  1376. "OUT_PROD",
  1377. "SCALE",
  1378. "SET",
  1379. "CPY",
  1380. "CONT",
  1381. "RESHAPE",
  1382. "VIEW",
  1383. "PERMUTE",
  1384. "TRANSPOSE",
  1385. "GET_ROWS",
  1386. "GET_ROWS_BACK",
  1387. "DIAG",
  1388. "DIAG_MASK_INF",
  1389. "DIAG_MASK_ZERO",
  1390. "SOFT_MAX",
  1391. "SOFT_MAX_BACK",
  1392. "ROPE",
  1393. "ROPE_BACK",
  1394. "ALIBI",
  1395. "CLAMP",
  1396. "CONV_TRANSPOSE_1D",
  1397. "IM2COL",
  1398. "CONV_TRANSPOSE_2D",
  1399. "POOL_1D",
  1400. "POOL_2D",
  1401. "UPSCALE",
  1402. "PAD",
  1403. "ARGSORT",
  1404. "LEAKY_RELU",
  1405. "FLASH_ATTN",
  1406. "FLASH_FF",
  1407. "FLASH_ATTN_BACK",
  1408. "WIN_PART",
  1409. "WIN_UNPART",
  1410. "GET_REL_POS",
  1411. "ADD_REL_POS",
  1412. "UNARY",
  1413. "MAP_UNARY",
  1414. "MAP_BINARY",
  1415. "MAP_CUSTOM1_F32",
  1416. "MAP_CUSTOM2_F32",
  1417. "MAP_CUSTOM3_F32",
  1418. "MAP_CUSTOM1",
  1419. "MAP_CUSTOM2",
  1420. "MAP_CUSTOM3",
  1421. "CROSS_ENTROPY_LOSS",
  1422. "CROSS_ENTROPY_LOSS_BACK",
  1423. };
  1424. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1425. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1426. "none",
  1427. "x",
  1428. "x+y",
  1429. "x+y",
  1430. "view(x,nb,offset)+=y->x",
  1431. "x-y",
  1432. "x*y",
  1433. "x/y",
  1434. "x^2",
  1435. "√x",
  1436. "log(x)",
  1437. "Σx",
  1438. "Σx_k",
  1439. "Σx/n",
  1440. "argmax(x)",
  1441. "repeat(x)",
  1442. "repeat_back(x)",
  1443. "concat(x, y)",
  1444. "silu_back(x)",
  1445. "norm(x)",
  1446. "rms_norm(x)",
  1447. "rms_norm_back(x)",
  1448. "group_norm(x)",
  1449. "X*Y",
  1450. "X[i]*Y",
  1451. "X*Y",
  1452. "x*v",
  1453. "y-\\>view(x)",
  1454. "x-\\>y",
  1455. "cont(x)",
  1456. "reshape(x)",
  1457. "view(x)",
  1458. "permute(x)",
  1459. "transpose(x)",
  1460. "get_rows(x)",
  1461. "get_rows_back(x)",
  1462. "diag(x)",
  1463. "diag_mask_inf(x)",
  1464. "diag_mask_zero(x)",
  1465. "soft_max(x)",
  1466. "soft_max_back(x)",
  1467. "rope(x)",
  1468. "rope_back(x)",
  1469. "alibi(x)",
  1470. "clamp(x)",
  1471. "conv_transpose_1d(x)",
  1472. "im2col(x)",
  1473. "conv_transpose_2d(x)",
  1474. "pool_1d(x)",
  1475. "pool_2d(x)",
  1476. "upscale(x)",
  1477. "pad(x)",
  1478. "argsort(x)",
  1479. "leaky_relu(x)",
  1480. "flash_attn(x)",
  1481. "flash_ff(x)",
  1482. "flash_attn_back(x)",
  1483. "win_part(x)",
  1484. "win_unpart(x)",
  1485. "get_rel_pos(x)",
  1486. "add_rel_pos(x)",
  1487. "unary(x)",
  1488. "f(x)",
  1489. "f(x,y)",
  1490. "custom_f32(x)",
  1491. "custom_f32(x,y)",
  1492. "custom_f32(x,y,z)",
  1493. "custom(x)",
  1494. "custom(x,y)",
  1495. "custom(x,y,z)",
  1496. "cross_entropy_loss(x,y)",
  1497. "cross_entropy_loss_back(x,y)",
  1498. };
  1499. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1500. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1501. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1502. "ABS",
  1503. "SGN",
  1504. "NEG",
  1505. "STEP",
  1506. "TANH",
  1507. "ELU",
  1508. "RELU",
  1509. "GELU",
  1510. "GELU_QUICK",
  1511. "SILU",
  1512. };
  1513. static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10");
  1514. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1515. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1516. // WARN:
  1517. // Mis-configuration can lead to problem that's hard to reason about:
  1518. // * At best it crash or talks nosense.
  1519. // * At worst it talks slightly difference but hard to perceive.
  1520. //
  1521. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1522. // Take care about compile options (e.g., GGML_USE_xxx).
  1523. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1524. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1525. static void ggml_setup_op_has_task_pass(void) {
  1526. { // INIT
  1527. bool * p = GGML_OP_HAS_INIT;
  1528. p[GGML_OP_ACC ] = true;
  1529. p[GGML_OP_MUL_MAT ] = true;
  1530. p[GGML_OP_MUL_MAT_ID ] = true;
  1531. p[GGML_OP_OUT_PROD ] = true;
  1532. p[GGML_OP_SET ] = true;
  1533. p[GGML_OP_GET_ROWS_BACK ] = true;
  1534. p[GGML_OP_DIAG_MASK_INF ] = true;
  1535. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1536. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1537. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1538. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1539. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1540. p[GGML_OP_ADD_REL_POS ] = true;
  1541. }
  1542. { // FINALIZE
  1543. bool * p = GGML_OP_HAS_FINALIZE;
  1544. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1545. }
  1546. }
  1547. //
  1548. // ggml context
  1549. //
  1550. struct ggml_context {
  1551. size_t mem_size;
  1552. void * mem_buffer;
  1553. bool mem_buffer_owned;
  1554. bool no_alloc;
  1555. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1556. int n_objects;
  1557. struct ggml_object * objects_begin;
  1558. struct ggml_object * objects_end;
  1559. struct ggml_scratch scratch;
  1560. struct ggml_scratch scratch_save;
  1561. };
  1562. struct ggml_context_container {
  1563. bool used;
  1564. struct ggml_context context;
  1565. };
  1566. //
  1567. // NUMA support
  1568. //
  1569. #define GGML_NUMA_MAX_NODES 8
  1570. #define GGML_NUMA_MAX_CPUS 512
  1571. struct ggml_numa_node {
  1572. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1573. uint32_t n_cpus;
  1574. };
  1575. struct ggml_numa_nodes {
  1576. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1577. uint32_t n_nodes;
  1578. uint32_t total_cpus; // hardware threads on system
  1579. };
  1580. //
  1581. // ggml state
  1582. //
  1583. struct ggml_state {
  1584. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1585. struct ggml_numa_nodes numa;
  1586. };
  1587. // global state
  1588. static struct ggml_state g_state;
  1589. static atomic_int g_state_barrier = 0;
  1590. // barrier via spin lock
  1591. inline static void ggml_critical_section_start(void) {
  1592. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1593. while (processing > 0) {
  1594. // wait for other threads to finish
  1595. atomic_fetch_sub(&g_state_barrier, 1);
  1596. sched_yield(); // TODO: reconsider this
  1597. processing = atomic_fetch_add(&g_state_barrier, 1);
  1598. }
  1599. }
  1600. // TODO: make this somehow automatically executed
  1601. // some sort of "sentry" mechanism
  1602. inline static void ggml_critical_section_end(void) {
  1603. atomic_fetch_sub(&g_state_barrier, 1);
  1604. }
  1605. void ggml_numa_init(void) {
  1606. if (g_state.numa.n_nodes > 0) {
  1607. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1608. return;
  1609. }
  1610. #ifdef __linux__
  1611. struct stat st;
  1612. char path[256];
  1613. int rv;
  1614. // enumerate nodes
  1615. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1616. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1617. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1618. if (stat(path, &st) != 0) { break; }
  1619. ++g_state.numa.n_nodes;
  1620. }
  1621. // enumerate CPUs
  1622. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1623. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1624. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1625. if (stat(path, &st) != 0) { break; }
  1626. ++g_state.numa.total_cpus;
  1627. }
  1628. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1629. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  1630. g_state.numa.n_nodes = 0;
  1631. return;
  1632. }
  1633. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1634. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1635. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1636. node->n_cpus = 0;
  1637. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1638. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1639. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1640. if (stat(path, &st) == 0) {
  1641. node->cpus[node->n_cpus++] = c;
  1642. GGML_PRINT_DEBUG(" %u", c);
  1643. }
  1644. }
  1645. GGML_PRINT_DEBUG("\n");
  1646. }
  1647. if (ggml_is_numa()) {
  1648. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1649. if (fptr != NULL) {
  1650. char buf[42];
  1651. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1652. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1653. }
  1654. fclose(fptr);
  1655. }
  1656. }
  1657. #else
  1658. // TODO
  1659. #endif
  1660. }
  1661. bool ggml_is_numa(void) {
  1662. return g_state.numa.n_nodes > 1;
  1663. }
  1664. ////////////////////////////////////////////////////////////////////////////////
  1665. void ggml_print_object(const struct ggml_object * obj) {
  1666. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1667. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1668. }
  1669. void ggml_print_objects(const struct ggml_context * ctx) {
  1670. struct ggml_object * obj = ctx->objects_begin;
  1671. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1672. while (obj != NULL) {
  1673. ggml_print_object(obj);
  1674. obj = obj->next;
  1675. }
  1676. GGML_PRINT("%s: --- end ---\n", __func__);
  1677. }
  1678. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1679. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1680. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1681. }
  1682. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1683. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1684. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1685. }
  1686. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1687. size_t nbytes;
  1688. size_t blck_size = ggml_blck_size(tensor->type);
  1689. if (blck_size == 1) {
  1690. nbytes = ggml_type_size(tensor->type);
  1691. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1692. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1693. }
  1694. }
  1695. else {
  1696. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1697. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1698. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1699. }
  1700. }
  1701. return nbytes;
  1702. }
  1703. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1704. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1705. }
  1706. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  1707. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1708. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  1709. }
  1710. int ggml_blck_size(enum ggml_type type) {
  1711. return type_traits[type].blck_size;
  1712. }
  1713. size_t ggml_type_size(enum ggml_type type) {
  1714. return type_traits[type].type_size;
  1715. }
  1716. size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1717. assert(ne % ggml_blck_size(type) == 0);
  1718. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1719. }
  1720. double ggml_type_sizef(enum ggml_type type) {
  1721. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1722. }
  1723. const char * ggml_type_name(enum ggml_type type) {
  1724. return type_traits[type].type_name;
  1725. }
  1726. bool ggml_is_quantized(enum ggml_type type) {
  1727. return type_traits[type].is_quantized;
  1728. }
  1729. const char * ggml_op_name(enum ggml_op op) {
  1730. return GGML_OP_NAME[op];
  1731. }
  1732. const char * ggml_op_symbol(enum ggml_op op) {
  1733. return GGML_OP_SYMBOL[op];
  1734. }
  1735. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1736. return GGML_UNARY_OP_NAME[op];
  1737. }
  1738. const char * ggml_op_desc(const struct ggml_tensor * t) {
  1739. if (t->op == GGML_OP_UNARY) {
  1740. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1741. return ggml_unary_op_name(uop);
  1742. }
  1743. else {
  1744. return ggml_op_name(t->op);
  1745. }
  1746. }
  1747. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1748. return ggml_type_size(tensor->type);
  1749. }
  1750. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1751. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1752. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1753. }
  1754. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1755. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1756. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1757. }
  1758. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1759. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1760. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1761. }
  1762. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1763. return tensor->ne[3] == 1;
  1764. }
  1765. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1766. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1767. if (tensor->ne[i] > 1) {
  1768. return i + 1;
  1769. }
  1770. }
  1771. return 1;
  1772. }
  1773. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1774. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1775. return (t0->ne[0] == t1->ne[0]) &&
  1776. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1777. (t1->ne[3]%t0->ne[3] == 0);
  1778. }
  1779. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1780. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1781. return (t0->ne[1] == t1->ne[1]) &&
  1782. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1783. (t1->ne[3]%t0->ne[3] == 0);
  1784. }
  1785. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1786. enum ggml_type wtype = GGML_TYPE_COUNT;
  1787. switch (ftype) {
  1788. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1789. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1790. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1791. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1792. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1793. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1794. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1795. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1796. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1797. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1798. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1799. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1800. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  1801. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  1802. }
  1803. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  1804. return wtype;
  1805. }
  1806. size_t ggml_tensor_overhead(void) {
  1807. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  1808. }
  1809. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1810. return tensor->nb[0] > tensor->nb[1];
  1811. }
  1812. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1813. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1814. return
  1815. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1816. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  1817. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1818. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1819. }
  1820. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  1821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1822. return
  1823. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1824. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1825. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1826. }
  1827. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  1828. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1829. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  1830. }
  1831. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1832. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1833. return
  1834. tensor->nb[0] == ggml_type_size(tensor->type) &&
  1835. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1836. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1837. }
  1838. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1839. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1840. return
  1841. (t0->ne[0] == t1->ne[0] ) &&
  1842. (t0->ne[1] == t1->ne[1] ) &&
  1843. (t0->ne[2] == t1->ne[2] ) &&
  1844. (t0->ne[3] == t1->ne[3] );
  1845. }
  1846. // check if t1 can be represented as a repeatition of t0
  1847. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1848. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1849. return
  1850. (t1->ne[0]%t0->ne[0] == 0) &&
  1851. (t1->ne[1]%t0->ne[1] == 0) &&
  1852. (t1->ne[2]%t0->ne[2] == 0) &&
  1853. (t1->ne[3]%t0->ne[3] == 0);
  1854. }
  1855. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1856. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1857. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  1858. }
  1859. static inline int ggml_up32(int n) {
  1860. return (n + 31) & ~31;
  1861. }
  1862. //static inline int ggml_up64(int n) {
  1863. // return (n + 63) & ~63;
  1864. //}
  1865. static inline int ggml_up(int n, int m) {
  1866. // assert m is a power of 2
  1867. GGML_ASSERT((m & (m - 1)) == 0);
  1868. return (n + m - 1) & ~(m - 1);
  1869. }
  1870. // assert that pointer is aligned to GGML_MEM_ALIGN
  1871. #define ggml_assert_aligned(ptr) \
  1872. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  1873. ////////////////////////////////////////////////////////////////////////////////
  1874. struct ggml_context * ggml_init(struct ggml_init_params params) {
  1875. // make this function thread safe
  1876. ggml_critical_section_start();
  1877. static bool is_first_call = true;
  1878. if (is_first_call) {
  1879. // initialize time system (required on Windows)
  1880. ggml_time_init();
  1881. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  1882. {
  1883. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1884. ggml_fp16_t ii;
  1885. for (int i = 0; i < (1 << 16); ++i) {
  1886. uint16_t ui = i;
  1887. memcpy(&ii, &ui, sizeof(ii));
  1888. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  1889. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  1890. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  1891. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  1892. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  1893. }
  1894. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1895. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1896. }
  1897. // initialize g_state
  1898. {
  1899. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  1900. g_state = (struct ggml_state) {
  1901. /*.contexts =*/ { { 0 } },
  1902. /*.numa =*/ {
  1903. .n_nodes = 0,
  1904. .total_cpus = 0,
  1905. },
  1906. };
  1907. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  1908. g_state.contexts[i].used = false;
  1909. }
  1910. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  1911. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  1912. }
  1913. #if defined(GGML_USE_CUBLAS)
  1914. ggml_init_cublas();
  1915. #elif defined(GGML_USE_CLBLAST)
  1916. ggml_cl_init();
  1917. #endif
  1918. ggml_setup_op_has_task_pass();
  1919. is_first_call = false;
  1920. }
  1921. // find non-used context in g_state
  1922. struct ggml_context * ctx = NULL;
  1923. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1924. if (!g_state.contexts[i].used) {
  1925. g_state.contexts[i].used = true;
  1926. ctx = &g_state.contexts[i].context;
  1927. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  1928. break;
  1929. }
  1930. }
  1931. if (ctx == NULL) {
  1932. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  1933. ggml_critical_section_end();
  1934. return NULL;
  1935. }
  1936. // allow to call ggml_init with 0 size
  1937. if (params.mem_size == 0) {
  1938. params.mem_size = GGML_MEM_ALIGN;
  1939. }
  1940. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  1941. *ctx = (struct ggml_context) {
  1942. /*.mem_size =*/ mem_size,
  1943. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  1944. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  1945. /*.no_alloc =*/ params.no_alloc,
  1946. /*.no_alloc_save =*/ params.no_alloc,
  1947. /*.n_objects =*/ 0,
  1948. /*.objects_begin =*/ NULL,
  1949. /*.objects_end =*/ NULL,
  1950. /*.scratch =*/ { 0, 0, NULL, },
  1951. /*.scratch_save =*/ { 0, 0, NULL, },
  1952. };
  1953. GGML_ASSERT(ctx->mem_buffer != NULL);
  1954. ggml_assert_aligned(ctx->mem_buffer);
  1955. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  1956. ggml_critical_section_end();
  1957. return ctx;
  1958. }
  1959. void ggml_free(struct ggml_context * ctx) {
  1960. // make this function thread safe
  1961. ggml_critical_section_start();
  1962. bool found = false;
  1963. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  1964. if (&g_state.contexts[i].context == ctx) {
  1965. g_state.contexts[i].used = false;
  1966. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  1967. __func__, i, ggml_used_mem(ctx));
  1968. if (ctx->mem_buffer_owned) {
  1969. GGML_ALIGNED_FREE(ctx->mem_buffer);
  1970. }
  1971. found = true;
  1972. break;
  1973. }
  1974. }
  1975. if (!found) {
  1976. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  1977. }
  1978. ggml_critical_section_end();
  1979. }
  1980. size_t ggml_used_mem(const struct ggml_context * ctx) {
  1981. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  1982. }
  1983. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  1984. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  1985. ctx->scratch = scratch;
  1986. return result;
  1987. }
  1988. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  1989. return ctx->no_alloc;
  1990. }
  1991. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  1992. ctx->no_alloc = no_alloc;
  1993. }
  1994. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  1995. return ctx->mem_buffer;
  1996. }
  1997. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  1998. return ctx->mem_size;
  1999. }
  2000. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2001. size_t max_size = 0;
  2002. struct ggml_object * obj = ctx->objects_begin;
  2003. while (obj != NULL) {
  2004. if (obj->type == GGML_OBJECT_TENSOR) {
  2005. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  2006. const size_t size = ggml_nbytes(tensor);
  2007. if (max_size < size) {
  2008. max_size = size;
  2009. }
  2010. }
  2011. obj = obj->next;
  2012. }
  2013. return max_size;
  2014. }
  2015. // IMPORTANT:
  2016. // when creating "opt" tensors, always save and load the scratch buffer
  2017. // this is an error prone process, but it is necessary to support inplace
  2018. // operators when using scratch buffers
  2019. // TODO: implement a better way
  2020. static void ggml_scratch_save(struct ggml_context * ctx) {
  2021. // this is needed to allow opt tensors to store their data
  2022. // TODO: again, need to find a better way
  2023. ctx->no_alloc_save = ctx->no_alloc;
  2024. ctx->no_alloc = false;
  2025. ctx->scratch_save = ctx->scratch;
  2026. ctx->scratch.data = NULL;
  2027. }
  2028. static void ggml_scratch_load(struct ggml_context * ctx) {
  2029. ctx->no_alloc = ctx->no_alloc_save;
  2030. ctx->scratch = ctx->scratch_save;
  2031. }
  2032. ////////////////////////////////////////////////////////////////////////////////
  2033. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2034. // always insert objects at the end of the context's memory pool
  2035. struct ggml_object * obj_cur = ctx->objects_end;
  2036. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2037. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2038. const size_t cur_end = cur_offs + cur_size;
  2039. // align to GGML_MEM_ALIGN
  2040. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2041. char * const mem_buffer = ctx->mem_buffer;
  2042. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2043. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2044. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2045. __func__, cur_end + size_needed, ctx->mem_size);
  2046. assert(false);
  2047. return NULL;
  2048. }
  2049. *obj_new = (struct ggml_object) {
  2050. .offs = cur_end + GGML_OBJECT_SIZE,
  2051. .size = size_needed,
  2052. .next = NULL,
  2053. .type = type,
  2054. };
  2055. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2056. if (obj_cur != NULL) {
  2057. obj_cur->next = obj_new;
  2058. } else {
  2059. // this is the first object in this context
  2060. ctx->objects_begin = obj_new;
  2061. }
  2062. ctx->objects_end = obj_new;
  2063. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2064. return obj_new;
  2065. }
  2066. static struct ggml_tensor * ggml_new_tensor_impl(
  2067. struct ggml_context * ctx,
  2068. enum ggml_type type,
  2069. int n_dims,
  2070. const int64_t * ne,
  2071. struct ggml_tensor * view_src,
  2072. size_t view_offs) {
  2073. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2074. // find the base tensor and absolute offset
  2075. if (view_src != NULL && view_src->view_src != NULL) {
  2076. view_offs += view_src->view_offs;
  2077. view_src = view_src->view_src;
  2078. }
  2079. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  2080. for (int i = 1; i < n_dims; i++) {
  2081. data_size *= ne[i];
  2082. }
  2083. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2084. void * data = view_src != NULL ? view_src->data : NULL;
  2085. if (data != NULL) {
  2086. data = (char *) data + view_offs;
  2087. }
  2088. size_t obj_alloc_size = 0;
  2089. if (view_src == NULL && !ctx->no_alloc) {
  2090. if (ctx->scratch.data != NULL) {
  2091. // allocate tensor data in the scratch buffer
  2092. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2093. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2094. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2095. assert(false);
  2096. return NULL;
  2097. }
  2098. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2099. ctx->scratch.offs += data_size;
  2100. } else {
  2101. // allocate tensor data in the context's memory pool
  2102. obj_alloc_size = data_size;
  2103. }
  2104. }
  2105. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2106. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2107. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2108. *result = (struct ggml_tensor) {
  2109. /*.type =*/ type,
  2110. /*.backend =*/ GGML_BACKEND_CPU,
  2111. /*.buffer =*/ NULL,
  2112. /*.ne =*/ { 1, 1, 1, 1 },
  2113. /*.nb =*/ { 0, 0, 0, 0 },
  2114. /*.op =*/ GGML_OP_NONE,
  2115. /*.op_params =*/ { 0 },
  2116. /*.is_param =*/ false,
  2117. /*.grad =*/ NULL,
  2118. /*.src =*/ { NULL },
  2119. /*.perf_runs =*/ 0,
  2120. /*.perf_cycles =*/ 0,
  2121. /*.perf_time_us =*/ 0,
  2122. /*.view_src =*/ view_src,
  2123. /*.view_offs =*/ view_offs,
  2124. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2125. /*.name =*/ { 0 },
  2126. /*.extra =*/ NULL,
  2127. /*.padding =*/ { 0 },
  2128. };
  2129. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2130. //ggml_assert_aligned(result->data);
  2131. for (int i = 0; i < n_dims; i++) {
  2132. result->ne[i] = ne[i];
  2133. }
  2134. result->nb[0] = ggml_type_size(type);
  2135. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2136. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2137. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2138. }
  2139. ctx->n_objects++;
  2140. return result;
  2141. }
  2142. struct ggml_tensor * ggml_new_tensor(
  2143. struct ggml_context * ctx,
  2144. enum ggml_type type,
  2145. int n_dims,
  2146. const int64_t * ne) {
  2147. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2148. }
  2149. struct ggml_tensor * ggml_new_tensor_1d(
  2150. struct ggml_context * ctx,
  2151. enum ggml_type type,
  2152. int64_t ne0) {
  2153. return ggml_new_tensor(ctx, type, 1, &ne0);
  2154. }
  2155. struct ggml_tensor * ggml_new_tensor_2d(
  2156. struct ggml_context * ctx,
  2157. enum ggml_type type,
  2158. int64_t ne0,
  2159. int64_t ne1) {
  2160. const int64_t ne[2] = { ne0, ne1 };
  2161. return ggml_new_tensor(ctx, type, 2, ne);
  2162. }
  2163. struct ggml_tensor * ggml_new_tensor_3d(
  2164. struct ggml_context * ctx,
  2165. enum ggml_type type,
  2166. int64_t ne0,
  2167. int64_t ne1,
  2168. int64_t ne2) {
  2169. const int64_t ne[3] = { ne0, ne1, ne2 };
  2170. return ggml_new_tensor(ctx, type, 3, ne);
  2171. }
  2172. struct ggml_tensor * ggml_new_tensor_4d(
  2173. struct ggml_context * ctx,
  2174. enum ggml_type type,
  2175. int64_t ne0,
  2176. int64_t ne1,
  2177. int64_t ne2,
  2178. int64_t ne3) {
  2179. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2180. return ggml_new_tensor(ctx, type, 4, ne);
  2181. }
  2182. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2183. ggml_scratch_save(ctx);
  2184. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2185. ggml_scratch_load(ctx);
  2186. ggml_set_i32(result, value);
  2187. return result;
  2188. }
  2189. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2190. ggml_scratch_save(ctx);
  2191. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2192. ggml_scratch_load(ctx);
  2193. ggml_set_f32(result, value);
  2194. return result;
  2195. }
  2196. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2197. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2198. }
  2199. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2200. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2201. assert(params_size <= GGML_MAX_OP_PARAMS);
  2202. memcpy(tensor->op_params, params, params_size);
  2203. }
  2204. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2205. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2206. return ((const int32_t *)(tensor->op_params))[i];
  2207. }
  2208. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2209. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2210. ((int32_t *)(tensor->op_params))[i] = value;
  2211. }
  2212. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2213. memset(tensor->data, 0, ggml_nbytes(tensor));
  2214. return tensor;
  2215. }
  2216. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2217. const int n = ggml_nrows(tensor);
  2218. const int nc = tensor->ne[0];
  2219. const size_t n1 = tensor->nb[1];
  2220. char * const data = tensor->data;
  2221. switch (tensor->type) {
  2222. case GGML_TYPE_I8:
  2223. {
  2224. assert(tensor->nb[0] == sizeof(int8_t));
  2225. for (int i = 0; i < n; i++) {
  2226. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2227. }
  2228. } break;
  2229. case GGML_TYPE_I16:
  2230. {
  2231. assert(tensor->nb[0] == sizeof(int16_t));
  2232. for (int i = 0; i < n; i++) {
  2233. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2234. }
  2235. } break;
  2236. case GGML_TYPE_I32:
  2237. {
  2238. assert(tensor->nb[0] == sizeof(int32_t));
  2239. for (int i = 0; i < n; i++) {
  2240. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2241. }
  2242. } break;
  2243. case GGML_TYPE_F16:
  2244. {
  2245. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2246. for (int i = 0; i < n; i++) {
  2247. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2248. }
  2249. } break;
  2250. case GGML_TYPE_F32:
  2251. {
  2252. assert(tensor->nb[0] == sizeof(float));
  2253. for (int i = 0; i < n; i++) {
  2254. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2255. }
  2256. } break;
  2257. default:
  2258. {
  2259. GGML_ASSERT(false);
  2260. } break;
  2261. }
  2262. return tensor;
  2263. }
  2264. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2265. const int n = ggml_nrows(tensor);
  2266. const int nc = tensor->ne[0];
  2267. const size_t n1 = tensor->nb[1];
  2268. char * const data = tensor->data;
  2269. switch (tensor->type) {
  2270. case GGML_TYPE_I8:
  2271. {
  2272. assert(tensor->nb[0] == sizeof(int8_t));
  2273. for (int i = 0; i < n; i++) {
  2274. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2275. }
  2276. } break;
  2277. case GGML_TYPE_I16:
  2278. {
  2279. assert(tensor->nb[0] == sizeof(int16_t));
  2280. for (int i = 0; i < n; i++) {
  2281. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2282. }
  2283. } break;
  2284. case GGML_TYPE_I32:
  2285. {
  2286. assert(tensor->nb[0] == sizeof(int32_t));
  2287. for (int i = 0; i < n; i++) {
  2288. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2289. }
  2290. } break;
  2291. case GGML_TYPE_F16:
  2292. {
  2293. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2294. for (int i = 0; i < n; i++) {
  2295. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2296. }
  2297. } break;
  2298. case GGML_TYPE_F32:
  2299. {
  2300. assert(tensor->nb[0] == sizeof(float));
  2301. for (int i = 0; i < n; i++) {
  2302. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2303. }
  2304. } break;
  2305. default:
  2306. {
  2307. GGML_ASSERT(false);
  2308. } break;
  2309. }
  2310. return tensor;
  2311. }
  2312. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2313. const int64_t ne2 = tensor->ne[2];
  2314. const int64_t ne1 = tensor->ne[1];
  2315. const int64_t ne0 = tensor->ne[0];
  2316. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2317. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2318. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2319. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2320. if (i0) {
  2321. * i0 = i0_;
  2322. }
  2323. if (i1) {
  2324. * i1 = i1_;
  2325. }
  2326. if (i2) {
  2327. * i2 = i2_;
  2328. }
  2329. if (i3) {
  2330. * i3 = i3_;
  2331. }
  2332. }
  2333. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2334. if (!ggml_is_contiguous(tensor)) {
  2335. int64_t id[4] = { 0, 0, 0, 0 };
  2336. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2337. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2338. }
  2339. switch (tensor->type) {
  2340. case GGML_TYPE_I8:
  2341. {
  2342. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2343. return ((int8_t *)(tensor->data))[i];
  2344. }
  2345. case GGML_TYPE_I16:
  2346. {
  2347. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2348. return ((int16_t *)(tensor->data))[i];
  2349. }
  2350. case GGML_TYPE_I32:
  2351. {
  2352. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2353. return ((int32_t *)(tensor->data))[i];
  2354. }
  2355. case GGML_TYPE_F16:
  2356. {
  2357. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2358. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2359. }
  2360. case GGML_TYPE_F32:
  2361. {
  2362. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2363. return ((float *)(tensor->data))[i];
  2364. }
  2365. default:
  2366. {
  2367. GGML_ASSERT(false);
  2368. }
  2369. }
  2370. return 0.0f;
  2371. }
  2372. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2373. if (!ggml_is_contiguous(tensor)) {
  2374. int64_t id[4] = { 0, 0, 0, 0 };
  2375. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2376. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2377. return;
  2378. }
  2379. switch (tensor->type) {
  2380. case GGML_TYPE_I8:
  2381. {
  2382. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2383. ((int8_t *)(tensor->data))[i] = value;
  2384. } break;
  2385. case GGML_TYPE_I16:
  2386. {
  2387. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2388. ((int16_t *)(tensor->data))[i] = value;
  2389. } break;
  2390. case GGML_TYPE_I32:
  2391. {
  2392. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2393. ((int32_t *)(tensor->data))[i] = value;
  2394. } break;
  2395. case GGML_TYPE_F16:
  2396. {
  2397. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2398. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2399. } break;
  2400. case GGML_TYPE_F32:
  2401. {
  2402. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2403. ((float *)(tensor->data))[i] = value;
  2404. } break;
  2405. default:
  2406. {
  2407. GGML_ASSERT(false);
  2408. } break;
  2409. }
  2410. }
  2411. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2412. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2413. switch (tensor->type) {
  2414. case GGML_TYPE_I8:
  2415. return ((int8_t *) data)[0];
  2416. case GGML_TYPE_I16:
  2417. return ((int16_t *) data)[0];
  2418. case GGML_TYPE_I32:
  2419. return ((int32_t *) data)[0];
  2420. case GGML_TYPE_F16:
  2421. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2422. case GGML_TYPE_F32:
  2423. return ((float *) data)[0];
  2424. default:
  2425. GGML_ASSERT(false);
  2426. }
  2427. return 0.0f;
  2428. }
  2429. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2430. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2431. switch (tensor->type) {
  2432. case GGML_TYPE_I8:
  2433. {
  2434. ((int8_t *)(data))[0] = value;
  2435. } break;
  2436. case GGML_TYPE_I16:
  2437. {
  2438. ((int16_t *)(data))[0] = value;
  2439. } break;
  2440. case GGML_TYPE_I32:
  2441. {
  2442. ((int32_t *)(data))[0] = value;
  2443. } break;
  2444. case GGML_TYPE_F16:
  2445. {
  2446. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2447. } break;
  2448. case GGML_TYPE_F32:
  2449. {
  2450. ((float *)(data))[0] = value;
  2451. } break;
  2452. default:
  2453. {
  2454. GGML_ASSERT(false);
  2455. } break;
  2456. }
  2457. }
  2458. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2459. if (!ggml_is_contiguous(tensor)) {
  2460. int64_t id[4] = { 0, 0, 0, 0 };
  2461. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2462. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2463. }
  2464. switch (tensor->type) {
  2465. case GGML_TYPE_I8:
  2466. {
  2467. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2468. return ((int8_t *)(tensor->data))[i];
  2469. }
  2470. case GGML_TYPE_I16:
  2471. {
  2472. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2473. return ((int16_t *)(tensor->data))[i];
  2474. }
  2475. case GGML_TYPE_I32:
  2476. {
  2477. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2478. return ((int32_t *)(tensor->data))[i];
  2479. }
  2480. case GGML_TYPE_F16:
  2481. {
  2482. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2483. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2484. }
  2485. case GGML_TYPE_F32:
  2486. {
  2487. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2488. return ((float *)(tensor->data))[i];
  2489. }
  2490. default:
  2491. {
  2492. GGML_ASSERT(false);
  2493. }
  2494. }
  2495. return 0.0f;
  2496. }
  2497. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2498. if (!ggml_is_contiguous(tensor)) {
  2499. int64_t id[4] = { 0, 0, 0, 0 };
  2500. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2501. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2502. return;
  2503. }
  2504. switch (tensor->type) {
  2505. case GGML_TYPE_I8:
  2506. {
  2507. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2508. ((int8_t *)(tensor->data))[i] = value;
  2509. } break;
  2510. case GGML_TYPE_I16:
  2511. {
  2512. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2513. ((int16_t *)(tensor->data))[i] = value;
  2514. } break;
  2515. case GGML_TYPE_I32:
  2516. {
  2517. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2518. ((int32_t *)(tensor->data))[i] = value;
  2519. } break;
  2520. case GGML_TYPE_F16:
  2521. {
  2522. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2523. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2524. } break;
  2525. case GGML_TYPE_F32:
  2526. {
  2527. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2528. ((float *)(tensor->data))[i] = value;
  2529. } break;
  2530. default:
  2531. {
  2532. GGML_ASSERT(false);
  2533. } break;
  2534. }
  2535. }
  2536. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2537. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2538. switch (tensor->type) {
  2539. case GGML_TYPE_I8:
  2540. return ((int8_t *) data)[0];
  2541. case GGML_TYPE_I16:
  2542. return ((int16_t *) data)[0];
  2543. case GGML_TYPE_I32:
  2544. return ((int32_t *) data)[0];
  2545. case GGML_TYPE_F16:
  2546. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2547. case GGML_TYPE_F32:
  2548. return ((float *) data)[0];
  2549. default:
  2550. GGML_ASSERT(false);
  2551. }
  2552. return 0.0f;
  2553. }
  2554. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2555. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2556. switch (tensor->type) {
  2557. case GGML_TYPE_I8:
  2558. {
  2559. ((int8_t *)(data))[0] = value;
  2560. } break;
  2561. case GGML_TYPE_I16:
  2562. {
  2563. ((int16_t *)(data))[0] = value;
  2564. } break;
  2565. case GGML_TYPE_I32:
  2566. {
  2567. ((int32_t *)(data))[0] = value;
  2568. } break;
  2569. case GGML_TYPE_F16:
  2570. {
  2571. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2572. } break;
  2573. case GGML_TYPE_F32:
  2574. {
  2575. ((float *)(data))[0] = value;
  2576. } break;
  2577. default:
  2578. {
  2579. GGML_ASSERT(false);
  2580. } break;
  2581. }
  2582. }
  2583. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2584. return tensor->data;
  2585. }
  2586. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2587. assert(tensor->type == GGML_TYPE_F32);
  2588. return (float *)(tensor->data);
  2589. }
  2590. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2591. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2592. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2593. }
  2594. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2595. return tensor->name;
  2596. }
  2597. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2598. strncpy(tensor->name, name, sizeof(tensor->name));
  2599. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2600. return tensor;
  2601. }
  2602. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2603. va_list args;
  2604. va_start(args, fmt);
  2605. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2606. va_end(args);
  2607. return tensor;
  2608. }
  2609. struct ggml_tensor * ggml_view_tensor(
  2610. struct ggml_context * ctx,
  2611. struct ggml_tensor * src) {
  2612. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2613. ggml_format_name(result, "%s (view)", src->name);
  2614. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2615. result->nb[i] = src->nb[i];
  2616. }
  2617. return result;
  2618. }
  2619. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  2620. struct ggml_object * obj = ctx->objects_begin;
  2621. char * const mem_buffer = ctx->mem_buffer;
  2622. while (obj != NULL) {
  2623. if (obj->type == GGML_OBJECT_TENSOR) {
  2624. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2625. }
  2626. obj = obj->next;
  2627. }
  2628. return NULL;
  2629. }
  2630. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2631. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2632. obj = obj->next;
  2633. char * const mem_buffer = ctx->mem_buffer;
  2634. while (obj != NULL) {
  2635. if (obj->type == GGML_OBJECT_TENSOR) {
  2636. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2637. }
  2638. obj = obj->next;
  2639. }
  2640. return NULL;
  2641. }
  2642. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2643. struct ggml_object * obj = ctx->objects_begin;
  2644. char * const mem_buffer = ctx->mem_buffer;
  2645. while (obj != NULL) {
  2646. if (obj->type == GGML_OBJECT_TENSOR) {
  2647. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2648. if (strcmp(cur->name, name) == 0) {
  2649. return cur;
  2650. }
  2651. }
  2652. obj = obj->next;
  2653. }
  2654. return NULL;
  2655. }
  2656. ////////////////////////////////////////////////////////////////////////////////
  2657. // ggml_dup
  2658. static struct ggml_tensor * ggml_dup_impl(
  2659. struct ggml_context * ctx,
  2660. struct ggml_tensor * a,
  2661. bool inplace) {
  2662. bool is_node = false;
  2663. if (!inplace && (a->grad)) {
  2664. is_node = true;
  2665. }
  2666. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2667. result->op = GGML_OP_DUP;
  2668. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2669. result->src[0] = a;
  2670. return result;
  2671. }
  2672. struct ggml_tensor * ggml_dup(
  2673. struct ggml_context * ctx,
  2674. struct ggml_tensor * a) {
  2675. return ggml_dup_impl(ctx, a, false);
  2676. }
  2677. struct ggml_tensor * ggml_dup_inplace(
  2678. struct ggml_context * ctx,
  2679. struct ggml_tensor * a) {
  2680. return ggml_dup_impl(ctx, a, true);
  2681. }
  2682. // ggml_add
  2683. static struct ggml_tensor * ggml_add_impl(
  2684. struct ggml_context * ctx,
  2685. struct ggml_tensor * a,
  2686. struct ggml_tensor * b,
  2687. bool inplace) {
  2688. GGML_ASSERT(ggml_can_repeat(b, a));
  2689. bool is_node = false;
  2690. if (!inplace && (a->grad || b->grad)) {
  2691. // TODO: support backward pass for broadcasting
  2692. GGML_ASSERT(ggml_are_same_shape(a, b));
  2693. is_node = true;
  2694. }
  2695. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2696. result->op = GGML_OP_ADD;
  2697. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2698. result->src[0] = a;
  2699. result->src[1] = b;
  2700. return result;
  2701. }
  2702. struct ggml_tensor * ggml_add(
  2703. struct ggml_context * ctx,
  2704. struct ggml_tensor * a,
  2705. struct ggml_tensor * b) {
  2706. return ggml_add_impl(ctx, a, b, false);
  2707. }
  2708. struct ggml_tensor * ggml_add_inplace(
  2709. struct ggml_context * ctx,
  2710. struct ggml_tensor * a,
  2711. struct ggml_tensor * b) {
  2712. return ggml_add_impl(ctx, a, b, true);
  2713. }
  2714. // ggml_add_cast
  2715. static struct ggml_tensor * ggml_add_cast_impl(
  2716. struct ggml_context * ctx,
  2717. struct ggml_tensor * a,
  2718. struct ggml_tensor * b,
  2719. enum ggml_type type) {
  2720. // TODO: support less-strict constraint
  2721. // GGML_ASSERT(ggml_can_repeat(b, a));
  2722. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2723. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2724. bool is_node = false;
  2725. if (a->grad || b->grad) {
  2726. // TODO: support backward pass for broadcasting
  2727. GGML_ASSERT(ggml_are_same_shape(a, b));
  2728. is_node = true;
  2729. }
  2730. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2731. result->op = GGML_OP_ADD;
  2732. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2733. result->src[0] = a;
  2734. result->src[1] = b;
  2735. return result;
  2736. }
  2737. struct ggml_tensor * ggml_add_cast(
  2738. struct ggml_context * ctx,
  2739. struct ggml_tensor * a,
  2740. struct ggml_tensor * b,
  2741. enum ggml_type type) {
  2742. return ggml_add_cast_impl(ctx, a, b, type);
  2743. }
  2744. // ggml_add1
  2745. static struct ggml_tensor * ggml_add1_impl(
  2746. struct ggml_context * ctx,
  2747. struct ggml_tensor * a,
  2748. struct ggml_tensor * b,
  2749. bool inplace) {
  2750. GGML_ASSERT(ggml_is_scalar(b));
  2751. GGML_ASSERT(ggml_is_padded_1d(a));
  2752. bool is_node = false;
  2753. if (a->grad || b->grad) {
  2754. is_node = true;
  2755. }
  2756. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2757. result->op = GGML_OP_ADD1;
  2758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2759. result->src[0] = a;
  2760. result->src[1] = b;
  2761. return result;
  2762. }
  2763. struct ggml_tensor * ggml_add1(
  2764. struct ggml_context * ctx,
  2765. struct ggml_tensor * a,
  2766. struct ggml_tensor * b) {
  2767. return ggml_add1_impl(ctx, a, b, false);
  2768. }
  2769. struct ggml_tensor * ggml_add1_inplace(
  2770. struct ggml_context * ctx,
  2771. struct ggml_tensor * a,
  2772. struct ggml_tensor * b) {
  2773. return ggml_add1_impl(ctx, a, b, true);
  2774. }
  2775. // ggml_acc
  2776. static struct ggml_tensor * ggml_acc_impl(
  2777. struct ggml_context * ctx,
  2778. struct ggml_tensor * a,
  2779. struct ggml_tensor * b,
  2780. size_t nb1,
  2781. size_t nb2,
  2782. size_t nb3,
  2783. size_t offset,
  2784. bool inplace) {
  2785. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2786. GGML_ASSERT(ggml_is_contiguous(a));
  2787. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2788. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2789. bool is_node = false;
  2790. if (!inplace && (a->grad || b->grad)) {
  2791. is_node = true;
  2792. }
  2793. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2794. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2795. ggml_set_op_params(result, params, sizeof(params));
  2796. result->op = GGML_OP_ACC;
  2797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2798. result->src[0] = a;
  2799. result->src[1] = b;
  2800. return result;
  2801. }
  2802. struct ggml_tensor * ggml_acc(
  2803. struct ggml_context * ctx,
  2804. struct ggml_tensor * a,
  2805. struct ggml_tensor * b,
  2806. size_t nb1,
  2807. size_t nb2,
  2808. size_t nb3,
  2809. size_t offset) {
  2810. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  2811. }
  2812. struct ggml_tensor * ggml_acc_inplace(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * a,
  2815. struct ggml_tensor * b,
  2816. size_t nb1,
  2817. size_t nb2,
  2818. size_t nb3,
  2819. size_t offset) {
  2820. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  2821. }
  2822. // ggml_sub
  2823. static struct ggml_tensor * ggml_sub_impl(
  2824. struct ggml_context * ctx,
  2825. struct ggml_tensor * a,
  2826. struct ggml_tensor * b,
  2827. bool inplace) {
  2828. GGML_ASSERT(ggml_are_same_shape(a, b));
  2829. bool is_node = false;
  2830. if (!inplace && (a->grad || b->grad)) {
  2831. is_node = true;
  2832. }
  2833. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2834. result->op = GGML_OP_SUB;
  2835. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2836. result->src[0] = a;
  2837. result->src[1] = b;
  2838. return result;
  2839. }
  2840. struct ggml_tensor * ggml_sub(
  2841. struct ggml_context * ctx,
  2842. struct ggml_tensor * a,
  2843. struct ggml_tensor * b) {
  2844. return ggml_sub_impl(ctx, a, b, false);
  2845. }
  2846. struct ggml_tensor * ggml_sub_inplace(
  2847. struct ggml_context * ctx,
  2848. struct ggml_tensor * a,
  2849. struct ggml_tensor * b) {
  2850. return ggml_sub_impl(ctx, a, b, true);
  2851. }
  2852. // ggml_mul
  2853. static struct ggml_tensor * ggml_mul_impl(
  2854. struct ggml_context * ctx,
  2855. struct ggml_tensor * a,
  2856. struct ggml_tensor * b,
  2857. bool inplace) {
  2858. GGML_ASSERT(ggml_can_repeat(b, a));
  2859. bool is_node = false;
  2860. if (!inplace && (a->grad || b->grad)) {
  2861. // TODO: support backward pass for broadcasting
  2862. GGML_ASSERT(ggml_are_same_shape(a, b));
  2863. is_node = true;
  2864. }
  2865. if (inplace) {
  2866. GGML_ASSERT(!is_node);
  2867. }
  2868. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2869. result->op = GGML_OP_MUL;
  2870. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2871. result->src[0] = a;
  2872. result->src[1] = b;
  2873. return result;
  2874. }
  2875. struct ggml_tensor * ggml_mul(
  2876. struct ggml_context * ctx,
  2877. struct ggml_tensor * a,
  2878. struct ggml_tensor * b) {
  2879. return ggml_mul_impl(ctx, a, b, false);
  2880. }
  2881. struct ggml_tensor * ggml_mul_inplace(
  2882. struct ggml_context * ctx,
  2883. struct ggml_tensor * a,
  2884. struct ggml_tensor * b) {
  2885. return ggml_mul_impl(ctx, a, b, true);
  2886. }
  2887. // ggml_div
  2888. static struct ggml_tensor * ggml_div_impl(
  2889. struct ggml_context * ctx,
  2890. struct ggml_tensor * a,
  2891. struct ggml_tensor * b,
  2892. bool inplace) {
  2893. GGML_ASSERT(ggml_can_repeat(b, a));
  2894. bool is_node = false;
  2895. if (!inplace && (a->grad || b->grad)) {
  2896. is_node = true;
  2897. }
  2898. if (inplace) {
  2899. GGML_ASSERT(!is_node);
  2900. }
  2901. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2902. result->op = GGML_OP_DIV;
  2903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2904. result->src[0] = a;
  2905. result->src[1] = b;
  2906. return result;
  2907. }
  2908. struct ggml_tensor * ggml_div(
  2909. struct ggml_context * ctx,
  2910. struct ggml_tensor * a,
  2911. struct ggml_tensor * b) {
  2912. return ggml_div_impl(ctx, a, b, false);
  2913. }
  2914. struct ggml_tensor * ggml_div_inplace(
  2915. struct ggml_context * ctx,
  2916. struct ggml_tensor * a,
  2917. struct ggml_tensor * b) {
  2918. return ggml_div_impl(ctx, a, b, true);
  2919. }
  2920. // ggml_sqr
  2921. static struct ggml_tensor * ggml_sqr_impl(
  2922. struct ggml_context * ctx,
  2923. struct ggml_tensor * a,
  2924. bool inplace) {
  2925. bool is_node = false;
  2926. if (!inplace && (a->grad)) {
  2927. is_node = true;
  2928. }
  2929. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2930. result->op = GGML_OP_SQR;
  2931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2932. result->src[0] = a;
  2933. return result;
  2934. }
  2935. struct ggml_tensor * ggml_sqr(
  2936. struct ggml_context * ctx,
  2937. struct ggml_tensor * a) {
  2938. return ggml_sqr_impl(ctx, a, false);
  2939. }
  2940. struct ggml_tensor * ggml_sqr_inplace(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a) {
  2943. return ggml_sqr_impl(ctx, a, true);
  2944. }
  2945. // ggml_sqrt
  2946. static struct ggml_tensor * ggml_sqrt_impl(
  2947. struct ggml_context * ctx,
  2948. struct ggml_tensor * a,
  2949. bool inplace) {
  2950. bool is_node = false;
  2951. if (!inplace && (a->grad)) {
  2952. is_node = true;
  2953. }
  2954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2955. result->op = GGML_OP_SQRT;
  2956. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2957. result->src[0] = a;
  2958. return result;
  2959. }
  2960. struct ggml_tensor * ggml_sqrt(
  2961. struct ggml_context * ctx,
  2962. struct ggml_tensor * a) {
  2963. return ggml_sqrt_impl(ctx, a, false);
  2964. }
  2965. struct ggml_tensor * ggml_sqrt_inplace(
  2966. struct ggml_context * ctx,
  2967. struct ggml_tensor * a) {
  2968. return ggml_sqrt_impl(ctx, a, true);
  2969. }
  2970. // ggml_log
  2971. static struct ggml_tensor * ggml_log_impl(
  2972. struct ggml_context * ctx,
  2973. struct ggml_tensor * a,
  2974. bool inplace) {
  2975. bool is_node = false;
  2976. if (!inplace && (a->grad)) {
  2977. is_node = true;
  2978. }
  2979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2980. result->op = GGML_OP_LOG;
  2981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2982. result->src[0] = a;
  2983. return result;
  2984. }
  2985. struct ggml_tensor * ggml_log(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a) {
  2988. return ggml_log_impl(ctx, a, false);
  2989. }
  2990. struct ggml_tensor * ggml_log_inplace(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a) {
  2993. return ggml_log_impl(ctx, a, true);
  2994. }
  2995. // ggml_sum
  2996. struct ggml_tensor * ggml_sum(
  2997. struct ggml_context * ctx,
  2998. struct ggml_tensor * a) {
  2999. bool is_node = false;
  3000. if (a->grad) {
  3001. is_node = true;
  3002. }
  3003. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3004. result->op = GGML_OP_SUM;
  3005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3006. result->src[0] = a;
  3007. return result;
  3008. }
  3009. // ggml_sum_rows
  3010. struct ggml_tensor * ggml_sum_rows(
  3011. struct ggml_context * ctx,
  3012. struct ggml_tensor * a) {
  3013. bool is_node = false;
  3014. if (a->grad) {
  3015. is_node = true;
  3016. }
  3017. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3018. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3019. ne[i] = a->ne[i];
  3020. }
  3021. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3022. result->op = GGML_OP_SUM_ROWS;
  3023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3024. result->src[0] = a;
  3025. return result;
  3026. }
  3027. // ggml_mean
  3028. struct ggml_tensor * ggml_mean(
  3029. struct ggml_context * ctx,
  3030. struct ggml_tensor * a) {
  3031. bool is_node = false;
  3032. if (a->grad) {
  3033. GGML_ASSERT(false); // TODO: implement
  3034. is_node = true;
  3035. }
  3036. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3037. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3038. result->op = GGML_OP_MEAN;
  3039. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3040. result->src[0] = a;
  3041. return result;
  3042. }
  3043. // ggml_argmax
  3044. struct ggml_tensor * ggml_argmax(
  3045. struct ggml_context * ctx,
  3046. struct ggml_tensor * a) {
  3047. GGML_ASSERT(ggml_is_matrix(a));
  3048. bool is_node = false;
  3049. if (a->grad) {
  3050. GGML_ASSERT(false);
  3051. is_node = true;
  3052. }
  3053. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3054. result->op = GGML_OP_ARGMAX;
  3055. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3056. result->src[0] = a;
  3057. return result;
  3058. }
  3059. // ggml_repeat
  3060. struct ggml_tensor * ggml_repeat(
  3061. struct ggml_context * ctx,
  3062. struct ggml_tensor * a,
  3063. struct ggml_tensor * b) {
  3064. GGML_ASSERT(ggml_can_repeat(a, b));
  3065. bool is_node = false;
  3066. if (a->grad) {
  3067. is_node = true;
  3068. }
  3069. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3070. result->op = GGML_OP_REPEAT;
  3071. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3072. result->src[0] = a;
  3073. return result;
  3074. }
  3075. // ggml_repeat_back
  3076. struct ggml_tensor * ggml_repeat_back(
  3077. struct ggml_context * ctx,
  3078. struct ggml_tensor * a,
  3079. struct ggml_tensor * b) {
  3080. GGML_ASSERT(ggml_can_repeat(b, a));
  3081. bool is_node = false;
  3082. if (a->grad) {
  3083. is_node = true;
  3084. }
  3085. if (ggml_are_same_shape(a, b) && !is_node) {
  3086. return a;
  3087. }
  3088. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3089. result->op = GGML_OP_REPEAT_BACK;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src[0] = a;
  3092. return result;
  3093. }
  3094. // ggml_concat
  3095. struct ggml_tensor * ggml_concat(
  3096. struct ggml_context* ctx,
  3097. struct ggml_tensor* a,
  3098. struct ggml_tensor* b) {
  3099. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3100. bool is_node = false;
  3101. if (a->grad || b->grad) {
  3102. is_node = true;
  3103. }
  3104. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3105. result->op = GGML_OP_CONCAT;
  3106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3107. result->src[0] = a;
  3108. result->src[1] = b;
  3109. return result;
  3110. }
  3111. // ggml_abs
  3112. struct ggml_tensor * ggml_abs(
  3113. struct ggml_context * ctx,
  3114. struct ggml_tensor * a) {
  3115. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3116. }
  3117. struct ggml_tensor * ggml_abs_inplace(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a) {
  3120. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3121. }
  3122. // ggml_sgn
  3123. struct ggml_tensor * ggml_sgn(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a) {
  3126. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3127. }
  3128. struct ggml_tensor * ggml_sgn_inplace(
  3129. struct ggml_context * ctx,
  3130. struct ggml_tensor * a) {
  3131. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3132. }
  3133. // ggml_neg
  3134. struct ggml_tensor * ggml_neg(
  3135. struct ggml_context * ctx,
  3136. struct ggml_tensor * a) {
  3137. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3138. }
  3139. struct ggml_tensor * ggml_neg_inplace(
  3140. struct ggml_context * ctx,
  3141. struct ggml_tensor * a) {
  3142. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3143. }
  3144. // ggml_step
  3145. struct ggml_tensor * ggml_step(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3149. }
  3150. struct ggml_tensor * ggml_step_inplace(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a) {
  3153. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3154. }
  3155. // ggml_tanh
  3156. struct ggml_tensor * ggml_tanh(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3160. }
  3161. struct ggml_tensor * ggml_tanh_inplace(
  3162. struct ggml_context * ctx,
  3163. struct ggml_tensor * a) {
  3164. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3165. }
  3166. // ggml_elu
  3167. struct ggml_tensor * ggml_elu(
  3168. struct ggml_context * ctx,
  3169. struct ggml_tensor * a) {
  3170. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3171. }
  3172. struct ggml_tensor * ggml_elu_inplace(
  3173. struct ggml_context * ctx,
  3174. struct ggml_tensor * a) {
  3175. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3176. }
  3177. // ggml_relu
  3178. struct ggml_tensor * ggml_relu(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a) {
  3181. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3182. }
  3183. struct ggml_tensor * ggml_relu_inplace(
  3184. struct ggml_context * ctx,
  3185. struct ggml_tensor * a) {
  3186. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3187. }
  3188. // ggml_leaky_relu
  3189. struct ggml_tensor * ggml_leaky_relu(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3192. bool is_node = false;
  3193. if (!inplace && (a->grad)) {
  3194. is_node = true;
  3195. }
  3196. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3197. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3198. result->op = GGML_OP_LEAKY_RELU;
  3199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3200. result->src[0] = a;
  3201. return result;
  3202. }
  3203. // ggml_gelu
  3204. struct ggml_tensor * ggml_gelu(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a) {
  3207. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3208. }
  3209. struct ggml_tensor * ggml_gelu_inplace(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a) {
  3212. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3213. }
  3214. // ggml_gelu_quick
  3215. struct ggml_tensor * ggml_gelu_quick(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a) {
  3218. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3219. }
  3220. struct ggml_tensor * ggml_gelu_quick_inplace(
  3221. struct ggml_context * ctx,
  3222. struct ggml_tensor * a) {
  3223. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3224. }
  3225. // ggml_silu
  3226. struct ggml_tensor * ggml_silu(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a) {
  3229. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3230. }
  3231. struct ggml_tensor * ggml_silu_inplace(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a) {
  3234. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3235. }
  3236. // ggml_silu_back
  3237. struct ggml_tensor * ggml_silu_back(
  3238. struct ggml_context * ctx,
  3239. struct ggml_tensor * a,
  3240. struct ggml_tensor * b) {
  3241. bool is_node = false;
  3242. if (a->grad || b->grad) {
  3243. // TODO: implement backward
  3244. is_node = true;
  3245. }
  3246. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3247. result->op = GGML_OP_SILU_BACK;
  3248. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3249. result->src[0] = a;
  3250. result->src[1] = b;
  3251. return result;
  3252. }
  3253. // ggml_norm
  3254. static struct ggml_tensor * ggml_norm_impl(
  3255. struct ggml_context * ctx,
  3256. struct ggml_tensor * a,
  3257. float eps,
  3258. bool inplace) {
  3259. bool is_node = false;
  3260. if (!inplace && (a->grad)) {
  3261. GGML_ASSERT(false); // TODO: implement backward
  3262. is_node = true;
  3263. }
  3264. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3265. ggml_set_op_params(result, &eps, sizeof(eps));
  3266. result->op = GGML_OP_NORM;
  3267. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3268. result->src[0] = a;
  3269. return result;
  3270. }
  3271. struct ggml_tensor * ggml_norm(
  3272. struct ggml_context * ctx,
  3273. struct ggml_tensor * a,
  3274. float eps) {
  3275. return ggml_norm_impl(ctx, a, eps, false);
  3276. }
  3277. struct ggml_tensor * ggml_norm_inplace(
  3278. struct ggml_context * ctx,
  3279. struct ggml_tensor * a,
  3280. float eps) {
  3281. return ggml_norm_impl(ctx, a, eps, true);
  3282. }
  3283. // ggml_rms_norm
  3284. static struct ggml_tensor * ggml_rms_norm_impl(
  3285. struct ggml_context * ctx,
  3286. struct ggml_tensor * a,
  3287. float eps,
  3288. bool inplace) {
  3289. bool is_node = false;
  3290. if (!inplace && (a->grad)) {
  3291. is_node = true;
  3292. }
  3293. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3294. ggml_set_op_params(result, &eps, sizeof(eps));
  3295. result->op = GGML_OP_RMS_NORM;
  3296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3297. result->src[0] = a;
  3298. return result;
  3299. }
  3300. struct ggml_tensor * ggml_rms_norm(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a,
  3303. float eps) {
  3304. return ggml_rms_norm_impl(ctx, a, eps, false);
  3305. }
  3306. struct ggml_tensor * ggml_rms_norm_inplace(
  3307. struct ggml_context * ctx,
  3308. struct ggml_tensor * a,
  3309. float eps) {
  3310. return ggml_rms_norm_impl(ctx, a, eps, true);
  3311. }
  3312. // ggml_rms_norm_back
  3313. struct ggml_tensor * ggml_rms_norm_back(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a,
  3316. struct ggml_tensor * b,
  3317. float eps) {
  3318. bool is_node = false;
  3319. if (a->grad) {
  3320. // TODO: implement backward
  3321. is_node = true;
  3322. }
  3323. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3324. ggml_set_op_params(result, &eps, sizeof(eps));
  3325. result->op = GGML_OP_RMS_NORM_BACK;
  3326. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3327. result->src[0] = a;
  3328. result->src[1] = b;
  3329. return result;
  3330. }
  3331. // ggml_group_norm
  3332. static struct ggml_tensor * ggml_group_norm_impl(
  3333. struct ggml_context * ctx,
  3334. struct ggml_tensor * a,
  3335. int n_groups,
  3336. bool inplace) {
  3337. bool is_node = false;
  3338. if (!inplace && (a->grad)) {
  3339. GGML_ASSERT(false); // TODO: implement backward
  3340. is_node = true;
  3341. }
  3342. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3343. result->op_params[0] = n_groups;
  3344. result->op = GGML_OP_GROUP_NORM;
  3345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3346. result->src[0] = a;
  3347. result->src[1] = NULL; // TODO: maybe store epsilon here?
