ggml.c 677 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. // note: do not use these inside ggml.c
  271. // these are meant to be used via the ggml.h API
  272. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  273. return GGML_FP16_TO_FP32(x);
  274. }
  275. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  276. return GGML_FP32_TO_FP16(x);
  277. }
  278. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  279. for (int i = 0; i < n; i++) {
  280. y[i] = GGML_FP16_TO_FP32(x[i]);
  281. }
  282. }
  283. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  284. int i = 0;
  285. #if defined(__F16C__)
  286. for (; i + 7 < n; i += 8) {
  287. __m256 x_vec = _mm256_loadu_ps(x + i);
  288. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  290. }
  291. for(; i + 3 < n; i += 4) {
  292. __m128 x_vec = _mm_loadu_ps(x + i);
  293. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  294. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  295. }
  296. #endif
  297. for (; i < n; i++) {
  298. y[i] = GGML_FP32_TO_FP16(x[i]);
  299. }
  300. }
  301. //
  302. // timing
  303. //
  304. #if defined(_MSC_VER) || defined(__MINGW32__)
  305. static int64_t timer_freq, timer_start;
  306. void ggml_time_init(void) {
  307. LARGE_INTEGER t;
  308. QueryPerformanceFrequency(&t);
  309. timer_freq = t.QuadPart;
  310. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  311. // and the uptime is high enough.
  312. // We subtract the program start time to reduce the likelihood of that happening.
  313. QueryPerformanceCounter(&t);
  314. timer_start = t.QuadPart;
  315. }
  316. int64_t ggml_time_ms(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  320. }
  321. int64_t ggml_time_us(void) {
  322. LARGE_INTEGER t;
  323. QueryPerformanceCounter(&t);
  324. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  325. }
  326. #else
  327. void ggml_time_init(void) {}
  328. int64_t ggml_time_ms(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  332. }
  333. int64_t ggml_time_us(void) {
  334. struct timespec ts;
  335. clock_gettime(CLOCK_MONOTONIC, &ts);
  336. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  337. }
  338. #endif
  339. int64_t ggml_cycles(void) {
  340. return clock();
  341. }
  342. int64_t ggml_cycles_per_ms(void) {
  343. return CLOCKS_PER_SEC/1000;
  344. }
  345. #ifdef GGML_PERF
  346. #define ggml_perf_time_ms() ggml_time_ms()
  347. #define ggml_perf_time_us() ggml_time_us()
  348. #define ggml_perf_cycles() ggml_cycles()
  349. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  350. #else
  351. #define ggml_perf_time_ms() 0
  352. #define ggml_perf_time_us() 0
  353. #define ggml_perf_cycles() 0
  354. #define ggml_perf_cycles_per_ms() 0
  355. #endif
  356. //
  357. // cache line
  358. //
  359. #if defined(__cpp_lib_hardware_interference_size)
  360. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  361. #else
  362. #if defined(__POWER9_VECTOR__)
  363. #define CACHE_LINE_SIZE 128
  364. #else
  365. #define CACHE_LINE_SIZE 64
  366. #endif
  367. #endif
  368. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  369. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  370. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  371. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  372. [GGML_TYPE_I8] = {
  373. .type_name = "i8",
  374. .blck_size = 1,
  375. .type_size = sizeof(int8_t),
  376. .is_quantized = false,
  377. },
  378. [GGML_TYPE_I16] = {
  379. .type_name = "i16",
  380. .blck_size = 1,
  381. .type_size = sizeof(int16_t),
  382. .is_quantized = false,
  383. },
  384. [GGML_TYPE_I32] = {
  385. .type_name = "i32",
  386. .blck_size = 1,
  387. .type_size = sizeof(int32_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_F32] = {
  391. .type_name = "f32",
  392. .blck_size = 1,
  393. .type_size = sizeof(float),
  394. .is_quantized = false,
  395. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  396. .vec_dot_type = GGML_TYPE_F32,
  397. .nrows = 1,
  398. },
  399. [GGML_TYPE_F16] = {
  400. .type_name = "f16",
  401. .blck_size = 1,
  402. .type_size = sizeof(ggml_fp16_t),
  403. .is_quantized = false,
  404. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  405. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  406. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  407. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  408. .vec_dot_type = GGML_TYPE_F16,
  409. .nrows = 1,
  410. },
  411. [GGML_TYPE_Q4_0] = {
  412. .type_name = "q4_0",
  413. .blck_size = QK4_0,
  414. .type_size = sizeof(block_q4_0),
  415. .is_quantized = true,
  416. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  417. .from_float = quantize_row_q4_0,
  418. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  419. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  420. .vec_dot_type = GGML_TYPE_Q8_0,
  421. #if defined (__ARM_FEATURE_MATMUL_INT8)
  422. .nrows = 2,
  423. #else
  424. .nrows = 1,
  425. #endif
  426. },
  427. [GGML_TYPE_Q4_1] = {
  428. .type_name = "q4_1",
  429. .blck_size = QK4_1,
  430. .type_size = sizeof(block_q4_1),
  431. .is_quantized = true,
  432. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  433. .from_float = quantize_row_q4_1,
  434. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  435. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  436. .vec_dot_type = GGML_TYPE_Q8_1,
  437. #if defined (__ARM_FEATURE_MATMUL_INT8)
  438. .nrows = 2,
  439. #else
  440. .nrows = 1,
  441. #endif
  442. },
  443. [4] = { // GGML_TYPE_Q4_2
  444. .type_name = "DEPRECATED",
  445. .blck_size = 0,
  446. .type_size = 0,
  447. .is_quantized = false,
  448. .to_float = NULL,
  449. .from_float = NULL,
  450. .from_float_reference = NULL,
  451. .vec_dot = NULL,
  452. .vec_dot_type = GGML_TYPE_COUNT,
  453. .nrows = 1,
  454. },
  455. [5] = { // GGML_TYPE_Q4_3
  456. .type_name = "DEPRECATED",
  457. .blck_size = 0,
  458. .type_size = 0,
  459. .is_quantized = false,
  460. .to_float = NULL,
  461. .from_float = NULL,
  462. .from_float_reference = NULL,
  463. .vec_dot = NULL,
  464. .vec_dot_type = GGML_TYPE_COUNT,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_Q5_0] = {
  468. .type_name = "q5_0",
  469. .blck_size = QK5_0,
  470. .type_size = sizeof(block_q5_0),
  471. .is_quantized = true,
  472. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  473. .from_float = quantize_row_q5_0,
  474. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  475. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  476. .vec_dot_type = GGML_TYPE_Q8_0,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q5_1] = {
  480. .type_name = "q5_1",
  481. .blck_size = QK5_1,
  482. .type_size = sizeof(block_q5_1),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  485. .from_float = quantize_row_q5_1,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  487. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  488. .vec_dot_type = GGML_TYPE_Q8_1,
  489. .nrows = 1,
  490. },
  491. [GGML_TYPE_Q8_0] = {
  492. .type_name = "q8_0",
  493. .blck_size = QK8_0,
  494. .type_size = sizeof(block_q8_0),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  497. .from_float = quantize_row_q8_0,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  499. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  500. .vec_dot_type = GGML_TYPE_Q8_0,
  501. #if defined (__ARM_FEATURE_MATMUL_INT8)
  502. .nrows = 2,
  503. #else
  504. .nrows = 1,
  505. #endif
  506. },
  507. [GGML_TYPE_Q8_1] = {
  508. .type_name = "q8_1",
  509. .blck_size = QK8_1,
  510. .type_size = sizeof(block_q8_1),
  511. .is_quantized = true,
  512. .from_float = quantize_row_q8_1,
  513. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  514. .vec_dot_type = GGML_TYPE_Q8_1,
  515. .nrows = 1,
  516. },
  517. [GGML_TYPE_Q2_K] = {
  518. .type_name = "q2_K",
  519. .blck_size = QK_K,
  520. .type_size = sizeof(block_q2_K),
  521. .is_quantized = true,
  522. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  523. .from_float = quantize_row_q2_K,
  524. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  525. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  526. .vec_dot_type = GGML_TYPE_Q8_K,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q3_K] = {
  530. .type_name = "q3_K",
  531. .blck_size = QK_K,
  532. .type_size = sizeof(block_q3_K),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  535. .from_float = quantize_row_q3_K,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  537. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  538. .vec_dot_type = GGML_TYPE_Q8_K,
  539. .nrows = 1,
  540. },
  541. [GGML_TYPE_Q4_K] = {
  542. .type_name = "q4_K",
  543. .blck_size = QK_K,
  544. .type_size = sizeof(block_q4_K),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  547. .from_float = quantize_row_q4_K,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  549. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  550. .vec_dot_type = GGML_TYPE_Q8_K,
  551. .nrows = 1,
  552. },
  553. [GGML_TYPE_Q5_K] = {
  554. .type_name = "q5_K",
  555. .blck_size = QK_K,
  556. .type_size = sizeof(block_q5_K),
  557. .is_quantized = true,
  558. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  559. .from_float = quantize_row_q5_K,
  560. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  561. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  562. .vec_dot_type = GGML_TYPE_Q8_K,
  563. .nrows = 1,
  564. },
  565. [GGML_TYPE_Q6_K] = {
  566. .type_name = "q6_K",
  567. .blck_size = QK_K,
  568. .type_size = sizeof(block_q6_K),
  569. .is_quantized = true,
  570. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  571. .from_float = quantize_row_q6_K,
  572. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  573. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  574. .vec_dot_type = GGML_TYPE_Q8_K,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_IQ2_XXS] = {
  578. .type_name = "iq2_xxs",
  579. .blck_size = QK_K,
  580. .type_size = sizeof(block_iq2_xxs),
  581. .is_quantized = true,
  582. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  583. .from_float = NULL,
  584. .from_float_reference = NULL,
  585. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  586. .vec_dot_type = GGML_TYPE_Q8_K,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_IQ2_XS] = {
  590. .type_name = "iq2_xs",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_iq2_xs),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  595. .from_float = NULL,
  596. .from_float_reference = NULL,
  597. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_IQ3_XXS] = {
  602. .type_name = "iq3_xxs",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_iq3_xxs),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  607. .from_float = quantize_row_iq3_xxs,
  608. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  609. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_IQ3_S] = {
  614. .type_name = "iq3_s",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_iq3_s),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  619. .from_float = quantize_row_iq3_s,
  620. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  621. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_IQ2_S] = {
  626. .type_name = "iq2_s",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_iq2_s),
  629. .is_quantized = true,
  630. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  631. .from_float = quantize_row_iq2_s,
  632. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  633. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  634. .vec_dot_type = GGML_TYPE_Q8_K,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_IQ1_S] = {
  638. .type_name = "iq1_s",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_iq1_s),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  643. .from_float = NULL,
  644. .from_float_reference = NULL,
  645. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_IQ4_NL] = {
  650. .type_name = "iq4_nl",
  651. .blck_size = QK4_NL,
  652. .type_size = sizeof(block_iq4_nl),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  655. .from_float = quantize_row_iq4_nl,
  656. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  657. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  658. .vec_dot_type = GGML_TYPE_Q8_0,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_IQ4_XS] = {
  662. .type_name = "iq4_xs",
  663. .blck_size = QK_K,
  664. .type_size = sizeof(block_iq4_xs),
  665. .is_quantized = true,
  666. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  667. .from_float = quantize_row_iq4_xs,
  668. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  669. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  670. .vec_dot_type = GGML_TYPE_Q8_K,
  671. .nrows = 1,
  672. },
  673. [GGML_TYPE_Q8_K] = {
  674. .type_name = "q8_K",
  675. .blck_size = QK_K,
  676. .type_size = sizeof(block_q8_K),
  677. .is_quantized = true,
  678. .from_float = quantize_row_q8_K,
  679. }
  680. };
  681. // For internal test use
  682. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  683. GGML_ASSERT(type < GGML_TYPE_COUNT);
  684. return type_traits[type];
  685. }
  686. //
  687. // simd mappings
  688. //
  689. #if defined(__ARM_NEON)
  690. #if !defined(__aarch64__)
  691. // 64-bit compatibility
  692. inline static float vaddvq_f32(float32x4_t v) {
  693. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  694. }
  695. #endif
  696. #endif
  697. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  698. // we then implement the fundamental computation operations below using only these macros
  699. // adding support for new architectures requires to define the corresponding SIMD macros
  700. //
  701. // GGML_F32_STEP / GGML_F16_STEP
  702. // number of elements to process in a single step
  703. //
  704. // GGML_F32_EPR / GGML_F16_EPR
  705. // number of elements to fit in a single register
  706. //
  707. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  708. #define GGML_SIMD
  709. // F32 NEON
  710. #define GGML_F32_STEP 16
  711. #define GGML_F32_EPR 4
  712. #define GGML_F32x4 float32x4_t
  713. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  714. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  715. #define GGML_F32x4_LOAD vld1q_f32
  716. #define GGML_F32x4_STORE vst1q_f32
  717. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  718. #define GGML_F32x4_ADD vaddq_f32
  719. #define GGML_F32x4_MUL vmulq_f32
  720. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  721. #define GGML_F32x4_REDUCE(res, x) \
  722. { \
  723. int offset = GGML_F32_ARR >> 1; \
  724. for (int i = 0; i < offset; ++i) { \
  725. x[i] = vaddq_f32(x[i], x[offset+i]); \
  726. } \
  727. offset >>= 1; \
  728. for (int i = 0; i < offset; ++i) { \
  729. x[i] = vaddq_f32(x[i], x[offset+i]); \
  730. } \
  731. offset >>= 1; \
  732. for (int i = 0; i < offset; ++i) { \
  733. x[i] = vaddq_f32(x[i], x[offset+i]); \
  734. } \
  735. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  736. }
  737. #define GGML_F32_VEC GGML_F32x4
  738. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  739. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  740. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  741. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  742. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  743. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  744. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  745. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  746. // F16 NEON
  747. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  748. #define GGML_F16_STEP 32
  749. #define GGML_F16_EPR 8
  750. #define GGML_F16x8 float16x8_t
  751. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  752. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  753. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  754. #define GGML_F16x8_STORE vst1q_f16
  755. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  756. #define GGML_F16x8_ADD vaddq_f16
  757. #define GGML_F16x8_MUL vmulq_f16
  758. #define GGML_F16x8_REDUCE(res, x) \
  759. do { \
  760. int offset = GGML_F16_ARR >> 1; \
  761. for (int i = 0; i < offset; ++i) { \
  762. x[i] = vaddq_f16(x[i], x[offset+i]); \
  763. } \
  764. offset >>= 1; \
  765. for (int i = 0; i < offset; ++i) { \
  766. x[i] = vaddq_f16(x[i], x[offset+i]); \
  767. } \
  768. offset >>= 1; \
  769. for (int i = 0; i < offset; ++i) { \
  770. x[i] = vaddq_f16(x[i], x[offset+i]); \
  771. } \
  772. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  773. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  774. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  775. } while (0)
  776. #define GGML_F16_VEC GGML_F16x8
  777. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  778. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  779. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  780. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  781. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  782. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  783. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  784. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  785. #else
  786. // if FP16 vector arithmetic is not supported, we use FP32 instead
  787. // and take advantage of the vcvt_ functions to convert to/from FP16
  788. #define GGML_F16_STEP 16
  789. #define GGML_F16_EPR 4
  790. #define GGML_F32Cx4 float32x4_t
  791. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  792. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  793. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  794. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  795. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  796. #define GGML_F32Cx4_ADD vaddq_f32
  797. #define GGML_F32Cx4_MUL vmulq_f32
  798. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  799. #define GGML_F16_VEC GGML_F32Cx4
  800. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  801. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  802. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  803. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  804. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  805. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  806. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  807. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  808. #endif
  809. #elif defined(__AVX__)
  810. #define GGML_SIMD
  811. // F32 AVX
  812. #define GGML_F32_STEP 32
  813. #define GGML_F32_EPR 8
  814. #define GGML_F32x8 __m256
  815. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  816. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  817. #define GGML_F32x8_LOAD _mm256_loadu_ps
  818. #define GGML_F32x8_STORE _mm256_storeu_ps
  819. #if defined(__FMA__)
  820. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  821. #else
  822. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  823. #endif
  824. #define GGML_F32x8_ADD _mm256_add_ps
  825. #define GGML_F32x8_MUL _mm256_mul_ps
  826. #define GGML_F32x8_REDUCE(res, x) \
  827. do { \
  828. int offset = GGML_F32_ARR >> 1; \
  829. for (int i = 0; i < offset; ++i) { \
  830. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  831. } \
  832. offset >>= 1; \
  833. for (int i = 0; i < offset; ++i) { \
  834. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  835. } \
  836. offset >>= 1; \
  837. for (int i = 0; i < offset; ++i) { \
  838. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  839. } \
  840. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  841. _mm256_extractf128_ps(x[0], 1)); \
  842. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  843. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  844. } while (0)
  845. // TODO: is this optimal ?
  846. #define GGML_F32_VEC GGML_F32x8
  847. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  848. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  849. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  850. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  851. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  852. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  853. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  854. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  855. // F16 AVX
  856. #define GGML_F16_STEP 32
  857. #define GGML_F16_EPR 8
  858. // F16 arithmetic is not supported by AVX, so we use F32 instead
  859. #define GGML_F32Cx8 __m256
  860. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  861. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  862. #if defined(__F16C__)
  863. // the _mm256_cvt intrinsics require F16C
  864. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  865. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  866. #else
  867. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  868. float tmp[8];
  869. for (int i = 0; i < 8; i++) {
  870. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  871. }
  872. return _mm256_loadu_ps(tmp);
  873. }
  874. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  875. float arr[8];
  876. _mm256_storeu_ps(arr, y);
  877. for (int i = 0; i < 8; i++)
  878. x[i] = GGML_FP32_TO_FP16(arr[i]);
  879. }
  880. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  881. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  882. #endif
  883. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  884. #define GGML_F32Cx8_ADD _mm256_add_ps
  885. #define GGML_F32Cx8_MUL _mm256_mul_ps
  886. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  887. #define GGML_F16_VEC GGML_F32Cx8
  888. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  889. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  890. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  891. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  892. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  893. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  894. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  895. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  896. #elif defined(__POWER9_VECTOR__)
  897. #define GGML_SIMD
  898. // F32 POWER9
  899. #define GGML_F32_STEP 32
  900. #define GGML_F32_EPR 4
  901. #define GGML_F32x4 vector float
  902. #define GGML_F32x4_ZERO 0.0f
  903. #define GGML_F32x4_SET1 vec_splats
  904. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  905. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  906. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  907. #define GGML_F32x4_ADD vec_add
  908. #define GGML_F32x4_MUL vec_mul
  909. #define GGML_F32x4_REDUCE(res, x) \
  910. { \
  911. int offset = GGML_F32_ARR >> 1; \
  912. for (int i = 0; i < offset; ++i) { \
  913. x[i] = vec_add(x[i], x[offset+i]); \
  914. } \
  915. offset >>= 1; \
  916. for (int i = 0; i < offset; ++i) { \
  917. x[i] = vec_add(x[i], x[offset+i]); \
  918. } \
  919. offset >>= 1; \
  920. for (int i = 0; i < offset; ++i) { \
  921. x[i] = vec_add(x[i], x[offset+i]); \
  922. } \
  923. res = vec_extract(x[0], 0) + \
  924. vec_extract(x[0], 1) + \
  925. vec_extract(x[0], 2) + \
  926. vec_extract(x[0], 3); \
  927. }
  928. #define GGML_F32_VEC GGML_F32x4
  929. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  930. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  931. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  932. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  933. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  934. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  935. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  936. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  937. // F16 POWER9
  938. #define GGML_F16_STEP GGML_F32_STEP
  939. #define GGML_F16_EPR GGML_F32_EPR
  940. #define GGML_F16_VEC GGML_F32x4
  941. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  942. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  943. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  944. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  945. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  946. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  947. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  948. vec_extract_fp32_from_shortl(vec_xl(0, p))
  949. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  950. #define GGML_F16_VEC_STORE(p, r, i) \
  951. if (i & 0x1) \
  952. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  953. r[i - GGML_ENDIAN_BYTE(0)]), \
  954. 0, p - GGML_F16_EPR)
  955. #elif defined(__wasm_simd128__)
  956. #define GGML_SIMD
  957. // F32 WASM
  958. #define GGML_F32_STEP 16
  959. #define GGML_F32_EPR 4
  960. #define GGML_F32x4 v128_t
  961. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  962. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  963. #define GGML_F32x4_LOAD wasm_v128_load
  964. #define GGML_F32x4_STORE wasm_v128_store
  965. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  966. #define GGML_F32x4_ADD wasm_f32x4_add
  967. #define GGML_F32x4_MUL wasm_f32x4_mul
  968. #define GGML_F32x4_REDUCE(res, x) \
  969. { \
  970. int offset = GGML_F32_ARR >> 1; \
  971. for (int i = 0; i < offset; ++i) { \
  972. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  973. } \
  974. offset >>= 1; \
  975. for (int i = 0; i < offset; ++i) { \
  976. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  977. } \
  978. offset >>= 1; \
  979. for (int i = 0; i < offset; ++i) { \
  980. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  981. } \
  982. res = wasm_f32x4_extract_lane(x[0], 0) + \
  983. wasm_f32x4_extract_lane(x[0], 1) + \
  984. wasm_f32x4_extract_lane(x[0], 2) + \
  985. wasm_f32x4_extract_lane(x[0], 3); \
  986. }
  987. #define GGML_F32_VEC GGML_F32x4
  988. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  989. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  990. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  991. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  992. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  993. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  994. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  995. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  996. // F16 WASM
  997. #define GGML_F16_STEP 16
  998. #define GGML_F16_EPR 4
  999. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1000. float tmp[4];
  1001. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1002. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1003. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1004. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1005. return wasm_v128_load(tmp);
  1006. }
  1007. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1008. float tmp[4];
  1009. wasm_v128_store(tmp, x);
  1010. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1011. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1012. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1013. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1014. }
  1015. #define GGML_F16x4 v128_t
  1016. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1017. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1018. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1019. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1020. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1021. #define GGML_F16x4_ADD wasm_f32x4_add
  1022. #define GGML_F16x4_MUL wasm_f32x4_mul
  1023. #define GGML_F16x4_REDUCE(res, x) \
  1024. { \
  1025. int offset = GGML_F16_ARR >> 1; \
  1026. for (int i = 0; i < offset; ++i) { \
  1027. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1028. } \
  1029. offset >>= 1; \
  1030. for (int i = 0; i < offset; ++i) { \
  1031. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1032. } \
  1033. offset >>= 1; \
  1034. for (int i = 0; i < offset; ++i) { \
  1035. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1036. } \
  1037. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1038. wasm_f32x4_extract_lane(x[0], 1) + \
  1039. wasm_f32x4_extract_lane(x[0], 2) + \
  1040. wasm_f32x4_extract_lane(x[0], 3); \
  1041. }
  1042. #define GGML_F16_VEC GGML_F16x4
  1043. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1044. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1045. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1046. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1047. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1048. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1049. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1050. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1051. #elif defined(__SSE3__)
  1052. #define GGML_SIMD
  1053. // F32 SSE
  1054. #define GGML_F32_STEP 32
  1055. #define GGML_F32_EPR 4
  1056. #define GGML_F32x4 __m128
  1057. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1058. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1059. #define GGML_F32x4_LOAD _mm_loadu_ps
  1060. #define GGML_F32x4_STORE _mm_storeu_ps
  1061. #if defined(__FMA__)
  1062. // TODO: Does this work?
  1063. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1064. #else
  1065. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1066. #endif
  1067. #define GGML_F32x4_ADD _mm_add_ps
  1068. #define GGML_F32x4_MUL _mm_mul_ps
  1069. #define GGML_F32x4_REDUCE(res, x) \
  1070. { \
  1071. int offset = GGML_F32_ARR >> 1; \
  1072. for (int i = 0; i < offset; ++i) { \
  1073. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1074. } \
  1075. offset >>= 1; \
  1076. for (int i = 0; i < offset; ++i) { \
  1077. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1078. } \
  1079. offset >>= 1; \
  1080. for (int i = 0; i < offset; ++i) { \
  1081. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1082. } \
  1083. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1084. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1085. }
  1086. // TODO: is this optimal ?
  1087. #define GGML_F32_VEC GGML_F32x4
  1088. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1089. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1090. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1091. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1092. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1093. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1094. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1095. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1096. // F16 SSE
  1097. #define GGML_F16_STEP 32
  1098. #define GGML_F16_EPR 4
  1099. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1100. float tmp[4];
  1101. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1102. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1103. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1104. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1105. return _mm_loadu_ps(tmp);
  1106. }
  1107. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1108. float arr[4];
  1109. _mm_storeu_ps(arr, y);
  1110. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1111. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1112. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1113. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1114. }
  1115. #define GGML_F32Cx4 __m128
  1116. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1117. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1118. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1119. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1120. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1121. #define GGML_F32Cx4_ADD _mm_add_ps
  1122. #define GGML_F32Cx4_MUL _mm_mul_ps
  1123. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1124. #define GGML_F16_VEC GGML_F32Cx4
  1125. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1126. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1127. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1128. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1129. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1130. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1131. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1132. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1133. #endif
  1134. // GGML_F32_ARR / GGML_F16_ARR
  1135. // number of registers to use per step
  1136. #ifdef GGML_SIMD
  1137. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1138. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1139. #endif
  1140. //
  1141. // fundamental operations
  1142. //
  1143. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1144. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1145. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1146. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1147. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1148. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1149. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1150. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1151. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1152. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1153. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1154. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1155. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1156. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1157. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1158. assert(nrc == 1);
  1159. UNUSED(nrc);
  1160. UNUSED(bx);
  1161. UNUSED(by);
  1162. UNUSED(bs);
  1163. #ifdef GGML_SIMD
  1164. float sumf = 0.0f;
  1165. const int np = (n & ~(GGML_F32_STEP - 1));
  1166. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1167. GGML_F32_VEC ax[GGML_F32_ARR];
  1168. GGML_F32_VEC ay[GGML_F32_ARR];
  1169. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1170. for (int j = 0; j < GGML_F32_ARR; j++) {
  1171. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1172. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1173. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1174. }
  1175. }
  1176. // reduce sum0..sum3 to sum0
  1177. GGML_F32_VEC_REDUCE(sumf, sum);
  1178. // leftovers
  1179. for (int i = np; i < n; ++i) {
  1180. sumf += x[i]*y[i];
  1181. }
  1182. #else
  1183. // scalar
  1184. ggml_float sumf = 0.0;
  1185. for (int i = 0; i < n; ++i) {
  1186. sumf += (ggml_float)(x[i]*y[i]);
  1187. }
  1188. #endif
  1189. *s = sumf;
  1190. }
  1191. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1192. assert(nrc == 1);
  1193. UNUSED(nrc);
  1194. UNUSED(bx);
  1195. UNUSED(by);
  1196. UNUSED(bs);
  1197. ggml_float sumf = 0.0;
  1198. #if defined(GGML_SIMD)
  1199. const int np = (n & ~(GGML_F16_STEP - 1));
  1200. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1201. GGML_F16_VEC ax[GGML_F16_ARR];
  1202. GGML_F16_VEC ay[GGML_F16_ARR];
  1203. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1204. for (int j = 0; j < GGML_F16_ARR; j++) {
  1205. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1206. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1207. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1208. }
  1209. }
  1210. // reduce sum0..sum3 to sum0
  1211. GGML_F16_VEC_REDUCE(sumf, sum);
  1212. // leftovers
  1213. for (int i = np; i < n; ++i) {
  1214. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1215. }
  1216. #else
  1217. for (int i = 0; i < n; ++i) {
  1218. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1219. }
  1220. #endif
  1221. *s = sumf;
  1222. }
  1223. // compute GGML_VEC_DOT_UNROLL dot products at once
  1224. // xs - x row stride in bytes
  1225. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1226. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1227. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1228. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1229. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1230. }
  1231. #if defined(GGML_SIMD)
  1232. const int np = (n & ~(GGML_F16_STEP - 1));
  1233. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1234. GGML_F16_VEC ax[GGML_F16_ARR];
  1235. GGML_F16_VEC ay[GGML_F16_ARR];
  1236. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1237. for (int j = 0; j < GGML_F16_ARR; j++) {
  1238. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1239. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1240. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1241. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1242. }
  1243. }
  1244. }
  1245. // reduce sum0..sum3 to sum0
  1246. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1247. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1248. }
  1249. // leftovers
  1250. for (int i = np; i < n; ++i) {
  1251. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1252. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1253. }
  1254. }
  1255. #else
  1256. for (int i = 0; i < n; ++i) {
  1257. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1258. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1259. }
  1260. }
  1261. #endif
  1262. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1263. s[i] = sumf[i];
  1264. }
  1265. }
  1266. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1267. #if defined(GGML_SIMD)
  1268. const int np = (n & ~(GGML_F32_STEP - 1));
  1269. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1270. GGML_F32_VEC ax[GGML_F32_ARR];
  1271. GGML_F32_VEC ay[GGML_F32_ARR];
  1272. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1273. for (int j = 0; j < GGML_F32_ARR; j++) {
  1274. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1275. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1276. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1277. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1278. }
  1279. }
  1280. // leftovers
  1281. for (int i = np; i < n; ++i) {
  1282. y[i] += x[i]*v;
  1283. }
  1284. #else
  1285. // scalar
  1286. for (int i = 0; i < n; ++i) {
  1287. y[i] += x[i]*v;
  1288. }
  1289. #endif
  1290. }
  1291. // xs and vs are byte strides of x and v
  1292. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1293. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1294. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1295. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1296. x[i] = (const float *) ((const char *) xv + i*xs);
  1297. v[i] = (const float *) ((const char *) vv + i*vs);
  1298. }
  1299. #if defined(GGML_SIMD)
  1300. const int np = (n & ~(GGML_F32_STEP - 1));
  1301. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1302. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1303. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1304. }
  1305. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1306. GGML_F32_VEC ay[GGML_F32_ARR];
  1307. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1308. for (int j = 0; j < GGML_F32_ARR; j++) {
  1309. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1310. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1311. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1312. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1313. }
  1314. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1315. }
  1316. }
  1317. // leftovers
  1318. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1319. for (int i = np; i < n; ++i) {
  1320. y[i] += x[k][i]*v[k][0];
  1321. }
  1322. }
  1323. #else
  1324. // scalar
  1325. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1326. for (int i = 0; i < n; ++i) {
  1327. y[i] += x[k][i]*v[k][0];
  1328. }
  1329. }
  1330. #endif
  1331. }
  1332. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1333. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1334. #if defined(GGML_USE_ACCELERATE)
  1335. vDSP_vsmul(y, 1, &v, y, 1, n);
  1336. #elif defined(GGML_SIMD)
  1337. const int np = (n & ~(GGML_F32_STEP - 1));
  1338. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1339. GGML_F32_VEC ay[GGML_F32_ARR];
  1340. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1341. for (int j = 0; j < GGML_F32_ARR; j++) {
  1342. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1343. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1344. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1345. }
  1346. }
  1347. // leftovers
  1348. for (int i = np; i < n; ++i) {
  1349. y[i] *= v;
  1350. }
  1351. #else
  1352. // scalar
  1353. for (int i = 0; i < n; ++i) {
  1354. y[i] *= v;
  1355. }
  1356. #endif
  1357. }
  1358. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1359. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1360. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1361. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1362. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1363. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1364. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1365. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1366. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1367. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1368. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1369. // TODO: optimize performance
  1370. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1371. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1372. static const float GELU_COEF_A = 0.044715f;
  1373. static const float GELU_QUICK_COEF = -1.702f;
  1374. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1375. inline static float ggml_gelu_f32(float x) {
  1376. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1377. }
  1378. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1379. const uint16_t * i16 = (const uint16_t *) x;
  1380. for (int i = 0; i < n; ++i) {
  1381. y[i] = ggml_table_gelu_f16[i16[i]];
  1382. }
  1383. }
  1384. #ifdef GGML_GELU_FP16
  1385. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1386. uint16_t t;
  1387. for (int i = 0; i < n; ++i) {
  1388. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1389. memcpy(&t, &fp16, sizeof(uint16_t));
  1390. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1391. }
  1392. }
  1393. #else
  1394. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1395. for (int i = 0; i < n; ++i) {
  1396. y[i] = ggml_gelu_f32(x[i]);
  1397. }
  1398. }
  1399. #endif
  1400. inline static float ggml_gelu_quick_f32(float x) {
  1401. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1402. }
  1403. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1404. // const uint16_t * i16 = (const uint16_t *) x;
  1405. // for (int i = 0; i < n; ++i) {
  1406. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1407. // }
  1408. //}
  1409. #ifdef GGML_GELU_QUICK_FP16
  1410. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1411. uint16_t t;
  1412. for (int i = 0; i < n; ++i) {
  1413. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1414. memcpy(&t, &fp16, sizeof(uint16_t));
  1415. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1416. }
  1417. }
  1418. #else
  1419. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1420. for (int i = 0; i < n; ++i) {
  1421. y[i] = ggml_gelu_quick_f32(x[i]);
  1422. }
  1423. }
  1424. #endif
  1425. // Sigmoid Linear Unit (SiLU) function
  1426. inline static float ggml_silu_f32(float x) {
  1427. return x/(1.0f + expf(-x));
  1428. }
  1429. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1430. // const uint16_t * i16 = (const uint16_t *) x;
  1431. // for (int i = 0; i < n; ++i) {
  1432. // y[i] = ggml_table_silu_f16[i16[i]];
  1433. // }
  1434. //}
  1435. #ifdef GGML_SILU_FP16
  1436. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1437. uint16_t t;
  1438. for (int i = 0; i < n; ++i) {
  1439. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1440. memcpy(&t, &fp16, sizeof(uint16_t));
  1441. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1442. }
  1443. }
  1444. #else
  1445. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1446. for (int i = 0; i < n; ++i) {
  1447. y[i] = ggml_silu_f32(x[i]);
  1448. }
  1449. }
  1450. #endif
  1451. inline static float ggml_silu_backward_f32(float x, float dy) {
  1452. const float s = 1.0f/(1.0f + expf(-x));
  1453. return dy*s*(1.0f + x*(1.0f - s));
  1454. }
  1455. #ifdef GGML_SILU_FP16
  1456. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1457. for (int i = 0; i < n; ++i) {
  1458. // we did not use x[i] to compute forward silu but its f16 equivalent
  1459. // take derivative at f16 of x[i]:
  1460. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1461. float usedx = GGML_FP16_TO_FP32(fp16);
  1462. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1463. }
  1464. }
  1465. #else
  1466. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1467. for (int i = 0; i < n; ++i) {
  1468. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1469. }
  1470. }
  1471. #endif
  1472. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1473. #ifndef GGML_USE_ACCELERATE
  1474. ggml_float sum = 0.0;
  1475. for (int i = 0; i < n; ++i) {
  1476. sum += (ggml_float)x[i];
  1477. }
  1478. *s = sum;
  1479. #else
  1480. vDSP_sve(x, 1, s, n);
  1481. #endif
  1482. }
  1483. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1484. ggml_float sum = 0.0;
  1485. for (int i = 0; i < n; ++i) {
  1486. sum += (ggml_float)x[i];
  1487. }
  1488. *s = sum;
  1489. }
  1490. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1491. float sum = 0.0f;
  1492. for (int i = 0; i < n; ++i) {
  1493. sum += GGML_FP16_TO_FP32(x[i]);
  1494. }
  1495. *s = sum;
  1496. }
  1497. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1498. #ifndef GGML_USE_ACCELERATE
  1499. float max = -INFINITY;
  1500. for (int i = 0; i < n; ++i) {
  1501. max = MAX(max, x[i]);
  1502. }
  1503. *s = max;
  1504. #else
  1505. vDSP_maxv(x, 1, s, n);
  1506. #endif
  1507. }
  1508. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1509. ggml_vec_norm_f32(n, s, x);
  1510. *s = 1.f/(*s);
  1511. }
  1512. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1513. float max = -INFINITY;
  1514. int idx = 0;
  1515. for (int i = 0; i < n; ++i) {
  1516. max = MAX(max, x[i]);
  1517. if (max == x[i]) { idx = i; }
  1518. }
  1519. *s = idx;
  1520. }
  1521. //
  1522. // data types
  1523. //
  1524. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1525. "NONE",
  1526. "DUP",
  1527. "ADD",
  1528. "ADD1",
  1529. "ACC",
  1530. "SUB",
  1531. "MUL",
  1532. "DIV",
  1533. "SQR",
  1534. "SQRT",
  1535. "LOG",
  1536. "SUM",
  1537. "SUM_ROWS",
  1538. "MEAN",
  1539. "ARGMAX",
  1540. "REPEAT",
  1541. "REPEAT_BACK",
  1542. "CONCAT",
  1543. "SILU_BACK",
  1544. "NORM",
  1545. "RMS_NORM",
  1546. "RMS_NORM_BACK",
  1547. "GROUP_NORM",
  1548. "MUL_MAT",
  1549. "MUL_MAT_ID",
  1550. "OUT_PROD",
  1551. "SCALE",
  1552. "SET",
  1553. "CPY",
  1554. "CONT",
  1555. "RESHAPE",
  1556. "VIEW",
  1557. "PERMUTE",
  1558. "TRANSPOSE",
  1559. "GET_ROWS",
  1560. "GET_ROWS_BACK",
  1561. "DIAG",
  1562. "DIAG_MASK_INF",
  1563. "DIAG_MASK_ZERO",
  1564. "SOFT_MAX",
  1565. "SOFT_MAX_BACK",
  1566. "ROPE",
  1567. "ROPE_BACK",
  1568. "ALIBI",
  1569. "CLAMP",
  1570. "CONV_TRANSPOSE_1D",
  1571. "IM2COL",
  1572. "CONV_TRANSPOSE_2D",
  1573. "POOL_1D",
  1574. "POOL_2D",
  1575. "UPSCALE",
  1576. "PAD",
  1577. "ARGSORT",
  1578. "LEAKY_RELU",
  1579. "FLASH_ATTN",
  1580. "FLASH_FF",
  1581. "FLASH_ATTN_BACK",
  1582. "WIN_PART",
  1583. "WIN_UNPART",
  1584. "GET_REL_POS",
  1585. "ADD_REL_POS",
  1586. "UNARY",
  1587. "MAP_UNARY",
  1588. "MAP_BINARY",
  1589. "MAP_CUSTOM1_F32",
  1590. "MAP_CUSTOM2_F32",
  1591. "MAP_CUSTOM3_F32",
  1592. "MAP_CUSTOM1",
  1593. "MAP_CUSTOM2",
  1594. "MAP_CUSTOM3",
  1595. "CROSS_ENTROPY_LOSS",
  1596. "CROSS_ENTROPY_LOSS_BACK",
  1597. };
  1598. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1599. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1600. "none",
  1601. "x",
  1602. "x+y",
  1603. "x+y",
  1604. "view(x,nb,offset)+=y->x",
  1605. "x-y",
  1606. "x*y",
  1607. "x/y",
  1608. "x^2",
  1609. "√x",
  1610. "log(x)",
  1611. "Σx",
  1612. "Σx_k",
  1613. "Σx/n",
  1614. "argmax(x)",
  1615. "repeat(x)",
  1616. "repeat_back(x)",
  1617. "concat(x, y)",
  1618. "silu_back(x)",
  1619. "norm(x)",
  1620. "rms_norm(x)",
  1621. "rms_norm_back(x)",
  1622. "group_norm(x)",
  1623. "X*Y",
  1624. "X[i]*Y",
  1625. "X*Y",
  1626. "x*v",
  1627. "y-\\>view(x)",
  1628. "x-\\>y",
  1629. "cont(x)",
  1630. "reshape(x)",
  1631. "view(x)",
  1632. "permute(x)",
  1633. "transpose(x)",
  1634. "get_rows(x)",
  1635. "get_rows_back(x)",
  1636. "diag(x)",
  1637. "diag_mask_inf(x)",
  1638. "diag_mask_zero(x)",
  1639. "soft_max(x)",
  1640. "soft_max_back(x)",
  1641. "rope(x)",
  1642. "rope_back(x)",
  1643. "alibi(x)",
  1644. "clamp(x)",
  1645. "conv_transpose_1d(x)",
  1646. "im2col(x)",
  1647. "conv_transpose_2d(x)",
  1648. "pool_1d(x)",
  1649. "pool_2d(x)",
  1650. "upscale(x)",
  1651. "pad(x)",
  1652. "argsort(x)",
  1653. "leaky_relu(x)",
  1654. "flash_attn(x)",
  1655. "flash_ff(x)",
  1656. "flash_attn_back(x)",
  1657. "win_part(x)",
  1658. "win_unpart(x)",
  1659. "get_rel_pos(x)",
  1660. "add_rel_pos(x)",
  1661. "unary(x)",
  1662. "f(x)",
  1663. "f(x,y)",
  1664. "custom_f32(x)",
  1665. "custom_f32(x,y)",
  1666. "custom_f32(x,y,z)",
  1667. "custom(x)",
  1668. "custom(x,y)",
  1669. "custom(x,y,z)",
  1670. "cross_entropy_loss(x,y)",
  1671. "cross_entropy_loss_back(x,y)",
  1672. };
  1673. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1674. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1675. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1676. "ABS",
  1677. "SGN",
  1678. "NEG",
  1679. "STEP",
  1680. "TANH",
  1681. "ELU",
  1682. "RELU",
  1683. "GELU",
  1684. "GELU_QUICK",
  1685. "SILU",
  1686. "HARDSWISH",
  1687. "HARDSIGMOID",
  1688. };
  1689. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1690. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1691. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1692. // WARN:
  1693. // Mis-configuration can lead to problem that's hard to reason about:
  1694. // * At best it crash or talks nosense.
  1695. // * At worst it talks slightly difference but hard to perceive.
  1696. //
  1697. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1698. // Take care about compile options (e.g., GGML_USE_xxx).
  1699. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1700. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1701. static void ggml_setup_op_has_task_pass(void) {
  1702. { // INIT
  1703. bool * p = GGML_OP_HAS_INIT;
  1704. p[GGML_OP_ACC ] = true;
  1705. p[GGML_OP_MUL_MAT ] = true;
  1706. p[GGML_OP_MUL_MAT_ID ] = true;
  1707. p[GGML_OP_OUT_PROD ] = true;
  1708. p[GGML_OP_SET ] = true;
  1709. p[GGML_OP_GET_ROWS_BACK ] = true;
  1710. p[GGML_OP_DIAG_MASK_INF ] = true;
  1711. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1712. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1713. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1714. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1715. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1716. p[GGML_OP_ADD_REL_POS ] = true;
  1717. }
  1718. { // FINALIZE
  1719. bool * p = GGML_OP_HAS_FINALIZE;
  1720. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1721. }
  1722. }
  1723. //
  1724. // ggml context
  1725. //
  1726. struct ggml_context {
  1727. size_t mem_size;
  1728. void * mem_buffer;
  1729. bool mem_buffer_owned;
  1730. bool no_alloc;
  1731. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1732. int n_objects;
  1733. struct ggml_object * objects_begin;
  1734. struct ggml_object * objects_end;
  1735. struct ggml_scratch scratch;
  1736. struct ggml_scratch scratch_save;
  1737. };
  1738. struct ggml_context_container {
  1739. bool used;
  1740. struct ggml_context context;
  1741. };
  1742. //
  1743. // NUMA support
  1744. //
  1745. #define GGML_NUMA_MAX_NODES 8
  1746. #define GGML_NUMA_MAX_CPUS 512
  1747. struct ggml_numa_node {
  1748. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1749. uint32_t n_cpus;
  1750. };
  1751. struct ggml_numa_nodes {
  1752. enum ggml_numa_strategy numa_strategy;
  1753. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1754. uint32_t n_nodes;
  1755. uint32_t total_cpus; // hardware threads on system
  1756. uint32_t current_node; // node on which main process is execting
  1757. #if defined(__gnu_linux__)
  1758. cpu_set_t cpuset; // cpuset from numactl
  1759. #else
  1760. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1761. #endif
  1762. };
  1763. //
  1764. // ggml state
  1765. //
  1766. struct ggml_state {
  1767. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1768. struct ggml_numa_nodes numa;
  1769. };
  1770. // global state
  1771. static struct ggml_state g_state;
  1772. static atomic_int g_state_barrier = 0;
  1773. // barrier via spin lock
  1774. inline static void ggml_critical_section_start(void) {
  1775. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1776. while (processing > 0) {
  1777. // wait for other threads to finish
  1778. atomic_fetch_sub(&g_state_barrier, 1);
  1779. sched_yield(); // TODO: reconsider this
  1780. processing = atomic_fetch_add(&g_state_barrier, 1);
  1781. }
  1782. }
  1783. // TODO: make this somehow automatically executed
  1784. // some sort of "sentry" mechanism
  1785. inline static void ggml_critical_section_end(void) {
  1786. atomic_fetch_sub(&g_state_barrier, 1);
  1787. }
  1788. #if defined(__gnu_linux__)
  1789. static cpu_set_t ggml_get_numa_affinity(void) {
  1790. cpu_set_t cpuset;
  1791. pthread_t thread;
  1792. thread = pthread_self();
  1793. CPU_ZERO(&cpuset);
  1794. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1795. return cpuset;
  1796. }
  1797. #else
  1798. static uint32_t ggml_get_numa_affinity(void) {
  1799. return 0; // no NUMA support
  1800. }
  1801. #endif
  1802. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1803. if (g_state.numa.n_nodes > 0) {
  1804. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1805. return;
  1806. }
  1807. #if defined(__gnu_linux__)
  1808. struct stat st;
  1809. char path[256];
  1810. int rv;
  1811. // set numa scheme
  1812. g_state.numa.numa_strategy = numa_flag;
  1813. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1814. g_state.numa.cpuset = ggml_get_numa_affinity();
  1815. // enumerate nodes
  1816. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1817. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1818. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1819. if (stat(path, &st) != 0) { break; }
  1820. ++g_state.numa.n_nodes;
  1821. }
  1822. // enumerate CPUs
  1823. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1824. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1825. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1826. if (stat(path, &st) != 0) { break; }
  1827. ++g_state.numa.total_cpus;
  1828. }
  1829. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1830. // figure out which node we're on
  1831. uint current_cpu;
  1832. int getcpu_ret = 0;
  1833. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1834. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1835. #else
  1836. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1837. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1838. #endif
  1839. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1840. g_state.numa.n_nodes = 0;
  1841. return;
  1842. }
  1843. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1844. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1845. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1846. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1847. node->n_cpus = 0;
  1848. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1849. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1850. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1851. if (stat(path, &st) == 0) {
  1852. node->cpus[node->n_cpus++] = c;
  1853. GGML_PRINT_DEBUG(" %u", c);
  1854. }
  1855. }
  1856. GGML_PRINT_DEBUG("\n");
  1857. }
  1858. if (ggml_is_numa()) {
  1859. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1860. if (fptr != NULL) {
  1861. char buf[42];
  1862. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1863. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1864. }
  1865. fclose(fptr);
  1866. }
  1867. }
  1868. #else
  1869. GGML_UNUSED(numa_flag);
  1870. // TODO
  1871. #endif
  1872. }
  1873. bool ggml_is_numa(void) {
  1874. return g_state.numa.n_nodes > 1;
  1875. }
  1876. ////////////////////////////////////////////////////////////////////////////////
  1877. void ggml_print_object(const struct ggml_object * obj) {
  1878. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1879. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1880. }
  1881. void ggml_print_objects(const struct ggml_context * ctx) {
  1882. struct ggml_object * obj = ctx->objects_begin;
  1883. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1884. while (obj != NULL) {
  1885. ggml_print_object(obj);
  1886. obj = obj->next;
  1887. }
  1888. GGML_PRINT("%s: --- end ---\n", __func__);
  1889. }
  1890. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1891. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1892. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1893. }
  1894. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1895. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1896. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1897. }
  1898. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1899. size_t nbytes;
  1900. size_t blck_size = ggml_blck_size(tensor->type);
  1901. if (blck_size == 1) {
  1902. nbytes = ggml_type_size(tensor->type);
  1903. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1904. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1905. }
  1906. }
  1907. else {
  1908. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1909. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1910. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1911. }
  1912. }
  1913. return nbytes;
  1914. }
  1915. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1916. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1917. }
  1918. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1919. return type_traits[type].blck_size;
  1920. }
  1921. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1922. return type_traits[type].type_size;
  1923. }
  1924. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1925. assert(ne % ggml_blck_size(type) == 0);
  1926. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1927. }
  1928. double ggml_type_sizef(enum ggml_type type) {
  1929. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1930. }
  1931. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1932. return type_traits[type].type_name;
  1933. }
  1934. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1935. return type_traits[type].is_quantized;
  1936. }
  1937. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1938. return GGML_OP_NAME[op];
  1939. }
  1940. const char * ggml_op_symbol(enum ggml_op op) {
  1941. return GGML_OP_SYMBOL[op];
  1942. }
  1943. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1944. return GGML_UNARY_OP_NAME[op];
  1945. }
  1946. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1947. if (t->op == GGML_OP_UNARY) {
  1948. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1949. return ggml_unary_op_name(uop);
  1950. }
  1951. else {
  1952. return ggml_op_name(t->op);
  1953. }
  1954. }
  1955. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1956. return ggml_type_size(tensor->type);
  1957. }
  1958. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1959. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1960. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1961. }
  1962. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1963. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1964. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1965. }
  1966. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1967. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1968. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1969. }
  1970. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1971. return tensor->ne[3] == 1;
  1972. }
  1973. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1974. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1975. if (tensor->ne[i] > 1) {
  1976. return i + 1;
  1977. }
  1978. }
  1979. return 1;
  1980. }
  1981. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1982. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1983. return (t0->ne[0] == t1->ne[0]) &&
  1984. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1985. (t1->ne[3]%t0->ne[3] == 0);
  1986. }
  1987. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1988. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1989. return (t0->ne[1] == t1->ne[1]) &&
  1990. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1991. (t1->ne[3]%t0->ne[3] == 0);
  1992. }
  1993. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1994. enum ggml_type wtype = GGML_TYPE_COUNT;
  1995. switch (ftype) {
  1996. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1997. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1998. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1999. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2000. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2001. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2002. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2003. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2004. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2005. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2006. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2007. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2008. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2009. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2010. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2011. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2012. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2013. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2014. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2015. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2016. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2017. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2018. }
  2019. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2020. return wtype;
  2021. }
  2022. size_t ggml_tensor_overhead(void) {
  2023. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2024. }
  2025. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2026. return tensor->nb[0] > tensor->nb[1];
  2027. }
  2028. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2029. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2030. return
  2031. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2032. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2033. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2034. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2035. }
  2036. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2037. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2038. return
  2039. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2040. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2041. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2042. }
  2043. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2044. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2045. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2046. }
  2047. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2048. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2049. return
  2050. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2051. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2052. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2053. }
  2054. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2055. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2056. return
  2057. (t0->ne[0] == t1->ne[0] ) &&
  2058. (t0->ne[1] == t1->ne[1] ) &&
  2059. (t0->ne[2] == t1->ne[2] ) &&
  2060. (t0->ne[3] == t1->ne[3] );
  2061. }
  2062. // check if t1 can be represented as a repeatition of t0
  2063. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2064. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2065. return
  2066. (t1->ne[0]%t0->ne[0] == 0) &&
  2067. (t1->ne[1]%t0->ne[1] == 0) &&
  2068. (t1->ne[2]%t0->ne[2] == 0) &&
  2069. (t1->ne[3]%t0->ne[3] == 0);
  2070. }
  2071. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2072. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2073. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2074. }
  2075. static inline int ggml_up32(int n) {
  2076. return (n + 31) & ~31;
  2077. }
  2078. //static inline int ggml_up64(int n) {
  2079. // return (n + 63) & ~63;
  2080. //}
  2081. static inline int ggml_up(int n, int m) {
  2082. // assert m is a power of 2
  2083. GGML_ASSERT((m & (m - 1)) == 0);