  3348. return result;
  3349. }
  3350. struct ggml_tensor * ggml_group_norm(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a,
  3353. int n_groups) {
  3354. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3355. }
  3356. struct ggml_tensor * ggml_group_norm_inplace(
  3357. struct ggml_context * ctx,
  3358. struct ggml_tensor * a,
  3359. int n_groups) {
  3360. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3361. }
  3362. // ggml_mul_mat
  3363. struct ggml_tensor * ggml_mul_mat(
  3364. struct ggml_context * ctx,
  3365. struct ggml_tensor * a,
  3366. struct ggml_tensor * b) {
  3367. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3368. GGML_ASSERT(!ggml_is_transposed(a));
  3369. bool is_node = false;
  3370. if (a->grad || b->grad) {
  3371. is_node = true;
  3372. }
  3373. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3374. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3375. result->op = GGML_OP_MUL_MAT;
  3376. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3377. result->src[0] = a;
  3378. result->src[1] = b;
  3379. return result;
  3380. }
  3381. // ggml_mul_mat_id
  3382. struct ggml_tensor * ggml_mul_mat_id(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * const as[],
  3385. int n_as,
  3386. struct ggml_tensor * ids,
  3387. int id,
  3388. struct ggml_tensor * b) {
  3389. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3390. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3391. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3392. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3393. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3394. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3395. bool is_node = false;
  3396. if (as[0]->grad || b->grad) {
  3397. is_node = true;
  3398. }
  3399. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3400. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3401. ggml_set_op_params_i32(result, 0, id);
  3402. ggml_set_op_params_i32(result, 1, n_as);
  3403. result->op = GGML_OP_MUL_MAT_ID;
  3404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3405. result->src[0] = ids;
  3406. result->src[1] = b;
  3407. for (int i = 0; i < n_as; i++) {
  3408. struct ggml_tensor * a = as[i];
  3409. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3410. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3411. GGML_ASSERT(!ggml_is_transposed(a));
  3412. result->src[i + 2] = a;
  3413. }
  3414. return result;
  3415. }
  3416. // ggml_out_prod
  3417. struct ggml_tensor * ggml_out_prod(
  3418. struct ggml_context * ctx,
  3419. struct ggml_tensor * a,
  3420. struct ggml_tensor * b) {
  3421. GGML_ASSERT(ggml_can_out_prod(a, b));
  3422. GGML_ASSERT(!ggml_is_transposed(a));
  3423. bool is_node = false;
  3424. if (a->grad || b->grad) {
  3425. is_node = true;
  3426. }
  3427. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3428. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3429. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3430. result->op = GGML_OP_OUT_PROD;
  3431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3432. result->src[0] = a;
  3433. result->src[1] = b;
  3434. return result;
  3435. }
  3436. // ggml_scale
  3437. static struct ggml_tensor * ggml_scale_impl(
  3438. struct ggml_context * ctx,
  3439. struct ggml_tensor * a,
  3440. struct ggml_tensor * b,
  3441. bool inplace) {
  3442. GGML_ASSERT(ggml_is_scalar(b));
  3443. GGML_ASSERT(ggml_is_padded_1d(a));
  3444. bool is_node = false;
  3445. if (a->grad || b->grad) {
  3446. is_node = true;
  3447. }
  3448. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3449. result->op = GGML_OP_SCALE;
  3450. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3451. result->src[0] = a;
  3452. result->src[1] = b;
  3453. return result;
  3454. }
  3455. struct ggml_tensor * ggml_scale(
  3456. struct ggml_context * ctx,
  3457. struct ggml_tensor * a,
  3458. struct ggml_tensor * b) {
  3459. return ggml_scale_impl(ctx, a, b, false);
  3460. }
  3461. struct ggml_tensor * ggml_scale_inplace(
  3462. struct ggml_context * ctx,
  3463. struct ggml_tensor * a,
  3464. struct ggml_tensor * b) {
  3465. return ggml_scale_impl(ctx, a, b, true);
  3466. }
  3467. // ggml_set
  3468. static struct ggml_tensor * ggml_set_impl(
  3469. struct ggml_context * ctx,
  3470. struct ggml_tensor * a,
  3471. struct ggml_tensor * b,
  3472. size_t nb1,
  3473. size_t nb2,
  3474. size_t nb3,
  3475. size_t offset,
  3476. bool inplace) {
  3477. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3478. bool is_node = false;
  3479. if (a->grad || b->grad) {
  3480. is_node = true;
  3481. }
  3482. // make a view of the destination
  3483. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3484. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3485. ggml_set_op_params(result, params, sizeof(params));
  3486. result->op = GGML_OP_SET;
  3487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3488. result->src[0] = a;
  3489. result->src[1] = b;
  3490. return result;
  3491. }
  3492. struct ggml_tensor * ggml_set(
  3493. struct ggml_context * ctx,
  3494. struct ggml_tensor * a,
  3495. struct ggml_tensor * b,
  3496. size_t nb1,
  3497. size_t nb2,
  3498. size_t nb3,
  3499. size_t offset) {
  3500. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3501. }
  3502. struct ggml_tensor * ggml_set_inplace(
  3503. struct ggml_context * ctx,
  3504. struct ggml_tensor * a,
  3505. struct ggml_tensor * b,
  3506. size_t nb1,
  3507. size_t nb2,
  3508. size_t nb3,
  3509. size_t offset) {
  3510. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3511. }
  3512. struct ggml_tensor * ggml_set_1d(
  3513. struct ggml_context * ctx,
  3514. struct ggml_tensor * a,
  3515. struct ggml_tensor * b,
  3516. size_t offset) {
  3517. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3518. }
  3519. struct ggml_tensor * ggml_set_1d_inplace(
  3520. struct ggml_context * ctx,
  3521. struct ggml_tensor * a,
  3522. struct ggml_tensor * b,
  3523. size_t offset) {
  3524. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3525. }
  3526. struct ggml_tensor * ggml_set_2d(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a,
  3529. struct ggml_tensor * b,
  3530. size_t nb1,
  3531. size_t offset) {
  3532. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3533. }
  3534. struct ggml_tensor * ggml_set_2d_inplace(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. struct ggml_tensor * b,
  3538. size_t nb1,
  3539. size_t offset) {
  3540. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3541. }
  3542. // ggml_cpy
  3543. static struct ggml_tensor * ggml_cpy_impl(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a,
  3546. struct ggml_tensor * b,
  3547. bool inplace) {
  3548. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3549. bool is_node = false;
  3550. if (!inplace && (a->grad || b->grad)) {
  3551. is_node = true;
  3552. }
  3553. // make a view of the destination
  3554. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3555. if (strlen(b->name) > 0) {
  3556. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3557. } else {
  3558. ggml_format_name(result, "%s (copy)", a->name);
  3559. }
  3560. result->op = GGML_OP_CPY;
  3561. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3562. result->src[0] = a;
  3563. result->src[1] = b;
  3564. return result;
  3565. }
  3566. struct ggml_tensor * ggml_cpy(
  3567. struct ggml_context * ctx,
  3568. struct ggml_tensor * a,
  3569. struct ggml_tensor * b) {
  3570. return ggml_cpy_impl(ctx, a, b, false);
  3571. }
  3572. struct ggml_tensor * ggml_cpy_inplace(
  3573. struct ggml_context * ctx,
  3574. struct ggml_tensor * a,
  3575. struct ggml_tensor * b) {
  3576. return ggml_cpy_impl(ctx, a, b, true);
  3577. }
  3578. // ggml_cont
  3579. static struct ggml_tensor * ggml_cont_impl(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a,
  3582. bool inplace) {
  3583. bool is_node = false;
  3584. if (!inplace && a->grad) {
  3585. is_node = true;
  3586. }
  3587. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3588. ggml_format_name(result, "%s (cont)", a->name);
  3589. result->op = GGML_OP_CONT;
  3590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3591. result->src[0] = a;
  3592. return result;
  3593. }
  3594. struct ggml_tensor * ggml_cont(
  3595. struct ggml_context * ctx,
  3596. struct ggml_tensor * a) {
  3597. return ggml_cont_impl(ctx, a, false);
  3598. }
  3599. struct ggml_tensor * ggml_cont_inplace(
  3600. struct ggml_context * ctx,
  3601. struct ggml_tensor * a) {
  3602. return ggml_cont_impl(ctx, a, true);
  3603. }
  3604. // make contiguous, with new shape
  3605. GGML_API struct ggml_tensor * ggml_cont_1d(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * a,
  3608. int64_t ne0) {
  3609. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3610. }
  3611. GGML_API struct ggml_tensor * ggml_cont_2d(
  3612. struct ggml_context * ctx,
  3613. struct ggml_tensor * a,
  3614. int64_t ne0,
  3615. int64_t ne1) {
  3616. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3617. }
  3618. GGML_API struct ggml_tensor * ggml_cont_3d(
  3619. struct ggml_context * ctx,
  3620. struct ggml_tensor * a,
  3621. int64_t ne0,
  3622. int64_t ne1,
  3623. int64_t ne2) {
  3624. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3625. }
  3626. struct ggml_tensor * ggml_cont_4d(
  3627. struct ggml_context * ctx,
  3628. struct ggml_tensor * a,
  3629. int64_t ne0,
  3630. int64_t ne1,
  3631. int64_t ne2,
  3632. int64_t ne3) {
  3633. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3634. bool is_node = false;
  3635. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3636. ggml_format_name(result, "%s (cont)", a->name);
  3637. result->op = GGML_OP_CONT;
  3638. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3639. result->src[0] = a;
  3640. return result;
  3641. }
  3642. // ggml_reshape
  3643. struct ggml_tensor * ggml_reshape(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a,
  3646. struct ggml_tensor * b) {
  3647. GGML_ASSERT(ggml_is_contiguous(a));
  3648. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3649. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3650. bool is_node = false;
  3651. if (a->grad) {
  3652. is_node = true;
  3653. }
  3654. if (b->grad) {
  3655. // gradient propagation is not supported
  3656. //GGML_ASSERT(false);
  3657. }
  3658. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3659. ggml_format_name(result, "%s (reshaped)", a->name);
  3660. result->op = GGML_OP_RESHAPE;
  3661. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3662. result->src[0] = a;
  3663. return result;
  3664. }
  3665. struct ggml_tensor * ggml_reshape_1d(
  3666. struct ggml_context * ctx,
  3667. struct ggml_tensor * a,
  3668. int64_t ne0) {
  3669. GGML_ASSERT(ggml_is_contiguous(a));
  3670. GGML_ASSERT(ggml_nelements(a) == ne0);
  3671. bool is_node = false;
  3672. if (a->grad) {
  3673. is_node = true;
  3674. }
  3675. const int64_t ne[1] = { ne0 };
  3676. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3677. ggml_format_name(result, "%s (reshaped)", a->name);
  3678. result->op = GGML_OP_RESHAPE;
  3679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3680. result->src[0] = a;
  3681. return result;
  3682. }
  3683. struct ggml_tensor * ggml_reshape_2d(
  3684. struct ggml_context * ctx,
  3685. struct ggml_tensor * a,
  3686. int64_t ne0,
  3687. int64_t ne1) {
  3688. GGML_ASSERT(ggml_is_contiguous(a));
  3689. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3690. bool is_node = false;
  3691. if (a->grad) {
  3692. is_node = true;
  3693. }
  3694. const int64_t ne[2] = { ne0, ne1 };
  3695. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3696. ggml_format_name(result, "%s (reshaped)", a->name);
  3697. result->op = GGML_OP_RESHAPE;
  3698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3699. result->src[0] = a;
  3700. return result;
  3701. }
  3702. struct ggml_tensor * ggml_reshape_3d(
  3703. struct ggml_context * ctx,
  3704. struct ggml_tensor * a,
  3705. int64_t ne0,
  3706. int64_t ne1,
  3707. int64_t ne2) {
  3708. GGML_ASSERT(ggml_is_contiguous(a));
  3709. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3710. bool is_node = false;
  3711. if (a->grad) {
  3712. is_node = true;
  3713. }
  3714. const int64_t ne[3] = { ne0, ne1, ne2 };
  3715. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3716. ggml_format_name(result, "%s (reshaped)", a->name);
  3717. result->op = GGML_OP_RESHAPE;
  3718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3719. result->src[0] = a;
  3720. return result;
  3721. }
  3722. struct ggml_tensor * ggml_reshape_4d(
  3723. struct ggml_context * ctx,
  3724. struct ggml_tensor * a,
  3725. int64_t ne0,
  3726. int64_t ne1,
  3727. int64_t ne2,
  3728. int64_t ne3) {
  3729. GGML_ASSERT(ggml_is_contiguous(a));
  3730. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3731. bool is_node = false;
  3732. if (a->grad) {
  3733. is_node = true;
  3734. }
  3735. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3736. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3737. ggml_format_name(result, "%s (reshaped)", a->name);
  3738. result->op = GGML_OP_RESHAPE;
  3739. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3740. result->src[0] = a;
  3741. return result;
  3742. }
  3743. static struct ggml_tensor * ggml_view_impl(
  3744. struct ggml_context * ctx,
  3745. struct ggml_tensor * a,
  3746. int n_dims,
  3747. const int64_t * ne,
  3748. size_t offset) {
  3749. bool is_node = false;
  3750. if (a->grad) {
  3751. is_node = true;
  3752. }
  3753. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3754. ggml_format_name(result, "%s (view)", a->name);
  3755. ggml_set_op_params(result, &offset, sizeof(offset));
  3756. result->op = GGML_OP_VIEW;
  3757. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3758. result->src[0] = a;
  3759. return result;
  3760. }
  3761. // ggml_view_1d
  3762. struct ggml_tensor * ggml_view_1d(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. int64_t ne0,
  3766. size_t offset) {
  3767. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3768. return result;
  3769. }
  3770. // ggml_view_2d
  3771. struct ggml_tensor * ggml_view_2d(
  3772. struct ggml_context * ctx,
  3773. struct ggml_tensor * a,
  3774. int64_t ne0,
  3775. int64_t ne1,
  3776. size_t nb1,
  3777. size_t offset) {
  3778. const int64_t ne[2] = { ne0, ne1 };
  3779. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  3780. result->nb[1] = nb1;
  3781. result->nb[2] = result->nb[1]*ne1;
  3782. result->nb[3] = result->nb[2];
  3783. return result;
  3784. }
  3785. // ggml_view_3d
  3786. struct ggml_tensor * ggml_view_3d(
  3787. struct ggml_context * ctx,
  3788. struct ggml_tensor * a,
  3789. int64_t ne0,
  3790. int64_t ne1,
  3791. int64_t ne2,
  3792. size_t nb1,
  3793. size_t nb2,
  3794. size_t offset) {
  3795. const int64_t ne[3] = { ne0, ne1, ne2 };
  3796. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  3797. result->nb[1] = nb1;
  3798. result->nb[2] = nb2;
  3799. result->nb[3] = result->nb[2]*ne2;
  3800. return result;
  3801. }
  3802. // ggml_view_4d
  3803. struct ggml_tensor * ggml_view_4d(
  3804. struct ggml_context * ctx,
  3805. struct ggml_tensor * a,
  3806. int64_t ne0,
  3807. int64_t ne1,
  3808. int64_t ne2,
  3809. int64_t ne3,
  3810. size_t nb1,
  3811. size_t nb2,
  3812. size_t nb3,
  3813. size_t offset) {
  3814. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3815. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  3816. result->nb[1] = nb1;
  3817. result->nb[2] = nb2;
  3818. result->nb[3] = nb3;
  3819. return result;
  3820. }
  3821. // ggml_permute
  3822. struct ggml_tensor * ggml_permute(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. int axis0,
  3826. int axis1,
  3827. int axis2,
  3828. int axis3) {
  3829. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3830. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3831. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3832. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3833. GGML_ASSERT(axis0 != axis1);
  3834. GGML_ASSERT(axis0 != axis2);
  3835. GGML_ASSERT(axis0 != axis3);
  3836. GGML_ASSERT(axis1 != axis2);
  3837. GGML_ASSERT(axis1 != axis3);
  3838. GGML_ASSERT(axis2 != axis3);
  3839. bool is_node = false;
  3840. if (a->grad) {
  3841. is_node = true;
  3842. }
  3843. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3844. ggml_format_name(result, "%s (permuted)", a->name);
  3845. int ne[GGML_MAX_DIMS];
  3846. int nb[GGML_MAX_DIMS];
  3847. ne[axis0] = a->ne[0];
  3848. ne[axis1] = a->ne[1];
  3849. ne[axis2] = a->ne[2];
  3850. ne[axis3] = a->ne[3];
  3851. nb[axis0] = a->nb[0];
  3852. nb[axis1] = a->nb[1];
  3853. nb[axis2] = a->nb[2];
  3854. nb[axis3] = a->nb[3];
  3855. result->ne[0] = ne[0];
  3856. result->ne[1] = ne[1];
  3857. result->ne[2] = ne[2];
  3858. result->ne[3] = ne[3];
  3859. result->nb[0] = nb[0];
  3860. result->nb[1] = nb[1];
  3861. result->nb[2] = nb[2];
  3862. result->nb[3] = nb[3];
  3863. result->op = GGML_OP_PERMUTE;
  3864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3865. result->src[0] = a;
  3866. int32_t params[] = { axis0, axis1, axis2, axis3 };
  3867. ggml_set_op_params(result, params, sizeof(params));
  3868. return result;
  3869. }
  3870. // ggml_transpose
  3871. struct ggml_tensor * ggml_transpose(
  3872. struct ggml_context * ctx,
  3873. struct ggml_tensor * a) {
  3874. bool is_node = false;
  3875. if (a->grad) {
  3876. is_node = true;
  3877. }
  3878. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3879. ggml_format_name(result, "%s (transposed)", a->name);
  3880. result->ne[0] = a->ne[1];
  3881. result->ne[1] = a->ne[0];
  3882. result->nb[0] = a->nb[1];
  3883. result->nb[1] = a->nb[0];
  3884. result->op = GGML_OP_TRANSPOSE;
  3885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3886. result->src[0] = a;
  3887. return result;
  3888. }
  3889. // ggml_get_rows
  3890. struct ggml_tensor * ggml_get_rows(
  3891. struct ggml_context * ctx,
  3892. struct ggml_tensor * a,
  3893. struct ggml_tensor * b) {
  3894. GGML_ASSERT(a->ne[2] == b->ne[1]);
  3895. GGML_ASSERT(b->ne[3] == 1);
  3896. GGML_ASSERT(b->type == GGML_TYPE_I32);
  3897. bool is_node = false;
  3898. if (a->grad || b->grad) {
  3899. is_node = true;
  3900. }
  3901. // TODO: implement non F32 return
  3902. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3903. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  3904. result->op = GGML_OP_GET_ROWS;
  3905. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3906. result->src[0] = a;
  3907. result->src[1] = b;
  3908. return result;
  3909. }
  3910. // ggml_get_rows_back
  3911. struct ggml_tensor * ggml_get_rows_back(
  3912. struct ggml_context * ctx,
  3913. struct ggml_tensor * a,
  3914. struct ggml_tensor * b,
  3915. struct ggml_tensor * c) {
  3916. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3917. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  3918. bool is_node = false;
  3919. if (a->grad || b->grad) {
  3920. is_node = true;
  3921. }
  3922. // TODO: implement non F32 return
  3923. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3924. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  3925. result->op = GGML_OP_GET_ROWS_BACK;
  3926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3927. result->src[0] = a;
  3928. result->src[1] = b;
  3929. return result;
  3930. }
  3931. // ggml_diag
  3932. struct ggml_tensor * ggml_diag(
  3933. struct ggml_context * ctx,
  3934. struct ggml_tensor * a) {
  3935. GGML_ASSERT(a->ne[1] == 1);
  3936. bool is_node = false;
  3937. if (a->grad) {
  3938. is_node = true;
  3939. }
  3940. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  3941. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  3942. result->op = GGML_OP_DIAG;
  3943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3944. result->src[0] = a;
  3945. return result;
  3946. }
  3947. // ggml_diag_mask_inf
  3948. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  3949. struct ggml_context * ctx,
  3950. struct ggml_tensor * a,
  3951. int n_past,
  3952. bool inplace) {
  3953. bool is_node = false;
  3954. if (a->grad) {
  3955. is_node = true;
  3956. }
  3957. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3958. int32_t params[] = { n_past };
  3959. ggml_set_op_params(result, params, sizeof(params));
  3960. result->op = GGML_OP_DIAG_MASK_INF;
  3961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3962. result->src[0] = a;
  3963. return result;
  3964. }
  3965. struct ggml_tensor * ggml_diag_mask_inf(
  3966. struct ggml_context * ctx,
  3967. struct ggml_tensor * a,
  3968. int n_past) {
  3969. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  3970. }
  3971. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  3972. struct ggml_context * ctx,
  3973. struct ggml_tensor * a,
  3974. int n_past) {
  3975. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  3976. }
  3977. // ggml_diag_mask_zero
  3978. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  3979. struct ggml_context * ctx,
  3980. struct ggml_tensor * a,
  3981. int n_past,
  3982. bool inplace) {
  3983. bool is_node = false;
  3984. if (a->grad) {
  3985. is_node = true;
  3986. }
  3987. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3988. int32_t params[] = { n_past };
  3989. ggml_set_op_params(result, params, sizeof(params));
  3990. result->op = GGML_OP_DIAG_MASK_ZERO;
  3991. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3992. result->src[0] = a;
  3993. return result;
  3994. }
  3995. struct ggml_tensor * ggml_diag_mask_zero(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a,
  3998. int n_past) {
  3999. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4000. }
  4001. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. int n_past) {
  4005. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4006. }
  4007. // ggml_soft_max
  4008. static struct ggml_tensor * ggml_soft_max_impl(
  4009. struct ggml_context * ctx,
  4010. struct ggml_tensor * a,
  4011. struct ggml_tensor * mask,
  4012. float scale,
  4013. bool inplace) {
  4014. GGML_ASSERT(ggml_is_contiguous(a));
  4015. if (mask) {
  4016. GGML_ASSERT(ggml_is_contiguous(mask));
  4017. GGML_ASSERT(mask->ne[2] == 1);
  4018. GGML_ASSERT(mask->ne[3] == 1);
  4019. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4020. }
  4021. bool is_node = false;
  4022. if (a->grad) {
  4023. is_node = true;
  4024. }
  4025. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4026. float params[] = { scale };
  4027. ggml_set_op_params(result, params, sizeof(params));
  4028. result->op = GGML_OP_SOFT_MAX;
  4029. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4030. result->src[0] = a;
  4031. result->src[1] = mask;
  4032. return result;
  4033. }
  4034. struct ggml_tensor * ggml_soft_max(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a) {
  4037. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, false);
  4038. }
  4039. struct ggml_tensor * ggml_soft_max_inplace(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a) {
  4042. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, true);
  4043. }
  4044. struct ggml_tensor * ggml_soft_max_ext(
  4045. struct ggml_context * ctx,
  4046. struct ggml_tensor * a,
  4047. struct ggml_tensor * mask,
  4048. float scale) {
  4049. return ggml_soft_max_impl(ctx, a, mask, scale, false);
  4050. }
  4051. // ggml_soft_max_back
  4052. static struct ggml_tensor * ggml_soft_max_back_impl(
  4053. struct ggml_context * ctx,
  4054. struct ggml_tensor * a,
  4055. struct ggml_tensor * b,
  4056. bool inplace) {
  4057. bool is_node = false;
  4058. if (a->grad || b->grad) {
  4059. is_node = true; // TODO : implement backward pass
  4060. }
  4061. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4062. result->op = GGML_OP_SOFT_MAX_BACK;
  4063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4064. result->src[0] = a;
  4065. result->src[1] = b;
  4066. return result;
  4067. }
  4068. struct ggml_tensor * ggml_soft_max_back(
  4069. struct ggml_context * ctx,
  4070. struct ggml_tensor * a,
  4071. struct ggml_tensor * b) {
  4072. return ggml_soft_max_back_impl(ctx, a, b, false);
  4073. }
  4074. struct ggml_tensor * ggml_soft_max_back_inplace(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. struct ggml_tensor * b) {
  4078. return ggml_soft_max_back_impl(ctx, a, b, true);
  4079. }
  4080. // ggml_rope
  4081. static struct ggml_tensor * ggml_rope_impl(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a,
  4084. struct ggml_tensor * b,
  4085. int n_dims,
  4086. int mode,
  4087. int n_ctx,
  4088. int n_orig_ctx,
  4089. float freq_base,
  4090. float freq_scale,
  4091. float ext_factor,
  4092. float attn_factor,
  4093. float beta_fast,
  4094. float beta_slow,
  4095. float xpos_base,
  4096. bool xpos_down,
  4097. bool inplace) {
  4098. GGML_ASSERT(ggml_is_vector(b));
  4099. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4100. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4101. bool is_node = false;
  4102. if (a->grad) {
  4103. is_node = true;
  4104. }
  4105. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4106. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4107. memcpy(params + 5, &freq_base, sizeof(float));
  4108. memcpy(params + 6, &freq_scale, sizeof(float));
  4109. memcpy(params + 7, &ext_factor, sizeof(float));
  4110. memcpy(params + 8, &attn_factor, sizeof(float));
  4111. memcpy(params + 9, &beta_fast, sizeof(float));
  4112. memcpy(params + 10, &beta_slow, sizeof(float));
  4113. memcpy(params + 11, &xpos_base, sizeof(float));
  4114. memcpy(params + 12, &xpos_down, sizeof(bool));
  4115. ggml_set_op_params(result, params, sizeof(params));
  4116. result->op = GGML_OP_ROPE;
  4117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4118. result->src[0] = a;
  4119. result->src[1] = b;
  4120. return result;
  4121. }
  4122. struct ggml_tensor * ggml_rope(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a,
  4125. struct ggml_tensor * b,
  4126. int n_dims,
  4127. int mode,
  4128. int n_ctx) {
  4129. return ggml_rope_impl(
  4130. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4131. );
  4132. }
  4133. struct ggml_tensor * ggml_rope_inplace(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. struct ggml_tensor * b,
  4137. int n_dims,
  4138. int mode,
  4139. int n_ctx) {
  4140. return ggml_rope_impl(
  4141. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4142. );
  4143. }
  4144. struct ggml_tensor * ggml_rope_custom(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a,
  4147. struct ggml_tensor * b,
  4148. int n_dims,
  4149. int mode,
  4150. int n_ctx,
  4151. int n_orig_ctx,
  4152. float freq_base,
  4153. float freq_scale,
  4154. float ext_factor,
  4155. float attn_factor,
  4156. float beta_fast,
  4157. float beta_slow) {
  4158. return ggml_rope_impl(
  4159. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4160. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4161. );
  4162. }
  4163. struct ggml_tensor * ggml_rope_custom_inplace(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. struct ggml_tensor * b,
  4167. int n_dims,
  4168. int mode,
  4169. int n_ctx,
  4170. int n_orig_ctx,
  4171. float freq_base,
  4172. float freq_scale,
  4173. float ext_factor,
  4174. float attn_factor,
  4175. float beta_fast,
  4176. float beta_slow) {
  4177. return ggml_rope_impl(
  4178. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4179. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4180. );
  4181. }
  4182. struct ggml_tensor * ggml_rope_xpos_inplace(
  4183. struct ggml_context * ctx,
  4184. struct ggml_tensor * a,
  4185. struct ggml_tensor * b,
  4186. int n_dims,
  4187. float base,
  4188. bool down) {
  4189. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4190. }
  4191. // ggml_rope_back
  4192. struct ggml_tensor * ggml_rope_back(
  4193. struct ggml_context * ctx,
  4194. struct ggml_tensor * a,
  4195. struct ggml_tensor * b,
  4196. int n_dims,
  4197. int mode,
  4198. int n_ctx,
  4199. int n_orig_ctx,
  4200. float freq_base,
  4201. float freq_scale,
  4202. float ext_factor,
  4203. float attn_factor,
  4204. float beta_fast,
  4205. float beta_slow,
  4206. float xpos_base,
  4207. bool xpos_down) {
  4208. GGML_ASSERT(ggml_is_vector(b));
  4209. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4210. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4211. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4212. bool is_node = false;
  4213. if (a->grad) {
  4214. is_node = false; // TODO: implement backward
  4215. }
  4216. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4217. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4218. memcpy(params + 5, &freq_base, sizeof(float));
  4219. memcpy(params + 6, &freq_scale, sizeof(float));
  4220. memcpy(params + 7, &ext_factor, sizeof(float));
  4221. memcpy(params + 8, &attn_factor, sizeof(float));
  4222. memcpy(params + 9, &beta_fast, sizeof(float));
  4223. memcpy(params + 10, &beta_slow, sizeof(float));
  4224. memcpy(params + 11, &xpos_base, sizeof(float));
  4225. memcpy(params + 12, &xpos_down, sizeof(bool));
  4226. ggml_set_op_params(result, params, sizeof(params));
  4227. result->op = GGML_OP_ROPE_BACK;
  4228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4229. result->src[0] = a;
  4230. result->src[1] = b;
  4231. return result;
  4232. }
  4233. // ggml_alibi
  4234. struct ggml_tensor * ggml_alibi(
  4235. struct ggml_context * ctx,
  4236. struct ggml_tensor * a,
  4237. int n_past,
  4238. int n_head,
  4239. float bias_max) {
  4240. GGML_ASSERT(n_past >= 0);
  4241. bool is_node = false;
  4242. if (a->grad) {
  4243. GGML_ASSERT(false); // TODO: implement backward
  4244. is_node = true;
  4245. }
  4246. // TODO: when implement backward, fix this:
  4247. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4248. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4249. int32_t op_params[3] = { n_past, n_head };
  4250. memcpy(op_params + 2, &bias_max, sizeof(float));
  4251. ggml_set_op_params(result, op_params, sizeof(op_params));
  4252. result->op = GGML_OP_ALIBI;
  4253. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4254. result->src[0] = a;
  4255. return result;
  4256. }
  4257. // ggml_clamp
  4258. struct ggml_tensor * ggml_clamp(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a,
  4261. float min,
  4262. float max) {
  4263. bool is_node = false;
  4264. if (a->grad) {
  4265. GGML_ASSERT(false); // TODO: implement backward
  4266. is_node = true;
  4267. }
  4268. // TODO: when implement backward, fix this:
  4269. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4270. float params[] = { min, max };
  4271. ggml_set_op_params(result, params, sizeof(params));
  4272. result->op = GGML_OP_CLAMP;
  4273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4274. result->src[0] = a;
  4275. return result;
  4276. }
  4277. // ggml_conv_1d
  4278. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4279. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4280. }
  4281. GGML_API struct ggml_tensor * ggml_conv_1d(
  4282. struct ggml_context * ctx,
  4283. struct ggml_tensor * a,
  4284. struct ggml_tensor * b,
  4285. int s0,
  4286. int p0,
  4287. int d0) {
  4288. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
  4289. struct ggml_tensor * result =
  4290. ggml_mul_mat(ctx,
  4291. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4292. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4293. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4294. return result;
  4295. }
  4296. // ggml_conv_1d_ph
  4297. struct ggml_tensor* ggml_conv_1d_ph(
  4298. struct ggml_context * ctx,
  4299. struct ggml_tensor * a,
  4300. struct ggml_tensor * b,
  4301. int s,
  4302. int d) {
  4303. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4304. }
  4305. // ggml_conv_transpose_1d
  4306. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4307. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4308. }
  4309. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b,
  4313. int s0,
  4314. int p0,
  4315. int d0) {
  4316. GGML_ASSERT(ggml_is_matrix(b));
  4317. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4318. GGML_ASSERT(a->ne[3] == 1);
  4319. GGML_ASSERT(p0 == 0);
  4320. GGML_ASSERT(d0 == 1);
  4321. bool is_node = false;
  4322. if (a->grad || b->grad) {
  4323. GGML_ASSERT(false); // TODO: implement backward
  4324. is_node = true;
  4325. }
  4326. const int64_t ne[4] = {
  4327. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4328. a->ne[1], b->ne[2], 1,
  4329. };
  4330. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4331. int32_t params[] = { s0, p0, d0 };
  4332. ggml_set_op_params(result, params, sizeof(params));
  4333. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4334. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4335. result->src[0] = a;
  4336. result->src[1] = b;
  4337. return result;
  4338. }
  4339. // ggml_conv_2d
  4340. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4341. // a: [OC,IC, KH, KW]
  4342. // b: [N, IC, IH, IW]
  4343. // result: [N, OH, OW, IC*KH*KW]
  4344. struct ggml_tensor * ggml_im2col(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a,
  4347. struct ggml_tensor * b,
  4348. int s0,
  4349. int s1,
  4350. int p0,
  4351. int p1,
  4352. int d0,
  4353. int d1,
  4354. bool is_2D) {
  4355. if(is_2D) {
  4356. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4357. } else {
  4358. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4359. }
  4360. bool is_node = false;
  4361. if (a->grad || b->grad) {
  4362. GGML_ASSERT(false); // TODO: implement backward
  4363. is_node = true;
  4364. }
  4365. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4366. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4367. const int64_t ne[4] = {
  4368. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4369. OW,
  4370. is_2D ? OH : b->ne[2],
  4371. is_2D ? b->ne[3] : 1,
  4372. };
  4373. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  4374. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4375. ggml_set_op_params(result, params, sizeof(params));
  4376. result->op = GGML_OP_IM2COL;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src[0] = a;
  4379. result->src[1] = b;
  4380. return result;
  4381. }
  4382. // a: [OC,IC, KH, KW]
  4383. // b: [N, IC, IH, IW]
  4384. // result: [N, OC, OH, OW]
  4385. struct ggml_tensor * ggml_conv_2d(
  4386. struct ggml_context * ctx,
  4387. struct ggml_tensor * a,
  4388. struct ggml_tensor * b,
  4389. int s0,
  4390. int s1,
  4391. int p0,
  4392. int p1,
  4393. int d0,
  4394. int d1) {
  4395. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
  4396. struct ggml_tensor * result =
  4397. ggml_mul_mat(ctx,
  4398. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4399. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4400. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], a->ne[3], im2col->ne[3]); // [N, OC, OH, OW]
  4401. return result;
  4402. }
  4403. // ggml_conv_2d_sk_p0
  4404. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4405. struct ggml_context * ctx,
  4406. struct ggml_tensor * a,
  4407. struct ggml_tensor * b) {
  4408. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4409. }
  4410. // ggml_conv_2d_s1_ph
  4411. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. struct ggml_tensor * b) {
  4415. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4416. }
  4417. // ggml_conv_transpose_2d_p0
  4418. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4419. return (ins - 1) * s - 2 * p + ks;
  4420. }
  4421. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4422. struct ggml_context * ctx,
  4423. struct ggml_tensor * a,
  4424. struct ggml_tensor * b,
  4425. int stride) {
  4426. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4427. bool is_node = false;
  4428. if (a->grad || b->grad) {
  4429. GGML_ASSERT(false); // TODO: implement backward
  4430. is_node = true;
  4431. }
  4432. const int64_t ne[4] = {
  4433. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4434. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4435. a->ne[2], b->ne[3],
  4436. };
  4437. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4438. ggml_set_op_params_i32(result, 0, stride);
  4439. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4440. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4441. result->src[0] = a;
  4442. result->src[1] = b;
  4443. return result;
  4444. }
  4445. // ggml_pool_*
  4446. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4447. return (ins + 2 * p - ks) / s + 1;
  4448. }
  4449. // ggml_pool_1d
  4450. struct ggml_tensor * ggml_pool_1d(
  4451. struct ggml_context * ctx,
  4452. struct ggml_tensor * a,
  4453. enum ggml_op_pool op,
  4454. int k0,
  4455. int s0,
  4456. int p0) {
  4457. bool is_node = false;
  4458. if (a->grad) {
  4459. GGML_ASSERT(false); // TODO: implement backward
  4460. is_node = true;
  4461. }
  4462. const int64_t ne[2] = {
  4463. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4464. a->ne[1],
  4465. };
  4466. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4467. int32_t params[] = { op, k0, s0, p0 };
  4468. ggml_set_op_params(result, params, sizeof(params));
  4469. result->op = GGML_OP_POOL_1D;
  4470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4471. result->src[0] = a;
  4472. return result;
  4473. }
  4474. // ggml_pool_2d
  4475. struct ggml_tensor * ggml_pool_2d(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a,
  4478. enum ggml_op_pool op,
  4479. int k0,
  4480. int k1,
  4481. int s0,
  4482. int s1,
  4483. float p0,
  4484. float p1) {
  4485. bool is_node = false;
  4486. if (a->grad) {
  4487. GGML_ASSERT(false); // TODO: implement backward
  4488. is_node = true;
  4489. }
  4490. const int64_t ne[3] = {
  4491. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4492. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4493. a->ne[2],
  4494. };
  4495. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4496. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4497. ggml_set_op_params(result, params, sizeof(params));
  4498. result->op = GGML_OP_POOL_2D;
  4499. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4500. result->src[0] = a;
  4501. return result;
  4502. }
  4503. // ggml_upscale
  4504. static struct ggml_tensor * ggml_upscale_impl(
  4505. struct ggml_context * ctx,
  4506. struct ggml_tensor * a,
  4507. int scale_factor) {
  4508. bool is_node = false;
  4509. if (a->grad) {
  4510. GGML_ASSERT(false); // TODO: implement backward
  4511. is_node = true;
  4512. }
  4513. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4514. a->ne[0] * scale_factor,
  4515. a->ne[1] * scale_factor,
  4516. a->ne[2], a->ne[3]);
  4517. result->op = GGML_OP_UPSCALE;
  4518. result->op_params[0] = scale_factor;
  4519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4520. result->src[0] = a;
  4521. result->src[1] = NULL;
  4522. return result;
  4523. }
  4524. struct ggml_tensor * ggml_pad(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a,
  4527. int p0, int p1, int p2, int p3) {
  4528. bool is_node = false;
  4529. if (a->grad) {
  4530. GGML_ASSERT(false); // TODO: implement backward
  4531. is_node = true;
  4532. }
  4533. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4534. a->ne[0] + p0,
  4535. a->ne[1] + p1,
  4536. a->ne[2] + p2,
  4537. a->ne[3] + p3);
  4538. result->op = GGML_OP_PAD;
  4539. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4540. result->src[0] = a;
  4541. return result;
  4542. }
  4543. struct ggml_tensor * ggml_upscale(
  4544. struct ggml_context * ctx,
  4545. struct ggml_tensor * a,
  4546. int scale_factor) {
  4547. return ggml_upscale_impl(ctx, a, scale_factor);
  4548. }
  4549. // ggml_argsort
  4550. struct ggml_tensor * ggml_argsort(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. enum ggml_sort_order order) {
  4554. bool is_node = false;
  4555. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4556. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4557. result->op = GGML_OP_ARGSORT;
  4558. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4559. result->src[0] = a;
  4560. return result;
  4561. }
  4562. // ggml_top_k
  4563. struct ggml_tensor * ggml_top_k(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. int k) {
  4567. GGML_ASSERT(a->ne[0] >= k);
  4568. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_DESC);
  4569. result = ggml_view_4d(ctx, result,
  4570. k, result->ne[1], result->ne[2], result->ne[3],
  4571. result->nb[1], result->nb[2], result->nb[3],
  4572. 0);
  4573. return result;
  4574. }
  4575. // ggml_flash_attn
  4576. struct ggml_tensor * ggml_flash_attn(
  4577. struct ggml_context * ctx,
  4578. struct ggml_tensor * q,
  4579. struct ggml_tensor * k,
  4580. struct ggml_tensor * v,
  4581. bool masked) {
  4582. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4583. // TODO: check if vT can be multiplied by (k*qT)
  4584. bool is_node = false;
  4585. if (q->grad || k->grad || v->grad) {
  4586. is_node = true;
  4587. }
  4588. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4589. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4590. int32_t t = masked ? 1 : 0;
  4591. ggml_set_op_params(result, &t, sizeof(t));
  4592. result->op = GGML_OP_FLASH_ATTN;
  4593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4594. result->src[0] = q;
  4595. result->src[1] = k;
  4596. result->src[2] = v;
  4597. return result;
  4598. }
  4599. // ggml_flash_ff
  4600. struct ggml_tensor * ggml_flash_ff(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. struct ggml_tensor * b0,
  4604. struct ggml_tensor * b1,
  4605. struct ggml_tensor * c0,
  4606. struct ggml_tensor * c1) {
  4607. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4608. // TODO: more checks
  4609. bool is_node = false;
  4610. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4611. is_node = true;
  4612. }
  4613. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4614. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4615. result->op = GGML_OP_FLASH_FF;
  4616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4617. result->src[0] = a;
  4618. result->src[1] = b0;
  4619. result->src[2] = b1;
  4620. result->src[3] = c0;
  4621. result->src[4] = c1;
  4622. return result;
  4623. }
  4624. // ggml_flash_attn_back
  4625. struct ggml_tensor * ggml_flash_attn_back(
  4626. struct ggml_context * ctx,
  4627. struct ggml_tensor * q,
  4628. struct ggml_tensor * k,
  4629. struct ggml_tensor * v,
  4630. struct ggml_tensor * d,
  4631. bool masked) {
  4632. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4633. // TODO: check if vT can be multiplied by (k*qT)
  4634. // d shape [D,N,ne2,ne3]
  4635. // q shape [D,N,ne2,ne3]
  4636. // k shape [D,M,kvne2,ne3]
  4637. // v shape [M,D,kvne2,ne3]
  4638. const int64_t D = q->ne[0];
  4639. const int64_t N = q->ne[1];
  4640. const int64_t M = k->ne[1];
  4641. const int64_t ne2 = q->ne[2];
  4642. const int64_t ne3 = q->ne[3];
  4643. const int64_t kvne2 = k->ne[2];
  4644. GGML_ASSERT(k->ne[0] == D);
  4645. GGML_ASSERT(v->ne[0] == M);
  4646. GGML_ASSERT(v->ne[1] == D);
  4647. GGML_ASSERT(d->ne[0] == D);
  4648. GGML_ASSERT(d->ne[1] == N);
  4649. GGML_ASSERT(k->ne[2] == kvne2);
  4650. GGML_ASSERT(k->ne[3] == ne3);
  4651. GGML_ASSERT(v->ne[2] == kvne2);
  4652. GGML_ASSERT(v->ne[3] == ne3);
  4653. GGML_ASSERT(d->ne[2] == ne2);
  4654. GGML_ASSERT(d->ne[3] == ne3);
  4655. GGML_ASSERT(ne2 % kvne2 == 0);
  4656. bool is_node = false;
  4657. if (q->grad || k->grad || v->grad) {
  4658. // when using this operation (in backwards pass) these grads are set.
  4659. // we don't want to create (big) grad of our result, so is_node is false.
  4660. is_node = false;
  4661. }
  4662. // store gradients of q, k and v as continuous tensors concatenated in result.