  2084. return (n + m - 1) & ~(m - 1);
  2085. }
  2086. // assert that pointer is aligned to GGML_MEM_ALIGN
  2087. #define ggml_assert_aligned(ptr) \
  2088. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2089. ////////////////////////////////////////////////////////////////////////////////
  2090. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2091. // make this function thread safe
  2092. ggml_critical_section_start();
  2093. static bool is_first_call = true;
  2094. if (is_first_call) {
  2095. // initialize time system (required on Windows)
  2096. ggml_time_init();
  2097. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2098. {
  2099. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2100. ggml_fp16_t ii;
  2101. for (int i = 0; i < (1 << 16); ++i) {
  2102. uint16_t ui = i;
  2103. memcpy(&ii, &ui, sizeof(ii));
  2104. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2105. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2106. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2107. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2108. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2109. }
  2110. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2111. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2112. }
  2113. // initialize g_state
  2114. {
  2115. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2116. g_state = (struct ggml_state) {
  2117. /*.contexts =*/ { { 0 } },
  2118. /*.numa =*/ {
  2119. .n_nodes = 0,
  2120. .total_cpus = 0,
  2121. },
  2122. };
  2123. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2124. g_state.contexts[i].used = false;
  2125. }
  2126. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2127. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2128. }
  2129. #if defined(GGML_USE_CUBLAS)
  2130. ggml_init_cublas();
  2131. #elif defined(GGML_USE_CLBLAST)
  2132. ggml_cl_init();
  2133. #elif defined(GGML_USE_VULKAN)
  2134. ggml_vk_init_cpu_assist();
  2135. #elif defined(GGML_USE_SYCL)
  2136. ggml_init_sycl();
  2137. #endif
  2138. ggml_setup_op_has_task_pass();
  2139. is_first_call = false;
  2140. }
  2141. // find non-used context in g_state
  2142. struct ggml_context * ctx = NULL;
  2143. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2144. if (!g_state.contexts[i].used) {
  2145. g_state.contexts[i].used = true;
  2146. ctx = &g_state.contexts[i].context;
  2147. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2148. break;
  2149. }
  2150. }
  2151. if (ctx == NULL) {
  2152. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2153. ggml_critical_section_end();
  2154. return NULL;
  2155. }
  2156. // allow to call ggml_init with 0 size
  2157. if (params.mem_size == 0) {
  2158. params.mem_size = GGML_MEM_ALIGN;
  2159. }
  2160. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2161. *ctx = (struct ggml_context) {
  2162. /*.mem_size =*/ mem_size,
  2163. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2164. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2165. /*.no_alloc =*/ params.no_alloc,
  2166. /*.no_alloc_save =*/ params.no_alloc,
  2167. /*.n_objects =*/ 0,
  2168. /*.objects_begin =*/ NULL,
  2169. /*.objects_end =*/ NULL,
  2170. /*.scratch =*/ { 0, 0, NULL, },
  2171. /*.scratch_save =*/ { 0, 0, NULL, },
  2172. };
  2173. GGML_ASSERT(ctx->mem_buffer != NULL);
  2174. ggml_assert_aligned(ctx->mem_buffer);
  2175. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2176. ggml_critical_section_end();
  2177. return ctx;
  2178. }
  2179. void ggml_free(struct ggml_context * ctx) {
  2180. if (ctx == NULL) {
  2181. return;
  2182. }
  2183. // make this function thread safe
  2184. ggml_critical_section_start();
  2185. bool found = false;
  2186. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2187. if (&g_state.contexts[i].context == ctx) {
  2188. g_state.contexts[i].used = false;
  2189. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2190. __func__, i, ggml_used_mem(ctx));
  2191. if (ctx->mem_buffer_owned) {
  2192. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2193. }
  2194. found = true;
  2195. break;
  2196. }
  2197. }
  2198. if (!found) {
  2199. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2200. }
  2201. ggml_critical_section_end();
  2202. }
  2203. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2204. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2205. }
  2206. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2207. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2208. ctx->scratch = scratch;
  2209. return result;
  2210. }
  2211. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2212. return ctx->no_alloc;
  2213. }
  2214. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2215. ctx->no_alloc = no_alloc;
  2216. }
  2217. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2218. return ctx->mem_buffer;
  2219. }
  2220. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2221. return ctx->mem_size;
  2222. }
  2223. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2224. size_t max_size = 0;
  2225. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2226. size_t bytes = ggml_nbytes(tensor);
  2227. max_size = MAX(max_size, bytes);
  2228. }
  2229. return max_size;
  2230. }
  2231. // IMPORTANT:
  2232. // when creating "opt" tensors, always save and load the scratch buffer
  2233. // this is an error prone process, but it is necessary to support inplace
  2234. // operators when using scratch buffers
  2235. // TODO: implement a better way
  2236. static void ggml_scratch_save(struct ggml_context * ctx) {
  2237. // this is needed to allow opt tensors to store their data
  2238. // TODO: again, need to find a better way
  2239. ctx->no_alloc_save = ctx->no_alloc;
  2240. ctx->no_alloc = false;
  2241. ctx->scratch_save = ctx->scratch;
  2242. ctx->scratch.data = NULL;
  2243. }
  2244. static void ggml_scratch_load(struct ggml_context * ctx) {
  2245. ctx->no_alloc = ctx->no_alloc_save;
  2246. ctx->scratch = ctx->scratch_save;
  2247. }
  2248. ////////////////////////////////////////////////////////////////////////////////
  2249. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2250. // always insert objects at the end of the context's memory pool
  2251. struct ggml_object * obj_cur = ctx->objects_end;
  2252. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2253. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2254. const size_t cur_end = cur_offs + cur_size;
  2255. // align to GGML_MEM_ALIGN
  2256. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2257. char * const mem_buffer = ctx->mem_buffer;
  2258. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2259. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2260. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2261. __func__, cur_end + size_needed, ctx->mem_size);
  2262. assert(false);
  2263. return NULL;
  2264. }
  2265. *obj_new = (struct ggml_object) {
  2266. .offs = cur_end + GGML_OBJECT_SIZE,
  2267. .size = size_needed,
  2268. .next = NULL,
  2269. .type = type,
  2270. };
  2271. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2272. if (obj_cur != NULL) {
  2273. obj_cur->next = obj_new;
  2274. } else {
  2275. // this is the first object in this context
  2276. ctx->objects_begin = obj_new;
  2277. }
  2278. ctx->objects_end = obj_new;
  2279. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2280. return obj_new;
  2281. }
  2282. static struct ggml_tensor * ggml_new_tensor_impl(
  2283. struct ggml_context * ctx,
  2284. enum ggml_type type,
  2285. int n_dims,
  2286. const int64_t * ne,
  2287. struct ggml_tensor * view_src,
  2288. size_t view_offs) {
  2289. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2290. // find the base tensor and absolute offset
  2291. if (view_src != NULL && view_src->view_src != NULL) {
  2292. view_offs += view_src->view_offs;
  2293. view_src = view_src->view_src;
  2294. }
  2295. size_t data_size = ggml_row_size(type, ne[0]);
  2296. for (int i = 1; i < n_dims; i++) {
  2297. data_size *= ne[i];
  2298. }
  2299. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2300. void * data = view_src != NULL ? view_src->data : NULL;
  2301. if (data != NULL) {
  2302. data = (char *) data + view_offs;
  2303. }
  2304. size_t obj_alloc_size = 0;
  2305. if (view_src == NULL && !ctx->no_alloc) {
  2306. if (ctx->scratch.data != NULL) {
  2307. // allocate tensor data in the scratch buffer
  2308. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2309. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2310. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2311. assert(false);
  2312. return NULL;
  2313. }
  2314. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2315. ctx->scratch.offs += data_size;
  2316. } else {
  2317. // allocate tensor data in the context's memory pool
  2318. obj_alloc_size = data_size;
  2319. }
  2320. }
  2321. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2322. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2323. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2324. *result = (struct ggml_tensor) {
  2325. /*.type =*/ type,
  2326. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2327. /*.buffer =*/ NULL,
  2328. /*.ne =*/ { 1, 1, 1, 1 },
  2329. /*.nb =*/ { 0, 0, 0, 0 },
  2330. /*.op =*/ GGML_OP_NONE,
  2331. /*.op_params =*/ { 0 },
  2332. /*.flags =*/ 0,
  2333. /*.grad =*/ NULL,
  2334. /*.src =*/ { NULL },
  2335. /*.perf_runs =*/ 0,
  2336. /*.perf_cycles =*/ 0,
  2337. /*.perf_time_us =*/ 0,
  2338. /*.view_src =*/ view_src,
  2339. /*.view_offs =*/ view_offs,
  2340. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2341. /*.name =*/ { 0 },
  2342. /*.extra =*/ NULL,
  2343. /*.padding =*/ { 0 },
  2344. };
  2345. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2346. //ggml_assert_aligned(result->data);
  2347. for (int i = 0; i < n_dims; i++) {
  2348. result->ne[i] = ne[i];
  2349. }
  2350. result->nb[0] = ggml_type_size(type);
  2351. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2352. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2353. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2354. }
  2355. ctx->n_objects++;
  2356. return result;
  2357. }
  2358. struct ggml_tensor * ggml_new_tensor(
  2359. struct ggml_context * ctx,
  2360. enum ggml_type type,
  2361. int n_dims,
  2362. const int64_t * ne) {
  2363. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2364. }
  2365. struct ggml_tensor * ggml_new_tensor_1d(
  2366. struct ggml_context * ctx,
  2367. enum ggml_type type,
  2368. int64_t ne0) {
  2369. return ggml_new_tensor(ctx, type, 1, &ne0);
  2370. }
  2371. struct ggml_tensor * ggml_new_tensor_2d(
  2372. struct ggml_context * ctx,
  2373. enum ggml_type type,
  2374. int64_t ne0,
  2375. int64_t ne1) {
  2376. const int64_t ne[2] = { ne0, ne1 };
  2377. return ggml_new_tensor(ctx, type, 2, ne);
  2378. }
  2379. struct ggml_tensor * ggml_new_tensor_3d(
  2380. struct ggml_context * ctx,
  2381. enum ggml_type type,
  2382. int64_t ne0,
  2383. int64_t ne1,
  2384. int64_t ne2) {
  2385. const int64_t ne[3] = { ne0, ne1, ne2 };
  2386. return ggml_new_tensor(ctx, type, 3, ne);
  2387. }
  2388. struct ggml_tensor * ggml_new_tensor_4d(
  2389. struct ggml_context * ctx,
  2390. enum ggml_type type,
  2391. int64_t ne0,
  2392. int64_t ne1,
  2393. int64_t ne2,
  2394. int64_t ne3) {
  2395. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2396. return ggml_new_tensor(ctx, type, 4, ne);
  2397. }
  2398. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2399. ggml_scratch_save(ctx);
  2400. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2401. ggml_scratch_load(ctx);
  2402. ggml_set_i32(result, value);
  2403. return result;
  2404. }
  2405. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2406. ggml_scratch_save(ctx);
  2407. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2408. ggml_scratch_load(ctx);
  2409. ggml_set_f32(result, value);
  2410. return result;
  2411. }
  2412. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2413. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2414. }
  2415. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2416. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2417. assert(params_size <= GGML_MAX_OP_PARAMS);
  2418. memcpy(tensor->op_params, params, params_size);
  2419. }
  2420. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2421. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2422. return ((const int32_t *)(tensor->op_params))[i];
  2423. }
  2424. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2425. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2426. ((int32_t *)(tensor->op_params))[i] = value;
  2427. }
  2428. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2429. memset(tensor->data, 0, ggml_nbytes(tensor));
  2430. return tensor;
  2431. }
  2432. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2433. const int n = ggml_nrows(tensor);
  2434. const int nc = tensor->ne[0];
  2435. const size_t n1 = tensor->nb[1];
  2436. char * const data = tensor->data;
  2437. switch (tensor->type) {
  2438. case GGML_TYPE_I8:
  2439. {
  2440. assert(tensor->nb[0] == sizeof(int8_t));
  2441. for (int i = 0; i < n; i++) {
  2442. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2443. }
  2444. } break;
  2445. case GGML_TYPE_I16:
  2446. {
  2447. assert(tensor->nb[0] == sizeof(int16_t));
  2448. for (int i = 0; i < n; i++) {
  2449. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2450. }
  2451. } break;
  2452. case GGML_TYPE_I32:
  2453. {
  2454. assert(tensor->nb[0] == sizeof(int32_t));
  2455. for (int i = 0; i < n; i++) {
  2456. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2457. }
  2458. } break;
  2459. case GGML_TYPE_F16:
  2460. {
  2461. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2462. for (int i = 0; i < n; i++) {
  2463. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2464. }
  2465. } break;
  2466. case GGML_TYPE_F32:
  2467. {
  2468. assert(tensor->nb[0] == sizeof(float));
  2469. for (int i = 0; i < n; i++) {
  2470. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2471. }
  2472. } break;
  2473. default:
  2474. {
  2475. GGML_ASSERT(false);
  2476. } break;
  2477. }
  2478. return tensor;
  2479. }
  2480. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2481. const int n = ggml_nrows(tensor);
  2482. const int nc = tensor->ne[0];
  2483. const size_t n1 = tensor->nb[1];
  2484. char * const data = tensor->data;
  2485. switch (tensor->type) {
  2486. case GGML_TYPE_I8:
  2487. {
  2488. assert(tensor->nb[0] == sizeof(int8_t));
  2489. for (int i = 0; i < n; i++) {
  2490. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2491. }
  2492. } break;
  2493. case GGML_TYPE_I16:
  2494. {
  2495. assert(tensor->nb[0] == sizeof(int16_t));
  2496. for (int i = 0; i < n; i++) {
  2497. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2498. }
  2499. } break;
  2500. case GGML_TYPE_I32:
  2501. {
  2502. assert(tensor->nb[0] == sizeof(int32_t));
  2503. for (int i = 0; i < n; i++) {
  2504. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2505. }
  2506. } break;
  2507. case GGML_TYPE_F16:
  2508. {
  2509. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2510. for (int i = 0; i < n; i++) {
  2511. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2512. }
  2513. } break;
  2514. case GGML_TYPE_F32:
  2515. {
  2516. assert(tensor->nb[0] == sizeof(float));
  2517. for (int i = 0; i < n; i++) {
  2518. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2519. }
  2520. } break;
  2521. default:
  2522. {
  2523. GGML_ASSERT(false);
  2524. } break;
  2525. }
  2526. return tensor;
  2527. }
  2528. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2529. const int64_t ne2 = tensor->ne[2];
  2530. const int64_t ne1 = tensor->ne[1];
  2531. const int64_t ne0 = tensor->ne[0];
  2532. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2533. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2534. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2535. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2536. if (i0) {
  2537. * i0 = i0_;
  2538. }
  2539. if (i1) {
  2540. * i1 = i1_;
  2541. }
  2542. if (i2) {
  2543. * i2 = i2_;
  2544. }
  2545. if (i3) {
  2546. * i3 = i3_;
  2547. }
  2548. }
  2549. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2550. if (!ggml_is_contiguous(tensor)) {
  2551. int64_t id[4] = { 0, 0, 0, 0 };
  2552. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2553. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2554. }
  2555. switch (tensor->type) {
  2556. case GGML_TYPE_I8:
  2557. {
  2558. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2559. return ((int8_t *)(tensor->data))[i];
  2560. }
  2561. case GGML_TYPE_I16:
  2562. {
  2563. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2564. return ((int16_t *)(tensor->data))[i];
  2565. }
  2566. case GGML_TYPE_I32:
  2567. {
  2568. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2569. return ((int32_t *)(tensor->data))[i];
  2570. }
  2571. case GGML_TYPE_F16:
  2572. {
  2573. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2574. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2575. }
  2576. case GGML_TYPE_F32:
  2577. {
  2578. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2579. return ((float *)(tensor->data))[i];
  2580. }
  2581. default:
  2582. {
  2583. GGML_ASSERT(false);
  2584. }
  2585. }
  2586. return 0.0f;
  2587. }
  2588. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2589. if (!ggml_is_contiguous(tensor)) {
  2590. int64_t id[4] = { 0, 0, 0, 0 };
  2591. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2592. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2593. return;
  2594. }
  2595. switch (tensor->type) {
  2596. case GGML_TYPE_I8:
  2597. {
  2598. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2599. ((int8_t *)(tensor->data))[i] = value;
  2600. } break;
  2601. case GGML_TYPE_I16:
  2602. {
  2603. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2604. ((int16_t *)(tensor->data))[i] = value;
  2605. } break;
  2606. case GGML_TYPE_I32:
  2607. {
  2608. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2609. ((int32_t *)(tensor->data))[i] = value;
  2610. } break;
  2611. case GGML_TYPE_F16:
  2612. {
  2613. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2614. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2615. } break;
  2616. case GGML_TYPE_F32:
  2617. {
  2618. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2619. ((float *)(tensor->data))[i] = value;
  2620. } break;
  2621. default:
  2622. {
  2623. GGML_ASSERT(false);
  2624. } break;
  2625. }
  2626. }
  2627. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2628. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2629. switch (tensor->type) {
  2630. case GGML_TYPE_I8:
  2631. return ((int8_t *) data)[0];
  2632. case GGML_TYPE_I16:
  2633. return ((int16_t *) data)[0];
  2634. case GGML_TYPE_I32:
  2635. return ((int32_t *) data)[0];
  2636. case GGML_TYPE_F16:
  2637. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2638. case GGML_TYPE_F32:
  2639. return ((float *) data)[0];
  2640. default:
  2641. GGML_ASSERT(false);
  2642. }
  2643. return 0.0f;
  2644. }
  2645. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2646. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2647. switch (tensor->type) {
  2648. case GGML_TYPE_I8:
  2649. {
  2650. ((int8_t *)(data))[0] = value;
  2651. } break;
  2652. case GGML_TYPE_I16:
  2653. {
  2654. ((int16_t *)(data))[0] = value;
  2655. } break;
  2656. case GGML_TYPE_I32:
  2657. {
  2658. ((int32_t *)(data))[0] = value;
  2659. } break;
  2660. case GGML_TYPE_F16:
  2661. {
  2662. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2663. } break;
  2664. case GGML_TYPE_F32:
  2665. {
  2666. ((float *)(data))[0] = value;
  2667. } break;
  2668. default:
  2669. {
  2670. GGML_ASSERT(false);
  2671. } break;
  2672. }
  2673. }
  2674. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2675. if (!ggml_is_contiguous(tensor)) {
  2676. int64_t id[4] = { 0, 0, 0, 0 };
  2677. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2678. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2679. }
  2680. switch (tensor->type) {
  2681. case GGML_TYPE_I8:
  2682. {
  2683. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2684. return ((int8_t *)(tensor->data))[i];
  2685. }
  2686. case GGML_TYPE_I16:
  2687. {
  2688. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2689. return ((int16_t *)(tensor->data))[i];
  2690. }
  2691. case GGML_TYPE_I32:
  2692. {
  2693. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2694. return ((int32_t *)(tensor->data))[i];
  2695. }
  2696. case GGML_TYPE_F16:
  2697. {
  2698. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2699. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2700. }
  2701. case GGML_TYPE_F32:
  2702. {
  2703. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2704. return ((float *)(tensor->data))[i];
  2705. }
  2706. default:
  2707. {
  2708. GGML_ASSERT(false);
  2709. }
  2710. }
  2711. return 0.0f;
  2712. }
  2713. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2714. if (!ggml_is_contiguous(tensor)) {
  2715. int64_t id[4] = { 0, 0, 0, 0 };
  2716. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2717. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2718. return;
  2719. }
  2720. switch (tensor->type) {
  2721. case GGML_TYPE_I8:
  2722. {
  2723. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2724. ((int8_t *)(tensor->data))[i] = value;
  2725. } break;
  2726. case GGML_TYPE_I16:
  2727. {
  2728. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2729. ((int16_t *)(tensor->data))[i] = value;
  2730. } break;
  2731. case GGML_TYPE_I32:
  2732. {
  2733. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2734. ((int32_t *)(tensor->data))[i] = value;
  2735. } break;
  2736. case GGML_TYPE_F16:
  2737. {
  2738. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2739. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2740. } break;
  2741. case GGML_TYPE_F32:
  2742. {
  2743. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2744. ((float *)(tensor->data))[i] = value;
  2745. } break;
  2746. default:
  2747. {
  2748. GGML_ASSERT(false);
  2749. } break;
  2750. }
  2751. }
  2752. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2753. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2754. switch (tensor->type) {
  2755. case GGML_TYPE_I8:
  2756. return ((int8_t *) data)[0];
  2757. case GGML_TYPE_I16:
  2758. return ((int16_t *) data)[0];
  2759. case GGML_TYPE_I32:
  2760. return ((int32_t *) data)[0];
  2761. case GGML_TYPE_F16:
  2762. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2763. case GGML_TYPE_F32:
  2764. return ((float *) data)[0];
  2765. default:
  2766. GGML_ASSERT(false);
  2767. }
  2768. return 0.0f;
  2769. }
  2770. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2771. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2772. switch (tensor->type) {
  2773. case GGML_TYPE_I8:
  2774. {
  2775. ((int8_t *)(data))[0] = value;
  2776. } break;
  2777. case GGML_TYPE_I16:
  2778. {
  2779. ((int16_t *)(data))[0] = value;
  2780. } break;
  2781. case GGML_TYPE_I32:
  2782. {
  2783. ((int32_t *)(data))[0] = value;
  2784. } break;
  2785. case GGML_TYPE_F16:
  2786. {
  2787. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2788. } break;
  2789. case GGML_TYPE_F32:
  2790. {
  2791. ((float *)(data))[0] = value;
  2792. } break;
  2793. default:
  2794. {
  2795. GGML_ASSERT(false);
  2796. } break;
  2797. }
  2798. }
  2799. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2800. return tensor->data;
  2801. }
  2802. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2803. assert(tensor->type == GGML_TYPE_F32);
  2804. return (float *)(tensor->data);
  2805. }
  2806. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2807. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2808. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2809. }
  2810. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2811. return tensor->name;
  2812. }
  2813. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2814. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2815. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2816. return tensor;
  2817. }
  2818. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2819. va_list args;
  2820. va_start(args, fmt);
  2821. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2822. va_end(args);
  2823. return tensor;
  2824. }
  2825. struct ggml_tensor * ggml_view_tensor(
  2826. struct ggml_context * ctx,
  2827. struct ggml_tensor * src) {
  2828. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2829. ggml_format_name(result, "%s (view)", src->name);
  2830. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2831. result->nb[i] = src->nb[i];
  2832. }
  2833. return result;
  2834. }
  2835. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2836. struct ggml_object * obj = ctx->objects_begin;
  2837. char * const mem_buffer = ctx->mem_buffer;
  2838. while (obj != NULL) {
  2839. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2840. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2841. }
  2842. obj = obj->next;
  2843. }
  2844. return NULL;
  2845. }
  2846. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2847. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2848. obj = obj->next;
  2849. char * const mem_buffer = ctx->mem_buffer;
  2850. while (obj != NULL) {
  2851. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2852. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2853. }
  2854. obj = obj->next;
  2855. }
  2856. return NULL;
  2857. }
  2858. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2859. struct ggml_object * obj = ctx->objects_begin;
  2860. char * const mem_buffer = ctx->mem_buffer;
  2861. while (obj != NULL) {
  2862. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2863. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2864. if (strcmp(cur->name, name) == 0) {
  2865. return cur;
  2866. }
  2867. }
  2868. obj = obj->next;
  2869. }
  2870. return NULL;
  2871. }
  2872. ////////////////////////////////////////////////////////////////////////////////
  2873. // ggml_dup
  2874. static struct ggml_tensor * ggml_dup_impl(
  2875. struct ggml_context * ctx,
  2876. struct ggml_tensor * a,
  2877. bool inplace) {
  2878. bool is_node = false;
  2879. if (!inplace && (a->grad)) {
  2880. is_node = true;
  2881. }
  2882. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2883. result->op = GGML_OP_DUP;
  2884. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2885. result->src[0] = a;
  2886. return result;
  2887. }
  2888. struct ggml_tensor * ggml_dup(
  2889. struct ggml_context * ctx,
  2890. struct ggml_tensor * a) {
  2891. return ggml_dup_impl(ctx, a, false);
  2892. }
  2893. struct ggml_tensor * ggml_dup_inplace(
  2894. struct ggml_context * ctx,
  2895. struct ggml_tensor * a) {
  2896. return ggml_dup_impl(ctx, a, true);
  2897. }
  2898. // ggml_add
  2899. static struct ggml_tensor * ggml_add_impl(
  2900. struct ggml_context * ctx,
  2901. struct ggml_tensor * a,
  2902. struct ggml_tensor * b,
  2903. bool inplace) {
  2904. GGML_ASSERT(ggml_can_repeat(b, a));
  2905. bool is_node = false;
  2906. if (!inplace && (a->grad || b->grad)) {
  2907. // TODO: support backward pass for broadcasting
  2908. GGML_ASSERT(ggml_are_same_shape(a, b));
  2909. is_node = true;
  2910. }
  2911. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2912. result->op = GGML_OP_ADD;
  2913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2914. result->src[0] = a;
  2915. result->src[1] = b;
  2916. return result;
  2917. }
  2918. struct ggml_tensor * ggml_add(
  2919. struct ggml_context * ctx,
  2920. struct ggml_tensor * a,
  2921. struct ggml_tensor * b) {
  2922. return ggml_add_impl(ctx, a, b, false);
  2923. }
  2924. struct ggml_tensor * ggml_add_inplace(
  2925. struct ggml_context * ctx,
  2926. struct ggml_tensor * a,
  2927. struct ggml_tensor * b) {
  2928. return ggml_add_impl(ctx, a, b, true);
  2929. }
  2930. // ggml_add_cast
  2931. static struct ggml_tensor * ggml_add_cast_impl(
  2932. struct ggml_context * ctx,
  2933. struct ggml_tensor * a,
  2934. struct ggml_tensor * b,
  2935. enum ggml_type type) {
  2936. // TODO: support less-strict constraint
  2937. // GGML_ASSERT(ggml_can_repeat(b, a));
  2938. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2939. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2940. bool is_node = false;
  2941. if (a->grad || b->grad) {
  2942. // TODO: support backward pass for broadcasting
  2943. GGML_ASSERT(ggml_are_same_shape(a, b));
  2944. is_node = true;
  2945. }
  2946. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2947. result->op = GGML_OP_ADD;
  2948. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2949. result->src[0] = a;
  2950. result->src[1] = b;
  2951. return result;
  2952. }
  2953. struct ggml_tensor * ggml_add_cast(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a,
  2956. struct ggml_tensor * b,
  2957. enum ggml_type type) {
  2958. return ggml_add_cast_impl(ctx, a, b, type);
  2959. }
  2960. // ggml_add1
  2961. static struct ggml_tensor * ggml_add1_impl(
  2962. struct ggml_context * ctx,
  2963. struct ggml_tensor * a,
  2964. struct ggml_tensor * b,
  2965. bool inplace) {
  2966. GGML_ASSERT(ggml_is_scalar(b));
  2967. GGML_ASSERT(ggml_is_padded_1d(a));
  2968. bool is_node = false;
  2969. if (a->grad || b->grad) {
  2970. is_node = true;
  2971. }
  2972. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2973. result->op = GGML_OP_ADD1;
  2974. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2975. result->src[0] = a;
  2976. result->src[1] = b;
  2977. return result;
  2978. }
  2979. struct ggml_tensor * ggml_add1(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a,
  2982. struct ggml_tensor * b) {
  2983. return ggml_add1_impl(ctx, a, b, false);
  2984. }
  2985. struct ggml_tensor * ggml_add1_inplace(
  2986. struct ggml_context * ctx,
  2987. struct ggml_tensor * a,
  2988. struct ggml_tensor * b) {
  2989. return ggml_add1_impl(ctx, a, b, true);
  2990. }
  2991. // ggml_acc
  2992. static struct ggml_tensor * ggml_acc_impl(
  2993. struct ggml_context * ctx,
  2994. struct ggml_tensor * a,
  2995. struct ggml_tensor * b,
  2996. size_t nb1,
  2997. size_t nb2,
  2998. size_t nb3,
  2999. size_t offset,
  3000. bool inplace) {
  3001. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3002. GGML_ASSERT(ggml_is_contiguous(a));
  3003. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3004. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3005. bool is_node = false;
  3006. if (!inplace && (a->grad || b->grad)) {
  3007. is_node = true;
  3008. }
  3009. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3010. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3011. ggml_set_op_params(result, params, sizeof(params));
  3012. result->op = GGML_OP_ACC;
  3013. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3014. result->src[0] = a;
  3015. result->src[1] = b;
  3016. return result;
  3017. }
  3018. struct ggml_tensor * ggml_acc(
  3019. struct ggml_context * ctx,
  3020. struct ggml_tensor * a,
  3021. struct ggml_tensor * b,
  3022. size_t nb1,
  3023. size_t nb2,
  3024. size_t nb3,
  3025. size_t offset) {
  3026. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3027. }
  3028. struct ggml_tensor * ggml_acc_inplace(
  3029. struct ggml_context * ctx,
  3030. struct ggml_tensor * a,
  3031. struct ggml_tensor * b,
  3032. size_t nb1,
  3033. size_t nb2,
  3034. size_t nb3,
  3035. size_t offset) {
  3036. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3037. }
  3038. // ggml_sub
  3039. static struct ggml_tensor * ggml_sub_impl(
  3040. struct ggml_context * ctx,
  3041. struct ggml_tensor * a,
  3042. struct ggml_tensor * b,
  3043. bool inplace) {
  3044. GGML_ASSERT(ggml_are_same_shape(a, b));
  3045. bool is_node = false;
  3046. if (!inplace && (a->grad || b->grad)) {
  3047. is_node = true;
  3048. }
  3049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3050. result->op = GGML_OP_SUB;
  3051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3052. result->src[0] = a;
  3053. result->src[1] = b;
  3054. return result;
  3055. }
  3056. struct ggml_tensor * ggml_sub(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a,
  3059. struct ggml_tensor * b) {
  3060. return ggml_sub_impl(ctx, a, b, false);
  3061. }
  3062. struct ggml_tensor * ggml_sub_inplace(
  3063. struct ggml_context * ctx,
  3064. struct ggml_tensor * a,
  3065. struct ggml_tensor * b) {
  3066. return ggml_sub_impl(ctx, a, b, true);
  3067. }
  3068. // ggml_mul
  3069. static struct ggml_tensor * ggml_mul_impl(
  3070. struct ggml_context * ctx,
  3071. struct ggml_tensor * a,
  3072. struct ggml_tensor * b,
  3073. bool inplace) {
  3074. GGML_ASSERT(ggml_can_repeat(b, a));
  3075. bool is_node = false;
  3076. if (!inplace && (a->grad || b->grad)) {
  3077. // TODO: support backward pass for broadcasting
  3078. GGML_ASSERT(ggml_are_same_shape(a, b));
  3079. is_node = true;
  3080. }
  3081. if (inplace) {
  3082. GGML_ASSERT(!is_node);
  3083. }
  3084. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3085. result->op = GGML_OP_MUL;
  3086. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3087. result->src[0] = a;
  3088. result->src[1] = b;
  3089. return result;
  3090. }
  3091. struct ggml_tensor * ggml_mul(
  3092. struct ggml_context * ctx,
  3093. struct ggml_tensor * a,
  3094. struct ggml_tensor * b) {
  3095. return ggml_mul_impl(ctx, a, b, false);
  3096. }
  3097. struct ggml_tensor * ggml_mul_inplace(
  3098. struct ggml_context * ctx,
  3099. struct ggml_tensor * a,
  3100. struct ggml_tensor * b) {
  3101. return ggml_mul_impl(ctx, a, b, true);
  3102. }
  3103. // ggml_div
  3104. static struct ggml_tensor * ggml_div_impl(
  3105. struct ggml_context * ctx,
  3106. struct ggml_tensor * a,
  3107. struct ggml_tensor * b,
  3108. bool inplace) {
  3109. GGML_ASSERT(ggml_can_repeat(b, a));
  3110. bool is_node = false;
  3111. if (!inplace && (a->grad || b->grad)) {
  3112. is_node = true;
  3113. }
  3114. if (inplace) {
  3115. GGML_ASSERT(!is_node);
  3116. }
  3117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3118. result->op = GGML_OP_DIV;
  3119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3120. result->src[0] = a;
  3121. result->src[1] = b;
  3122. return result;
  3123. }
  3124. struct ggml_tensor * ggml_div(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a,
  3127. struct ggml_tensor * b) {
  3128. return ggml_div_impl(ctx, a, b, false);
  3129. }
  3130. struct ggml_tensor * ggml_div_inplace(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a,
  3133. struct ggml_tensor * b) {
  3134. return ggml_div_impl(ctx, a, b, true);
  3135. }
  3136. // ggml_sqr
  3137. static struct ggml_tensor * ggml_sqr_impl(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a,
  3140. bool inplace) {
  3141. bool is_node = false;
  3142. if (!inplace && (a->grad)) {
  3143. is_node = true;
  3144. }
  3145. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3146. result->op = GGML_OP_SQR;
  3147. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3148. result->src[0] = a;
  3149. return result;
  3150. }
  3151. struct ggml_tensor * ggml_sqr(
  3152. struct ggml_context * ctx,
  3153. struct ggml_tensor * a) {
  3154. return ggml_sqr_impl(ctx, a, false);
  3155. }
  3156. struct ggml_tensor * ggml_sqr_inplace(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a) {
  3159. return ggml_sqr_impl(ctx, a, true);
  3160. }
  3161. // ggml_sqrt
  3162. static struct ggml_tensor * ggml_sqrt_impl(
  3163. struct ggml_context * ctx,
  3164. struct ggml_tensor * a,
  3165. bool inplace) {
  3166. bool is_node = false;
  3167. if (!inplace && (a->grad)) {
  3168. is_node = true;
  3169. }
  3170. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3171. result->op = GGML_OP_SQRT;
  3172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3173. result->src[0] = a;
  3174. return result;
  3175. }
  3176. struct ggml_tensor * ggml_sqrt(
  3177. struct ggml_context * ctx,
  3178. struct ggml_tensor * a) {
  3179. return ggml_sqrt_impl(ctx, a, false);
  3180. }
  3181. struct ggml_tensor * ggml_sqrt_inplace(
  3182. struct ggml_context * ctx,
  3183. struct ggml_tensor * a) {
  3184. return ggml_sqrt_impl(ctx, a, true);
  3185. }
  3186. // ggml_log
  3187. static struct ggml_tensor * ggml_log_impl(
  3188. struct ggml_context * ctx,
  3189. struct ggml_tensor * a,
  3190. bool inplace) {
  3191. bool is_node = false;
  3192. if (!inplace && (a->grad)) {
  3193. is_node = true;
  3194. }
  3195. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3196. result->op = GGML_OP_LOG;
  3197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3198. result->src[0] = a;
  3199. return result;
  3200. }
  3201. struct ggml_tensor * ggml_log(
  3202. struct ggml_context * ctx,
  3203. struct ggml_tensor * a) {
  3204. return ggml_log_impl(ctx, a, false);
  3205. }
  3206. struct ggml_tensor * ggml_log_inplace(
  3207. struct ggml_context * ctx,
  3208. struct ggml_tensor * a) {
  3209. return ggml_log_impl(ctx, a, true);
  3210. }
  3211. // ggml_sum
  3212. struct ggml_tensor * ggml_sum(
  3213. struct ggml_context * ctx,
  3214. struct ggml_tensor * a) {
  3215. bool is_node = false;
  3216. if (a->grad) {
  3217. is_node = true;
  3218. }
  3219. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3220. result->op = GGML_OP_SUM;
  3221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3222. result->src[0] = a;
  3223. return result;
  3224. }
  3225. // ggml_sum_rows
  3226. struct ggml_tensor * ggml_sum_rows(
  3227. struct ggml_context * ctx,
  3228. struct ggml_tensor * a) {
  3229. bool is_node = false;
  3230. if (a->grad) {
  3231. is_node = true;
  3232. }
  3233. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3234. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3235. ne[i] = a->ne[i];
  3236. }
  3237. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3238. result->op = GGML_OP_SUM_ROWS;
  3239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3240. result->src[0] = a;
  3241. return result;
  3242. }
  3243. // ggml_mean
  3244. struct ggml_tensor * ggml_mean(
  3245. struct ggml_context * ctx,
  3246. struct ggml_tensor * a) {
  3247. bool is_node = false;
  3248. if (a->grad) {
  3249. GGML_ASSERT(false); // TODO: implement
  3250. is_node = true;
  3251. }
  3252. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3253. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3254. result->op = GGML_OP_MEAN;
  3255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3256. result->src[0] = a;
  3257. return result;
  3258. }
  3259. // ggml_argmax
  3260. struct ggml_tensor * ggml_argmax(
  3261. struct ggml_context * ctx,
  3262. struct ggml_tensor * a) {
  3263. GGML_ASSERT(ggml_is_matrix(a));
  3264. bool is_node = false;
  3265. if (a->grad) {
  3266. GGML_ASSERT(false);
  3267. is_node = true;
  3268. }
  3269. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3270. result->op = GGML_OP_ARGMAX;
  3271. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3272. result->src[0] = a;
  3273. return result;
  3274. }
  3275. // ggml_repeat
  3276. struct ggml_tensor * ggml_repeat(
  3277. struct ggml_context * ctx,
  3278. struct ggml_tensor * a,
  3279. struct ggml_tensor * b) {
  3280. GGML_ASSERT(ggml_can_repeat(a, b));
  3281. bool is_node = false;
  3282. if (a->grad) {
  3283. is_node = true;
  3284. }
  3285. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3286. result->op = GGML_OP_REPEAT;
  3287. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3288. result->src[0] = a;
  3289. return result;
  3290. }
  3291. // ggml_repeat_back
  3292. struct ggml_tensor * ggml_repeat_back(
  3293. struct ggml_context * ctx,
  3294. struct ggml_tensor * a,
  3295. struct ggml_tensor * b) {
  3296. GGML_ASSERT(ggml_can_repeat(b, a));
  3297. bool is_node = false;
  3298. if (a->grad) {
  3299. is_node = true;
  3300. }
  3301. if (ggml_are_same_shape(a, b) && !is_node) {
  3302. return a;
  3303. }
  3304. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3305. result->op = GGML_OP_REPEAT_BACK;
  3306. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3307. result->src[0] = a;
  3308. return result;
  3309. }
  3310. // ggml_concat
  3311. struct ggml_tensor * ggml_concat(
  3312. struct ggml_context* ctx,
  3313. struct ggml_tensor* a,
  3314. struct ggml_tensor* b) {
  3315. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3316. bool is_node = false;
  3317. if (a->grad || b->grad) {
  3318. is_node = true;
  3319. }
  3320. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3321. result->op = GGML_OP_CONCAT;
  3322. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3323. result->src[0] = a;
  3324. result->src[1] = b;
  3325. return result;
  3326. }
  3327. // ggml_abs
  3328. struct ggml_tensor * ggml_abs(
  3329. struct ggml_context * ctx,
  3330. struct ggml_tensor * a) {
  3331. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3332. }
  3333. struct ggml_tensor * ggml_abs_inplace(
  3334. struct ggml_context * ctx,
  3335. struct ggml_tensor * a) {
  3336. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3337. }
  3338. // ggml_sgn
  3339. struct ggml_tensor * ggml_sgn(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a) {
  3342. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3343. }
  3344. struct ggml_tensor * ggml_sgn_inplace(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3348. }
  3349. // ggml_neg
  3350. struct ggml_tensor * ggml_neg(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a) {
  3353. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3354. }
  3355. struct ggml_tensor * ggml_neg_inplace(
  3356. struct ggml_context * ctx,
  3357. struct ggml_tensor * a) {
  3358. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3359. }
  3360. // ggml_step
  3361. struct ggml_tensor * ggml_step(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a) {
  3364. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3365. }
  3366. struct ggml_tensor * ggml_step_inplace(
  3367. struct ggml_context * ctx,
  3368. struct ggml_tensor * a) {
  3369. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3370. }
  3371. // ggml_tanh
  3372. struct ggml_tensor * ggml_tanh(
  3373. struct ggml_context * ctx,
  3374. struct ggml_tensor * a) {
  3375. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3376. }
  3377. struct ggml_tensor * ggml_tanh_inplace(
  3378. struct ggml_context * ctx,
  3379. struct ggml_tensor * a) {
  3380. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3381. }
  3382. // ggml_elu
  3383. struct ggml_tensor * ggml_elu(
  3384. struct ggml_context * ctx,
  3385. struct ggml_tensor * a) {
  3386. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3387. }
  3388. struct ggml_tensor * ggml_elu_inplace(
  3389. struct ggml_context * ctx,
  3390. struct ggml_tensor * a) {
  3391. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3392. }
  3393. // ggml_relu
  3394. struct ggml_tensor * ggml_relu(
  3395. struct ggml_context * ctx,
  3396. struct ggml_tensor * a) {
  3397. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3398. }
  3399. struct ggml_tensor * ggml_relu_inplace(
  3400. struct ggml_context * ctx,
  3401. struct ggml_tensor * a) {
  3402. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3403. }
  3404. // ggml_leaky_relu
  3405. struct ggml_tensor * ggml_leaky_relu(
  3406. struct ggml_context * ctx,
  3407. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3408. bool is_node = false;
  3409. if (!inplace && (a->grad)) {
  3410. is_node = true;
  3411. }
  3412. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3413. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3414. result->op = GGML_OP_LEAKY_RELU;
  3415. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3416. result->src[0] = a;
  3417. return result;
  3418. }
  3419. // ggml_gelu
  3420. struct ggml_tensor * ggml_gelu(
  3421. struct ggml_context * ctx,
  3422. struct ggml_tensor * a) {
  3423. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3424. }
  3425. struct ggml_tensor * ggml_gelu_inplace(
  3426. struct ggml_context * ctx,
  3427. struct ggml_tensor * a) {
  3428. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3429. }
  3430. // ggml_gelu_quick
  3431. struct ggml_tensor * ggml_gelu_quick(
  3432. struct ggml_context * ctx,
  3433. struct ggml_tensor * a) {
  3434. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3435. }
  3436. struct ggml_tensor * ggml_gelu_quick_inplace(
  3437. struct ggml_context * ctx,
  3438. struct ggml_tensor * a) {
  3439. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3440. }
  3441. // ggml_silu
  3442. struct ggml_tensor * ggml_silu(
  3443. struct ggml_context * ctx,
  3444. struct ggml_tensor * a) {
  3445. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3446. }
  3447. struct ggml_tensor * ggml_silu_inplace(
  3448. struct ggml_context * ctx,
  3449. struct ggml_tensor * a) {
  3450. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3451. }
  3452. // ggml_silu_back
  3453. struct ggml_tensor * ggml_silu_back(
  3454. struct ggml_context * ctx,
  3455. struct ggml_tensor * a,
  3456. struct ggml_tensor * b) {
  3457. bool is_node = false;
  3458. if (a->grad || b->grad) {
  3459. // TODO: implement backward
  3460. is_node = true;
  3461. }
  3462. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3463. result->op = GGML_OP_SILU_BACK;
  3464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3465. result->src[0] = a;
  3466. result->src[1] = b;
  3467. return result;
  3468. }
  3469. // ggml hardswish
  3470. struct ggml_tensor * ggml_hardswish(
  3471. struct ggml_context * ctx,
  3472. struct ggml_tensor * a) {
  3473. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3474. }
  3475. // ggml hardsigmoid
  3476. struct ggml_tensor * ggml_hardsigmoid(
  3477. struct ggml_context * ctx,
  3478. struct ggml_tensor * a) {
  3479. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3480. }
  3481. // ggml_norm
  3482. static struct ggml_tensor * ggml_norm_impl(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a,
  3485. float eps,
  3486. bool inplace) {
  3487. bool is_node = false;
  3488. if (!inplace && (a->grad)) {
  3489. GGML_ASSERT(false); // TODO: implement backward
  3490. is_node = true;
  3491. }
  3492. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3493. ggml_set_op_params(result, &eps, sizeof(eps));
  3494. result->op = GGML_OP_NORM;
  3495. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3496. result->src[0] = a;
  3497. return result;
  3498. }
  3499. struct ggml_tensor * ggml_norm(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a,
  3502. float eps) {
  3503. return ggml_norm_impl(ctx, a, eps, false);
  3504. }
  3505. struct ggml_tensor * ggml_norm_inplace(
  3506. struct ggml_context * ctx,
  3507. struct ggml_tensor * a,
  3508. float eps) {
  3509. return ggml_norm_impl(ctx, a, eps, true);
  3510. }
  3511. // ggml_rms_norm
  3512. static struct ggml_tensor * ggml_rms_norm_impl(
  3513. struct ggml_context * ctx,
  3514. struct ggml_tensor * a,
  3515. float eps,
  3516. bool inplace) {
  3517. bool is_node = false;
  3518. if (!inplace && (a->grad)) {
  3519. is_node = true;
  3520. }
  3521. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3522. ggml_set_op_params(result, &eps, sizeof(eps));
  3523. result->op = GGML_OP_RMS_NORM;
  3524. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3525. result->src[0] = a;
  3526. return result;
  3527. }
  3528. struct ggml_tensor * ggml_rms_norm(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. float eps) {
  3532. return ggml_rms_norm_impl(ctx, a, eps, false);
  3533. }
  3534. struct ggml_tensor * ggml_rms_norm_inplace(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. float eps) {
  3538. return ggml_rms_norm_impl(ctx, a, eps, true);
  3539. }
  3540. // ggml_rms_norm_back
  3541. struct ggml_tensor * ggml_rms_norm_back(
  3542. struct ggml_context * ctx,
  3543. struct ggml_tensor * a,
  3544. struct ggml_tensor * b,
  3545. float eps) {
  3546. bool is_node = false;
  3547. if (a->grad) {
  3548. // TODO: implement backward
  3549. is_node = true;
  3550. }
  3551. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3552. ggml_set_op_params(result, &eps, sizeof(eps));
  3553. result->op = GGML_OP_RMS_NORM_BACK;
  3554. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3555. result->src[0] = a;
  3556. result->src[1] = b;
  3557. return result;
  3558. }
  3559. // ggml_group_norm
  3560. static struct ggml_tensor * ggml_group_norm_impl(
  3561. struct ggml_context * ctx,
  3562. struct ggml_tensor * a,
  3563. int n_groups,
  3564. bool inplace) {
  3565. bool is_node = false;
  3566. if (!inplace && (a->grad)) {
  3567. GGML_ASSERT(false); // TODO: implement backward
  3568. is_node = true;
  3569. }
  3570. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3571. result->op_params[0] = n_groups;
  3572. result->op = GGML_OP_GROUP_NORM;
  3573. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3574. result->src[0] = a;
  3575. return result;
  3576. }
  3577. struct ggml_tensor * ggml_group_norm(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. int n_groups) {
  3581. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3582. }
  3583. struct ggml_tensor * ggml_group_norm_inplace(
  3584. struct ggml_context * ctx,
  3585. struct ggml_tensor * a,
  3586. int n_groups) {
  3587. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3588. }
  3589. // ggml_mul_mat
  3590. struct ggml_tensor * ggml_mul_mat(
  3591. struct ggml_context * ctx,
  3592. struct ggml_tensor * a,
  3593. struct ggml_tensor * b) {
  3594. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3595. GGML_ASSERT(!ggml_is_transposed(a));
  3596. bool is_node = false;
  3597. if (a->grad || b->grad) {
  3598. is_node = true;
  3599. }
  3600. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3601. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3602. result->op = GGML_OP_MUL_MAT;
  3603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3604. result->src[0] = a;
  3605. result->src[1] = b;
  3606. return result;
  3607. }
  3608. void ggml_mul_mat_set_prec(
  3609. struct ggml_tensor * a,
  3610. enum ggml_prec prec) {
  3611. const int32_t prec_i32 = (int32_t) prec;
  3612. ggml_set_op_params_i32(a, 0, prec_i32);
  3613. }
  3614. // ggml_mul_mat_id
  3615. struct ggml_tensor * ggml_mul_mat_id(
  3616. struct ggml_context * ctx,
  3617. struct ggml_tensor * const as[],
  3618. int n_as,
  3619. struct ggml_tensor * ids,
  3620. int id,
  3621. struct ggml_tensor * b) {
  3622. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3623. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3624. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3625. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3626. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3627. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3628. bool is_node = false;
  3629. if (as[0]->grad || b->grad) {
  3630. is_node = true;
  3631. }
  3632. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3633. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3634. ggml_set_op_params_i32(result, 0, id);
  3635. ggml_set_op_params_i32(result, 1, n_as);
  3636. result->op = GGML_OP_MUL_MAT_ID;
  3637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3638. result->src[0] = ids;
  3639. result->src[1] = b;
  3640. for (int i = 0; i < n_as; i++) {
  3641. struct ggml_tensor * a = as[i];
  3642. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3643. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3644. GGML_ASSERT(!ggml_is_transposed(a));
  3645. result->src[i + 2] = a;
  3646. }
  3647. return result;
  3648. }
  3649. // ggml_out_prod
  3650. struct ggml_tensor * ggml_out_prod(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. struct ggml_tensor * b) {
  3654. GGML_ASSERT(ggml_can_out_prod(a, b));
  3655. GGML_ASSERT(!ggml_is_transposed(a));
  3656. bool is_node = false;
  3657. if (a->grad || b->grad) {
  3658. is_node = true;
  3659. }
  3660. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3661. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3662. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3663. result->op = GGML_OP_OUT_PROD;
  3664. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3665. result->src[0] = a;
  3666. result->src[1] = b;
  3667. return result;
  3668. }
  3669. // ggml_scale
  3670. static struct ggml_tensor * ggml_scale_impl(
  3671. struct ggml_context * ctx,
  3672. struct ggml_tensor * a,
  3673. float s,
  3674. bool inplace) {
  3675. GGML_ASSERT(ggml_is_padded_1d(a));
  3676. bool is_node = false;
  3677. if (a->grad) {
  3678. is_node = true;
  3679. }
  3680. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3681. ggml_set_op_params(result, &s, sizeof(s));
  3682. result->op = GGML_OP_SCALE;
  3683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3684. result->src[0] = a;
  3685. return result;
  3686. }
  3687. struct ggml_tensor * ggml_scale(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. float s) {
  3691. return ggml_scale_impl(ctx, a, s, false);
  3692. }
  3693. struct ggml_tensor * ggml_scale_inplace(
  3694. struct ggml_context * ctx,
  3695. struct ggml_tensor * a,
  3696. float s) {
  3697. return ggml_scale_impl(ctx, a, s, true);
  3698. }
  3699. // ggml_set
  3700. static struct ggml_tensor * ggml_set_impl(
  3701. struct ggml_context * ctx,
  3702. struct ggml_tensor * a,
  3703. struct ggml_tensor * b,
  3704. size_t nb1,
  3705. size_t nb2,
  3706. size_t nb3,
  3707. size_t offset,
  3708. bool inplace) {
  3709. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3710. bool is_node = false;
  3711. if (a->grad || b->grad) {
  3712. is_node = true;
  3713. }
  3714. // make a view of the destination
  3715. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3716. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3717. ggml_set_op_params(result, params, sizeof(params));
  3718. result->op = GGML_OP_SET;
  3719. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3720. result->src[0] = a;
  3721. result->src[1] = b;
  3722. return result;
  3723. }
  3724. struct ggml_tensor * ggml_set(
  3725. struct ggml_context * ctx,
  3726. struct ggml_tensor * a,
  3727. struct ggml_tensor * b,
  3728. size_t nb1,
  3729. size_t nb2,
  3730. size_t nb3,
  3731. size_t offset) {
  3732. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3733. }
  3734. struct ggml_tensor * ggml_set_inplace(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a,
  3737. struct ggml_tensor * b,
  3738. size_t nb1,
  3739. size_t nb2,
  3740. size_t nb3,
  3741. size_t offset) {
  3742. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3743. }
  3744. struct ggml_tensor * ggml_set_1d(
  3745. struct ggml_context * ctx,
  3746. struct ggml_tensor * a,
  3747. struct ggml_tensor * b,
  3748. size_t offset) {
  3749. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3750. }
  3751. struct ggml_tensor * ggml_set_1d_inplace(
  3752. struct ggml_context * ctx,
  3753. struct ggml_tensor * a,
  3754. struct ggml_tensor * b,
  3755. size_t offset) {
  3756. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3757. }
  3758. struct ggml_tensor * ggml_set_2d(
  3759. struct ggml_context * ctx,
  3760. struct ggml_tensor * a,
  3761. struct ggml_tensor * b,
  3762. size_t nb1,
  3763. size_t offset) {
  3764. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3765. }
  3766. struct ggml_tensor * ggml_set_2d_inplace(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. struct ggml_tensor * b,
  3770. size_t nb1,
  3771. size_t offset) {
  3772. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3773. }
  3774. // ggml_cpy
  3775. static struct ggml_tensor * ggml_cpy_impl(
  3776. struct ggml_context * ctx,
  3777. struct ggml_tensor * a,
  3778. struct ggml_tensor * b) {
  3779. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3780. bool is_node = false;
  3781. if (a->grad || b->grad) {
  3782. // inplace is false and either one have a grad
  3783. is_node = true;
  3784. }
  3785. // make a view of the destination
  3786. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3787. if (strlen(b->name) > 0) {
  3788. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3789. } else {
  3790. ggml_format_name(result, "%s (copy)", a->name);
  3791. }
  3792. result->op = GGML_OP_CPY;
  3793. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3794. result->src[0] = a;
  3795. result->src[1] = b;
  3796. return result;
  3797. }
  3798. struct ggml_tensor * ggml_cpy(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. struct ggml_tensor * b) {
  3802. return ggml_cpy_impl(ctx, a, b);
  3803. }
  3804. struct ggml_tensor * ggml_cast(
  3805. struct ggml_context * ctx,
  3806. struct ggml_tensor * a,
  3807. enum ggml_type type) {
  3808. bool is_node = false;
  3809. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3810. ggml_format_name(result, "%s (copy)", a->name);
  3811. result->op = GGML_OP_CPY;
  3812. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3813. result->src[0] = a;
  3814. result->src[1] = result;
  3815. return result;
  3816. }
  3817. // ggml_cont
  3818. static struct ggml_tensor * ggml_cont_impl(
  3819. struct ggml_context * ctx,
  3820. struct ggml_tensor * a) {
  3821. bool is_node = false;
  3822. if (a->grad) {
  3823. is_node = true;
  3824. }
  3825. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3826. ggml_format_name(result, "%s (cont)", a->name);
  3827. result->op = GGML_OP_CONT;
  3828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3829. result->src[0] = a;
  3830. return result;
  3831. }
  3832. struct ggml_tensor * ggml_cont(
  3833. struct ggml_context * ctx,
  3834. struct ggml_tensor * a) {
  3835. return ggml_cont_impl(ctx, a);
  3836. }
  3837. // make contiguous, with new shape
  3838. GGML_API struct ggml_tensor * ggml_cont_1d(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. int64_t ne0) {
  3842. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3843. }
  3844. GGML_API struct ggml_tensor * ggml_cont_2d(
  3845. struct ggml_context * ctx,
  3846. struct ggml_tensor * a,
  3847. int64_t ne0,
  3848. int64_t ne1) {
  3849. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3850. }
  3851. GGML_API struct ggml_tensor * ggml_cont_3d(
  3852. struct ggml_context * ctx,
  3853. struct ggml_tensor * a,
  3854. int64_t ne0,
  3855. int64_t ne1,
  3856. int64_t ne2) {
  3857. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3858. }
  3859. struct ggml_tensor * ggml_cont_4d(
  3860. struct ggml_context * ctx,
  3861. struct ggml_tensor * a,
  3862. int64_t ne0,
  3863. int64_t ne1,
  3864. int64_t ne2,
  3865. int64_t ne3) {
  3866. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3867. bool is_node = false;
  3868. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3869. ggml_format_name(result, "%s (cont)", a->name);
  3870. result->op = GGML_OP_CONT;
  3871. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3872. result->src[0] = a;
  3873. return result;
  3874. }
  3875. // ggml_reshape
  3876. struct ggml_tensor * ggml_reshape(
  3877. struct ggml_context * ctx,
  3878. struct ggml_tensor * a,
  3879. struct ggml_tensor * b) {
  3880. GGML_ASSERT(ggml_is_contiguous(a));
  3881. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3882. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3883. bool is_node = false;
  3884. if (a->grad) {
  3885. is_node = true;
  3886. }
  3887. if (b->grad) {
  3888. // gradient propagation is not supported
  3889. //GGML_ASSERT(false);
  3890. }
  3891. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3892. ggml_format_name(result, "%s (reshaped)", a->name);
  3893. result->op = GGML_OP_RESHAPE;
  3894. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3895. result->src[0] = a;
  3896. return result;
  3897. }
  3898. struct ggml_tensor * ggml_reshape_1d(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. int64_t ne0) {
  3902. GGML_ASSERT(ggml_is_contiguous(a));
  3903. GGML_ASSERT(ggml_nelements(a) == ne0);
  3904. bool is_node = false;
  3905. if (a->grad) {
  3906. is_node = true;
  3907. }
  3908. const int64_t ne[1] = { ne0 };
  3909. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3910. ggml_format_name(result, "%s (reshaped)", a->name);
  3911. result->op = GGML_OP_RESHAPE;
  3912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3913. result->src[0] = a;
  3914. return result;
  3915. }
  3916. struct ggml_tensor * ggml_reshape_2d(
  3917. struct ggml_context * ctx,
  3918. struct ggml_tensor * a,
  3919. int64_t ne0,
  3920. int64_t ne1) {
  3921. GGML_ASSERT(ggml_is_contiguous(a));
  3922. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3923. bool is_node = false;
  3924. if (a->grad) {
  3925. is_node = true;
  3926. }
  3927. const int64_t ne[2] = { ne0, ne1 };
  3928. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3929. ggml_format_name(result, "%s (reshaped)", a->name);
  3930. result->op = GGML_OP_RESHAPE;
  3931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3932. result->src[0] = a;
  3933. return result;
  3934. }
  3935. struct ggml_tensor * ggml_reshape_3d(
  3936. struct ggml_context * ctx,
  3937. struct ggml_tensor * a,
  3938. int64_t ne0,
  3939. int64_t ne1,
  3940. int64_t ne2) {
  3941. GGML_ASSERT(ggml_is_contiguous(a));
  3942. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3943. bool is_node = false;
  3944. if (a->grad) {
  3945. is_node = true;
  3946. }
  3947. const int64_t ne[3] = { ne0, ne1, ne2 };
  3948. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3949. ggml_format_name(result, "%s (reshaped)", a->name);
  3950. result->op = GGML_OP_RESHAPE;
  3951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3952. result->src[0] = a;
  3953. return result;
  3954. }
  3955. struct ggml_tensor * ggml_reshape_4d(
  3956. struct ggml_context * ctx,
  3957. struct ggml_tensor * a,
  3958. int64_t ne0,
  3959. int64_t ne1,
  3960. int64_t ne2,
  3961. int64_t ne3) {
  3962. GGML_ASSERT(ggml_is_contiguous(a));
  3963. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3964. bool is_node = false;
  3965. if (a->grad) {
  3966. is_node = true;
  3967. }
  3968. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3969. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3970. ggml_format_name(result, "%s (reshaped)", a->name);
  3971. result->op = GGML_OP_RESHAPE;
  3972. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3973. result->src[0] = a;
  3974. return result;
  3975. }
  3976. static struct ggml_tensor * ggml_view_impl(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. int n_dims,
  3980. const int64_t * ne,
  3981. size_t offset) {
  3982. bool is_node = false;
  3983. if (a->grad) {
  3984. is_node = true;
  3985. }
  3986. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3987. ggml_format_name(result, "%s (view)", a->name);
  3988. ggml_set_op_params(result, &offset, sizeof(offset));
  3989. result->op = GGML_OP_VIEW;
  3990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3991. result->src[0] = a;
  3992. return result;
  3993. }
  3994. // ggml_view_1d
  3995. struct ggml_tensor * ggml_view_1d(
  3996. struct ggml_context * ctx,
  3997. struct ggml_tensor * a,
  3998. int64_t ne0,
  3999. size_t offset) {
  4000. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4001. return result;
  4002. }
  4003. // ggml_view_2d
  4004. struct ggml_tensor * ggml_view_2d(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a,
  4007. int64_t ne0,
  4008. int64_t ne1,
  4009. size_t nb1,
  4010. size_t offset) {
  4011. const int64_t ne[2] = { ne0, ne1 };
  4012. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4013. result->nb[1] = nb1;
  4014. result->nb[2] = result->nb[1]*ne1;
  4015. result->nb[3] = result->nb[2];
  4016. return result;
  4017. }
  4018. // ggml_view_3d
  4019. struct ggml_tensor * ggml_view_3d(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a,
  4022. int64_t ne0,
  4023. int64_t ne1,
  4024. int64_t ne2,
  4025. size_t nb1,
  4026. size_t nb2,
  4027. size_t offset) {
  4028. const int64_t ne[3] = { ne0, ne1, ne2 };
  4029. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4030. result->nb[1] = nb1;
  4031. result->nb[2] = nb2;
  4032. result->nb[3] = result->nb[2]*ne2;
  4033. return result;
  4034. }
  4035. // ggml_view_4d
  4036. struct ggml_tensor * ggml_view_4d(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. int64_t ne0,
  4040. int64_t ne1,
  4041. int64_t ne2,
  4042. int64_t ne3,
  4043. size_t nb1,
  4044. size_t nb2,
  4045. size_t nb3,
  4046. size_t offset) {
  4047. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4048. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4049. result->nb[1] = nb1;
  4050. result->nb[2] = nb2;
  4051. result->nb[3] = nb3;
  4052. return result;
  4053. }
  4054. // ggml_permute
  4055. struct ggml_tensor * ggml_permute(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a,
  4058. int axis0,
  4059. int axis1,
  4060. int axis2,
  4061. int axis3) {
  4062. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4063. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4064. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4065. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4066. GGML_ASSERT(axis0 != axis1);
  4067. GGML_ASSERT(axis0 != axis2);
  4068. GGML_ASSERT(axis0 != axis3);
  4069. GGML_ASSERT(axis1 != axis2);
  4070. GGML_ASSERT(axis1 != axis3);
  4071. GGML_ASSERT(axis2 != axis3);
  4072. bool is_node = false;
  4073. if (a->grad) {
  4074. is_node = true;
  4075. }
  4076. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4077. ggml_format_name(result, "%s (permuted)", a->name);
  4078. int ne[GGML_MAX_DIMS];
  4079. int nb[GGML_MAX_DIMS];
  4080. ne[axis0] = a->ne[0];
  4081. ne[axis1] = a->ne[1];
  4082. ne[axis2] = a->ne[2];
  4083. ne[axis3] = a->ne[3];
  4084. nb[axis0] = a->nb[0];
  4085. nb[axis1] = a->nb[1];
  4086. nb[axis2] = a->nb[2];
  4087. nb[axis3] = a->nb[3];
  4088. result->ne[0] = ne[0];
  4089. result->ne[1] = ne[1];
  4090. result->ne[2] = ne[2];
  4091. result->ne[3] = ne[3];
  4092. result->nb[0] = nb[0];
  4093. result->nb[1] = nb[1];
  4094. result->nb[2] = nb[2];
  4095. result->nb[3] = nb[3];
  4096. result->op = GGML_OP_PERMUTE;
  4097. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4098. result->src[0] = a;
  4099. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4100. ggml_set_op_params(result, params, sizeof(params));
  4101. return result;
  4102. }
  4103. // ggml_transpose
  4104. struct ggml_tensor * ggml_transpose(
  4105. struct ggml_context * ctx,
  4106. struct ggml_tensor * a) {
  4107. bool is_node = false;
  4108. if (a->grad) {
  4109. is_node = true;
  4110. }
  4111. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4112. ggml_format_name(result, "%s (transposed)", a->name);
  4113. result->ne[0] = a->ne[1];
  4114. result->ne[1] = a->ne[0];
  4115. result->nb[0] = a->nb[1];
  4116. result->nb[1] = a->nb[0];
  4117. result->op = GGML_OP_TRANSPOSE;
  4118. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4119. result->src[0] = a;
  4120. return result;
  4121. }
  4122. // ggml_get_rows
  4123. struct ggml_tensor * ggml_get_rows(
  4124. struct ggml_context * ctx,
  4125. struct ggml_tensor * a,
  4126. struct ggml_tensor * b) {
  4127. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4128. GGML_ASSERT(b->ne[3] == 1);
  4129. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4130. bool is_node = false;
  4131. if (a->grad || b->grad) {
  4132. is_node = true;
  4133. }
  4134. // TODO: implement non F32 return
  4135. enum ggml_type type = GGML_TYPE_F32;
  4136. if (a->type == GGML_TYPE_I32) {
  4137. type = a->type;
  4138. }
  4139. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4140. result->op = GGML_OP_GET_ROWS;
  4141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4142. result->src[0] = a;
  4143. result->src[1] = b;
  4144. return result;
  4145. }
  4146. // ggml_get_rows_back
  4147. struct ggml_tensor * ggml_get_rows_back(
  4148. struct ggml_context * ctx,
  4149. struct ggml_tensor * a,
  4150. struct ggml_tensor * b,
  4151. struct ggml_tensor * c) {
  4152. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4153. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4154. bool is_node = false;
  4155. if (a->grad || b->grad) {
  4156. is_node = true;
  4157. }
  4158. // TODO: implement non F32 return
  4159. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4160. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4161. result->op = GGML_OP_GET_ROWS_BACK;
  4162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4163. result->src[0] = a;
  4164. result->src[1] = b;
  4165. return result;
  4166. }
  4167. // ggml_diag
  4168. struct ggml_tensor * ggml_diag(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a) {
  4171. GGML_ASSERT(a->ne[1] == 1);
  4172. bool is_node = false;
  4173. if (a->grad) {
  4174. is_node = true;
  4175. }
  4176. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4177. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4178. result->op = GGML_OP_DIAG;
  4179. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4180. result->src[0] = a;
  4181. return result;
  4182. }
  4183. // ggml_diag_mask_inf
  4184. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4185. struct ggml_context * ctx,
  4186. struct ggml_tensor * a,
  4187. int n_past,
  4188. bool inplace) {
  4189. bool is_node = false;
  4190. if (a->grad) {
  4191. is_node = true;
  4192. }
  4193. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4194. int32_t params[] = { n_past };
  4195. ggml_set_op_params(result, params, sizeof(params));
  4196. result->op = GGML_OP_DIAG_MASK_INF;
  4197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4198. result->src[0] = a;
  4199. return result;