  4663. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4664. const int64_t elem_q = ggml_nelements(q);
  4665. const int64_t elem_k = ggml_nelements(k);
  4666. const int64_t elem_v = ggml_nelements(v);
  4667. enum ggml_type result_type = GGML_TYPE_F32;
  4668. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4669. const size_t tsize = ggml_type_size(result_type);
  4670. const size_t offs_q = 0;
  4671. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4672. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4673. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4674. const size_t nelements = (end + tsize - 1)/tsize;
  4675. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4676. int32_t masked_i = masked ? 1 : 0;
  4677. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4678. result->op = GGML_OP_FLASH_ATTN_BACK;
  4679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4680. result->src[0] = q;
  4681. result->src[1] = k;
  4682. result->src[2] = v;
  4683. result->src[3] = d;
  4684. return result;
  4685. }
  4686. // ggml_win_part
  4687. struct ggml_tensor * ggml_win_part(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a,
  4690. int w) {
  4691. GGML_ASSERT(a->ne[3] == 1);
  4692. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4693. bool is_node = false;
  4694. if (a->grad) {
  4695. GGML_ASSERT(false); // TODO: implement backward
  4696. is_node = true;
  4697. }
  4698. // padding
  4699. const int px = (w - a->ne[1]%w)%w;
  4700. const int py = (w - a->ne[2]%w)%w;
  4701. const int npx = (px + a->ne[1])/w;
  4702. const int npy = (py + a->ne[2])/w;
  4703. const int np = npx*npy;
  4704. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4705. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4706. int32_t params[] = { npx, npy, w };
  4707. ggml_set_op_params(result, params, sizeof(params));
  4708. result->op = GGML_OP_WIN_PART;
  4709. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4710. result->src[0] = a;
  4711. return result;
  4712. }
  4713. // ggml_win_unpart
  4714. struct ggml_tensor * ggml_win_unpart(
  4715. struct ggml_context * ctx,
  4716. struct ggml_tensor * a,
  4717. int w0,
  4718. int h0,
  4719. int w) {
  4720. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4721. bool is_node = false;
  4722. if (a->grad) {
  4723. GGML_ASSERT(false); // TODO: implement backward
  4724. is_node = true;
  4725. }
  4726. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4727. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4728. int32_t params[] = { w };
  4729. ggml_set_op_params(result, params, sizeof(params));
  4730. result->op = GGML_OP_WIN_UNPART;
  4731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4732. result->src[0] = a;
  4733. return result;
  4734. }
  4735. // ggml_get_rel_pos
  4736. struct ggml_tensor * ggml_get_rel_pos(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. int qh,
  4740. int kh) {
  4741. GGML_ASSERT(qh == kh);
  4742. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  4743. bool is_node = false;
  4744. if (a->grad) {
  4745. GGML_ASSERT(false); // TODO: implement backward
  4746. is_node = true;
  4747. }
  4748. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  4749. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  4750. result->op = GGML_OP_GET_REL_POS;
  4751. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4752. result->src[0] = a;
  4753. result->src[1] = NULL;
  4754. return result;
  4755. }
  4756. // ggml_add_rel_pos
  4757. static struct ggml_tensor * ggml_add_rel_pos_impl(
  4758. struct ggml_context * ctx,
  4759. struct ggml_tensor * a,
  4760. struct ggml_tensor * pw,
  4761. struct ggml_tensor * ph,
  4762. bool inplace) {
  4763. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  4764. GGML_ASSERT(ggml_is_contiguous(a));
  4765. GGML_ASSERT(ggml_is_contiguous(pw));
  4766. GGML_ASSERT(ggml_is_contiguous(ph));
  4767. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  4768. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  4769. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  4770. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  4771. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  4772. bool is_node = false;
  4773. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  4774. is_node = true;
  4775. }
  4776. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4777. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  4778. result->op = GGML_OP_ADD_REL_POS;
  4779. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4780. result->src[0] = a;
  4781. result->src[1] = pw;
  4782. result->src[2] = ph;
  4783. return result;
  4784. }
  4785. struct ggml_tensor * ggml_add_rel_pos(
  4786. struct ggml_context * ctx,
  4787. struct ggml_tensor * a,
  4788. struct ggml_tensor * pw,
  4789. struct ggml_tensor * ph) {
  4790. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  4791. }
  4792. struct ggml_tensor * ggml_add_rel_pos_inplace(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * a,
  4795. struct ggml_tensor * pw,
  4796. struct ggml_tensor * ph) {
  4797. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  4798. }
  4799. // gmml_unary
  4800. static struct ggml_tensor * ggml_unary_impl(
  4801. struct ggml_context * ctx,
  4802. struct ggml_tensor * a,
  4803. enum ggml_unary_op op,
  4804. bool inplace) {
  4805. bool is_node = false;
  4806. if (!inplace && (a->grad)) {
  4807. is_node = true;
  4808. }
  4809. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4810. ggml_set_op_params_i32(result, 0, (int32_t) op);
  4811. result->op = GGML_OP_UNARY;
  4812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4813. result->src[0] = a;
  4814. return result;
  4815. }
  4816. struct ggml_tensor * ggml_unary(
  4817. struct ggml_context * ctx,
  4818. struct ggml_tensor * a,
  4819. enum ggml_unary_op op) {
  4820. return ggml_unary_impl(ctx, a, op, false);
  4821. }
  4822. struct ggml_tensor * ggml_unary_inplace(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a,
  4825. enum ggml_unary_op op) {
  4826. return ggml_unary_impl(ctx, a, op, true);
  4827. }
  4828. // ggml_map_unary
  4829. static struct ggml_tensor * ggml_map_unary_impl_f32(
  4830. struct ggml_context * ctx,
  4831. struct ggml_tensor * a,
  4832. const ggml_unary_op_f32_t fun,
  4833. bool inplace) {
  4834. bool is_node = false;
  4835. if (!inplace && a->grad) {
  4836. is_node = true;
  4837. }
  4838. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4839. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4840. result->op = GGML_OP_MAP_UNARY;
  4841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4842. result->src[0] = a;
  4843. return result;
  4844. }
  4845. struct ggml_tensor * ggml_map_unary_f32(
  4846. struct ggml_context * ctx,
  4847. struct ggml_tensor * a,
  4848. const ggml_unary_op_f32_t fun) {
  4849. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4850. }
  4851. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. const ggml_unary_op_f32_t fun) {
  4855. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4856. }
  4857. // ggml_map_binary
  4858. static struct ggml_tensor * ggml_map_binary_impl_f32(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. struct ggml_tensor * b,
  4862. const ggml_binary_op_f32_t fun,
  4863. bool inplace) {
  4864. GGML_ASSERT(ggml_are_same_shape(a, b));
  4865. bool is_node = false;
  4866. if (!inplace && (a->grad || b->grad)) {
  4867. is_node = true;
  4868. }
  4869. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4870. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4871. result->op = GGML_OP_MAP_BINARY;
  4872. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4873. result->src[0] = a;
  4874. result->src[1] = b;
  4875. return result;
  4876. }
  4877. struct ggml_tensor * ggml_map_binary_f32(
  4878. struct ggml_context * ctx,
  4879. struct ggml_tensor * a,
  4880. struct ggml_tensor * b,
  4881. const ggml_binary_op_f32_t fun) {
  4882. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  4883. }
  4884. struct ggml_tensor * ggml_map_binary_inplace_f32(
  4885. struct ggml_context * ctx,
  4886. struct ggml_tensor * a,
  4887. struct ggml_tensor * b,
  4888. const ggml_binary_op_f32_t fun) {
  4889. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  4890. }
  4891. // ggml_map_custom1_f32
  4892. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. const ggml_custom1_op_f32_t fun,
  4896. bool inplace) {
  4897. bool is_node = false;
  4898. if (!inplace && a->grad) {
  4899. is_node = true;
  4900. }
  4901. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4902. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4903. result->op = GGML_OP_MAP_CUSTOM1_F32;
  4904. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4905. result->src[0] = a;
  4906. return result;
  4907. }
  4908. struct ggml_tensor * ggml_map_custom1_f32(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. const ggml_custom1_op_f32_t fun) {
  4912. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  4913. }
  4914. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  4915. struct ggml_context * ctx,
  4916. struct ggml_tensor * a,
  4917. const ggml_custom1_op_f32_t fun) {
  4918. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  4919. }
  4920. // ggml_map_custom2_f32
  4921. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  4922. struct ggml_context * ctx,
  4923. struct ggml_tensor * a,
  4924. struct ggml_tensor * b,
  4925. const ggml_custom2_op_f32_t fun,
  4926. bool inplace) {
  4927. bool is_node = false;
  4928. if (!inplace && (a->grad || b->grad)) {
  4929. is_node = true;
  4930. }
  4931. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4932. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4933. result->op = GGML_OP_MAP_CUSTOM2_F32;
  4934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4935. result->src[0] = a;
  4936. result->src[1] = b;
  4937. return result;
  4938. }
  4939. struct ggml_tensor * ggml_map_custom2_f32(
  4940. struct ggml_context * ctx,
  4941. struct ggml_tensor * a,
  4942. struct ggml_tensor * b,
  4943. const ggml_custom2_op_f32_t fun) {
  4944. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  4945. }
  4946. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  4947. struct ggml_context * ctx,
  4948. struct ggml_tensor * a,
  4949. struct ggml_tensor * b,
  4950. const ggml_custom2_op_f32_t fun) {
  4951. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  4952. }
  4953. // ggml_map_custom3_f32
  4954. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. struct ggml_tensor * b,
  4958. struct ggml_tensor * c,
  4959. const ggml_custom3_op_f32_t fun,
  4960. bool inplace) {
  4961. bool is_node = false;
  4962. if (!inplace && (a->grad || b->grad || c->grad)) {
  4963. is_node = true;
  4964. }
  4965. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4966. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  4967. result->op = GGML_OP_MAP_CUSTOM3_F32;
  4968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4969. result->src[0] = a;
  4970. result->src[1] = b;
  4971. result->src[2] = c;
  4972. return result;
  4973. }
  4974. struct ggml_tensor * ggml_map_custom3_f32(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. struct ggml_tensor * b,
  4978. struct ggml_tensor * c,
  4979. const ggml_custom3_op_f32_t fun) {
  4980. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  4981. }
  4982. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b,
  4986. struct ggml_tensor * c,
  4987. const ggml_custom3_op_f32_t fun) {
  4988. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  4989. }
  4990. // ggml_map_custom1
  4991. struct ggml_map_custom1_op_params {
  4992. ggml_custom1_op_t fun;
  4993. int n_tasks;
  4994. void * userdata;
  4995. };
  4996. static struct ggml_tensor * ggml_map_custom1_impl(
  4997. struct ggml_context * ctx,
  4998. struct ggml_tensor * a,
  4999. const ggml_custom1_op_t fun,
  5000. int n_tasks,
  5001. void * userdata,
  5002. bool inplace) {
  5003. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5004. bool is_node = false;
  5005. if (!inplace && a->grad) {
  5006. is_node = true;
  5007. }
  5008. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5009. struct ggml_map_custom1_op_params params = {
  5010. /*.fun =*/ fun,
  5011. /*.n_tasks =*/ n_tasks,
  5012. /*.userdata =*/ userdata
  5013. };
  5014. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5015. result->op = GGML_OP_MAP_CUSTOM1;
  5016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5017. result->src[0] = a;
  5018. return result;
  5019. }
  5020. struct ggml_tensor * ggml_map_custom1(
  5021. struct ggml_context * ctx,
  5022. struct ggml_tensor * a,
  5023. const ggml_custom1_op_t fun,
  5024. int n_tasks,
  5025. void * userdata) {
  5026. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5027. }
  5028. struct ggml_tensor * ggml_map_custom1_inplace(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. const ggml_custom1_op_t fun,
  5032. int n_tasks,
  5033. void * userdata) {
  5034. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5035. }
  5036. // ggml_map_custom2
  5037. struct ggml_map_custom2_op_params {
  5038. ggml_custom2_op_t fun;
  5039. int n_tasks;
  5040. void * userdata;
  5041. };
  5042. static struct ggml_tensor * ggml_map_custom2_impl(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. struct ggml_tensor * b,
  5046. const ggml_custom2_op_t fun,
  5047. int n_tasks,
  5048. void * userdata,
  5049. bool inplace) {
  5050. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5051. bool is_node = false;
  5052. if (!inplace && (a->grad || b->grad)) {
  5053. is_node = true;
  5054. }
  5055. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5056. struct ggml_map_custom2_op_params params = {
  5057. /*.fun =*/ fun,
  5058. /*.n_tasks =*/ n_tasks,
  5059. /*.userdata =*/ userdata
  5060. };
  5061. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5062. result->op = GGML_OP_MAP_CUSTOM2;
  5063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5064. result->src[0] = a;
  5065. result->src[1] = b;
  5066. return result;
  5067. }
  5068. struct ggml_tensor * ggml_map_custom2(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. struct ggml_tensor * b,
  5072. const ggml_custom2_op_t fun,
  5073. int n_tasks,
  5074. void * userdata) {
  5075. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5076. }
  5077. struct ggml_tensor * ggml_map_custom2_inplace(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a,
  5080. struct ggml_tensor * b,
  5081. const ggml_custom2_op_t fun,
  5082. int n_tasks,
  5083. void * userdata) {
  5084. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5085. }
  5086. // ggml_map_custom3
  5087. struct ggml_map_custom3_op_params {
  5088. ggml_custom3_op_t fun;
  5089. int n_tasks;
  5090. void * userdata;
  5091. };
  5092. static struct ggml_tensor * ggml_map_custom3_impl(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. struct ggml_tensor * b,
  5096. struct ggml_tensor * c,
  5097. const ggml_custom3_op_t fun,
  5098. int n_tasks,
  5099. void * userdata,
  5100. bool inplace) {
  5101. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5102. bool is_node = false;
  5103. if (!inplace && (a->grad || b->grad || c->grad)) {
  5104. is_node = true;
  5105. }
  5106. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5107. struct ggml_map_custom3_op_params params = {
  5108. /*.fun =*/ fun,
  5109. /*.n_tasks =*/ n_tasks,
  5110. /*.userdata =*/ userdata
  5111. };
  5112. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5113. result->op = GGML_OP_MAP_CUSTOM3;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src[0] = a;
  5116. result->src[1] = b;
  5117. result->src[2] = c;
  5118. return result;
  5119. }
  5120. struct ggml_tensor * ggml_map_custom3(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a,
  5123. struct ggml_tensor * b,
  5124. struct ggml_tensor * c,
  5125. const ggml_custom3_op_t fun,
  5126. int n_tasks,
  5127. void * userdata) {
  5128. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5129. }
  5130. struct ggml_tensor * ggml_map_custom3_inplace(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * a,
  5133. struct ggml_tensor * b,
  5134. struct ggml_tensor * c,
  5135. const ggml_custom3_op_t fun,
  5136. int n_tasks,
  5137. void * userdata) {
  5138. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5139. }
  5140. // ggml_cross_entropy_loss
  5141. struct ggml_tensor * ggml_cross_entropy_loss(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * a,
  5144. struct ggml_tensor * b) {
  5145. GGML_ASSERT(ggml_are_same_shape(a, b));
  5146. bool is_node = false;
  5147. if (a->grad || b->grad) {
  5148. is_node = true;
  5149. }
  5150. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5151. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5153. result->src[0] = a;
  5154. result->src[1] = b;
  5155. return result;
  5156. }
  5157. // ggml_cross_entropy_loss_back
  5158. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5159. struct ggml_context * ctx,
  5160. struct ggml_tensor * a,
  5161. struct ggml_tensor * b,
  5162. struct ggml_tensor * c) {
  5163. GGML_ASSERT(ggml_are_same_shape(a, b));
  5164. GGML_ASSERT(ggml_is_scalar(c));
  5165. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5166. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5167. result->grad = NULL;
  5168. result->src[0] = a;
  5169. result->src[1] = b;
  5170. result->src[2] = c;
  5171. return result;
  5172. }
  5173. ////////////////////////////////////////////////////////////////////////////////
  5174. void ggml_set_param(
  5175. struct ggml_context * ctx,
  5176. struct ggml_tensor * tensor) {
  5177. tensor->is_param = true;
  5178. GGML_ASSERT(tensor->grad == NULL);
  5179. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5180. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5181. }
  5182. // ggml_compute_forward_dup
  5183. static void ggml_compute_forward_dup_same_cont(
  5184. const struct ggml_compute_params * params,
  5185. const struct ggml_tensor * src0,
  5186. struct ggml_tensor * dst) {
  5187. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5188. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5189. GGML_ASSERT(src0->type == dst->type);
  5190. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5191. return;
  5192. }
  5193. const size_t nb00 = src0->nb[0];
  5194. const size_t nb0 = dst->nb[0];
  5195. const int ith = params->ith; // thread index
  5196. const int nth = params->nth; // number of threads
  5197. // parallelize by elements
  5198. const int ne = ggml_nelements(dst);
  5199. const int dr = (ne + nth - 1) / nth;
  5200. const int ie0 = dr * ith;
  5201. const int ie1 = MIN(ie0 + dr, ne);
  5202. if (ie0 < ie1) {
  5203. memcpy(
  5204. ((char *) dst->data + ie0*nb0),
  5205. ((char *) src0->data + ie0*nb00),
  5206. (ie1 - ie0) * ggml_type_size(src0->type));
  5207. }
  5208. }
  5209. static void ggml_compute_forward_dup_f16(
  5210. const struct ggml_compute_params * params,
  5211. const struct ggml_tensor * src0,
  5212. struct ggml_tensor * dst) {
  5213. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5215. return;
  5216. }
  5217. GGML_TENSOR_UNARY_OP_LOCALS
  5218. const int ith = params->ith; // thread index
  5219. const int nth = params->nth; // number of threads
  5220. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5221. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5222. return;
  5223. }
  5224. // parallelize by rows
  5225. const int nr = ne01;
  5226. // number of rows per thread
  5227. const int dr = (nr + nth - 1) / nth;
  5228. // row range for this thread
  5229. const int ir0 = dr * ith;
  5230. const int ir1 = MIN(ir0 + dr, nr);
  5231. if (src0->type == dst->type &&
  5232. ne00 == ne0 &&
  5233. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5234. // copy by rows
  5235. const size_t rs = ne00*nb00;
  5236. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5237. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5238. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5239. memcpy(
  5240. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5241. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5242. rs);
  5243. }
  5244. }
  5245. }
  5246. return;
  5247. }
  5248. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5249. if (ggml_is_contiguous(dst)) {
  5250. if (nb00 == sizeof(ggml_fp16_t)) {
  5251. if (dst->type == GGML_TYPE_F16) {
  5252. size_t id = 0;
  5253. const size_t rs = ne00 * nb00;
  5254. char * dst_ptr = (char *) dst->data;
  5255. for (int i03 = 0; i03 < ne03; i03++) {
  5256. for (int i02 = 0; i02 < ne02; i02++) {
  5257. id += rs * ir0;
  5258. for (int i01 = ir0; i01 < ir1; i01++) {
  5259. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5260. memcpy(dst_ptr + id, src0_ptr, rs);
  5261. id += rs;
  5262. }
  5263. id += rs * (ne01 - ir1);
  5264. }
  5265. }
  5266. } else if (dst->type == GGML_TYPE_F32) {
  5267. size_t id = 0;
  5268. float * dst_ptr = (float *) dst->data;
  5269. for (int i03 = 0; i03 < ne03; i03++) {
  5270. for (int i02 = 0; i02 < ne02; i02++) {
  5271. id += ne00 * ir0;
  5272. for (int i01 = ir0; i01 < ir1; i01++) {
  5273. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5274. for (int i00 = 0; i00 < ne00; i00++) {
  5275. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5276. id++;
  5277. }
  5278. }
  5279. id += ne00 * (ne01 - ir1);
  5280. }
  5281. }
  5282. } else if (type_traits[dst->type].from_float) {
  5283. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5284. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5285. size_t id = 0;
  5286. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5287. char * dst_ptr = (char *) dst->data;
  5288. for (int i03 = 0; i03 < ne03; i03++) {
  5289. for (int i02 = 0; i02 < ne02; i02++) {
  5290. id += rs * ir0;
  5291. for (int i01 = ir0; i01 < ir1; i01++) {
  5292. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5293. for (int i00 = 0; i00 < ne00; i00++) {
  5294. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5295. }
  5296. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5297. id += rs;
  5298. }
  5299. id += rs * (ne01 - ir1);
  5300. }
  5301. }
  5302. } else {
  5303. GGML_ASSERT(false); // TODO: implement
  5304. }
  5305. } else {
  5306. //printf("%s: this is not optimal - fix me\n", __func__);
  5307. if (dst->type == GGML_TYPE_F32) {
  5308. size_t id = 0;
  5309. float * dst_ptr = (float *) dst->data;
  5310. for (int i03 = 0; i03 < ne03; i03++) {
  5311. for (int i02 = 0; i02 < ne02; i02++) {
  5312. id += ne00 * ir0;
  5313. for (int i01 = ir0; i01 < ir1; i01++) {
  5314. for (int i00 = 0; i00 < ne00; i00++) {
  5315. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5316. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5317. id++;
  5318. }
  5319. }
  5320. id += ne00 * (ne01 - ir1);
  5321. }
  5322. }
  5323. } else if (dst->type == GGML_TYPE_F16) {
  5324. size_t id = 0;
  5325. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5326. for (int i03 = 0; i03 < ne03; i03++) {
  5327. for (int i02 = 0; i02 < ne02; i02++) {
  5328. id += ne00 * ir0;
  5329. for (int i01 = ir0; i01 < ir1; i01++) {
  5330. for (int i00 = 0; i00 < ne00; i00++) {
  5331. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5332. dst_ptr[id] = *src0_ptr;
  5333. id++;
  5334. }
  5335. }
  5336. id += ne00 * (ne01 - ir1);
  5337. }
  5338. }
  5339. } else {
  5340. GGML_ASSERT(false); // TODO: implement
  5341. }
  5342. }
  5343. return;
  5344. }
  5345. // dst counters
  5346. int64_t i10 = 0;
  5347. int64_t i11 = 0;
  5348. int64_t i12 = 0;
  5349. int64_t i13 = 0;
  5350. if (dst->type == GGML_TYPE_F16) {
  5351. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5352. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5353. i10 += ne00 * ir0;
  5354. while (i10 >= ne0) {
  5355. i10 -= ne0;
  5356. if (++i11 == ne1) {
  5357. i11 = 0;
  5358. if (++i12 == ne2) {
  5359. i12 = 0;
  5360. if (++i13 == ne3) {
  5361. i13 = 0;
  5362. }
  5363. }
  5364. }
  5365. }
  5366. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5367. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5368. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5369. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5370. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5371. if (++i10 == ne00) {
  5372. i10 = 0;
  5373. if (++i11 == ne01) {
  5374. i11 = 0;
  5375. if (++i12 == ne02) {
  5376. i12 = 0;
  5377. if (++i13 == ne03) {
  5378. i13 = 0;
  5379. }
  5380. }
  5381. }
  5382. }
  5383. }
  5384. }
  5385. i10 += ne00 * (ne01 - ir1);
  5386. while (i10 >= ne0) {
  5387. i10 -= ne0;
  5388. if (++i11 == ne1) {
  5389. i11 = 0;
  5390. if (++i12 == ne2) {
  5391. i12 = 0;
  5392. if (++i13 == ne3) {
  5393. i13 = 0;
  5394. }
  5395. }
  5396. }
  5397. }
  5398. }
  5399. }
  5400. } else if (dst->type == GGML_TYPE_F32) {
  5401. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5402. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5403. i10 += ne00 * ir0;
  5404. while (i10 >= ne0) {
  5405. i10 -= ne0;
  5406. if (++i11 == ne1) {
  5407. i11 = 0;
  5408. if (++i12 == ne2) {
  5409. i12 = 0;
  5410. if (++i13 == ne3) {
  5411. i13 = 0;
  5412. }
  5413. }
  5414. }
  5415. }
  5416. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5417. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5418. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5419. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5420. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5421. if (++i10 == ne0) {
  5422. i10 = 0;
  5423. if (++i11 == ne1) {
  5424. i11 = 0;
  5425. if (++i12 == ne2) {
  5426. i12 = 0;
  5427. if (++i13 == ne3) {
  5428. i13 = 0;
  5429. }
  5430. }
  5431. }
  5432. }
  5433. }
  5434. }
  5435. i10 += ne00 * (ne01 - ir1);
  5436. while (i10 >= ne0) {
  5437. i10 -= ne0;
  5438. if (++i11 == ne1) {
  5439. i11 = 0;
  5440. if (++i12 == ne2) {
  5441. i12 = 0;
  5442. if (++i13 == ne3) {
  5443. i13 = 0;
  5444. }
  5445. }
  5446. }
  5447. }
  5448. }
  5449. }
  5450. } else {
  5451. GGML_ASSERT(false); // TODO: implement
  5452. }
  5453. }
  5454. static void ggml_compute_forward_dup_f32(
  5455. const struct ggml_compute_params * params,
  5456. const struct ggml_tensor * src0,
  5457. struct ggml_tensor * dst) {
  5458. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5460. return;
  5461. }
  5462. GGML_TENSOR_UNARY_OP_LOCALS
  5463. const int ith = params->ith; // thread index
  5464. const int nth = params->nth; // number of threads
  5465. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5466. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5467. return;
  5468. }
  5469. // parallelize by rows
  5470. const int nr = ne01;
  5471. // number of rows per thread
  5472. const int dr = (nr + nth - 1) / nth;
  5473. // row range for this thread
  5474. const int ir0 = dr * ith;
  5475. const int ir1 = MIN(ir0 + dr, nr);
  5476. if (src0->type == dst->type &&
  5477. ne00 == ne0 &&
  5478. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5479. // copy by rows
  5480. const size_t rs = ne00*nb00;
  5481. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5482. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5483. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5484. memcpy(
  5485. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5486. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5487. rs);
  5488. }
  5489. }
  5490. }
  5491. return;
  5492. }
  5493. if (ggml_is_contiguous(dst)) {
  5494. // TODO: simplify
  5495. if (nb00 == sizeof(float)) {
  5496. if (dst->type == GGML_TYPE_F32) {
  5497. size_t id = 0;
  5498. const size_t rs = ne00 * nb00;
  5499. char * dst_ptr = (char *) dst->data;
  5500. for (int i03 = 0; i03 < ne03; i03++) {
  5501. for (int i02 = 0; i02 < ne02; i02++) {
  5502. id += rs * ir0;
  5503. for (int i01 = ir0; i01 < ir1; i01++) {
  5504. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5505. memcpy(dst_ptr + id, src0_ptr, rs);
  5506. id += rs;
  5507. }
  5508. id += rs * (ne01 - ir1);
  5509. }
  5510. }
  5511. } else if (type_traits[dst->type].from_float) {
  5512. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5513. size_t id = 0;
  5514. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5515. char * dst_ptr = (char *) dst->data;
  5516. for (int i03 = 0; i03 < ne03; i03++) {
  5517. for (int i02 = 0; i02 < ne02; i02++) {
  5518. id += rs * ir0;
  5519. for (int i01 = ir0; i01 < ir1; i01++) {
  5520. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5521. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5522. id += rs;
  5523. }
  5524. id += rs * (ne01 - ir1);
  5525. }
  5526. }
  5527. } else {
  5528. GGML_ASSERT(false); // TODO: implement
  5529. }
  5530. } else {
  5531. //printf("%s: this is not optimal - fix me\n", __func__);
  5532. if (dst->type == GGML_TYPE_F32) {
  5533. size_t id = 0;
  5534. float * dst_ptr = (float *) dst->data;
  5535. for (int i03 = 0; i03 < ne03; i03++) {
  5536. for (int i02 = 0; i02 < ne02; i02++) {
  5537. id += ne00 * ir0;
  5538. for (int i01 = ir0; i01 < ir1; i01++) {
  5539. for (int i00 = 0; i00 < ne00; i00++) {
  5540. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5541. dst_ptr[id] = *src0_ptr;
  5542. id++;
  5543. }
  5544. }
  5545. id += ne00 * (ne01 - ir1);
  5546. }
  5547. }
  5548. } else if (dst->type == GGML_TYPE_F16) {
  5549. size_t id = 0;
  5550. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5551. for (int i03 = 0; i03 < ne03; i03++) {
  5552. for (int i02 = 0; i02 < ne02; i02++) {
  5553. id += ne00 * ir0;
  5554. for (int i01 = ir0; i01 < ir1; i01++) {
  5555. for (int i00 = 0; i00 < ne00; i00++) {
  5556. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5557. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5558. id++;
  5559. }
  5560. }
  5561. id += ne00 * (ne01 - ir1);
  5562. }
  5563. }
  5564. } else {
  5565. GGML_ASSERT(false); // TODO: implement
  5566. }
  5567. }
  5568. return;
  5569. }
  5570. // dst counters
  5571. int64_t i10 = 0;
  5572. int64_t i11 = 0;
  5573. int64_t i12 = 0;
  5574. int64_t i13 = 0;
  5575. if (dst->type == GGML_TYPE_F32) {
  5576. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5577. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5578. i10 += ne00 * ir0;
  5579. while (i10 >= ne0) {
  5580. i10 -= ne0;
  5581. if (++i11 == ne1) {
  5582. i11 = 0;
  5583. if (++i12 == ne2) {
  5584. i12 = 0;
  5585. if (++i13 == ne3) {
  5586. i13 = 0;
  5587. }
  5588. }
  5589. }
  5590. }
  5591. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5592. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5593. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5594. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5595. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5596. if (++i10 == ne0) {
  5597. i10 = 0;
  5598. if (++i11 == ne1) {
  5599. i11 = 0;
  5600. if (++i12 == ne2) {
  5601. i12 = 0;
  5602. if (++i13 == ne3) {
  5603. i13 = 0;
  5604. }
  5605. }
  5606. }
  5607. }
  5608. }
  5609. }
  5610. i10 += ne00 * (ne01 - ir1);
  5611. while (i10 >= ne0) {
  5612. i10 -= ne0;
  5613. if (++i11 == ne1) {
  5614. i11 = 0;
  5615. if (++i12 == ne2) {
  5616. i12 = 0;
  5617. if (++i13 == ne3) {
  5618. i13 = 0;
  5619. }
  5620. }
  5621. }
  5622. }
  5623. }
  5624. }
  5625. } else if (dst->type == GGML_TYPE_F16) {
  5626. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5627. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5628. i10 += ne00 * ir0;
  5629. while (i10 >= ne0) {
  5630. i10 -= ne0;
  5631. if (++i11 == ne1) {
  5632. i11 = 0;
  5633. if (++i12 == ne2) {
  5634. i12 = 0;
  5635. if (++i13 == ne3) {
  5636. i13 = 0;
  5637. }
  5638. }
  5639. }
  5640. }
  5641. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5642. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5643. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5644. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5645. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5646. if (++i10 == ne0) {
  5647. i10 = 0;
  5648. if (++i11 == ne1) {
  5649. i11 = 0;
  5650. if (++i12 == ne2) {
  5651. i12 = 0;
  5652. if (++i13 == ne3) {
  5653. i13 = 0;
  5654. }
  5655. }
  5656. }
  5657. }
  5658. }
  5659. }
  5660. i10 += ne00 * (ne01 - ir1);
  5661. while (i10 >= ne0) {
  5662. i10 -= ne0;
  5663. if (++i11 == ne1) {
  5664. i11 = 0;
  5665. if (++i12 == ne2) {
  5666. i12 = 0;
  5667. if (++i13 == ne3) {
  5668. i13 = 0;
  5669. }
  5670. }
  5671. }
  5672. }
  5673. }
  5674. }
  5675. } else {
  5676. GGML_ASSERT(false); // TODO: implement
  5677. }
  5678. }
  5679. static void ggml_compute_forward_dup(
  5680. const struct ggml_compute_params * params,
  5681. const struct ggml_tensor * src0,
  5682. struct ggml_tensor * dst) {
  5683. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5684. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5685. return;
  5686. }
  5687. switch (src0->type) {
  5688. case GGML_TYPE_F16:
  5689. {
  5690. ggml_compute_forward_dup_f16(params, src0, dst);
  5691. } break;
  5692. case GGML_TYPE_F32:
  5693. {
  5694. ggml_compute_forward_dup_f32(params, src0, dst);
  5695. } break;
  5696. default:
  5697. {
  5698. GGML_ASSERT(false);
  5699. } break;
  5700. }
  5701. }
  5702. // ggml_compute_forward_add
  5703. static void ggml_compute_forward_add_f32(
  5704. const struct ggml_compute_params * params,
  5705. const struct ggml_tensor * src0,
  5706. const struct ggml_tensor * src1,
  5707. struct ggml_tensor * dst) {
  5708. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  5709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5710. return;
  5711. }
  5712. const int ith = params->ith;
  5713. const int nth = params->nth;
  5714. const int nr = ggml_nrows(src0);
  5715. GGML_TENSOR_BINARY_OP_LOCALS
  5716. GGML_ASSERT( nb0 == sizeof(float));
  5717. GGML_ASSERT(nb00 == sizeof(float));
  5718. // rows per thread
  5719. const int dr = (nr + nth - 1)/nth;
  5720. // row range for this thread
  5721. const int ir0 = dr*ith;
  5722. const int ir1 = MIN(ir0 + dr, nr);
  5723. if (nb10 == sizeof(float)) {
  5724. for (int ir = ir0; ir < ir1; ++ir) {
  5725. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5726. const int64_t i03 = ir/(ne02*ne01);
  5727. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5728. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5729. const int64_t i13 = i03 % ne13;
  5730. const int64_t i12 = i02 % ne12;
  5731. const int64_t i11 = i01 % ne11;
  5732. const int64_t nr0 = ne00 / ne10;
  5733. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5734. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5735. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  5736. for (int64_t r = 0; r < nr0; ++r) {
  5737. #ifdef GGML_USE_ACCELERATE
  5738. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  5739. #else
  5740. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  5741. #endif
  5742. }
  5743. }
  5744. } else {
  5745. // src1 is not contiguous
  5746. for (int ir = ir0; ir < ir1; ++ir) {
  5747. // src1 is broadcastable across src0 and dst in i1, i2, i3
  5748. const int64_t i03 = ir/(ne02*ne01);
  5749. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  5750. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5751. const int64_t i13 = i03 % ne13;
  5752. const int64_t i12 = i02 % ne12;
  5753. const int64_t i11 = i01 % ne11;
  5754. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  5755. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  5756. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  5757. const int64_t i10 = i0 % ne10;
  5758. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  5759. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5760. }
  5761. }
  5762. }
  5763. }
  5764. static void ggml_compute_forward_add_f16_f32(
  5765. const struct ggml_compute_params * params,
  5766. const struct ggml_tensor * src0,
  5767. const struct ggml_tensor * src1,
  5768. struct ggml_tensor * dst) {
  5769. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5771. return;
  5772. }
  5773. const int ith = params->ith;
  5774. const int nth = params->nth;
  5775. const int nr = ggml_nrows(src0);
  5776. GGML_TENSOR_BINARY_OP_LOCALS
  5777. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5778. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5779. if (dst->type == GGML_TYPE_F32) {
  5780. GGML_ASSERT( nb0 == sizeof(float));
  5781. }
  5782. else {
  5783. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5784. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5785. }
  5786. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5787. // rows per thread
  5788. const int dr = (nr + nth - 1)/nth;
  5789. // row range for this thread
  5790. const int ir0 = dr*ith;
  5791. const int ir1 = MIN(ir0 + dr, nr);
  5792. if (nb10 == sizeof(float)) {
  5793. if (dst->type == GGML_TYPE_F16) {
  5794. for (int ir = ir0; ir < ir1; ++ir) {
  5795. // src0, src1 and dst are same shape => same indices
  5796. const int i3 = ir/(ne2*ne1);
  5797. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5798. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5799. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5800. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5801. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5802. for (int i = 0; i < ne0; i++) {
  5803. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  5804. }
  5805. }
  5806. } else {
  5807. for (int ir = ir0; ir < ir1; ++ir) {
  5808. // src0, src1 and dst are same shape => same indices
  5809. const int i3 = ir/(ne2*ne1);
  5810. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5811. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5812. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5813. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5814. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5815. for (int i = 0; i < ne0; i++) {
  5816. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  5817. }
  5818. }
  5819. }
  5820. }
  5821. else {
  5822. // src1 is not contiguous
  5823. GGML_ASSERT(false);
  5824. }
  5825. }
  5826. static void ggml_compute_forward_add_f16_f16(
  5827. const struct ggml_compute_params * params,
  5828. const struct ggml_tensor * src0,
  5829. const struct ggml_tensor * src1,
  5830. struct ggml_tensor * dst) {
  5831. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5833. return;
  5834. }
  5835. const int ith = params->ith;
  5836. const int nth = params->nth;
  5837. const int nr = ggml_nrows(src0);
  5838. GGML_TENSOR_BINARY_OP_LOCALS
  5839. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5840. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5841. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5842. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5843. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5844. // rows per thread
  5845. const int dr = (nr + nth - 1)/nth;
  5846. // row range for this thread
  5847. const int ir0 = dr*ith;
  5848. const int ir1 = MIN(ir0 + dr, nr);
  5849. if (nb10 == sizeof(ggml_fp16_t)) {
  5850. for (int ir = ir0; ir < ir1; ++ir) {
  5851. // src0, src1 and dst are same shape => same indices
  5852. const int i3 = ir/(ne2*ne1);
  5853. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5854. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5855. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  5856. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5857. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  5858. for (int i = 0; i < ne0; i++) {
  5859. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  5860. }
  5861. }
  5862. }
  5863. else {
  5864. // src1 is not contiguous
  5865. GGML_ASSERT(false);
  5866. }
  5867. }
  5868. static void ggml_compute_forward_add_q_f32(
  5869. const struct ggml_compute_params * params,
  5870. const struct ggml_tensor * src0,
  5871. const struct ggml_tensor * src1,
  5872. struct ggml_tensor * dst) {
  5873. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5874. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5875. return;
  5876. }
  5877. const int nr = ggml_nrows(src0);
  5878. GGML_TENSOR_BINARY_OP_LOCALS
  5879. const int ith = params->ith;
  5880. const int nth = params->nth;
  5881. const enum ggml_type type = src0->type;
  5882. const enum ggml_type dtype = dst->type;
  5883. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  5884. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  5885. // we don't support permuted src0 or src1
  5886. GGML_ASSERT(nb00 == ggml_type_size(type));
  5887. GGML_ASSERT(nb10 == sizeof(float));
  5888. // dst cannot be transposed or permuted
  5889. GGML_ASSERT(nb0 <= nb1);
  5890. GGML_ASSERT(nb1 <= nb2);
  5891. GGML_ASSERT(nb2 <= nb3);
  5892. GGML_ASSERT(ggml_is_quantized(src0->type));
  5893. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5894. // rows per thread
  5895. const int dr = (nr + nth - 1)/nth;
  5896. // row range for this thread
  5897. const int ir0 = dr*ith;
  5898. const int ir1 = MIN(ir0 + dr, nr);
  5899. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5900. for (int ir = ir0; ir < ir1; ++ir) {
  5901. // src0 indices
  5902. const int i03 = ir/(ne02*ne01);
  5903. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5904. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5905. // src1 and dst are same shape as src0 => same indices
  5906. const int i13 = i03;
  5907. const int i12 = i02;
  5908. const int i11 = i01;
  5909. const int i3 = i03;
  5910. const int i2 = i02;
  5911. const int i1 = i01;
  5912. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5913. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5914. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  5915. assert(ne00 % 32 == 0);
  5916. // unquantize row from src0 to temp buffer
  5917. dequantize_row_q(src0_row, wdata, ne00);
  5918. // add src1
  5919. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5920. // quantize row to dst
  5921. if (quantize_row_q != NULL) {
  5922. quantize_row_q(wdata, dst_row, ne00);
  5923. } else {
  5924. memcpy(dst_row, wdata, ne0*nb0);
  5925. }
  5926. }
  5927. }
  5928. static void ggml_compute_forward_add(
  5929. const struct ggml_compute_params * params,
  5930. const struct ggml_tensor * src0,
  5931. const struct ggml_tensor * src1,
  5932. struct ggml_tensor * dst) {
  5933. switch (src0->type) {
  5934. case GGML_TYPE_F32:
  5935. {
  5936. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5937. } break;
  5938. case GGML_TYPE_F16:
  5939. {
  5940. if (src1->type == GGML_TYPE_F16) {
  5941. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5942. }
  5943. else if (src1->type == GGML_TYPE_F32) {
  5944. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5945. }
  5946. else {
  5947. GGML_ASSERT(false);
  5948. }
  5949. } break;
  5950. case GGML_TYPE_Q4_0:
  5951. case GGML_TYPE_Q4_1:
  5952. case GGML_TYPE_Q5_0:
  5953. case GGML_TYPE_Q5_1:
  5954. case GGML_TYPE_Q8_0:
  5955. case GGML_TYPE_Q2_K:
  5956. case GGML_TYPE_Q3_K:
  5957. case GGML_TYPE_Q4_K:
  5958. case GGML_TYPE_Q5_K:
  5959. case GGML_TYPE_Q6_K:
  5960. {
  5961. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5962. } break;
  5963. default:
  5964. {
  5965. GGML_ASSERT(false);
  5966. } break;
  5967. }
  5968. }
  5969. // ggml_compute_forward_add1
  5970. static void ggml_compute_forward_add1_f32(
  5971. const struct ggml_compute_params * params,
  5972. const struct ggml_tensor * src0,
  5973. const struct ggml_tensor * src1,
  5974. struct ggml_tensor * dst) {
  5975. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5976. GGML_ASSERT(ggml_is_scalar(src1));
  5977. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5978. return;
  5979. }
  5980. const int ith = params->ith;
  5981. const int nth = params->nth;
  5982. const int nr = ggml_nrows(src0);
  5983. GGML_TENSOR_UNARY_OP_LOCALS
  5984. GGML_ASSERT( nb0 == sizeof(float));
  5985. GGML_ASSERT(nb00 == sizeof(float));
  5986. // rows per thread
  5987. const int dr = (nr + nth - 1)/nth;
  5988. // row range for this thread
  5989. const int ir0 = dr*ith;
  5990. const int ir1 = MIN(ir0 + dr, nr);
  5991. for (int ir = ir0; ir < ir1; ++ir) {
  5992. // src0 and dst are same shape => same indices
  5993. const int i3 = ir/(ne2*ne1);
  5994. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5995. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5996. #ifdef GGML_USE_ACCELERATE
  5997. UNUSED(ggml_vec_add1_f32);
  5998. vDSP_vadd(
  5999. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6000. (float *) ((char *) src1->data), 0,
  6001. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6002. ne0);
  6003. #else
  6004. ggml_vec_add1_f32(ne0,
  6005. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6006. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6007. *(float *) src1->data);
  6008. #endif
  6009. }
  6010. }
  6011. static void ggml_compute_forward_add1_f16_f32(
  6012. const struct ggml_compute_params * params,
  6013. const struct ggml_tensor * src0,
  6014. const struct ggml_tensor * src1,
  6015. struct ggml_tensor * dst) {
  6016. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6017. GGML_ASSERT(ggml_is_scalar(src1));
  6018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6019. return;
  6020. }
  6021. // scalar to add
  6022. const float v = *(float *) src1->data;
  6023. const int ith = params->ith;
  6024. const int nth = params->nth;
  6025. const int nr = ggml_nrows(src0);
  6026. GGML_TENSOR_UNARY_OP_LOCALS
  6027. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6028. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6029. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6030. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6031. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6032. // rows per thread
  6033. const int dr = (nr + nth - 1)/nth;
  6034. // row range for this thread
  6035. const int ir0 = dr*ith;
  6036. const int ir1 = MIN(ir0 + dr, nr);
  6037. for (int ir = ir0; ir < ir1; ++ir) {
  6038. // src0 and dst are same shape => same indices
  6039. const int i3 = ir/(ne2*ne1);
  6040. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6041. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6042. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6043. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6044. for (int i = 0; i < ne0; i++) {
  6045. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6046. }
  6047. }
  6048. }
  6049. static void ggml_compute_forward_add1_f16_f16(
  6050. const struct ggml_compute_params * params,
  6051. const struct ggml_tensor * src0,
  6052. const struct ggml_tensor * src1,
  6053. struct ggml_tensor * dst) {
  6054. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6055. GGML_ASSERT(ggml_is_scalar(src1));
  6056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6057. return;
  6058. }
  6059. // scalar to add
  6060. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6061. const int ith = params->ith;
  6062. const int nth = params->nth;
  6063. const int nr = ggml_nrows(src0);
  6064. GGML_TENSOR_UNARY_OP_LOCALS
  6065. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6066. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6067. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6068. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6069. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6070. // rows per thread
  6071. const int dr = (nr + nth - 1)/nth;
  6072. // row range for this thread
  6073. const int ir0 = dr*ith;
  6074. const int ir1 = MIN(ir0 + dr, nr);
  6075. for (int ir = ir0; ir < ir1; ++ir) {
  6076. // src0 and dst are same shape => same indices
  6077. const int i3 = ir/(ne2*ne1);
  6078. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6079. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6080. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6081. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6082. for (int i = 0; i < ne0; i++) {
  6083. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6084. }
  6085. }
  6086. }
  6087. static void ggml_compute_forward_add1_q_f32(
  6088. const struct ggml_compute_params * params,
  6089. const struct ggml_tensor * src0,
  6090. const struct ggml_tensor * src1,
  6091. struct ggml_tensor * dst) {
  6092. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6093. GGML_ASSERT(ggml_is_scalar(src1));
  6094. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6095. return;
  6096. }
  6097. // scalar to add
  6098. const float v = *(float *) src1->data;
  6099. const int ith = params->ith;
  6100. const int nth = params->nth;
  6101. const int nr = ggml_nrows(src0);
  6102. GGML_TENSOR_UNARY_OP_LOCALS
  6103. const enum ggml_type type = src0->type;
  6104. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6105. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6106. // we don't support permuted src0
  6107. GGML_ASSERT(nb00 == ggml_type_size(type));
  6108. // dst cannot be transposed or permuted
  6109. GGML_ASSERT(nb0 <= nb1);
  6110. GGML_ASSERT(nb1 <= nb2);
  6111. GGML_ASSERT(nb2 <= nb3);
  6112. GGML_ASSERT(ggml_is_quantized(src0->type));
  6113. GGML_ASSERT(dst->type == src0->type);
  6114. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6115. // rows per thread
  6116. const int dr = (nr + nth - 1)/nth;
  6117. // row range for this thread
  6118. const int ir0 = dr*ith;
  6119. const int ir1 = MIN(ir0 + dr, nr);
  6120. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6121. for (int ir = ir0; ir < ir1; ++ir) {
  6122. // src0 and dst are same shape => same indices
  6123. const int i3 = ir/(ne2*ne1);
  6124. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6125. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6126. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6127. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6128. assert(ne0 % 32 == 0);
  6129. // unquantize row from src0 to temp buffer
  6130. dequantize_row_q(src0_row, wdata, ne0);
  6131. // add src1
  6132. ggml_vec_acc1_f32(ne0, wdata, v);
  6133. // quantize row to dst
  6134. quantize_row_q(wdata, dst_row, ne0);
  6135. }
  6136. }
  6137. static void ggml_compute_forward_add1(
  6138. const struct ggml_compute_params * params,
  6139. const struct ggml_tensor * src0,
  6140. const struct ggml_tensor * src1,
  6141. struct ggml_tensor * dst) {
  6142. switch (src0->type) {
  6143. case GGML_TYPE_F32:
  6144. {
  6145. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6146. } break;
  6147. case GGML_TYPE_F16:
  6148. {
  6149. if (src1->type == GGML_TYPE_F16) {
  6150. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6151. }
  6152. else if (src1->type == GGML_TYPE_F32) {
  6153. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6154. }
  6155. else {
  6156. GGML_ASSERT(false);
  6157. }
  6158. } break;
  6159. case GGML_TYPE_Q4_0:
  6160. case GGML_TYPE_Q4_1:
  6161. case GGML_TYPE_Q5_0:
  6162. case GGML_TYPE_Q5_1:
  6163. case GGML_TYPE_Q8_0:
  6164. case GGML_TYPE_Q8_1:
  6165. case GGML_TYPE_Q2_K:
  6166. case GGML_TYPE_Q3_K:
  6167. case GGML_TYPE_Q4_K:
  6168. case GGML_TYPE_Q5_K:
  6169. case GGML_TYPE_Q6_K:
  6170. {
  6171. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6172. } break;
  6173. default:
  6174. {
  6175. GGML_ASSERT(false);
  6176. } break;
  6177. }
  6178. }
  6179. // ggml_compute_forward_acc
  6180. static void ggml_compute_forward_acc_f32(
  6181. const struct ggml_compute_params * params,
  6182. const struct ggml_tensor * src0,
  6183. const struct ggml_tensor * src1,
  6184. struct ggml_tensor * dst) {
  6185. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6186. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6187. // view src0 and dst with these strides and data offset inbytes during acc
  6188. // nb0 is implicitly element_size because src0 and dst are contiguous
  6189. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6190. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6191. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6192. size_t offset = ((int32_t *) dst->op_params)[3];
  6193. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6194. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6195. // memcpy needs to be synchronized across threads to avoid race conditions.
  6196. // => do it in INIT phase
  6197. memcpy(
  6198. ((char *) dst->data),
  6199. ((char *) src0->data),
  6200. ggml_nbytes(dst));
  6201. }
  6202. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6203. return;
  6204. }
  6205. const int ith = params->ith;
  6206. const int nth = params->nth;
  6207. const int nr = ggml_nrows(src1);
  6208. const int nc = src1->ne[0];
  6209. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6210. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6211. // src0 and dst as viewed during acc
  6212. const size_t nb0 = ggml_element_size(src0);
  6213. const size_t nb00 = nb0;
  6214. const size_t nb01 = nb1;
  6215. const size_t nb02 = nb2;
  6216. const size_t nb03 = nb3;
  6217. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6218. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6219. GGML_ASSERT(nb10 == sizeof(float));
  6220. // rows per thread
  6221. const int dr = (nr + nth - 1)/nth;
  6222. // row range for this thread
  6223. const int ir0 = dr*ith;
  6224. const int ir1 = MIN(ir0 + dr, nr);
  6225. for (int ir = ir0; ir < ir1; ++ir) {
  6226. // src0 and dst are viewed with shape of src1 and offset
  6227. // => same indices
  6228. const int i3 = ir/(ne12*ne11);
  6229. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6230. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6231. #ifdef GGML_USE_ACCELERATE
  6232. vDSP_vadd(
  6233. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6234. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6235. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6236. #else
  6237. ggml_vec_add_f32(nc,
  6238. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6239. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6240. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6241. #endif
  6242. }
  6243. }
  6244. static void ggml_compute_forward_acc(
  6245. const struct ggml_compute_params * params,
  6246. const struct ggml_tensor * src0,
  6247. const struct ggml_tensor * src1,
  6248. struct ggml_tensor * dst) {
  6249. switch (src0->type) {
  6250. case GGML_TYPE_F32:
  6251. {
  6252. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  6253. } break;
  6254. case GGML_TYPE_F16:
  6255. case GGML_TYPE_Q4_0:
  6256. case GGML_TYPE_Q4_1:
  6257. case GGML_TYPE_Q5_0:
  6258. case GGML_TYPE_Q5_1:
  6259. case GGML_TYPE_Q8_0:
  6260. case GGML_TYPE_Q8_1:
  6261. case GGML_TYPE_Q2_K:
  6262. case GGML_TYPE_Q3_K:
  6263. case GGML_TYPE_Q4_K:
  6264. case GGML_TYPE_Q5_K:
  6265. case GGML_TYPE_Q6_K:
  6266. default:
  6267. {
  6268. GGML_ASSERT(false);
  6269. } break;
  6270. }
  6271. }
  6272. // ggml_compute_forward_sub
  6273. static void ggml_compute_forward_sub_f32(
  6274. const struct ggml_compute_params * params,
  6275. const struct ggml_tensor * src0,
  6276. const struct ggml_tensor * src1,
  6277. struct ggml_tensor * dst) {
  6278. assert(params->ith == 0);
  6279. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6280. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6281. return;
  6282. }
  6283. const int nr = ggml_nrows(src0);
  6284. GGML_TENSOR_BINARY_OP_LOCALS
  6285. GGML_ASSERT( nb0 == sizeof(float));
  6286. GGML_ASSERT(nb00 == sizeof(float));
  6287. if (nb10 == sizeof(float)) {
  6288. for (int ir = 0; ir < nr; ++ir) {
  6289. // src0, src1 and dst are same shape => same indices
  6290. const int i3 = ir/(ne2*ne1);
  6291. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6292. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6293. #ifdef GGML_USE_ACCELERATE
  6294. vDSP_vsub(
  6295. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6296. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6297. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6298. ne0);
  6299. #else
  6300. ggml_vec_sub_f32(ne0,
  6301. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6302. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6303. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6304. #endif
  6305. // }
  6306. // }
  6307. }
  6308. } else {
  6309. // src1 is not contiguous
  6310. for (int ir = 0; ir < nr; ++ir) {
  6311. // src0, src1 and dst are same shape => same indices
  6312. const int i3 = ir/(ne2*ne1);
  6313. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6314. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6315. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6316. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6317. for (int i0 = 0; i0 < ne0; i0++) {
  6318. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6319. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6320. }
  6321. }
  6322. }
  6323. }
  6324. static void ggml_compute_forward_sub(
  6325. const struct ggml_compute_params * params,
  6326. const struct ggml_tensor * src0,
  6327. const struct ggml_tensor * src1,
  6328. struct ggml_tensor * dst) {
  6329. switch (src0->type) {
  6330. case GGML_TYPE_F32:
  6331. {
  6332. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6333. } break;
  6334. default:
  6335. {
  6336. GGML_ASSERT(false);
  6337. } break;
  6338. }
  6339. }
  6340. // ggml_compute_forward_mul
  6341. static void ggml_compute_forward_mul_f32(
  6342. const struct ggml_compute_params * params,
  6343. const struct ggml_tensor * src0,
  6344. const struct ggml_tensor * src1,
  6345. struct ggml_tensor * dst) {
  6346. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6347. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6348. return;
  6349. }
  6350. const int ith = params->ith;
  6351. const int nth = params->nth;
  6352. #ifdef GGML_USE_CLBLAST
  6353. if (src1->backend == GGML_BACKEND_GPU) {
  6354. // TODO: OpenCL kernel support full broadcast
  6355. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6356. if (ith == 0) {
  6357. ggml_cl_mul(src0, src1, dst);
  6358. }
  6359. return;
  6360. }
  6361. #endif
  6362. const int64_t nr = ggml_nrows(src0);
  6363. GGML_TENSOR_BINARY_OP_LOCALS
  6364. GGML_ASSERT( nb0 == sizeof(float));
  6365. GGML_ASSERT(nb00 == sizeof(float));
  6366. if (nb10 == sizeof(float)) {
  6367. for (int64_t ir = ith; ir < nr; ir += nth) {
  6368. // src0 and dst are same shape => same indices
  6369. const int64_t i03 = ir/(ne02*ne01);
  6370. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6371. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6372. const int64_t i13 = i03 % ne13;
  6373. const int64_t i12 = i02 % ne12;
  6374. const int64_t i11 = i01 % ne11;
  6375. const int64_t nr0 = ne00 / ne10;
  6376. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6377. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6378. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6379. for (int64_t r = 0 ; r < nr0; ++r) {
  6380. #ifdef GGML_USE_ACCELERATE
  6381. UNUSED(ggml_vec_mul_f32);
  6382. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6383. #else
  6384. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6385. #endif
  6386. }
  6387. }
  6388. } else {
  6389. // src1 is not contiguous
  6390. for (int64_t ir = ith; ir < nr; ir += nth) {
  6391. // src0 and dst are same shape => same indices
  6392. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6393. const int64_t i03 = ir/(ne02*ne01);
  6394. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6395. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6396. const int64_t i13 = i03 % ne13;
  6397. const int64_t i12 = i02 % ne12;
  6398. const int64_t i11 = i01 % ne11;
  6399. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6400. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6401. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6402. const int64_t i10 = i0 % ne10;
  6403. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6404. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6405. }
  6406. }
  6407. }
  6408. }
  6409. static void ggml_compute_forward_mul(
  6410. const struct ggml_compute_params * params,
  6411. const struct ggml_tensor * src0,
  6412. const struct ggml_tensor * src1,
  6413. struct ggml_tensor * dst) {
  6414. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6415. switch (src0->type) {
  6416. case GGML_TYPE_F32:
  6417. {
  6418. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6419. } break;
  6420. default:
  6421. {
  6422. GGML_ASSERT(false);
  6423. } break;
  6424. }
  6425. }
  6426. // ggml_compute_forward_div
  6427. static void ggml_compute_forward_div_f32(
  6428. const struct ggml_compute_params * params,
  6429. const struct ggml_tensor * src0,
  6430. const struct ggml_tensor * src1,
  6431. struct ggml_tensor * dst) {
  6432. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6433. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6434. return;
  6435. }
  6436. const int ith = params->ith;
  6437. const int nth = params->nth;
  6438. const int64_t nr = ggml_nrows(src0);
  6439. GGML_TENSOR_BINARY_OP_LOCALS
  6440. GGML_ASSERT( nb0 == sizeof(float));
  6441. GGML_ASSERT(nb00 == sizeof(float));
  6442. if (nb10 == sizeof(float)) {
  6443. for (int64_t ir = ith; ir < nr; ir += nth) {
  6444. // src0 and dst are same shape => same indices
  6445. const int64_t i03 = ir/(ne02*ne01);
  6446. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6447. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6448. const int64_t i13 = i03 % ne13;
  6449. const int64_t i12 = i02 % ne12;
  6450. const int64_t i11 = i01 % ne11;
  6451. const int64_t nr0 = ne00 / ne10;
  6452. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6453. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6454. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6455. for (int64_t r = 0; r < nr0; ++r) {
  6456. #ifdef GGML_USE_ACCELERATE
  6457. UNUSED(ggml_vec_div_f32);
  6458. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6459. #else
  6460. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6461. #endif
  6462. }
  6463. }
  6464. } else {
  6465. // src1 is not contiguous
  6466. for (int64_t ir = ith; ir < nr; ir += nth) {
  6467. // src0 and dst are same shape => same indices
  6468. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6469. const int64_t i03 = ir/(ne02*ne01);
  6470. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6471. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6472. const int64_t i13 = i03 % ne13;
  6473. const int64_t i12 = i02 % ne12;
  6474. const int64_t i11 = i01 % ne11;
  6475. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6476. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6477. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6478. const int64_t i10 = i0 % ne10;
  6479. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6480. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6481. }
  6482. }
  6483. }
  6484. }
  6485. static void ggml_compute_forward_div(
  6486. const struct ggml_compute_params * params,
  6487. const struct ggml_tensor * src0,
  6488. const struct ggml_tensor * src1,
  6489. struct ggml_tensor * dst) {
  6490. switch (src0->type) {
  6491. case GGML_TYPE_F32:
  6492. {
  6493. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6494. } break;
  6495. default:
  6496. {
  6497. GGML_ASSERT(false);
  6498. } break;
  6499. }
  6500. }
  6501. // ggml_compute_forward_sqr
  6502. static void ggml_compute_forward_sqr_f32(
  6503. const struct ggml_compute_params * params,
  6504. const struct ggml_tensor * src0,
  6505. struct ggml_tensor * dst) {
  6506. assert(params->ith == 0);
  6507. assert(ggml_are_same_shape(src0, dst));
  6508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6509. return;
  6510. }
  6511. const int n = ggml_nrows(src0);
  6512. const int nc = src0->ne[0];
  6513. assert( dst->nb[0] == sizeof(float));
  6514. assert(src0->nb[0] == sizeof(float));
  6515. for (int i = 0; i < n; i++) {
  6516. ggml_vec_sqr_f32(nc,
  6517. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6518. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6519. }
  6520. }
  6521. static void ggml_compute_forward_sqr(
  6522. const struct ggml_compute_params * params,
  6523. const struct ggml_tensor * src0,
  6524. struct ggml_tensor * dst) {
  6525. switch (src0->type) {
  6526. case GGML_TYPE_F32:
  6527. {
  6528. ggml_compute_forward_sqr_f32(params, src0, dst);
  6529. } break;
  6530. default:
  6531. {
  6532. GGML_ASSERT(false);
  6533. } break;
  6534. }
  6535. }
  6536. // ggml_compute_forward_sqrt
  6537. static void ggml_compute_forward_sqrt_f32(
  6538. const struct ggml_compute_params * params,
  6539. const struct ggml_tensor * src0,
  6540. struct ggml_tensor * dst) {
  6541. assert(params->ith == 0);
  6542. assert(ggml_are_same_shape(src0, dst));
  6543. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6544. return;
  6545. }
  6546. const int n = ggml_nrows(src0);
  6547. const int nc = src0->ne[0];
  6548. assert( dst->nb[0] == sizeof(float));
  6549. assert(src0->nb[0] == sizeof(float));
  6550. for (int i = 0; i < n; i++) {
  6551. ggml_vec_sqrt_f32(nc,
  6552. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6553. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6554. }
  6555. }
  6556. static void ggml_compute_forward_sqrt(
  6557. const struct ggml_compute_params * params,
  6558. const struct ggml_tensor * src0,
  6559. struct ggml_tensor * dst) {
  6560. switch (src0->type) {
  6561. case GGML_TYPE_F32:
  6562. {
  6563. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6564. } break;
  6565. default:
  6566. {
  6567. GGML_ASSERT(false);
  6568. } break;
  6569. }
  6570. }
  6571. // ggml_compute_forward_log
  6572. static void ggml_compute_forward_log_f32(
  6573. const struct ggml_compute_params * params,
  6574. const struct ggml_tensor * src0,
  6575. struct ggml_tensor * dst) {
  6576. GGML_ASSERT(params->ith == 0);
  6577. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6578. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6579. return;
  6580. }
  6581. const int n = ggml_nrows(src0);
  6582. const int nc = src0->ne[0];
  6583. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6584. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6585. for (int i = 0; i < n; i++) {
  6586. ggml_vec_log_f32(nc,
  6587. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6588. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6589. }
  6590. }
  6591. static void ggml_compute_forward_log(
  6592. const struct ggml_compute_params * params,
  6593. const struct ggml_tensor * src0,
  6594. struct ggml_tensor * dst) {
  6595. switch (src0->type) {
  6596. case GGML_TYPE_F32:
  6597. {
  6598. ggml_compute_forward_log_f32(params, src0, dst);
  6599. } break;
  6600. default:
  6601. {
  6602. GGML_ASSERT(false);
  6603. } break;
  6604. }
  6605. }
  6606. // ggml_compute_forward_sum
  6607. static void ggml_compute_forward_sum_f32(
  6608. const struct ggml_compute_params * params,
  6609. const struct ggml_tensor * src0,
  6610. struct ggml_tensor * dst) {
  6611. assert(params->ith == 0);
  6612. assert(ggml_is_scalar(dst));
  6613. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6614. return;
  6615. }
  6616. assert(ggml_is_scalar(dst));
  6617. assert(src0->nb[0] == sizeof(float));
  6618. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6619. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6620. ggml_float sum = 0;
  6621. ggml_float row_sum = 0;
  6622. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6623. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6624. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6625. ggml_vec_sum_f32_ggf(ne00,
  6626. &row_sum,
  6627. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6628. sum += row_sum;
  6629. }
  6630. }
  6631. }
  6632. ((float *) dst->data)[0] = sum;
  6633. }
  6634. static void ggml_compute_forward_sum_f16(
  6635. const struct ggml_compute_params * params,
  6636. const struct ggml_tensor * src0,
  6637. struct ggml_tensor * dst) {
  6638. assert(params->ith == 0);
  6639. assert(ggml_is_scalar(dst));
  6640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6641. return;
  6642. }
  6643. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  6644. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  6645. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  6646. float sum = 0;
  6647. float row_sum = 0;
  6648. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6649. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6650. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6651. ggml_vec_sum_f16_ggf(ne00,
  6652. &row_sum,
  6653. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  6654. sum += row_sum;
  6655. }
  6656. }
  6657. }
  6658. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  6659. }
  6660. static void ggml_compute_forward_sum(
  6661. const struct ggml_compute_params * params,
  6662. const struct ggml_tensor * src0,
  6663. struct ggml_tensor * dst) {
  6664. switch (src0->type) {
  6665. case GGML_TYPE_F32:
  6666. {
  6667. ggml_compute_forward_sum_f32(params, src0, dst);
  6668. } break;
  6669. case GGML_TYPE_F16:
  6670. {
  6671. ggml_compute_forward_sum_f16(params, src0, dst);
  6672. } break;
  6673. default:
  6674. {
  6675. GGML_ASSERT(false);
  6676. } break;
  6677. }
  6678. }
  6679. // ggml_compute_forward_sum_rows
  6680. static void ggml_compute_forward_sum_rows_f32(
  6681. const struct ggml_compute_params * params,
  6682. const struct ggml_tensor * src0,
  6683. struct ggml_tensor * dst) {
  6684. GGML_ASSERT(params->ith == 0);
  6685. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6686. return;
  6687. }
  6688. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6689. GGML_ASSERT(dst->nb[0] == sizeof(float));
  6690. GGML_TENSOR_UNARY_OP_LOCALS
  6691. GGML_ASSERT(ne0 == 1);
  6692. GGML_ASSERT(ne1 == ne01);
  6693. GGML_ASSERT(ne2 == ne02);
  6694. GGML_ASSERT(ne3 == ne03);
  6695. for (int64_t i3 = 0; i3 < ne03; i3++) {
  6696. for (int64_t i2 = 0; i2 < ne02; i2++) {
  6697. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6698. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  6699. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  6700. float row_sum = 0;
  6701. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  6702. dst_row[0] = row_sum;
  6703. }
  6704. }
  6705. }
  6706. }
  6707. static void ggml_compute_forward_sum_rows(
  6708. const struct ggml_compute_params * params,
  6709. const struct ggml_tensor * src0,
  6710. struct ggml_tensor * dst) {
  6711. switch (src0->type) {
  6712. case GGML_TYPE_F32:
  6713. {
  6714. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  6715. } break;
  6716. default:
  6717. {
  6718. GGML_ASSERT(false);
  6719. } break;
  6720. }
  6721. }
  6722. // ggml_compute_forward_mean
  6723. static void ggml_compute_forward_mean_f32(
  6724. const struct ggml_compute_params * params,
  6725. const struct ggml_tensor * src0,
  6726. struct ggml_tensor * dst) {
  6727. assert(params->ith == 0);
  6728. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6729. return;
  6730. }
  6731. assert(src0->nb[0] == sizeof(float));
  6732. GGML_TENSOR_UNARY_OP_LOCALS
  6733. assert(ne0 == 1);
  6734. assert(ne1 == ne01);
  6735. assert(ne2 == ne02);
  6736. assert(ne3 == ne03);
  6737. UNUSED(ne0);
  6738. UNUSED(ne1);
  6739. UNUSED(ne2);
  6740. UNUSED(ne3);
  6741. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6742. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6743. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6744. ggml_vec_sum_f32(ne00,
  6745. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6746. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6747. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6748. }
  6749. }
  6750. }
  6751. }
  6752. static void ggml_compute_forward_mean(
  6753. const struct ggml_compute_params * params,
  6754. const struct ggml_tensor * src0,
  6755. struct ggml_tensor * dst) {
  6756. switch (src0->type) {
  6757. case GGML_TYPE_F32:
  6758. {
  6759. ggml_compute_forward_mean_f32(params, src0, dst);
  6760. } break;
  6761. default:
  6762. {
  6763. GGML_ASSERT(false);
  6764. } break;
  6765. }
  6766. }
  6767. // ggml_compute_forward_argmax
  6768. static void ggml_compute_forward_argmax_f32(
  6769. const struct ggml_compute_params * params,
  6770. const struct ggml_tensor * src0,
  6771. struct ggml_tensor * dst) {
  6772. assert(params->ith == 0);
  6773. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6774. return;
  6775. }
  6776. assert(src0->nb[0] == sizeof(float));
  6777. assert(dst->nb[0] == sizeof(float));
  6778. const int64_t ne00 = src0->ne[0];
  6779. const int64_t ne01 = src0->ne[1];
  6780. const size_t nb01 = src0->nb[1];
  6781. const size_t nb0 = dst->nb[0];
  6782. for (int64_t i1 = 0; i1 < ne01; i1++) {
  6783. float * src = (float *) ((char *) src0->data + i1*nb01);
  6784. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  6785. int v = 0;
  6786. ggml_vec_argmax_f32(ne00, &v, src);
  6787. dst_[0] = v;
  6788. }
  6789. }
  6790. static void ggml_compute_forward_argmax(
  6791. const struct ggml_compute_params * params,
  6792. const struct ggml_tensor * src0,
  6793. struct ggml_tensor * dst) {
  6794. switch (src0->type) {
  6795. case GGML_TYPE_F32:
  6796. {
  6797. ggml_compute_forward_argmax_f32(params, src0, dst);
  6798. } break;
  6799. default:
  6800. {
  6801. GGML_ASSERT(false);
  6802. } break;
  6803. }
  6804. }
  6805. // ggml_compute_forward_repeat
  6806. static void ggml_compute_forward_repeat_f32(
  6807. const struct ggml_compute_params * params,
  6808. const struct ggml_tensor * src0,
  6809. struct ggml_tensor * dst) {
  6810. GGML_ASSERT(params->ith == 0);
  6811. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6812. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6813. return;
  6814. }
  6815. GGML_TENSOR_UNARY_OP_LOCALS
  6816. // guaranteed to be an integer due to the check in ggml_can_repeat
  6817. const int nr0 = (int)(ne0/ne00);
  6818. const int nr1 = (int)(ne1/ne01);
  6819. const int nr2 = (int)(ne2/ne02);
  6820. const int nr3 = (int)(ne3/ne03);
  6821. // TODO: support for transposed / permuted tensors
  6822. GGML_ASSERT(nb0 == sizeof(float));
  6823. GGML_ASSERT(nb00 == sizeof(float));
  6824. // TODO: maybe this is not optimal?
  6825. for (int i3 = 0; i3 < nr3; i3++) {
  6826. for (int k3 = 0; k3 < ne03; k3++) {
  6827. for (int i2 = 0; i2 < nr2; i2++) {
  6828. for (int k2 = 0; k2 < ne02; k2++) {
  6829. for (int i1 = 0; i1 < nr1; i1++) {
  6830. for (int k1 = 0; k1 < ne01; k1++) {
  6831. for (int i0 = 0; i0 < nr0; i0++) {
  6832. ggml_vec_cpy_f32(ne00,
  6833. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  6834. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  6835. }
  6836. }
  6837. }
  6838. }
  6839. }
  6840. }
  6841. }
  6842. }
  6843. static void ggml_compute_forward_repeat_f16(
  6844. const struct ggml_compute_params * params,
  6845. const struct ggml_tensor * src0,
  6846. struct ggml_tensor * dst) {
  6847. GGML_ASSERT(params->ith == 0);
  6848. GGML_ASSERT(ggml_can_repeat(src0, dst));
  6849. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6850. return;
  6851. }
  6852. GGML_TENSOR_UNARY_OP_LOCALS
  6853. // guaranteed to be an integer due to the check in ggml_can_repeat
  6854. const int nr0 = (int)(ne0/ne00);
  6855. const int nr1 = (int)(ne1/ne01);
  6856. const int nr2 = (int)(ne2/ne02);
  6857. const int nr3 = (int)(ne3/ne03);
  6858. // TODO: support for transposed / permuted tensors
  6859. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  6860. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6861. // TODO: maybe this is not optimal?
  6862. for (int i3 = 0; i3 < nr3; i3++) {
  6863. for (int k3 = 0; k3 < ne03; k3++) {
  6864. for (int i2 = 0; i2 < nr2; i2++) {
  6865. for (int k2 = 0; k2 < ne02; k2++) {
  6866. for (int i1 = 0; i1 < nr1; i1++) {
  6867. for (int k1 = 0; k1 < ne01; k1++) {
  6868. for (int i0 = 0; i0 < nr0; i0++) {
  6869. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  6870. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  6871. // ggml_vec_cpy_f16(ne00, y, x)
  6872. for (int i = 0; i < ne00; ++i) {
  6873. y[i] = x[i];
  6874. }
  6875. }
  6876. }
  6877. }
  6878. }
  6879. }
  6880. }
  6881. }
  6882. }
  6883. static void ggml_compute_forward_repeat(
  6884. const struct ggml_compute_params * params,
  6885. const struct ggml_tensor * src0,
  6886. struct ggml_tensor * dst) {
  6887. switch (src0->type) {
  6888. case GGML_TYPE_F16:
  6889. {
  6890. ggml_compute_forward_repeat_f16(params, src0, dst);
  6891. } break;
  6892. case GGML_TYPE_F32:
  6893. {
  6894. ggml_compute_forward_repeat_f32(params, src0, dst);
  6895. } break;
  6896. default:
  6897. {
  6898. GGML_ASSERT(false);
  6899. } break;
  6900. }
  6901. }
  6902. // ggml_compute_forward_repeat_back
  6903. static void ggml_compute_forward_repeat_back_f32(
  6904. const struct ggml_compute_params * params,
  6905. const struct ggml_tensor * src0,
  6906. struct ggml_tensor * dst) {
  6907. GGML_ASSERT(params->ith == 0);
  6908. GGML_ASSERT(ggml_can_repeat(dst, src0));
  6909. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6910. return;
  6911. }
  6912. GGML_TENSOR_UNARY_OP_LOCALS
  6913. // guaranteed to be an integer due to the check in ggml_can_repeat
  6914. const int nr0 = (int)(ne00/ne0);
  6915. const int nr1 = (int)(ne01/ne1);
  6916. const int nr2 = (int)(ne02/ne2);
  6917. const int nr3 = (int)(ne03/ne3);
  6918. // TODO: support for transposed / permuted tensors
  6919. GGML_ASSERT(nb0 == sizeof(float));
  6920. GGML_ASSERT(nb00 == sizeof(float));
  6921. if (ggml_is_contiguous(dst)) {
  6922. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  6923. } else {
  6924. for (int k3 = 0; k3 < ne3; k3++) {
  6925. for (int k2 = 0; k2 < ne2; k2++) {
  6926. for (int k1 = 0; k1 < ne1; k1++) {
  6927. ggml_vec_set_f32(ne0,
  6928. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  6929. 0);
  6930. }
  6931. }
  6932. }
  6933. }
  6934. // TODO: maybe this is not optimal?