  4200. }
  4201. struct ggml_tensor * ggml_diag_mask_inf(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. int n_past) {
  4205. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4206. }
  4207. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a,
  4210. int n_past) {
  4211. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4212. }
  4213. // ggml_diag_mask_zero
  4214. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. int n_past,
  4218. bool inplace) {
  4219. bool is_node = false;
  4220. if (a->grad) {
  4221. is_node = true;
  4222. }
  4223. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4224. int32_t params[] = { n_past };
  4225. ggml_set_op_params(result, params, sizeof(params));
  4226. result->op = GGML_OP_DIAG_MASK_ZERO;
  4227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4228. result->src[0] = a;
  4229. return result;
  4230. }
  4231. struct ggml_tensor * ggml_diag_mask_zero(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a,
  4234. int n_past) {
  4235. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4236. }
  4237. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. int n_past) {
  4241. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4242. }
  4243. // ggml_soft_max
  4244. static struct ggml_tensor * ggml_soft_max_impl(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a,
  4247. struct ggml_tensor * mask,
  4248. struct ggml_tensor * pos,
  4249. float scale,
  4250. float max_bias,
  4251. bool inplace) {
  4252. GGML_ASSERT(ggml_is_contiguous(a));
  4253. if (mask) {
  4254. GGML_ASSERT(ggml_is_contiguous(mask));
  4255. GGML_ASSERT(ggml_is_matrix(mask));
  4256. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4257. }
  4258. if (pos) {
  4259. GGML_ASSERT(ggml_is_vector(pos));
  4260. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4261. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4262. }
  4263. if (max_bias > 0.0f) {
  4264. GGML_ASSERT(pos);
  4265. }
  4266. bool is_node = false;
  4267. if (a->grad) {
  4268. is_node = true;
  4269. }
  4270. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4271. float params[] = { scale, max_bias };
  4272. ggml_set_op_params(result, params, sizeof(params));
  4273. result->op = GGML_OP_SOFT_MAX;
  4274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4275. result->src[0] = a;
  4276. result->src[1] = mask;
  4277. result->src[2] = pos;
  4278. return result;
  4279. }
  4280. struct ggml_tensor * ggml_soft_max(
  4281. struct ggml_context * ctx,
  4282. struct ggml_tensor * a) {
  4283. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4284. }
  4285. struct ggml_tensor * ggml_soft_max_inplace(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a) {
  4288. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4289. }
  4290. struct ggml_tensor * ggml_soft_max_ext(
  4291. struct ggml_context * ctx,
  4292. struct ggml_tensor * a,
  4293. struct ggml_tensor * mask,
  4294. struct ggml_tensor * pos,
  4295. float scale,
  4296. float max_bias) {
  4297. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4298. }
  4299. // ggml_soft_max_back
  4300. static struct ggml_tensor * ggml_soft_max_back_impl(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a,
  4303. struct ggml_tensor * b,
  4304. bool inplace) {
  4305. bool is_node = false;
  4306. if (a->grad || b->grad) {
  4307. is_node = true; // TODO : implement backward pass
  4308. }
  4309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4310. result->op = GGML_OP_SOFT_MAX_BACK;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src[0] = a;
  4313. result->src[1] = b;
  4314. return result;
  4315. }
  4316. struct ggml_tensor * ggml_soft_max_back(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b) {
  4320. return ggml_soft_max_back_impl(ctx, a, b, false);
  4321. }
  4322. struct ggml_tensor * ggml_soft_max_back_inplace(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b) {
  4326. return ggml_soft_max_back_impl(ctx, a, b, true);
  4327. }
  4328. // ggml_rope
  4329. static struct ggml_tensor * ggml_rope_impl(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. struct ggml_tensor * b,
  4333. int n_dims,
  4334. int mode,
  4335. int n_ctx,
  4336. int n_orig_ctx,
  4337. float freq_base,
  4338. float freq_scale,
  4339. float ext_factor,
  4340. float attn_factor,
  4341. float beta_fast,
  4342. float beta_slow,
  4343. float xpos_base,
  4344. bool xpos_down,
  4345. bool inplace) {
  4346. GGML_ASSERT(ggml_is_vector(b));
  4347. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4348. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4349. bool is_node = false;
  4350. if (a->grad) {
  4351. is_node = true;
  4352. }
  4353. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4354. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4355. memcpy(params + 5, &freq_base, sizeof(float));
  4356. memcpy(params + 6, &freq_scale, sizeof(float));
  4357. memcpy(params + 7, &ext_factor, sizeof(float));
  4358. memcpy(params + 8, &attn_factor, sizeof(float));
  4359. memcpy(params + 9, &beta_fast, sizeof(float));
  4360. memcpy(params + 10, &beta_slow, sizeof(float));
  4361. memcpy(params + 11, &xpos_base, sizeof(float));
  4362. memcpy(params + 12, &xpos_down, sizeof(bool));
  4363. ggml_set_op_params(result, params, sizeof(params));
  4364. result->op = GGML_OP_ROPE;
  4365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4366. result->src[0] = a;
  4367. result->src[1] = b;
  4368. return result;
  4369. }
  4370. struct ggml_tensor * ggml_rope(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a,
  4373. struct ggml_tensor * b,
  4374. int n_dims,
  4375. int mode,
  4376. int n_ctx) {
  4377. return ggml_rope_impl(
  4378. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4379. );
  4380. }
  4381. struct ggml_tensor * ggml_rope_inplace(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. struct ggml_tensor * b,
  4385. int n_dims,
  4386. int mode,
  4387. int n_ctx) {
  4388. return ggml_rope_impl(
  4389. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4390. );
  4391. }
  4392. struct ggml_tensor * ggml_rope_custom(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a,
  4395. struct ggml_tensor * b,
  4396. int n_dims,
  4397. int mode,
  4398. int n_ctx,
  4399. int n_orig_ctx,
  4400. float freq_base,
  4401. float freq_scale,
  4402. float ext_factor,
  4403. float attn_factor,
  4404. float beta_fast,
  4405. float beta_slow) {
  4406. return ggml_rope_impl(
  4407. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4408. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4409. );
  4410. }
  4411. struct ggml_tensor * ggml_rope_custom_inplace(
  4412. struct ggml_context * ctx,
  4413. struct ggml_tensor * a,
  4414. struct ggml_tensor * b,
  4415. int n_dims,
  4416. int mode,
  4417. int n_ctx,
  4418. int n_orig_ctx,
  4419. float freq_base,
  4420. float freq_scale,
  4421. float ext_factor,
  4422. float attn_factor,
  4423. float beta_fast,
  4424. float beta_slow) {
  4425. return ggml_rope_impl(
  4426. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4427. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4428. );
  4429. }
  4430. struct ggml_tensor * ggml_rope_xpos_inplace(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. struct ggml_tensor * b,
  4434. int n_dims,
  4435. float base,
  4436. bool down) {
  4437. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4438. }
  4439. // ggml_rope_back
  4440. struct ggml_tensor * ggml_rope_back(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a,
  4443. struct ggml_tensor * b,
  4444. int n_dims,
  4445. int mode,
  4446. int n_ctx,
  4447. int n_orig_ctx,
  4448. float freq_base,
  4449. float freq_scale,
  4450. float ext_factor,
  4451. float attn_factor,
  4452. float beta_fast,
  4453. float beta_slow,
  4454. float xpos_base,
  4455. bool xpos_down) {
  4456. GGML_ASSERT(ggml_is_vector(b));
  4457. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4458. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4459. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4460. bool is_node = false;
  4461. if (a->grad) {
  4462. is_node = false; // TODO: implement backward
  4463. }
  4464. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4465. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4466. memcpy(params + 5, &freq_base, sizeof(float));
  4467. memcpy(params + 6, &freq_scale, sizeof(float));
  4468. memcpy(params + 7, &ext_factor, sizeof(float));
  4469. memcpy(params + 8, &attn_factor, sizeof(float));
  4470. memcpy(params + 9, &beta_fast, sizeof(float));
  4471. memcpy(params + 10, &beta_slow, sizeof(float));
  4472. memcpy(params + 11, &xpos_base, sizeof(float));
  4473. memcpy(params + 12, &xpos_down, sizeof(bool));
  4474. ggml_set_op_params(result, params, sizeof(params));
  4475. result->op = GGML_OP_ROPE_BACK;
  4476. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4477. result->src[0] = a;
  4478. result->src[1] = b;
  4479. return result;
  4480. }
  4481. // ggml_alibi
  4482. struct ggml_tensor * ggml_alibi(
  4483. struct ggml_context * ctx,
  4484. struct ggml_tensor * a,
  4485. int n_past,
  4486. int n_head,
  4487. float bias_max) {
  4488. GGML_ASSERT(n_past >= 0);
  4489. bool is_node = false;
  4490. if (a->grad) {
  4491. GGML_ASSERT(false); // TODO: implement backward
  4492. is_node = true;
  4493. }
  4494. // TODO: when implement backward, fix this:
  4495. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4496. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4497. int32_t op_params[3] = { n_past, n_head };
  4498. memcpy(op_params + 2, &bias_max, sizeof(float));
  4499. ggml_set_op_params(result, op_params, sizeof(op_params));
  4500. result->op = GGML_OP_ALIBI;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src[0] = a;
  4503. return result;
  4504. }
  4505. // ggml_clamp
  4506. struct ggml_tensor * ggml_clamp(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a,
  4509. float min,
  4510. float max) {
  4511. bool is_node = false;
  4512. if (a->grad) {
  4513. GGML_ASSERT(false); // TODO: implement backward
  4514. is_node = true;
  4515. }
  4516. // TODO: when implement backward, fix this:
  4517. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4518. float params[] = { min, max };
  4519. ggml_set_op_params(result, params, sizeof(params));
  4520. result->op = GGML_OP_CLAMP;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. return result;
  4524. }
  4525. // ggml_conv_1d
  4526. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4527. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4528. }
  4529. GGML_API struct ggml_tensor * ggml_conv_1d(
  4530. struct ggml_context * ctx,
  4531. struct ggml_tensor * a,
  4532. struct ggml_tensor * b,
  4533. int s0,
  4534. int p0,
  4535. int d0) {
  4536. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4537. struct ggml_tensor * result =
  4538. ggml_mul_mat(ctx,
  4539. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4540. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4541. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4542. return result;
  4543. }
  4544. // ggml_conv_1d_ph
  4545. struct ggml_tensor* ggml_conv_1d_ph(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. struct ggml_tensor * b,
  4549. int s,
  4550. int d) {
  4551. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4552. }
  4553. // ggml_conv_transpose_1d
  4554. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4555. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4556. }
  4557. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. struct ggml_tensor * b,
  4561. int s0,
  4562. int p0,
  4563. int d0) {
  4564. GGML_ASSERT(ggml_is_matrix(b));
  4565. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4566. GGML_ASSERT(a->ne[3] == 1);
  4567. GGML_ASSERT(p0 == 0);
  4568. GGML_ASSERT(d0 == 1);
  4569. bool is_node = false;
  4570. if (a->grad || b->grad) {
  4571. GGML_ASSERT(false); // TODO: implement backward
  4572. is_node = true;
  4573. }
  4574. const int64_t ne[4] = {
  4575. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4576. a->ne[1], b->ne[2], 1,
  4577. };
  4578. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4579. int32_t params[] = { s0, p0, d0 };
  4580. ggml_set_op_params(result, params, sizeof(params));
  4581. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4582. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4583. result->src[0] = a;
  4584. result->src[1] = b;
  4585. return result;
  4586. }
  4587. // ggml_conv_depthwise
  4588. struct ggml_tensor * ggml_conv_depthwise_2d(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. int s0,
  4593. int s1,
  4594. int p0,
  4595. int p1,
  4596. int d0,
  4597. int d1) {
  4598. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4599. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4600. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4601. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4602. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4603. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4604. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4605. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4606. return result;
  4607. }
  4608. // ggml_conv_2d
  4609. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4610. // a: [OC,IC, KH, KW]
  4611. // b: [N, IC, IH, IW]
  4612. // result: [N, OH, OW, IC*KH*KW]
  4613. struct ggml_tensor * ggml_im2col(
  4614. struct ggml_context * ctx,
  4615. struct ggml_tensor * a,
  4616. struct ggml_tensor * b,
  4617. int s0,
  4618. int s1,
  4619. int p0,
  4620. int p1,
  4621. int d0,
  4622. int d1,
  4623. bool is_2D,
  4624. enum ggml_type dst_type) {
  4625. if(is_2D) {
  4626. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4627. } else {
  4628. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4629. }
  4630. bool is_node = false;
  4631. if (a->grad || b->grad) {
  4632. GGML_ASSERT(false); // TODO: implement backward
  4633. is_node = true;
  4634. }
  4635. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4636. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4637. const int64_t ne[4] = {
  4638. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4639. OW,
  4640. is_2D ? OH : b->ne[2],
  4641. is_2D ? b->ne[3] : 1,
  4642. };
  4643. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4644. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4645. ggml_set_op_params(result, params, sizeof(params));
  4646. result->op = GGML_OP_IM2COL;
  4647. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4648. result->src[0] = a;
  4649. result->src[1] = b;
  4650. return result;
  4651. }
  4652. // a: [OC,IC, KH, KW]
  4653. // b: [N, IC, IH, IW]
  4654. // result: [N, OC, OH, OW]
  4655. struct ggml_tensor * ggml_conv_2d(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a,
  4658. struct ggml_tensor * b,
  4659. int s0,
  4660. int s1,
  4661. int p0,
  4662. int p1,
  4663. int d0,
  4664. int d1) {
  4665. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4666. struct ggml_tensor * result =
  4667. ggml_mul_mat(ctx,
  4668. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4669. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4670. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4671. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4672. return result;
  4673. }
  4674. // ggml_conv_2d_sk_p0
  4675. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a,
  4678. struct ggml_tensor * b) {
  4679. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4680. }
  4681. // ggml_conv_2d_s1_ph
  4682. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4683. struct ggml_context * ctx,
  4684. struct ggml_tensor * a,
  4685. struct ggml_tensor * b) {
  4686. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4687. }
  4688. // ggml_conv_transpose_2d_p0
  4689. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4690. return (ins - 1) * s - 2 * p + ks;
  4691. }
  4692. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a,
  4695. struct ggml_tensor * b,
  4696. int stride) {
  4697. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4698. bool is_node = false;
  4699. if (a->grad || b->grad) {
  4700. GGML_ASSERT(false); // TODO: implement backward
  4701. is_node = true;
  4702. }
  4703. const int64_t ne[4] = {
  4704. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4705. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4706. a->ne[2], b->ne[3],
  4707. };
  4708. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4709. ggml_set_op_params_i32(result, 0, stride);
  4710. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4712. result->src[0] = a;
  4713. result->src[1] = b;
  4714. return result;
  4715. }
  4716. // ggml_pool_*
  4717. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4718. return (ins + 2 * p - ks) / s + 1;
  4719. }
  4720. // ggml_pool_1d
  4721. struct ggml_tensor * ggml_pool_1d(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a,
  4724. enum ggml_op_pool op,
  4725. int k0,
  4726. int s0,
  4727. int p0) {
  4728. bool is_node = false;
  4729. if (a->grad) {
  4730. GGML_ASSERT(false); // TODO: implement backward
  4731. is_node = true;
  4732. }
  4733. const int64_t ne[2] = {
  4734. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4735. a->ne[1],
  4736. };
  4737. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4738. int32_t params[] = { op, k0, s0, p0 };
  4739. ggml_set_op_params(result, params, sizeof(params));
  4740. result->op = GGML_OP_POOL_1D;
  4741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4742. result->src[0] = a;
  4743. return result;
  4744. }
  4745. // ggml_pool_2d
  4746. struct ggml_tensor * ggml_pool_2d(
  4747. struct ggml_context * ctx,
  4748. struct ggml_tensor * a,
  4749. enum ggml_op_pool op,
  4750. int k0,
  4751. int k1,
  4752. int s0,
  4753. int s1,
  4754. float p0,
  4755. float p1) {
  4756. bool is_node = false;
  4757. if (a->grad) {
  4758. GGML_ASSERT(false); // TODO: implement backward
  4759. is_node = true;
  4760. }
  4761. struct ggml_tensor * result;
  4762. const int64_t ne[3] = {
  4763. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4764. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4765. a->ne[2],
  4766. };
  4767. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4768. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4769. ggml_set_op_params(result, params, sizeof(params));
  4770. result->op = GGML_OP_POOL_2D;
  4771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4772. result->src[0] = a;
  4773. return result;
  4774. }
  4775. // ggml_upscale
  4776. static struct ggml_tensor * ggml_upscale_impl(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. int scale_factor) {
  4780. bool is_node = false;
  4781. if (a->grad) {
  4782. GGML_ASSERT(false); // TODO: implement backward
  4783. is_node = true;
  4784. }
  4785. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4786. a->ne[0] * scale_factor,
  4787. a->ne[1] * scale_factor,
  4788. a->ne[2], a->ne[3]);
  4789. result->op = GGML_OP_UPSCALE;
  4790. result->op_params[0] = scale_factor;
  4791. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4792. result->src[0] = a;
  4793. return result;
  4794. }
  4795. struct ggml_tensor * ggml_pad(
  4796. struct ggml_context * ctx,
  4797. struct ggml_tensor * a,
  4798. int p0, int p1, int p2, int p3) {
  4799. bool is_node = false;
  4800. if (a->grad) {
  4801. GGML_ASSERT(false); // TODO: implement backward
  4802. is_node = true;
  4803. }
  4804. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4805. a->ne[0] + p0,
  4806. a->ne[1] + p1,
  4807. a->ne[2] + p2,
  4808. a->ne[3] + p3);
  4809. result->op = GGML_OP_PAD;
  4810. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4811. result->src[0] = a;
  4812. return result;
  4813. }
  4814. struct ggml_tensor * ggml_upscale(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a,
  4817. int scale_factor) {
  4818. return ggml_upscale_impl(ctx, a, scale_factor);
  4819. }
  4820. // ggml_argsort
  4821. struct ggml_tensor * ggml_argsort(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. enum ggml_sort_order order) {
  4825. bool is_node = false;
  4826. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4827. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4828. result->op = GGML_OP_ARGSORT;
  4829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4830. result->src[0] = a;
  4831. return result;
  4832. }
  4833. // ggml_top_k
  4834. struct ggml_tensor * ggml_top_k(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a,
  4837. int k) {
  4838. GGML_ASSERT(a->ne[0] >= k);
  4839. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4840. result = ggml_view_4d(ctx, result,
  4841. k, result->ne[1], result->ne[2], result->ne[3],
  4842. result->nb[1], result->nb[2], result->nb[3],
  4843. 0);
  4844. return result;
  4845. }
  4846. // ggml_flash_attn
  4847. struct ggml_tensor * ggml_flash_attn(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * q,
  4850. struct ggml_tensor * k,
  4851. struct ggml_tensor * v,
  4852. bool masked) {
  4853. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4854. // TODO: check if vT can be multiplied by (k*qT)
  4855. bool is_node = false;
  4856. if (q->grad || k->grad || v->grad) {
  4857. is_node = true;
  4858. }
  4859. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4860. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4861. int32_t t = masked ? 1 : 0;
  4862. ggml_set_op_params(result, &t, sizeof(t));
  4863. result->op = GGML_OP_FLASH_ATTN;
  4864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4865. result->src[0] = q;
  4866. result->src[1] = k;
  4867. result->src[2] = v;
  4868. return result;
  4869. }
  4870. // ggml_flash_ff
  4871. struct ggml_tensor * ggml_flash_ff(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a,
  4874. struct ggml_tensor * b0,
  4875. struct ggml_tensor * b1,
  4876. struct ggml_tensor * c0,
  4877. struct ggml_tensor * c1) {
  4878. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4879. // TODO: more checks
  4880. bool is_node = false;
  4881. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4882. is_node = true;
  4883. }
  4884. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4885. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4886. result->op = GGML_OP_FLASH_FF;
  4887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4888. result->src[0] = a;
  4889. result->src[1] = b0;
  4890. result->src[2] = b1;
  4891. result->src[3] = c0;
  4892. result->src[4] = c1;
  4893. return result;
  4894. }
  4895. // ggml_flash_attn_back
  4896. struct ggml_tensor * ggml_flash_attn_back(
  4897. struct ggml_context * ctx,
  4898. struct ggml_tensor * q,
  4899. struct ggml_tensor * k,
  4900. struct ggml_tensor * v,
  4901. struct ggml_tensor * d,
  4902. bool masked) {
  4903. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4904. // TODO: check if vT can be multiplied by (k*qT)
  4905. // d shape [D,N,ne2,ne3]
  4906. // q shape [D,N,ne2,ne3]
  4907. // k shape [D,M,kvne2,ne3]
  4908. // v shape [M,D,kvne2,ne3]
  4909. const int64_t D = q->ne[0];
  4910. const int64_t N = q->ne[1];
  4911. const int64_t M = k->ne[1];
  4912. const int64_t ne2 = q->ne[2];
  4913. const int64_t ne3 = q->ne[3];
  4914. const int64_t kvne2 = k->ne[2];
  4915. GGML_ASSERT(k->ne[0] == D);
  4916. GGML_ASSERT(v->ne[0] == M);
  4917. GGML_ASSERT(v->ne[1] == D);
  4918. GGML_ASSERT(d->ne[0] == D);
  4919. GGML_ASSERT(d->ne[1] == N);
  4920. GGML_ASSERT(k->ne[2] == kvne2);
  4921. GGML_ASSERT(k->ne[3] == ne3);
  4922. GGML_ASSERT(v->ne[2] == kvne2);
  4923. GGML_ASSERT(v->ne[3] == ne3);
  4924. GGML_ASSERT(d->ne[2] == ne2);
  4925. GGML_ASSERT(d->ne[3] == ne3);
  4926. GGML_ASSERT(ne2 % kvne2 == 0);
  4927. bool is_node = false;
  4928. if (q->grad || k->grad || v->grad) {
  4929. // when using this operation (in backwards pass) these grads are set.
  4930. // we don't want to create (big) grad of our result, so is_node is false.
  4931. is_node = false;
  4932. }
  4933. // store gradients of q, k and v as continuous tensors concatenated in result.
  4934. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4935. const int64_t elem_q = ggml_nelements(q);
  4936. const int64_t elem_k = ggml_nelements(k);
  4937. const int64_t elem_v = ggml_nelements(v);
  4938. enum ggml_type result_type = GGML_TYPE_F32;
  4939. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4940. const size_t tsize = ggml_type_size(result_type);
  4941. const size_t offs_q = 0;
  4942. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4943. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4944. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4945. const size_t nelements = (end + tsize - 1)/tsize;
  4946. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4947. int32_t masked_i = masked ? 1 : 0;
  4948. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4949. result->op = GGML_OP_FLASH_ATTN_BACK;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = q;
  4952. result->src[1] = k;
  4953. result->src[2] = v;
  4954. result->src[3] = d;
  4955. return result;
  4956. }
  4957. // ggml_win_part
  4958. struct ggml_tensor * ggml_win_part(
  4959. struct ggml_context * ctx,
  4960. struct ggml_tensor * a,
  4961. int w) {
  4962. GGML_ASSERT(a->ne[3] == 1);
  4963. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4964. bool is_node = false;
  4965. if (a->grad) {
  4966. GGML_ASSERT(false); // TODO: implement backward
  4967. is_node = true;
  4968. }
  4969. // padding
  4970. const int px = (w - a->ne[1]%w)%w;
  4971. const int py = (w - a->ne[2]%w)%w;
  4972. const int npx = (px + a->ne[1])/w;
  4973. const int npy = (py + a->ne[2])/w;
  4974. const int np = npx*npy;
  4975. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4976. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4977. int32_t params[] = { npx, npy, w };
  4978. ggml_set_op_params(result, params, sizeof(params));
  4979. result->op = GGML_OP_WIN_PART;
  4980. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4981. result->src[0] = a;
  4982. return result;
  4983. }
  4984. // ggml_win_unpart
  4985. struct ggml_tensor * ggml_win_unpart(
  4986. struct ggml_context * ctx,
  4987. struct ggml_tensor * a,
  4988. int w0,
  4989. int h0,
  4990. int w) {
  4991. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4992. bool is_node = false;
  4993. if (a->grad) {
  4994. GGML_ASSERT(false); // TODO: implement backward
  4995. is_node = true;
  4996. }
  4997. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4998. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4999. int32_t params[] = { w };
  5000. ggml_set_op_params(result, params, sizeof(params));
  5001. result->op = GGML_OP_WIN_UNPART;
  5002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5003. result->src[0] = a;
  5004. return result;
  5005. }
  5006. // ggml_get_rel_pos
  5007. struct ggml_tensor * ggml_get_rel_pos(
  5008. struct ggml_context * ctx,
  5009. struct ggml_tensor * a,
  5010. int qh,
  5011. int kh) {
  5012. GGML_ASSERT(qh == kh);
  5013. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5014. bool is_node = false;
  5015. if (a->grad) {
  5016. GGML_ASSERT(false); // TODO: implement backward
  5017. is_node = true;
  5018. }
  5019. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5020. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5021. result->op = GGML_OP_GET_REL_POS;
  5022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5023. result->src[0] = a;
  5024. return result;
  5025. }
  5026. // ggml_add_rel_pos
  5027. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5028. struct ggml_context * ctx,
  5029. struct ggml_tensor * a,
  5030. struct ggml_tensor * pw,
  5031. struct ggml_tensor * ph,
  5032. bool inplace) {
  5033. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5034. GGML_ASSERT(ggml_is_contiguous(a));
  5035. GGML_ASSERT(ggml_is_contiguous(pw));
  5036. GGML_ASSERT(ggml_is_contiguous(ph));
  5037. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5038. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5039. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5040. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5041. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5042. bool is_node = false;
  5043. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5044. is_node = true;
  5045. }
  5046. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5047. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5048. result->op = GGML_OP_ADD_REL_POS;
  5049. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5050. result->src[0] = a;
  5051. result->src[1] = pw;
  5052. result->src[2] = ph;
  5053. return result;
  5054. }
  5055. struct ggml_tensor * ggml_add_rel_pos(
  5056. struct ggml_context * ctx,
  5057. struct ggml_tensor * a,
  5058. struct ggml_tensor * pw,
  5059. struct ggml_tensor * ph) {
  5060. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5061. }
  5062. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5063. struct ggml_context * ctx,
  5064. struct ggml_tensor * a,
  5065. struct ggml_tensor * pw,
  5066. struct ggml_tensor * ph) {
  5067. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5068. }
  5069. // gmml_unary
  5070. static struct ggml_tensor * ggml_unary_impl(
  5071. struct ggml_context * ctx,
  5072. struct ggml_tensor * a,
  5073. enum ggml_unary_op op,
  5074. bool inplace) {
  5075. bool is_node = false;
  5076. if (!inplace && (a->grad)) {
  5077. is_node = true;
  5078. }
  5079. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5080. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5081. result->op = GGML_OP_UNARY;
  5082. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5083. result->src[0] = a;
  5084. return result;
  5085. }
  5086. struct ggml_tensor * ggml_unary(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * a,
  5089. enum ggml_unary_op op) {
  5090. return ggml_unary_impl(ctx, a, op, false);
  5091. }
  5092. struct ggml_tensor * ggml_unary_inplace(
  5093. struct ggml_context * ctx,
  5094. struct ggml_tensor * a,
  5095. enum ggml_unary_op op) {
  5096. return ggml_unary_impl(ctx, a, op, true);
  5097. }
  5098. // ggml_map_unary
  5099. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5100. struct ggml_context * ctx,
  5101. struct ggml_tensor * a,
  5102. const ggml_unary_op_f32_t fun,
  5103. bool inplace) {
  5104. bool is_node = false;
  5105. if (!inplace && a->grad) {
  5106. is_node = true;
  5107. }
  5108. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5109. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5110. result->op = GGML_OP_MAP_UNARY;
  5111. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5112. result->src[0] = a;
  5113. return result;
  5114. }
  5115. struct ggml_tensor * ggml_map_unary_f32(
  5116. struct ggml_context * ctx,
  5117. struct ggml_tensor * a,
  5118. const ggml_unary_op_f32_t fun) {
  5119. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5120. }
  5121. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5122. struct ggml_context * ctx,
  5123. struct ggml_tensor * a,
  5124. const ggml_unary_op_f32_t fun) {
  5125. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5126. }
  5127. // ggml_map_binary
  5128. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5129. struct ggml_context * ctx,
  5130. struct ggml_tensor * a,
  5131. struct ggml_tensor * b,
  5132. const ggml_binary_op_f32_t fun,
  5133. bool inplace) {
  5134. GGML_ASSERT(ggml_are_same_shape(a, b));
  5135. bool is_node = false;
  5136. if (!inplace && (a->grad || b->grad)) {
  5137. is_node = true;
  5138. }
  5139. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5140. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5141. result->op = GGML_OP_MAP_BINARY;
  5142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5143. result->src[0] = a;
  5144. result->src[1] = b;
  5145. return result;
  5146. }
  5147. struct ggml_tensor * ggml_map_binary_f32(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. struct ggml_tensor * b,
  5151. const ggml_binary_op_f32_t fun) {
  5152. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5153. }
  5154. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5155. struct ggml_context * ctx,
  5156. struct ggml_tensor * a,
  5157. struct ggml_tensor * b,
  5158. const ggml_binary_op_f32_t fun) {
  5159. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5160. }
  5161. // ggml_map_custom1_f32
  5162. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5163. struct ggml_context * ctx,
  5164. struct ggml_tensor * a,
  5165. const ggml_custom1_op_f32_t fun,
  5166. bool inplace) {
  5167. bool is_node = false;
  5168. if (!inplace && a->grad) {
  5169. is_node = true;
  5170. }
  5171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5172. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5173. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5174. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5175. result->src[0] = a;
  5176. return result;
  5177. }
  5178. struct ggml_tensor * ggml_map_custom1_f32(
  5179. struct ggml_context * ctx,
  5180. struct ggml_tensor * a,
  5181. const ggml_custom1_op_f32_t fun) {
  5182. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5183. }
  5184. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5185. struct ggml_context * ctx,
  5186. struct ggml_tensor * a,
  5187. const ggml_custom1_op_f32_t fun) {
  5188. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5189. }
  5190. // ggml_map_custom2_f32
  5191. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5192. struct ggml_context * ctx,
  5193. struct ggml_tensor * a,
  5194. struct ggml_tensor * b,
  5195. const ggml_custom2_op_f32_t fun,
  5196. bool inplace) {
  5197. bool is_node = false;
  5198. if (!inplace && (a->grad || b->grad)) {
  5199. is_node = true;
  5200. }
  5201. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5202. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5203. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5204. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5205. result->src[0] = a;
  5206. result->src[1] = b;
  5207. return result;
  5208. }
  5209. struct ggml_tensor * ggml_map_custom2_f32(
  5210. struct ggml_context * ctx,
  5211. struct ggml_tensor * a,
  5212. struct ggml_tensor * b,
  5213. const ggml_custom2_op_f32_t fun) {
  5214. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5215. }
  5216. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5217. struct ggml_context * ctx,
  5218. struct ggml_tensor * a,
  5219. struct ggml_tensor * b,
  5220. const ggml_custom2_op_f32_t fun) {
  5221. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5222. }
  5223. // ggml_map_custom3_f32
  5224. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5225. struct ggml_context * ctx,
  5226. struct ggml_tensor * a,
  5227. struct ggml_tensor * b,
  5228. struct ggml_tensor * c,
  5229. const ggml_custom3_op_f32_t fun,
  5230. bool inplace) {
  5231. bool is_node = false;