  6935. for (int i3 = 0; i3 < nr3; i3++) {
  6936. for (int k3 = 0; k3 < ne3; k3++) {
  6937. for (int i2 = 0; i2 < nr2; i2++) {
  6938. for (int k2 = 0; k2 < ne2; k2++) {
  6939. for (int i1 = 0; i1 < nr1; i1++) {
  6940. for (int k1 = 0; k1 < ne1; k1++) {
  6941. for (int i0 = 0; i0 < nr0; i0++) {
  6942. ggml_vec_acc_f32(ne0,
  6943. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  6944. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  6945. }
  6946. }
  6947. }
  6948. }
  6949. }
  6950. }
  6951. }
  6952. }
  6953. static void ggml_compute_forward_repeat_back(
  6954. const struct ggml_compute_params * params,
  6955. const struct ggml_tensor * src0,
  6956. struct ggml_tensor * dst) {
  6957. switch (src0->type) {
  6958. case GGML_TYPE_F32:
  6959. {
  6960. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  6961. } break;
  6962. default:
  6963. {
  6964. GGML_ASSERT(false);
  6965. } break;
  6966. }
  6967. }
  6968. // ggml_compute_forward_concat
  6969. static void ggml_compute_forward_concat_f32(
  6970. const struct ggml_compute_params * params,
  6971. const struct ggml_tensor * src0,
  6972. const struct ggml_tensor * src1,
  6973. struct ggml_tensor * dst) {
  6974. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6975. return;
  6976. }
  6977. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6978. const int ith = params->ith;
  6979. const int nth = params->nth;
  6980. GGML_TENSOR_BINARY_OP_LOCALS
  6981. // TODO: support for transposed / permuted tensors
  6982. GGML_ASSERT(nb0 == sizeof(float));
  6983. GGML_ASSERT(nb00 == sizeof(float));
  6984. GGML_ASSERT(nb10 == sizeof(float));
  6985. for (int i3 = 0; i3 < ne3; i3++) {
  6986. for (int i2 = ith; i2 < ne2; i2 += nth) {
  6987. if (i2 < ne02) { // src0
  6988. for (int i1 = 0; i1 < ne1; i1++) {
  6989. for (int i0 = 0; i0 < ne0; i0++) {
  6990. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  6991. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  6992. *y = *x;
  6993. }
  6994. }
  6995. } // src1
  6996. else {
  6997. for (int i1 = 0; i1 < ne1; i1++) {
  6998. for (int i0 = 0; i0 < ne0; i0++) {
  6999. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7000. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7001. *y = *x;
  7002. }
  7003. }
  7004. }
  7005. }
  7006. }
  7007. }
  7008. static void ggml_compute_forward_concat(
  7009. const struct ggml_compute_params* params,
  7010. const struct ggml_tensor* src0,
  7011. const struct ggml_tensor* src1,
  7012. struct ggml_tensor* dst) {
  7013. switch (src0->type) {
  7014. case GGML_TYPE_F32:
  7015. {
  7016. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  7017. } break;
  7018. default:
  7019. {
  7020. GGML_ASSERT(false);
  7021. } break;
  7022. }
  7023. }
  7024. // ggml_compute_forward_abs
  7025. static void ggml_compute_forward_abs_f32(
  7026. const struct ggml_compute_params * params,
  7027. const struct ggml_tensor * src0,
  7028. struct ggml_tensor * dst) {
  7029. assert(params->ith == 0);
  7030. assert(ggml_are_same_shape(src0, dst));
  7031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7032. return;
  7033. }
  7034. const int n = ggml_nrows(src0);
  7035. const int nc = src0->ne[0];
  7036. assert(dst->nb[0] == sizeof(float));
  7037. assert(src0->nb[0] == sizeof(float));
  7038. for (int i = 0; i < n; i++) {
  7039. ggml_vec_abs_f32(nc,
  7040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7041. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7042. }
  7043. }
  7044. static void ggml_compute_forward_abs(
  7045. const struct ggml_compute_params * params,
  7046. const struct ggml_tensor * src0,
  7047. struct ggml_tensor * dst) {
  7048. switch (src0->type) {
  7049. case GGML_TYPE_F32:
  7050. {
  7051. ggml_compute_forward_abs_f32(params, src0, dst);
  7052. } break;
  7053. default:
  7054. {
  7055. GGML_ASSERT(false);
  7056. } break;
  7057. }
  7058. }
  7059. // ggml_compute_forward_sgn
  7060. static void ggml_compute_forward_sgn_f32(
  7061. const struct ggml_compute_params * params,
  7062. const struct ggml_tensor * src0,
  7063. struct ggml_tensor * dst) {
  7064. assert(params->ith == 0);
  7065. assert(ggml_are_same_shape(src0, dst));
  7066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7067. return;
  7068. }
  7069. const int n = ggml_nrows(src0);
  7070. const int nc = src0->ne[0];
  7071. assert(dst->nb[0] == sizeof(float));
  7072. assert(src0->nb[0] == sizeof(float));
  7073. for (int i = 0; i < n; i++) {
  7074. ggml_vec_sgn_f32(nc,
  7075. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7076. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7077. }
  7078. }
  7079. static void ggml_compute_forward_sgn(
  7080. const struct ggml_compute_params * params,
  7081. const struct ggml_tensor * src0,
  7082. struct ggml_tensor * dst) {
  7083. switch (src0->type) {
  7084. case GGML_TYPE_F32:
  7085. {
  7086. ggml_compute_forward_sgn_f32(params, src0, dst);
  7087. } break;
  7088. default:
  7089. {
  7090. GGML_ASSERT(false);
  7091. } break;
  7092. }
  7093. }
  7094. // ggml_compute_forward_neg
  7095. static void ggml_compute_forward_neg_f32(
  7096. const struct ggml_compute_params * params,
  7097. const struct ggml_tensor * src0,
  7098. struct ggml_tensor * dst) {
  7099. assert(params->ith == 0);
  7100. assert(ggml_are_same_shape(src0, dst));
  7101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7102. return;
  7103. }
  7104. const int n = ggml_nrows(src0);
  7105. const int nc = src0->ne[0];
  7106. assert(dst->nb[0] == sizeof(float));
  7107. assert(src0->nb[0] == sizeof(float));
  7108. for (int i = 0; i < n; i++) {
  7109. ggml_vec_neg_f32(nc,
  7110. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7111. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7112. }
  7113. }
  7114. static void ggml_compute_forward_neg(
  7115. const struct ggml_compute_params * params,
  7116. const struct ggml_tensor * src0,
  7117. struct ggml_tensor * dst) {
  7118. switch (src0->type) {
  7119. case GGML_TYPE_F32:
  7120. {
  7121. ggml_compute_forward_neg_f32(params, src0, dst);
  7122. } break;
  7123. default:
  7124. {
  7125. GGML_ASSERT(false);
  7126. } break;
  7127. }
  7128. }
  7129. // ggml_compute_forward_step
  7130. static void ggml_compute_forward_step_f32(
  7131. const struct ggml_compute_params * params,
  7132. const struct ggml_tensor * src0,
  7133. struct ggml_tensor * dst) {
  7134. assert(params->ith == 0);
  7135. assert(ggml_are_same_shape(src0, dst));
  7136. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7137. return;
  7138. }
  7139. const int n = ggml_nrows(src0);
  7140. const int nc = src0->ne[0];
  7141. assert(dst->nb[0] == sizeof(float));
  7142. assert(src0->nb[0] == sizeof(float));
  7143. for (int i = 0; i < n; i++) {
  7144. ggml_vec_step_f32(nc,
  7145. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7146. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7147. }
  7148. }
  7149. static void ggml_compute_forward_step(
  7150. const struct ggml_compute_params * params,
  7151. const struct ggml_tensor * src0,
  7152. struct ggml_tensor * dst) {
  7153. switch (src0->type) {
  7154. case GGML_TYPE_F32:
  7155. {
  7156. ggml_compute_forward_step_f32(params, src0, dst);
  7157. } break;
  7158. default:
  7159. {
  7160. GGML_ASSERT(false);
  7161. } break;
  7162. }
  7163. }
  7164. // ggml_compute_forward_tanh
  7165. static void ggml_compute_forward_tanh_f32(
  7166. const struct ggml_compute_params * params,
  7167. const struct ggml_tensor * src0,
  7168. struct ggml_tensor * dst) {
  7169. assert(params->ith == 0);
  7170. assert(ggml_are_same_shape(src0, dst));
  7171. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7172. return;
  7173. }
  7174. const int n = ggml_nrows(src0);
  7175. const int nc = src0->ne[0];
  7176. assert(dst->nb[0] == sizeof(float));
  7177. assert(src0->nb[0] == sizeof(float));
  7178. for (int i = 0; i < n; i++) {
  7179. ggml_vec_tanh_f32(nc,
  7180. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7181. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7182. }
  7183. }
  7184. static void ggml_compute_forward_tanh(
  7185. const struct ggml_compute_params * params,
  7186. const struct ggml_tensor * src0,
  7187. struct ggml_tensor * dst) {
  7188. switch (src0->type) {
  7189. case GGML_TYPE_F32:
  7190. {
  7191. ggml_compute_forward_tanh_f32(params, src0, dst);
  7192. } break;
  7193. default:
  7194. {
  7195. GGML_ASSERT(false);
  7196. } break;
  7197. }
  7198. }
  7199. // ggml_compute_forward_elu
  7200. static void ggml_compute_forward_elu_f32(
  7201. const struct ggml_compute_params * params,
  7202. const struct ggml_tensor * src0,
  7203. struct ggml_tensor * dst) {
  7204. assert(params->ith == 0);
  7205. assert(ggml_are_same_shape(src0, dst));
  7206. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7207. return;
  7208. }
  7209. const int n = ggml_nrows(src0);
  7210. const int nc = src0->ne[0];
  7211. assert(dst->nb[0] == sizeof(float));
  7212. assert(src0->nb[0] == sizeof(float));
  7213. for (int i = 0; i < n; i++) {
  7214. ggml_vec_elu_f32(nc,
  7215. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7216. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7217. }
  7218. }
  7219. static void ggml_compute_forward_elu(
  7220. const struct ggml_compute_params * params,
  7221. const struct ggml_tensor * src0,
  7222. struct ggml_tensor * dst) {
  7223. switch (src0->type) {
  7224. case GGML_TYPE_F32:
  7225. {
  7226. ggml_compute_forward_elu_f32(params, src0, dst);
  7227. } break;
  7228. default:
  7229. {
  7230. GGML_ASSERT(false);
  7231. } break;
  7232. }
  7233. }
  7234. // ggml_compute_forward_relu
  7235. static void ggml_compute_forward_relu_f32(
  7236. const struct ggml_compute_params * params,
  7237. const struct ggml_tensor * src0,
  7238. struct ggml_tensor * dst) {
  7239. assert(params->ith == 0);
  7240. assert(ggml_are_same_shape(src0, dst));
  7241. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7242. return;
  7243. }
  7244. const int n = ggml_nrows(src0);
  7245. const int nc = src0->ne[0];
  7246. assert(dst->nb[0] == sizeof(float));
  7247. assert(src0->nb[0] == sizeof(float));
  7248. for (int i = 0; i < n; i++) {
  7249. ggml_vec_relu_f32(nc,
  7250. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7251. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7252. }
  7253. }
  7254. static void ggml_compute_forward_relu(
  7255. const struct ggml_compute_params * params,
  7256. const struct ggml_tensor * src0,
  7257. struct ggml_tensor * dst) {
  7258. switch (src0->type) {
  7259. case GGML_TYPE_F32:
  7260. {
  7261. ggml_compute_forward_relu_f32(params, src0, dst);
  7262. } break;
  7263. default:
  7264. {
  7265. GGML_ASSERT(false);
  7266. } break;
  7267. }
  7268. }
  7269. // ggml_compute_forward_gelu
  7270. static void ggml_compute_forward_gelu_f32(
  7271. const struct ggml_compute_params * params,
  7272. const struct ggml_tensor * src0,
  7273. struct ggml_tensor * dst) {
  7274. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7275. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7276. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7278. return;
  7279. }
  7280. const int ith = params->ith;
  7281. const int nth = params->nth;
  7282. const int nc = src0->ne[0];
  7283. const int nr = ggml_nrows(src0);
  7284. // rows per thread
  7285. const int dr = (nr + nth - 1)/nth;
  7286. // row range for this thread
  7287. const int ir0 = dr*ith;
  7288. const int ir1 = MIN(ir0 + dr, nr);
  7289. for (int i1 = ir0; i1 < ir1; i1++) {
  7290. ggml_vec_gelu_f32(nc,
  7291. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7292. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7293. #ifndef NDEBUG
  7294. for (int k = 0; k < nc; k++) {
  7295. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7296. UNUSED(x);
  7297. assert(!isnan(x));
  7298. assert(!isinf(x));
  7299. }
  7300. #endif
  7301. }
  7302. }
  7303. static void ggml_compute_forward_gelu(
  7304. const struct ggml_compute_params * params,
  7305. const struct ggml_tensor * src0,
  7306. struct ggml_tensor * dst) {
  7307. switch (src0->type) {
  7308. case GGML_TYPE_F32:
  7309. {
  7310. ggml_compute_forward_gelu_f32(params, src0, dst);
  7311. } break;
  7312. default:
  7313. {
  7314. GGML_ASSERT(false);
  7315. } break;
  7316. }
  7317. }
  7318. // ggml_compute_forward_gelu_quick
  7319. static void ggml_compute_forward_gelu_quick_f32(
  7320. const struct ggml_compute_params * params,
  7321. const struct ggml_tensor * src0,
  7322. struct ggml_tensor * dst) {
  7323. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7324. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7325. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7327. return;
  7328. }
  7329. const int ith = params->ith;
  7330. const int nth = params->nth;
  7331. const int nc = src0->ne[0];
  7332. const int nr = ggml_nrows(src0);
  7333. // rows per thread
  7334. const int dr = (nr + nth - 1)/nth;
  7335. // row range for this thread
  7336. const int ir0 = dr*ith;
  7337. const int ir1 = MIN(ir0 + dr, nr);
  7338. for (int i1 = ir0; i1 < ir1; i1++) {
  7339. ggml_vec_gelu_quick_f32(nc,
  7340. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7341. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7342. #ifndef NDEBUG
  7343. for (int k = 0; k < nc; k++) {
  7344. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7345. UNUSED(x);
  7346. assert(!isnan(x));
  7347. assert(!isinf(x));
  7348. }
  7349. #endif
  7350. }
  7351. }
  7352. static void ggml_compute_forward_gelu_quick(
  7353. const struct ggml_compute_params * params,
  7354. const struct ggml_tensor * src0,
  7355. struct ggml_tensor * dst) {
  7356. switch (src0->type) {
  7357. case GGML_TYPE_F32:
  7358. {
  7359. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  7360. } break;
  7361. default:
  7362. {
  7363. GGML_ASSERT(false);
  7364. } break;
  7365. }
  7366. }
  7367. // ggml_compute_forward_silu
  7368. static void ggml_compute_forward_silu_f32(
  7369. const struct ggml_compute_params * params,
  7370. const struct ggml_tensor * src0,
  7371. struct ggml_tensor * dst) {
  7372. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7373. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7374. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7375. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7376. return;
  7377. }
  7378. const int ith = params->ith;
  7379. const int nth = params->nth;
  7380. const int nc = src0->ne[0];
  7381. const int nr = ggml_nrows(src0);
  7382. // rows per thread
  7383. const int dr = (nr + nth - 1)/nth;
  7384. // row range for this thread
  7385. const int ir0 = dr*ith;
  7386. const int ir1 = MIN(ir0 + dr, nr);
  7387. for (int i1 = ir0; i1 < ir1; i1++) {
  7388. ggml_vec_silu_f32(nc,
  7389. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7390. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7391. #ifndef NDEBUG
  7392. for (int k = 0; k < nc; k++) {
  7393. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7394. UNUSED(x);
  7395. assert(!isnan(x));
  7396. assert(!isinf(x));
  7397. }
  7398. #endif
  7399. }
  7400. }
  7401. static void ggml_compute_forward_silu(
  7402. const struct ggml_compute_params * params,
  7403. const struct ggml_tensor * src0,
  7404. struct ggml_tensor * dst) {
  7405. switch (src0->type) {
  7406. case GGML_TYPE_F32:
  7407. {
  7408. ggml_compute_forward_silu_f32(params, src0, dst);
  7409. } break;
  7410. default:
  7411. {
  7412. GGML_ASSERT(false);
  7413. } break;
  7414. }
  7415. }
  7416. // ggml_compute_forward_leaky_relu
  7417. static void ggml_compute_forward_leaky_relu_f32(
  7418. const struct ggml_compute_params * params,
  7419. const struct ggml_tensor * src0,
  7420. struct ggml_tensor * dst) {
  7421. assert(params->ith == 0);
  7422. assert(ggml_are_same_shape(src0, dst));
  7423. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7424. return;
  7425. }
  7426. const int n = ggml_nrows(src0);
  7427. const int nc = src0->ne[0];
  7428. float negative_slope;
  7429. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7430. assert(dst->nb[0] == sizeof(float));
  7431. assert(src0->nb[0] == sizeof(float));
  7432. for (int i = 0; i < n; i++) {
  7433. ggml_vec_leaky_relu_f32(nc,
  7434. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7435. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7436. }
  7437. }
  7438. static void ggml_compute_forward_leaky_relu(
  7439. const struct ggml_compute_params * params,
  7440. const struct ggml_tensor * src0,
  7441. struct ggml_tensor * dst) {
  7442. switch (src0->type) {
  7443. case GGML_TYPE_F32:
  7444. {
  7445. ggml_compute_forward_leaky_relu_f32(params, src0, dst);
  7446. } break;
  7447. default:
  7448. {
  7449. GGML_ASSERT(false);
  7450. } break;
  7451. }
  7452. }
  7453. // ggml_compute_forward_silu_back
  7454. static void ggml_compute_forward_silu_back_f32(
  7455. const struct ggml_compute_params * params,
  7456. const struct ggml_tensor * src0,
  7457. const struct ggml_tensor * grad,
  7458. struct ggml_tensor * dst) {
  7459. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7460. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7461. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7462. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7463. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7465. return;
  7466. }
  7467. const int ith = params->ith;
  7468. const int nth = params->nth;
  7469. const int nc = src0->ne[0];
  7470. const int nr = ggml_nrows(src0);
  7471. // rows per thread
  7472. const int dr = (nr + nth - 1)/nth;
  7473. // row range for this thread
  7474. const int ir0 = dr*ith;
  7475. const int ir1 = MIN(ir0 + dr, nr);
  7476. for (int i1 = ir0; i1 < ir1; i1++) {
  7477. ggml_vec_silu_backward_f32(nc,
  7478. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7479. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7480. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7481. #ifndef NDEBUG
  7482. for (int k = 0; k < nc; k++) {
  7483. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7484. UNUSED(x);
  7485. assert(!isnan(x));
  7486. assert(!isinf(x));
  7487. }
  7488. #endif
  7489. }
  7490. }
  7491. static void ggml_compute_forward_silu_back(
  7492. const struct ggml_compute_params * params,
  7493. const struct ggml_tensor * src0,
  7494. const struct ggml_tensor * grad,
  7495. struct ggml_tensor * dst) {
  7496. switch (src0->type) {
  7497. case GGML_TYPE_F32:
  7498. {
  7499. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7500. } break;
  7501. default:
  7502. {
  7503. GGML_ASSERT(false);
  7504. } break;
  7505. }
  7506. }
  7507. // ggml_compute_forward_norm
  7508. static void ggml_compute_forward_norm_f32(
  7509. const struct ggml_compute_params * params,
  7510. const struct ggml_tensor * src0,
  7511. struct ggml_tensor * dst) {
  7512. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7513. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7514. return;
  7515. }
  7516. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7517. const int ith = params->ith;
  7518. const int nth = params->nth;
  7519. GGML_TENSOR_UNARY_OP_LOCALS
  7520. float eps;
  7521. memcpy(&eps, dst->op_params, sizeof(float));
  7522. // TODO: optimize
  7523. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7524. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7525. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7526. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7527. ggml_float sum = 0.0;
  7528. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7529. sum += (ggml_float)x[i00];
  7530. }
  7531. float mean = sum/ne00;
  7532. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7533. ggml_float sum2 = 0.0;
  7534. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7535. float v = x[i00] - mean;
  7536. y[i00] = v;
  7537. sum2 += (ggml_float)(v*v);
  7538. }
  7539. float variance = sum2/ne00;
  7540. const float scale = 1.0f/sqrtf(variance + eps);
  7541. ggml_vec_scale_f32(ne00, y, scale);
  7542. }
  7543. }
  7544. }
  7545. }
  7546. static void ggml_compute_forward_norm(
  7547. const struct ggml_compute_params * params,
  7548. const struct ggml_tensor * src0,
  7549. struct ggml_tensor * dst) {
  7550. switch (src0->type) {
  7551. case GGML_TYPE_F32:
  7552. {
  7553. ggml_compute_forward_norm_f32(params, src0, dst);
  7554. } break;
  7555. default:
  7556. {
  7557. GGML_ASSERT(false);
  7558. } break;
  7559. }
  7560. }
  7561. // ggml_compute_forward_group_rms_norm
  7562. static void ggml_compute_forward_rms_norm_f32(
  7563. const struct ggml_compute_params * params,
  7564. const struct ggml_tensor * src0,
  7565. struct ggml_tensor * dst) {
  7566. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7567. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7568. return;
  7569. }
  7570. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7571. const int ith = params->ith;
  7572. const int nth = params->nth;
  7573. GGML_TENSOR_UNARY_OP_LOCALS
  7574. float eps;
  7575. memcpy(&eps, dst->op_params, sizeof(float));
  7576. // TODO: optimize
  7577. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7578. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7579. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7580. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7581. ggml_float sum = 0.0;
  7582. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7583. sum += (ggml_float)(x[i00] * x[i00]);
  7584. }
  7585. const float mean = sum/ne00;
  7586. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7587. memcpy(y, x, ne00 * sizeof(float));
  7588. // for (int i00 = 0; i00 < ne00; i00++) {
  7589. // y[i00] = x[i00];
  7590. // }
  7591. const float scale = 1.0f/sqrtf(mean + eps);
  7592. ggml_vec_scale_f32(ne00, y, scale);
  7593. }
  7594. }
  7595. }
  7596. }
  7597. static void ggml_compute_forward_rms_norm(
  7598. const struct ggml_compute_params * params,
  7599. const struct ggml_tensor * src0,
  7600. struct ggml_tensor * dst) {
  7601. switch (src0->type) {
  7602. case GGML_TYPE_F32:
  7603. {
  7604. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7605. } break;
  7606. default:
  7607. {
  7608. GGML_ASSERT(false);
  7609. } break;
  7610. }
  7611. }
  7612. static void ggml_compute_forward_rms_norm_back_f32(
  7613. const struct ggml_compute_params * params,
  7614. const struct ggml_tensor * src0,
  7615. const struct ggml_tensor * src1,
  7616. struct ggml_tensor * dst) {
  7617. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7619. return;
  7620. }
  7621. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7622. const int ith = params->ith;
  7623. const int nth = params->nth;
  7624. GGML_TENSOR_BINARY_OP_LOCALS
  7625. float eps;
  7626. memcpy(&eps, dst->op_params, sizeof(float));
  7627. // TODO: optimize
  7628. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7629. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7630. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7631. // src1 is same shape as src0 => same indices
  7632. const int64_t i11 = i01;
  7633. const int64_t i12 = i02;
  7634. const int64_t i13 = i03;
  7635. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7636. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7637. ggml_float sum_xx = 0.0;
  7638. ggml_float sum_xdz = 0.0;
  7639. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7640. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7641. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7642. }
  7643. //const float mean = (float)(sum_xx)/ne00;
  7644. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7645. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7646. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7647. // we could cache rms from forward pass to improve performance.
  7648. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7649. //const float rms = sqrtf(mean_eps);
  7650. const float rrms = 1.0f / sqrtf(mean_eps);
  7651. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7652. {
  7653. // z = rms_norm(x)
  7654. //
  7655. // rms_norm(src0) =
  7656. // scale(
  7657. // src0,
  7658. // div(
  7659. // 1,
  7660. // sqrt(
  7661. // add(
  7662. // scale(
  7663. // sum(
  7664. // sqr(
  7665. // src0)),
  7666. // (1.0/N)),
  7667. // eps))));
  7668. // postorder:
  7669. // ## op args grad
  7670. // 00 param src0 grad[#00]
  7671. // 01 const 1
  7672. // 02 sqr (#00) grad[#02]
  7673. // 03 sum (#02) grad[#03]
  7674. // 04 const 1/N
  7675. // 05 scale (#03, #04) grad[#05]
  7676. // 06 const eps
  7677. // 07 add (#05, #06) grad[#07]
  7678. // 08 sqrt (#07) grad[#08]
  7679. // 09 div (#01,#08) grad[#09]
  7680. // 10 scale (#00,#09) grad[#10]
  7681. //
  7682. // backward pass, given grad[#10]
  7683. // #10: scale
  7684. // grad[#00] += scale(grad[#10],#09)
  7685. // grad[#09] += sum(mul(grad[#10],#00))
  7686. // #09: div
  7687. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7688. // #08: sqrt
  7689. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7690. // #07: add
  7691. // grad[#05] += grad[#07]
  7692. // #05: scale
  7693. // grad[#03] += scale(grad[#05],#04)
  7694. // #03: sum
  7695. // grad[#02] += repeat(grad[#03], #02)
  7696. // #02:
  7697. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7698. //
  7699. // substitute and simplify:
  7700. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7701. // grad[#02] = repeat(grad[#03], #02)
  7702. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7703. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7704. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7705. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7706. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7707. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7708. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7709. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7710. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7711. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7712. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7713. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7714. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7715. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7716. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7717. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7718. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7719. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7720. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7721. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7722. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7723. // a = b*c + d*e
  7724. // a = b*c*f/f + d*e*f/f
  7725. // a = (b*c*f + d*e*f)*(1/f)
  7726. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7727. // a = (b + d*e/c)*c
  7728. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7729. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7730. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7731. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7732. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7733. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7734. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7735. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7736. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7737. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7738. }
  7739. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7740. // post-order:
  7741. // dx := x
  7742. // dx := scale(dx,-mean_xdz/mean_eps)
  7743. // dx := add(dx, dz)
  7744. // dx := scale(dx, rrms)
  7745. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7746. ggml_vec_cpy_f32 (ne00, dx, x);
  7747. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7748. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7749. ggml_vec_acc_f32 (ne00, dx, dz);
  7750. ggml_vec_scale_f32(ne00, dx, rrms);
  7751. }
  7752. }
  7753. }
  7754. }
  7755. static void ggml_compute_forward_rms_norm_back(
  7756. const struct ggml_compute_params * params,
  7757. const struct ggml_tensor * src0,
  7758. const struct ggml_tensor * src1,
  7759. struct ggml_tensor * dst) {
  7760. switch (src0->type) {
  7761. case GGML_TYPE_F32:
  7762. {
  7763. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7764. } break;
  7765. default:
  7766. {
  7767. GGML_ASSERT(false);
  7768. } break;
  7769. }
  7770. }
  7771. // ggml_compute_forward_group_norm
  7772. static void ggml_compute_forward_group_norm_f32(
  7773. const struct ggml_compute_params * params,
  7774. const struct ggml_tensor * src0,
  7775. struct ggml_tensor * dst) {
  7776. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7778. return;
  7779. }
  7780. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7781. const int ith = params->ith;
  7782. const int nth = params->nth;
  7783. GGML_TENSOR_UNARY_OP_LOCALS
  7784. const float eps = 1e-6f; // TODO: make this a parameter
  7785. // TODO: optimize
  7786. int n_channels = src0->ne[2];
  7787. int n_groups = dst->op_params[0];
  7788. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  7789. for (int i = ith; i < n_groups; i+=nth) {
  7790. int start = i * n_channels_per_group;
  7791. int end = start + n_channels_per_group;
  7792. if (end > n_channels) {
  7793. end = n_channels;
  7794. }
  7795. int step = end - start;
  7796. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7797. ggml_float sum = 0.0;
  7798. for (int64_t i02 = start; i02 < end; i02++) {
  7799. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7800. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7801. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7802. sum += (ggml_float)x[i00];
  7803. }
  7804. }
  7805. }
  7806. float mean = sum / (ne00 * ne01 * step);
  7807. ggml_float sum2 = 0.0;
  7808. for (int64_t i02 = start; i02 < end; i02++) {
  7809. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7810. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  7811. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7812. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7813. float v = x[i00] - mean;
  7814. y[i00] = v;
  7815. sum2 += (ggml_float)(v * v);
  7816. }
  7817. }
  7818. }
  7819. float variance = sum2 / (ne00 * ne01 * step);
  7820. const float scale = 1.0f / sqrtf(variance + eps);
  7821. for (int64_t i02 = start; i02 < end; i02++) {
  7822. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7823. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  7824. ggml_vec_scale_f32(ne00, y, scale);
  7825. }
  7826. }
  7827. }
  7828. }
  7829. }
  7830. static void ggml_compute_forward_group_norm(
  7831. const struct ggml_compute_params * params,
  7832. const struct ggml_tensor * src0,
  7833. struct ggml_tensor * dst) {
  7834. switch (src0->type) {
  7835. case GGML_TYPE_F32:
  7836. {
  7837. ggml_compute_forward_group_norm_f32(params, src0, dst);
  7838. } break;
  7839. default:
  7840. {
  7841. GGML_ASSERT(false);
  7842. } break;
  7843. }
  7844. }
  7845. // ggml_compute_forward_mul_mat
  7846. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7847. // helper function to determine if it is better to use BLAS or not
  7848. // for large matrices, BLAS is faster
  7849. static bool ggml_compute_forward_mul_mat_use_blas(
  7850. const struct ggml_tensor * src0,
  7851. const struct ggml_tensor * src1,
  7852. struct ggml_tensor * dst) {
  7853. //const int64_t ne00 = src0->ne[0];
  7854. //const int64_t ne01 = src0->ne[1];
  7855. const int64_t ne10 = src1->ne[0];
  7856. const int64_t ne0 = dst->ne[0];
  7857. const int64_t ne1 = dst->ne[1];
  7858. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  7859. // all the experts for each batch element and the processing would become incredibly slow
  7860. // TODO: find the optimal values for these
  7861. if (dst->op != GGML_OP_MUL_MAT_ID &&
  7862. ggml_is_contiguous(src0) &&
  7863. ggml_is_contiguous(src1) &&
  7864. //src0->type == GGML_TYPE_F32 &&
  7865. src1->type == GGML_TYPE_F32 &&
  7866. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7867. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7868. return true;
  7869. }
  7870. return false;
  7871. }
  7872. #endif
  7873. // off1 = offset in i11 and i1
  7874. // cne1 = ne11 and ne1
  7875. // in a normal matrix multiplication, off1 = 0 and cne1 = ne1
  7876. // during GGML_TASK_INIT, the full src1 is converted regardless of off1 and cne1
  7877. static void ggml_compute_forward_mul_mat(
  7878. const struct ggml_compute_params * params,
  7879. const struct ggml_tensor * src0,
  7880. const struct ggml_tensor * src1,
  7881. struct ggml_tensor * dst,
  7882. int64_t off1, int64_t cne1) {
  7883. int64_t t0 = ggml_perf_time_us();
  7884. UNUSED(t0);
  7885. GGML_TENSOR_BINARY_OP_LOCALS
  7886. const int ith = params->ith;
  7887. const int nth = params->nth;
  7888. const enum ggml_type type = src0->type;
  7889. const bool src1_cont = ggml_is_contiguous(src1);
  7890. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  7891. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  7892. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  7893. GGML_ASSERT(ne0 == ne01);
  7894. GGML_ASSERT(ne1 == ne11);
  7895. GGML_ASSERT(ne2 == ne12);
  7896. GGML_ASSERT(ne3 == ne13);
  7897. // we don't support permuted src0 or src1
  7898. GGML_ASSERT(nb00 == ggml_type_size(type));
  7899. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  7900. // dst cannot be transposed or permuted
  7901. GGML_ASSERT(nb0 == sizeof(float));
  7902. GGML_ASSERT(nb0 <= nb1);
  7903. GGML_ASSERT(nb1 <= nb2);
  7904. GGML_ASSERT(nb2 <= nb3);
  7905. // broadcast factors
  7906. const int64_t r2 = ne12/ne02;
  7907. const int64_t r3 = ne13/ne03;
  7908. // nb01 >= nb00 - src0 is not transposed
  7909. // compute by src0 rows
  7910. #if defined(GGML_USE_CLBLAST)
  7911. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7912. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7913. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7914. }
  7915. return;
  7916. }
  7917. #endif
  7918. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7919. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7920. if (params->ith != 0) {
  7921. return;
  7922. }
  7923. if (params->type == GGML_TASK_INIT) {
  7924. return;
  7925. }
  7926. if (params->type == GGML_TASK_FINALIZE) {
  7927. return;
  7928. }
  7929. for (int64_t i13 = 0; i13 < ne13; i13++) {
  7930. for (int64_t i12 = 0; i12 < ne12; i12++) {
  7931. // broadcast src0 into src1 across 2nd,3rd dimension
  7932. const int64_t i03 = i13/r3;
  7933. const int64_t i02 = i12/r2;
  7934. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  7935. const float * y = (float *) ((char *) src1->data + off1*nb11 + i12*nb12 + i13*nb13);
  7936. float * d = (float *) ((char *) dst->data + off1*nb1 + i12*nb2 + i13*nb3);
  7937. if (type != GGML_TYPE_F32) {
  7938. float * const wdata = params->wdata;
  7939. ggml_to_float_t const to_float = type_traits[type].to_float;
  7940. size_t id = 0;
  7941. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  7942. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  7943. id += ne00;
  7944. }
  7945. assert(id*sizeof(float) <= params->wsize);
  7946. x = wdata;
  7947. }
  7948. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7949. cne1, ne01, ne10,
  7950. 1.0f, y, ne10,
  7951. x, ne00,
  7952. 0.0f, d, ne01);
  7953. }
  7954. }
  7955. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7956. return;
  7957. }
  7958. #endif
  7959. if (params->type == GGML_TASK_INIT) {
  7960. if (src1->type != vec_dot_type) {
  7961. char * wdata = params->wdata;
  7962. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7963. assert(params->wsize >= ne11*ne12*ne13*row_size);
  7964. assert(src1->type == GGML_TYPE_F32);
  7965. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7966. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7967. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7968. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7969. wdata += row_size;
  7970. }
  7971. }
  7972. }
  7973. }
  7974. return;
  7975. }
  7976. if (params->type == GGML_TASK_FINALIZE) {
  7977. return;
  7978. }
  7979. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  7980. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  7981. const int64_t nr0 = ne01; // src0 rows
  7982. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  7983. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  7984. // distribute the thread work across the inner or outer loop based on which one is larger
  7985. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  7986. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  7987. const int64_t ith0 = ith % nth0;
  7988. const int64_t ith1 = ith / nth0;
  7989. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  7990. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  7991. const int64_t ir010 = dr0*ith0;
  7992. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  7993. const int64_t ir110 = dr1*ith1;
  7994. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  7995. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  7996. // threads with no work simply yield (not sure if it helps)
  7997. if (ir010 >= ir011 || ir110 >= ir111) {
  7998. sched_yield();
  7999. return;
  8000. }
  8001. assert(ne12 % ne02 == 0);
  8002. assert(ne13 % ne03 == 0);
  8003. // block-tiling attempt
  8004. const int64_t blck_0 = 16;
  8005. const int64_t blck_1 = 16;
  8006. // attempt to reduce false-sharing (does not seem to make a difference)
  8007. float tmp[16];
  8008. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8009. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8010. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8011. const int64_t i13 = (ir1/(ne12*cne1));
  8012. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8013. const int64_t i11 = (ir1 - i13*ne12*cne1 - i12*cne1) + off1;
  8014. // broadcast src0 into src1
  8015. const int64_t i03 = i13/r3;
  8016. const int64_t i02 = i12/r2;
  8017. const int64_t i1 = i11;
  8018. const int64_t i2 = i12;
  8019. const int64_t i3 = i13;
  8020. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8021. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8022. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8023. // the original src1 data pointer, so we should index using the indices directly
  8024. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8025. const char * src1_col = (const char *) wdata +
  8026. (src1_cont || src1->type != vec_dot_type
  8027. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8028. : (i11*nb11 + i12*nb12 + i13*nb13));
  8029. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8030. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8031. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8032. //}
  8033. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8034. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  8035. }
  8036. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8037. }
  8038. }
  8039. }
  8040. }
  8041. // ggml_compute_forward_mul_mat_id
  8042. static void ggml_compute_forward_mul_mat_id(
  8043. const struct ggml_compute_params * params,
  8044. const struct ggml_tensor * src0,
  8045. const struct ggml_tensor * src1,
  8046. struct ggml_tensor * dst) {
  8047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8048. // during GGML_TASK_INIT the entire src1 is converted to vec_dot_type
  8049. ggml_compute_forward_mul_mat(params, dst->src[2], src1, dst, 0, dst->ne[1]);
  8050. return;
  8051. }
  8052. const struct ggml_tensor * ids = src0;
  8053. const int id = ggml_get_op_params_i32(dst, 0);
  8054. const int n_as = ggml_get_op_params_i32(dst, 1);
  8055. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8056. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8057. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8058. const struct ggml_tensor * src0_row = dst->src[row_id + 2];
  8059. ggml_compute_forward_mul_mat(params, src0_row, src1, dst, i01, 1);
  8060. }
  8061. }
  8062. // ggml_compute_forward_out_prod
  8063. static void ggml_compute_forward_out_prod_f32(
  8064. const struct ggml_compute_params * params,
  8065. const struct ggml_tensor * src0,
  8066. const struct ggml_tensor * src1,
  8067. struct ggml_tensor * dst) {
  8068. // int64_t t0 = ggml_perf_time_us();
  8069. // UNUSED(t0);
  8070. GGML_TENSOR_BINARY_OP_LOCALS
  8071. const int ith = params->ith;
  8072. const int nth = params->nth;
  8073. GGML_ASSERT(ne0 == ne00);
  8074. GGML_ASSERT(ne1 == ne10);
  8075. GGML_ASSERT(ne2 == ne02);
  8076. GGML_ASSERT(ne02 == ne12);
  8077. GGML_ASSERT(ne3 == ne13);
  8078. GGML_ASSERT(ne03 == ne13);
  8079. // we don't support permuted src0 or src1
  8080. GGML_ASSERT(nb00 == sizeof(float));
  8081. // dst cannot be transposed or permuted
  8082. GGML_ASSERT(nb0 == sizeof(float));
  8083. // GGML_ASSERT(nb0 <= nb1);
  8084. // GGML_ASSERT(nb1 <= nb2);
  8085. // GGML_ASSERT(nb2 <= nb3);
  8086. // nb01 >= nb00 - src0 is not transposed
  8087. // compute by src0 rows
  8088. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8089. // TODO: #if defined(GGML_USE_CLBLAST)
  8090. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8091. bool use_blas = ggml_is_matrix(src0) &&
  8092. ggml_is_matrix(src1) &&
  8093. ggml_is_contiguous(src0) &&
  8094. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8095. #endif
  8096. if (params->type == GGML_TASK_INIT) {
  8097. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8098. if (use_blas) {
  8099. return;
  8100. }
  8101. #endif
  8102. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8103. return;
  8104. }
  8105. if (params->type == GGML_TASK_FINALIZE) {
  8106. return;
  8107. }
  8108. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8109. if (use_blas) {
  8110. if (params->ith != 0) { // All threads other than the first do no work.
  8111. return;
  8112. }
  8113. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8114. // src0: (k,n)
  8115. // src1: (k,m)
  8116. // dst: (m,n)
  8117. //
  8118. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8119. // Also expressed as (major,minor)
  8120. // a: (m,k): so src1 transposed
  8121. // b: (k,n): so src0
  8122. // c: (m,n)
  8123. //
  8124. // However, if ggml_is_transposed(src1) is true, then
  8125. // src1->data already contains a transposed version, so sgemm mustn't
  8126. // transpose it further.
  8127. int n = src0->ne[0];
  8128. int k = src0->ne[1];
  8129. int m = src1->ne[0];
  8130. int transposeA, lda;
  8131. if (!ggml_is_transposed(src1)) {
  8132. transposeA = CblasTrans;
  8133. lda = m;
  8134. } else {
  8135. transposeA = CblasNoTrans;
  8136. lda = k;
  8137. }
  8138. float * a = (float *) ((char *) src1->data);
  8139. float * b = (float *) ((char *) src0->data);
  8140. float * c = (float *) ((char *) dst->data);
  8141. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8142. return;
  8143. }
  8144. #endif
  8145. // dst[:,:,:,:] = 0
  8146. // for i2,i3:
  8147. // for i1:
  8148. // for i01:
  8149. // for i0:
  8150. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8151. // parallelize by last three dimensions
  8152. // total rows in dst
  8153. const int64_t nr = ne1*ne2*ne3;
  8154. // rows per thread
  8155. const int64_t dr = (nr + nth - 1)/nth;
  8156. // row range for this thread
  8157. const int64_t ir0 = dr*ith;
  8158. const int64_t ir1 = MIN(ir0 + dr, nr);
  8159. // block-tiling attempt
  8160. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8161. const int64_t blck_1 = 16;
  8162. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8163. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8164. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8165. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8166. for (int64_t ir = bir; ir < bir1; ++ir) {
  8167. // dst indices
  8168. const int64_t i3 = ir/(ne2*ne1);
  8169. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8170. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8171. const int64_t i02 = i2;
  8172. const int64_t i03 = i3;
  8173. //const int64_t i10 = i1;
  8174. const int64_t i12 = i2;
  8175. const int64_t i13 = i3;
  8176. #if GGML_VEC_MAD_UNROLL > 2
  8177. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8178. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8179. const int64_t i11 = i01;
  8180. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8181. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8182. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8183. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8184. }
  8185. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8186. const int64_t i11 = i01;
  8187. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8188. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8189. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8190. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8191. }
  8192. #else
  8193. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8194. const int64_t i11 = i01;
  8195. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8196. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8197. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8198. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8199. }
  8200. #endif
  8201. }
  8202. }
  8203. }
  8204. //int64_t t1 = ggml_perf_time_us();
  8205. //static int64_t acc = 0;
  8206. //acc += t1 - t0;
  8207. //if (t1 - t0 > 10) {
  8208. // printf("\n");
  8209. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8210. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8211. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8212. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8213. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8214. //}
  8215. }
  8216. static void ggml_compute_forward_out_prod_q_f32(
  8217. const struct ggml_compute_params * params,
  8218. const struct ggml_tensor * src0,
  8219. const struct ggml_tensor * src1,
  8220. struct ggml_tensor * dst) {
  8221. // int64_t t0 = ggml_perf_time_us();
  8222. // UNUSED(t0);
  8223. GGML_TENSOR_BINARY_OP_LOCALS;
  8224. const int ith = params->ith;
  8225. const int nth = params->nth;
  8226. const enum ggml_type type = src0->type;
  8227. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8228. GGML_ASSERT(ne02 == ne12);
  8229. GGML_ASSERT(ne03 == ne13);
  8230. GGML_ASSERT(ne2 == ne12);
  8231. GGML_ASSERT(ne3 == ne13);
  8232. // we don't support permuted src0 dim0
  8233. GGML_ASSERT(nb00 == ggml_type_size(type));
  8234. // dst dim0 cannot be transposed or permuted
  8235. GGML_ASSERT(nb0 == sizeof(float));
  8236. // GGML_ASSERT(nb0 <= nb1);
  8237. // GGML_ASSERT(nb1 <= nb2);
  8238. // GGML_ASSERT(nb2 <= nb3);
  8239. GGML_ASSERT(ne0 == ne00);
  8240. GGML_ASSERT(ne1 == ne10);
  8241. GGML_ASSERT(ne2 == ne02);
  8242. GGML_ASSERT(ne3 == ne03);
  8243. // nb01 >= nb00 - src0 is not transposed
  8244. // compute by src0 rows
  8245. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8246. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8247. if (params->type == GGML_TASK_INIT) {
  8248. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8249. return;
  8250. }
  8251. if (params->type == GGML_TASK_FINALIZE) {
  8252. return;
  8253. }
  8254. // parallelize by last three dimensions
  8255. // total rows in dst
  8256. const int64_t nr = ne1*ne2*ne3;
  8257. // rows per thread
  8258. const int64_t dr = (nr + nth - 1)/nth;
  8259. // row range for this thread
  8260. const int64_t ir0 = dr*ith;
  8261. const int64_t ir1 = MIN(ir0 + dr, nr);
  8262. // dst[:,:,:,:] = 0
  8263. // for i2,i3:
  8264. // for i1:
  8265. // for i01:
  8266. // for i0:
  8267. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8268. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8269. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8270. // dst indices
  8271. const int64_t i3 = ir/(ne2*ne1);
  8272. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8273. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8274. const int64_t i02 = i2;
  8275. const int64_t i03 = i3;
  8276. //const int64_t i10 = i1;
  8277. const int64_t i12 = i2;
  8278. const int64_t i13 = i3;
  8279. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8280. const int64_t i11 = i01;
  8281. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8282. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8283. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8284. dequantize_row_q(s0, wdata, ne0);
  8285. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8286. }
  8287. }
  8288. //int64_t t1 = ggml_perf_time_us();
  8289. //static int64_t acc = 0;
  8290. //acc += t1 - t0;
  8291. //if (t1 - t0 > 10) {
  8292. // printf("\n");
  8293. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8294. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8295. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8296. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8297. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8298. //}
  8299. }
  8300. static void ggml_compute_forward_out_prod(
  8301. const struct ggml_compute_params * params,
  8302. const struct ggml_tensor * src0,
  8303. const struct ggml_tensor * src1,
  8304. struct ggml_tensor * dst) {
  8305. switch (src0->type) {
  8306. case GGML_TYPE_Q4_0:
  8307. case GGML_TYPE_Q4_1:
  8308. case GGML_TYPE_Q5_0:
  8309. case GGML_TYPE_Q5_1:
  8310. case GGML_TYPE_Q8_0:
  8311. case GGML_TYPE_Q2_K:
  8312. case GGML_TYPE_Q3_K:
  8313. case GGML_TYPE_Q4_K:
  8314. case GGML_TYPE_Q5_K:
  8315. case GGML_TYPE_Q6_K:
  8316. {
  8317. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8318. } break;
  8319. case GGML_TYPE_F16:
  8320. {
  8321. GGML_ASSERT(false); // todo
  8322. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8323. } break;
  8324. case GGML_TYPE_F32:
  8325. {
  8326. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8327. } break;
  8328. default:
  8329. {
  8330. GGML_ASSERT(false);
  8331. } break;
  8332. }
  8333. }
  8334. // ggml_compute_forward_scale
  8335. static void ggml_compute_forward_scale_f32(
  8336. const struct ggml_compute_params * params,
  8337. const struct ggml_tensor * src0,
  8338. const struct ggml_tensor * src1,
  8339. struct ggml_tensor * dst) {
  8340. GGML_ASSERT(ggml_is_contiguous(src0));
  8341. GGML_ASSERT(ggml_is_contiguous(dst));
  8342. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8343. GGML_ASSERT(ggml_is_scalar(src1));
  8344. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8345. return;
  8346. }
  8347. // scale factor
  8348. const float v = *(float *) src1->data;
  8349. const int ith = params->ith;
  8350. const int nth = params->nth;
  8351. const int nc = src0->ne[0];
  8352. const int nr = ggml_nrows(src0);
  8353. // rows per thread
  8354. const int dr = (nr + nth - 1)/nth;
  8355. // row range for this thread
  8356. const int ir0 = dr*ith;
  8357. const int ir1 = MIN(ir0 + dr, nr);
  8358. const size_t nb01 = src0->nb[1];
  8359. const size_t nb1 = dst->nb[1];
  8360. for (int i1 = ir0; i1 < ir1; i1++) {
  8361. if (dst->data != src0->data) {
  8362. // src0 is same shape as dst => same indices
  8363. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8364. }
  8365. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8366. }
  8367. }
  8368. static void ggml_compute_forward_scale(
  8369. const struct ggml_compute_params * params,
  8370. const struct ggml_tensor * src0,
  8371. const struct ggml_tensor * src1,
  8372. struct ggml_tensor * dst) {
  8373. switch (src0->type) {
  8374. case GGML_TYPE_F32:
  8375. {
  8376. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8377. } break;
  8378. default:
  8379. {
  8380. GGML_ASSERT(false);
  8381. } break;
  8382. }
  8383. }
  8384. // ggml_compute_forward_set
  8385. static void ggml_compute_forward_set_f32(
  8386. const struct ggml_compute_params * params,
  8387. const struct ggml_tensor * src0,
  8388. const struct ggml_tensor * src1,
  8389. struct ggml_tensor * dst) {
  8390. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8391. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8392. // view src0 and dst with these strides and data offset inbytes during set
  8393. // nb0 is implicitly element_size because src0 and dst are contiguous
  8394. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8395. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8396. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8397. size_t offset = ((int32_t *) dst->op_params)[3];
  8398. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8399. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8400. // memcpy needs to be synchronized across threads to avoid race conditions.
  8401. // => do it in INIT phase
  8402. memcpy(
  8403. ((char *) dst->data),
  8404. ((char *) src0->data),
  8405. ggml_nbytes(dst));
  8406. }
  8407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8408. return;
  8409. }
  8410. const int ith = params->ith;
  8411. const int nth = params->nth;
  8412. const int nr = ggml_nrows(src1);
  8413. const int nc = src1->ne[0];
  8414. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8415. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8416. // src0 and dst as viewed during set
  8417. const size_t nb0 = ggml_element_size(src0);
  8418. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8419. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8420. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8421. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8422. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8423. GGML_ASSERT(nb10 == sizeof(float));
  8424. // rows per thread
  8425. const int dr = (nr + nth - 1)/nth;
  8426. // row range for this thread
  8427. const int ir0 = dr*ith;
  8428. const int ir1 = MIN(ir0 + dr, nr);
  8429. for (int ir = ir0; ir < ir1; ++ir) {
  8430. // src0 and dst are viewed with shape of src1 and offset
  8431. // => same indices
  8432. const int i3 = ir/(ne12*ne11);
  8433. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8434. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8435. ggml_vec_cpy_f32(nc,
  8436. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8437. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8438. }
  8439. }
  8440. static void ggml_compute_forward_set(
  8441. const struct ggml_compute_params * params,
  8442. const struct ggml_tensor * src0,
  8443. const struct ggml_tensor * src1,
  8444. struct ggml_tensor * dst) {
  8445. switch (src0->type) {
  8446. case GGML_TYPE_F32:
  8447. {
  8448. ggml_compute_forward_set_f32(params, src0, src1, dst);
  8449. } break;
  8450. case GGML_TYPE_F16:
  8451. case GGML_TYPE_Q4_0:
  8452. case GGML_TYPE_Q4_1:
  8453. case GGML_TYPE_Q5_0:
  8454. case GGML_TYPE_Q5_1:
  8455. case GGML_TYPE_Q8_0:
  8456. case GGML_TYPE_Q8_1:
  8457. case GGML_TYPE_Q2_K:
  8458. case GGML_TYPE_Q3_K:
  8459. case GGML_TYPE_Q4_K:
  8460. case GGML_TYPE_Q5_K:
  8461. case GGML_TYPE_Q6_K:
  8462. default:
  8463. {
  8464. GGML_ASSERT(false);
  8465. } break;
  8466. }
  8467. }
  8468. // ggml_compute_forward_cpy
  8469. static void ggml_compute_forward_cpy(
  8470. const struct ggml_compute_params * params,
  8471. const struct ggml_tensor * src0,
  8472. struct ggml_tensor * dst) {
  8473. ggml_compute_forward_dup(params, src0, dst);
  8474. }
  8475. // ggml_compute_forward_cont
  8476. static void ggml_compute_forward_cont(
  8477. const struct ggml_compute_params * params,
  8478. const struct ggml_tensor * src0,
  8479. struct ggml_tensor * dst) {
  8480. ggml_compute_forward_dup(params, src0, dst);
  8481. }
  8482. // ggml_compute_forward_reshape
  8483. static void ggml_compute_forward_reshape(
  8484. const struct ggml_compute_params * params,
  8485. const struct ggml_tensor * src0,
  8486. struct ggml_tensor * dst) {
  8487. // NOP
  8488. UNUSED(params);
  8489. UNUSED(src0);
  8490. UNUSED(dst);
  8491. }
  8492. // ggml_compute_forward_view
  8493. static void ggml_compute_forward_view(
  8494. const struct ggml_compute_params * params,
  8495. const struct ggml_tensor * src0) {
  8496. // NOP
  8497. UNUSED(params);
  8498. UNUSED(src0);
  8499. }
  8500. // ggml_compute_forward_permute
  8501. static void ggml_compute_forward_permute(
  8502. const struct ggml_compute_params * params,
  8503. const struct ggml_tensor * src0) {
  8504. // NOP
  8505. UNUSED(params);
  8506. UNUSED(src0);
  8507. }
  8508. // ggml_compute_forward_transpose
  8509. static void ggml_compute_forward_transpose(
  8510. const struct ggml_compute_params * params,
  8511. const struct ggml_tensor * src0) {
  8512. // NOP
  8513. UNUSED(params);
  8514. UNUSED(src0);
  8515. }
  8516. // ggml_compute_forward_get_rows
  8517. static void ggml_compute_forward_get_rows_q(
  8518. const struct ggml_compute_params * params,
  8519. const struct ggml_tensor * src0,
  8520. const struct ggml_tensor * src1,
  8521. struct ggml_tensor * dst) {
  8522. assert(params->ith == 0);
  8523. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8524. return;
  8525. }
  8526. GGML_TENSOR_BINARY_OP_LOCALS
  8527. const int64_t nc = ne00;
  8528. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8529. const enum ggml_type type = src0->type;
  8530. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8531. assert(ne0 == nc);
  8532. assert(ne02 == ne11);
  8533. assert(nb00 == ggml_type_size(type));
  8534. assert(ggml_nrows(dst) == nr);
  8535. // TODO: multi-thread
  8536. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8537. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8538. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8539. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8540. dequantize_row_q(
  8541. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8542. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8543. }
  8544. }
  8545. }
  8546. }
  8547. static void ggml_compute_forward_get_rows_f16(
  8548. const struct ggml_compute_params * params,
  8549. const struct ggml_tensor * src0,
  8550. const struct ggml_tensor * src1,
  8551. struct ggml_tensor * dst) {
  8552. assert(params->ith == 0);
  8553. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8554. return;
  8555. }
  8556. GGML_TENSOR_BINARY_OP_LOCALS
  8557. const int64_t nc = ne00;
  8558. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8559. assert(ne0 == nc);
  8560. assert(ne02 == ne11);
  8561. assert(nb00 == sizeof(ggml_fp16_t));
  8562. assert(ggml_nrows(dst) == nr);
  8563. // TODO: multi-thread
  8564. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8565. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8566. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8567. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8568. ggml_fp16_to_fp32_row(
  8569. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  8570. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  8571. }
  8572. }
  8573. }
  8574. }
  8575. static void ggml_compute_forward_get_rows_f32(
  8576. const struct ggml_compute_params * params,
  8577. const struct ggml_tensor * src0,
  8578. const struct ggml_tensor * src1,
  8579. struct ggml_tensor * dst) {
  8580. assert(params->ith == 0);
  8581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8582. return;
  8583. }
  8584. GGML_TENSOR_BINARY_OP_LOCALS
  8585. const int64_t nc = ne00;
  8586. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  8587. assert(ne0 == nc);
  8588. assert(ne02 == ne11);
  8589. assert(nb00 == sizeof(float));
  8590. assert(ggml_nrows(dst) == nr);
  8591. // TODO: multi-thread
  8592. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8593. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8594. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8595. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  8596. ggml_vec_cpy_f32(nc,
  8597. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  8598. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  8599. }
  8600. }
  8601. }
  8602. }
  8603. static void ggml_compute_forward_get_rows(
  8604. const struct ggml_compute_params * params,
  8605. const struct ggml_tensor * src0,
  8606. const struct ggml_tensor * src1,
  8607. struct ggml_tensor * dst) {
  8608. switch (src0->type) {
  8609. case GGML_TYPE_Q4_0:
  8610. case GGML_TYPE_Q4_1:
  8611. case GGML_TYPE_Q5_0:
  8612. case GGML_TYPE_Q5_1:
  8613. case GGML_TYPE_Q8_0:
  8614. case GGML_TYPE_Q8_1:
  8615. case GGML_TYPE_Q2_K:
  8616. case GGML_TYPE_Q3_K:
  8617. case GGML_TYPE_Q4_K:
  8618. case GGML_TYPE_Q5_K:
  8619. case GGML_TYPE_Q6_K:
  8620. {
  8621. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8622. } break;
  8623. case GGML_TYPE_F16:
  8624. {
  8625. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8626. } break;
  8627. case GGML_TYPE_F32:
  8628. {
  8629. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8630. } break;
  8631. default:
  8632. {
  8633. GGML_ASSERT(false);
  8634. } break;
  8635. }
  8636. //static bool first = true;
  8637. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8638. //if (first) {
  8639. // first = false;
  8640. //} else {
  8641. // for (int k = 0; k < dst->ne[1]; ++k) {
  8642. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8643. // for (int i = 0; i < 16; ++i) {
  8644. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8645. // }
  8646. // printf("\n");
  8647. // }
  8648. // printf("\n");
  8649. // }
  8650. // printf("\n");
  8651. // exit(0);
  8652. //}
  8653. }
  8654. // ggml_compute_forward_get_rows_back
  8655. static void ggml_compute_forward_get_rows_back_f32_f16(
  8656. const struct ggml_compute_params * params,
  8657. const struct ggml_tensor * src0,
  8658. const struct ggml_tensor * src1,
  8659. struct ggml_tensor * dst) {
  8660. GGML_ASSERT(params->ith == 0);
  8661. GGML_ASSERT(ggml_is_contiguous(dst));
  8662. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8663. if (params->type == GGML_TASK_INIT) {
  8664. memset(dst->data, 0, ggml_nbytes(dst));
  8665. }
  8666. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8667. return;
  8668. }
  8669. const int nc = src0->ne[0];
  8670. const int nr = ggml_nelements(src1);
  8671. GGML_ASSERT( dst->ne[0] == nc);
  8672. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8673. for (int i = 0; i < nr; ++i) {
  8674. const int r = ((int32_t *) src1->data)[i];
  8675. for (int j = 0; j < nc; ++j) {
  8676. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8677. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8678. }
  8679. }
  8680. }
  8681. static void ggml_compute_forward_get_rows_back_f32(
  8682. const struct ggml_compute_params * params,
  8683. const struct ggml_tensor * src0,
  8684. const struct ggml_tensor * src1,
  8685. struct ggml_tensor * dst) {
  8686. GGML_ASSERT(params->ith == 0);
  8687. GGML_ASSERT(ggml_is_contiguous(dst));
  8688. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8689. if (params->type == GGML_TASK_INIT) {
  8690. memset(dst->data, 0, ggml_nbytes(dst));
  8691. }
  8692. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8693. return;
  8694. }
  8695. const int nc = src0->ne[0];
  8696. const int nr = ggml_nelements(src1);
  8697. GGML_ASSERT( dst->ne[0] == nc);
  8698. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8699. for (int i = 0; i < nr; ++i) {
  8700. const int r = ((int32_t *) src1->data)[i];
  8701. ggml_vec_add_f32(nc,
  8702. (float *) ((char *) dst->data + r*dst->nb[1]),
  8703. (float *) ((char *) dst->data + r*dst->nb[1]),
  8704. (float *) ((char *) src0->data + i*src0->nb[1]));
  8705. }
  8706. }
  8707. static void ggml_compute_forward_get_rows_back(
  8708. const struct ggml_compute_params * params,
  8709. const struct ggml_tensor * src0,
  8710. const struct ggml_tensor * src1,
  8711. struct ggml_tensor * dst) {
  8712. switch (src0->type) {
  8713. case GGML_TYPE_F16:
  8714. {
  8715. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  8716. } break;
  8717. case GGML_TYPE_F32:
  8718. {
  8719. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  8720. } break;
  8721. default:
  8722. {
  8723. GGML_ASSERT(false);
  8724. } break;
  8725. }
  8726. //static bool first = true;
  8727. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8728. //if (first) {
  8729. // first = false;
  8730. //} else {
  8731. // for (int k = 0; k < dst->ne[1]; ++k) {
  8732. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8733. // for (int i = 0; i < 16; ++i) {
  8734. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8735. // }
  8736. // printf("\n");
  8737. // }
  8738. // printf("\n");
  8739. // }
  8740. // printf("\n");
  8741. // exit(0);
  8742. //}
  8743. }
  8744. // ggml_compute_forward_diag
  8745. static void ggml_compute_forward_diag_f32(
  8746. const struct ggml_compute_params * params,
  8747. const struct ggml_tensor * src0,
  8748. struct ggml_tensor * dst) {
  8749. GGML_ASSERT(params->ith == 0);
  8750. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8751. return;
  8752. }
  8753. // TODO: handle transposed/permuted matrices
  8754. GGML_TENSOR_UNARY_OP_LOCALS
  8755. GGML_ASSERT(ne00 == ne0);
  8756. GGML_ASSERT(ne00 == ne1);
  8757. GGML_ASSERT(ne01 == 1);
  8758. GGML_ASSERT(ne02 == ne2);
  8759. GGML_ASSERT(ne03 == ne3);
  8760. GGML_ASSERT(nb00 == sizeof(float));
  8761. GGML_ASSERT(nb0 == sizeof(float));
  8762. for (int i3 = 0; i3 < ne3; i3++) {
  8763. for (int i2 = 0; i2 < ne2; i2++) {
  8764. for (int i1 = 0; i1 < ne1; i1++) {
  8765. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8766. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8767. for (int i0 = 0; i0 < i1; i0++) {
  8768. d[i0] = 0;
  8769. }
  8770. d[i1] = s[i1];
  8771. for (int i0 = i1+1; i0 < ne0; i0++) {
  8772. d[i0] = 0;
  8773. }
  8774. }
  8775. }
  8776. }
  8777. }
  8778. static void ggml_compute_forward_diag(
  8779. const struct ggml_compute_params * params,
  8780. const struct ggml_tensor * src0,
  8781. struct ggml_tensor * dst) {
  8782. switch (src0->type) {
  8783. case GGML_TYPE_F32:
  8784. {
  8785. ggml_compute_forward_diag_f32(params, src0, dst);
  8786. } break;
  8787. default:
  8788. {
  8789. GGML_ASSERT(false);
  8790. } break;
  8791. }
  8792. }
  8793. // ggml_compute_forward_diag_mask_inf
  8794. static void ggml_compute_forward_diag_mask_f32(
  8795. const struct ggml_compute_params * params,
  8796. const struct ggml_tensor * src0,
  8797. struct ggml_tensor * dst,
  8798. const float value) {
  8799. const int ith = params->ith;
  8800. const int nth = params->nth;
  8801. const int n_past = ((int32_t *) dst->op_params)[0];
  8802. const bool inplace = src0->data == dst->data;
  8803. GGML_ASSERT(n_past >= 0);
  8804. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8805. // memcpy needs to be synchronized across threads to avoid race conditions.
  8806. // => do it in INIT phase
  8807. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8808. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8809. memcpy(
  8810. ((char *) dst->data),
  8811. ((char *) src0->data),
  8812. ggml_nbytes(dst));
  8813. }
  8814. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8815. return;
  8816. }
  8817. // TODO: handle transposed/permuted matrices
  8818. const int n = ggml_nrows(src0);
  8819. const int nc = src0->ne[0];
  8820. const int nr = src0->ne[1];
  8821. const int nz = n/nr;
  8822. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8823. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8824. for (int k = 0; k < nz; k++) {
  8825. for (int j = ith; j < nr; j += nth) {
  8826. for (int i = n_past; i < nc; i++) {
  8827. if (i > n_past + j) {
  8828. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8829. }
  8830. }
  8831. }
  8832. }
  8833. }
  8834. static void ggml_compute_forward_diag_mask_inf(
  8835. const struct ggml_compute_params * params,
  8836. const struct ggml_tensor * src0,
  8837. struct ggml_tensor * dst) {
  8838. switch (src0->type) {
  8839. case GGML_TYPE_F32:
  8840. {
  8841. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  8842. } break;
  8843. default:
  8844. {
  8845. GGML_ASSERT(false);
  8846. } break;
  8847. }
  8848. }
  8849. static void ggml_compute_forward_diag_mask_zero(
  8850. const struct ggml_compute_params * params,
  8851. const struct ggml_tensor * src0,
  8852. struct ggml_tensor * dst) {
  8853. switch (src0->type) {
  8854. case GGML_TYPE_F32:
  8855. {
  8856. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  8857. } break;
  8858. default:
  8859. {
  8860. GGML_ASSERT(false);
  8861. } break;
  8862. }
  8863. }
  8864. // ggml_compute_forward_soft_max
  8865. static void ggml_compute_forward_soft_max_f32(
  8866. const struct ggml_compute_params * params,
  8867. const struct ggml_tensor * src0,
  8868. const struct ggml_tensor * src1,
  8869. struct ggml_tensor * dst) {
  8870. assert(ggml_is_contiguous(dst));
  8871. assert(ggml_are_same_shape(src0, dst));
  8872. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8873. return;
  8874. }
  8875. float scale = 1.0f;
  8876. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  8877. // TODO: handle transposed/permuted matrices
  8878. const int ith = params->ith;
  8879. const int nth = params->nth;
  8880. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  8881. const int nc = src0->ne[0];
  8882. const int nr = ggml_nrows(src0);
  8883. // rows per thread
  8884. const int dr = (nr + nth - 1)/nth;
  8885. // row range for this thread
  8886. const int ir0 = dr*ith;
  8887. const int ir1 = MIN(ir0 + dr, nr);
  8888. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  8889. for (int i1 = ir0; i1 < ir1; i1++) {
  8890. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8891. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8892. // broadcast the mask across rows
  8893. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  8894. ggml_vec_cpy_f32 (nc, wp, sp);
  8895. ggml_vec_scale_f32(nc, wp, scale);
  8896. if (mp) {
  8897. ggml_vec_acc_f32(nc, wp, mp);
  8898. }
  8899. #ifndef NDEBUG
  8900. for (int i = 0; i < nc; ++i) {
  8901. //printf("p[%d] = %f\n", i, p[i]);
  8902. assert(!isnan(wp[i]));
  8903. }
  8904. #endif
  8905. float max = -INFINITY;
  8906. ggml_vec_max_f32(nc, &max, wp);
  8907. ggml_float sum = 0.0;
  8908. uint16_t scvt;
  8909. for (int i = 0; i < nc; i++) {
  8910. if (wp[i] == -INFINITY) {
  8911. dp[i] = 0.0f;
  8912. } else {
  8913. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  8914. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  8915. memcpy(&scvt, &s, sizeof(scvt));
  8916. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  8917. sum += (ggml_float)val;
  8918. dp[i] = val;
  8919. }
  8920. }
  8921. assert(sum > 0.0);
  8922. sum = 1.0/sum;
  8923. ggml_vec_scale_f32(nc, dp, sum);
  8924. #ifndef NDEBUG
  8925. for (int i = 0; i < nc; ++i) {
  8926. assert(!isnan(dp[i]));
  8927. assert(!isinf(dp[i]));
  8928. }
  8929. #endif
  8930. }
  8931. }
  8932. static void ggml_compute_forward_soft_max(
  8933. const struct ggml_compute_params * params,
  8934. const struct ggml_tensor * src0,
  8935. const struct ggml_tensor * src1,
  8936. struct ggml_tensor * dst) {
  8937. switch (src0->type) {
  8938. case GGML_TYPE_F32:
  8939. {
  8940. ggml_compute_forward_soft_max_f32(params, src0, src1, dst);
  8941. } break;
  8942. default:
  8943. {
  8944. GGML_ASSERT(false);
  8945. } break;
  8946. }
  8947. }
  8948. // ggml_compute_forward_soft_max_back
  8949. static void ggml_compute_forward_soft_max_back_f32(
  8950. const struct ggml_compute_params * params,
  8951. const struct ggml_tensor * src0,
  8952. const struct ggml_tensor * src1,
  8953. struct ggml_tensor * dst) {
  8954. GGML_ASSERT(ggml_is_contiguous(src0));
  8955. GGML_ASSERT(ggml_is_contiguous(src1));
  8956. GGML_ASSERT(ggml_is_contiguous(dst));
  8957. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8958. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  8959. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8960. return;
  8961. }
  8962. // TODO: handle transposed/permuted matrices
  8963. const int ith = params->ith;
  8964. const int nth = params->nth;
  8965. const int nc = src0->ne[0];
  8966. const int nr = ggml_nrows(src0);
  8967. // rows per thread
  8968. const int dr = (nr + nth - 1)/nth;
  8969. // row range for this thread
  8970. const int ir0 = dr*ith;
  8971. const int ir1 = MIN(ir0 + dr, nr);
  8972. for (int i1 = ir0; i1 < ir1; i1++) {
  8973. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  8974. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  8975. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  8976. #ifndef NDEBUG
  8977. for (int i = 0; i < nc; ++i) {
  8978. //printf("p[%d] = %f\n", i, p[i]);
  8979. assert(!isnan(dy[i]));
  8980. assert(!isnan(y[i]));
  8981. }
  8982. #endif
  8983. // Jii = yi - yi*yi
  8984. // Jij = -yi*yj
  8985. // J = diag(y)-y.T*y
  8986. // dx = J * dy
  8987. // dxk = sum_i(Jki * dyi)
  8988. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  8989. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  8990. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  8991. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  8992. // dxk = -yk * dot(y, dy) + yk*dyk
  8993. // dxk = yk * (- dot(y, dy) + dyk)
  8994. // dxk = yk * (dyk - dot(y, dy))
  8995. //
  8996. // post-order:
  8997. // dot_y_dy := dot(y, dy)
  8998. // dx := dy
  8999. // dx := dx - dot_y_dy
  9000. // dx := dx * y
  9001. // linear runtime, no additional memory
  9002. float dot_y_dy = 0;
  9003. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9004. ggml_vec_cpy_f32 (nc, dx, dy);
  9005. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9006. ggml_vec_mul_f32 (nc, dx, dx, y);
  9007. #ifndef NDEBUG
  9008. for (int i = 0; i < nc; ++i) {
  9009. assert(!isnan(dx[i]));
  9010. assert(!isinf(dx[i]));
  9011. }
  9012. #endif
  9013. }
  9014. }
  9015. static void ggml_compute_forward_soft_max_back(
  9016. const struct ggml_compute_params * params,
  9017. const struct ggml_tensor * src0,
  9018. const struct ggml_tensor * src1,
  9019. struct ggml_tensor * dst) {
  9020. switch (src0->type) {
  9021. case GGML_TYPE_F32:
  9022. {
  9023. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9024. } break;
  9025. default:
  9026. {
  9027. GGML_ASSERT(false);
  9028. } break;
  9029. }
  9030. }
  9031. // ggml_compute_forward_alibi
  9032. static void ggml_compute_forward_alibi_f32(
  9033. const struct ggml_compute_params * params,
  9034. const struct ggml_tensor * src0,
  9035. struct ggml_tensor * dst) {
  9036. assert(params->ith == 0);
  9037. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9038. return;
  9039. }
  9040. //const int n_past = ((int32_t *) dst->op_params)[0];
  9041. const int n_head = ((int32_t *) dst->op_params)[1];
  9042. float max_bias;
  9043. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9044. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9045. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9046. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9047. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9048. const int64_t n = ggml_nrows(src0);
  9049. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9050. const size_t nb0 = src0->nb[0];
  9051. const size_t nb1 = src0->nb[1];
  9052. const size_t nb2 = src0->nb[2];
  9053. //const int nb3 = src0->nb[3];
  9054. GGML_ASSERT(nb0 == sizeof(float));
  9055. GGML_ASSERT(n_head == ne2);
  9056. // add alibi to src0 (KQ_scaled)
  9057. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9058. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9059. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9060. for (int64_t i = 0; i < ne0; i++) {
  9061. for (int64_t j = 0; j < ne1; j++) {
  9062. for (int64_t k = 0; k < ne2_ne3; k++) {
  9063. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9064. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9065. // TODO: k*nb2 or k*nb3
  9066. float m_k;
  9067. if (k < n_heads_log2_floor) {
  9068. m_k = powf(m0, k + 1);
  9069. } else {
  9070. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9071. }
  9072. pdst[0] = i * m_k + src[0];
  9073. }
  9074. }
  9075. }
  9076. }
  9077. static void ggml_compute_forward_alibi_f16(
  9078. const struct ggml_compute_params * params,
  9079. const struct ggml_tensor * src0,
  9080. struct ggml_tensor * dst) {
  9081. assert(params->ith == 0);
  9082. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9083. return;
  9084. }
  9085. //const int n_past = ((int32_t *) dst->op_params)[0];
  9086. const int n_head = ((int32_t *) dst->op_params)[1];
  9087. float max_bias;
  9088. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9089. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9090. const int ne1 = src0->ne[1]; // seq_len_without_past
  9091. const int ne2 = src0->ne[2]; // n_head -> this is k
  9092. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9093. const int n = ggml_nrows(src0);
  9094. const int ne2_ne3 = n/ne1; // ne2*ne3
  9095. const int nb0 = src0->nb[0];
  9096. const int nb1 = src0->nb[1];
  9097. const int nb2 = src0->nb[2];
  9098. //const int nb3 = src0->nb[3];
  9099. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9100. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9101. GGML_ASSERT(n_head == ne2);
  9102. // add alibi to src0 (KQ_scaled)
  9103. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9104. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9105. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9106. for (int i = 0; i < ne0; i++) {
  9107. for (int j = 0; j < ne1; j++) {
  9108. for (int k = 0; k < ne2_ne3; k++) {
  9109. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9110. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9111. // TODO: k*nb2 or k*nb3
  9112. float m_k;
  9113. if (k < n_heads_log2_floor) {
  9114. m_k = powf(m0, k + 1);
  9115. } else {
  9116. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9117. }
  9118. // we return F32
  9119. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9120. }
  9121. }
  9122. }
  9123. }
  9124. static void ggml_compute_forward_alibi(
  9125. const struct ggml_compute_params * params,
  9126. const struct ggml_tensor * src0,
  9127. struct ggml_tensor * dst) {
  9128. switch (src0->type) {
  9129. case GGML_TYPE_F16:
  9130. {
  9131. ggml_compute_forward_alibi_f16(params, src0, dst);
  9132. } break;
  9133. case GGML_TYPE_F32:
  9134. {
  9135. ggml_compute_forward_alibi_f32(params, src0, dst);
  9136. } break;
  9137. case GGML_TYPE_Q4_0:
  9138. case GGML_TYPE_Q4_1:
  9139. case GGML_TYPE_Q5_0:
  9140. case GGML_TYPE_Q5_1:
  9141. case GGML_TYPE_Q8_0:
  9142. case GGML_TYPE_Q8_1:
  9143. case GGML_TYPE_Q2_K:
  9144. case GGML_TYPE_Q3_K:
  9145. case GGML_TYPE_Q4_K:
  9146. case GGML_TYPE_Q5_K:
  9147. case GGML_TYPE_Q6_K:
  9148. case GGML_TYPE_Q8_K:
  9149. case GGML_TYPE_I8:
  9150. case GGML_TYPE_I16:
  9151. case GGML_TYPE_I32:
  9152. case GGML_TYPE_COUNT:
  9153. {
  9154. GGML_ASSERT(false);
  9155. } break;
  9156. }
  9157. }
  9158. // ggml_compute_forward_clamp
  9159. static void ggml_compute_forward_clamp_f32(
  9160. const struct ggml_compute_params * params,
  9161. const struct ggml_tensor * src0,
  9162. struct ggml_tensor * dst) {
  9163. assert(params->ith == 0);
  9164. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9165. return;
  9166. }
  9167. float min;
  9168. float max;
  9169. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9170. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9171. const int ith = params->ith;
  9172. const int nth = params->nth;
  9173. const int n = ggml_nrows(src0);
  9174. const int nc = src0->ne[0];
  9175. const size_t nb00 = src0->nb[0];
  9176. const size_t nb01 = src0->nb[1];
  9177. const size_t nb0 = dst->nb[0];
  9178. const size_t nb1 = dst->nb[1];
  9179. GGML_ASSERT( nb0 == sizeof(float));
  9180. GGML_ASSERT(nb00 == sizeof(float));
  9181. for (int j = ith; j < n; j += nth) {
  9182. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9183. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9184. for (int i = 0; i < nc; i++) {
  9185. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9186. }
  9187. }
  9188. }
  9189. static void ggml_compute_forward_clamp(
  9190. const struct ggml_compute_params * params,
  9191. const struct ggml_tensor * src0,
  9192. struct ggml_tensor * dst) {
  9193. switch (src0->type) {
  9194. case GGML_TYPE_F32:
  9195. {
  9196. ggml_compute_forward_clamp_f32(params, src0, dst);
  9197. } break;
  9198. case GGML_TYPE_F16:
  9199. case GGML_TYPE_Q4_0:
  9200. case GGML_TYPE_Q4_1:
  9201. case GGML_TYPE_Q5_0:
  9202. case GGML_TYPE_Q5_1:
  9203. case GGML_TYPE_Q8_0:
  9204. case GGML_TYPE_Q8_1:
  9205. case GGML_TYPE_Q2_K:
  9206. case GGML_TYPE_Q3_K:
  9207. case GGML_TYPE_Q4_K:
  9208. case GGML_TYPE_Q5_K:
  9209. case GGML_TYPE_Q6_K:
  9210. case GGML_TYPE_Q8_K:
  9211. case GGML_TYPE_I8:
  9212. case GGML_TYPE_I16:
  9213. case GGML_TYPE_I32:
  9214. case GGML_TYPE_COUNT:
  9215. {
  9216. GGML_ASSERT(false);
  9217. } break;
  9218. }
  9219. }
  9220. // ggml_compute_forward_rope
  9221. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9222. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9223. return 1 - MIN(1, MAX(0, y));
  9224. }
  9225. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9226. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9227. static void rope_yarn(
  9228. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9229. float * cos_theta, float * sin_theta
  9230. ) {
  9231. // Get n-d rotational scaling corrected for extrapolation
  9232. float theta_interp = freq_scale * theta_extrap;
  9233. float theta = theta_interp;
  9234. if (ext_factor != 0.0f) {
  9235. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9236. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9237. // Get n-d magnitude scaling corrected for interpolation
  9238. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9239. }
  9240. *cos_theta = cosf(theta) * mscale;
  9241. *sin_theta = sinf(theta) * mscale;
  9242. }
  9243. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9244. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9245. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9246. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9247. }
  9248. void ggml_rope_yarn_corr_dims(
  9249. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9250. ) {
  9251. // start and end correction dims
  9252. dims[0] = MAX(0, floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base)));
  9253. dims[1] = MIN(n_dims - 1, ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base)));
  9254. }
  9255. static void ggml_compute_forward_rope_f32(
  9256. const struct ggml_compute_params * params,
  9257. const struct ggml_tensor * src0,
  9258. const struct ggml_tensor * src1,
  9259. struct ggml_tensor * dst,
  9260. const bool forward) {
  9261. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9262. return;
  9263. }
  9264. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9265. // these two only relevant for xPos RoPE:
  9266. float xpos_base;
  9267. bool xpos_down;
  9268. //const int n_past = ((int32_t *) dst->op_params)[0];
  9269. const int n_dims = ((int32_t *) dst->op_params)[1];
  9270. const int mode = ((int32_t *) dst->op_params)[2];
  9271. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9272. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9273. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9274. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9275. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9276. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9277. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9278. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9279. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9280. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9281. GGML_TENSOR_UNARY_OP_LOCALS
  9282. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9283. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9284. GGML_ASSERT(nb00 == sizeof(float));
  9285. const int ith = params->ith;
  9286. const int nth = params->nth;
  9287. const int nr = ggml_nrows(dst);
  9288. GGML_ASSERT(n_dims <= ne0);
  9289. GGML_ASSERT(n_dims % 2 == 0);
  9290. // rows per thread
  9291. const int dr = (nr + nth - 1)/nth;
  9292. // row range for this thread
  9293. const int ir0 = dr*ith;
  9294. const int ir1 = MIN(ir0 + dr, nr);
  9295. // row index used to determine which thread to use
  9296. int ir = 0;
  9297. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9298. const float inv_ndims = -1.f/n_dims;
  9299. float corr_dims[2];
  9300. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9301. const bool is_neox = mode & 2;
  9302. const bool is_glm = mode & 4;
  9303. // backward process uses inverse rotation by cos and sin.
  9304. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9305. // this essentially just switches the sign of sin.
  9306. const float sin_sign = forward ? 1.0f : -1.0f;
  9307. const int32_t * pos = (const int32_t *) src1->data;
  9308. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9309. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9310. const int64_t p = pos[i2];
  9311. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9312. if (ir++ < ir0) continue;
  9313. if (ir > ir1) break;
  9314. float theta_base = (float)p;
  9315. if (is_glm) {
  9316. theta_base = MIN(p, n_ctx - 2);
  9317. float block_theta = MAX(p - (n_ctx - 2), 0);
  9318. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9319. const float cos_theta = cosf(theta_base);
  9320. const float sin_theta = sinf(theta_base) * sin_sign;
  9321. const float cos_block_theta = cosf(block_theta);
  9322. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9323. theta_base *= theta_scale;
  9324. block_theta *= theta_scale;
  9325. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9326. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9327. const float x0 = src[0];
  9328. const float x1 = src[n_dims/2];
  9329. const float x2 = src[n_dims];
  9330. const float x3 = src[n_dims/2*3];
  9331. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9332. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9333. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9334. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9335. }
  9336. } else if (!is_neox) {
  9337. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9338. float cos_theta, sin_theta;
  9339. rope_yarn(
  9340. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9341. );
  9342. sin_theta *= sin_sign;
  9343. // zeta scaling for xPos only:
  9344. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  9345. if (xpos_down) zeta = 1.0f / zeta;
  9346. theta_base *= theta_scale;
  9347. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9348. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9349. const float x0 = src[0];
  9350. const float x1 = src[1];
  9351. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  9352. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  9353. }
  9354. } else {
  9355. // TODO: this might be wrong for ne0 != n_dims - need double check
  9356. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9357. theta_base *= freq_scale;
  9358. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9359. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9360. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9361. float cur_rot = inv_ndims * ic - ib;
  9362. float cos_theta, sin_theta;
  9363. rope_yarn(
  9364. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9365. &cos_theta, &sin_theta
  9366. );
  9367. sin_theta *= sin_sign;
  9368. theta_base *= theta_scale;
  9369. const int64_t i0 = ib*n_dims + ic/2;
  9370. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9371. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9372. const float x0 = src[0];
  9373. const float x1 = src[n_dims/2];
  9374. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9375. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9376. }
  9377. }
  9378. }
  9379. }
  9380. }
  9381. }
  9382. }
  9383. static void ggml_compute_forward_rope_f16(
  9384. const struct ggml_compute_params * params,
  9385. const struct ggml_tensor * src0,
  9386. const struct ggml_tensor * src1,
  9387. struct ggml_tensor * dst,
  9388. const bool forward) {
  9389. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9390. return;
  9391. }
  9392. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9393. //const int n_past = ((int32_t *) dst->op_params)[0];
  9394. const int n_dims = ((int32_t *) dst->op_params)[1];
  9395. const int mode = ((int32_t *) dst->op_params)[2];
  9396. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9397. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9398. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9399. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9400. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9401. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9402. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9403. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9404. GGML_TENSOR_UNARY_OP_LOCALS
  9405. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9406. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9407. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9408. const int ith = params->ith;
  9409. const int nth = params->nth;
  9410. const int nr = ggml_nrows(dst);
  9411. GGML_ASSERT(n_dims <= ne0);
  9412. GGML_ASSERT(n_dims % 2 == 0);
  9413. // rows per thread
  9414. const int dr = (nr + nth - 1)/nth;
  9415. // row range for this thread
  9416. const int ir0 = dr*ith;
  9417. const int ir1 = MIN(ir0 + dr, nr);
  9418. // row index used to determine which thread to use
  9419. int ir = 0;
  9420. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  9421. const float inv_ndims = -1.f/n_dims;
  9422. float corr_dims[2];
  9423. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  9424. const bool is_neox = mode & 2;
  9425. const bool is_glm = mode & 4;
  9426. // backward process uses inverse rotation by cos and sin.
  9427. // cos and sin build a rotation matrix, where the inverse is the transpose.
  9428. // this essentially just switches the sign of sin.
  9429. const float sin_sign = forward ? 1.0f : -1.0f;
  9430. const int32_t * pos = (const int32_t *) src1->data;
  9431. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9432. for (int64_t i2 = 0; i2 < ne2; i2++) {
  9433. const int64_t p = pos[i2];
  9434. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9435. if (ir++ < ir0) continue;
  9436. if (ir > ir1) break;
  9437. float theta_base = (float)p;
  9438. if (is_glm) {
  9439. theta_base = MIN(p, n_ctx - 2);
  9440. float block_theta = MAX(p - (n_ctx - 2), 0);
  9441. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9442. const float cos_theta = cosf(theta_base);
  9443. const float sin_theta = sinf(theta_base) * sin_sign;
  9444. const float cos_block_theta = cosf(block_theta);
  9445. const float sin_block_theta = sinf(block_theta) * sin_sign;
  9446. theta_base *= theta_scale;
  9447. block_theta *= theta_scale;
  9448. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9449. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9450. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9451. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9452. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9453. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9454. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9455. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9456. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9457. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9458. }
  9459. } else if (!is_neox) {
  9460. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9461. float cos_theta, sin_theta;
  9462. rope_yarn(
  9463. theta_base, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta
  9464. );
  9465. sin_theta *= sin_sign;
  9466. theta_base *= theta_scale;
  9467. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9468. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9469. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9470. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9471. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9472. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9473. }
  9474. } else {
  9475. // TODO: this might be wrong for ne0 != n_dims - need double check
  9476. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9477. theta_base *= freq_scale;
  9478. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9479. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9480. // simplified from `(ib * n_dims + ic) * inv_ndims`
  9481. float cur_rot = inv_ndims * ic - ib;
  9482. float cos_theta, sin_theta;
  9483. rope_yarn(
  9484. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  9485. &cos_theta, &sin_theta
  9486. );
  9487. sin_theta *= sin_sign;
  9488. theta_base *= theta_scale;
  9489. const int64_t i0 = ib*n_dims + ic/2;
  9490. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9491. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9492. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9493. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9494. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9495. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9496. }
  9497. }
  9498. }
  9499. }
  9500. }
  9501. }
  9502. }
  9503. static void ggml_compute_forward_rope(
  9504. const struct ggml_compute_params * params,
  9505. const struct ggml_tensor * src0,
  9506. const struct ggml_tensor * src1,
  9507. struct ggml_tensor * dst) {
  9508. switch (src0->type) {
  9509. case GGML_TYPE_F16:
  9510. {
  9511. ggml_compute_forward_rope_f16(params, src0, src1, dst, true);
  9512. } break;
  9513. case GGML_TYPE_F32:
  9514. {
  9515. ggml_compute_forward_rope_f32(params, src0, src1, dst, true);
  9516. } break;
  9517. default:
  9518. {
  9519. GGML_ASSERT(false);
  9520. } break;
  9521. }
  9522. }
  9523. // ggml_compute_forward_rope_back
  9524. static void ggml_compute_forward_rope_back(
  9525. const struct ggml_compute_params * params,
  9526. const struct ggml_tensor * src0,
  9527. const struct ggml_tensor * src1,
  9528. struct ggml_tensor * dst) {
  9529. switch (src0->type) {
  9530. case GGML_TYPE_F16:
  9531. {
  9532. ggml_compute_forward_rope_f16(params, src0, src1, dst, false);
  9533. } break;
  9534. case GGML_TYPE_F32:
  9535. {
  9536. ggml_compute_forward_rope_f32(params, src0, src1, dst, false);
  9537. } break;
  9538. default:
  9539. {
  9540. GGML_ASSERT(false);
  9541. } break;
  9542. }
  9543. }
  9544. // ggml_compute_forward_conv_transpose_1d
  9545. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  9546. const struct ggml_compute_params * params,
  9547. const struct ggml_tensor * src0,
  9548. const struct ggml_tensor * src1,
  9549. struct ggml_tensor * dst) {
  9550. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9551. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9552. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9553. int64_t t0 = ggml_perf_time_us();
  9554. UNUSED(t0);
  9555. GGML_TENSOR_BINARY_OP_LOCALS
  9556. const int ith = params->ith;
  9557. const int nth = params->nth;
  9558. const int nk = ne00*ne01*ne02;
  9559. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9560. GGML_ASSERT(nb10 == sizeof(float));
  9561. if (params->type == GGML_TASK_INIT) {
  9562. memset(params->wdata, 0, params->wsize);
  9563. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9564. {
  9565. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9566. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9567. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9568. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9569. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  9570. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9571. dst_data[i00*ne02 + i02] = src[i00];
  9572. }
  9573. }
  9574. }
  9575. }
  9576. // permute source data (src1) from (L x Cin) to (Cin x L)
  9577. {
  9578. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9579. ggml_fp16_t * dst_data = wdata;
  9580. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9581. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9582. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9583. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9584. }
  9585. }
  9586. }
  9587. // need to zero dst since we are accumulating into it
  9588. memset(dst->data, 0, ggml_nbytes(dst));
  9589. return;
  9590. }
  9591. if (params->type == GGML_TASK_FINALIZE) {
  9592. return;
  9593. }
  9594. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9595. // total rows in dst
  9596. const int nr = ne1;
  9597. // rows per thread
  9598. const int dr = (nr + nth - 1)/nth;
  9599. // row range for this thread
  9600. const int ir0 = dr*ith;
  9601. const int ir1 = MIN(ir0 + dr, nr);
  9602. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9603. ggml_fp16_t * const wdata_src = wdata + nk;
  9604. for (int i1 = ir0; i1 < ir1; i1++) {
  9605. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9606. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  9607. for (int i10 = 0; i10 < ne10; i10++) {
  9608. const int i1n = i10*ne11;
  9609. for (int i00 = 0; i00 < ne00; i00++) {
  9610. float v = 0;
  9611. ggml_vec_dot_f16(ne02, &v,
  9612. (ggml_fp16_t *) wdata_src + i1n,
  9613. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  9614. dst_data[i10*s0 + i00] += v;
  9615. }
  9616. }
  9617. }
  9618. }
  9619. static void ggml_compute_forward_conv_transpose_1d_f32(
  9620. const struct ggml_compute_params * params,
  9621. const struct ggml_tensor * src0,
  9622. const struct ggml_tensor * src1,
  9623. struct ggml_tensor * dst) {
  9624. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9625. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9626. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9627. int64_t t0 = ggml_perf_time_us();
  9628. UNUSED(t0);
  9629. GGML_TENSOR_BINARY_OP_LOCALS
  9630. const int ith = params->ith;
  9631. const int nth = params->nth;
  9632. const int nk = ne00*ne01*ne02;
  9633. GGML_ASSERT(nb00 == sizeof(float));
  9634. GGML_ASSERT(nb10 == sizeof(float));
  9635. if (params->type == GGML_TASK_INIT) {
  9636. memset(params->wdata, 0, params->wsize);
  9637. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  9638. {
  9639. float * const wdata = (float *) params->wdata + 0;
  9640. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9641. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9642. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9643. float * dst_data = wdata + i01*ne00*ne02;
  9644. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9645. dst_data[i00*ne02 + i02] = src[i00];
  9646. }
  9647. }
  9648. }
  9649. }
  9650. // prepare source data (src1)
  9651. {
  9652. float * const wdata = (float *) params->wdata + nk;
  9653. float * dst_data = wdata;
  9654. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9655. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9656. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9657. dst_data[i10*ne11 + i11] = src[i10];
  9658. }
  9659. }
  9660. }
  9661. // need to zero dst since we are accumulating into it
  9662. memset(dst->data, 0, ggml_nbytes(dst));
  9663. return;
  9664. }
  9665. if (params->type == GGML_TASK_FINALIZE) {
  9666. return;
  9667. }
  9668. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  9669. // total rows in dst
  9670. const int nr = ne1;
  9671. // rows per thread
  9672. const int dr = (nr + nth - 1)/nth;
  9673. // row range for this thread
  9674. const int ir0 = dr*ith;
  9675. const int ir1 = MIN(ir0 + dr, nr);
  9676. float * const wdata = (float *) params->wdata + 0;
  9677. float * const wdata_src = wdata + nk;
  9678. for (int i1 = ir0; i1 < ir1; i1++) {
  9679. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9680. float * wdata_kernel = wdata + i1*ne02*ne00;
  9681. for (int i10 = 0; i10 < ne10; i10++) {
  9682. const int i1n = i10*ne11;
  9683. for (int i00 = 0; i00 < ne00; i00++) {
  9684. float v = 0;
  9685. ggml_vec_dot_f32(ne02, &v,
  9686. wdata_src + i1n,
  9687. wdata_kernel + i00*ne02);
  9688. dst_data[i10*s0 + i00] += v;
  9689. }
  9690. }
  9691. }
  9692. }
  9693. static void ggml_compute_forward_conv_transpose_1d(
  9694. const struct ggml_compute_params * params,
  9695. const struct ggml_tensor * src0,
  9696. const struct ggml_tensor * src1,
  9697. struct ggml_tensor * dst) {
  9698. switch (src0->type) {
  9699. case GGML_TYPE_F16:
  9700. {
  9701. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  9702. } break;
  9703. case GGML_TYPE_F32:
  9704. {
  9705. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  9706. } break;
  9707. default:
  9708. {
  9709. GGML_ASSERT(false);
  9710. } break;
  9711. }
  9712. }
  9713. // src0: kernel [OC, IC, KH, KW]
  9714. // src1: image [N, IC, IH, IW]
  9715. // dst: result [N, OH, OW, IC*KH*KW]
  9716. static void ggml_compute_forward_im2col_f16(
  9717. const struct ggml_compute_params * params,
  9718. const struct ggml_tensor * src0,
  9719. const struct ggml_tensor * src1,
  9720. struct ggml_tensor * dst) {
  9721. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9722. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9723. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  9724. int64_t t0 = ggml_perf_time_us();
  9725. UNUSED(t0);
  9726. GGML_TENSOR_BINARY_OP_LOCALS;
  9727. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  9728. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  9729. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  9730. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  9731. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  9732. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  9733. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  9734. const int ith = params->ith;
  9735. const int nth = params->nth;
  9736. const int64_t N = is_2D ? ne13 : ne12;
  9737. const int64_t IC = is_2D ? ne12 : ne11;
  9738. const int64_t IH = is_2D ? ne11 : 1;
  9739. const int64_t IW = ne10;
  9740. const int64_t KH = is_2D ? ne01 : 1;
  9741. const int64_t KW = ne00;
  9742. const int64_t OH = is_2D ? ne2 : 1;
  9743. const int64_t OW = ne1;
  9744. int ofs0 = is_2D ? nb13 : nb12;
  9745. int ofs1 = is_2D ? nb12 : nb11;
  9746. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9747. GGML_ASSERT(nb10 == sizeof(float));
  9748. if (params->type == GGML_TASK_INIT) {
  9749. return;
  9750. }
  9751. if (params->type == GGML_TASK_FINALIZE) {
  9752. return;
  9753. }
  9754. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  9755. {
  9756. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  9757. for (int64_t in = 0; in < N; in++) {
  9758. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  9759. for (int64_t iow = 0; iow < OW; iow++) {
  9760. for (int64_t iic = ith; iic < IC; iic += nth) {
  9761. // micro kernel
  9762. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  9763. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  9764. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  9765. for (int64_t ikw = 0; ikw < KW; ikw++) {
  9766. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  9767. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  9768. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  9769. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  9770. } else {
  9771. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  9772. }
  9773. }
  9774. }
  9775. }
  9776. }
  9777. }
  9778. }
  9779. }
  9780. }
  9781. static void ggml_compute_forward_im2col(
  9782. const struct ggml_compute_params * params,
  9783. const struct ggml_tensor * src0,
  9784. const struct ggml_tensor * src1,
  9785. struct ggml_tensor * dst) {
  9786. switch (src0->type) {
  9787. case GGML_TYPE_F16:
  9788. {
  9789. ggml_compute_forward_im2col_f16(params, src0, src1, dst);
  9790. } break;
  9791. case GGML_TYPE_F32:
  9792. {
  9793. GGML_ASSERT(false);
  9794. } break;
  9795. default:
  9796. {
  9797. GGML_ASSERT(false);
  9798. } break;
  9799. }
  9800. }
  9801. // ggml_compute_forward_conv_transpose_2d
  9802. static void ggml_compute_forward_conv_transpose_2d(
  9803. const struct ggml_compute_params * params,
  9804. const struct ggml_tensor * src0,
  9805. const struct ggml_tensor * src1,
  9806. struct ggml_tensor * dst) {
  9807. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9808. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9809. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9810. int64_t t0 = ggml_perf_time_us();
  9811. UNUSED(t0);
  9812. GGML_TENSOR_BINARY_OP_LOCALS
  9813. const int ith = params->ith;
  9814. const int nth = params->nth;
  9815. const int nk = ne00*ne01*ne02*ne03;
  9816. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9817. GGML_ASSERT(nb10 == sizeof(float));
  9818. if (params->type == GGML_TASK_INIT) {
  9819. memset(params->wdata, 0, params->wsize);
  9820. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  9821. {
  9822. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9823. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9824. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9825. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  9826. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  9827. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9828. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9829. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  9830. }
  9831. }
  9832. }
  9833. }
  9834. }
  9835. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  9836. {
  9837. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  9838. for (int i12 = 0; i12 < ne12; i12++) {
  9839. for (int i11 = 0; i11 < ne11; i11++) {
  9840. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  9841. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  9842. for (int i10 = 0; i10 < ne10; i10++) {
  9843. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  9844. }
  9845. }
  9846. }
  9847. }
  9848. memset(dst->data, 0, ggml_nbytes(dst));
  9849. return;
  9850. }
  9851. if (params->type == GGML_TASK_FINALIZE) {
  9852. return;
  9853. }
  9854. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  9855. // total patches in dst
  9856. const int np = ne2;
  9857. // patches per thread
  9858. const int dp = (np + nth - 1)/nth;
  9859. // patch range for this thread
  9860. const int ip0 = dp*ith;
  9861. const int ip1 = MIN(ip0 + dp, np);
  9862. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9863. ggml_fp16_t * const wdata_src = wdata + nk;
  9864. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  9865. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  9866. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  9867. for (int i11 = 0; i11 < ne11; i11++) {
  9868. for (int i10 = 0; i10 < ne10; i10++) {
  9869. const int i1n = i11*ne10*ne12 + i10*ne12;
  9870. for (int i01 = 0; i01 < ne01; i01++) {
  9871. for (int i00 = 0; i00 < ne00; i00++) {
  9872. float v = 0;
  9873. ggml_vec_dot_f16(ne03, &v,
  9874. wdata_src + i1n,
  9875. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  9876. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  9877. }
  9878. }
  9879. }
  9880. }
  9881. }
  9882. }
  9883. // ggml_compute_forward_pool_1d_sk_p0
  9884. static void ggml_compute_forward_pool_1d_sk_p0(
  9885. const struct ggml_compute_params * params,
  9886. const enum ggml_op_pool op,
  9887. const struct ggml_tensor * src,
  9888. const int k,
  9889. struct ggml_tensor * dst) {
  9890. assert(src->type == GGML_TYPE_F32);
  9891. assert(params->ith == 0);
  9892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9893. return;
  9894. }
  9895. const char * cdata = (const char *)src->data;
  9896. const char * const data_end = cdata + ggml_nbytes(src);
  9897. float * drow = (float *)dst->data;
  9898. const int64_t rs = dst->ne[0];
  9899. while (cdata < data_end) {
  9900. const float * const srow = (const float *)cdata;
  9901. int j = 0;
  9902. for (int64_t i = 0; i < rs; ++i) {
  9903. switch (op) {
  9904. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  9905. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  9906. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9907. }
  9908. for (int ki = 0; ki < k; ++ki) {
  9909. switch (op) {
  9910. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  9911. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  9912. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9913. }
  9914. ++j;
  9915. }
  9916. switch (op) {
  9917. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  9918. case GGML_OP_POOL_MAX: break;
  9919. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9920. }
  9921. }
  9922. cdata += src->nb[1];
  9923. drow += rs;
  9924. }
  9925. }
  9926. // ggml_compute_forward_pool_1d
  9927. static void ggml_compute_forward_pool_1d(
  9928. const struct ggml_compute_params * params,
  9929. const struct ggml_tensor * src0,
  9930. struct ggml_tensor * dst) {
  9931. const int32_t * opts = (const int32_t *)dst->op_params;
  9932. enum ggml_op_pool op = opts[0];
  9933. const int k0 = opts[1];
  9934. const int s0 = opts[2];
  9935. const int p0 = opts[3];
  9936. GGML_ASSERT(p0 == 0); // padding not supported
  9937. GGML_ASSERT(k0 == s0); // only s = k supported
  9938. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  9939. }
  9940. // ggml_compute_forward_pool_2d
  9941. static void ggml_compute_forward_pool_2d(
  9942. const struct ggml_compute_params * params,
  9943. const struct ggml_tensor * src,
  9944. struct ggml_tensor * dst) {
  9945. assert(src->type == GGML_TYPE_F32);
  9946. assert(params->ith == 0);
  9947. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9948. return;
  9949. }
  9950. const int32_t * opts = (const int32_t *)dst->op_params;
  9951. enum ggml_op_pool op = opts[0];
  9952. const int k0 = opts[1];
  9953. const int k1 = opts[2];
  9954. const int s0 = opts[3];
  9955. const int s1 = opts[4];
  9956. const int p0 = opts[5];
  9957. const int p1 = opts[6];
  9958. const char * cdata = (const char*)src->data;
  9959. const char * const data_end = cdata + ggml_nbytes(src);
  9960. const int64_t px = dst->ne[0];
  9961. const int64_t py = dst->ne[1];
  9962. const int64_t pa = px * py;
  9963. float * dplane = (float *)dst->data;
  9964. const int ka = k0 * k1;
  9965. const int offset0 = -p0;
  9966. const int offset1 = -p1;
  9967. while (cdata < data_end) {
  9968. for (int oy = 0; oy < py; ++oy) {
  9969. float * const drow = dplane + oy * px;
  9970. for (int ox = 0; ox < px; ++ox) {
  9971. float * const out = drow + ox;
  9972. switch (op) {
  9973. case GGML_OP_POOL_AVG: *out = 0; break;
  9974. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  9975. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9976. }
  9977. const int ix = offset0 + ox * s0;
  9978. const int iy = offset1 + oy * s1;
  9979. for (int ky = 0; ky < k1; ++ky) {
  9980. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  9981. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  9982. for (int kx = 0; kx < k0; ++kx) {
  9983. int j = ix + kx;
  9984. if (j < 0 || j >= src->ne[0]) continue;
  9985. switch (op) {
  9986. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  9987. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  9988. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9989. }
  9990. }
  9991. }
  9992. switch (op) {
  9993. case GGML_OP_POOL_AVG: *out /= ka; break;
  9994. case GGML_OP_POOL_MAX: break;
  9995. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  9996. }
  9997. }
  9998. }
  9999. cdata += src->nb[2];
  10000. dplane += pa;
  10001. }
  10002. }
  10003. // ggml_compute_forward_upscale
  10004. static void ggml_compute_forward_upscale_f32(
  10005. const struct ggml_compute_params * params,
  10006. const struct ggml_tensor * src0,
  10007. struct ggml_tensor * dst) {
  10008. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10009. return;
  10010. }
  10011. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10012. const int ith = params->ith;
  10013. const int nth = params->nth;
  10014. GGML_TENSOR_UNARY_OP_LOCALS
  10015. const int scale_factor = dst->op_params[0];
  10016. // TODO: optimize
  10017. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10018. const int64_t i03 = i3;
  10019. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10020. const int64_t i02 = i2;
  10021. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10022. const int64_t i01 = i1 / scale_factor;
  10023. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10024. const int64_t i00 = i0 / scale_factor;
  10025. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10026. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10027. *y = *x;
  10028. }
  10029. }
  10030. }
  10031. }
  10032. }
  10033. static void ggml_compute_forward_upscale(
  10034. const struct ggml_compute_params * params,
  10035. const struct ggml_tensor * src0,
  10036. struct ggml_tensor * dst) {
  10037. switch (src0->type) {
  10038. case GGML_TYPE_F32:
  10039. {
  10040. ggml_compute_forward_upscale_f32(params, src0, dst);
  10041. } break;
  10042. default:
  10043. {
  10044. GGML_ASSERT(false);
  10045. } break;
  10046. }
  10047. }
  10048. // ggml_compute_forward_pad
  10049. static void ggml_compute_forward_pad_f32(
  10050. const struct ggml_compute_params * params,
  10051. const struct ggml_tensor * src0,
  10052. struct ggml_tensor * dst) {
  10053. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10054. return;
  10055. }
  10056. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10057. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10058. const int ith = params->ith;
  10059. const int nth = params->nth;
  10060. GGML_TENSOR_UNARY_OP_LOCALS
  10061. float * dst_ptr = (float *) dst->data;
  10062. // TODO: optimize
  10063. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10064. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10065. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10066. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10067. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10068. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10069. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10070. dst_ptr[dst_idx] = *src_ptr;
  10071. } else {
  10072. dst_ptr[dst_idx] = 0;
  10073. }
  10074. }
  10075. }
  10076. }
  10077. }
  10078. }
  10079. static void ggml_compute_forward_pad(
  10080. const struct ggml_compute_params * params,
  10081. const struct ggml_tensor * src0,
  10082. struct ggml_tensor * dst) {
  10083. switch (src0->type) {
  10084. case GGML_TYPE_F32:
  10085. {
  10086. ggml_compute_forward_pad_f32(params, src0, dst);
  10087. } break;
  10088. default:
  10089. {
  10090. GGML_ASSERT(false);
  10091. } break;
  10092. }
  10093. }
  10094. // ggml_compute_forward_argsort
  10095. static void ggml_compute_forward_argsort_f32(
  10096. const struct ggml_compute_params * params,
  10097. const struct ggml_tensor * src0,
  10098. struct ggml_tensor * dst) {
  10099. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10100. return;
  10101. }
  10102. GGML_TENSOR_UNARY_OP_LOCALS
  10103. GGML_ASSERT(nb0 == sizeof(float));
  10104. const int ith = params->ith;
  10105. const int nth = params->nth;
  10106. const int64_t nr = ggml_nrows(src0);
  10107. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10108. for (int64_t i = ith; i < nr; i += nth) {
  10109. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10110. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10111. for (int64_t j = 0; j < ne0; j++) {
  10112. dst_data[j] = j;
  10113. }
  10114. // C doesn't have a functional sort, so we do a bubble sort instead
  10115. for (int64_t j = 0; j < ne0; j++) {
  10116. for (int64_t k = j + 1; k < ne0; k++) {
  10117. if ((order == GGML_SORT_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10118. (order == GGML_SORT_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10119. int32_t tmp = dst_data[j];
  10120. dst_data[j] = dst_data[k];
  10121. dst_data[k] = tmp;
  10122. }
  10123. }
  10124. }
  10125. }
  10126. }
  10127. static void ggml_compute_forward_argsort(
  10128. const struct ggml_compute_params * params,
  10129. const struct ggml_tensor * src0,
  10130. struct ggml_tensor * dst) {
  10131. switch (src0->type) {
  10132. case GGML_TYPE_F32:
  10133. {
  10134. ggml_compute_forward_argsort_f32(params, src0, dst);
  10135. } break;
  10136. default:
  10137. {
  10138. GGML_ASSERT(false);
  10139. } break;
  10140. }
  10141. }
  10142. // ggml_compute_forward_flash_attn
  10143. static void ggml_compute_forward_flash_attn_f32(
  10144. const struct ggml_compute_params * params,
  10145. const struct ggml_tensor * q,
  10146. const struct ggml_tensor * k,
  10147. const struct ggml_tensor * v,
  10148. const bool masked,
  10149. struct ggml_tensor * dst) {
  10150. int64_t t0 = ggml_perf_time_us();
  10151. UNUSED(t0);
  10152. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10153. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10154. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10155. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10156. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10157. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10158. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10159. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10160. const int ith = params->ith;
  10161. const int nth = params->nth;
  10162. const int64_t D = neq0;
  10163. const int64_t N = neq1;
  10164. const int64_t P = nek1 - N;
  10165. const int64_t M = P + N;
  10166. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10167. GGML_ASSERT(ne0 == D);
  10168. GGML_ASSERT(ne1 == N);
  10169. GGML_ASSERT(P >= 0);
  10170. GGML_ASSERT(nbq0 == sizeof(float));
  10171. GGML_ASSERT(nbk0 == sizeof(float));
  10172. GGML_ASSERT(nbv0 == sizeof(float));
  10173. GGML_ASSERT(neq0 == D);
  10174. GGML_ASSERT(nek0 == D);
  10175. GGML_ASSERT(nev1 == D);
  10176. GGML_ASSERT(neq1 == N);
  10177. GGML_ASSERT(nek1 == N + P);
  10178. GGML_ASSERT(nev1 == D);
  10179. // dst cannot be transposed or permuted
  10180. GGML_ASSERT(nb0 == sizeof(float));
  10181. GGML_ASSERT(nb0 <= nb1);
  10182. GGML_ASSERT(nb1 <= nb2);
  10183. GGML_ASSERT(nb2 <= nb3);
  10184. if (params->type == GGML_TASK_INIT) {
  10185. return;
  10186. }
  10187. if (params->type == GGML_TASK_FINALIZE) {
  10188. return;
  10189. }
  10190. // parallelize by q rows using ggml_vec_dot_f32
  10191. // total rows in q
  10192. const int nr = neq1*neq2*neq3;
  10193. // rows per thread
  10194. const int dr = (nr + nth - 1)/nth;
  10195. // row range for this thread
  10196. const int ir0 = dr*ith;
  10197. const int ir1 = MIN(ir0 + dr, nr);
  10198. const float scale = 1.0f/sqrtf(D);
  10199. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10200. for (int ir = ir0; ir < ir1; ++ir) {
  10201. // q indices
  10202. const int iq3 = ir/(neq2*neq1);
  10203. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10204. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10205. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10206. for (int i = M; i < Mup; ++i) {
  10207. S[i] = -INFINITY;
  10208. }
  10209. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10210. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10211. // k indices
  10212. const int ik3 = iq3;
  10213. const int ik2 = iq2 % nek2;
  10214. const int ik1 = ic;
  10215. // S indices
  10216. const int i1 = ik1;
  10217. ggml_vec_dot_f32(neq0,
  10218. S + i1,
  10219. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10220. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10221. }
  10222. // scale
  10223. ggml_vec_scale_f32(masked_begin, S, scale);
  10224. for (int64_t i = masked_begin; i < M; i++) {
  10225. S[i] = -INFINITY;
  10226. }
  10227. // softmax
  10228. // exclude known -INF S[..] values from max and loop
  10229. // dont forget to set their SW values to zero
  10230. {
  10231. float max = -INFINITY;
  10232. ggml_vec_max_f32(masked_begin, &max, S);
  10233. ggml_float sum = 0.0;
  10234. {
  10235. #ifdef GGML_SOFT_MAX_ACCELERATE
  10236. max = -max;
  10237. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10238. vvexpf(S, S, &Mup);
  10239. ggml_vec_sum_f32(Mup, &sum, S);
  10240. #else
  10241. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10242. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10243. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10244. if (i >= masked_begin) {
  10245. break;
  10246. }
  10247. float * SS = S + i;
  10248. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10249. if (i + j >= masked_begin) {
  10250. break;
  10251. } else if (SS[j] == -INFINITY) {
  10252. SS[j] = 0.0f;
  10253. } else {
  10254. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10255. const float val = expf(SS[j] - max);
  10256. #else
  10257. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10258. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10259. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10260. #endif
  10261. sump[j] += (ggml_float)val;
  10262. SS[j] = val;
  10263. }
  10264. }
  10265. }
  10266. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10267. sum += sump[i];
  10268. }
  10269. #endif
  10270. }
  10271. assert(sum > 0.0);
  10272. sum = 1.0/sum;
  10273. ggml_vec_scale_f32(masked_begin, S, sum);
  10274. #ifndef NDEBUG
  10275. for (int i = 0; i < masked_begin; ++i) {
  10276. assert(!isnan(S[i]));
  10277. assert(!isinf(S[i]));
  10278. }
  10279. #endif
  10280. }
  10281. for (int64_t ic = 0; ic < nev1; ++ic) {
  10282. // dst indices
  10283. const int i1 = iq1;
  10284. const int i2 = iq2;
  10285. const int i3 = iq3;
  10286. // v indices
  10287. const int iv2 = iq2 % nev2;
  10288. const int iv3 = iq3;
  10289. ggml_vec_dot_f32(masked_begin,
  10290. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10291. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10292. S);
  10293. }
  10294. }
  10295. }
  10296. static void ggml_compute_forward_flash_attn_f16(
  10297. const struct ggml_compute_params * params,
  10298. const struct ggml_tensor * q,
  10299. const struct ggml_tensor * k,
  10300. const struct ggml_tensor * v,
  10301. const bool masked,
  10302. struct ggml_tensor * dst) {
  10303. int64_t t0 = ggml_perf_time_us();
  10304. UNUSED(t0);
  10305. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10306. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10307. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10308. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10309. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10310. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10311. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10312. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10313. const int ith = params->ith;
  10314. const int nth = params->nth;
  10315. const int64_t D = neq0;
  10316. const int64_t N = neq1;
  10317. const int64_t P = nek1 - N;
  10318. const int64_t M = P + N;
  10319. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10320. GGML_ASSERT(ne0 == D);
  10321. GGML_ASSERT(ne1 == N);
  10322. GGML_ASSERT(P >= 0);
  10323. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10324. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10325. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10326. GGML_ASSERT(neq0 == D);
  10327. GGML_ASSERT(nek0 == D);
  10328. GGML_ASSERT(nev1 == D);
  10329. GGML_ASSERT(neq1 == N);
  10330. GGML_ASSERT(nek1 == N + P);
  10331. GGML_ASSERT(nev1 == D);
  10332. // dst cannot be transposed or permuted
  10333. GGML_ASSERT(nb0 == sizeof(float));
  10334. GGML_ASSERT(nb0 <= nb1);
  10335. GGML_ASSERT(nb1 <= nb2);
  10336. GGML_ASSERT(nb2 <= nb3);
  10337. if (params->type == GGML_TASK_INIT) {
  10338. return;
  10339. }
  10340. if (params->type == GGML_TASK_FINALIZE) {
  10341. return;
  10342. }
  10343. // parallelize by q rows using ggml_vec_dot_f32
  10344. // total rows in q
  10345. const int nr = neq1*neq2*neq3;
  10346. // rows per thread
  10347. const int dr = (nr + nth - 1)/nth;
  10348. // row range for this thread
  10349. const int ir0 = dr*ith;
  10350. const int ir1 = MIN(ir0 + dr, nr);
  10351. const float scale = 1.0f/sqrtf(D);
  10352. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10353. for (int ir = ir0; ir < ir1; ++ir) {
  10354. // q indices
  10355. const int iq3 = ir/(neq2*neq1);
  10356. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10357. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10358. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10359. for (int i = M; i < Mup; ++i) {
  10360. S[i] = -INFINITY;
  10361. }
  10362. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10363. for (int64_t ic = 0; ic < nek1; ++ic) {
  10364. // k indices
  10365. const int ik3 = iq3;
  10366. const int ik2 = iq2 % nek2;
  10367. const int ik1 = ic;
  10368. // S indices
  10369. const int i1 = ik1;
  10370. ggml_vec_dot_f16(neq0,
  10371. S + i1,
  10372. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10373. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10374. }
  10375. } else {
  10376. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10377. // k indices
  10378. const int ik3 = iq3;
  10379. const int ik2 = iq2 % nek2;
  10380. const int ik1 = ic;
  10381. // S indices
  10382. const int i1 = ik1;
  10383. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10384. S + i1,
  10385. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10386. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10387. }
  10388. }
  10389. // scale
  10390. ggml_vec_scale_f32(nek1, S, scale);
  10391. if (masked) {
  10392. for (int64_t i = P; i < M; i++) {
  10393. if (i > P + iq1) {
  10394. S[i] = -INFINITY;
  10395. }
  10396. }
  10397. }
  10398. // softmax
  10399. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  10400. // dont forget to set their S values to zero
  10401. {
  10402. float max = -INFINITY;
  10403. ggml_vec_max_f32(M, &max, S);
  10404. ggml_float sum = 0.0;
  10405. {
  10406. #ifdef GGML_SOFT_MAX_ACCELERATE
  10407. max = -max;
  10408. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10409. vvexpf(S, S, &Mup);
  10410. ggml_vec_sum_f32(Mup, &sum, S);
  10411. #else
  10412. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10413. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10414. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10415. float * SS = S + i;
  10416. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10417. if (SS[j] == -INFINITY) {
  10418. SS[j] = 0.0f;
  10419. } else {
  10420. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10421. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10422. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10423. sump[j] += (ggml_float)val;
  10424. SS[j] = val;
  10425. }
  10426. }
  10427. }
  10428. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10429. sum += sump[i];
  10430. }
  10431. #endif
  10432. }
  10433. assert(sum > 0.0);
  10434. sum = 1.0/sum;
  10435. ggml_vec_scale_f32(M, S, sum);
  10436. #ifndef NDEBUG
  10437. for (int i = 0; i < M; ++i) {
  10438. assert(!isnan(S[i]));
  10439. assert(!isinf(S[i]));
  10440. }
  10441. #endif
  10442. }
  10443. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10444. for (int64_t i = 0; i < M; i++) {
  10445. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10446. }
  10447. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  10448. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10449. for (int64_t ic = 0; ic < nev1; ++ic) {
  10450. // dst indices
  10451. const int i1 = iq1;
  10452. const int i2 = iq2;
  10453. const int i3 = iq3;
  10454. // v indices
  10455. const int iv2 = iq2 % nev2;
  10456. const int iv3 = iq3;
  10457. ggml_vec_dot_f16(nev0,
  10458. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10459. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10460. S16);
  10461. }
  10462. } else {
  10463. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10464. // dst indices
  10465. const int i1 = iq1;
  10466. const int i2 = iq2;
  10467. const int i3 = iq3;
  10468. // v indices
  10469. const int iv2 = iq2 % nev2;
  10470. const int iv3 = iq3;
  10471. ggml_vec_dot_f16_unroll(nev0, nbv1,
  10472. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10473. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10474. S16);
  10475. }
  10476. }
  10477. }
  10478. }
  10479. static void ggml_compute_forward_flash_attn(
  10480. const struct ggml_compute_params * params,
  10481. const struct ggml_tensor * q,
  10482. const struct ggml_tensor * k,
  10483. const struct ggml_tensor * v,
  10484. const bool masked,
  10485. struct ggml_tensor * dst) {
  10486. switch (q->type) {
  10487. case GGML_TYPE_F16:
  10488. {
  10489. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10490. } break;
  10491. case GGML_TYPE_F32:
  10492. {
  10493. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10494. } break;
  10495. default:
  10496. {
  10497. GGML_ASSERT(false);
  10498. } break;
  10499. }
  10500. }
  10501. // ggml_compute_forward_flash_ff
  10502. static void ggml_compute_forward_flash_ff_f16(
  10503. const struct ggml_compute_params * params,
  10504. const struct ggml_tensor * a, // F16
  10505. const struct ggml_tensor * b0, // F16 fc_w
  10506. const struct ggml_tensor * b1, // F32 fc_b
  10507. const struct ggml_tensor * c0, // F16 proj_w
  10508. const struct ggml_tensor * c1, // F32 proj_b
  10509. struct ggml_tensor * dst) {
  10510. int64_t t0 = ggml_perf_time_us();
  10511. UNUSED(t0);
  10512. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  10513. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  10514. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  10515. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  10516. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  10517. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  10518. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  10519. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  10520. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  10521. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  10522. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10523. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10524. const int ith = params->ith;
  10525. const int nth = params->nth;
  10526. const int64_t D = nea0;
  10527. //const int64_t N = nea1;
  10528. const int64_t M = neb01;
  10529. GGML_ASSERT(ne0 == nea0);
  10530. GGML_ASSERT(ne1 == nea1);
  10531. GGML_ASSERT(ne2 == nea2);
  10532. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10533. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10534. GGML_ASSERT(nbb10 == sizeof(float));
  10535. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10536. GGML_ASSERT(nbc10 == sizeof(float));
  10537. GGML_ASSERT(neb00 == D);
  10538. GGML_ASSERT(neb01 == M);
  10539. GGML_ASSERT(neb10 == M);
  10540. GGML_ASSERT(neb11 == 1);
  10541. GGML_ASSERT(nec00 == M);
  10542. GGML_ASSERT(nec01 == D);
  10543. GGML_ASSERT(nec10 == D);
  10544. GGML_ASSERT(nec11 == 1);
  10545. // dst cannot be transposed or permuted
  10546. GGML_ASSERT(nb0 == sizeof(float));
  10547. GGML_ASSERT(nb0 <= nb1);
  10548. GGML_ASSERT(nb1 <= nb2);
  10549. GGML_ASSERT(nb2 <= nb3);
  10550. if (params->type == GGML_TASK_INIT) {
  10551. return;
  10552. }
  10553. if (params->type == GGML_TASK_FINALIZE) {
  10554. return;
  10555. }
  10556. // parallelize by a rows using ggml_vec_dot_f32
  10557. // total rows in a
  10558. const int nr = nea1*nea2*nea3;
  10559. // rows per thread
  10560. const int dr = (nr + nth - 1)/nth;
  10561. // row range for this thread
  10562. const int ir0 = dr*ith;
  10563. const int ir1 = MIN(ir0 + dr, nr);
  10564. for (int ir = ir0; ir < ir1; ++ir) {
  10565. // a indices
  10566. const int ia3 = ir/(nea2*nea1);
  10567. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10568. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10569. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10570. for (int64_t ic = 0; ic < neb01; ++ic) {
  10571. // b0 indices
  10572. const int ib03 = ia3;
  10573. const int ib02 = ia2;
  10574. const int ib01 = ic;
  10575. // S indices
  10576. const int i1 = ib01;
  10577. ggml_vec_dot_f16(nea0,
  10578. S + i1,
  10579. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10580. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10581. }
  10582. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10583. //ggml_vec_gelu_f32(neb01, S, S);
  10584. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10585. for (int64_t i = 0; i < M; i++) {
  10586. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10587. }
  10588. ggml_vec_gelu_f16(neb01, S16, S16);
  10589. {
  10590. // dst indices
  10591. const int i1 = ia1;
  10592. const int i2 = ia2;
  10593. const int i3 = ia3;
  10594. for (int64_t ic = 0; ic < nec01; ++ic) {
  10595. ggml_vec_dot_f16(neb01,
  10596. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10597. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10598. S16);
  10599. }
  10600. ggml_vec_add_f32(nec01,
  10601. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10602. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10603. (float *) c1->data);
  10604. }
  10605. }
  10606. }
  10607. static void ggml_compute_forward_flash_ff(
  10608. const struct ggml_compute_params * params,
  10609. const struct ggml_tensor * a,
  10610. const struct ggml_tensor * b0,
  10611. const struct ggml_tensor * b1,
  10612. const struct ggml_tensor * c0,
  10613. const struct ggml_tensor * c1,
  10614. struct ggml_tensor * dst) {
  10615. switch (b0->type) {
  10616. case GGML_TYPE_F16:
  10617. {
  10618. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10619. } break;
  10620. case GGML_TYPE_F32:
  10621. {
  10622. GGML_ASSERT(false); // TODO
  10623. } break;
  10624. default:
  10625. {
  10626. GGML_ASSERT(false);
  10627. } break;
  10628. }
  10629. }
  10630. // ggml_compute_forward_flash_attn_back
  10631. static void ggml_compute_forward_flash_attn_back_f32(
  10632. const struct ggml_compute_params * params,
  10633. const struct ggml_tensor * q,
  10634. const struct ggml_tensor * k,
  10635. const struct ggml_tensor * v,
  10636. const struct ggml_tensor * d,
  10637. const bool masked,
  10638. struct ggml_tensor * dst) {
  10639. int64_t t0 = ggml_perf_time_us();
  10640. UNUSED(t0);
  10641. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10642. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10643. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10644. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10645. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10646. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10647. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  10648. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  10649. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10650. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10651. const int ith = params->ith;
  10652. const int nth = params->nth;
  10653. const int64_t D = neq0;
  10654. const int64_t N = neq1;
  10655. const int64_t P = nek1 - N;
  10656. const int64_t M = P + N;
  10657. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10658. const int mxDM = MAX(D, Mup);
  10659. // GGML_ASSERT(ne0 == D);
  10660. // GGML_ASSERT(ne1 == N);
  10661. GGML_ASSERT(P >= 0);
  10662. GGML_ASSERT(nbq0 == sizeof(float));
  10663. GGML_ASSERT(nbk0 == sizeof(float));
  10664. GGML_ASSERT(nbv0 == sizeof(float));
  10665. GGML_ASSERT(neq0 == D);
  10666. GGML_ASSERT(nek0 == D);
  10667. GGML_ASSERT(nev1 == D);
  10668. GGML_ASSERT(ned0 == D);
  10669. GGML_ASSERT(neq1 == N);
  10670. GGML_ASSERT(nek1 == N + P);
  10671. GGML_ASSERT(nev1 == D);
  10672. GGML_ASSERT(ned1 == N);
  10673. // dst cannot be transposed or permuted
  10674. GGML_ASSERT(nb0 == sizeof(float));
  10675. GGML_ASSERT(nb0 <= nb1);
  10676. GGML_ASSERT(nb1 <= nb2);
  10677. GGML_ASSERT(nb2 <= nb3);
  10678. if (params->type == GGML_TASK_INIT) {
  10679. if (ith == 0) {
  10680. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  10681. }
  10682. return;
  10683. }
  10684. if (params->type == GGML_TASK_FINALIZE) {
  10685. return;
  10686. }
  10687. const int64_t elem_q = ggml_nelements(q);
  10688. const int64_t elem_k = ggml_nelements(k);
  10689. enum ggml_type result_type = dst->type;
  10690. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  10691. const size_t tsize = ggml_type_size(result_type);
  10692. const size_t offs_q = 0;
  10693. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  10694. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  10695. void * grad_q = (char *) dst->data;
  10696. void * grad_k = (char *) dst->data + offs_k;
  10697. void * grad_v = (char *) dst->data + offs_v;
  10698. const size_t nbgq1 = nb0*neq0;
  10699. const size_t nbgq2 = nb0*neq0*neq1;
  10700. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  10701. const size_t nbgk1 = nb0*nek0;
  10702. const size_t nbgk2 = nb0*nek0*nek1;
  10703. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  10704. const size_t nbgv1 = nb0*nev0;
  10705. const size_t nbgv2 = nb0*nev0*nev1;
  10706. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  10707. // parallelize by k rows using ggml_vec_dot_f32
  10708. // total rows in k
  10709. const int nr = nek2*nek3;
  10710. // rows per thread
  10711. const int dr = (nr + nth - 1)/nth;
  10712. // row range for this thread
  10713. const int ir0 = dr*ith;
  10714. const int ir1 = MIN(ir0 + dr, nr);
  10715. const float scale = 1.0f/sqrtf(D);
  10716. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10717. // how often k2 (and v2) is repeated in q2
  10718. int nrep = neq2/nek2;
  10719. for (int ir = ir0; ir < ir1; ++ir) {
  10720. // q indices
  10721. const int ik3 = ir/(nek2);
  10722. const int ik2 = ir - ik3*nek2;
  10723. const int iq3 = ik3;
  10724. const int id3 = ik3;
  10725. const int iv3 = ik3;
  10726. const int iv2 = ik2;
  10727. for (int irep = 0; irep < nrep; ++irep) {
  10728. const int iq2 = ik2 + irep*nek2;
  10729. const int id2 = iq2;
  10730. // (ik2 + irep*nek2) % nek2 == ik2
  10731. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  10732. const int id1 = iq1;
  10733. // not sure about CACHE_LINE_SIZE_F32..