  5232. if (!inplace && (a->grad || b->grad || c->grad)) {
  5233. is_node = true;
  5234. }
  5235. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5236. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5237. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5238. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5239. result->src[0] = a;
  5240. result->src[1] = b;
  5241. result->src[2] = c;
  5242. return result;
  5243. }
  5244. struct ggml_tensor * ggml_map_custom3_f32(
  5245. struct ggml_context * ctx,
  5246. struct ggml_tensor * a,
  5247. struct ggml_tensor * b,
  5248. struct ggml_tensor * c,
  5249. const ggml_custom3_op_f32_t fun) {
  5250. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5251. }
  5252. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5253. struct ggml_context * ctx,
  5254. struct ggml_tensor * a,
  5255. struct ggml_tensor * b,
  5256. struct ggml_tensor * c,
  5257. const ggml_custom3_op_f32_t fun) {
  5258. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5259. }
  5260. // ggml_map_custom1
  5261. struct ggml_map_custom1_op_params {
  5262. ggml_custom1_op_t fun;
  5263. int n_tasks;
  5264. void * userdata;
  5265. };
  5266. static struct ggml_tensor * ggml_map_custom1_impl(
  5267. struct ggml_context * ctx,
  5268. struct ggml_tensor * a,
  5269. const ggml_custom1_op_t fun,
  5270. int n_tasks,
  5271. void * userdata,
  5272. bool inplace) {
  5273. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5274. bool is_node = false;
  5275. if (!inplace && a->grad) {
  5276. is_node = true;
  5277. }
  5278. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5279. struct ggml_map_custom1_op_params params = {
  5280. /*.fun =*/ fun,
  5281. /*.n_tasks =*/ n_tasks,
  5282. /*.userdata =*/ userdata
  5283. };
  5284. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5285. result->op = GGML_OP_MAP_CUSTOM1;
  5286. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5287. result->src[0] = a;
  5288. return result;
  5289. }
  5290. struct ggml_tensor * ggml_map_custom1(
  5291. struct ggml_context * ctx,
  5292. struct ggml_tensor * a,
  5293. const ggml_custom1_op_t fun,
  5294. int n_tasks,
  5295. void * userdata) {
  5296. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5297. }
  5298. struct ggml_tensor * ggml_map_custom1_inplace(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * a,
  5301. const ggml_custom1_op_t fun,
  5302. int n_tasks,
  5303. void * userdata) {
  5304. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5305. }
  5306. // ggml_map_custom2
  5307. struct ggml_map_custom2_op_params {
  5308. ggml_custom2_op_t fun;
  5309. int n_tasks;
  5310. void * userdata;
  5311. };
  5312. static struct ggml_tensor * ggml_map_custom2_impl(
  5313. struct ggml_context * ctx,
  5314. struct ggml_tensor * a,
  5315. struct ggml_tensor * b,
  5316. const ggml_custom2_op_t fun,
  5317. int n_tasks,
  5318. void * userdata,
  5319. bool inplace) {
  5320. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5321. bool is_node = false;
  5322. if (!inplace && (a->grad || b->grad)) {
  5323. is_node = true;
  5324. }
  5325. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5326. struct ggml_map_custom2_op_params params = {
  5327. /*.fun =*/ fun,
  5328. /*.n_tasks =*/ n_tasks,
  5329. /*.userdata =*/ userdata
  5330. };
  5331. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5332. result->op = GGML_OP_MAP_CUSTOM2;
  5333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5334. result->src[0] = a;
  5335. result->src[1] = b;
  5336. return result;
  5337. }
  5338. struct ggml_tensor * ggml_map_custom2(
  5339. struct ggml_context * ctx,
  5340. struct ggml_tensor * a,
  5341. struct ggml_tensor * b,
  5342. const ggml_custom2_op_t fun,
  5343. int n_tasks,
  5344. void * userdata) {
  5345. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5346. }
  5347. struct ggml_tensor * ggml_map_custom2_inplace(
  5348. struct ggml_context * ctx,
  5349. struct ggml_tensor * a,
  5350. struct ggml_tensor * b,
  5351. const ggml_custom2_op_t fun,
  5352. int n_tasks,
  5353. void * userdata) {
  5354. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5355. }
  5356. // ggml_map_custom3
  5357. struct ggml_map_custom3_op_params {
  5358. ggml_custom3_op_t fun;
  5359. int n_tasks;
  5360. void * userdata;
  5361. };
  5362. static struct ggml_tensor * ggml_map_custom3_impl(
  5363. struct ggml_context * ctx,
  5364. struct ggml_tensor * a,
  5365. struct ggml_tensor * b,
  5366. struct ggml_tensor * c,
  5367. const ggml_custom3_op_t fun,
  5368. int n_tasks,
  5369. void * userdata,
  5370. bool inplace) {
  5371. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5372. bool is_node = false;
  5373. if (!inplace && (a->grad || b->grad || c->grad)) {
  5374. is_node = true;
  5375. }
  5376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5377. struct ggml_map_custom3_op_params params = {
  5378. /*.fun =*/ fun,
  5379. /*.n_tasks =*/ n_tasks,
  5380. /*.userdata =*/ userdata
  5381. };
  5382. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5383. result->op = GGML_OP_MAP_CUSTOM3;
  5384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5385. result->src[0] = a;
  5386. result->src[1] = b;
  5387. result->src[2] = c;
  5388. return result;
  5389. }
  5390. struct ggml_tensor * ggml_map_custom3(
  5391. struct ggml_context * ctx,
  5392. struct ggml_tensor * a,
  5393. struct ggml_tensor * b,
  5394. struct ggml_tensor * c,
  5395. const ggml_custom3_op_t fun,
  5396. int n_tasks,
  5397. void * userdata) {
  5398. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5399. }
  5400. struct ggml_tensor * ggml_map_custom3_inplace(
  5401. struct ggml_context * ctx,
  5402. struct ggml_tensor * a,
  5403. struct ggml_tensor * b,
  5404. struct ggml_tensor * c,
  5405. const ggml_custom3_op_t fun,
  5406. int n_tasks,
  5407. void * userdata) {
  5408. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5409. }
  5410. // ggml_cross_entropy_loss
  5411. struct ggml_tensor * ggml_cross_entropy_loss(
  5412. struct ggml_context * ctx,
  5413. struct ggml_tensor * a,
  5414. struct ggml_tensor * b) {
  5415. GGML_ASSERT(ggml_are_same_shape(a, b));
  5416. bool is_node = false;
  5417. if (a->grad || b->grad) {
  5418. is_node = true;
  5419. }
  5420. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5421. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5422. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5423. result->src[0] = a;
  5424. result->src[1] = b;
  5425. return result;
  5426. }
  5427. // ggml_cross_entropy_loss_back
  5428. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5429. struct ggml_context * ctx,
  5430. struct ggml_tensor * a,
  5431. struct ggml_tensor * b,
  5432. struct ggml_tensor * c) {
  5433. GGML_ASSERT(ggml_are_same_shape(a, b));
  5434. GGML_ASSERT(ggml_is_scalar(c));
  5435. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5436. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5437. result->grad = NULL;
  5438. result->src[0] = a;
  5439. result->src[1] = b;
  5440. result->src[2] = c;
  5441. return result;
  5442. }
  5443. ////////////////////////////////////////////////////////////////////////////////
  5444. void ggml_set_param(
  5445. struct ggml_context * ctx,
  5446. struct ggml_tensor * tensor) {
  5447. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5448. GGML_ASSERT(tensor->grad == NULL);
  5449. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5450. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5451. }
  5452. // ggml_compute_forward_dup
  5453. static void ggml_compute_forward_dup_same_cont(
  5454. const struct ggml_compute_params * params,
  5455. struct ggml_tensor * dst) {
  5456. const struct ggml_tensor * src0 = dst->src[0];
  5457. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5458. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5459. GGML_ASSERT(src0->type == dst->type);
  5460. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5461. return;
  5462. }
  5463. const size_t nb00 = src0->nb[0];
  5464. const size_t nb0 = dst->nb[0];
  5465. const int ith = params->ith; // thread index
  5466. const int nth = params->nth; // number of threads
  5467. // parallelize by elements
  5468. const int ne = ggml_nelements(dst);
  5469. const int dr = (ne + nth - 1) / nth;
  5470. const int ie0 = dr * ith;
  5471. const int ie1 = MIN(ie0 + dr, ne);
  5472. if (ie0 < ie1) {
  5473. memcpy(
  5474. ((char *) dst->data + ie0*nb0),
  5475. ((char *) src0->data + ie0*nb00),
  5476. (ie1 - ie0) * ggml_type_size(src0->type));
  5477. }
  5478. }
  5479. static void ggml_compute_forward_dup_f16(
  5480. const struct ggml_compute_params * params,
  5481. struct ggml_tensor * dst) {
  5482. const struct ggml_tensor * src0 = dst->src[0];
  5483. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5484. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5485. return;
  5486. }
  5487. GGML_TENSOR_UNARY_OP_LOCALS
  5488. const int ith = params->ith; // thread index
  5489. const int nth = params->nth; // number of threads
  5490. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5491. ggml_compute_forward_dup_same_cont(params, dst);
  5492. return;
  5493. }
  5494. // parallelize by rows
  5495. const int nr = ne01;
  5496. // number of rows per thread
  5497. const int dr = (nr + nth - 1) / nth;
  5498. // row range for this thread
  5499. const int ir0 = dr * ith;
  5500. const int ir1 = MIN(ir0 + dr, nr);
  5501. if (src0->type == dst->type &&
  5502. ne00 == ne0 &&
  5503. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5504. // copy by rows
  5505. const size_t rs = ne00*nb00;
  5506. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5507. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5508. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5509. memcpy(
  5510. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5511. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5512. rs);
  5513. }
  5514. }
  5515. }
  5516. return;
  5517. }
  5518. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5519. if (ggml_is_contiguous(dst)) {
  5520. if (nb00 == sizeof(ggml_fp16_t)) {
  5521. if (dst->type == GGML_TYPE_F16) {
  5522. size_t id = 0;
  5523. const size_t rs = ne00 * nb00;
  5524. char * dst_ptr = (char *) dst->data;
  5525. for (int i03 = 0; i03 < ne03; i03++) {
  5526. for (int i02 = 0; i02 < ne02; i02++) {
  5527. id += rs * ir0;
  5528. for (int i01 = ir0; i01 < ir1; i01++) {
  5529. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5530. memcpy(dst_ptr + id, src0_ptr, rs);
  5531. id += rs;
  5532. }
  5533. id += rs * (ne01 - ir1);
  5534. }
  5535. }
  5536. } else if (dst->type == GGML_TYPE_F32) {
  5537. size_t id = 0;
  5538. float * dst_ptr = (float *) dst->data;
  5539. for (int i03 = 0; i03 < ne03; i03++) {
  5540. for (int i02 = 0; i02 < ne02; i02++) {
  5541. id += ne00 * ir0;
  5542. for (int i01 = ir0; i01 < ir1; i01++) {
  5543. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5544. for (int i00 = 0; i00 < ne00; i00++) {
  5545. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5546. id++;
  5547. }
  5548. }
  5549. id += ne00 * (ne01 - ir1);
  5550. }
  5551. }
  5552. } else if (type_traits[dst->type].from_float) {
  5553. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5554. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5555. size_t id = 0;
  5556. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5557. char * dst_ptr = (char *) dst->data;
  5558. for (int i03 = 0; i03 < ne03; i03++) {
  5559. for (int i02 = 0; i02 < ne02; i02++) {
  5560. id += rs * ir0;
  5561. for (int i01 = ir0; i01 < ir1; i01++) {
  5562. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5563. for (int i00 = 0; i00 < ne00; i00++) {
  5564. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5565. }
  5566. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5567. id += rs;
  5568. }
  5569. id += rs * (ne01 - ir1);
  5570. }
  5571. }
  5572. } else {
  5573. GGML_ASSERT(false); // TODO: implement
  5574. }
  5575. } else {
  5576. //printf("%s: this is not optimal - fix me\n", __func__);
  5577. if (dst->type == GGML_TYPE_F32) {
  5578. size_t id = 0;
  5579. float * dst_ptr = (float *) dst->data;
  5580. for (int i03 = 0; i03 < ne03; i03++) {
  5581. for (int i02 = 0; i02 < ne02; i02++) {
  5582. id += ne00 * ir0;
  5583. for (int i01 = ir0; i01 < ir1; i01++) {
  5584. for (int i00 = 0; i00 < ne00; i00++) {
  5585. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5586. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5587. id++;
  5588. }
  5589. }
  5590. id += ne00 * (ne01 - ir1);
  5591. }
  5592. }
  5593. } else if (dst->type == GGML_TYPE_F16) {
  5594. size_t id = 0;
  5595. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5596. for (int i03 = 0; i03 < ne03; i03++) {
  5597. for (int i02 = 0; i02 < ne02; i02++) {
  5598. id += ne00 * ir0;
  5599. for (int i01 = ir0; i01 < ir1; i01++) {
  5600. for (int i00 = 0; i00 < ne00; i00++) {
  5601. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5602. dst_ptr[id] = *src0_ptr;
  5603. id++;
  5604. }
  5605. }
  5606. id += ne00 * (ne01 - ir1);
  5607. }
  5608. }
  5609. } else {
  5610. GGML_ASSERT(false); // TODO: implement
  5611. }
  5612. }
  5613. return;
  5614. }
  5615. // dst counters
  5616. int64_t i10 = 0;
  5617. int64_t i11 = 0;
  5618. int64_t i12 = 0;
  5619. int64_t i13 = 0;
  5620. if (dst->type == GGML_TYPE_F16) {
  5621. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5622. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5623. i10 += ne00 * ir0;
  5624. while (i10 >= ne0) {
  5625. i10 -= ne0;
  5626. if (++i11 == ne1) {
  5627. i11 = 0;
  5628. if (++i12 == ne2) {
  5629. i12 = 0;
  5630. if (++i13 == ne3) {
  5631. i13 = 0;
  5632. }
  5633. }
  5634. }
  5635. }
  5636. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5637. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5638. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5639. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5640. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5641. if (++i10 == ne00) {
  5642. i10 = 0;
  5643. if (++i11 == ne01) {
  5644. i11 = 0;
  5645. if (++i12 == ne02) {
  5646. i12 = 0;
  5647. if (++i13 == ne03) {
  5648. i13 = 0;
  5649. }
  5650. }
  5651. }
  5652. }
  5653. }
  5654. }
  5655. i10 += ne00 * (ne01 - ir1);
  5656. while (i10 >= ne0) {
  5657. i10 -= ne0;
  5658. if (++i11 == ne1) {
  5659. i11 = 0;
  5660. if (++i12 == ne2) {
  5661. i12 = 0;
  5662. if (++i13 == ne3) {
  5663. i13 = 0;
  5664. }
  5665. }
  5666. }
  5667. }
  5668. }
  5669. }
  5670. } else if (dst->type == GGML_TYPE_F32) {
  5671. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5672. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5673. i10 += ne00 * ir0;
  5674. while (i10 >= ne0) {
  5675. i10 -= ne0;
  5676. if (++i11 == ne1) {
  5677. i11 = 0;
  5678. if (++i12 == ne2) {
  5679. i12 = 0;
  5680. if (++i13 == ne3) {
  5681. i13 = 0;
  5682. }
  5683. }
  5684. }
  5685. }
  5686. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5687. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5688. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5689. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5690. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5691. if (++i10 == ne0) {
  5692. i10 = 0;
  5693. if (++i11 == ne1) {
  5694. i11 = 0;
  5695. if (++i12 == ne2) {
  5696. i12 = 0;
  5697. if (++i13 == ne3) {
  5698. i13 = 0;
  5699. }
  5700. }
  5701. }
  5702. }
  5703. }
  5704. }
  5705. i10 += ne00 * (ne01 - ir1);
  5706. while (i10 >= ne0) {
  5707. i10 -= ne0;
  5708. if (++i11 == ne1) {
  5709. i11 = 0;
  5710. if (++i12 == ne2) {
  5711. i12 = 0;
  5712. if (++i13 == ne3) {
  5713. i13 = 0;
  5714. }
  5715. }
  5716. }
  5717. }
  5718. }
  5719. }
  5720. } else {
  5721. GGML_ASSERT(false); // TODO: implement
  5722. }
  5723. }
  5724. static void ggml_compute_forward_dup_f32(
  5725. const struct ggml_compute_params * params,
  5726. struct ggml_tensor * dst) {
  5727. const struct ggml_tensor * src0 = dst->src[0];
  5728. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5729. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5730. return;
  5731. }
  5732. GGML_TENSOR_UNARY_OP_LOCALS
  5733. const int ith = params->ith; // thread index
  5734. const int nth = params->nth; // number of threads
  5735. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5736. ggml_compute_forward_dup_same_cont(params, dst);
  5737. return;
  5738. }
  5739. // parallelize by rows
  5740. const int nr = ne01;
  5741. // number of rows per thread
  5742. const int dr = (nr + nth - 1) / nth;
  5743. // row range for this thread
  5744. const int ir0 = dr * ith;
  5745. const int ir1 = MIN(ir0 + dr, nr);
  5746. if (src0->type == dst->type &&
  5747. ne00 == ne0 &&
  5748. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5749. // copy by rows
  5750. const size_t rs = ne00*nb00;
  5751. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5752. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5753. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5754. memcpy(
  5755. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5756. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5757. rs);
  5758. }
  5759. }
  5760. }
  5761. return;
  5762. }
  5763. if (ggml_is_contiguous(dst)) {
  5764. // TODO: simplify
  5765. if (nb00 == sizeof(float)) {
  5766. if (dst->type == GGML_TYPE_F32) {
  5767. size_t id = 0;
  5768. const size_t rs = ne00 * nb00;
  5769. char * dst_ptr = (char *) dst->data;
  5770. for (int i03 = 0; i03 < ne03; i03++) {
  5771. for (int i02 = 0; i02 < ne02; i02++) {
  5772. id += rs * ir0;
  5773. for (int i01 = ir0; i01 < ir1; i01++) {
  5774. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5775. memcpy(dst_ptr + id, src0_ptr, rs);
  5776. id += rs;
  5777. }
  5778. id += rs * (ne01 - ir1);
  5779. }
  5780. }
  5781. } else if (type_traits[dst->type].from_float) {
  5782. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5783. size_t id = 0;
  5784. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5785. char * dst_ptr = (char *) dst->data;
  5786. for (int i03 = 0; i03 < ne03; i03++) {
  5787. for (int i02 = 0; i02 < ne02; i02++) {
  5788. id += rs * ir0;
  5789. for (int i01 = ir0; i01 < ir1; i01++) {
  5790. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5791. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5792. id += rs;
  5793. }
  5794. id += rs * (ne01 - ir1);
  5795. }
  5796. }
  5797. } else {
  5798. GGML_ASSERT(false); // TODO: implement
  5799. }
  5800. } else {
  5801. //printf("%s: this is not optimal - fix me\n", __func__);
  5802. if (dst->type == GGML_TYPE_F32) {
  5803. size_t id = 0;
  5804. float * dst_ptr = (float *) dst->data;
  5805. for (int i03 = 0; i03 < ne03; i03++) {
  5806. for (int i02 = 0; i02 < ne02; i02++) {
  5807. id += ne00 * ir0;
  5808. for (int i01 = ir0; i01 < ir1; i01++) {
  5809. for (int i00 = 0; i00 < ne00; i00++) {
  5810. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5811. dst_ptr[id] = *src0_ptr;
  5812. id++;
  5813. }
  5814. }
  5815. id += ne00 * (ne01 - ir1);
  5816. }
  5817. }
  5818. } else if (dst->type == GGML_TYPE_F16) {
  5819. size_t id = 0;
  5820. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5821. for (int i03 = 0; i03 < ne03; i03++) {
  5822. for (int i02 = 0; i02 < ne02; i02++) {
  5823. id += ne00 * ir0;
  5824. for (int i01 = ir0; i01 < ir1; i01++) {
  5825. for (int i00 = 0; i00 < ne00; i00++) {
  5826. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5827. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5828. id++;
  5829. }
  5830. }
  5831. id += ne00 * (ne01 - ir1);
  5832. }
  5833. }
  5834. } else {
  5835. GGML_ASSERT(false); // TODO: implement
  5836. }
  5837. }
  5838. return;
  5839. }
  5840. // dst counters
  5841. int64_t i10 = 0;
  5842. int64_t i11 = 0;
  5843. int64_t i12 = 0;
  5844. int64_t i13 = 0;
  5845. if (dst->type == GGML_TYPE_F32) {
  5846. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5847. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5848. i10 += ne00 * ir0;
  5849. while (i10 >= ne0) {
  5850. i10 -= ne0;
  5851. if (++i11 == ne1) {
  5852. i11 = 0;
  5853. if (++i12 == ne2) {
  5854. i12 = 0;
  5855. if (++i13 == ne3) {
  5856. i13 = 0;
  5857. }
  5858. }
  5859. }
  5860. }
  5861. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5862. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5863. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5864. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5865. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5866. if (++i10 == ne0) {
  5867. i10 = 0;
  5868. if (++i11 == ne1) {
  5869. i11 = 0;
  5870. if (++i12 == ne2) {
  5871. i12 = 0;
  5872. if (++i13 == ne3) {
  5873. i13 = 0;
  5874. }
  5875. }
  5876. }
  5877. }
  5878. }
  5879. }
  5880. i10 += ne00 * (ne01 - ir1);
  5881. while (i10 >= ne0) {
  5882. i10 -= ne0;
  5883. if (++i11 == ne1) {
  5884. i11 = 0;
  5885. if (++i12 == ne2) {
  5886. i12 = 0;
  5887. if (++i13 == ne3) {
  5888. i13 = 0;
  5889. }
  5890. }
  5891. }
  5892. }
  5893. }
  5894. }
  5895. } else if (dst->type == GGML_TYPE_F16) {
  5896. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5897. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5898. i10 += ne00 * ir0;
  5899. while (i10 >= ne0) {
  5900. i10 -= ne0;
  5901. if (++i11 == ne1) {
  5902. i11 = 0;
  5903. if (++i12 == ne2) {
  5904. i12 = 0;
  5905. if (++i13 == ne3) {
  5906. i13 = 0;
  5907. }
  5908. }
  5909. }
  5910. }
  5911. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5912. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5913. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5914. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5915. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5916. if (++i10 == ne0) {
  5917. i10 = 0;
  5918. if (++i11 == ne1) {
  5919. i11 = 0;
  5920. if (++i12 == ne2) {
  5921. i12 = 0;
  5922. if (++i13 == ne3) {
  5923. i13 = 0;
  5924. }
  5925. }
  5926. }
  5927. }
  5928. }
  5929. }
  5930. i10 += ne00 * (ne01 - ir1);
  5931. while (i10 >= ne0) {
  5932. i10 -= ne0;
  5933. if (++i11 == ne1) {
  5934. i11 = 0;
  5935. if (++i12 == ne2) {
  5936. i12 = 0;
  5937. if (++i13 == ne3) {
  5938. i13 = 0;
  5939. }
  5940. }
  5941. }
  5942. }
  5943. }
  5944. }
  5945. } else {
  5946. GGML_ASSERT(false); // TODO: implement
  5947. }
  5948. }
  5949. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5950. static void ggml_compute_forward_dup_bytes(
  5951. const struct ggml_compute_params * params,
  5952. struct ggml_tensor * dst) {
  5953. const struct ggml_tensor * src0 = dst->src[0];
  5954. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5955. GGML_ASSERT(src0->type == dst->type);
  5956. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5957. return;
  5958. }
  5959. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5960. ggml_compute_forward_dup_same_cont(params, dst);
  5961. return;
  5962. }
  5963. GGML_TENSOR_UNARY_OP_LOCALS;
  5964. const size_t type_size = ggml_type_size(src0->type);
  5965. const int ith = params->ith; // thread index
  5966. const int nth = params->nth; // number of threads
  5967. // parallelize by rows
  5968. const int nr = ne01;
  5969. // number of rows per thread
  5970. const int dr = (nr + nth - 1) / nth;
  5971. // row range for this thread
  5972. const int ir0 = dr * ith;
  5973. const int ir1 = MIN(ir0 + dr, nr);
  5974. if (src0->type == dst->type &&
  5975. ne00 == ne0 &&
  5976. nb00 == type_size && nb0 == type_size) {
  5977. // copy by rows
  5978. const size_t rs = ne00 * type_size;
  5979. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5981. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5982. memcpy(
  5983. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5984. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5985. rs);
  5986. }
  5987. }
  5988. }
  5989. return;
  5990. }
  5991. if (ggml_is_contiguous(dst)) {
  5992. size_t id = 0;
  5993. char * dst_ptr = (char *) dst->data;
  5994. const size_t rs = ne00 * type_size;
  5995. if (nb00 == type_size) {
  5996. // src0 is contigous on first dimension, copy by rows
  5997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5998. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5999. id += rs * ir0;
  6000. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6001. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6002. memcpy(dst_ptr + id, src0_ptr, rs);
  6003. id += rs;
  6004. }
  6005. id += rs * (ne01 - ir1);
  6006. }
  6007. }
  6008. } else {
  6009. //printf("%s: this is not optimal - fix me\n", __func__);
  6010. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6011. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6012. id += rs * ir0;
  6013. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6014. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6015. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6016. memcpy(dst_ptr + id, src0_ptr, type_size);
  6017. id += type_size;
  6018. }
  6019. }
  6020. id += rs * (ne01 - ir1);
  6021. }
  6022. }
  6023. }
  6024. return;
  6025. }
  6026. // dst counters
  6027. int64_t i10 = 0;
  6028. int64_t i11 = 0;
  6029. int64_t i12 = 0;
  6030. int64_t i13 = 0;
  6031. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6032. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6033. i10 += ne00 * ir0;
  6034. while (i10 >= ne0) {
  6035. i10 -= ne0;
  6036. if (++i11 == ne1) {
  6037. i11 = 0;
  6038. if (++i12 == ne2) {
  6039. i12 = 0;
  6040. if (++i13 == ne3) {
  6041. i13 = 0;
  6042. }
  6043. }
  6044. }
  6045. }
  6046. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6047. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6048. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6049. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6050. memcpy(dst_ptr, src0_ptr, type_size);
  6051. if (++i10 == ne0) {
  6052. i10 = 0;
  6053. if (++i11 == ne1) {
  6054. i11 = 0;
  6055. if (++i12 == ne2) {
  6056. i12 = 0;
  6057. if (++i13 == ne3) {
  6058. i13 = 0;
  6059. }
  6060. }
  6061. }
  6062. }
  6063. }
  6064. }
  6065. i10 += ne00 * (ne01 - ir1);
  6066. while (i10 >= ne0) {
  6067. i10 -= ne0;
  6068. if (++i11 == ne1) {
  6069. i11 = 0;
  6070. if (++i12 == ne2) {
  6071. i12 = 0;
  6072. if (++i13 == ne3) {
  6073. i13 = 0;
  6074. }
  6075. }
  6076. }
  6077. }
  6078. }
  6079. }
  6080. }
  6081. static void ggml_compute_forward_dup(
  6082. const struct ggml_compute_params * params,
  6083. struct ggml_tensor * dst) {
  6084. const struct ggml_tensor * src0 = dst->src[0];
  6085. if (src0->type == dst->type) {
  6086. ggml_compute_forward_dup_bytes(params, dst);
  6087. return;
  6088. }
  6089. switch (src0->type) {
  6090. case GGML_TYPE_F16:
  6091. {
  6092. ggml_compute_forward_dup_f16(params, dst);
  6093. } break;
  6094. case GGML_TYPE_F32:
  6095. {
  6096. ggml_compute_forward_dup_f32(params, dst);
  6097. } break;
  6098. default:
  6099. {
  6100. GGML_ASSERT(false);
  6101. } break;
  6102. }
  6103. }
  6104. // ggml_compute_forward_add
  6105. static void ggml_compute_forward_add_f32(
  6106. const struct ggml_compute_params * params,
  6107. struct ggml_tensor * dst) {
  6108. const struct ggml_tensor * src0 = dst->src[0];
  6109. const struct ggml_tensor * src1 = dst->src[1];
  6110. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6111. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6112. return;
  6113. }
  6114. const int ith = params->ith;
  6115. const int nth = params->nth;
  6116. #ifdef GGML_USE_CLBLAST
  6117. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6118. // TODO: OpenCL kernel support full broadcast
  6119. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6120. if (ith == 0) {
  6121. ggml_cl_add(src0, src1, dst);
  6122. }
  6123. return;
  6124. }
  6125. #endif
  6126. const int nr = ggml_nrows(src0);
  6127. GGML_TENSOR_BINARY_OP_LOCALS
  6128. GGML_ASSERT( nb0 == sizeof(float));
  6129. GGML_ASSERT(nb00 == sizeof(float));
  6130. // rows per thread
  6131. const int dr = (nr + nth - 1)/nth;
  6132. // row range for this thread
  6133. const int ir0 = dr*ith;
  6134. const int ir1 = MIN(ir0 + dr, nr);
  6135. if (nb10 == sizeof(float)) {
  6136. for (int ir = ir0; ir < ir1; ++ir) {
  6137. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6138. const int64_t i03 = ir/(ne02*ne01);
  6139. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6140. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6141. const int64_t i13 = i03 % ne13;
  6142. const int64_t i12 = i02 % ne12;
  6143. const int64_t i11 = i01 % ne11;
  6144. const int64_t nr0 = ne00 / ne10;
  6145. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6146. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6147. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6148. for (int64_t r = 0; r < nr0; ++r) {
  6149. #ifdef GGML_USE_ACCELERATE
  6150. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6151. #else
  6152. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6153. #endif
  6154. }
  6155. }
  6156. } else {
  6157. // src1 is not contiguous
  6158. for (int ir = ir0; ir < ir1; ++ir) {
  6159. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6160. const int64_t i03 = ir/(ne02*ne01);
  6161. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6162. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6163. const int64_t i13 = i03 % ne13;
  6164. const int64_t i12 = i02 % ne12;
  6165. const int64_t i11 = i01 % ne11;
  6166. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6167. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6168. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6169. const int64_t i10 = i0 % ne10;
  6170. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6171. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6172. }
  6173. }
  6174. }
  6175. }
  6176. static void ggml_compute_forward_add_f16_f32(
  6177. const struct ggml_compute_params * params,
  6178. struct ggml_tensor * dst) {
  6179. const struct ggml_tensor * src0 = dst->src[0];
  6180. const struct ggml_tensor * src1 = dst->src[1];
  6181. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6182. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6183. return;
  6184. }
  6185. const int ith = params->ith;
  6186. const int nth = params->nth;
  6187. const int nr = ggml_nrows(src0);
  6188. GGML_TENSOR_BINARY_OP_LOCALS
  6189. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6190. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6191. if (dst->type == GGML_TYPE_F32) {
  6192. GGML_ASSERT( nb0 == sizeof(float));
  6193. }
  6194. else {
  6195. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6196. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6197. }
  6198. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6199. // rows per thread
  6200. const int dr = (nr + nth - 1)/nth;
  6201. // row range for this thread
  6202. const int ir0 = dr*ith;
  6203. const int ir1 = MIN(ir0 + dr, nr);
  6204. if (nb10 == sizeof(float)) {
  6205. if (dst->type == GGML_TYPE_F16) {
  6206. for (int ir = ir0; ir < ir1; ++ir) {
  6207. // src0, src1 and dst are same shape => same indices
  6208. const int i3 = ir/(ne2*ne1);
  6209. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6210. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6211. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6212. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6213. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6214. for (int i = 0; i < ne0; i++) {
  6215. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6216. }
  6217. }
  6218. } else {
  6219. for (int ir = ir0; ir < ir1; ++ir) {
  6220. // src0, src1 and dst are same shape => same indices
  6221. const int i3 = ir/(ne2*ne1);
  6222. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6223. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6224. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6225. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6226. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6227. for (int i = 0; i < ne0; i++) {
  6228. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6229. }
  6230. }
  6231. }
  6232. }
  6233. else {
  6234. // src1 is not contiguous
  6235. GGML_ASSERT(false);
  6236. }
  6237. }
  6238. static void ggml_compute_forward_add_f16_f16(
  6239. const struct ggml_compute_params * params,
  6240. struct ggml_tensor * dst) {
  6241. const struct ggml_tensor * src0 = dst->src[0];
  6242. const struct ggml_tensor * src1 = dst->src[1];
  6243. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6244. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6245. return;
  6246. }
  6247. const int ith = params->ith;
  6248. const int nth = params->nth;
  6249. const int nr = ggml_nrows(src0);
  6250. GGML_TENSOR_BINARY_OP_LOCALS
  6251. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6252. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6253. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6254. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6255. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6256. // rows per thread
  6257. const int dr = (nr + nth - 1)/nth;
  6258. // row range for this thread
  6259. const int ir0 = dr*ith;
  6260. const int ir1 = MIN(ir0 + dr, nr);
  6261. if (nb10 == sizeof(ggml_fp16_t)) {
  6262. for (int ir = ir0; ir < ir1; ++ir) {
  6263. // src0, src1 and dst are same shape => same indices
  6264. const int i3 = ir/(ne2*ne1);
  6265. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6266. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6267. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6268. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6269. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6270. for (int i = 0; i < ne0; i++) {
  6271. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6272. }
  6273. }
  6274. }
  6275. else {
  6276. // src1 is not contiguous
  6277. GGML_ASSERT(false);
  6278. }
  6279. }
  6280. static void ggml_compute_forward_add_q_f32(
  6281. const struct ggml_compute_params * params,
  6282. struct ggml_tensor * dst) {
  6283. const struct ggml_tensor * src0 = dst->src[0];
  6284. const struct ggml_tensor * src1 = dst->src[1];
  6285. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6286. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6287. return;
  6288. }
  6289. const int nr = ggml_nrows(src0);
  6290. GGML_TENSOR_BINARY_OP_LOCALS
  6291. const int ith = params->ith;
  6292. const int nth = params->nth;
  6293. const enum ggml_type type = src0->type;
  6294. const enum ggml_type dtype = dst->type;
  6295. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6296. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6297. // we don't support permuted src0 or src1
  6298. GGML_ASSERT(nb00 == ggml_type_size(type));
  6299. GGML_ASSERT(nb10 == sizeof(float));
  6300. // dst cannot be transposed or permuted