  10734. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  10735. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  10736. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  10737. for (int i = M; i < Mup; ++i) {
  10738. S[i] = -INFINITY;
  10739. }
  10740. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  10741. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10742. // k indices
  10743. const int ik1 = ic;
  10744. // S indices
  10745. const int i1 = ik1;
  10746. ggml_vec_dot_f32(neq0,
  10747. S + i1,
  10748. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10749. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10750. }
  10751. // scale
  10752. ggml_vec_scale_f32(masked_begin, S, scale);
  10753. for (int64_t i = masked_begin; i < M; i++) {
  10754. S[i] = -INFINITY;
  10755. }
  10756. // softmax
  10757. // exclude known -INF S[..] values from max and loop
  10758. // dont forget to set their SM values to zero
  10759. {
  10760. float max = -INFINITY;
  10761. ggml_vec_max_f32(masked_begin, &max, S);
  10762. ggml_float sum = 0.0;
  10763. {
  10764. #ifdef GGML_SOFT_MAX_ACCELERATE
  10765. max = -max;
  10766. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  10767. vvexpf(SM, SM, &Mup);
  10768. ggml_vec_sum_f32(Mup, &sum, SM);
  10769. #else
  10770. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  10771. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10772. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10773. if (i >= masked_begin) {
  10774. break;
  10775. }
  10776. float * SR = S + i;
  10777. float * SW = SM + i;
  10778. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10779. if (i + j >= masked_begin) {
  10780. break;
  10781. } else if (SR[j] == -INFINITY) {
  10782. SW[j] = 0.0f;
  10783. } else {
  10784. #ifndef GGML_FLASH_ATTN_EXP_FP16
  10785. const float val = expf(SR[j] - max);
  10786. #else
  10787. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  10788. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10789. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  10790. #endif
  10791. sump[j] += (ggml_float)val;
  10792. SW[j] = val;
  10793. }
  10794. }
  10795. }
  10796. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10797. sum += sump[i];
  10798. }
  10799. #endif
  10800. }
  10801. assert(sum > 0.0);
  10802. sum = 1.0/sum;
  10803. ggml_vec_scale_f32(masked_begin, SM, sum);
  10804. }
  10805. // step-by-step explanation
  10806. {
  10807. // forward-process shape grads from backward process
  10808. // parallel_for ik2,ik3:
  10809. // for irep:
  10810. // iq2 = ik2 + irep*nek2
  10811. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  10812. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  10813. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  10814. // for iq1:
  10815. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  10816. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  10817. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  10818. // S0 = -Inf [D,1,1,1]
  10819. // ~S1[i] = dot(kcur[:D,i], qcur)
  10820. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  10821. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  10822. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10823. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  10824. // ~S5[i] = dot(vcur[:,i], S4)
  10825. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  10826. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  10827. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  10828. // dst backward-/ grad[dst] = d
  10829. //
  10830. // output gradients with their dependencies:
  10831. //
  10832. // grad[kcur] = grad[S1].T @ qcur
  10833. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10834. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10835. // grad[S4] = grad[S5] @ vcur
  10836. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10837. // grad[qcur] = grad[S1] @ kcur
  10838. // grad[vcur] = grad[S5].T @ S4
  10839. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10840. //
  10841. // in post-order:
  10842. //
  10843. // S1 = qcur @ kcur.T
  10844. // S2 = S1 * scale
  10845. // S3 = diag_mask_inf(S2, P)
  10846. // S4 = softmax(S3)
  10847. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  10848. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  10849. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  10850. // grad[qcur] = grad[S1] @ kcur
  10851. // grad[kcur] = grad[S1].T @ qcur
  10852. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  10853. //
  10854. // using less variables (SM=S4):
  10855. //
  10856. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  10857. // SM = softmax(S)
  10858. // S = d[:D,iq1,iq2,iq3] @ vcur
  10859. // dot_SM_gradSM = dot(SM, S)
  10860. // S = SM * (S - dot(SM, S))
  10861. // S = diag_mask_zero(S, P) * scale
  10862. //
  10863. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10864. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  10865. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10866. }
  10867. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10868. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  10869. // for ic:
  10870. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  10871. // exclude known future zero S[..] values from operation
  10872. ggml_vec_set_f32(masked_begin, S, 0);
  10873. for (int64_t ic = 0; ic < D; ++ic) {
  10874. ggml_vec_mad_f32(masked_begin,
  10875. S,
  10876. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  10877. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10878. }
  10879. // S = SM * (S - dot(SM, S))
  10880. float dot_SM_gradSM = 0;
  10881. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  10882. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  10883. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  10884. // S = diag_mask_zero(S, P) * scale
  10885. // already done by above ggml_vec_set_f32
  10886. // exclude known zero S[..] values from operation
  10887. ggml_vec_scale_f32(masked_begin, S, scale);
  10888. // S shape [M,1]
  10889. // SM shape [M,1]
  10890. // kcur shape [D,M]
  10891. // qcur shape [D,1]
  10892. // vcur shape [M,D]
  10893. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  10894. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  10895. // for ic:
  10896. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  10897. // exclude known zero S[..] values from loop
  10898. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10899. ggml_vec_mad_f32(D,
  10900. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  10901. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10902. S[ic]);
  10903. }
  10904. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  10905. // for ic:
  10906. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  10907. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  10908. // exclude known zero S[..] values from loop
  10909. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  10910. ggml_vec_mad_f32(D,
  10911. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  10912. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  10913. S[ic]);
  10914. }
  10915. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  10916. // for ic:
  10917. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  10918. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  10919. // exclude known zero SM[..] values from mad
  10920. for (int64_t ic = 0; ic < D; ++ic) {
  10921. ggml_vec_mad_f32(masked_begin,
  10922. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  10923. SM,
  10924. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  10925. }
  10926. }
  10927. }
  10928. }
  10929. }
  10930. static void ggml_compute_forward_flash_attn_back(
  10931. const struct ggml_compute_params * params,
  10932. const struct ggml_tensor * q,
  10933. const struct ggml_tensor * k,
  10934. const struct ggml_tensor * v,
  10935. const struct ggml_tensor * d,
  10936. const bool masked,
  10937. struct ggml_tensor * dst) {
  10938. switch (q->type) {
  10939. case GGML_TYPE_F32:
  10940. {
  10941. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  10942. } break;
  10943. default:
  10944. {
  10945. GGML_ASSERT(false);
  10946. } break;
  10947. }
  10948. }
  10949. // ggml_compute_forward_win_part
  10950. static void ggml_compute_forward_win_part_f32(
  10951. const struct ggml_compute_params * params,
  10952. const struct ggml_tensor * src0,
  10953. struct ggml_tensor * dst) {
  10954. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10955. return;
  10956. }
  10957. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  10958. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10959. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  10960. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  10961. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  10962. assert(ne00 == ne0);
  10963. assert(ne3 == nep0*nep1);
  10964. // TODO: optimize / multi-thread
  10965. for (int py = 0; py < nep1; ++py) {
  10966. for (int px = 0; px < nep0; ++px) {
  10967. const int64_t i3 = py*nep0 + px;
  10968. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10969. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  10970. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10971. const int64_t i02 = py*w + i2;
  10972. const int64_t i01 = px*w + i1;
  10973. const int64_t i00 = i0;
  10974. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  10975. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  10976. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  10977. ((float *) dst->data)[i] = 0.0f;
  10978. } else {
  10979. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  10980. }
  10981. }
  10982. }
  10983. }
  10984. }
  10985. }
  10986. }
  10987. static void ggml_compute_forward_win_part(
  10988. const struct ggml_compute_params * params,
  10989. const struct ggml_tensor * src0,
  10990. struct ggml_tensor * dst) {
  10991. switch (src0->type) {
  10992. case GGML_TYPE_F32:
  10993. {
  10994. ggml_compute_forward_win_part_f32(params, src0, dst);
  10995. } break;
  10996. default:
  10997. {
  10998. GGML_ASSERT(false);
  10999. } break;
  11000. }
  11001. }
  11002. // ggml_compute_forward_win_unpart
  11003. static void ggml_compute_forward_win_unpart_f32(
  11004. const struct ggml_compute_params * params,
  11005. const struct ggml_tensor * src0,
  11006. struct ggml_tensor * dst) {
  11007. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11008. return;
  11009. }
  11010. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11011. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11012. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11013. // padding
  11014. const int px = (w - ne1%w)%w;
  11015. //const int py = (w - ne2%w)%w;
  11016. const int npx = (px + ne1)/w;
  11017. //const int npy = (py + ne2)/w;
  11018. assert(ne0 == ne00);
  11019. // TODO: optimize / multi-thread
  11020. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11021. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11022. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11023. const int ip2 = i2/w;
  11024. const int ip1 = i1/w;
  11025. const int64_t i02 = i2%w;
  11026. const int64_t i01 = i1%w;
  11027. const int64_t i00 = i0;
  11028. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11029. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11030. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11031. }
  11032. }
  11033. }
  11034. }
  11035. static void ggml_compute_forward_win_unpart(
  11036. const struct ggml_compute_params * params,
  11037. const struct ggml_tensor * src0,
  11038. struct ggml_tensor * dst) {
  11039. switch (src0->type) {
  11040. case GGML_TYPE_F32:
  11041. {
  11042. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  11043. } break;
  11044. default:
  11045. {
  11046. GGML_ASSERT(false);
  11047. } break;
  11048. }
  11049. }
  11050. //gmml_compute_forward_unary
  11051. static void ggml_compute_forward_unary(
  11052. const struct ggml_compute_params * params,
  11053. const struct ggml_tensor * src0,
  11054. struct ggml_tensor * dst) {
  11055. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11056. switch (op) {
  11057. case GGML_UNARY_OP_ABS:
  11058. {
  11059. ggml_compute_forward_abs(params, src0, dst);
  11060. } break;
  11061. case GGML_UNARY_OP_SGN:
  11062. {
  11063. ggml_compute_forward_sgn(params, src0, dst);
  11064. } break;
  11065. case GGML_UNARY_OP_NEG:
  11066. {
  11067. ggml_compute_forward_neg(params, src0, dst);
  11068. } break;
  11069. case GGML_UNARY_OP_STEP:
  11070. {
  11071. ggml_compute_forward_step(params, src0, dst);
  11072. } break;
  11073. case GGML_UNARY_OP_TANH:
  11074. {
  11075. ggml_compute_forward_tanh(params, src0, dst);
  11076. } break;
  11077. case GGML_UNARY_OP_ELU:
  11078. {
  11079. ggml_compute_forward_elu(params, src0, dst);
  11080. } break;
  11081. case GGML_UNARY_OP_RELU:
  11082. {
  11083. ggml_compute_forward_relu(params, src0, dst);
  11084. } break;
  11085. case GGML_UNARY_OP_GELU:
  11086. {
  11087. ggml_compute_forward_gelu(params, src0, dst);
  11088. } break;
  11089. case GGML_UNARY_OP_GELU_QUICK:
  11090. {
  11091. ggml_compute_forward_gelu_quick(params, src0, dst);
  11092. } break;
  11093. case GGML_UNARY_OP_SILU:
  11094. {
  11095. ggml_compute_forward_silu(params, src0, dst);
  11096. } break;
  11097. default:
  11098. {
  11099. GGML_ASSERT(false);
  11100. } break;
  11101. }
  11102. }
  11103. // ggml_compute_forward_get_rel_pos
  11104. static void ggml_compute_forward_get_rel_pos_f16(
  11105. const struct ggml_compute_params * params,
  11106. const struct ggml_tensor * src0,
  11107. struct ggml_tensor * dst) {
  11108. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11109. return;
  11110. }
  11111. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11112. GGML_TENSOR_UNARY_OP_LOCALS
  11113. const int64_t w = ne1;
  11114. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11115. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11116. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11117. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11118. const int64_t pos = (w - i1 - 1) + i2;
  11119. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11120. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11121. }
  11122. }
  11123. }
  11124. }
  11125. static void ggml_compute_forward_get_rel_pos(
  11126. const struct ggml_compute_params * params,
  11127. const struct ggml_tensor * src0,
  11128. struct ggml_tensor * dst) {
  11129. switch (src0->type) {
  11130. case GGML_TYPE_F16:
  11131. {
  11132. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  11133. } break;
  11134. default:
  11135. {
  11136. GGML_ASSERT(false);
  11137. } break;
  11138. }
  11139. }
  11140. // ggml_compute_forward_add_rel_pos
  11141. static void ggml_compute_forward_add_rel_pos_f32(
  11142. const struct ggml_compute_params * params,
  11143. const struct ggml_tensor * src0,
  11144. const struct ggml_tensor * src1,
  11145. const struct ggml_tensor * src2,
  11146. struct ggml_tensor * dst) {
  11147. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11148. if (!inplace && params->type == GGML_TASK_INIT) {
  11149. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11150. return;
  11151. }
  11152. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11153. return;
  11154. }
  11155. int64_t t0 = ggml_perf_time_us();
  11156. UNUSED(t0);
  11157. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11158. float * src1_data = (float *) src1->data;
  11159. float * src2_data = (float *) src2->data;
  11160. float * dst_data = (float *) dst->data;
  11161. const int64_t ne10 = src1->ne[0];
  11162. const int64_t ne11 = src1->ne[1];
  11163. const int64_t ne12 = src1->ne[2];
  11164. const int64_t ne13 = src1->ne[3];
  11165. const int ith = params->ith;
  11166. const int nth = params->nth;
  11167. // total patches in dst
  11168. const int np = ne13;
  11169. // patches per thread
  11170. const int dp = (np + nth - 1)/nth;
  11171. // patch range for this thread
  11172. const int ip0 = dp*ith;
  11173. const int ip1 = MIN(ip0 + dp, np);
  11174. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11175. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11176. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11177. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11178. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11179. const int64_t jp0 = jp1 + i10;
  11180. const float src1_e = src1_data[jp0];
  11181. const float src2_e = src2_data[jp0];
  11182. const int64_t jdh = jp0 * ne10;
  11183. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11184. for (int64_t j = 0; j < ne10; ++j) {
  11185. dst_data[jdh + j ] += src2_e;
  11186. dst_data[jdw + j*ne10] += src1_e;
  11187. }
  11188. }
  11189. }
  11190. }
  11191. }
  11192. }
  11193. static void ggml_compute_forward_add_rel_pos(
  11194. const struct ggml_compute_params * params,
  11195. const struct ggml_tensor * src0,
  11196. const struct ggml_tensor * src1,
  11197. const struct ggml_tensor * src2,
  11198. struct ggml_tensor * dst) {
  11199. switch (src0->type) {
  11200. case GGML_TYPE_F32:
  11201. {
  11202. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  11203. } break;
  11204. default:
  11205. {
  11206. GGML_ASSERT(false);
  11207. } break;
  11208. }
  11209. }
  11210. // ggml_compute_forward_map_unary
  11211. static void ggml_compute_forward_map_unary_f32(
  11212. const struct ggml_compute_params * params,
  11213. const struct ggml_tensor * src0,
  11214. struct ggml_tensor * dst,
  11215. const ggml_unary_op_f32_t fun) {
  11216. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11218. return;
  11219. }
  11220. const int n = ggml_nrows(src0);
  11221. const int nc = src0->ne[0];
  11222. assert( dst->nb[0] == sizeof(float));
  11223. assert(src0->nb[0] == sizeof(float));
  11224. for (int i = 0; i < n; i++) {
  11225. fun(nc,
  11226. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11227. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11228. }
  11229. }
  11230. static void ggml_compute_forward_map_unary(
  11231. const struct ggml_compute_params * params,
  11232. const struct ggml_tensor * src0,
  11233. struct ggml_tensor * dst,
  11234. const ggml_unary_op_f32_t fun) {
  11235. switch (src0->type) {
  11236. case GGML_TYPE_F32:
  11237. {
  11238. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11239. } break;
  11240. default:
  11241. {
  11242. GGML_ASSERT(false);
  11243. } break;
  11244. }
  11245. }
  11246. // ggml_compute_forward_map_binary
  11247. static void ggml_compute_forward_map_binary_f32(
  11248. const struct ggml_compute_params * params,
  11249. const struct ggml_tensor * src0,
  11250. const struct ggml_tensor * src1,
  11251. struct ggml_tensor * dst,
  11252. const ggml_binary_op_f32_t fun) {
  11253. assert(params->ith == 0);
  11254. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11256. return;
  11257. }
  11258. const int n = ggml_nrows(src0);
  11259. const int nc = src0->ne[0];
  11260. assert( dst->nb[0] == sizeof(float));
  11261. assert(src0->nb[0] == sizeof(float));
  11262. assert(src1->nb[0] == sizeof(float));
  11263. for (int i = 0; i < n; i++) {
  11264. fun(nc,
  11265. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11266. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11267. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11268. }
  11269. }
  11270. static void ggml_compute_forward_map_binary(
  11271. const struct ggml_compute_params * params,
  11272. const struct ggml_tensor * src0,
  11273. const struct ggml_tensor * src1,
  11274. struct ggml_tensor * dst,
  11275. const ggml_binary_op_f32_t fun) {
  11276. switch (src0->type) {
  11277. case GGML_TYPE_F32:
  11278. {
  11279. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11280. } break;
  11281. default:
  11282. {
  11283. GGML_ASSERT(false);
  11284. } break;
  11285. }
  11286. }
  11287. // ggml_compute_forward_map_custom1
  11288. static void ggml_compute_forward_map_custom1_f32(
  11289. const struct ggml_compute_params * params,
  11290. const struct ggml_tensor * a,
  11291. struct ggml_tensor * dst,
  11292. const ggml_custom1_op_f32_t fun) {
  11293. assert(params->ith == 0);
  11294. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11295. return;
  11296. }
  11297. fun(dst, a);
  11298. }
  11299. // ggml_compute_forward_map_custom2
  11300. static void ggml_compute_forward_map_custom2_f32(
  11301. const struct ggml_compute_params * params,
  11302. const struct ggml_tensor * a,
  11303. const struct ggml_tensor * b,
  11304. struct ggml_tensor * dst,
  11305. const ggml_custom2_op_f32_t fun) {
  11306. assert(params->ith == 0);
  11307. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11308. return;
  11309. }
  11310. fun(dst, a, b);
  11311. }
  11312. // ggml_compute_forward_map_custom3
  11313. static void ggml_compute_forward_map_custom3_f32(
  11314. const struct ggml_compute_params * params,
  11315. const struct ggml_tensor * a,
  11316. const struct ggml_tensor * b,
  11317. const struct ggml_tensor * c,
  11318. struct ggml_tensor * dst,
  11319. const ggml_custom3_op_f32_t fun) {
  11320. assert(params->ith == 0);
  11321. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11322. return;
  11323. }
  11324. fun(dst, a, b, c);
  11325. }
  11326. // ggml_compute_forward_map_custom1
  11327. static void ggml_compute_forward_map_custom1(
  11328. const struct ggml_compute_params * params,
  11329. const struct ggml_tensor * a,
  11330. struct ggml_tensor * dst) {
  11331. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11332. return;
  11333. }
  11334. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  11335. p->fun(dst, a, params->ith, params->nth, p->userdata);
  11336. }
  11337. // ggml_compute_forward_map_custom2
  11338. static void ggml_compute_forward_map_custom2(
  11339. const struct ggml_compute_params * params,
  11340. const struct ggml_tensor * a,
  11341. const struct ggml_tensor * b,
  11342. struct ggml_tensor * dst) {
  11343. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11344. return;
  11345. }
  11346. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  11347. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  11348. }
  11349. // ggml_compute_forward_map_custom3
  11350. static void ggml_compute_forward_map_custom3(
  11351. const struct ggml_compute_params * params,
  11352. const struct ggml_tensor * a,
  11353. const struct ggml_tensor * b,
  11354. const struct ggml_tensor * c,
  11355. struct ggml_tensor * dst) {
  11356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11357. return;
  11358. }
  11359. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  11360. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  11361. }
  11362. // ggml_compute_forward_cross_entropy_loss
  11363. static void ggml_compute_forward_cross_entropy_loss_f32(
  11364. const struct ggml_compute_params * params,
  11365. const struct ggml_tensor * src0,
  11366. const struct ggml_tensor * src1,
  11367. struct ggml_tensor * dst) {
  11368. GGML_ASSERT(ggml_is_contiguous(src0));
  11369. GGML_ASSERT(ggml_is_contiguous(src1));
  11370. GGML_ASSERT(ggml_is_scalar(dst));
  11371. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11372. const int ith = params->ith;
  11373. const int nth = params->nth;
  11374. float * sums = (float *) params->wdata;
  11375. // TODO: handle transposed/permuted matrices
  11376. const int nc = src0->ne[0];
  11377. const int nr = ggml_nrows(src0);
  11378. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  11379. if (params->type == GGML_TASK_INIT) {
  11380. if (ith == 0) {
  11381. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11382. }
  11383. return;
  11384. }
  11385. if (params->type == GGML_TASK_FINALIZE) {
  11386. if (ith == 0) {
  11387. float * dp = (float *) dst->data;
  11388. ggml_vec_sum_f32(nth, dp, sums);
  11389. dp[0] *= -1.0f / (float) nr;
  11390. }
  11391. return;
  11392. }
  11393. const double eps = 1e-9;
  11394. // rows per thread
  11395. const int dr = (nr + nth - 1)/nth;
  11396. // row range for this thread
  11397. const int ir0 = dr*ith;
  11398. const int ir1 = MIN(ir0 + dr, nr);
  11399. for (int i1 = ir0; i1 < ir1; i1++) {
  11400. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11401. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11402. float * st = ((float *) params->wdata) + nth + ith*nc;
  11403. #ifndef NDEBUG
  11404. for (int i = 0; i < nc; ++i) {
  11405. //printf("p[%d] = %f\n", i, p[i]);
  11406. assert(!isnan(s0[i]));
  11407. assert(!isnan(s1[i]));
  11408. }
  11409. #endif
  11410. // soft_max
  11411. ggml_float sum = 0.0;
  11412. {
  11413. float max = -INFINITY;
  11414. ggml_vec_max_f32(nc, &max, s0);
  11415. uint16_t scvt; UNUSED(scvt);
  11416. for (int i = 0; i < nc; i++) {
  11417. if (s0[i] == -INFINITY) {
  11418. st[i] = 0.0f;
  11419. } else {
  11420. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11421. const float s = s0[i] - max;
  11422. const float val = expf(s);
  11423. #else
  11424. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11425. memcpy(&scvt, &s, sizeof(scvt));
  11426. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11427. #endif
  11428. sum += (ggml_float)val;
  11429. st[i] = val;
  11430. }
  11431. }
  11432. assert(sum > 0.0);
  11433. // sum = 1.0/sum;
  11434. }
  11435. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11436. sum = (1.0 - eps) / sum;
  11437. ggml_vec_scale_f32(nc, st, sum);
  11438. ggml_vec_add1_f32(nc, st, st, eps);
  11439. ggml_vec_log_f32(nc, st, st);
  11440. ggml_vec_mul_f32(nc, st, st, s1);
  11441. float st_sum = 0;
  11442. ggml_vec_sum_f32(nc, &st_sum, st);
  11443. sums[ith] += st_sum;
  11444. #ifndef NDEBUG
  11445. for (int i = 0; i < nc; ++i) {
  11446. assert(!isnan(st[i]));
  11447. assert(!isinf(st[i]));
  11448. }
  11449. #endif
  11450. }
  11451. }
  11452. static void ggml_compute_forward_cross_entropy_loss(
  11453. const struct ggml_compute_params * params,
  11454. const struct ggml_tensor * src0,
  11455. const struct ggml_tensor * src1,
  11456. struct ggml_tensor * dst) {
  11457. switch (src0->type) {
  11458. case GGML_TYPE_F32:
  11459. {
  11460. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11461. } break;
  11462. default:
  11463. {
  11464. GGML_ASSERT(false);
  11465. } break;
  11466. }
  11467. }
  11468. // ggml_compute_forward_cross_entropy_loss_back
  11469. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11470. const struct ggml_compute_params * params,
  11471. const struct ggml_tensor * src0,
  11472. const struct ggml_tensor * src1,
  11473. const struct ggml_tensor * opt0,
  11474. struct ggml_tensor * dst) {
  11475. GGML_ASSERT(ggml_is_contiguous(dst));
  11476. GGML_ASSERT(ggml_is_contiguous(src0));
  11477. GGML_ASSERT(ggml_is_contiguous(src1));
  11478. GGML_ASSERT(ggml_is_contiguous(opt0));
  11479. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11480. const int64_t ith = params->ith;
  11481. const int64_t nth = params->nth;
  11482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11483. return;
  11484. }
  11485. const double eps = 1e-9;
  11486. // TODO: handle transposed/permuted matrices
  11487. const int64_t nc = src0->ne[0];
  11488. const int64_t nr = ggml_nrows(src0);
  11489. // rows per thread
  11490. const int64_t dr = (nr + nth - 1)/nth;
  11491. // row range for this thread
  11492. const int64_t ir0 = dr*ith;
  11493. const int64_t ir1 = MIN(ir0 + dr, nr);
  11494. float * d = (float *) opt0->data;
  11495. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11496. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11497. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11498. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11499. #ifndef NDEBUG
  11500. for (int i = 0; i < nc; ++i) {
  11501. //printf("p[%d] = %f\n", i, p[i]);
  11502. assert(!isnan(s0[i]));
  11503. assert(!isnan(s1[i]));
  11504. }
  11505. #endif
  11506. // soft_max
  11507. ggml_float sum = 0.0;
  11508. {
  11509. float max = -INFINITY;
  11510. ggml_vec_max_f32(nc, &max, s0);
  11511. uint16_t scvt; UNUSED(scvt);
  11512. for (int i = 0; i < nc; i++) {
  11513. if (s0[i] == -INFINITY) {
  11514. ds0[i] = 0.0f;
  11515. } else {
  11516. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  11517. const float s = s0[i] - max;
  11518. const float val = expf(s);
  11519. #else
  11520. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11521. memcpy(&scvt, &s, sizeof(scvt));
  11522. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  11523. #endif
  11524. sum += (ggml_float)val;
  11525. ds0[i] = val;
  11526. }
  11527. }
  11528. assert(sum > 0.0);
  11529. sum = (1.0 - eps)/sum;
  11530. }
  11531. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  11532. ggml_vec_scale_f32(nc, ds0, sum);
  11533. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  11534. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  11535. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  11536. #ifndef NDEBUG
  11537. for (int i = 0; i < nc; ++i) {
  11538. assert(!isnan(ds0[i]));
  11539. assert(!isinf(ds0[i]));
  11540. }
  11541. #endif
  11542. }
  11543. }
  11544. static void ggml_compute_forward_cross_entropy_loss_back(
  11545. const struct ggml_compute_params * params,
  11546. const struct ggml_tensor * src0,
  11547. const struct ggml_tensor * src1,
  11548. const struct ggml_tensor * opt0,
  11549. struct ggml_tensor * dst) {
  11550. switch (src0->type) {
  11551. case GGML_TYPE_F32:
  11552. {
  11553. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11554. } break;
  11555. default:
  11556. {
  11557. GGML_ASSERT(false);
  11558. } break;
  11559. }
  11560. }
  11561. /////////////////////////////////
  11562. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11563. GGML_ASSERT(params);
  11564. if (tensor->op == GGML_OP_NONE) {
  11565. return;
  11566. }
  11567. #ifdef GGML_USE_CUBLAS
  11568. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11569. if (skip_cpu) {
  11570. return;
  11571. }
  11572. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11573. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11574. #endif // GGML_USE_CUBLAS
  11575. switch (tensor->op) {
  11576. case GGML_OP_DUP:
  11577. {
  11578. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11579. } break;
  11580. case GGML_OP_ADD:
  11581. {
  11582. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11583. } break;
  11584. case GGML_OP_ADD1:
  11585. {
  11586. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11587. } break;
  11588. case GGML_OP_ACC:
  11589. {
  11590. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  11591. } break;
  11592. case GGML_OP_SUB:
  11593. {
  11594. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11595. } break;
  11596. case GGML_OP_MUL:
  11597. {
  11598. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11599. } break;
  11600. case GGML_OP_DIV:
  11601. {
  11602. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11603. } break;
  11604. case GGML_OP_SQR:
  11605. {
  11606. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11607. } break;
  11608. case GGML_OP_SQRT:
  11609. {
  11610. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11611. } break;
  11612. case GGML_OP_LOG:
  11613. {
  11614. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11615. } break;
  11616. case GGML_OP_SUM:
  11617. {
  11618. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11619. } break;
  11620. case GGML_OP_SUM_ROWS:
  11621. {
  11622. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11623. } break;
  11624. case GGML_OP_MEAN:
  11625. {
  11626. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11627. } break;
  11628. case GGML_OP_ARGMAX:
  11629. {
  11630. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11631. } break;
  11632. case GGML_OP_REPEAT:
  11633. {
  11634. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11635. } break;
  11636. case GGML_OP_REPEAT_BACK:
  11637. {
  11638. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11639. } break;
  11640. case GGML_OP_CONCAT:
  11641. {
  11642. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  11643. } break;
  11644. case GGML_OP_SILU_BACK:
  11645. {
  11646. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11647. } break;
  11648. case GGML_OP_NORM:
  11649. {
  11650. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11651. } break;
  11652. case GGML_OP_RMS_NORM:
  11653. {
  11654. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11655. } break;
  11656. case GGML_OP_RMS_NORM_BACK:
  11657. {
  11658. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11659. } break;
  11660. case GGML_OP_GROUP_NORM:
  11661. {
  11662. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  11663. } break;
  11664. case GGML_OP_MUL_MAT:
  11665. {
  11666. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor, 0, tensor->ne[1]);
  11667. } break;
  11668. case GGML_OP_MUL_MAT_ID:
  11669. {
  11670. ggml_compute_forward_mul_mat_id(params, tensor->src[0], tensor->src[1], tensor);
  11671. } break;
  11672. case GGML_OP_OUT_PROD:
  11673. {
  11674. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11675. } break;
  11676. case GGML_OP_SCALE:
  11677. {
  11678. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11679. } break;
  11680. case GGML_OP_SET:
  11681. {
  11682. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  11683. } break;
  11684. case GGML_OP_CPY:
  11685. {
  11686. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11687. } break;
  11688. case GGML_OP_CONT:
  11689. {
  11690. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11691. } break;
  11692. case GGML_OP_RESHAPE:
  11693. {
  11694. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11695. } break;
  11696. case GGML_OP_VIEW:
  11697. {
  11698. ggml_compute_forward_view(params, tensor->src[0]);
  11699. } break;
  11700. case GGML_OP_PERMUTE:
  11701. {
  11702. ggml_compute_forward_permute(params, tensor->src[0]);
  11703. } break;
  11704. case GGML_OP_TRANSPOSE:
  11705. {
  11706. ggml_compute_forward_transpose(params, tensor->src[0]);
  11707. } break;
  11708. case GGML_OP_GET_ROWS:
  11709. {
  11710. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11711. } break;
  11712. case GGML_OP_GET_ROWS_BACK:
  11713. {
  11714. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  11715. } break;
  11716. case GGML_OP_DIAG:
  11717. {
  11718. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  11719. } break;
  11720. case GGML_OP_DIAG_MASK_INF:
  11721. {
  11722. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  11723. } break;
  11724. case GGML_OP_DIAG_MASK_ZERO:
  11725. {
  11726. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  11727. } break;
  11728. case GGML_OP_SOFT_MAX:
  11729. {
  11730. ggml_compute_forward_soft_max(params, tensor->src[0], tensor->src[1], tensor);
  11731. } break;
  11732. case GGML_OP_SOFT_MAX_BACK:
  11733. {
  11734. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  11735. } break;
  11736. case GGML_OP_ROPE:
  11737. {
  11738. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  11739. } break;
  11740. case GGML_OP_ROPE_BACK:
  11741. {
  11742. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  11743. } break;
  11744. case GGML_OP_ALIBI:
  11745. {
  11746. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  11747. } break;
  11748. case GGML_OP_CLAMP:
  11749. {
  11750. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  11751. } break;
  11752. case GGML_OP_CONV_TRANSPOSE_1D:
  11753. {
  11754. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  11755. } break;
  11756. case GGML_OP_IM2COL:
  11757. {
  11758. ggml_compute_forward_im2col(params, tensor->src[0], tensor->src[1], tensor);
  11759. } break;
  11760. case GGML_OP_CONV_TRANSPOSE_2D:
  11761. {
  11762. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  11763. } break;
  11764. case GGML_OP_POOL_1D:
  11765. {
  11766. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  11767. } break;
  11768. case GGML_OP_POOL_2D:
  11769. {
  11770. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  11771. } break;
  11772. case GGML_OP_UPSCALE:
  11773. {
  11774. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  11775. } break;
  11776. case GGML_OP_PAD:
  11777. {
  11778. ggml_compute_forward_pad(params, tensor->src[0], tensor);
  11779. } break;
  11780. case GGML_OP_ARGSORT:
  11781. {
  11782. ggml_compute_forward_argsort(params, tensor->src[0], tensor);
  11783. } break;
  11784. case GGML_OP_LEAKY_RELU:
  11785. {
  11786. ggml_compute_forward_leaky_relu(params, tensor->src[0], tensor);
  11787. } break;
  11788. case GGML_OP_FLASH_ATTN:
  11789. {
  11790. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  11791. GGML_ASSERT(t == 0 || t == 1);
  11792. const bool masked = t != 0;
  11793. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  11794. } break;
  11795. case GGML_OP_FLASH_FF:
  11796. {
  11797. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  11798. } break;
  11799. case GGML_OP_FLASH_ATTN_BACK:
  11800. {
  11801. int32_t t = ggml_get_op_params_i32(tensor, 0);
  11802. GGML_ASSERT(t == 0 || t == 1);
  11803. bool masked = t != 0;
  11804. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  11805. } break;
  11806. case GGML_OP_WIN_PART:
  11807. {
  11808. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  11809. } break;
  11810. case GGML_OP_WIN_UNPART:
  11811. {
  11812. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  11813. } break;
  11814. case GGML_OP_UNARY:
  11815. {
  11816. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  11817. } break;
  11818. case GGML_OP_GET_REL_POS:
  11819. {
  11820. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  11821. } break;
  11822. case GGML_OP_ADD_REL_POS:
  11823. {
  11824. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11825. } break;
  11826. case GGML_OP_MAP_UNARY:
  11827. {
  11828. ggml_unary_op_f32_t fun;
  11829. memcpy(&fun, tensor->op_params, sizeof(fun));
  11830. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  11831. }
  11832. break;
  11833. case GGML_OP_MAP_BINARY:
  11834. {
  11835. ggml_binary_op_f32_t fun;
  11836. memcpy(&fun, tensor->op_params, sizeof(fun));
  11837. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  11838. }
  11839. break;
  11840. case GGML_OP_MAP_CUSTOM1_F32:
  11841. {
  11842. ggml_custom1_op_f32_t fun;
  11843. memcpy(&fun, tensor->op_params, sizeof(fun));
  11844. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  11845. }
  11846. break;
  11847. case GGML_OP_MAP_CUSTOM2_F32:
  11848. {
  11849. ggml_custom2_op_f32_t fun;
  11850. memcpy(&fun, tensor->op_params, sizeof(fun));
  11851. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  11852. }
  11853. break;
  11854. case GGML_OP_MAP_CUSTOM3_F32:
  11855. {
  11856. ggml_custom3_op_f32_t fun;
  11857. memcpy(&fun, tensor->op_params, sizeof(fun));
  11858. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  11859. }
  11860. break;
  11861. case GGML_OP_MAP_CUSTOM1:
  11862. {
  11863. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  11864. }
  11865. break;
  11866. case GGML_OP_MAP_CUSTOM2:
  11867. {
  11868. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  11869. }
  11870. break;
  11871. case GGML_OP_MAP_CUSTOM3:
  11872. {
  11873. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11874. }
  11875. break;
  11876. case GGML_OP_CROSS_ENTROPY_LOSS:
  11877. {
  11878. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  11879. }
  11880. break;
  11881. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  11882. {
  11883. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11884. }
  11885. break;
  11886. case GGML_OP_NONE:
  11887. {
  11888. // nop
  11889. } break;
  11890. case GGML_OP_COUNT:
  11891. {
  11892. GGML_ASSERT(false);
  11893. } break;
  11894. }
  11895. }
  11896. ////////////////////////////////////////////////////////////////////////////////
  11897. static size_t ggml_hash_size(size_t min_sz) {
  11898. // next primes after powers of two
  11899. static const size_t primes[] = {
  11900. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  11901. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  11902. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  11903. 16777259, 33554467, 67108879, 134217757, 268435459,
  11904. 536870923, 1073741827, 2147483659
  11905. };
  11906. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  11907. // find the smallest prime that is larger or equal to min_sz
  11908. size_t l = 0;
  11909. size_t r = n_primes;
  11910. while (l < r) {
  11911. size_t m = (l + r)/2;
  11912. if (primes[m] < min_sz) {
  11913. l = m + 1;
  11914. } else {
  11915. r = m;
  11916. }
  11917. }
  11918. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  11919. return sz;
  11920. }
  11921. static size_t ggml_hash(const void * p) {
  11922. return (size_t)p;
  11923. }
  11924. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11925. size_t h = ggml_hash(key) % hash_set.size;
  11926. // linear probing
  11927. size_t i = h;
  11928. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  11929. i = (i + 1) % hash_set.size;
  11930. if (i == h) {
  11931. // visited all hash table entries -> not found
  11932. return GGML_HASHTABLE_FULL;
  11933. }
  11934. }
  11935. return i;
  11936. }
  11937. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11938. size_t i = ggml_hash_find(hash_set, key);
  11939. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  11940. }
  11941. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11942. size_t i = ggml_hash_find(hash_set, key);
  11943. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11944. if (hash_set.keys[i] == key) {
  11945. return GGML_HASHTABLE_ALREADY_EXISTS;
  11946. }
  11947. // insert
  11948. GGML_ASSERT(hash_set.keys[i] == NULL);
  11949. hash_set.keys[i] = key;
  11950. return i;
  11951. }
  11952. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  11953. size_t i = ggml_hash_find(hash_set, key);
  11954. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  11955. hash_set.keys[i] = key;
  11956. return i;
  11957. }
  11958. static struct ggml_hash_set ggml_hash_set_new(size_t size) {
  11959. size = ggml_hash_size(size);
  11960. struct ggml_hash_set result;
  11961. result.size = size;
  11962. result.keys = malloc(sizeof(struct ggml_tensor *) * size);
  11963. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  11964. return result;
  11965. }
  11966. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  11967. free(hash_set.keys);
  11968. }
  11969. struct hash_map {
  11970. struct ggml_hash_set set;
  11971. struct ggml_tensor ** vals;
  11972. };
  11973. static struct hash_map * ggml_new_hash_map(size_t size) {
  11974. struct hash_map * result = malloc(sizeof(struct hash_map));
  11975. result->set = ggml_hash_set_new(size);
  11976. result->vals = malloc(sizeof(struct ggml_tensor *) * result->set.size);
  11977. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  11978. return result;
  11979. }
  11980. static void ggml_hash_map_free(struct hash_map * map) {
  11981. ggml_hash_set_free(map->set);
  11982. free(map->vals);
  11983. free(map);
  11984. }
  11985. // gradient checkpointing
  11986. static struct ggml_tensor * ggml_recompute_graph_node(
  11987. struct ggml_context * ctx,
  11988. struct ggml_cgraph * graph,
  11989. struct hash_map * replacements,
  11990. struct ggml_tensor * node) {
  11991. if (node == NULL) {
  11992. return NULL;
  11993. }
  11994. if (node->is_param) {
  11995. return node;
  11996. }
  11997. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  11998. return node;
  11999. }
  12000. int count_children = 0;
  12001. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12002. if (node->src[k]) {
  12003. ++count_children;
  12004. }
  12005. }
  12006. if (count_children == 0) {
  12007. return node;
  12008. }
  12009. size_t i = ggml_hash_find(replacements->set, node);
  12010. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12011. if (replacements->set.keys[i] == node) {
  12012. return replacements->vals[i];
  12013. }
  12014. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12015. // insert clone into replacements
  12016. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12017. replacements->set.keys[i] = node;
  12018. replacements->vals[i] = clone;
  12019. clone->op = node->op;
  12020. clone->grad = node->grad;
  12021. clone->is_param = node->is_param;
  12022. clone->extra = node->extra;
  12023. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12024. clone->nb[k] = node->nb[k];
  12025. }
  12026. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12027. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12028. }
  12029. if (node->view_src != NULL) {
  12030. clone->data = (node->view_src->data == NULL)
  12031. ? NULL // view_src not yet allocated
  12032. : (char *) node->view_src->data // view_src already allocated
  12033. + node->view_offs;
  12034. clone->view_src = node->view_src;
  12035. clone->view_offs = node->view_offs;
  12036. }
  12037. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12038. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12039. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12040. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12041. return clone;
  12042. }
  12043. void ggml_build_backward_gradient_checkpointing(
  12044. struct ggml_context * ctx,
  12045. struct ggml_cgraph * gf,
  12046. struct ggml_cgraph * gb,
  12047. struct ggml_cgraph * gb_tmp,
  12048. struct ggml_tensor * * checkpoints,
  12049. int n_checkpoints) {
  12050. ggml_graph_cpy(gf, gb_tmp);
  12051. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12052. if (n_checkpoints <= 0) {
  12053. ggml_graph_cpy(gb_tmp, gb);
  12054. return;
  12055. }
  12056. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12057. // insert checkpoints in replacements
  12058. for (int i = 0; i < n_checkpoints; ++i) {
  12059. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12060. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12061. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12062. replacements->set.keys[k] = checkpoints[i];
  12063. replacements->vals[k] = checkpoints[i];
  12064. }
  12065. ggml_graph_cpy(gf, gb);
  12066. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12067. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12068. // by recomputing them from checkpoints
  12069. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12070. struct ggml_tensor * node = gb_tmp->nodes[i];
  12071. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12072. // insert new tensors recomputing src, reusing already made replacements,
  12073. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12074. // recurse for input tensors,
  12075. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12076. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12077. }
  12078. // insert rewritten backward node with replacements made into resulting backward graph gb
  12079. ggml_build_forward_expand(gb, node);
  12080. }
  12081. ggml_hash_map_free(replacements);
  12082. }
  12083. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12084. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12085. if (ggml_hash_contains(zero_table, a)) {
  12086. return b;
  12087. } else {
  12088. return ggml_add_impl(ctx, a, b, false);
  12089. }
  12090. }
  12091. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12092. if (ggml_hash_contains(zero_table, a)) {
  12093. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  12094. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12095. } else {
  12096. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12097. }
  12098. }
  12099. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12100. if (ggml_hash_contains(zero_table, a)) {
  12101. return ggml_repeat(ctx, b, a);
  12102. } else {
  12103. return ggml_add1_impl(ctx, a, b, false);
  12104. }
  12105. }
  12106. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12107. if (ggml_hash_contains(zero_table, a)) {
  12108. return ggml_neg(ctx, b);
  12109. } else {
  12110. return ggml_sub_impl(ctx, a, b, false);
  12111. }
  12112. }
  12113. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12114. struct ggml_tensor * src0 = tensor->src[0];
  12115. struct ggml_tensor * src1 = tensor->src[1];
  12116. switch (tensor->op) {
  12117. case GGML_OP_DUP:
  12118. {
  12119. if (src0->grad) {
  12120. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12121. }
  12122. } break;
  12123. case GGML_OP_ADD:
  12124. {
  12125. if (src0->grad) {
  12126. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12127. }
  12128. if (src1->grad) {
  12129. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12130. }
  12131. } break;
  12132. case GGML_OP_ADD1:
  12133. {
  12134. if (src0->grad) {
  12135. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12136. }
  12137. if (src1->grad) {
  12138. src1->grad = ggml_add_or_set(ctx,
  12139. src1->grad,
  12140. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12141. zero_table);
  12142. }
  12143. } break;
  12144. case GGML_OP_ACC:
  12145. {
  12146. if (src0->grad) {
  12147. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12148. }
  12149. if (src1->grad) {
  12150. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12151. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12152. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12153. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12154. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12155. tensor->grad,
  12156. src1->grad->ne[0],
  12157. src1->grad->ne[1],
  12158. src1->grad->ne[2],
  12159. src1->grad->ne[3],
  12160. nb1, nb2, nb3, offset);
  12161. src1->grad =
  12162. ggml_add_or_set(ctx,
  12163. src1->grad,
  12164. ggml_reshape(ctx,
  12165. ggml_cont(ctx, tensor_grad_view),
  12166. src1->grad),
  12167. zero_table);
  12168. }
  12169. } break;
  12170. case GGML_OP_SUB:
  12171. {
  12172. if (src0->grad) {
  12173. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12174. }
  12175. if (src1->grad) {
  12176. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12177. }
  12178. } break;
  12179. case GGML_OP_MUL:
  12180. {
  12181. if (src0->grad) {
  12182. src0->grad =
  12183. ggml_add_or_set(ctx,
  12184. src0->grad,
  12185. ggml_mul(ctx, src1, tensor->grad),
  12186. zero_table);
  12187. }
  12188. if (src1->grad) {
  12189. src1->grad =
  12190. ggml_add_or_set(ctx,
  12191. src1->grad,
  12192. ggml_mul(ctx, src0, tensor->grad),
  12193. zero_table);
  12194. }
  12195. } break;
  12196. case GGML_OP_DIV:
  12197. {
  12198. if (src0->grad) {
  12199. src0->grad =
  12200. ggml_add_or_set(ctx,
  12201. src0->grad,
  12202. ggml_div(ctx, tensor->grad, src1),
  12203. zero_table);
  12204. }
  12205. if (src1->grad) {
  12206. src1->grad =
  12207. ggml_sub_or_set(ctx,
  12208. src1->grad,
  12209. ggml_mul(ctx,
  12210. tensor->grad,
  12211. ggml_div(ctx, tensor, src1)),
  12212. zero_table);
  12213. }
  12214. } break;
  12215. case GGML_OP_SQR:
  12216. {
  12217. if (src0->grad) {
  12218. src0->grad =
  12219. ggml_add_or_set(ctx,
  12220. src0->grad,
  12221. ggml_scale(ctx,
  12222. ggml_mul(ctx, src0, tensor->grad),
  12223. ggml_new_f32(ctx, 2.0f)),
  12224. zero_table);
  12225. }
  12226. } break;
  12227. case GGML_OP_SQRT:
  12228. {
  12229. if (src0->grad) {
  12230. src0->grad =
  12231. ggml_add_or_set(ctx,
  12232. src0->grad,
  12233. ggml_scale(ctx,
  12234. ggml_div(ctx,
  12235. tensor->grad,
  12236. tensor),
  12237. ggml_new_f32(ctx, 0.5f)),
  12238. zero_table);
  12239. }
  12240. } break;
  12241. case GGML_OP_LOG:
  12242. {
  12243. if (src0->grad) {
  12244. src0->grad =
  12245. ggml_add_or_set(ctx,
  12246. src0->grad,
  12247. ggml_div(ctx,
  12248. tensor->grad,
  12249. src0),
  12250. zero_table);
  12251. }
  12252. } break;
  12253. case GGML_OP_SUM:
  12254. {
  12255. if (src0->grad) {
  12256. src0->grad =
  12257. ggml_add1_or_set(ctx,
  12258. src0->grad,
  12259. tensor->grad,
  12260. zero_table);
  12261. }
  12262. } break;
  12263. case GGML_OP_SUM_ROWS:
  12264. {
  12265. if (src0->grad) {
  12266. src0->grad =
  12267. ggml_add_or_set(ctx,
  12268. src0->grad,
  12269. ggml_repeat(ctx,
  12270. tensor->grad,
  12271. src0->grad),
  12272. zero_table);
  12273. }
  12274. } break;
  12275. case GGML_OP_MEAN:
  12276. case GGML_OP_ARGMAX:
  12277. {
  12278. GGML_ASSERT(false); // TODO: implement
  12279. } break;
  12280. case GGML_OP_REPEAT:
  12281. {
  12282. // necessary for llama
  12283. if (src0->grad) {
  12284. src0->grad = ggml_add_or_set(ctx,