  6301. GGML_ASSERT(nb0 <= nb1);
  6302. GGML_ASSERT(nb1 <= nb2);
  6303. GGML_ASSERT(nb2 <= nb3);
  6304. GGML_ASSERT(ggml_is_quantized(src0->type));
  6305. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6306. // rows per thread
  6307. const int dr = (nr + nth - 1)/nth;
  6308. // row range for this thread
  6309. const int ir0 = dr*ith;
  6310. const int ir1 = MIN(ir0 + dr, nr);
  6311. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6312. for (int ir = ir0; ir < ir1; ++ir) {
  6313. // src0 indices
  6314. const int i03 = ir/(ne02*ne01);
  6315. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6316. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6317. // src1 and dst are same shape as src0 => same indices
  6318. const int i13 = i03;
  6319. const int i12 = i02;
  6320. const int i11 = i01;
  6321. const int i3 = i03;
  6322. const int i2 = i02;
  6323. const int i1 = i01;
  6324. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6325. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6326. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6327. assert(ne00 % 32 == 0);
  6328. // unquantize row from src0 to temp buffer
  6329. dequantize_row_q(src0_row, wdata, ne00);
  6330. // add src1
  6331. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6332. // quantize row to dst
  6333. if (quantize_row_q != NULL) {
  6334. quantize_row_q(wdata, dst_row, ne00);
  6335. } else {
  6336. memcpy(dst_row, wdata, ne0*nb0);
  6337. }
  6338. }
  6339. }
  6340. static void ggml_compute_forward_add(
  6341. const struct ggml_compute_params * params,
  6342. struct ggml_tensor * dst) {
  6343. const struct ggml_tensor * src0 = dst->src[0];
  6344. const struct ggml_tensor * src1 = dst->src[1];
  6345. switch (src0->type) {
  6346. case GGML_TYPE_F32:
  6347. {
  6348. if (src1->type == GGML_TYPE_F32) {
  6349. ggml_compute_forward_add_f32(params, dst);
  6350. }
  6351. else {
  6352. GGML_ASSERT(false);
  6353. }
  6354. } break;
  6355. case GGML_TYPE_F16:
  6356. {
  6357. if (src1->type == GGML_TYPE_F16) {
  6358. ggml_compute_forward_add_f16_f16(params, dst);
  6359. }
  6360. else if (src1->type == GGML_TYPE_F32) {
  6361. ggml_compute_forward_add_f16_f32(params, dst);
  6362. }
  6363. else {
  6364. GGML_ASSERT(false);
  6365. }
  6366. } break;
  6367. case GGML_TYPE_Q4_0:
  6368. case GGML_TYPE_Q4_1:
  6369. case GGML_TYPE_Q5_0:
  6370. case GGML_TYPE_Q5_1:
  6371. case GGML_TYPE_Q8_0:
  6372. case GGML_TYPE_Q2_K:
  6373. case GGML_TYPE_Q3_K:
  6374. case GGML_TYPE_Q4_K:
  6375. case GGML_TYPE_Q5_K:
  6376. case GGML_TYPE_Q6_K:
  6377. case GGML_TYPE_IQ2_XXS:
  6378. case GGML_TYPE_IQ2_XS:
  6379. case GGML_TYPE_IQ3_XXS:
  6380. case GGML_TYPE_IQ1_S:
  6381. case GGML_TYPE_IQ4_NL:
  6382. case GGML_TYPE_IQ4_XS:
  6383. case GGML_TYPE_IQ3_S:
  6384. case GGML_TYPE_IQ2_S:
  6385. {
  6386. ggml_compute_forward_add_q_f32(params, dst);
  6387. } break;
  6388. default:
  6389. {
  6390. GGML_ASSERT(false);
  6391. } break;
  6392. }
  6393. }
  6394. // ggml_compute_forward_add1
  6395. static void ggml_compute_forward_add1_f32(
  6396. const struct ggml_compute_params * params,
  6397. struct ggml_tensor * dst) {
  6398. const struct ggml_tensor * src0 = dst->src[0];
  6399. const struct ggml_tensor * src1 = dst->src[1];
  6400. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6401. GGML_ASSERT(ggml_is_scalar(src1));
  6402. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6403. return;
  6404. }
  6405. const int ith = params->ith;
  6406. const int nth = params->nth;
  6407. const int nr = ggml_nrows(src0);
  6408. GGML_TENSOR_UNARY_OP_LOCALS
  6409. GGML_ASSERT( nb0 == sizeof(float));
  6410. GGML_ASSERT(nb00 == sizeof(float));
  6411. // rows per thread
  6412. const int dr = (nr + nth - 1)/nth;
  6413. // row range for this thread
  6414. const int ir0 = dr*ith;
  6415. const int ir1 = MIN(ir0 + dr, nr);
  6416. for (int ir = ir0; ir < ir1; ++ir) {
  6417. // src0 and dst are same shape => same indices
  6418. const int i3 = ir/(ne2*ne1);
  6419. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6420. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6421. #ifdef GGML_USE_ACCELERATE
  6422. UNUSED(ggml_vec_add1_f32);
  6423. vDSP_vadd(
  6424. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6425. (float *) ((char *) src1->data), 0,
  6426. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6427. ne0);
  6428. #else
  6429. ggml_vec_add1_f32(ne0,
  6430. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6431. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6432. *(float *) src1->data);
  6433. #endif
  6434. }
  6435. }
  6436. static void ggml_compute_forward_add1_f16_f32(
  6437. const struct ggml_compute_params * params,
  6438. struct ggml_tensor * dst) {
  6439. const struct ggml_tensor * src0 = dst->src[0];
  6440. const struct ggml_tensor * src1 = dst->src[1];
  6441. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6442. GGML_ASSERT(ggml_is_scalar(src1));
  6443. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6444. return;
  6445. }
  6446. // scalar to add
  6447. const float v = *(float *) src1->data;
  6448. const int ith = params->ith;
  6449. const int nth = params->nth;
  6450. const int nr = ggml_nrows(src0);
  6451. GGML_TENSOR_UNARY_OP_LOCALS
  6452. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6453. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6454. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6455. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6456. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6457. // rows per thread
  6458. const int dr = (nr + nth - 1)/nth;
  6459. // row range for this thread
  6460. const int ir0 = dr*ith;
  6461. const int ir1 = MIN(ir0 + dr, nr);
  6462. for (int ir = ir0; ir < ir1; ++ir) {
  6463. // src0 and dst are same shape => same indices
  6464. const int i3 = ir/(ne2*ne1);
  6465. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6466. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6467. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6468. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6469. for (int i = 0; i < ne0; i++) {
  6470. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6471. }
  6472. }
  6473. }
  6474. static void ggml_compute_forward_add1_f16_f16(
  6475. const struct ggml_compute_params * params,
  6476. struct ggml_tensor * dst) {
  6477. const struct ggml_tensor * src0 = dst->src[0];
  6478. const struct ggml_tensor * src1 = dst->src[1];
  6479. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6480. GGML_ASSERT(ggml_is_scalar(src1));
  6481. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6482. return;
  6483. }
  6484. // scalar to add
  6485. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6486. const int ith = params->ith;
  6487. const int nth = params->nth;
  6488. const int nr = ggml_nrows(src0);
  6489. GGML_TENSOR_UNARY_OP_LOCALS
  6490. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6491. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6492. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6493. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6494. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6495. // rows per thread
  6496. const int dr = (nr + nth - 1)/nth;
  6497. // row range for this thread
  6498. const int ir0 = dr*ith;
  6499. const int ir1 = MIN(ir0 + dr, nr);
  6500. for (int ir = ir0; ir < ir1; ++ir) {
  6501. // src0 and dst are same shape => same indices
  6502. const int i3 = ir/(ne2*ne1);
  6503. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6504. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6505. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6506. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6507. for (int i = 0; i < ne0; i++) {
  6508. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6509. }
  6510. }
  6511. }
  6512. static void ggml_compute_forward_add1_q_f32(
  6513. const struct ggml_compute_params * params,
  6514. struct ggml_tensor * dst) {
  6515. const struct ggml_tensor * src0 = dst->src[0];
  6516. const struct ggml_tensor * src1 = dst->src[1];
  6517. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6518. GGML_ASSERT(ggml_is_scalar(src1));
  6519. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6520. return;
  6521. }
  6522. // scalar to add
  6523. const float v = *(float *) src1->data;
  6524. const int ith = params->ith;
  6525. const int nth = params->nth;
  6526. const int nr = ggml_nrows(src0);
  6527. GGML_TENSOR_UNARY_OP_LOCALS
  6528. const enum ggml_type type = src0->type;
  6529. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6530. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6531. // we don't support permuted src0
  6532. GGML_ASSERT(nb00 == ggml_type_size(type));
  6533. // dst cannot be transposed or permuted
  6534. GGML_ASSERT(nb0 <= nb1);
  6535. GGML_ASSERT(nb1 <= nb2);
  6536. GGML_ASSERT(nb2 <= nb3);
  6537. GGML_ASSERT(ggml_is_quantized(src0->type));
  6538. GGML_ASSERT(dst->type == src0->type);
  6539. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6540. // rows per thread
  6541. const int dr = (nr + nth - 1)/nth;
  6542. // row range for this thread
  6543. const int ir0 = dr*ith;
  6544. const int ir1 = MIN(ir0 + dr, nr);
  6545. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6546. for (int ir = ir0; ir < ir1; ++ir) {
  6547. // src0 and dst are same shape => same indices
  6548. const int i3 = ir/(ne2*ne1);
  6549. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6550. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6551. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6552. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6553. assert(ne0 % 32 == 0);
  6554. // unquantize row from src0 to temp buffer
  6555. dequantize_row_q(src0_row, wdata, ne0);
  6556. // add src1
  6557. ggml_vec_acc1_f32(ne0, wdata, v);
  6558. // quantize row to dst
  6559. quantize_row_q(wdata, dst_row, ne0);
  6560. }
  6561. }
  6562. static void ggml_compute_forward_add1(
  6563. const struct ggml_compute_params * params,
  6564. struct ggml_tensor * dst) {
  6565. const struct ggml_tensor * src0 = dst->src[0];
  6566. const struct ggml_tensor * src1 = dst->src[1];
  6567. switch (src0->type) {
  6568. case GGML_TYPE_F32:
  6569. {
  6570. ggml_compute_forward_add1_f32(params, dst);
  6571. } break;
  6572. case GGML_TYPE_F16:
  6573. {
  6574. if (src1->type == GGML_TYPE_F16) {
  6575. ggml_compute_forward_add1_f16_f16(params, dst);
  6576. }
  6577. else if (src1->type == GGML_TYPE_F32) {
  6578. ggml_compute_forward_add1_f16_f32(params, dst);
  6579. }
  6580. else {
  6581. GGML_ASSERT(false);
  6582. }
  6583. } break;
  6584. case GGML_TYPE_Q4_0:
  6585. case GGML_TYPE_Q4_1:
  6586. case GGML_TYPE_Q5_0:
  6587. case GGML_TYPE_Q5_1:
  6588. case GGML_TYPE_Q8_0:
  6589. case GGML_TYPE_Q8_1:
  6590. case GGML_TYPE_Q2_K:
  6591. case GGML_TYPE_Q3_K:
  6592. case GGML_TYPE_Q4_K:
  6593. case GGML_TYPE_Q5_K:
  6594. case GGML_TYPE_Q6_K:
  6595. case GGML_TYPE_IQ2_XXS:
  6596. case GGML_TYPE_IQ2_XS:
  6597. case GGML_TYPE_IQ3_XXS:
  6598. case GGML_TYPE_IQ1_S:
  6599. case GGML_TYPE_IQ4_NL:
  6600. case GGML_TYPE_IQ4_XS:
  6601. case GGML_TYPE_IQ3_S:
  6602. case GGML_TYPE_IQ2_S:
  6603. {
  6604. ggml_compute_forward_add1_q_f32(params, dst);
  6605. } break;
  6606. default:
  6607. {
  6608. GGML_ASSERT(false);
  6609. } break;
  6610. }
  6611. }
  6612. // ggml_compute_forward_acc
  6613. static void ggml_compute_forward_acc_f32(
  6614. const struct ggml_compute_params * params,
  6615. struct ggml_tensor * dst) {
  6616. const struct ggml_tensor * src0 = dst->src[0];
  6617. const struct ggml_tensor * src1 = dst->src[1];
  6618. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6619. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6620. // view src0 and dst with these strides and data offset inbytes during acc
  6621. // nb0 is implicitly element_size because src0 and dst are contiguous
  6622. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6623. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6624. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6625. size_t offset = ((int32_t *) dst->op_params)[3];
  6626. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6627. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6628. if (params->ith != 0) {
  6629. return;
  6630. }
  6631. // memcpy needs to be synchronized across threads to avoid race conditions.
  6632. // => do it in INIT phase
  6633. memcpy(
  6634. ((char *) dst->data),
  6635. ((char *) src0->data),
  6636. ggml_nbytes(dst));
  6637. }
  6638. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6639. return;
  6640. }
  6641. const int ith = params->ith;
  6642. const int nth = params->nth;
  6643. const int nr = ggml_nrows(src1);
  6644. const int nc = src1->ne[0];
  6645. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6646. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6647. // src0 and dst as viewed during acc
  6648. const size_t nb0 = ggml_element_size(src0);
  6649. const size_t nb00 = nb0;
  6650. const size_t nb01 = nb1;
  6651. const size_t nb02 = nb2;
  6652. const size_t nb03 = nb3;
  6653. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6654. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6655. GGML_ASSERT(nb10 == sizeof(float));
  6656. // rows per thread
  6657. const int dr = (nr + nth - 1)/nth;
  6658. // row range for this thread
  6659. const int ir0 = dr*ith;
  6660. const int ir1 = MIN(ir0 + dr, nr);
  6661. for (int ir = ir0; ir < ir1; ++ir) {
  6662. // src0 and dst are viewed with shape of src1 and offset
  6663. // => same indices
  6664. const int i3 = ir/(ne12*ne11);
  6665. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6666. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6667. #ifdef GGML_USE_ACCELERATE
  6668. vDSP_vadd(
  6669. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6670. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6671. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6672. #else
  6673. ggml_vec_add_f32(nc,
  6674. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6675. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6676. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6677. #endif
  6678. }
  6679. }
  6680. static void ggml_compute_forward_acc(
  6681. const struct ggml_compute_params * params,
  6682. struct ggml_tensor * dst) {
  6683. const struct ggml_tensor * src0 = dst->src[0];
  6684. switch (src0->type) {
  6685. case GGML_TYPE_F32:
  6686. {
  6687. ggml_compute_forward_acc_f32(params, dst);
  6688. } break;
  6689. case GGML_TYPE_F16:
  6690. case GGML_TYPE_Q4_0:
  6691. case GGML_TYPE_Q4_1:
  6692. case GGML_TYPE_Q5_0:
  6693. case GGML_TYPE_Q5_1:
  6694. case GGML_TYPE_Q8_0:
  6695. case GGML_TYPE_Q8_1:
  6696. case GGML_TYPE_Q2_K:
  6697. case GGML_TYPE_Q3_K:
  6698. case GGML_TYPE_Q4_K:
  6699. case GGML_TYPE_Q5_K:
  6700. case GGML_TYPE_Q6_K:
  6701. case GGML_TYPE_IQ2_XXS:
  6702. case GGML_TYPE_IQ2_XS:
  6703. case GGML_TYPE_IQ3_XXS:
  6704. case GGML_TYPE_IQ1_S:
  6705. case GGML_TYPE_IQ4_NL:
  6706. case GGML_TYPE_IQ4_XS:
  6707. case GGML_TYPE_IQ3_S:
  6708. case GGML_TYPE_IQ2_S:
  6709. default:
  6710. {
  6711. GGML_ASSERT(false);
  6712. } break;
  6713. }
  6714. }
  6715. // ggml_compute_forward_sub
  6716. static void ggml_compute_forward_sub_f32(
  6717. const struct ggml_compute_params * params,
  6718. struct ggml_tensor * dst) {
  6719. const struct ggml_tensor * src0 = dst->src[0];
  6720. const struct ggml_tensor * src1 = dst->src[1];
  6721. assert(params->ith == 0);
  6722. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6723. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6724. return;
  6725. }
  6726. const int nr = ggml_nrows(src0);
  6727. GGML_TENSOR_BINARY_OP_LOCALS
  6728. GGML_ASSERT( nb0 == sizeof(float));
  6729. GGML_ASSERT(nb00 == sizeof(float));
  6730. if (nb10 == sizeof(float)) {
  6731. for (int ir = 0; ir < nr; ++ir) {
  6732. // src0, src1 and dst are same shape => same indices
  6733. const int i3 = ir/(ne2*ne1);
  6734. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6735. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6736. #ifdef GGML_USE_ACCELERATE
  6737. vDSP_vsub(
  6738. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6739. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6740. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6741. ne0);
  6742. #else
  6743. ggml_vec_sub_f32(ne0,
  6744. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6745. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6746. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6747. #endif
  6748. // }
  6749. // }
  6750. }
  6751. } else {
  6752. // src1 is not contiguous
  6753. for (int ir = 0; ir < nr; ++ir) {
  6754. // src0, src1 and dst are same shape => same indices
  6755. const int i3 = ir/(ne2*ne1);
  6756. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6757. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6758. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6759. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6760. for (int i0 = 0; i0 < ne0; i0++) {
  6761. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6762. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6763. }
  6764. }
  6765. }
  6766. }
  6767. static void ggml_compute_forward_sub(
  6768. const struct ggml_compute_params * params,
  6769. struct ggml_tensor * dst) {
  6770. const struct ggml_tensor * src0 = dst->src[0];
  6771. switch (src0->type) {
  6772. case GGML_TYPE_F32:
  6773. {
  6774. ggml_compute_forward_sub_f32(params, dst);
  6775. } break;
  6776. default:
  6777. {
  6778. GGML_ASSERT(false);
  6779. } break;
  6780. }
  6781. }
  6782. // ggml_compute_forward_mul
  6783. static void ggml_compute_forward_mul_f32(
  6784. const struct ggml_compute_params * params,
  6785. struct ggml_tensor * dst) {
  6786. const struct ggml_tensor * src0 = dst->src[0];
  6787. const struct ggml_tensor * src1 = dst->src[1];
  6788. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6789. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6790. return;
  6791. }
  6792. const int ith = params->ith;
  6793. const int nth = params->nth;
  6794. #if defined(GGML_USE_CLBLAST)
  6795. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6796. // TODO: OpenCL kernel support full broadcast
  6797. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6798. if (ith == 0) {
  6799. ggml_cl_mul(src0, src1, dst);
  6800. }
  6801. return;
  6802. }
  6803. #endif
  6804. const int64_t nr = ggml_nrows(src0);
  6805. GGML_TENSOR_BINARY_OP_LOCALS
  6806. GGML_ASSERT( nb0 == sizeof(float));
  6807. GGML_ASSERT(nb00 == sizeof(float));
  6808. if (nb10 == sizeof(float)) {
  6809. for (int64_t ir = ith; ir < nr; ir += nth) {
  6810. // src0 and dst are same shape => same indices
  6811. const int64_t i03 = ir/(ne02*ne01);
  6812. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6813. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6814. const int64_t i13 = i03 % ne13;
  6815. const int64_t i12 = i02 % ne12;
  6816. const int64_t i11 = i01 % ne11;
  6817. const int64_t nr0 = ne00 / ne10;
  6818. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6819. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6820. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6821. for (int64_t r = 0 ; r < nr0; ++r) {
  6822. #ifdef GGML_USE_ACCELERATE
  6823. UNUSED(ggml_vec_mul_f32);
  6824. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6825. #else
  6826. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6827. #endif
  6828. }
  6829. }
  6830. } else {
  6831. // src1 is not contiguous
  6832. for (int64_t ir = ith; ir < nr; ir += nth) {
  6833. // src0 and dst are same shape => same indices
  6834. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6835. const int64_t i03 = ir/(ne02*ne01);
  6836. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6837. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6838. const int64_t i13 = i03 % ne13;
  6839. const int64_t i12 = i02 % ne12;
  6840. const int64_t i11 = i01 % ne11;
  6841. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6842. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6843. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6844. const int64_t i10 = i0 % ne10;
  6845. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6846. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6847. }
  6848. }
  6849. }
  6850. }
  6851. static void ggml_compute_forward_mul(
  6852. const struct ggml_compute_params * params,
  6853. struct ggml_tensor * dst) {
  6854. const struct ggml_tensor * src0 = dst->src[0];
  6855. const struct ggml_tensor * src1 = dst->src[1];
  6856. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6857. switch (src0->type) {
  6858. case GGML_TYPE_F32:
  6859. {
  6860. ggml_compute_forward_mul_f32(params, dst);
  6861. } break;
  6862. default:
  6863. {
  6864. GGML_ASSERT(false);
  6865. } break;
  6866. }
  6867. }
  6868. // ggml_compute_forward_div
  6869. static void ggml_compute_forward_div_f32(
  6870. const struct ggml_compute_params * params,
  6871. struct ggml_tensor * dst) {
  6872. const struct ggml_tensor * src0 = dst->src[0];
  6873. const struct ggml_tensor * src1 = dst->src[1];
  6874. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6875. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6876. return;
  6877. }
  6878. const int ith = params->ith;
  6879. const int nth = params->nth;
  6880. const int64_t nr = ggml_nrows(src0);
  6881. GGML_TENSOR_BINARY_OP_LOCALS
  6882. GGML_ASSERT( nb0 == sizeof(float));
  6883. GGML_ASSERT(nb00 == sizeof(float));
  6884. if (nb10 == sizeof(float)) {
  6885. for (int64_t ir = ith; ir < nr; ir += nth) {
  6886. // src0 and dst are same shape => same indices
  6887. const int64_t i03 = ir/(ne02*ne01);
  6888. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6889. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6890. const int64_t i13 = i03 % ne13;
  6891. const int64_t i12 = i02 % ne12;
  6892. const int64_t i11 = i01 % ne11;
  6893. const int64_t nr0 = ne00 / ne10;
  6894. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6895. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6896. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6897. for (int64_t r = 0; r < nr0; ++r) {
  6898. #ifdef GGML_USE_ACCELERATE
  6899. UNUSED(ggml_vec_div_f32);
  6900. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6901. #else
  6902. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6903. #endif
  6904. }
  6905. }
  6906. } else {
  6907. // src1 is not contiguous
  6908. for (int64_t ir = ith; ir < nr; ir += nth) {
  6909. // src0 and dst are same shape => same indices
  6910. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6911. const int64_t i03 = ir/(ne02*ne01);
  6912. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6913. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6914. const int64_t i13 = i03 % ne13;
  6915. const int64_t i12 = i02 % ne12;
  6916. const int64_t i11 = i01 % ne11;
  6917. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6918. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6919. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6920. const int64_t i10 = i0 % ne10;
  6921. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6922. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6923. }
  6924. }
  6925. }
  6926. }
  6927. static void ggml_compute_forward_div(
  6928. const struct ggml_compute_params * params,
  6929. struct ggml_tensor * dst) {
  6930. const struct ggml_tensor * src0 = dst->src[0];
  6931. switch (src0->type) {
  6932. case GGML_TYPE_F32:
  6933. {
  6934. ggml_compute_forward_div_f32(params, dst);
  6935. } break;
  6936. default:
  6937. {
  6938. GGML_ASSERT(false);
  6939. } break;
  6940. }
  6941. }
  6942. // ggml_compute_forward_sqr
  6943. static void ggml_compute_forward_sqr_f32(
  6944. const struct ggml_compute_params * params,
  6945. struct ggml_tensor * dst) {
  6946. const struct ggml_tensor * src0 = dst->src[0];
  6947. assert(params->ith == 0);
  6948. assert(ggml_are_same_shape(src0, dst));
  6949. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6950. return;
  6951. }
  6952. const int n = ggml_nrows(src0);
  6953. const int nc = src0->ne[0];
  6954. assert( dst->nb[0] == sizeof(float));
  6955. assert(src0->nb[0] == sizeof(float));
  6956. for (int i = 0; i < n; i++) {
  6957. ggml_vec_sqr_f32(nc,
  6958. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6959. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6960. }
  6961. }
  6962. static void ggml_compute_forward_sqr(
  6963. const struct ggml_compute_params * params,
  6964. struct ggml_tensor * dst) {
  6965. const struct ggml_tensor * src0 = dst->src[0];
  6966. switch (src0->type) {
  6967. case GGML_TYPE_F32:
  6968. {
  6969. ggml_compute_forward_sqr_f32(params, dst);
  6970. } break;
  6971. default:
  6972. {
  6973. GGML_ASSERT(false);
  6974. } break;
  6975. }
  6976. }
  6977. // ggml_compute_forward_sqrt
  6978. static void ggml_compute_forward_sqrt_f32(
  6979. const struct ggml_compute_params * params,
  6980. struct ggml_tensor * dst) {
  6981. const struct ggml_tensor * src0 = dst->src[0];
  6982. assert(params->ith == 0);
  6983. assert(ggml_are_same_shape(src0, dst));
  6984. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6985. return;
  6986. }
  6987. const int n = ggml_nrows(src0);
  6988. const int nc = src0->ne[0];
  6989. assert( dst->nb[0] == sizeof(float));
  6990. assert(src0->nb[0] == sizeof(float));
  6991. for (int i = 0; i < n; i++) {
  6992. ggml_vec_sqrt_f32(nc,
  6993. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6994. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6995. }
  6996. }
  6997. static void ggml_compute_forward_sqrt(
  6998. const struct ggml_compute_params * params,
  6999. struct ggml_tensor * dst) {
  7000. const struct ggml_tensor * src0 = dst->src[0];
  7001. switch (src0->type) {
  7002. case GGML_TYPE_F32:
  7003. {
  7004. ggml_compute_forward_sqrt_f32(params, dst);
  7005. } break;
  7006. default:
  7007. {
  7008. GGML_ASSERT(false);
  7009. } break;
  7010. }
  7011. }
  7012. // ggml_compute_forward_log
  7013. static void ggml_compute_forward_log_f32(
  7014. const struct ggml_compute_params * params,
  7015. struct ggml_tensor * dst) {
  7016. const struct ggml_tensor * src0 = dst->src[0];
  7017. GGML_ASSERT(params->ith == 0);
  7018. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7019. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7020. return;
  7021. }
  7022. const int n = ggml_nrows(src0);
  7023. const int nc = src0->ne[0];
  7024. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7025. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7026. for (int i = 0; i < n; i++) {
  7027. ggml_vec_log_f32(nc,
  7028. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7029. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7030. }
  7031. }
  7032. static void ggml_compute_forward_log(
  7033. const struct ggml_compute_params * params,
  7034. struct ggml_tensor * dst) {
  7035. const struct ggml_tensor * src0 = dst->src[0];
  7036. switch (src0->type) {
  7037. case GGML_TYPE_F32:
  7038. {
  7039. ggml_compute_forward_log_f32(params, dst);
  7040. } break;
  7041. default:
  7042. {
  7043. GGML_ASSERT(false);
  7044. } break;
  7045. }
  7046. }
  7047. // ggml_compute_forward_sum
  7048. static void ggml_compute_forward_sum_f32(
  7049. const struct ggml_compute_params * params,
  7050. struct ggml_tensor * dst) {
  7051. const struct ggml_tensor * src0 = dst->src[0];
  7052. assert(params->ith == 0);
  7053. assert(ggml_is_scalar(dst));
  7054. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7055. return;
  7056. }
  7057. assert(ggml_is_scalar(dst));
  7058. assert(src0->nb[0] == sizeof(float));
  7059. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7060. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7061. ggml_float sum = 0;
  7062. ggml_float row_sum = 0;
  7063. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7064. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7065. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7066. ggml_vec_sum_f32_ggf(ne00,
  7067. &row_sum,
  7068. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7069. sum += row_sum;
  7070. }
  7071. }
  7072. }
  7073. ((float *) dst->data)[0] = sum;
  7074. }
  7075. static void ggml_compute_forward_sum_f16(
  7076. const struct ggml_compute_params * params,
  7077. struct ggml_tensor * dst) {
  7078. const struct ggml_tensor * src0 = dst->src[0];
  7079. assert(params->ith == 0);
  7080. assert(ggml_is_scalar(dst));
  7081. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7082. return;
  7083. }
  7084. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7085. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7086. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7087. float sum = 0;
  7088. float row_sum = 0;
  7089. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7090. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7091. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7092. ggml_vec_sum_f16_ggf(ne00,
  7093. &row_sum,
  7094. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7095. sum += row_sum;
  7096. }
  7097. }
  7098. }
  7099. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7100. }
  7101. static void ggml_compute_forward_sum(
  7102. const struct ggml_compute_params * params,
  7103. struct ggml_tensor * dst) {
  7104. const struct ggml_tensor * src0 = dst->src[0];
  7105. switch (src0->type) {
  7106. case GGML_TYPE_F32:
  7107. {
  7108. ggml_compute_forward_sum_f32(params, dst);
  7109. } break;
  7110. case GGML_TYPE_F16:
  7111. {
  7112. ggml_compute_forward_sum_f16(params, dst);
  7113. } break;
  7114. default:
  7115. {
  7116. GGML_ASSERT(false);
  7117. } break;
  7118. }
  7119. }
  7120. // ggml_compute_forward_sum_rows
  7121. static void ggml_compute_forward_sum_rows_f32(
  7122. const struct ggml_compute_params * params,
  7123. struct ggml_tensor * dst) {
  7124. const struct ggml_tensor * src0 = dst->src[0];
  7125. GGML_ASSERT(params->ith == 0);
  7126. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7127. return;
  7128. }
  7129. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7130. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7131. GGML_TENSOR_UNARY_OP_LOCALS
  7132. GGML_ASSERT(ne0 == 1);
  7133. GGML_ASSERT(ne1 == ne01);
  7134. GGML_ASSERT(ne2 == ne02);
  7135. GGML_ASSERT(ne3 == ne03);
  7136. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7137. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7138. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7139. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7140. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7141. float row_sum = 0;
  7142. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7143. dst_row[0] = row_sum;
  7144. }
  7145. }
  7146. }
  7147. }
  7148. static void ggml_compute_forward_sum_rows(
  7149. const struct ggml_compute_params * params,
  7150. struct ggml_tensor * dst) {
  7151. const struct ggml_tensor * src0 = dst->src[0];
  7152. switch (src0->type) {
  7153. case GGML_TYPE_F32:
  7154. {
  7155. ggml_compute_forward_sum_rows_f32(params, dst);
  7156. } break;
  7157. default:
  7158. {
  7159. GGML_ASSERT(false);
  7160. } break;
  7161. }
  7162. }
  7163. // ggml_compute_forward_mean
  7164. static void ggml_compute_forward_mean_f32(
  7165. const struct ggml_compute_params * params,
  7166. struct ggml_tensor * dst) {
  7167. const struct ggml_tensor * src0 = dst->src[0];
  7168. assert(params->ith == 0);
  7169. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7170. return;
  7171. }
  7172. assert(src0->nb[0] == sizeof(float));
  7173. GGML_TENSOR_UNARY_OP_LOCALS
  7174. assert(ne0 == 1);
  7175. assert(ne1 == ne01);
  7176. assert(ne2 == ne02);
  7177. assert(ne3 == ne03);
  7178. UNUSED(ne0);
  7179. UNUSED(ne1);
  7180. UNUSED(ne2);
  7181. UNUSED(ne3);
  7182. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7183. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7184. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7185. ggml_vec_sum_f32(ne00,
  7186. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7187. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7188. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7189. }
  7190. }
  7191. }
  7192. }
  7193. static void ggml_compute_forward_mean(
  7194. const struct ggml_compute_params * params,
  7195. struct ggml_tensor * dst) {
  7196. const struct ggml_tensor * src0 = dst->src[0];
  7197. switch (src0->type) {
  7198. case GGML_TYPE_F32:
  7199. {
  7200. ggml_compute_forward_mean_f32(params, dst);
  7201. } break;
  7202. default:
  7203. {
  7204. GGML_ASSERT(false);
  7205. } break;
  7206. }
  7207. }
  7208. // ggml_compute_forward_argmax
  7209. static void ggml_compute_forward_argmax_f32(
  7210. const struct ggml_compute_params * params,
  7211. struct ggml_tensor * dst) {
  7212. const struct ggml_tensor * src0 = dst->src[0];
  7213. assert(params->ith == 0);
  7214. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7215. return;
  7216. }
  7217. assert(src0->nb[0] == sizeof(float));
  7218. assert(dst->nb[0] == sizeof(float));
  7219. const int64_t ne00 = src0->ne[0];
  7220. const int64_t ne01 = src0->ne[1];
  7221. const size_t nb01 = src0->nb[1];
  7222. const size_t nb0 = dst->nb[0];
  7223. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7224. float * src = (float *) ((char *) src0->data + i1*nb01);
  7225. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7226. int v = 0;
  7227. ggml_vec_argmax_f32(ne00, &v, src);
  7228. dst_[0] = v;
  7229. }
  7230. }
  7231. static void ggml_compute_forward_argmax(
  7232. const struct ggml_compute_params * params,
  7233. struct ggml_tensor * dst) {
  7234. const struct ggml_tensor * src0 = dst->src[0];
  7235. switch (src0->type) {
  7236. case GGML_TYPE_F32:
  7237. {
  7238. ggml_compute_forward_argmax_f32(params, dst);
  7239. } break;
  7240. default:
  7241. {
  7242. GGML_ASSERT(false);
  7243. } break;
  7244. }
  7245. }
  7246. // ggml_compute_forward_repeat
  7247. static void ggml_compute_forward_repeat_f32(
  7248. const struct ggml_compute_params * params,
  7249. struct ggml_tensor * dst) {
  7250. const struct ggml_tensor * src0 = dst->src[0];
  7251. GGML_ASSERT(params->ith == 0);
  7252. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7253. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7254. return;
  7255. }
  7256. GGML_TENSOR_UNARY_OP_LOCALS
  7257. // guaranteed to be an integer due to the check in ggml_can_repeat
  7258. const int nr0 = (int)(ne0/ne00);
  7259. const int nr1 = (int)(ne1/ne01);
  7260. const int nr2 = (int)(ne2/ne02);
  7261. const int nr3 = (int)(ne3/ne03);
  7262. // TODO: support for transposed / permuted tensors
  7263. GGML_ASSERT(nb0 == sizeof(float));
  7264. GGML_ASSERT(nb00 == sizeof(float));
  7265. // TODO: maybe this is not optimal?