  12285. src0->grad,
  12286. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12287. zero_table);
  12288. }
  12289. } break;
  12290. case GGML_OP_REPEAT_BACK:
  12291. {
  12292. if (src0->grad) {
  12293. // TODO: test this
  12294. src0->grad = ggml_add_or_set(ctx,
  12295. src0->grad,
  12296. ggml_repeat(ctx, tensor->grad, src0->grad),
  12297. zero_table);
  12298. }
  12299. } break;
  12300. case GGML_OP_CONCAT:
  12301. {
  12302. GGML_ASSERT(false); // TODO: implement
  12303. } break;
  12304. case GGML_OP_SILU_BACK:
  12305. {
  12306. GGML_ASSERT(false); // TODO: not implemented
  12307. } break;
  12308. case GGML_OP_NORM:
  12309. {
  12310. GGML_ASSERT(false); // TODO: not implemented
  12311. } break;
  12312. case GGML_OP_RMS_NORM:
  12313. {
  12314. // necessary for llama
  12315. if (src0->grad) {
  12316. float eps;
  12317. memcpy(&eps, tensor->op_params, sizeof(float));
  12318. src0->grad = ggml_add_or_set(ctx,
  12319. src0->grad,
  12320. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  12321. zero_table);
  12322. }
  12323. } break;
  12324. case GGML_OP_RMS_NORM_BACK:
  12325. {
  12326. GGML_ASSERT(false); // TODO: not implemented
  12327. } break;
  12328. case GGML_OP_GROUP_NORM:
  12329. {
  12330. GGML_ASSERT(false); // TODO: not implemented
  12331. } break;
  12332. case GGML_OP_MUL_MAT:
  12333. {
  12334. // https://cs231n.github.io/optimization-2/#staged
  12335. // # forward pass
  12336. // s0 = np.random.randn(5, 10)
  12337. // s1 = np.random.randn(10, 3)
  12338. // t = s0.dot(s1)
  12339. // # now suppose we had the gradient on t from above in the circuit
  12340. // dt = np.random.randn(*t.shape) # same shape as t
  12341. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12342. // ds1 = t.T.dot(dt)
  12343. // tensor.shape [m,p,qq,rr]
  12344. // src0.shape [n,m,q1,r1]
  12345. // src1.shape [n,p,qq,rr]
  12346. // necessary for llama
  12347. if (src0->grad) {
  12348. struct ggml_tensor * s1_tg =
  12349. ggml_out_prod(ctx, // [n,m,qq,rr]
  12350. src1, // [n,p,qq,rr]
  12351. tensor->grad); // [m,p,qq,rr]
  12352. const int64_t qq = s1_tg->ne[2];
  12353. const int64_t rr = s1_tg->ne[3];
  12354. const int64_t q1 = src0->ne[2];
  12355. const int64_t r1 = src0->ne[3];
  12356. const bool ne2_broadcasted = qq > q1;
  12357. const bool ne3_broadcasted = rr > r1;
  12358. if (ne2_broadcasted || ne3_broadcasted) {
  12359. // sum broadcast repetitions of s1_tg into shape of src0
  12360. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  12361. }
  12362. src0->grad =
  12363. ggml_add_or_set(ctx,
  12364. src0->grad, // [n,m,q1,r1]
  12365. s1_tg, // [n,m,q1,r1]
  12366. zero_table);
  12367. }
  12368. if (src1->grad) {
  12369. src1->grad =
  12370. ggml_add_or_set(ctx,
  12371. src1->grad, // [n,p,qq,rr]
  12372. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  12373. // ggml_cont(ctx, // [m,n,q1,r1]
  12374. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  12375. // tensor->grad), // [m,p,qq,rr]
  12376. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12377. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12378. // // and then use ggml_out_prod
  12379. ggml_out_prod(ctx, // [n,p,qq,rr]
  12380. src0, // [n,m,q1,r1]
  12381. ggml_transpose(ctx, // [p,m,qq,rr]
  12382. tensor->grad)), // [m,p,qq,rr]
  12383. zero_table);
  12384. }
  12385. } break;
  12386. case GGML_OP_MUL_MAT_ID:
  12387. {
  12388. GGML_ASSERT(false); // TODO: not implemented
  12389. } break;
  12390. case GGML_OP_OUT_PROD:
  12391. {
  12392. GGML_ASSERT(false); // TODO: not implemented
  12393. } break;
  12394. case GGML_OP_SCALE:
  12395. {
  12396. // necessary for llama
  12397. if (src0->grad) {
  12398. src0->grad =
  12399. ggml_add_or_set(ctx,
  12400. src0->grad,
  12401. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12402. zero_table);
  12403. }
  12404. if (src1->grad) {
  12405. src1->grad =
  12406. ggml_add_or_set(ctx,
  12407. src1->grad,
  12408. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12409. zero_table);
  12410. }
  12411. } break;
  12412. case GGML_OP_SET:
  12413. {
  12414. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12415. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12416. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12417. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12418. struct ggml_tensor * tensor_grad_view = NULL;
  12419. if (src0->grad || src1->grad) {
  12420. GGML_ASSERT(src0->type == tensor->type);
  12421. GGML_ASSERT(tensor->grad->type == tensor->type);
  12422. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12423. tensor_grad_view = ggml_view_4d(ctx,
  12424. tensor->grad,
  12425. src1->grad->ne[0],
  12426. src1->grad->ne[1],
  12427. src1->grad->ne[2],
  12428. src1->grad->ne[3],
  12429. nb1, nb2, nb3, offset);
  12430. }
  12431. if (src0->grad) {
  12432. src0->grad = ggml_add_or_set(ctx,
  12433. src0->grad,
  12434. ggml_acc_impl(ctx,
  12435. tensor->grad,
  12436. ggml_neg(ctx, tensor_grad_view),
  12437. nb1, nb2, nb3, offset, false),
  12438. zero_table);
  12439. }
  12440. if (src1->grad) {
  12441. src1->grad =
  12442. ggml_add_or_set(ctx,
  12443. src1->grad,
  12444. ggml_reshape(ctx,
  12445. ggml_cont(ctx, tensor_grad_view),
  12446. src1->grad),
  12447. zero_table);
  12448. }
  12449. } break;
  12450. case GGML_OP_CPY:
  12451. {
  12452. // necessary for llama
  12453. // cpy overwrites value of src1 by src0 and returns view(src1)
  12454. // the overwriting is mathematically equivalent to:
  12455. // tensor = src0 * 1 + src1 * 0
  12456. if (src0->grad) {
  12457. // dsrc0 = dtensor * 1
  12458. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12459. }
  12460. if (src1->grad) {
  12461. // dsrc1 = dtensor * 0 -> noop
  12462. }
  12463. } break;
  12464. case GGML_OP_CONT:
  12465. {
  12466. // same as cpy
  12467. if (src0->grad) {
  12468. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12469. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12470. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12471. }
  12472. } break;
  12473. case GGML_OP_RESHAPE:
  12474. {
  12475. // necessary for llama
  12476. if (src0->grad) {
  12477. src0->grad =
  12478. ggml_add_or_set(ctx, src0->grad,
  12479. ggml_reshape(ctx,
  12480. ggml_is_contiguous(tensor->grad)
  12481. ? tensor->grad
  12482. : ggml_cont(ctx, tensor->grad),
  12483. src0->grad),
  12484. zero_table);
  12485. }
  12486. } break;
  12487. case GGML_OP_VIEW:
  12488. {
  12489. // necessary for llama
  12490. if (src0->grad) {
  12491. size_t offset;
  12492. memcpy(&offset, tensor->op_params, sizeof(offset));
  12493. size_t nb1 = tensor->nb[1];
  12494. size_t nb2 = tensor->nb[2];
  12495. size_t nb3 = tensor->nb[3];
  12496. if (src0->type != src0->grad->type) {
  12497. // gradient is typically F32, but src0 could be other type
  12498. size_t ng = ggml_element_size(src0->grad);
  12499. size_t n0 = ggml_element_size(src0);
  12500. GGML_ASSERT(offset % n0 == 0);
  12501. GGML_ASSERT(nb1 % n0 == 0);
  12502. GGML_ASSERT(nb2 % n0 == 0);
  12503. GGML_ASSERT(nb3 % n0 == 0);
  12504. offset = (offset / n0) * ng;
  12505. nb1 = (nb1 / n0) * ng;
  12506. nb2 = (nb2 / n0) * ng;
  12507. nb3 = (nb3 / n0) * ng;
  12508. }
  12509. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  12510. }
  12511. } break;
  12512. case GGML_OP_PERMUTE:
  12513. {
  12514. // necessary for llama
  12515. if (src0->grad) {
  12516. int32_t * axes = (int32_t *) tensor->op_params;
  12517. int axis0 = axes[0] & 0x3;
  12518. int axis1 = axes[1] & 0x3;
  12519. int axis2 = axes[2] & 0x3;
  12520. int axis3 = axes[3] & 0x3;
  12521. int axes_backward[4] = {0,0,0,0};
  12522. axes_backward[axis0] = 0;
  12523. axes_backward[axis1] = 1;
  12524. axes_backward[axis2] = 2;
  12525. axes_backward[axis3] = 3;
  12526. src0->grad =
  12527. ggml_add_or_set(ctx, src0->grad,
  12528. ggml_permute(ctx,
  12529. tensor->grad,
  12530. axes_backward[0],
  12531. axes_backward[1],
  12532. axes_backward[2],
  12533. axes_backward[3]),
  12534. zero_table);
  12535. }
  12536. } break;
  12537. case GGML_OP_TRANSPOSE:
  12538. {
  12539. // necessary for llama
  12540. if (src0->grad) {
  12541. src0->grad =
  12542. ggml_add_or_set(ctx, src0->grad,
  12543. ggml_transpose(ctx, tensor->grad),
  12544. zero_table);
  12545. }
  12546. } break;
  12547. case GGML_OP_GET_ROWS:
  12548. {
  12549. // necessary for llama (only for tokenizer)
  12550. if (src0->grad) {
  12551. src0->grad =
  12552. ggml_add_or_set(ctx, src0->grad,
  12553. // last ggml_get_rows_back argument src0->grad is only
  12554. // necessary to setup correct output shape
  12555. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12556. zero_table);
  12557. }
  12558. if (src1->grad) {
  12559. // noop
  12560. }
  12561. } break;
  12562. case GGML_OP_GET_ROWS_BACK:
  12563. {
  12564. GGML_ASSERT(false); // TODO: not implemented
  12565. } break;
  12566. case GGML_OP_DIAG:
  12567. {
  12568. GGML_ASSERT(false); // TODO: not implemented
  12569. } break;
  12570. case GGML_OP_DIAG_MASK_INF:
  12571. {
  12572. // necessary for llama
  12573. if (src0->grad) {
  12574. const int n_past = ((int32_t *) tensor->op_params)[0];
  12575. src0->grad =
  12576. ggml_add_or_set(ctx, src0->grad,
  12577. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12578. zero_table);
  12579. }
  12580. } break;
  12581. case GGML_OP_DIAG_MASK_ZERO:
  12582. {
  12583. // necessary for llama
  12584. if (src0->grad) {
  12585. const int n_past = ((int32_t *) tensor->op_params)[0];
  12586. src0->grad =
  12587. ggml_add_or_set(ctx, src0->grad,
  12588. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12589. zero_table);
  12590. }
  12591. } break;
  12592. case GGML_OP_SOFT_MAX:
  12593. {
  12594. // necessary for llama
  12595. if (src0->grad) {
  12596. src0->grad =
  12597. ggml_add_or_set(ctx, src0->grad,
  12598. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12599. zero_table);
  12600. }
  12601. } break;
  12602. case GGML_OP_SOFT_MAX_BACK:
  12603. {
  12604. GGML_ASSERT(false); // TODO: not implemented
  12605. } break;
  12606. case GGML_OP_ROPE:
  12607. {
  12608. // necessary for llama
  12609. if (src0->grad) {
  12610. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12611. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12612. const int mode = ((int32_t *) tensor->op_params)[2];
  12613. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12614. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12615. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12616. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12617. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12618. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12619. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12620. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12621. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12622. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12623. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12624. src0->grad = ggml_add_or_set(ctx,
  12625. src0->grad,
  12626. ggml_rope_back(ctx,
  12627. tensor->grad,
  12628. src1,
  12629. n_dims,
  12630. mode,
  12631. n_ctx,
  12632. n_orig_ctx,
  12633. freq_base,
  12634. freq_scale,
  12635. ext_factor,
  12636. attn_factor,
  12637. beta_fast,
  12638. beta_slow,
  12639. xpos_base,
  12640. xpos_down),
  12641. zero_table);
  12642. }
  12643. } break;
  12644. case GGML_OP_ROPE_BACK:
  12645. {
  12646. if (src0->grad) {
  12647. //const int n_past = ((int32_t *) tensor->op_params)[0];
  12648. const int n_dims = ((int32_t *) tensor->op_params)[1];
  12649. const int mode = ((int32_t *) tensor->op_params)[2];
  12650. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  12651. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  12652. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  12653. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  12654. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  12655. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  12656. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  12657. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  12658. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  12659. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  12660. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  12661. src0->grad = ggml_add_or_set(ctx,
  12662. src0->grad,
  12663. ggml_rope_impl(ctx,
  12664. tensor->grad,
  12665. src1,
  12666. n_dims,
  12667. mode,
  12668. n_ctx,
  12669. n_orig_ctx,
  12670. freq_base,
  12671. freq_scale,
  12672. ext_factor,
  12673. attn_factor,
  12674. beta_fast,
  12675. beta_slow,
  12676. xpos_base,
  12677. xpos_down,
  12678. false),
  12679. zero_table);
  12680. }
  12681. } break;
  12682. case GGML_OP_ALIBI:
  12683. {
  12684. GGML_ASSERT(false); // TODO: not implemented
  12685. } break;
  12686. case GGML_OP_CLAMP:
  12687. {
  12688. GGML_ASSERT(false); // TODO: not implemented
  12689. } break;
  12690. case GGML_OP_CONV_TRANSPOSE_1D:
  12691. {
  12692. GGML_ASSERT(false); // TODO: not implemented
  12693. } break;
  12694. case GGML_OP_IM2COL:
  12695. {
  12696. GGML_ASSERT(false); // TODO: not implemented
  12697. } break;
  12698. case GGML_OP_CONV_TRANSPOSE_2D:
  12699. {
  12700. GGML_ASSERT(false); // TODO: not implemented
  12701. } break;
  12702. case GGML_OP_POOL_1D:
  12703. {
  12704. GGML_ASSERT(false); // TODO: not implemented
  12705. } break;
  12706. case GGML_OP_POOL_2D:
  12707. {
  12708. GGML_ASSERT(false); // TODO: not implemented
  12709. } break;
  12710. case GGML_OP_UPSCALE:
  12711. {
  12712. GGML_ASSERT(false); // TODO: not implemented
  12713. } break;
  12714. case GGML_OP_PAD:
  12715. {
  12716. GGML_ASSERT(false); // TODO: not implemented
  12717. } break;
  12718. case GGML_OP_ARGSORT:
  12719. {
  12720. GGML_ASSERT(false); // TODO: not implemented
  12721. } break;
  12722. case GGML_OP_LEAKY_RELU:
  12723. {
  12724. GGML_ASSERT(false); // TODO: not implemented
  12725. } break;
  12726. case GGML_OP_FLASH_ATTN:
  12727. {
  12728. struct ggml_tensor * flash_grad = NULL;
  12729. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12730. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12731. GGML_ASSERT(t == 0 || t == 1);
  12732. bool masked = t != 0;
  12733. flash_grad =
  12734. ggml_flash_attn_back(ctx,
  12735. src0,
  12736. src1,
  12737. tensor->src[2],
  12738. tensor->grad,
  12739. masked);
  12740. }
  12741. struct ggml_tensor * src2 = tensor->src[2];
  12742. const int64_t elem_q = ggml_nelements(src0);
  12743. const int64_t elem_k = ggml_nelements(src1);
  12744. const int64_t elem_v = ggml_nelements(src2);
  12745. enum ggml_type result_type = flash_grad->type;
  12746. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12747. const size_t tsize = ggml_type_size(result_type);
  12748. const size_t offs_q = 0;
  12749. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12750. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12751. if (src0->grad) {
  12752. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  12753. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  12754. src0->grad = ggml_add_or_set(ctx,
  12755. src0->grad,
  12756. grad_q,
  12757. zero_table);
  12758. }
  12759. if (src1->grad) {
  12760. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  12761. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  12762. src1->grad = ggml_add_or_set(ctx,
  12763. src1->grad,
  12764. grad_k,
  12765. zero_table);
  12766. }
  12767. if (src2->grad) {
  12768. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  12769. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  12770. src2->grad = ggml_add_or_set(ctx,
  12771. src2->grad,
  12772. grad_v,
  12773. zero_table);
  12774. }
  12775. } break;
  12776. case GGML_OP_FLASH_FF:
  12777. {
  12778. GGML_ASSERT(false); // not supported
  12779. } break;
  12780. case GGML_OP_FLASH_ATTN_BACK:
  12781. {
  12782. GGML_ASSERT(false); // not supported
  12783. } break;
  12784. case GGML_OP_WIN_PART:
  12785. case GGML_OP_WIN_UNPART:
  12786. case GGML_OP_UNARY:
  12787. {
  12788. switch (ggml_get_unary_op(tensor)) {
  12789. case GGML_UNARY_OP_ABS:
  12790. {
  12791. if (src0->grad) {
  12792. src0->grad =
  12793. ggml_add_or_set(ctx,
  12794. src0->grad,
  12795. ggml_mul(ctx,
  12796. ggml_sgn(ctx, src0),
  12797. tensor->grad),
  12798. zero_table);
  12799. }
  12800. } break;
  12801. case GGML_UNARY_OP_SGN:
  12802. {
  12803. if (src0->grad) {
  12804. // noop
  12805. }
  12806. } break;
  12807. case GGML_UNARY_OP_NEG:
  12808. {
  12809. if (src0->grad) {
  12810. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12811. }
  12812. } break;
  12813. case GGML_UNARY_OP_STEP:
  12814. {
  12815. if (src0->grad) {
  12816. // noop
  12817. }
  12818. } break;
  12819. case GGML_UNARY_OP_TANH:
  12820. {
  12821. GGML_ASSERT(false); // TODO: not implemented
  12822. } break;
  12823. case GGML_UNARY_OP_ELU:
  12824. {
  12825. GGML_ASSERT(false); // TODO: not implemented
  12826. } break;
  12827. case GGML_UNARY_OP_RELU:
  12828. {
  12829. if (src0->grad) {
  12830. src0->grad = ggml_add_or_set(ctx,
  12831. src0->grad,
  12832. ggml_mul(ctx,
  12833. ggml_step(ctx, src0),
  12834. tensor->grad),
  12835. zero_table);
  12836. }
  12837. } break;
  12838. case GGML_UNARY_OP_GELU:
  12839. {
  12840. GGML_ASSERT(false); // TODO: not implemented
  12841. } break;
  12842. case GGML_UNARY_OP_GELU_QUICK:
  12843. {
  12844. GGML_ASSERT(false); // TODO: not implemented
  12845. } break;
  12846. case GGML_UNARY_OP_SILU:
  12847. {
  12848. // necessary for llama
  12849. if (src0->grad) {
  12850. src0->grad = ggml_add_or_set(ctx,
  12851. src0->grad,
  12852. ggml_silu_back(ctx, src0, tensor->grad),
  12853. zero_table);
  12854. }
  12855. } break;
  12856. default:
  12857. GGML_ASSERT(false);
  12858. }
  12859. } break;
  12860. case GGML_OP_GET_REL_POS:
  12861. case GGML_OP_ADD_REL_POS:
  12862. case GGML_OP_MAP_UNARY:
  12863. case GGML_OP_MAP_BINARY:
  12864. case GGML_OP_MAP_CUSTOM1_F32:
  12865. case GGML_OP_MAP_CUSTOM2_F32:
  12866. case GGML_OP_MAP_CUSTOM3_F32:
  12867. case GGML_OP_MAP_CUSTOM1:
  12868. case GGML_OP_MAP_CUSTOM2:
  12869. case GGML_OP_MAP_CUSTOM3:
  12870. {
  12871. GGML_ASSERT(false); // not supported
  12872. } break;
  12873. case GGML_OP_CROSS_ENTROPY_LOSS:
  12874. {
  12875. if (src0->grad) {
  12876. src0->grad = ggml_add_or_set(ctx,
  12877. src0->grad,
  12878. ggml_cross_entropy_loss_back(ctx,
  12879. src0,
  12880. src1,
  12881. tensor->grad),
  12882. zero_table);
  12883. }
  12884. } break;
  12885. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12886. {
  12887. GGML_ASSERT(false); // not supported
  12888. } break;
  12889. case GGML_OP_NONE:
  12890. {
  12891. // nop
  12892. } break;
  12893. case GGML_OP_COUNT:
  12894. {
  12895. GGML_ASSERT(false);
  12896. } break;
  12897. }
  12898. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12899. if (tensor->src[i] && tensor->src[i]->grad) {
  12900. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  12901. }
  12902. }
  12903. }
  12904. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12905. if (node->grad == NULL) {
  12906. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12907. // it can also happen during forward pass, if the user performs computations with constants
  12908. if (node->op != GGML_OP_NONE) {
  12909. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12910. }
  12911. }
  12912. // check if already visited
  12913. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  12914. return;
  12915. }
  12916. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12917. const int k =
  12918. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  12919. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  12920. /* unknown order, just fall back to using i*/ i;
  12921. if (node->src[k]) {
  12922. ggml_visit_parents(cgraph, node->src[k]);
  12923. }
  12924. }
  12925. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12926. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12927. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  12928. if (strlen(node->name) == 0) {
  12929. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12930. }
  12931. cgraph->leafs[cgraph->n_leafs] = node;
  12932. cgraph->n_leafs++;
  12933. } else {
  12934. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  12935. if (strlen(node->name) == 0) {
  12936. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12937. }
  12938. cgraph->nodes[cgraph->n_nodes] = node;
  12939. if (cgraph->grads) {
  12940. cgraph->grads[cgraph->n_nodes] = node->grad;
  12941. }
  12942. cgraph->n_nodes++;
  12943. }
  12944. }
  12945. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12946. if (!expand) {
  12947. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  12948. ggml_graph_clear(cgraph);
  12949. }
  12950. const int n0 = cgraph->n_nodes;
  12951. UNUSED(n0);
  12952. ggml_visit_parents(cgraph, tensor);
  12953. const int n_new = cgraph->n_nodes - n0;
  12954. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12955. if (n_new > 0) {
  12956. // the last added node should always be starting point
  12957. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12958. }
  12959. }
  12960. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12961. ggml_build_forward_impl(cgraph, tensor, true);
  12962. }
  12963. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  12964. GGML_ASSERT(gf->n_nodes > 0);
  12965. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12966. if (keep) {
  12967. for (int i = 0; i < gf->n_nodes; i++) {
  12968. struct ggml_tensor * node = gf->nodes[i];
  12969. if (node->grad) {
  12970. node->grad = ggml_dup_tensor(ctx, node);
  12971. gf->grads[i] = node->grad;
  12972. }
  12973. }
  12974. }
  12975. // remember original gradients which start with zero values
  12976. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  12977. for (int i = 0; i < gf->n_nodes; i++) {
  12978. if (gf->grads[i]) {
  12979. ggml_hash_insert(zero_table, gf->grads[i]);
  12980. }
  12981. }
  12982. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  12983. struct ggml_tensor * node = gf->nodes[i];
  12984. // inplace operations to add gradients are not created by ggml_compute_backward
  12985. // use allocator to automatically make inplace operations
  12986. if (node->grad) {
  12987. ggml_compute_backward(ctx, node, zero_table);
  12988. }
  12989. }
  12990. for (int i = 0; i < gf->n_nodes; i++) {
  12991. struct ggml_tensor * node = gf->nodes[i];
  12992. if (node->is_param) {
  12993. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  12994. ggml_build_forward_expand(gb, node->grad);
  12995. }
  12996. }
  12997. ggml_hash_set_free(zero_table);
  12998. }
  12999. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13000. size_t nbytes = sizeof(struct ggml_cgraph);
  13001. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13002. if (grads) {
  13003. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13004. }
  13005. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13006. return nbytes;
  13007. }
  13008. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13009. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13010. }
  13011. size_t ggml_graph_overhead(void) {
  13012. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13013. }
  13014. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13015. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13016. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, obj_size);
  13017. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13018. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13019. size_t hash_size = ggml_hash_size(size * 2);
  13020. struct ggml_tensor ** nodes_ptr = data_start;
  13021. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13022. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13023. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13024. // check that we allocated the correct amount of memory
  13025. assert(obj_size == (size_t) (
  13026. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13027. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13028. *cgraph = (struct ggml_cgraph) {
  13029. /*.size =*/ size,
  13030. /*.n_nodes =*/ 0,
  13031. /*.n_leafs =*/ 0,
  13032. /*.nodes =*/ nodes_ptr,
  13033. /*.grads =*/ grads_ptr,
  13034. /*.leafs =*/ leafs_ptr,
  13035. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13036. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13037. /*.perf_runs =*/ 0,
  13038. /*.perf_cycles =*/ 0,
  13039. /*.perf_time_us =*/ 0,
  13040. };
  13041. return cgraph;
  13042. }
  13043. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13044. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13045. }
  13046. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13047. struct ggml_cgraph cgraph = {
  13048. /*.size =*/ 0,
  13049. /*.n_nodes =*/ i1 - i0,
  13050. /*.n_leafs =*/ 0,
  13051. /*.nodes =*/ cgraph0->nodes + i0,
  13052. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13053. /*.leafs =*/ NULL,
  13054. /*.hash_table =*/ { 0, NULL },
  13055. /*.order =*/ cgraph0->order,
  13056. /*.perf_runs =*/ 0,
  13057. /*.perf_cycles =*/ 0,
  13058. /*.perf_time_us =*/ 0,
  13059. };
  13060. return cgraph;
  13061. }
  13062. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13063. GGML_ASSERT(dst->size >= src->n_leafs);
  13064. GGML_ASSERT(dst->size >= src->n_nodes);
  13065. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13066. dst->n_leafs = src->n_leafs;
  13067. dst->n_nodes = src->n_nodes;
  13068. dst->order = src->order;
  13069. for (int i = 0; i < src->n_leafs; ++i) {
  13070. dst->leafs[i] = src->leafs[i];
  13071. }
  13072. for (int i = 0; i < src->n_nodes; ++i) {
  13073. dst->nodes[i] = src->nodes[i];
  13074. }
  13075. if (src->grads) {
  13076. GGML_ASSERT(dst->grads != NULL);
  13077. for (int i = 0; i < src->n_nodes; ++i) {
  13078. dst->grads[i] = src->grads[i];
  13079. }
  13080. }
  13081. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13082. if (src->visited_hash_table.keys[i]) {
  13083. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13084. }
  13085. }
  13086. }
  13087. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13088. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13089. ggml_graph_cpy(cgraph, result);
  13090. return result;
  13091. }
  13092. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13093. GGML_ASSERT(cgraph->grads != NULL);
  13094. for (int i = 0; i < cgraph->n_nodes; i++) {
  13095. struct ggml_tensor * grad = cgraph->grads[i];
  13096. if (grad) {
  13097. ggml_set_zero(grad);
  13098. }
  13099. }
  13100. }
  13101. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13102. cgraph->n_leafs = 0;
  13103. cgraph->n_nodes = 0;
  13104. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13105. }
  13106. //
  13107. // thread data
  13108. //
  13109. // synchronization is done via busy loops
  13110. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13111. //
  13112. #ifdef __APPLE__
  13113. //#include <os/lock.h>
  13114. //
  13115. //typedef os_unfair_lock ggml_lock_t;
  13116. //
  13117. //#define ggml_lock_init(x) UNUSED(x)
  13118. //#define ggml_lock_destroy(x) UNUSED(x)
  13119. //#define ggml_lock_lock os_unfair_lock_lock
  13120. //#define ggml_lock_unlock os_unfair_lock_unlock
  13121. //
  13122. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13123. typedef int ggml_lock_t;
  13124. #define ggml_lock_init(x) UNUSED(x)
  13125. #define ggml_lock_destroy(x) UNUSED(x)
  13126. #define ggml_lock_lock(x) UNUSED(x)
  13127. #define ggml_lock_unlock(x) UNUSED(x)
  13128. #define GGML_LOCK_INITIALIZER 0
  13129. typedef pthread_t ggml_thread_t;
  13130. #define ggml_thread_create pthread_create
  13131. #define ggml_thread_join pthread_join
  13132. #else
  13133. //typedef pthread_spinlock_t ggml_lock_t;
  13134. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13135. //#define ggml_lock_destroy pthread_spin_destroy
  13136. //#define ggml_lock_lock pthread_spin_lock
  13137. //#define ggml_lock_unlock pthread_spin_unlock
  13138. typedef int ggml_lock_t;
  13139. #define ggml_lock_init(x) UNUSED(x)
  13140. #define ggml_lock_destroy(x) UNUSED(x)
  13141. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13142. #define ggml_lock_lock(x) _mm_pause()
  13143. #else
  13144. #define ggml_lock_lock(x) UNUSED(x)
  13145. #endif
  13146. #define ggml_lock_unlock(x) UNUSED(x)
  13147. #define GGML_LOCK_INITIALIZER 0
  13148. typedef pthread_t ggml_thread_t;
  13149. #define ggml_thread_create pthread_create
  13150. #define ggml_thread_join pthread_join
  13151. #endif
  13152. // Android's libc implementation "bionic" does not support setting affinity
  13153. #if defined(__linux__) && !defined(__BIONIC__)
  13154. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  13155. if (!ggml_is_numa()) {
  13156. return;
  13157. }
  13158. // run thread on node_num thread_n / (threads per node)
  13159. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13160. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13161. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13162. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13163. CPU_ZERO_S(setsize, cpus);
  13164. for (size_t i = 0; i < node->n_cpus; ++i) {
  13165. CPU_SET_S(node->cpus[i], setsize, cpus);
  13166. }
  13167. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13168. if (rv) {
  13169. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13170. strerror(rv));
  13171. }
  13172. CPU_FREE(cpus);
  13173. }
  13174. static void clear_numa_thread_affinity(void) {
  13175. if (!ggml_is_numa()) {
  13176. return;
  13177. }
  13178. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13179. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13180. CPU_ZERO_S(setsize, cpus);
  13181. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13182. CPU_SET_S(i, setsize, cpus);
  13183. }
  13184. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13185. if (rv) {
  13186. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13187. strerror(rv));
  13188. }
  13189. CPU_FREE(cpus);
  13190. }
  13191. #else
  13192. // TODO: Windows etc.
  13193. // (the linux implementation may also work on BSD, someone should test)
  13194. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13195. static void clear_numa_thread_affinity(void) {}
  13196. #endif
  13197. struct ggml_compute_state_shared {
  13198. const struct ggml_cgraph * cgraph;
  13199. const struct ggml_cplan * cplan;
  13200. int64_t perf_node_start_cycles;
  13201. int64_t perf_node_start_time_us;
  13202. const int n_threads;
  13203. // synchronization primitives
  13204. atomic_int n_active; // num active threads
  13205. atomic_int node_n; // active graph node
  13206. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13207. void * abort_callback_data;
  13208. };
  13209. struct ggml_compute_state {
  13210. ggml_thread_t thrd;
  13211. int ith;
  13212. struct ggml_compute_state_shared * shared;
  13213. };
  13214. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13215. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13216. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13217. node->perf_runs++;
  13218. node->perf_cycles += cycles_cur;
  13219. node->perf_time_us += time_us_cur;
  13220. }
  13221. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  13222. int n_tasks = 0;
  13223. switch (node->op) {
  13224. case GGML_OP_CPY:
  13225. case GGML_OP_DUP:
  13226. case GGML_OP_ADD:
  13227. case GGML_OP_ADD1:
  13228. case GGML_OP_ACC:
  13229. {
  13230. n_tasks = n_threads;
  13231. } break;
  13232. case GGML_OP_SUB:
  13233. case GGML_OP_SQR:
  13234. case GGML_OP_SQRT:
  13235. case GGML_OP_LOG:
  13236. case GGML_OP_SUM:
  13237. case GGML_OP_SUM_ROWS:
  13238. case GGML_OP_MEAN:
  13239. case GGML_OP_ARGMAX:
  13240. case GGML_OP_REPEAT:
  13241. case GGML_OP_REPEAT_BACK:
  13242. case GGML_OP_LEAKY_RELU:
  13243. {
  13244. n_tasks = 1;
  13245. } break;
  13246. case GGML_OP_UNARY:
  13247. switch (ggml_get_unary_op(node)) {
  13248. case GGML_UNARY_OP_ABS:
  13249. case GGML_UNARY_OP_SGN:
  13250. case GGML_UNARY_OP_NEG:
  13251. case GGML_UNARY_OP_STEP:
  13252. case GGML_UNARY_OP_TANH:
  13253. case GGML_UNARY_OP_ELU:
  13254. case GGML_UNARY_OP_RELU:
  13255. {
  13256. n_tasks = 1;
  13257. } break;
  13258. case GGML_UNARY_OP_GELU:
  13259. case GGML_UNARY_OP_GELU_QUICK:
  13260. case GGML_UNARY_OP_SILU:
  13261. {
  13262. n_tasks = n_threads;
  13263. } break;
  13264. default:
  13265. GGML_ASSERT(false);
  13266. }
  13267. break;
  13268. case GGML_OP_SILU_BACK:
  13269. case GGML_OP_MUL:
  13270. case GGML_OP_DIV:
  13271. case GGML_OP_NORM:
  13272. case GGML_OP_RMS_NORM:
  13273. case GGML_OP_RMS_NORM_BACK:
  13274. case GGML_OP_GROUP_NORM:
  13275. case GGML_OP_CONCAT:
  13276. {
  13277. n_tasks = n_threads;
  13278. } break;
  13279. case GGML_OP_MUL_MAT:
  13280. {
  13281. n_tasks = n_threads;
  13282. // TODO: use different scheduling for different matrix sizes
  13283. //const int nr0 = ggml_nrows(node->src[0]);
  13284. //const int nr1 = ggml_nrows(node->src[1]);
  13285. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13286. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13287. #if defined(GGML_USE_CUBLAS)
  13288. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13289. n_tasks = 1; // TODO: this actually is doing nothing
  13290. // the threads are still spinning
  13291. }
  13292. #elif defined(GGML_USE_CLBLAST)
  13293. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13294. n_tasks = 1; // TODO: this actually is doing nothing
  13295. // the threads are still spinning
  13296. }
  13297. #endif
  13298. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13299. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13300. n_tasks = 1; // TODO: this actually is doing nothing
  13301. // the threads are still spinning
  13302. }
  13303. #endif
  13304. } break;
  13305. case GGML_OP_MUL_MAT_ID:
  13306. {
  13307. // FIXME: blas
  13308. n_tasks = n_threads;
  13309. } break;
  13310. case GGML_OP_OUT_PROD:
  13311. {
  13312. n_tasks = n_threads;
  13313. } break;
  13314. case GGML_OP_SCALE:
  13315. case GGML_OP_SET:
  13316. case GGML_OP_CONT:
  13317. case GGML_OP_RESHAPE:
  13318. case GGML_OP_VIEW:
  13319. case GGML_OP_PERMUTE:
  13320. case GGML_OP_TRANSPOSE:
  13321. case GGML_OP_GET_ROWS:
  13322. case GGML_OP_GET_ROWS_BACK:
  13323. case GGML_OP_DIAG:
  13324. {
  13325. n_tasks = 1;
  13326. } break;
  13327. case GGML_OP_DIAG_MASK_ZERO:
  13328. case GGML_OP_DIAG_MASK_INF:
  13329. case GGML_OP_SOFT_MAX_BACK:
  13330. case GGML_OP_ROPE:
  13331. case GGML_OP_ROPE_BACK:
  13332. case GGML_OP_ADD_REL_POS:
  13333. {
  13334. n_tasks = n_threads;
  13335. } break;
  13336. case GGML_OP_ALIBI:
  13337. {
  13338. n_tasks = 1; //TODO
  13339. } break;
  13340. case GGML_OP_CLAMP:
  13341. {
  13342. n_tasks = 1; //TODO
  13343. } break;
  13344. case GGML_OP_SOFT_MAX:
  13345. {
  13346. n_tasks = MIN(MIN(4, n_threads), ggml_nrows(node->src[0]));
  13347. } break;
  13348. case GGML_OP_CONV_TRANSPOSE_1D:
  13349. {
  13350. n_tasks = n_threads;
  13351. } break;
  13352. case GGML_OP_IM2COL:
  13353. {
  13354. n_tasks = n_threads;
  13355. } break;
  13356. case GGML_OP_CONV_TRANSPOSE_2D:
  13357. {
  13358. n_tasks = n_threads;
  13359. } break;
  13360. case GGML_OP_POOL_1D:
  13361. case GGML_OP_POOL_2D:
  13362. {
  13363. n_tasks = 1;
  13364. } break;
  13365. case GGML_OP_UPSCALE:
  13366. {
  13367. n_tasks = n_threads;
  13368. } break;
  13369. case GGML_OP_PAD:
  13370. {
  13371. n_tasks = n_threads;
  13372. } break;
  13373. case GGML_OP_ARGSORT:
  13374. {
  13375. n_tasks = n_threads;
  13376. } break;
  13377. case GGML_OP_FLASH_ATTN:
  13378. {
  13379. n_tasks = n_threads;
  13380. } break;
  13381. case GGML_OP_FLASH_FF:
  13382. {
  13383. n_tasks = n_threads;
  13384. } break;
  13385. case GGML_OP_FLASH_ATTN_BACK:
  13386. {
  13387. n_tasks = n_threads;
  13388. } break;
  13389. case GGML_OP_WIN_PART:
  13390. case GGML_OP_WIN_UNPART:
  13391. case GGML_OP_GET_REL_POS:
  13392. case GGML_OP_MAP_UNARY:
  13393. case GGML_OP_MAP_BINARY:
  13394. case GGML_OP_MAP_CUSTOM1_F32:
  13395. case GGML_OP_MAP_CUSTOM2_F32:
  13396. case GGML_OP_MAP_CUSTOM3_F32:
  13397. {
  13398. n_tasks = 1;
  13399. } break;
  13400. case GGML_OP_MAP_CUSTOM1:
  13401. {
  13402. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  13403. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13404. n_tasks = n_threads;
  13405. } else {
  13406. n_tasks = MIN(p->n_tasks, n_threads);
  13407. }
  13408. } break;
  13409. case GGML_OP_MAP_CUSTOM2:
  13410. {
  13411. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  13412. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13413. n_tasks = n_threads;
  13414. } else {
  13415. n_tasks = MIN(p->n_tasks, n_threads);
  13416. }
  13417. } break;
  13418. case GGML_OP_MAP_CUSTOM3:
  13419. {
  13420. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  13421. if (p->n_tasks == GGML_N_TASKS_MAX) {
  13422. n_tasks = n_threads;
  13423. } else {
  13424. n_tasks = MIN(p->n_tasks, n_threads);
  13425. }
  13426. } break;
  13427. case GGML_OP_CROSS_ENTROPY_LOSS:
  13428. {
  13429. n_tasks = n_threads;
  13430. } break;
  13431. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13432. {
  13433. n_tasks = n_threads;
  13434. } break;
  13435. case GGML_OP_NONE:
  13436. {
  13437. n_tasks = 1;
  13438. } break;
  13439. case GGML_OP_COUNT:
  13440. {
  13441. GGML_ASSERT(false);
  13442. } break;
  13443. default:
  13444. {
  13445. fprintf(stderr, "%s: op not implemented: ", __func__);
  13446. if (node->op < GGML_OP_COUNT) {
  13447. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  13448. } else {
  13449. fprintf(stderr, "%d\n", node->op);
  13450. }
  13451. GGML_ASSERT(false);
  13452. } break;
  13453. }
  13454. assert(n_tasks > 0);
  13455. return n_tasks;
  13456. }
  13457. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13458. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13459. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13460. const struct ggml_cplan * cplan = state->shared->cplan;
  13461. const int n_threads = state->shared->n_threads;
  13462. set_numa_thread_affinity(state->ith, n_threads);
  13463. int node_n = -1;
  13464. while (true) {
  13465. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13466. state->shared->node_n += 1;
  13467. return (thread_ret_t) GGML_EXIT_ABORTED;
  13468. }
  13469. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13470. // all other threads are finished and spinning
  13471. // do finalize and init here so we don't have synchronize again
  13472. struct ggml_compute_params params = {
  13473. /*.type =*/ GGML_TASK_FINALIZE,
  13474. /*.ith =*/ 0,
  13475. /*.nth =*/ 0,
  13476. /*.wsize =*/ cplan->work_size,
  13477. /*.wdata =*/ cplan->work_data,
  13478. };
  13479. if (node_n != -1) {
  13480. /* FINALIZE */
  13481. struct ggml_tensor * node = cgraph->nodes[node_n];
  13482. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13483. params.nth = ggml_get_n_tasks(node, n_threads);
  13484. ggml_compute_forward(&params, node);
  13485. }
  13486. ggml_graph_compute_perf_stats_node(node, state->shared);
  13487. }
  13488. // distribute new work or execute it direct if 1T
  13489. while (++node_n < cgraph->n_nodes) {
  13490. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13491. struct ggml_tensor * node = cgraph->nodes[node_n];
  13492. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13493. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13494. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13495. params.nth = n_tasks;
  13496. /* INIT */
  13497. if (GGML_OP_HAS_INIT[node->op]) {
  13498. params.type = GGML_TASK_INIT;
  13499. ggml_compute_forward(&params, node);
  13500. }
  13501. if (n_tasks == 1) {
  13502. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13503. // they do something more efficient than spinning (?)
  13504. params.type = GGML_TASK_COMPUTE;
  13505. ggml_compute_forward(&params, node);
  13506. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13507. params.type = GGML_TASK_FINALIZE;
  13508. ggml_compute_forward(&params, node);
  13509. }
  13510. ggml_graph_compute_perf_stats_node(node, state->shared);
  13511. } else {
  13512. break;
  13513. }
  13514. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13515. break;
  13516. }
  13517. }
  13518. atomic_store(&state->shared->n_active, n_threads);
  13519. atomic_store(&state->shared->node_n, node_n);
  13520. } else {
  13521. // wait for other threads to finish
  13522. const int last = node_n;
  13523. while (true) {
  13524. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  13525. // depending on the workload and the operating system.
  13526. // since it is not clear what is the best approach, it should potentially become user-configurable
  13527. // ref: https://github.com/ggerganov/ggml/issues/291
  13528. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13529. sched_yield();
  13530. #endif
  13531. node_n = atomic_load(&state->shared->node_n);
  13532. if (node_n != last) break;
  13533. };
  13534. }
  13535. // check if we should stop
  13536. if (node_n >= cgraph->n_nodes) break;
  13537. /* COMPUTE */
  13538. struct ggml_tensor * node = cgraph->nodes[node_n];
  13539. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13540. struct ggml_compute_params params = {
  13541. /*.type =*/ GGML_TASK_COMPUTE,
  13542. /*.ith =*/ state->ith,
  13543. /*.nth =*/ n_tasks,
  13544. /*.wsize =*/ cplan->work_size,
  13545. /*.wdata =*/ cplan->work_data,
  13546. };
  13547. if (state->ith < n_tasks) {
  13548. ggml_compute_forward(&params, node);
  13549. }
  13550. }
  13551. return GGML_EXIT_SUCCESS;
  13552. }
  13553. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13554. if (n_threads <= 0) {
  13555. n_threads = GGML_DEFAULT_N_THREADS;
  13556. }
  13557. size_t work_size = 0;
  13558. struct ggml_cplan cplan;
  13559. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13560. // thread scheduling for the different operations + work buffer size estimation
  13561. for (int i = 0; i < cgraph->n_nodes; i++) {
  13562. struct ggml_tensor * node = cgraph->nodes[i];
  13563. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  13564. size_t cur = 0;
  13565. switch (node->op) {
  13566. case GGML_OP_CPY:
  13567. case GGML_OP_DUP:
  13568. {
  13569. if (ggml_is_quantized(node->type)) {
  13570. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13571. }
  13572. } break;
  13573. case GGML_OP_ADD:
  13574. case GGML_OP_ADD1:
  13575. {
  13576. if (ggml_is_quantized(node->src[0]->type)) {
  13577. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13578. }
  13579. } break;
  13580. case GGML_OP_ACC:
  13581. {
  13582. if (ggml_is_quantized(node->src[0]->type)) {
  13583. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  13584. }
  13585. } break;
  13586. case GGML_OP_MUL_MAT:
  13587. {
  13588. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13589. #if defined(GGML_USE_CLBLAST)
  13590. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13591. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13592. } else
  13593. #endif
  13594. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13595. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13596. if (node->src[0]->type != GGML_TYPE_F32) {
  13597. // here we need memory just for single 2D matrix from src0
  13598. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13599. }
  13600. } else
  13601. #endif
  13602. if (node->src[1]->type != vec_dot_type) {
  13603. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  13604. }
  13605. } break;
  13606. case GGML_OP_MUL_MAT_ID:
  13607. {
  13608. const struct ggml_tensor * a = node->src[2];
  13609. const struct ggml_tensor * b = node->src[1];
  13610. const enum ggml_type vec_dot_type = type_traits[a->type].vec_dot_type;
  13611. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13612. if (ggml_compute_forward_mul_mat_use_blas(a, b, node)) {
  13613. if (a->type != GGML_TYPE_F32) {
  13614. // here we need memory just for single 2D matrix from src0
  13615. cur = ggml_type_size(GGML_TYPE_F32)*(a->ne[0]*a->ne[1]);
  13616. }
  13617. } else
  13618. #endif
  13619. if (b->type != vec_dot_type) {
  13620. cur = ggml_type_size(vec_dot_type)*ggml_nelements(b)/ggml_blck_size(vec_dot_type);
  13621. }
  13622. } break;
  13623. case GGML_OP_OUT_PROD:
  13624. {
  13625. if (ggml_is_quantized(node->src[0]->type)) {
  13626. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  13627. }
  13628. } break;
  13629. case GGML_OP_SOFT_MAX:
  13630. {
  13631. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  13632. } break;
  13633. case GGML_OP_CONV_TRANSPOSE_1D:
  13634. {
  13635. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13636. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13637. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13638. const int64_t ne00 = node->src[0]->ne[0]; // K
  13639. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  13640. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  13641. const int64_t ne10 = node->src[1]->ne[0]; // L
  13642. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  13643. if (node->src[0]->type == GGML_TYPE_F16 &&
  13644. node->src[1]->type == GGML_TYPE_F32) {
  13645. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  13646. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  13647. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13648. node->src[1]->type == GGML_TYPE_F32) {
  13649. cur += sizeof(float)*ne00*ne01*ne02;
  13650. cur += sizeof(float)*ne10*ne11;
  13651. } else {
  13652. GGML_ASSERT(false);
  13653. }
  13654. } break;
  13655. case GGML_OP_CONV_TRANSPOSE_2D:
  13656. {
  13657. const int64_t ne00 = node->src[0]->ne[0]; // W
  13658. const int64_t ne01 = node->src[0]->ne[1]; // H
  13659. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  13660. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  13661. const int64_t ne10 = node->src[1]->ne[0]; // W
  13662. const int64_t ne11 = node->src[1]->ne[1]; // H
  13663. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  13664. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  13665. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  13666. } break;
  13667. case GGML_OP_FLASH_ATTN:
  13668. {
  13669. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13670. if (node->src[1]->type == GGML_TYPE_F32) {
  13671. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13672. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13673. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13674. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13675. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13676. }
  13677. } break;
  13678. case GGML_OP_FLASH_FF:
  13679. {
  13680. if (node->src[1]->type == GGML_TYPE_F32) {
  13681. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13682. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13683. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13684. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13685. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13686. }
  13687. } break;
  13688. case GGML_OP_FLASH_ATTN_BACK:
  13689. {
  13690. const int64_t D = node->src[0]->ne[0];
  13691. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13692. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13693. if (node->src[1]->type == GGML_TYPE_F32) {
  13694. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13695. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13696. } else if (node->src[1]->type == GGML_TYPE_F16) {
  13697. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13698. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13699. }
  13700. } break;
  13701. case GGML_OP_CROSS_ENTROPY_LOSS:
  13702. {
  13703. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13704. } break;
  13705. case GGML_OP_COUNT:
  13706. {
  13707. GGML_ASSERT(false);
  13708. } break;
  13709. default:
  13710. break;
  13711. }
  13712. work_size = MAX(work_size, cur);
  13713. }
  13714. if (work_size > 0) {
  13715. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13716. }
  13717. cplan.n_threads = n_threads;
  13718. cplan.work_size = work_size;
  13719. cplan.work_data = NULL;
  13720. return cplan;
  13721. }
  13722. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13723. {
  13724. GGML_ASSERT(cplan);
  13725. GGML_ASSERT(cplan->n_threads > 0);
  13726. if (cplan->work_size > 0) {
  13727. GGML_ASSERT(cplan->work_data);
  13728. }
  13729. }
  13730. const int n_threads = cplan->n_threads;
  13731. struct ggml_compute_state_shared state_shared = {
  13732. /*.cgraph =*/ cgraph,
  13733. /*.cgraph_plan =*/ cplan,
  13734. /*.perf_node_start_cycles =*/ 0,
  13735. /*.perf_node_start_time_us =*/ 0,
  13736. /*.n_threads =*/ n_threads,
  13737. /*.n_active =*/ n_threads,
  13738. /*.node_n =*/ -1,
  13739. /*.abort_callback =*/ NULL,
  13740. /*.abort_callback_data =*/ NULL,
  13741. };
  13742. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13743. // create thread pool
  13744. if (n_threads > 1) {
  13745. for (int j = 1; j < n_threads; ++j) {
  13746. workers[j] = (struct ggml_compute_state) {
  13747. .thrd = 0,
  13748. .ith = j,
  13749. .shared = &state_shared,
  13750. };
  13751. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13752. GGML_ASSERT(rc == 0);
  13753. UNUSED(rc);
  13754. }
  13755. }
  13756. workers[0].ith = 0;
  13757. workers[0].shared = &state_shared;
  13758. const int64_t perf_start_cycles = ggml_perf_cycles();
  13759. const int64_t perf_start_time_us = ggml_perf_time_us();
  13760. // this is a work thread too
  13761. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13762. // don't leave affinity set on the main thread
  13763. clear_numa_thread_affinity();
  13764. // join or kill thread pool
  13765. if (n_threads > 1) {
  13766. for (int j = 1; j < n_threads; j++) {
  13767. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13768. GGML_ASSERT(rc == 0);
  13769. }
  13770. }
  13771. // performance stats (graph)
  13772. {
  13773. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13774. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13775. cgraph->perf_runs++;
  13776. cgraph->perf_cycles += perf_cycles_cur;
  13777. cgraph->perf_time_us += perf_time_us_cur;
  13778. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13779. __func__, cgraph->perf_runs,
  13780. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13781. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13782. (double) perf_time_us_cur / 1000.0,
  13783. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13784. }
  13785. return compute_status;
  13786. }
  13787. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13788. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13789. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  13790. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  13791. ggml_graph_compute(cgraph, &cplan);
  13792. }
  13793. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13794. for (int i = 0; i < cgraph->n_leafs; i++) {
  13795. struct ggml_tensor * leaf = cgraph->leafs[i];
  13796. if (strcmp(leaf->name, name) == 0) {
  13797. return leaf;
  13798. }
  13799. }
  13800. for (int i = 0; i < cgraph->n_nodes; i++) {
  13801. struct ggml_tensor * node = cgraph->nodes[i];
  13802. if (strcmp(node->name, name) == 0) {
  13803. return node;
  13804. }
  13805. }
  13806. return NULL;
  13807. }
  13808. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13809. const int64_t * ne = tensor->ne;
  13810. const size_t * nb = tensor->nb;
  13811. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13812. ggml_type_name(tensor->type),
  13813. ggml_op_name (tensor->op),
  13814. ggml_n_dims(tensor),
  13815. ne[0], ne[1], ne[2], ne[3],
  13816. nb[0], nb[1], nb[2], nb[3],
  13817. tensor->data,
  13818. tensor->name);
  13819. }
  13820. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13821. const int64_t * ne = tensor->ne;
  13822. const size_t * nb = tensor->nb;
  13823. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13824. arg,
  13825. ggml_type_name(tensor->type),
  13826. ggml_op_name (tensor->op),
  13827. ggml_n_dims(tensor),
  13828. ne[0], ne[1], ne[2], ne[3],
  13829. nb[0], nb[1], nb[2], nb[3],
  13830. tensor->data,
  13831. tensor->name);
  13832. }
  13833. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13834. uint64_t size_eval = 0;
  13835. // compute size of intermediate results
  13836. // TODO: does not take into account scratch buffers !!!!
  13837. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13838. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  13839. }
  13840. // print
  13841. {
  13842. FILE * fout = stdout;
  13843. fprintf(fout, "\n");
  13844. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13845. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13846. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13847. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13848. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13849. // header
  13850. fprintf(fout, "\n");
  13851. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13852. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13853. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13854. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13855. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13856. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13857. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13858. }
  13859. // header
  13860. fprintf(fout, "\n");
  13861. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13862. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13863. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13864. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13865. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13866. if (cgraph->nodes[i]->src[j]) {
  13867. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13868. }
  13869. }
  13870. fprintf(fout, "\n");
  13871. }
  13872. fprintf(fout, "\n");
  13873. }
  13874. // write binary data
  13875. {
  13876. FILE * fout = fopen(fname, "wb");
  13877. if (!fout) {
  13878. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13879. return;
  13880. }
  13881. // header
  13882. {
  13883. const uint32_t magic = GGML_FILE_MAGIC;
  13884. const uint32_t version = GGML_FILE_VERSION;
  13885. const uint32_t n_leafs = cgraph->n_leafs;
  13886. const uint32_t n_nodes = cgraph->n_nodes;
  13887. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13888. fwrite(&version, sizeof(uint32_t), 1, fout);
  13889. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13890. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  13891. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13892. }
  13893. // leafs
  13894. {
  13895. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13896. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13897. const uint32_t type = tensor->type;
  13898. const uint32_t op = tensor->op;
  13899. fwrite(&type, sizeof(uint32_t), 1, fout);
  13900. fwrite(&op, sizeof(uint32_t), 1, fout);
  13901. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13902. const uint64_t ne = tensor->ne[j];
  13903. const uint64_t nb = tensor->nb[j];
  13904. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13905. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13906. }
  13907. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13908. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13909. // dump the data
  13910. // TODO: pad this to 32 byte boundary
  13911. {
  13912. const size_t size = ggml_nbytes(tensor);
  13913. fwrite(tensor->data, sizeof(char), size, fout);
  13914. }
  13915. }
  13916. }
  13917. // nodes
  13918. {
  13919. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13920. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13921. const uint32_t type = tensor->type;
  13922. const uint32_t op = tensor->op;
  13923. fwrite(&type, sizeof(uint32_t), 1, fout);
  13924. fwrite(&op, sizeof(uint32_t), 1, fout);
  13925. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13926. const uint64_t ne = tensor->ne[j];
  13927. const uint64_t nb = tensor->nb[j];
  13928. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13929. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13930. }
  13931. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13932. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  13933. // output the op arguments
  13934. {
  13935. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13936. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13937. args[j] = tensor->src[j];
  13938. }
  13939. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13940. if (args[j]) {
  13941. int32_t idx = -1;
  13942. // check if leaf
  13943. {
  13944. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13945. if (args[j] == cgraph->leafs[k]) {
  13946. idx = k;
  13947. break;
  13948. }
  13949. }
  13950. }
  13951. // check if node
  13952. if (idx == -1) {
  13953. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13954. if (args[j] == cgraph->nodes[k]) {
  13955. idx = cgraph->n_leafs + k;
  13956. break;
  13957. }
  13958. }
  13959. }
  13960. if (idx == -1) {
  13961. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13962. fclose(fout);
  13963. return;
  13964. }
  13965. fwrite(&idx, sizeof(int32_t), 1, fout);
  13966. } else {
  13967. const int32_t nul = -1;
  13968. fwrite(&nul, sizeof(int32_t), 1, fout);
  13969. }
  13970. }
  13971. }
  13972. }
  13973. }
  13974. fclose(fout);
  13975. }
  13976. }
  13977. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13978. assert(*ctx_data == NULL);
  13979. assert(*ctx_eval == NULL);
  13980. struct ggml_cgraph * result = NULL;
  13981. struct ggml_tensor * data = NULL;
  13982. // read file into data
  13983. {
  13984. FILE * fin = fopen(fname, "rb");
  13985. if (!fin) {
  13986. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13987. return result;
  13988. }
  13989. size_t fsize = 0;
  13990. fseek(fin, 0, SEEK_END);
  13991. fsize = ftell(fin);
  13992. fseek(fin, 0, SEEK_SET);
  13993. // create the data context
  13994. {
  13995. const size_t overhead = 1*ggml_tensor_overhead();
  13996. struct ggml_init_params params = {
  13997. .mem_size = fsize + overhead,
  13998. .mem_buffer = NULL,
  13999. .no_alloc = false,
  14000. };
  14001. *ctx_data = ggml_init(params);
  14002. if (!*ctx_data) {
  14003. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14004. fclose(fin);
  14005. return result;
  14006. }
  14007. }
  14008. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14009. {
  14010. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14011. if (ret != fsize) {
  14012. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14013. fclose(fin);
  14014. return result;
  14015. }
  14016. }
  14017. fclose(fin);
  14018. }
  14019. // populate result
  14020. {
  14021. char * ptr = (char *) data->data;
  14022. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14023. if (magic != GGML_FILE_MAGIC) {
  14024. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14025. return result;
  14026. }
  14027. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14028. if (version != GGML_FILE_VERSION) {
  14029. fprintf(stderr, "%s: invalid version number\n", __func__);
  14030. return result;
  14031. }
  14032. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14033. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14034. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14035. const int graph_size = MAX(n_leafs, n_nodes);
  14036. // create the data context
  14037. {
  14038. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14039. struct ggml_init_params params = {
  14040. .mem_size = size_eval + overhead,
  14041. .mem_buffer = NULL,
  14042. .no_alloc = true,
  14043. };
  14044. *ctx_eval = ggml_init(params);
  14045. if (!*ctx_eval) {
  14046. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14047. return result;
  14048. }
  14049. }
  14050. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14051. result->n_leafs = n_leafs;
  14052. result->n_nodes = n_nodes;
  14053. // leafs
  14054. {
  14055. uint32_t type;
  14056. uint32_t op;
  14057. for (uint32_t i = 0; i < n_leafs; ++i) {
  14058. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14059. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14060. int64_t ne[GGML_MAX_DIMS];
  14061. size_t nb[GGML_MAX_DIMS];
  14062. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14063. uint64_t ne_cur;
  14064. uint64_t nb_cur;
  14065. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14066. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14067. ne[j] = ne_cur;
  14068. nb[j] = nb_cur;
  14069. }
  14070. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14071. tensor->op = (enum ggml_op) op;
  14072. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14073. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14074. tensor->data = (void *) ptr;
  14075. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14076. tensor->nb[j] = nb[j];
  14077. }
  14078. result->leafs[i] = tensor;
  14079. ptr += ggml_nbytes(tensor);
  14080. fprintf(stderr, "%s: loaded leaf %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14081. }
  14082. }
  14083. ggml_set_no_alloc(*ctx_eval, false);
  14084. // nodes
  14085. {
  14086. uint32_t type;
  14087. uint32_t op;
  14088. for (uint32_t i = 0; i < n_nodes; ++i) {
  14089. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14090. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14091. enum ggml_op eop = (enum ggml_op) op;
  14092. int64_t ne[GGML_MAX_DIMS];
  14093. size_t nb[GGML_MAX_DIMS];
  14094. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14095. uint64_t ne_cur;
  14096. uint64_t nb_cur;
  14097. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14098. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14099. ne[j] = ne_cur;
  14100. nb[j] = nb_cur;
  14101. }
  14102. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14103. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14104. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14105. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14106. // parse args
  14107. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14108. const int32_t arg_idx = ptr_arg_idx[j];
  14109. if (arg_idx == -1) {
  14110. continue;
  14111. }
  14112. if (arg_idx < result->n_leafs) {
  14113. args[j] = result->leafs[arg_idx];
  14114. } else {
  14115. args[j] = result->nodes[arg_idx - result->n_leafs];
  14116. }
  14117. }
  14118. // create the tensor
  14119. // "view" operations are handled differently
  14120. // TODO: handle inplace ops - currently a copy is always made
  14121. struct ggml_tensor * tensor = NULL;
  14122. switch (eop) {
  14123. // TODO: implement other view ops
  14124. case GGML_OP_RESHAPE:
  14125. {
  14126. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14127. } break;
  14128. case GGML_OP_VIEW:
  14129. {
  14130. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14131. size_t offs;
  14132. memcpy(&offs, ptr_op_params, sizeof(offs));
  14133. tensor->data = ((char *) tensor->data) + offs;
  14134. } break;
  14135. case GGML_OP_TRANSPOSE:
  14136. {
  14137. tensor = ggml_transpose(*ctx_eval, args[0]);
  14138. } break;
  14139. case GGML_OP_PERMUTE:
  14140. {
  14141. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14142. } break;
  14143. default:
  14144. {
  14145. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14146. tensor->op = eop;
  14147. } break;
  14148. }
  14149. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14150. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  14151. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14152. tensor->nb[j] = nb[j];
  14153. }
  14154. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14155. tensor->src[j] = args[j];
  14156. }
  14157. result->nodes[i] = tensor;
  14158. fprintf(stderr, "%s: loaded node %d: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14159. }
  14160. }
  14161. }
  14162. return result;
  14163. }
  14164. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14165. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14166. GGML_PRINT("=== GRAPH ===\n");
  14167. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14168. for (int i = 0; i < cgraph->n_nodes; i++) {
  14169. struct ggml_tensor * node = cgraph->nodes[i];
  14170. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14171. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14172. i,
  14173. node->ne[0], node->ne[1], node->ne[2],
  14174. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14175. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14176. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14177. (double) node->perf_time_us / 1000.0,
  14178. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14179. }
  14180. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14181. for (int i = 0; i < cgraph->n_leafs; i++) {
  14182. struct ggml_tensor * node = cgraph->leafs[i];
  14183. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  14184. i,
  14185. node->ne[0], node->ne[1],
  14186. ggml_op_name(node->op),
  14187. ggml_get_name(node));
  14188. }
  14189. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14190. if (perf_total_per_op_us[i] == 0) {
  14191. continue;
  14192. }
  14193. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  14194. }
  14195. GGML_PRINT("========================================\n");
  14196. }
  14197. // check if node is part of the graph
  14198. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14199. if (cgraph == NULL) {
  14200. return true;
  14201. }
  14202. for (int i = 0; i < cgraph->n_nodes; i++) {
  14203. if (cgraph->nodes[i] == node) {
  14204. return true;
  14205. }
  14206. }
  14207. return false;
  14208. }
  14209. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14210. for (int i = 0; i < cgraph->n_nodes; i++) {
  14211. struct ggml_tensor * parent = cgraph->nodes[i];
  14212. if (parent->grad == node) {
  14213. return parent;
  14214. }
  14215. }
  14216. return NULL;
  14217. }
  14218. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14219. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14220. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14221. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14222. gparent0 ? (void *) gparent0 : (void *) parent,
  14223. gparent0 ? "g" : "x",
  14224. gparent ? (void *) gparent : (void *) node,
  14225. gparent ? "g" : "x",
  14226. gparent ? "empty" : "vee",
  14227. gparent ? "dashed" : "solid",
  14228. label);
  14229. }
  14230. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14231. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14232. (void *) parent, "x",
  14233. (void *) node, "x",
  14234. label);
  14235. }
  14236. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14237. char color[16];
  14238. FILE * fp = fopen(filename, "w");
  14239. GGML_ASSERT(fp);
  14240. fprintf(fp, "digraph G {\n");
  14241. fprintf(fp, " newrank = true;\n");
  14242. fprintf(fp, " rankdir = LR;\n");
  14243. for (int i = 0; i < gb->n_nodes; i++) {
  14244. struct ggml_tensor * node = gb->nodes[i];
  14245. if (ggml_graph_get_parent(gb, node) != NULL) {
  14246. continue;
  14247. }
  14248. if (node->is_param) {
  14249. snprintf(color, sizeof(color), "yellow");
  14250. } else if (node->grad) {
  14251. if (ggml_graph_find(gf, node)) {
  14252. snprintf(color, sizeof(color), "green");
  14253. } else {
  14254. snprintf(color, sizeof(color), "lightblue");
  14255. }
  14256. } else {
  14257. snprintf(color, sizeof(color), "white");
  14258. }
  14259. fprintf(fp, " \"%p\" [ "
  14260. "style = filled; fillcolor = %s; shape = record; "
  14261. "label=\"",
  14262. (void *) node, color);
  14263. if (strlen(node->name) > 0) {
  14264. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14265. } else {
  14266. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14267. }
  14268. if (ggml_is_matrix(node)) {
  14269. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  14270. } else {
  14271. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  14272. }
  14273. if (node->grad) {
  14274. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  14275. } else {
  14276. fprintf(fp, "\"; ]\n");
  14277. }
  14278. }
  14279. for (int i = 0; i < gb->n_leafs; i++) {
  14280. struct ggml_tensor * node = gb->leafs[i];
  14281. snprintf(color, sizeof(color), "pink");
  14282. fprintf(fp, " \"%p\" [ "
  14283. "style = filled; fillcolor = %s; shape = record; "
  14284. "label=\"<x>",
  14285. (void *) node, color);
  14286. if (strlen(node->name) > 0) {
  14287. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14288. } else {
  14289. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14290. }
  14291. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14292. if (ggml_nelements(node) < 5) {
  14293. fprintf(fp, " | (");
  14294. for (int j = 0; j < ggml_nelements(node); j++) {
  14295. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14296. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14297. }
  14298. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14299. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14300. }
  14301. else {
  14302. fprintf(fp, "#");
  14303. }
  14304. if (j < ggml_nelements(node) - 1) {
  14305. fprintf(fp, ", ");
  14306. }
  14307. }
  14308. fprintf(fp, ")");
  14309. }
  14310. fprintf(fp, "\"; ]\n");
  14311. }
  14312. for (int i = 0; i < gb->n_nodes; i++) {
  14313. struct ggml_tensor * node = gb->nodes[i];
  14314. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14315. if (node->src[j]) {
  14316. char label[16];
  14317. snprintf(label, sizeof(label), "src %d", j);
  14318. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14319. }
  14320. }
  14321. }
  14322. for (int i = 0; i < gb->n_leafs; i++) {
  14323. struct ggml_tensor * node = gb->leafs[i];
  14324. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14325. if (node->src[j]) {
  14326. char label[16];
  14327. snprintf(label, sizeof(label), "src %d", j);
  14328. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14329. }
  14330. }
  14331. }
  14332. fprintf(fp, "}\n");
  14333. fclose(fp);
  14334. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14335. }
  14336. ////////////////////////////////////////////////////////////////////////////////
  14337. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14338. int i = 0;
  14339. for (int p = 0; p < np; ++p) {
  14340. const int64_t ne = ggml_nelements(ps[p]) ;
  14341. // TODO: add function to set tensor from array
  14342. for (int64_t j = 0; j < ne; ++j) {
  14343. ggml_set_f32_1d(ps[p], j, x[i++]);
  14344. }
  14345. }
  14346. }
  14347. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14348. int i = 0;
  14349. for (int p = 0; p < np; ++p) {
  14350. const int64_t ne = ggml_nelements(ps[p]) ;
  14351. // TODO: add function to get all elements at once
  14352. for (int64_t j = 0; j < ne; ++j) {
  14353. x[i++] = ggml_get_f32_1d(ps[p], j);
  14354. }
  14355. }
  14356. }
  14357. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14358. int64_t i = 0;
  14359. for (int p = 0; p < np; ++p) {
  14360. const int64_t ne = ggml_nelements(ps[p]) ;
  14361. // TODO: add function to get all elements at once
  14362. for (int64_t j = 0; j < ne; ++j) {
  14363. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14364. }
  14365. }
  14366. }
  14367. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  14368. int64_t i = 0;
  14369. for (int p = 0; p < np; ++p) {
  14370. const int64_t ne = ggml_nelements(ps[p]) ;
  14371. // TODO: add function to get all elements at once
  14372. for (int64_t j = 0; j < ne; ++j) {
  14373. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  14374. }
  14375. }
  14376. }
  14377. //
  14378. // ADAM
  14379. //
  14380. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14381. //
  14382. static enum ggml_opt_result ggml_opt_adam(
  14383. struct ggml_context * ctx,
  14384. struct ggml_opt_context * opt,
  14385. struct ggml_opt_params params,
  14386. struct ggml_tensor * f,
  14387. struct ggml_cgraph * gf,
  14388. struct ggml_cgraph * gb,
  14389. ggml_opt_callback callback,
  14390. void * callback_data) {
  14391. GGML_ASSERT(ggml_is_scalar(f));
  14392. // these will store the parameters we want to optimize
  14393. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14394. int np = 0;
  14395. int64_t nx = 0;
  14396. for (int i = 0; i < gf->n_nodes; ++i) {
  14397. if (gf->nodes[i]->is_param) {
  14398. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14399. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14400. ps[np++] = gf->nodes[i];
  14401. nx += ggml_nelements(gf->nodes[i]);
  14402. }
  14403. }
  14404. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14405. int iter = opt->iter;
  14406. ggml_opt_init(opt->ctx, opt, params, nx);
  14407. opt->iter = iter;
  14408. }
  14409. // constants
  14410. float sched = params.adam.sched;
  14411. const float alpha = params.adam.alpha;
  14412. const float decay = params.adam.decay * alpha;
  14413. const float beta1 = params.adam.beta1;
  14414. const float beta2 = params.adam.beta2;
  14415. const float eps = params.adam.eps;
  14416. const float gclip = params.adam.gclip;
  14417. const int decay_min_ndim = params.adam.decay_min_ndim;
  14418. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14419. const float accum_norm = 1.0f / (float) n_accum;
  14420. float * g = opt->adam.g->data; // gradients
  14421. float * m = opt->adam.m->data; // first moment
  14422. float * v = opt->adam.v->data; // second moment
  14423. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14424. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14425. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14426. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14427. bool cancel = false;
  14428. // compute the function value
  14429. float fx = 0;
  14430. ggml_set_zero(opt->adam.g);
  14431. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14432. if (callback) {
  14433. callback(callback_data, accum_step, &sched, &cancel);
  14434. if (cancel) {
  14435. return GGML_OPT_CANCEL;
  14436. }
  14437. }
  14438. // ggml_graph_reset (gf);
  14439. ggml_set_f32 (f->grad, 1.0f);
  14440. ggml_graph_compute(gb, &cplan);
  14441. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14442. fx += ggml_get_f32_1d(f, 0);
  14443. }
  14444. fx *= accum_norm;
  14445. opt->adam.fx_prev = fx;
  14446. opt->adam.fx_best = opt->adam.fx_prev;
  14447. if (pf) {
  14448. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14449. }
  14450. opt->loss_before = opt->adam.fx_prev;
  14451. opt->loss_after = opt->adam.fx_prev;
  14452. // initialize
  14453. if (opt->just_initialized) {
  14454. opt->adam.n_no_improvement = 0;
  14455. opt->just_initialized = false;
  14456. }
  14457. float * fx_best = &opt->adam.fx_best;
  14458. float * fx_prev = &opt->adam.fx_prev;
  14459. int * n_no_improvement = &opt->adam.n_no_improvement;
  14460. int iter0 = opt->iter;
  14461. // run the optimizer
  14462. for (int t = 0; t < params.adam.n_iter; ++t) {
  14463. opt->iter = iter0 + t + 1;
  14464. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14465. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14466. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14467. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14468. for (int i = 0; i < np; ++i) {
  14469. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14470. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14471. }
  14472. const int64_t t_start_wall = ggml_time_us();
  14473. const int64_t t_start_cpu = ggml_cycles();
  14474. UNUSED(t_start_wall);
  14475. UNUSED(t_start_cpu);
  14476. {
  14477. float gnorm = 1.0f;
  14478. if (gclip > 0.0f) {
  14479. // gradient clipping
  14480. ggml_float sum = 0.0;
  14481. for (int64_t i = 0; i < nx; ++i) {
  14482. sum += (ggml_float)(g[i]*g[i]);
  14483. }
  14484. ggml_float norm = sqrt(sum);
  14485. if (norm > (ggml_float) gclip) {
  14486. gnorm = (float) ((ggml_float) gclip / norm);
  14487. }
  14488. }
  14489. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  14490. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  14491. int64_t i = 0;
  14492. for (int p = 0; p < np; ++p) {
  14493. const int64_t ne = ggml_nelements(ps[p]);
  14494. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  14495. for (int64_t j = 0; j < ne; ++j) {
  14496. float x = ggml_get_f32_1d(ps[p], j);
  14497. float g_ = g[i]*gnorm;
  14498. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  14499. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  14500. float mh = m[i]*beta1h;
  14501. float vh = v[i]*beta2h;
  14502. vh = sqrtf(vh) + eps;
  14503. x = x*(1.0f - p_decay) - mh/vh;
  14504. ggml_set_f32_1d(ps[p], j, x);
  14505. ++i;
  14506. }
  14507. }
  14508. }
  14509. fx = 0;
  14510. ggml_set_zero(opt->adam.g);
  14511. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14512. if (callback) {
  14513. callback(callback_data, accum_step, &sched, &cancel);
  14514. if (cancel) {
  14515. return GGML_OPT_CANCEL;;
  14516. }
  14517. }
  14518. // ggml_graph_reset (gf);
  14519. ggml_set_f32 (f->grad, 1.0f);
  14520. ggml_graph_compute(gb, &cplan);
  14521. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14522. fx += ggml_get_f32_1d(f, 0);
  14523. }
  14524. fx *= accum_norm;
  14525. opt->loss_after = fx;
  14526. // check convergence
  14527. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14528. GGML_PRINT_DEBUG("converged\n");
  14529. return GGML_OPT_OK;
  14530. }
  14531. // delta-based convergence test
  14532. if (pf != NULL) {
  14533. // need at least params.past iterations to start checking for convergence
  14534. if (params.past <= iter0 + t) {
  14535. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14536. if (fabsf(rate) < params.delta) {
  14537. return GGML_OPT_OK;
  14538. }
  14539. }
  14540. pf[(iter0 + t)%params.past] = fx;
  14541. }
  14542. // check for improvement
  14543. if (params.max_no_improvement > 0) {
  14544. if (fx_best[0] > fx) {
  14545. fx_best[0] = fx;
  14546. n_no_improvement[0] = 0;
  14547. } else {
  14548. ++n_no_improvement[0];
  14549. if (n_no_improvement[0] >= params.max_no_improvement) {
  14550. return GGML_OPT_OK;
  14551. }
  14552. }
  14553. }
  14554. fx_prev[0] = fx;
  14555. {
  14556. const int64_t t_end_cpu = ggml_cycles();
  14557. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14558. UNUSED(t_end_cpu);
  14559. const int64_t t_end_wall = ggml_time_us();
  14560. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14561. UNUSED(t_end_wall);
  14562. }
  14563. }
  14564. return GGML_OPT_DID_NOT_CONVERGE;
  14565. }
  14566. //
  14567. // L-BFGS
  14568. //
  14569. // the L-BFGS implementation below is based on the following implementation:
  14570. //
  14571. // https://github.com/chokkan/liblbfgs
  14572. //
  14573. struct ggml_lbfgs_iteration_data {
  14574. float alpha;
  14575. float ys;
  14576. float * s;
  14577. float * y;
  14578. };
  14579. static enum ggml_opt_result linesearch_backtracking(
  14580. const struct ggml_opt_params * params,
  14581. int nx,
  14582. float * x,
  14583. float * fx,
  14584. float * g,
  14585. float * d,
  14586. float * step,
  14587. const float * xp,
  14588. struct ggml_tensor * f,
  14589. struct ggml_cgraph * gb,
  14590. struct ggml_cplan * cplan,
  14591. const int np,
  14592. struct ggml_tensor * ps[],
  14593. bool * cancel,
  14594. ggml_opt_callback callback,
  14595. void * callback_data) {
  14596. int count = 0;
  14597. float width = 0.0f;
  14598. float dg = 0.0f;
  14599. float finit = 0.0f;
  14600. float dginit = 0.0f;
  14601. float dgtest = 0.0f;
  14602. const float dec = 0.5f;
  14603. const float inc = 2.1f;
  14604. const int n_accum = MAX(1, params->n_gradient_accumulation);
  14605. const float accum_norm = 1.0f / (float) n_accum;
  14606. if (*step <= 0.f) {
  14607. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14608. }
  14609. // compute the initial gradient in the search direction
  14610. ggml_vec_dot_f32(nx, &dginit, g, d);
  14611. // make sure that d points to a descent direction
  14612. if (0 < dginit) {
  14613. return GGML_LINESEARCH_FAIL;
  14614. }
  14615. // initialize local variables
  14616. finit = *fx;
  14617. dgtest = params->lbfgs.ftol*dginit;
  14618. while (true) {
  14619. ggml_vec_cpy_f32(nx, x, xp);
  14620. ggml_vec_mad_f32(nx, x, d, *step);
  14621. // evaluate the function and gradient values
  14622. {
  14623. ggml_opt_set_params(np, ps, x);
  14624. *fx = 0;
  14625. memset(g, 0, sizeof(float)*nx);
  14626. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14627. if (callback) {
  14628. // LBFG-S does not support learning rate -> ignore learning schedule
  14629. float sched = 0;
  14630. callback(callback_data, accum_step, &sched, cancel);
  14631. if (*cancel) {
  14632. return GGML_OPT_CANCEL;
  14633. }
  14634. }
  14635. // ggml_graph_reset (gf);
  14636. ggml_set_f32 (f->grad, 1.0f);
  14637. ggml_graph_compute(gb, cplan);
  14638. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14639. *fx += ggml_get_f32_1d(f, 0);
  14640. }
  14641. *fx *= accum_norm;
  14642. }
  14643. ++count;
  14644. if (*fx > finit + (*step)*dgtest) {
  14645. width = dec;
  14646. } else {
  14647. // Armijo condition is satisfied
  14648. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14649. return count;
  14650. }
  14651. ggml_vec_dot_f32(nx, &dg, g, d);
  14652. // check the Wolfe condition
  14653. if (dg < params->lbfgs.wolfe * dginit) {
  14654. width = inc;
  14655. } else {
  14656. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14657. // regular Wolfe conditions
  14658. return count;
  14659. }
  14660. if(dg > -params->lbfgs.wolfe*dginit) {
  14661. width = dec;
  14662. } else {
  14663. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14664. return count;
  14665. }
  14666. }
  14667. }
  14668. if (*step < params->lbfgs.min_step) {
  14669. return GGML_LINESEARCH_MINIMUM_STEP;
  14670. }
  14671. if (*step > params->lbfgs.max_step) {
  14672. return GGML_LINESEARCH_MAXIMUM_STEP;
  14673. }
  14674. if (params->lbfgs.max_linesearch <= count) {
  14675. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14676. }
  14677. (*step) *= width;
  14678. }
  14679. GGML_UNREACHABLE();
  14680. }
  14681. static enum ggml_opt_result ggml_opt_lbfgs(
  14682. struct ggml_context * ctx,
  14683. struct ggml_opt_context * opt,
  14684. struct ggml_opt_params params,
  14685. struct ggml_tensor * f,
  14686. struct ggml_cgraph * gf,
  14687. struct ggml_cgraph * gb,
  14688. ggml_opt_callback callback,
  14689. void * callback_data) {
  14690. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14691. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14692. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14693. return GGML_OPT_INVALID_WOLFE;
  14694. }
  14695. }
  14696. const int m = params.lbfgs.m;
  14697. // these will store the parameters we want to optimize
  14698. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14699. int np = 0;
  14700. int nx = 0;
  14701. for (int i = 0; i < gf->n_nodes; ++i) {
  14702. if (gf->nodes[i]->is_param) {
  14703. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14704. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14705. ps[np++] = gf->nodes[i];
  14706. nx += ggml_nelements(gf->nodes[i]);
  14707. }
  14708. }
  14709. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14710. int iter = opt->iter;
  14711. ggml_opt_init(ctx, opt, params, nx);
  14712. opt->iter = iter;
  14713. }
  14714. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  14715. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14716. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14717. float * x = opt->lbfgs.x->data; // current parameters
  14718. float * xp = opt->lbfgs.xp->data; // previous parameters
  14719. float * g = opt->lbfgs.g->data; // current gradient
  14720. float * gp = opt->lbfgs.gp->data; // previous gradient
  14721. float * d = opt->lbfgs.d->data; // search direction
  14722. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14723. const int n_accum = MAX(1, params.n_gradient_accumulation);
  14724. const float accum_norm = 1.0f / (float) n_accum;
  14725. float fx = 0.0f; // cost function value
  14726. float xnorm = 0.0f; // ||x||
  14727. float gnorm = 0.0f; // ||g||
  14728. // initialize x from the graph nodes
  14729. ggml_opt_get_params(np, ps, x);
  14730. // the L-BFGS memory
  14731. float * lm_alpha = opt->lbfgs.lmal->data;
  14732. float * lm_ys = opt->lbfgs.lmys->data;
  14733. float * lm_s = opt->lbfgs.lms->data;
  14734. float * lm_y = opt->lbfgs.lmy->data;
  14735. bool cancel = false;
  14736. // evaluate the function value and its gradient
  14737. {
  14738. ggml_opt_set_params(np, ps, x);
  14739. fx = 0;
  14740. memset(g, 0, sizeof(float)*nx);
  14741. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  14742. if (callback) {
  14743. // LBFG-S does not support learning rate -> ignore learning schedule
  14744. float sched = 0;
  14745. callback(callback_data, accum_step, &sched, &cancel);
  14746. if (cancel) {
  14747. return GGML_OPT_CANCEL;
  14748. }
  14749. }
  14750. // ggml_graph_reset (gf);
  14751. ggml_set_f32 (f->grad, 1.0f);
  14752. ggml_graph_compute(gb, &cplan);
  14753. ggml_opt_acc_grad(np, ps, g, accum_norm);
  14754. fx += ggml_get_f32_1d(f, 0);
  14755. }
  14756. fx *= accum_norm;
  14757. opt->loss_before = fx;
  14758. opt->loss_after = fx;
  14759. }
  14760. // search direction = -gradient
  14761. ggml_vec_neg_f32(nx, d, g);
  14762. // ||x||, ||g||
  14763. ggml_vec_norm_f32(nx, &xnorm, x);
  14764. ggml_vec_norm_f32(nx, &gnorm, g);
  14765. if (xnorm < 1.0f) {
  14766. xnorm = 1.0f;
  14767. }
  14768. // already optimized
  14769. if (gnorm/xnorm <= params.lbfgs.eps) {
  14770. return GGML_OPT_OK;
  14771. }
  14772. if (opt->just_initialized) {
  14773. if (pf) {
  14774. pf[0] = fx;
  14775. }
  14776. opt->lbfgs.fx_best = fx;
  14777. // initial step
  14778. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14779. opt->lbfgs.j = 0;
  14780. opt->lbfgs.k = 1;
  14781. opt->lbfgs.end = 0;
  14782. opt->lbfgs.n_no_improvement = 0;
  14783. opt->just_initialized = false;
  14784. }
  14785. float * fx_best = &opt->lbfgs.fx_best;
  14786. float * step = &opt->lbfgs.step;
  14787. int * j = &opt->lbfgs.j;
  14788. int * k = &opt->lbfgs.k;
  14789. int * end = &opt->lbfgs.end;
  14790. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14791. int ls = 0;
  14792. int bound = 0;
  14793. float ys = 0.0f;
  14794. float yy = 0.0f;
  14795. float beta = 0.0f;
  14796. int it = 0;
  14797. while (true) {
  14798. // store the current position and gradient vectors
  14799. ggml_vec_cpy_f32(nx, xp, x);
  14800. ggml_vec_cpy_f32(nx, gp, g);
  14801. // TODO: instead of passing &cancel here, use the return code of the linesearch
  14802. // to determine if the optimization should be cancelled
  14803. // this is a simple change, but not doing this atm, since I don't have a nice
  14804. // way to test and don't want to break something with so many changes lined up
  14805. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  14806. if (cancel) {
  14807. return GGML_OPT_CANCEL;
  14808. }
  14809. if (ls < 0) {
  14810. // linesearch failed - go back to the previous point and return
  14811. ggml_vec_cpy_f32(nx, x, xp);
  14812. ggml_vec_cpy_f32(nx, g, gp);
  14813. return ls;
  14814. }
  14815. opt->loss_after = fx;
  14816. ggml_vec_norm_f32(nx, &xnorm, x);
  14817. ggml_vec_norm_f32(nx, &gnorm, g);
  14818. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14819. if (xnorm < 1.0f) {
  14820. xnorm = 1.0f;
  14821. }
  14822. if (gnorm/xnorm <= params.lbfgs.eps) {
  14823. // converged
  14824. return GGML_OPT_OK;
  14825. }
  14826. // delta-based convergence test
  14827. if (pf != NULL) {
  14828. // need at least params.past iterations to start checking for convergence
  14829. if (params.past <= k[0]) {
  14830. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14831. if (fabsf(rate) < params.delta) {
  14832. return GGML_OPT_OK;
  14833. }
  14834. }
  14835. pf[k[0]%params.past] = fx;
  14836. }
  14837. // check for improvement
  14838. if (params.max_no_improvement > 0) {
  14839. if (fx < fx_best[0]) {
  14840. fx_best[0] = fx;
  14841. n_no_improvement[0] = 0;
  14842. } else {
  14843. n_no_improvement[0]++;
  14844. if (n_no_improvement[0] >= params.max_no_improvement) {
  14845. return GGML_OPT_OK;
  14846. }
  14847. }
  14848. }
  14849. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14850. // reached the maximum number of iterations
  14851. return GGML_OPT_DID_NOT_CONVERGE;
  14852. }
  14853. // update vectors s and y:
  14854. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14855. // y_{k+1} = g_{k+1} - g_{k}.
  14856. //
  14857. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14858. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14859. // compute scalars ys and yy:
  14860. // ys = y^t \cdot s -> 1 / \rho.
  14861. // yy = y^t \cdot y.
  14862. //
  14863. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  14864. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14865. lm_ys[end[0]] = ys;
  14866. // find new search direction
  14867. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14868. bound = (m <= k[0]) ? m : k[0];
  14869. k[0]++;
  14870. it++;
  14871. end[0] = (end[0] + 1)%m;
  14872. // initialize search direction with -g
  14873. ggml_vec_neg_f32(nx, d, g);
  14874. j[0] = end[0];
  14875. for (int i = 0; i < bound; ++i) {
  14876. j[0] = (j[0] + m - 1) % m;
  14877. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14878. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14879. lm_alpha[j[0]] /= lm_ys[j[0]];
  14880. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14881. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14882. }
  14883. ggml_vec_scale_f32(nx, d, ys/yy);
  14884. for (int i = 0; i < bound; ++i) {
  14885. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14886. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14887. beta /= lm_ys[j[0]];
  14888. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14889. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14890. j[0] = (j[0] + 1)%m;
  14891. }
  14892. step[0] = 1.0;
  14893. }
  14894. GGML_UNREACHABLE();
  14895. }
  14896. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14897. struct ggml_opt_params result;
  14898. switch (type) {
  14899. case GGML_OPT_ADAM:
  14900. {
  14901. result = (struct ggml_opt_params) {
  14902. .type = GGML_OPT_ADAM,
  14903. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14904. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  14905. .past = 0,
  14906. .delta = 1e-5f,
  14907. .max_no_improvement = 100,
  14908. .print_forward_graph = true,
  14909. .print_backward_graph = true,
  14910. .n_gradient_accumulation = 1,
  14911. .adam = {
  14912. .n_iter = 10000,
  14913. .sched = 1.000f,
  14914. .decay = 0.0f,
  14915. .decay_min_ndim = 2,
  14916. .alpha = 0.001f,
  14917. .beta1 = 0.9f,
  14918. .beta2 = 0.999f,
  14919. .eps = 1e-8f,
  14920. .eps_f = 1e-5f,
  14921. .eps_g = 1e-3f,
  14922. .gclip = 0.0f,
  14923. },
  14924. };
  14925. } break;
  14926. case GGML_OPT_LBFGS:
  14927. {
  14928. result = (struct ggml_opt_params) {
  14929. .type = GGML_OPT_LBFGS,
  14930. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  14931. .n_threads = 1,
  14932. .past = 0,
  14933. .delta = 1e-5f,
  14934. .max_no_improvement = 0,
  14935. .print_forward_graph = true,
  14936. .print_backward_graph = true,
  14937. .n_gradient_accumulation = 1,
  14938. .lbfgs = {
  14939. .m = 6,
  14940. .n_iter = 100,
  14941. .max_linesearch = 20,
  14942. .eps = 1e-5f,
  14943. .ftol = 1e-4f,
  14944. .wolfe = 0.9f,
  14945. .min_step = 1e-20f,
  14946. .max_step = 1e+20f,
  14947. .linesearch = GGML_LINESEARCH_DEFAULT,
  14948. },
  14949. };
  14950. } break;
  14951. }
  14952. return result;
  14953. }
  14954. GGML_API void ggml_opt_init(
  14955. struct ggml_context * ctx,
  14956. struct ggml_opt_context * opt,
  14957. struct ggml_opt_params params,
  14958. int64_t nx) {
  14959. opt->ctx = ctx;
  14960. opt->params = params;
  14961. opt->iter = 0;
  14962. opt->nx = nx;
  14963. opt->just_initialized = true;
  14964. if (opt->ctx == NULL) {
  14965. struct ggml_init_params ctx_opt_params;
  14966. if (opt->params.type == GGML_OPT_ADAM) {
  14967. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  14968. if (opt->params.past > 0) {
  14969. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14970. }
  14971. } else if (opt->params.type == GGML_OPT_LBFGS) {
  14972. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  14973. if (opt->params.past > 0) {
  14974. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  14975. }
  14976. }
  14977. ctx_opt_params.mem_buffer = NULL;
  14978. ctx_opt_params.no_alloc = false;
  14979. opt->ctx = ggml_init(ctx_opt_params);
  14980. }
  14981. switch (opt->params.type) {
  14982. case GGML_OPT_ADAM:
  14983. {
  14984. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14985. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14986. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14987. opt->adam.pf = params.past > 0
  14988. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  14989. : NULL;
  14990. ggml_set_zero(opt->adam.m);
  14991. ggml_set_zero(opt->adam.v);
  14992. if (opt->adam.pf) {
  14993. ggml_set_zero(opt->adam.pf);
  14994. }
  14995. } break;
  14996. case GGML_OPT_LBFGS:
  14997. {
  14998. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  14999. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15000. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15001. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15002. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15003. opt->lbfgs.pf = params.past > 0
  15004. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15005. : NULL;
  15006. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15007. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15008. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15009. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15010. ggml_set_zero(opt->lbfgs.x);
  15011. ggml_set_zero(opt->lbfgs.xp);
  15012. ggml_set_zero(opt->lbfgs.g);
  15013. ggml_set_zero(opt->lbfgs.gp);
  15014. ggml_set_zero(opt->lbfgs.d);
  15015. if (opt->lbfgs.pf) {
  15016. ggml_set_zero(opt->lbfgs.pf);
  15017. }
  15018. ggml_set_zero(opt->lbfgs.lmal);
  15019. ggml_set_zero(opt->lbfgs.lmys);
  15020. ggml_set_zero(opt->lbfgs.lms);
  15021. ggml_set_zero(opt->lbfgs.lmy);
  15022. } break;
  15023. }
  15024. }
  15025. enum ggml_opt_result ggml_opt(
  15026. struct ggml_context * ctx,
  15027. struct ggml_opt_params params,
  15028. struct ggml_tensor * f) {
  15029. bool free_ctx = false;
  15030. if (ctx == NULL) {
  15031. struct ggml_init_params params_ctx = {
  15032. .mem_size = 16*1024*1024,
  15033. .mem_buffer = NULL,
  15034. .no_alloc = false,
  15035. };
  15036. ctx = ggml_init(params_ctx);
  15037. if (ctx == NULL) {
  15038. return GGML_OPT_NO_CONTEXT;
  15039. }
  15040. free_ctx = true;
  15041. }
  15042. enum ggml_opt_result result = GGML_OPT_OK;
  15043. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15044. ggml_opt_init(ctx, opt, params, 0);
  15045. result = ggml_opt_resume(ctx, opt, f);
  15046. if (free_ctx) {
  15047. ggml_free(ctx);
  15048. }
  15049. return result;
  15050. }
  15051. enum ggml_opt_result ggml_opt_resume(
  15052. struct ggml_context * ctx,
  15053. struct ggml_opt_context * opt,
  15054. struct ggml_tensor * f) {
  15055. // build forward + backward compute graphs
  15056. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15057. ggml_build_forward_expand(gf, f);
  15058. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15059. ggml_build_backward_expand(ctx, gf, gb, true);
  15060. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15061. }
  15062. enum ggml_opt_result ggml_opt_resume_g(
  15063. struct ggml_context * ctx,
  15064. struct ggml_opt_context * opt,
  15065. struct ggml_tensor * f,
  15066. struct ggml_cgraph * gf,
  15067. struct ggml_cgraph * gb,
  15068. ggml_opt_callback callback,
  15069. void * callback_data) {
  15070. // build forward + backward compute graphs
  15071. enum ggml_opt_result result = GGML_OPT_OK;
  15072. switch (opt->params.type) {
  15073. case GGML_OPT_ADAM:
  15074. {
  15075. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15076. } break;
  15077. case GGML_OPT_LBFGS:
  15078. {
  15079. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15080. } break;
  15081. }
  15082. if (opt->params.print_forward_graph) {
  15083. ggml_graph_print (gf);
  15084. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15085. }
  15086. if (opt->params.print_backward_graph) {
  15087. ggml_graph_print (gb);
  15088. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15089. }
  15090. return result;
  15091. }
  15092. ////////////////////////////////////////////////////////////////////////////////
  15093. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15094. assert(k % QK4_0 == 0);
  15095. const int nb = k / QK4_0;
  15096. for (int b = 0; b < n; b += k) {
  15097. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15098. quantize_row_q4_0_reference(src + b, y, k);
  15099. for (int i = 0; i < nb; i++) {
  15100. for (int j = 0; j < QK4_0; j += 2) {
  15101. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15102. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15103. hist[vi0]++;
  15104. hist[vi1]++;
  15105. }
  15106. }
  15107. }
  15108. return (n/QK4_0*sizeof(block_q4_0));
  15109. }
  15110. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15111. assert(k % QK4_1 == 0);
  15112. const int nb = k / QK4_1;
  15113. for (int b = 0; b < n; b += k) {
  15114. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15115. quantize_row_q4_1_reference(src + b, y, k);
  15116. for (int i = 0; i < nb; i++) {
  15117. for (int j = 0; j < QK4_1; j += 2) {
  15118. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15119. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15120. hist[vi0]++;
  15121. hist[vi1]++;
  15122. }
  15123. }
  15124. }
  15125. return (n/QK4_1*sizeof(block_q4_1));
  15126. }
  15127. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15128. assert(k % QK5_0 == 0);
  15129. const int nb = k / QK5_0;
  15130. for (int b = 0; b < n; b += k) {
  15131. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15132. quantize_row_q5_0_reference(src + b, y, k);
  15133. for (int i = 0; i < nb; i++) {
  15134. uint32_t qh;
  15135. memcpy(&qh, &y[i].qh, sizeof(qh));
  15136. for (int j = 0; j < QK5_0; j += 2) {
  15137. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15138. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15139. // cast to 16 bins
  15140. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15141. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15142. hist[vi0]++;
  15143. hist[vi1]++;
  15144. }
  15145. }
  15146. }
  15147. return (n/QK5_0*sizeof(block_q5_0));
  15148. }
  15149. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15150. assert(k % QK5_1 == 0);
  15151. const int nb = k / QK5_1;
  15152. for (int b = 0; b < n; b += k) {
  15153. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15154. quantize_row_q5_1_reference(src + b, y, k);
  15155. for (int i = 0; i < nb; i++) {
  15156. uint32_t qh;
  15157. memcpy(&qh, &y[i].qh, sizeof(qh));
  15158. for (int j = 0; j < QK5_1; j += 2) {
  15159. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  15160. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  15161. // cast to 16 bins
  15162. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15163. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15164. hist[vi0]++;
  15165. hist[vi1]++;
  15166. }
  15167. }
  15168. }
  15169. return (n/QK5_1*sizeof(block_q5_1));
  15170. }
  15171. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15172. assert(k % QK8_0 == 0);
  15173. const int nb = k / QK8_0;
  15174. for (int b = 0; b < n; b += k) {
  15175. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15176. quantize_row_q8_0_reference(src + b, y, k);
  15177. for (int i = 0; i < nb; i++) {
  15178. for (int j = 0; j < QK8_0; ++j) {
  15179. const int8_t vi = y[i].qs[j];
  15180. hist[vi/16 + 8]++;
  15181. }
  15182. }
  15183. }
  15184. return (n/QK8_0*sizeof(block_q8_0));
  15185. }
  15186. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15187. size_t result = 0;
  15188. switch (type) {
  15189. case GGML_TYPE_Q4_0:
  15190. {
  15191. GGML_ASSERT(start % QK4_0 == 0);
  15192. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15193. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15194. } break;
  15195. case GGML_TYPE_Q4_1:
  15196. {
  15197. GGML_ASSERT(start % QK4_1 == 0);
  15198. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15199. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15200. } break;
  15201. case GGML_TYPE_Q5_0:
  15202. {
  15203. GGML_ASSERT(start % QK5_0 == 0);
  15204. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15205. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15206. } break;
  15207. case GGML_TYPE_Q5_1:
  15208. {
  15209. GGML_ASSERT(start % QK5_1 == 0);
  15210. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15211. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15212. } break;
  15213. case GGML_TYPE_Q8_0:
  15214. {
  15215. GGML_ASSERT(start % QK8_0 == 0);
  15216. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15217. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15218. } break;
  15219. case GGML_TYPE_Q2_K:
  15220. {
  15221. GGML_ASSERT(start % QK_K == 0);
  15222. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15223. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15224. } break;
  15225. case GGML_TYPE_Q3_K:
  15226. {
  15227. GGML_ASSERT(start % QK_K == 0);
  15228. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15229. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15230. } break;
  15231. case GGML_TYPE_Q4_K:
  15232. {
  15233. GGML_ASSERT(start % QK_K == 0);
  15234. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15235. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15236. } break;
  15237. case GGML_TYPE_Q5_K:
  15238. {
  15239. GGML_ASSERT(start % QK_K == 0);
  15240. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15241. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15242. } break;
  15243. case GGML_TYPE_Q6_K:
  15244. {
  15245. GGML_ASSERT(start % QK_K == 0);
  15246. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15247. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15248. } break;
  15249. case GGML_TYPE_F16:
  15250. {
  15251. int elemsize = sizeof(ggml_fp16_t);
  15252. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15253. result = n * elemsize;
  15254. } break;
  15255. case GGML_TYPE_F32:
  15256. {
  15257. int elemsize = sizeof(float);
  15258. result = n * elemsize;
  15259. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15260. } break;
  15261. default:
  15262. assert(false);
  15263. }
  15264. return result;
  15265. }
  15266. ////////////////////////////////////////////////////////////////////////////////
  15267. struct gguf_str {
  15268. uint64_t n; // GGUFv2
  15269. char * data;
  15270. };
  15271. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  15272. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  15273. [GGUF_TYPE_INT8] = sizeof(int8_t),
  15274. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  15275. [GGUF_TYPE_INT16] = sizeof(int16_t),
  15276. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  15277. [GGUF_TYPE_INT32] = sizeof(int32_t),
  15278. [GGUF_TYPE_FLOAT32] = sizeof(float),
  15279. [GGUF_TYPE_BOOL] = sizeof(bool),
  15280. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  15281. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  15282. [GGUF_TYPE_INT64] = sizeof(int64_t),
  15283. [GGUF_TYPE_FLOAT64] = sizeof(double),
  15284. [GGUF_TYPE_ARRAY] = 0, // undefined
  15285. };
  15286. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15287. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  15288. [GGUF_TYPE_UINT8] = "u8",
  15289. [GGUF_TYPE_INT8] = "i8",
  15290. [GGUF_TYPE_UINT16] = "u16",
  15291. [GGUF_TYPE_INT16] = "i16",
  15292. [GGUF_TYPE_UINT32] = "u32",
  15293. [GGUF_TYPE_INT32] = "i32",
  15294. [GGUF_TYPE_FLOAT32] = "f32",
  15295. [GGUF_TYPE_BOOL] = "bool",
  15296. [GGUF_TYPE_STRING] = "str",
  15297. [GGUF_TYPE_ARRAY] = "arr",
  15298. [GGUF_TYPE_UINT64] = "u64",
  15299. [GGUF_TYPE_INT64] = "i64",
  15300. [GGUF_TYPE_FLOAT64] = "f64",
  15301. };
  15302. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  15303. union gguf_value {
  15304. uint8_t uint8;
  15305. int8_t int8;
  15306. uint16_t uint16;
  15307. int16_t int16;
  15308. uint32_t uint32;
  15309. int32_t int32;
  15310. float float32;
  15311. uint64_t uint64;
  15312. int64_t int64;
  15313. double float64;
  15314. bool bool_;
  15315. struct gguf_str str;
  15316. struct {
  15317. enum gguf_type type;
  15318. uint64_t n; // GGUFv2
  15319. void * data;
  15320. } arr;
  15321. };
  15322. struct gguf_kv {
  15323. struct gguf_str key;
  15324. enum gguf_type type;
  15325. union gguf_value value;
  15326. };
  15327. struct gguf_header {
  15328. char magic[4];
  15329. uint32_t version;
  15330. uint64_t n_tensors; // GGUFv2
  15331. uint64_t n_kv; // GGUFv2
  15332. };
  15333. struct gguf_tensor_info {
  15334. struct gguf_str name;
  15335. uint32_t n_dims;
  15336. uint64_t ne[GGML_MAX_DIMS];
  15337. enum ggml_type type;
  15338. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  15339. // for writing API
  15340. const void * data;
  15341. size_t size;
  15342. };
  15343. struct gguf_context {
  15344. struct gguf_header header;
  15345. struct gguf_kv * kv;
  15346. struct gguf_tensor_info * infos;
  15347. size_t alignment;
  15348. size_t offset; // offset of `data` from beginning of file
  15349. size_t size; // size of `data` in bytes
  15350. //uint8_t * padding;
  15351. void * data;
  15352. };
  15353. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  15354. const size_t n = fread(dst, 1, size, file);
  15355. *offset += n;
  15356. return n == size;
  15357. }
  15358. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  15359. p->n = 0;
  15360. p->data = NULL;
  15361. bool ok = true;
  15362. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  15363. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  15364. return ok;
  15365. }
  15366. struct gguf_context * gguf_init_empty(void) {
  15367. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15368. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  15369. ctx->header.version = GGUF_VERSION;
  15370. ctx->header.n_tensors = 0;
  15371. ctx->header.n_kv = 0;
  15372. ctx->kv = NULL;
  15373. ctx->infos = NULL;
  15374. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15375. ctx->offset = 0;
  15376. ctx->size = 0;
  15377. ctx->data = NULL;
  15378. return ctx;
  15379. }
  15380. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  15381. FILE * file = fopen(fname, "rb");
  15382. if (!file) {
  15383. return NULL;
  15384. }
  15385. // offset from start of file
  15386. size_t offset = 0;
  15387. char magic[4];
  15388. // check the magic before making allocations
  15389. {
  15390. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  15391. for (uint32_t i = 0; i < sizeof(magic); i++) {
  15392. if (magic[i] != GGUF_MAGIC[i]) {
  15393. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  15394. fclose(file);
  15395. return NULL;
  15396. }
  15397. }
  15398. }
  15399. bool ok = true;
  15400. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  15401. // read the header
  15402. {
  15403. strncpy(ctx->header.magic, magic, 4);
  15404. ctx->kv = NULL;
  15405. ctx->infos = NULL;
  15406. ctx->data = NULL;
  15407. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  15408. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  15409. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  15410. if (ctx->header.version == 1) {
  15411. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  15412. fclose(file);
  15413. gguf_free(ctx);
  15414. return NULL;
  15415. }
  15416. if (!ok) {
  15417. fprintf(stderr, "%s: failed to read header\n", __func__);
  15418. fclose(file);
  15419. gguf_free(ctx);
  15420. return NULL;
  15421. }
  15422. }
  15423. // read the kv pairs
  15424. {
  15425. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  15426. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  15427. struct gguf_kv * kv = &ctx->kv[i];
  15428. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  15429. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  15430. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  15431. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  15432. switch (kv->type) {
  15433. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  15434. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  15435. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  15436. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  15437. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  15438. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  15439. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  15440. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  15441. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  15442. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  15443. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  15444. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  15445. case GGUF_TYPE_ARRAY:
  15446. {
  15447. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  15448. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  15449. switch (kv->value.arr.type) {
  15450. case GGUF_TYPE_UINT8:
  15451. case GGUF_TYPE_INT8:
  15452. case GGUF_TYPE_UINT16:
  15453. case GGUF_TYPE_INT16:
  15454. case GGUF_TYPE_UINT32:
  15455. case GGUF_TYPE_INT32:
  15456. case GGUF_TYPE_FLOAT32:
  15457. case GGUF_TYPE_UINT64:
  15458. case GGUF_TYPE_INT64:
  15459. case GGUF_TYPE_FLOAT64:
  15460. case GGUF_TYPE_BOOL:
  15461. {
  15462. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  15463. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  15464. } break;
  15465. case GGUF_TYPE_STRING:
  15466. {
  15467. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  15468. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  15469. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  15470. }
  15471. } break;
  15472. case GGUF_TYPE_ARRAY:
  15473. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15474. }
  15475. } break;
  15476. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  15477. }
  15478. if (!ok) {
  15479. break;
  15480. }
  15481. }
  15482. if (!ok) {
  15483. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  15484. fclose(file);
  15485. gguf_free(ctx);
  15486. return NULL;
  15487. }
  15488. }
  15489. // read the tensor infos
  15490. {
  15491. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  15492. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15493. struct gguf_tensor_info * info = &ctx->infos[i];
  15494. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15495. info->ne[j] = 1;
  15496. }
  15497. ok = ok && gguf_fread_str(file, &info->name, &offset);
  15498. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  15499. for (uint32_t j = 0; j < info->n_dims; ++j) {
  15500. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  15501. }
  15502. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  15503. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  15504. if (!ok) {
  15505. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  15506. fclose(file);
  15507. gguf_free(ctx);
  15508. return NULL;
  15509. }
  15510. }
  15511. }
  15512. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  15513. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  15514. if (alignment_idx != -1) {
  15515. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  15516. }
  15517. // we require the data section to be aligned, so take into account any padding
  15518. {
  15519. const size_t offset_pad = offset % ctx->alignment;
  15520. if (offset_pad != 0) {
  15521. offset += ctx->alignment - offset_pad;
  15522. fseek(file, offset, SEEK_SET);
  15523. }
  15524. }
  15525. // store the current file offset - this is where the data section starts
  15526. ctx->offset = offset;
  15527. // compute the total size of the data section, taking into account the alignment
  15528. {
  15529. ctx->size = 0;
  15530. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15531. struct gguf_tensor_info * info = &ctx->infos[i];
  15532. const int64_t ne =
  15533. (int64_t) info->ne[0] *
  15534. (int64_t) info->ne[1] *
  15535. (int64_t) info->ne[2] *
  15536. (int64_t) info->ne[3];
  15537. if (ne % ggml_blck_size(info->type) != 0) {
  15538. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  15539. __func__, info->name.data, ne, ggml_blck_size(info->type));
  15540. fclose(file);
  15541. gguf_free(ctx);
  15542. return NULL;
  15543. }
  15544. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  15545. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  15546. }
  15547. }
  15548. // load the tensor data only if requested
  15549. if (params.ctx != NULL) {
  15550. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  15551. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  15552. // the ggml_tensor structs to the appropriate locations in the binary blob
  15553. // compute the exact size needed for the new ggml_context
  15554. const size_t mem_size =
  15555. params.no_alloc ?
  15556. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  15557. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  15558. struct ggml_init_params pdata = {
  15559. .mem_size = mem_size,
  15560. .mem_buffer = NULL,
  15561. .no_alloc = params.no_alloc,
  15562. };
  15563. *params.ctx = ggml_init(pdata);
  15564. struct ggml_context * ctx_data = *params.ctx;
  15565. struct ggml_tensor * data = NULL;
  15566. if (!params.no_alloc) {
  15567. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  15568. ok = ok && data != NULL;
  15569. // read the binary blob with the tensor data
  15570. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  15571. if (!ok) {
  15572. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  15573. fclose(file);
  15574. ggml_free(ctx_data);
  15575. gguf_free(ctx);
  15576. return NULL;
  15577. }
  15578. ctx->data = data->data;
  15579. }
  15580. ggml_set_no_alloc(ctx_data, true);
  15581. // create the tensors
  15582. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  15583. const int64_t ne[GGML_MAX_DIMS] = {
  15584. ctx->infos[i].ne[0],
  15585. ctx->infos[i].ne[1],
  15586. ctx->infos[i].ne[2],
  15587. ctx->infos[i].ne[3],
  15588. };
  15589. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  15590. ok = ok && cur != NULL;
  15591. ggml_set_name(cur, ctx->infos[i].name.data);
  15592. if (!ok) {
  15593. break;
  15594. }
  15595. // point the data member to the appropriate location in the binary blob using the tensor infos
  15596. if (!params.no_alloc) {
  15597. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  15598. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  15599. }
  15600. }
  15601. if (!ok) {
  15602. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  15603. fclose(file);
  15604. ggml_free(ctx_data);
  15605. gguf_free(ctx);
  15606. return NULL;
  15607. }
  15608. ggml_set_no_alloc(ctx_data, params.no_alloc);
  15609. }
  15610. fclose(file);
  15611. return ctx;
  15612. }
  15613. void gguf_free(struct gguf_context * ctx) {
  15614. if (ctx == NULL) {
  15615. return;
  15616. }
  15617. if (ctx->kv) {
  15618. // free string memory - not great..
  15619. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  15620. struct gguf_kv * kv = &ctx->kv[i];
  15621. if (kv->key.data) {
  15622. free(kv->key.data);
  15623. }
  15624. if (kv->type == GGUF_TYPE_STRING) {
  15625. if (kv->value.str.data) {
  15626. free(kv->value.str.data);
  15627. }
  15628. }
  15629. if (kv->type == GGUF_TYPE_ARRAY) {
  15630. if (kv->value.arr.data) {
  15631. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  15632. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  15633. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  15634. if (str->data) {
  15635. free(str->data);
  15636. }
  15637. }
  15638. }
  15639. free(kv->value.arr.data);
  15640. }
  15641. }
  15642. }
  15643. free(ctx->kv);
  15644. }
  15645. if (ctx->infos) {
  15646. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  15647. struct gguf_tensor_info * info = &ctx->infos[i];
  15648. if (info->name.data) {
  15649. free(info->name.data);
  15650. }
  15651. }
  15652. free(ctx->infos);
  15653. }
  15654. GGML_ALIGNED_FREE(ctx);
  15655. }
  15656. const char * gguf_type_name(enum gguf_type type) {
  15657. return GGUF_TYPE_NAME[type];
  15658. }
  15659. int gguf_get_version(const struct gguf_context * ctx) {
  15660. return ctx->header.version;
  15661. }
  15662. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  15663. return ctx->alignment;
  15664. }
  15665. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  15666. return ctx->offset;
  15667. }
  15668. void * gguf_get_data(const struct gguf_context * ctx) {
  15669. return ctx->data;
  15670. }
  15671. int gguf_get_n_kv(const struct gguf_context * ctx) {
  15672. return ctx->header.n_kv;
  15673. }
  15674. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  15675. // return -1 if key not found
  15676. int keyfound = -1;
  15677. const int n_kv = gguf_get_n_kv(ctx);
  15678. for (int i = 0; i < n_kv; ++i) {
  15679. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  15680. keyfound = i;
  15681. break;
  15682. }
  15683. }
  15684. return keyfound;
  15685. }
  15686. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  15687. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15688. return ctx->kv[key_id].key.data;
  15689. }
  15690. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  15691. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15692. return ctx->kv[key_id].type;
  15693. }
  15694. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  15695. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15696. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15697. return ctx->kv[key_id].value.arr.type;
  15698. }
  15699. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  15700. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15701. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15702. return ctx->kv[key_id].value.arr.data;
  15703. }
  15704. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  15705. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15706. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15707. struct gguf_kv * kv = &ctx->kv[key_id];
  15708. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  15709. return str->data;
  15710. }
  15711. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  15712. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15713. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  15714. return ctx->kv[key_id].value.arr.n;
  15715. }
  15716. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  15717. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15718. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  15719. return ctx->kv[key_id].value.uint8;
  15720. }
  15721. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  15722. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15723. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  15724. return ctx->kv[key_id].value.int8;
  15725. }
  15726. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  15727. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15728. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  15729. return ctx->kv[key_id].value.uint16;
  15730. }
  15731. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  15732. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15733. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  15734. return ctx->kv[key_id].value.int16;
  15735. }
  15736. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  15737. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15738. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  15739. return ctx->kv[key_id].value.uint32;
  15740. }
  15741. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  15742. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15743. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  15744. return ctx->kv[key_id].value.int32;
  15745. }
  15746. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  15747. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15748. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  15749. return ctx->kv[key_id].value.float32;
  15750. }
  15751. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  15752. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15753. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  15754. return ctx->kv[key_id].value.uint64;
  15755. }
  15756. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  15757. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15758. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  15759. return ctx->kv[key_id].value.int64;
  15760. }
  15761. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  15762. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15763. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  15764. return ctx->kv[key_id].value.float64;
  15765. }
  15766. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  15767. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15768. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  15769. return ctx->kv[key_id].value.bool_;
  15770. }
  15771. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  15772. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15773. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  15774. return ctx->kv[key_id].value.str.data;
  15775. }
  15776. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  15777. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  15778. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  15779. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  15780. return &ctx->kv[key_id].value;
  15781. }
  15782. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  15783. return ctx->header.n_tensors;
  15784. }
  15785. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  15786. // return -1 if tensor not found
  15787. int tensorfound = -1;
  15788. const int n_tensors = gguf_get_n_tensors(ctx);
  15789. for (int i = 0; i < n_tensors; ++i) {
  15790. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  15791. tensorfound = i;
  15792. break;
  15793. }
  15794. }
  15795. return tensorfound;
  15796. }
  15797. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  15798. return ctx->infos[i].offset;
  15799. }
  15800. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  15801. return ctx->infos[i].name.data;
  15802. }
  15803. // returns the index
  15804. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  15805. const int idx = gguf_find_key(ctx, key);
  15806. if (idx >= 0) {
  15807. return idx;
  15808. }
  15809. const int n_kv = gguf_get_n_kv(ctx);
  15810. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  15811. ctx->kv[n_kv].key.n = strlen(key);
  15812. ctx->kv[n_kv].key.data = strdup(key);
  15813. ctx->header.n_kv++;
  15814. return n_kv;
  15815. }
  15816. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  15817. const int idx = gguf_get_or_add_key(ctx, key);
  15818. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  15819. ctx->kv[idx].value.uint8 = val;
  15820. }
  15821. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  15822. const int idx = gguf_get_or_add_key(ctx, key);
  15823. ctx->kv[idx].type = GGUF_TYPE_INT8;
  15824. ctx->kv[idx].value.int8 = val;
  15825. }
  15826. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  15827. const int idx = gguf_get_or_add_key(ctx, key);
  15828. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  15829. ctx->kv[idx].value.uint16 = val;
  15830. }
  15831. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  15832. const int idx = gguf_get_or_add_key(ctx, key);
  15833. ctx->kv[idx].type = GGUF_TYPE_INT16;
  15834. ctx->kv[idx].value.int16 = val;
  15835. }
  15836. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  15837. const int idx = gguf_get_or_add_key(ctx, key);
  15838. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  15839. ctx->kv[idx].value.uint32 = val;
  15840. }
  15841. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  15842. const int idx = gguf_get_or_add_key(ctx, key);
  15843. ctx->kv[idx].type = GGUF_TYPE_INT32;
  15844. ctx->kv[idx].value.int32 = val;
  15845. }
  15846. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  15847. const int idx = gguf_get_or_add_key(ctx, key);
  15848. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  15849. ctx->kv[idx].value.float32 = val;
  15850. }
  15851. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  15852. const int idx = gguf_get_or_add_key(ctx, key);
  15853. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  15854. ctx->kv[idx].value.uint64 = val;
  15855. }
  15856. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  15857. const int idx = gguf_get_or_add_key(ctx, key);
  15858. ctx->kv[idx].type = GGUF_TYPE_INT64;
  15859. ctx->kv[idx].value.int64 = val;
  15860. }
  15861. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  15862. const int idx = gguf_get_or_add_key(ctx, key);
  15863. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  15864. ctx->kv[idx].value.float64 = val;
  15865. }
  15866. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  15867. const int idx = gguf_get_or_add_key(ctx, key);
  15868. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  15869. ctx->kv[idx].value.bool_ = val;
  15870. }
  15871. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  15872. const int idx = gguf_get_or_add_key(ctx, key);
  15873. ctx->kv[idx].type = GGUF_TYPE_STRING;
  15874. ctx->kv[idx].value.str.n = strlen(val);
  15875. ctx->kv[idx].value.str.data = strdup(val);
  15876. }
  15877. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  15878. const int idx = gguf_get_or_add_key(ctx, key);
  15879. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15880. ctx->kv[idx].value.arr.type = type;
  15881. ctx->kv[idx].value.arr.n = n;
  15882. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  15883. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  15884. }
  15885. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  15886. const int idx = gguf_get_or_add_key(ctx, key);
  15887. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  15888. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  15889. ctx->kv[idx].value.arr.n = n;
  15890. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  15891. for (int i = 0; i < n; i++) {
  15892. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  15893. str->n = strlen(data[i]);
  15894. str->data = strdup(data[i]);
  15895. }
  15896. }
  15897. // set or add KV pairs from another context
  15898. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  15899. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  15900. switch (src->kv[i].type) {
  15901. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  15902. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  15903. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  15904. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  15905. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  15906. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  15907. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  15908. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  15909. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  15910. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  15911. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  15912. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  15913. case GGUF_TYPE_ARRAY:
  15914. {
  15915. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  15916. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  15917. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  15918. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  15919. }
  15920. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  15921. free(data);
  15922. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  15923. GGML_ASSERT(false && "nested arrays not supported");
  15924. } else {
  15925. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  15926. }
  15927. } break;
  15928. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  15929. }
  15930. }
  15931. }
  15932. void gguf_add_tensor(
  15933. struct gguf_context * ctx,
  15934. const struct ggml_tensor * tensor) {
  15935. const int idx = ctx->header.n_tensors;
  15936. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  15937. ctx->infos[idx].name.n = strlen(tensor->name);
  15938. ctx->infos[idx].name.data = strdup(tensor->name);
  15939. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  15940. ctx->infos[idx].ne[i] = 1;
  15941. }
  15942. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  15943. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  15944. ctx->infos[idx].ne[i] = tensor->ne[i];
  15945. }
  15946. ctx->infos[idx].type = tensor->type;
  15947. ctx->infos[idx].offset = 0;
  15948. ctx->infos[idx].data = tensor->data;
  15949. ctx->infos[idx].size = ggml_nbytes(tensor);
  15950. if (ctx->header.n_tensors > 0) {
  15951. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  15952. }
  15953. ctx->header.n_tensors++;
  15954. }
  15955. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  15956. const int idx = gguf_find_tensor(ctx, name);
  15957. if (idx < 0) {
  15958. GGML_ASSERT(false && "tensor not found");
  15959. }
  15960. ctx->infos[idx].type = type;
  15961. }
  15962. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  15963. const int idx = gguf_find_tensor(ctx, name);
  15964. if (idx < 0) {
  15965. GGML_ASSERT(false && "tensor not found");
  15966. }
  15967. ctx->infos[idx].data = data;
  15968. ctx->infos[idx].size = size;
  15969. // update offsets
  15970. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  15971. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  15972. }
  15973. }
  15974. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  15975. // fwrite(&val->n, sizeof(val->n), 1, file);
  15976. // fwrite(val->data, sizeof(char), val->n, file);
  15977. //}
  15978. //
  15979. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  15980. // fwrite(val, sizeof(char), size, file);
  15981. //}
  15982. struct gguf_buf {
  15983. void * data;
  15984. size_t size;
  15985. size_t offset;
  15986. };
  15987. static struct gguf_buf gguf_buf_init(size_t size) {
  15988. struct gguf_buf buf = {
  15989. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  15990. /*buf.size =*/ size,
  15991. /*buf.offset =*/ 0,
  15992. };
  15993. return buf;
  15994. }
  15995. static void gguf_buf_free(struct gguf_buf buf) {
  15996. if (buf.data) {
  15997. free(buf.data);
  15998. }
  15999. }
  16000. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16001. if (buf->offset + size > buf->size) {
  16002. buf->size = 1.5*(buf->offset + size);
  16003. if (buf->data) {
  16004. buf->data = realloc(buf->data, buf->size);
  16005. }
  16006. }
  16007. }
  16008. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16009. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16010. if (buf->data) {
  16011. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16012. }
  16013. buf->offset += sizeof(val->n);
  16014. if (buf->data) {
  16015. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16016. }
  16017. buf->offset += val->n;
  16018. }
  16019. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16020. gguf_buf_grow(buf, el_size);
  16021. if (buf->data) {
  16022. memcpy((char *) buf->data + buf->offset, val, el_size);
  16023. }
  16024. buf->offset += el_size;
  16025. }
  16026. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16027. // write header
  16028. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16029. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16030. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16031. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16032. // write key-value pairs
  16033. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16034. struct gguf_kv * kv = &ctx->kv[i];
  16035. gguf_bwrite_str(buf, &kv->key);
  16036. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16037. switch (kv->type) {
  16038. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16039. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16040. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16041. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16042. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16043. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16044. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16045. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16046. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16047. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16048. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16049. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16050. case GGUF_TYPE_ARRAY:
  16051. {
  16052. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16053. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16054. switch (kv->value.arr.type) {
  16055. case GGUF_TYPE_UINT8:
  16056. case GGUF_TYPE_INT8:
  16057. case GGUF_TYPE_UINT16:
  16058. case GGUF_TYPE_INT16:
  16059. case GGUF_TYPE_UINT32:
  16060. case GGUF_TYPE_INT32:
  16061. case GGUF_TYPE_FLOAT32:
  16062. case GGUF_TYPE_UINT64:
  16063. case GGUF_TYPE_INT64:
  16064. case GGUF_TYPE_FLOAT64:
  16065. case GGUF_TYPE_BOOL:
  16066. {
  16067. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16068. } break;
  16069. case GGUF_TYPE_STRING:
  16070. {
  16071. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16072. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16073. }
  16074. } break;
  16075. case GGUF_TYPE_ARRAY:
  16076. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16077. }
  16078. } break;
  16079. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16080. }
  16081. }
  16082. // write tensor infos
  16083. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16084. struct gguf_tensor_info * info = &ctx->infos[i];
  16085. gguf_bwrite_str(buf, &info->name);
  16086. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16087. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16088. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16089. }
  16090. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16091. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16092. }
  16093. // we require the data section to be aligned, so take into account any padding
  16094. {
  16095. const size_t offset = buf->offset;
  16096. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16097. if (offset_pad != offset) {
  16098. uint8_t pad = 0;
  16099. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16100. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16101. }
  16102. }
  16103. }
  16104. if (only_meta) {
  16105. return;
  16106. }
  16107. size_t offset = 0;
  16108. // write tensor data
  16109. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16110. struct gguf_tensor_info * info = &ctx->infos[i];
  16111. const size_t size = info->size;
  16112. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16113. gguf_bwrite_el(buf, info->data, size);
  16114. if (size_pad != size) {
  16115. uint8_t pad = 0;
  16116. for (size_t j = 0; j < size_pad - size; ++j) {
  16117. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16118. }
  16119. }
  16120. GGML_ASSERT(offset == info->offset);
  16121. offset += size_pad;
  16122. }
  16123. }
  16124. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  16125. FILE * file = fopen(fname, "wb");
  16126. if (!file) {
  16127. GGML_ASSERT(false && "failed to open file for writing");
  16128. }
  16129. struct gguf_buf buf = gguf_buf_init(16*1024);
  16130. gguf_write_to_buf(ctx, &buf, only_meta);
  16131. fwrite(buf.data, 1, buf.offset, file);
  16132. gguf_buf_free(buf);
  16133. fclose(file);
  16134. }
  16135. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  16136. // no allocs - only compute size
  16137. struct gguf_buf buf = gguf_buf_init(0);
  16138. gguf_write_to_buf(ctx, &buf, true);
  16139. return buf.offset;
  16140. }
  16141. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  16142. struct gguf_buf buf = gguf_buf_init(16*1024);
  16143. gguf_write_to_buf(ctx, &buf, true);
  16144. memcpy(data, buf.data, buf.offset);
  16145. gguf_buf_free(buf);
  16146. }
  16147. ////////////////////////////////////////////////////////////////////////////////
  16148. int ggml_cpu_has_avx(void) {
  16149. #if defined(__AVX__)
  16150. return 1;
  16151. #else
  16152. return 0;
  16153. #endif
  16154. }
  16155. int ggml_cpu_has_avx2(void) {
  16156. #if defined(__AVX2__)
  16157. return 1;
  16158. #else
  16159. return 0;
  16160. #endif
  16161. }
  16162. int ggml_cpu_has_avx512(void) {
  16163. #if defined(__AVX512F__)
  16164. return 1;
  16165. #else
  16166. return 0;
  16167. #endif
  16168. }
  16169. int ggml_cpu_has_avx512_vbmi(void) {
  16170. #if defined(__AVX512VBMI__)
  16171. return 1;
  16172. #else
  16173. return 0;
  16174. #endif
  16175. }
  16176. int ggml_cpu_has_avx512_vnni(void) {
  16177. #if defined(__AVX512VNNI__)
  16178. return 1;
  16179. #else
  16180. return 0;
  16181. #endif
  16182. }
  16183. int ggml_cpu_has_fma(void) {
  16184. #if defined(__FMA__)
  16185. return 1;
  16186. #else
  16187. return 0;
  16188. #endif
  16189. }
  16190. int ggml_cpu_has_neon(void) {
  16191. #if defined(__ARM_NEON)
  16192. return 1;
  16193. #else
  16194. return 0;
  16195. #endif
  16196. }
  16197. int ggml_cpu_has_arm_fma(void) {
  16198. #if defined(__ARM_FEATURE_FMA)
  16199. return 1;
  16200. #else
  16201. return 0;
  16202. #endif
  16203. }
  16204. int ggml_cpu_has_metal(void) {
  16205. #if defined(GGML_USE_METAL)
  16206. return 1;
  16207. #else
  16208. return 0;
  16209. #endif
  16210. }
  16211. int ggml_cpu_has_f16c(void) {
  16212. #if defined(__F16C__)
  16213. return 1;
  16214. #else
  16215. return 0;
  16216. #endif
  16217. }
  16218. int ggml_cpu_has_fp16_va(void) {
  16219. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16220. return 1;
  16221. #else
  16222. return 0;
  16223. #endif
  16224. }
  16225. int ggml_cpu_has_wasm_simd(void) {
  16226. #if defined(__wasm_simd128__)
  16227. return 1;
  16228. #else
  16229. return 0;
  16230. #endif
  16231. }
  16232. int ggml_cpu_has_blas(void) {
  16233. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  16234. return 1;
  16235. #else
  16236. return 0;
  16237. #endif
  16238. }
  16239. int ggml_cpu_has_cublas(void) {
  16240. #if defined(GGML_USE_CUBLAS)
  16241. return 1;
  16242. #else
  16243. return 0;
  16244. #endif
  16245. }
  16246. int ggml_cpu_has_clblast(void) {
  16247. #if defined(GGML_USE_CLBLAST)
  16248. return 1;
  16249. #else
  16250. return 0;
  16251. #endif
  16252. }
  16253. int ggml_cpu_has_gpublas(void) {
  16254. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  16255. }
  16256. int ggml_cpu_has_sse3(void) {
  16257. #if defined(__SSE3__)
  16258. return 1;
  16259. #else
  16260. return 0;
  16261. #endif
  16262. }
  16263. int ggml_cpu_has_ssse3(void) {
  16264. #if defined(__SSSE3__)
  16265. return 1;
  16266. #else
  16267. return 0;
  16268. #endif
  16269. }
  16270. int ggml_cpu_has_vsx(void) {
  16271. #if defined(__POWER9_VECTOR__)
  16272. return 1;
  16273. #else
  16274. return 0;
  16275. #endif
  16276. }
  16277. ////////////////////////////////////////////////////////////////////////////////