  7266. for (int i3 = 0; i3 < nr3; i3++) {
  7267. for (int k3 = 0; k3 < ne03; k3++) {
  7268. for (int i2 = 0; i2 < nr2; i2++) {
  7269. for (int k2 = 0; k2 < ne02; k2++) {
  7270. for (int i1 = 0; i1 < nr1; i1++) {
  7271. for (int k1 = 0; k1 < ne01; k1++) {
  7272. for (int i0 = 0; i0 < nr0; i0++) {
  7273. ggml_vec_cpy_f32(ne00,
  7274. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7275. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7276. }
  7277. }
  7278. }
  7279. }
  7280. }
  7281. }
  7282. }
  7283. }
  7284. static void ggml_compute_forward_repeat_f16(
  7285. const struct ggml_compute_params * params,
  7286. struct ggml_tensor * dst) {
  7287. const struct ggml_tensor * src0 = dst->src[0];
  7288. GGML_ASSERT(params->ith == 0);
  7289. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7290. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7291. return;
  7292. }
  7293. GGML_TENSOR_UNARY_OP_LOCALS
  7294. // guaranteed to be an integer due to the check in ggml_can_repeat
  7295. const int nr0 = (int)(ne0/ne00);
  7296. const int nr1 = (int)(ne1/ne01);
  7297. const int nr2 = (int)(ne2/ne02);
  7298. const int nr3 = (int)(ne3/ne03);
  7299. // TODO: support for transposed / permuted tensors
  7300. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7301. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7302. // TODO: maybe this is not optimal?
  7303. for (int i3 = 0; i3 < nr3; i3++) {
  7304. for (int k3 = 0; k3 < ne03; k3++) {
  7305. for (int i2 = 0; i2 < nr2; i2++) {
  7306. for (int k2 = 0; k2 < ne02; k2++) {
  7307. for (int i1 = 0; i1 < nr1; i1++) {
  7308. for (int k1 = 0; k1 < ne01; k1++) {
  7309. for (int i0 = 0; i0 < nr0; i0++) {
  7310. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7311. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7312. // ggml_vec_cpy_f16(ne00, y, x)
  7313. for (int i = 0; i < ne00; ++i) {
  7314. y[i] = x[i];
  7315. }
  7316. }
  7317. }
  7318. }
  7319. }
  7320. }
  7321. }
  7322. }
  7323. }
  7324. static void ggml_compute_forward_repeat(
  7325. const struct ggml_compute_params * params,
  7326. struct ggml_tensor * dst) {
  7327. const struct ggml_tensor * src0 = dst->src[0];
  7328. switch (src0->type) {
  7329. case GGML_TYPE_F16:
  7330. case GGML_TYPE_I16:
  7331. {
  7332. ggml_compute_forward_repeat_f16(params, dst);
  7333. } break;
  7334. case GGML_TYPE_F32:
  7335. case GGML_TYPE_I32:
  7336. {
  7337. ggml_compute_forward_repeat_f32(params, dst);
  7338. } break;
  7339. default:
  7340. {
  7341. GGML_ASSERT(false);
  7342. } break;
  7343. }
  7344. }
  7345. // ggml_compute_forward_repeat_back
  7346. static void ggml_compute_forward_repeat_back_f32(
  7347. const struct ggml_compute_params * params,
  7348. struct ggml_tensor * dst) {
  7349. const struct ggml_tensor * src0 = dst->src[0];
  7350. GGML_ASSERT(params->ith == 0);
  7351. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7352. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7353. return;
  7354. }
  7355. GGML_TENSOR_UNARY_OP_LOCALS
  7356. // guaranteed to be an integer due to the check in ggml_can_repeat
  7357. const int nr0 = (int)(ne00/ne0);
  7358. const int nr1 = (int)(ne01/ne1);
  7359. const int nr2 = (int)(ne02/ne2);
  7360. const int nr3 = (int)(ne03/ne3);
  7361. // TODO: support for transposed / permuted tensors
  7362. GGML_ASSERT(nb0 == sizeof(float));
  7363. GGML_ASSERT(nb00 == sizeof(float));
  7364. if (ggml_is_contiguous(dst)) {
  7365. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7366. } else {
  7367. for (int k3 = 0; k3 < ne3; k3++) {
  7368. for (int k2 = 0; k2 < ne2; k2++) {
  7369. for (int k1 = 0; k1 < ne1; k1++) {
  7370. ggml_vec_set_f32(ne0,
  7371. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7372. 0);
  7373. }
  7374. }
  7375. }
  7376. }
  7377. // TODO: maybe this is not optimal?
  7378. for (int i3 = 0; i3 < nr3; i3++) {
  7379. for (int k3 = 0; k3 < ne3; k3++) {
  7380. for (int i2 = 0; i2 < nr2; i2++) {
  7381. for (int k2 = 0; k2 < ne2; k2++) {
  7382. for (int i1 = 0; i1 < nr1; i1++) {
  7383. for (int k1 = 0; k1 < ne1; k1++) {
  7384. for (int i0 = 0; i0 < nr0; i0++) {
  7385. ggml_vec_acc_f32(ne0,
  7386. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7387. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7388. }
  7389. }
  7390. }
  7391. }
  7392. }
  7393. }
  7394. }
  7395. }
  7396. static void ggml_compute_forward_repeat_back(
  7397. const struct ggml_compute_params * params,
  7398. struct ggml_tensor * dst) {
  7399. const struct ggml_tensor * src0 = dst->src[0];
  7400. switch (src0->type) {
  7401. case GGML_TYPE_F32:
  7402. {
  7403. ggml_compute_forward_repeat_back_f32(params, dst);
  7404. } break;
  7405. default:
  7406. {
  7407. GGML_ASSERT(false);
  7408. } break;
  7409. }
  7410. }
  7411. // ggml_compute_forward_concat
  7412. static void ggml_compute_forward_concat_f32(
  7413. const struct ggml_compute_params * params,
  7414. struct ggml_tensor * dst) {
  7415. const struct ggml_tensor * src0 = dst->src[0];
  7416. const struct ggml_tensor * src1 = dst->src[1];
  7417. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7418. return;
  7419. }
  7420. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7421. const int ith = params->ith;
  7422. const int nth = params->nth;
  7423. GGML_TENSOR_BINARY_OP_LOCALS
  7424. // TODO: support for transposed / permuted tensors
  7425. GGML_ASSERT(nb0 == sizeof(float));
  7426. GGML_ASSERT(nb00 == sizeof(float));
  7427. GGML_ASSERT(nb10 == sizeof(float));
  7428. for (int i3 = 0; i3 < ne3; i3++) {
  7429. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7430. if (i2 < ne02) { // src0
  7431. for (int i1 = 0; i1 < ne1; i1++) {
  7432. for (int i0 = 0; i0 < ne0; i0++) {
  7433. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7434. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7435. *y = *x;
  7436. }
  7437. }
  7438. } // src1
  7439. else {
  7440. for (int i1 = 0; i1 < ne1; i1++) {
  7441. for (int i0 = 0; i0 < ne0; i0++) {
  7442. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7443. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7444. *y = *x;
  7445. }
  7446. }
  7447. }
  7448. }
  7449. }
  7450. }
  7451. static void ggml_compute_forward_concat(
  7452. const struct ggml_compute_params* params,
  7453. struct ggml_tensor* dst) {
  7454. const struct ggml_tensor * src0 = dst->src[0];
  7455. switch (src0->type) {
  7456. case GGML_TYPE_F32:
  7457. case GGML_TYPE_I32:
  7458. {
  7459. ggml_compute_forward_concat_f32(params, dst);
  7460. } break;
  7461. default:
  7462. {
  7463. GGML_ASSERT(false);
  7464. } break;
  7465. }
  7466. }
  7467. // ggml_compute_forward_abs
  7468. static void ggml_compute_forward_abs_f32(
  7469. const struct ggml_compute_params * params,
  7470. struct ggml_tensor * dst) {
  7471. const struct ggml_tensor * src0 = dst->src[0];
  7472. assert(params->ith == 0);
  7473. assert(ggml_are_same_shape(src0, dst));
  7474. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7475. return;
  7476. }
  7477. const int n = ggml_nrows(src0);
  7478. const int nc = src0->ne[0];
  7479. assert(dst->nb[0] == sizeof(float));
  7480. assert(src0->nb[0] == sizeof(float));
  7481. for (int i = 0; i < n; i++) {
  7482. ggml_vec_abs_f32(nc,
  7483. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7484. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7485. }
  7486. }
  7487. static void ggml_compute_forward_abs(
  7488. const struct ggml_compute_params * params,
  7489. struct ggml_tensor * dst) {
  7490. const struct ggml_tensor * src0 = dst->src[0];
  7491. switch (src0->type) {
  7492. case GGML_TYPE_F32:
  7493. {
  7494. ggml_compute_forward_abs_f32(params, dst);
  7495. } break;
  7496. default:
  7497. {
  7498. GGML_ASSERT(false);
  7499. } break;
  7500. }
  7501. }
  7502. // ggml_compute_forward_sgn
  7503. static void ggml_compute_forward_sgn_f32(
  7504. const struct ggml_compute_params * params,
  7505. struct ggml_tensor * dst) {
  7506. const struct ggml_tensor * src0 = dst->src[0];
  7507. assert(params->ith == 0);
  7508. assert(ggml_are_same_shape(src0, dst));
  7509. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7510. return;
  7511. }
  7512. const int n = ggml_nrows(src0);
  7513. const int nc = src0->ne[0];
  7514. assert(dst->nb[0] == sizeof(float));
  7515. assert(src0->nb[0] == sizeof(float));
  7516. for (int i = 0; i < n; i++) {
  7517. ggml_vec_sgn_f32(nc,
  7518. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7519. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7520. }
  7521. }
  7522. static void ggml_compute_forward_sgn(
  7523. const struct ggml_compute_params * params,
  7524. struct ggml_tensor * dst) {
  7525. const struct ggml_tensor * src0 = dst->src[0];
  7526. switch (src0->type) {
  7527. case GGML_TYPE_F32:
  7528. {
  7529. ggml_compute_forward_sgn_f32(params, dst);
  7530. } break;
  7531. default:
  7532. {
  7533. GGML_ASSERT(false);
  7534. } break;
  7535. }
  7536. }
  7537. // ggml_compute_forward_neg
  7538. static void ggml_compute_forward_neg_f32(
  7539. const struct ggml_compute_params * params,
  7540. struct ggml_tensor * dst) {
  7541. const struct ggml_tensor * src0 = dst->src[0];
  7542. assert(params->ith == 0);
  7543. assert(ggml_are_same_shape(src0, dst));
  7544. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7545. return;
  7546. }
  7547. const int n = ggml_nrows(src0);
  7548. const int nc = src0->ne[0];
  7549. assert(dst->nb[0] == sizeof(float));
  7550. assert(src0->nb[0] == sizeof(float));
  7551. for (int i = 0; i < n; i++) {
  7552. ggml_vec_neg_f32(nc,
  7553. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7554. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7555. }
  7556. }
  7557. static void ggml_compute_forward_neg(
  7558. const struct ggml_compute_params * params,
  7559. struct ggml_tensor * dst) {
  7560. const struct ggml_tensor * src0 = dst->src[0];
  7561. switch (src0->type) {
  7562. case GGML_TYPE_F32:
  7563. {
  7564. ggml_compute_forward_neg_f32(params, dst);
  7565. } break;
  7566. default:
  7567. {
  7568. GGML_ASSERT(false);
  7569. } break;
  7570. }
  7571. }
  7572. // ggml_compute_forward_step
  7573. static void ggml_compute_forward_step_f32(
  7574. const struct ggml_compute_params * params,
  7575. struct ggml_tensor * dst) {
  7576. const struct ggml_tensor * src0 = dst->src[0];
  7577. assert(params->ith == 0);
  7578. assert(ggml_are_same_shape(src0, dst));
  7579. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7580. return;
  7581. }
  7582. const int n = ggml_nrows(src0);
  7583. const int nc = src0->ne[0];
  7584. assert(dst->nb[0] == sizeof(float));
  7585. assert(src0->nb[0] == sizeof(float));
  7586. for (int i = 0; i < n; i++) {
  7587. ggml_vec_step_f32(nc,
  7588. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7589. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7590. }
  7591. }
  7592. static void ggml_compute_forward_step(
  7593. const struct ggml_compute_params * params,
  7594. struct ggml_tensor * dst) {
  7595. const struct ggml_tensor * src0 = dst->src[0];
  7596. switch (src0->type) {
  7597. case GGML_TYPE_F32:
  7598. {
  7599. ggml_compute_forward_step_f32(params, dst);
  7600. } break;
  7601. default:
  7602. {
  7603. GGML_ASSERT(false);
  7604. } break;
  7605. }
  7606. }
  7607. // ggml_compute_forward_tanh
  7608. static void ggml_compute_forward_tanh_f32(
  7609. const struct ggml_compute_params * params,
  7610. struct ggml_tensor * dst) {
  7611. const struct ggml_tensor * src0 = dst->src[0];
  7612. assert(params->ith == 0);
  7613. assert(ggml_are_same_shape(src0, dst));
  7614. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7615. return;
  7616. }
  7617. const int n = ggml_nrows(src0);
  7618. const int nc = src0->ne[0];
  7619. assert(dst->nb[0] == sizeof(float));
  7620. assert(src0->nb[0] == sizeof(float));
  7621. for (int i = 0; i < n; i++) {
  7622. ggml_vec_tanh_f32(nc,
  7623. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7624. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7625. }
  7626. }
  7627. static void ggml_compute_forward_tanh(
  7628. const struct ggml_compute_params * params,
  7629. struct ggml_tensor * dst) {
  7630. const struct ggml_tensor * src0 = dst->src[0];
  7631. switch (src0->type) {
  7632. case GGML_TYPE_F32:
  7633. {
  7634. ggml_compute_forward_tanh_f32(params, dst);
  7635. } break;
  7636. default:
  7637. {
  7638. GGML_ASSERT(false);
  7639. } break;
  7640. }
  7641. }
  7642. // ggml_compute_forward_elu
  7643. static void ggml_compute_forward_elu_f32(
  7644. const struct ggml_compute_params * params,
  7645. struct ggml_tensor * dst) {
  7646. const struct ggml_tensor * src0 = dst->src[0];
  7647. assert(params->ith == 0);
  7648. assert(ggml_are_same_shape(src0, dst));
  7649. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7650. return;
  7651. }
  7652. const int n = ggml_nrows(src0);
  7653. const int nc = src0->ne[0];
  7654. assert(dst->nb[0] == sizeof(float));
  7655. assert(src0->nb[0] == sizeof(float));
  7656. for (int i = 0; i < n; i++) {
  7657. ggml_vec_elu_f32(nc,
  7658. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7659. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7660. }
  7661. }
  7662. static void ggml_compute_forward_elu(
  7663. const struct ggml_compute_params * params,
  7664. struct ggml_tensor * dst) {
  7665. const struct ggml_tensor * src0 = dst->src[0];
  7666. switch (src0->type) {
  7667. case GGML_TYPE_F32:
  7668. {
  7669. ggml_compute_forward_elu_f32(params, dst);
  7670. } break;
  7671. default:
  7672. {
  7673. GGML_ASSERT(false);
  7674. } break;
  7675. }
  7676. }
  7677. // ggml_compute_forward_relu
  7678. static void ggml_compute_forward_relu_f32(
  7679. const struct ggml_compute_params * params,
  7680. struct ggml_tensor * dst) {
  7681. const struct ggml_tensor * src0 = dst->src[0];
  7682. assert(params->ith == 0);
  7683. assert(ggml_are_same_shape(src0, dst));
  7684. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7685. return;
  7686. }
  7687. const int n = ggml_nrows(src0);
  7688. const int nc = src0->ne[0];
  7689. assert(dst->nb[0] == sizeof(float));
  7690. assert(src0->nb[0] == sizeof(float));
  7691. for (int i = 0; i < n; i++) {
  7692. ggml_vec_relu_f32(nc,
  7693. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7694. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7695. }
  7696. }
  7697. static void ggml_compute_forward_relu(
  7698. const struct ggml_compute_params * params,
  7699. struct ggml_tensor * dst) {
  7700. const struct ggml_tensor * src0 = dst->src[0];
  7701. switch (src0->type) {
  7702. case GGML_TYPE_F32:
  7703. {
  7704. ggml_compute_forward_relu_f32(params, dst);
  7705. } break;
  7706. default:
  7707. {
  7708. GGML_ASSERT(false);
  7709. } break;
  7710. }
  7711. }
  7712. // ggml_compute_forward_gelu
  7713. static void ggml_compute_forward_gelu_f32(
  7714. const struct ggml_compute_params * params,
  7715. struct ggml_tensor * dst) {
  7716. const struct ggml_tensor * src0 = dst->src[0];
  7717. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7718. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7719. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7721. return;
  7722. }
  7723. const int ith = params->ith;
  7724. const int nth = params->nth;
  7725. const int nc = src0->ne[0];
  7726. const int nr = ggml_nrows(src0);
  7727. // rows per thread
  7728. const int dr = (nr + nth - 1)/nth;
  7729. // row range for this thread
  7730. const int ir0 = dr*ith;
  7731. const int ir1 = MIN(ir0 + dr, nr);
  7732. for (int i1 = ir0; i1 < ir1; i1++) {
  7733. ggml_vec_gelu_f32(nc,
  7734. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7735. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7736. #ifndef NDEBUG
  7737. for (int k = 0; k < nc; k++) {
  7738. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7739. UNUSED(x);
  7740. assert(!isnan(x));
  7741. assert(!isinf(x));
  7742. }
  7743. #endif
  7744. }
  7745. }
  7746. static void ggml_compute_forward_gelu(
  7747. const struct ggml_compute_params * params,
  7748. struct ggml_tensor * dst) {
  7749. const struct ggml_tensor * src0 = dst->src[0];
  7750. switch (src0->type) {
  7751. case GGML_TYPE_F32:
  7752. {
  7753. ggml_compute_forward_gelu_f32(params, dst);
  7754. } break;
  7755. default:
  7756. {
  7757. GGML_ASSERT(false);
  7758. } break;
  7759. }
  7760. }
  7761. // ggml_compute_forward_gelu_quick
  7762. static void ggml_compute_forward_gelu_quick_f32(
  7763. const struct ggml_compute_params * params,
  7764. struct ggml_tensor * dst) {
  7765. const struct ggml_tensor * src0 = dst->src[0];
  7766. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7767. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7768. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7770. return;
  7771. }
  7772. const int ith = params->ith;
  7773. const int nth = params->nth;
  7774. const int nc = src0->ne[0];
  7775. const int nr = ggml_nrows(src0);
  7776. // rows per thread
  7777. const int dr = (nr + nth - 1)/nth;
  7778. // row range for this thread
  7779. const int ir0 = dr*ith;
  7780. const int ir1 = MIN(ir0 + dr, nr);
  7781. for (int i1 = ir0; i1 < ir1; i1++) {
  7782. ggml_vec_gelu_quick_f32(nc,
  7783. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7784. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7785. #ifndef NDEBUG
  7786. for (int k = 0; k < nc; k++) {
  7787. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7788. UNUSED(x);
  7789. assert(!isnan(x));
  7790. assert(!isinf(x));
  7791. }
  7792. #endif
  7793. }
  7794. }
  7795. static void ggml_compute_forward_gelu_quick(
  7796. const struct ggml_compute_params * params,
  7797. struct ggml_tensor * dst) {
  7798. const struct ggml_tensor * src0 = dst->src[0];
  7799. switch (src0->type) {
  7800. case GGML_TYPE_F32:
  7801. {
  7802. ggml_compute_forward_gelu_quick_f32(params, dst);
  7803. } break;
  7804. default:
  7805. {
  7806. GGML_ASSERT(false);
  7807. } break;
  7808. }
  7809. }
  7810. // ggml_compute_forward_silu
  7811. static void ggml_compute_forward_silu_f32(
  7812. const struct ggml_compute_params * params,
  7813. struct ggml_tensor * dst) {
  7814. const struct ggml_tensor * src0 = dst->src[0];
  7815. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7816. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7817. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7818. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7819. return;
  7820. }
  7821. const int ith = params->ith;
  7822. const int nth = params->nth;
  7823. const int nc = src0->ne[0];
  7824. const int nr = ggml_nrows(src0);
  7825. // rows per thread
  7826. const int dr = (nr + nth - 1)/nth;
  7827. // row range for this thread
  7828. const int ir0 = dr*ith;
  7829. const int ir1 = MIN(ir0 + dr, nr);
  7830. for (int i1 = ir0; i1 < ir1; i1++) {
  7831. ggml_vec_silu_f32(nc,
  7832. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7833. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7834. #ifndef NDEBUG
  7835. for (int k = 0; k < nc; k++) {
  7836. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7837. UNUSED(x);
  7838. assert(!isnan(x));
  7839. assert(!isinf(x));
  7840. }
  7841. #endif
  7842. }
  7843. }
  7844. static void ggml_compute_forward_silu(
  7845. const struct ggml_compute_params * params,
  7846. struct ggml_tensor * dst) {
  7847. const struct ggml_tensor * src0 = dst->src[0];
  7848. switch (src0->type) {
  7849. case GGML_TYPE_F32:
  7850. {
  7851. ggml_compute_forward_silu_f32(params, dst);
  7852. } break;
  7853. default:
  7854. {
  7855. GGML_ASSERT(false);
  7856. } break;
  7857. }
  7858. }
  7859. // ggml_compute_forward_leaky_relu
  7860. static void ggml_compute_forward_leaky_relu_f32(
  7861. const struct ggml_compute_params * params,
  7862. struct ggml_tensor * dst) {
  7863. const struct ggml_tensor * src0 = dst->src[0];
  7864. assert(params->ith == 0);
  7865. assert(ggml_are_same_shape(src0, dst));
  7866. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7867. return;
  7868. }
  7869. const int n = ggml_nrows(src0);
  7870. const int nc = src0->ne[0];
  7871. float negative_slope;
  7872. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7873. assert(dst->nb[0] == sizeof(float));
  7874. assert(src0->nb[0] == sizeof(float));
  7875. for (int i = 0; i < n; i++) {
  7876. ggml_vec_leaky_relu_f32(nc,
  7877. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7878. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7879. }
  7880. }
  7881. static void ggml_compute_forward_leaky_relu(
  7882. const struct ggml_compute_params * params,
  7883. struct ggml_tensor * dst) {
  7884. const struct ggml_tensor * src0 = dst->src[0];
  7885. switch (src0->type) {
  7886. case GGML_TYPE_F32:
  7887. {
  7888. ggml_compute_forward_leaky_relu_f32(params, dst);
  7889. } break;
  7890. default:
  7891. {
  7892. GGML_ASSERT(false);
  7893. } break;
  7894. }
  7895. }
  7896. // ggml_compute_forward_silu_back
  7897. static void ggml_compute_forward_silu_back_f32(
  7898. const struct ggml_compute_params * params,
  7899. struct ggml_tensor * dst) {
  7900. const struct ggml_tensor * src0 = dst->src[0];
  7901. const struct ggml_tensor * grad = dst->src[1];
  7902. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7903. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7904. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7905. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7906. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7907. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7908. return;
  7909. }
  7910. const int ith = params->ith;
  7911. const int nth = params->nth;
  7912. const int nc = src0->ne[0];
  7913. const int nr = ggml_nrows(src0);
  7914. // rows per thread
  7915. const int dr = (nr + nth - 1)/nth;
  7916. // row range for this thread
  7917. const int ir0 = dr*ith;
  7918. const int ir1 = MIN(ir0 + dr, nr);
  7919. for (int i1 = ir0; i1 < ir1; i1++) {
  7920. ggml_vec_silu_backward_f32(nc,
  7921. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7922. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7923. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7924. #ifndef NDEBUG
  7925. for (int k = 0; k < nc; k++) {
  7926. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7927. UNUSED(x);
  7928. assert(!isnan(x));
  7929. assert(!isinf(x));
  7930. }
  7931. #endif
  7932. }
  7933. }
  7934. static void ggml_compute_forward_silu_back(
  7935. const struct ggml_compute_params * params,
  7936. struct ggml_tensor * dst) {
  7937. const struct ggml_tensor * src0 = dst->src[0];
  7938. switch (src0->type) {
  7939. case GGML_TYPE_F32:
  7940. {
  7941. ggml_compute_forward_silu_back_f32(params, dst);
  7942. } break;
  7943. default:
  7944. {
  7945. GGML_ASSERT(false);
  7946. } break;
  7947. }
  7948. }
  7949. static void ggml_compute_forward_hardswish_f32(
  7950. const struct ggml_compute_params * params,
  7951. struct ggml_tensor * dst) {
  7952. const struct ggml_tensor * src0 = dst->src[0];
  7953. assert(params->ith == 0);
  7954. assert(ggml_are_same_shape(src0, dst));
  7955. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7956. return;
  7957. }
  7958. const int n = ggml_nrows(src0);
  7959. const int nc = src0->ne[0];
  7960. assert(dst->nb[0] == sizeof(float));
  7961. assert(src0->nb[0] == sizeof(float));
  7962. for (int i = 0; i < n; i++) {
  7963. ggml_vec_hardswish_f32(nc,
  7964. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7965. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7966. }
  7967. }
  7968. static void ggml_compute_forward_hardswish(
  7969. const struct ggml_compute_params * params,
  7970. struct ggml_tensor * dst) {
  7971. const struct ggml_tensor * src0 = dst->src[0];
  7972. switch (src0->type) {
  7973. case GGML_TYPE_F32:
  7974. {
  7975. ggml_compute_forward_hardswish_f32(params, dst);
  7976. } break;
  7977. default:
  7978. {
  7979. GGML_ASSERT(false);
  7980. } break;
  7981. }
  7982. }
  7983. static void ggml_compute_forward_hardsigmoid_f32(
  7984. const struct ggml_compute_params * params,
  7985. struct ggml_tensor * dst) {
  7986. const struct ggml_tensor * src0 = dst->src[0];
  7987. assert(params->ith == 0);
  7988. assert(ggml_are_same_shape(src0, dst));
  7989. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7990. return;
  7991. }
  7992. const int n = ggml_nrows(src0);
  7993. const int nc = src0->ne[0];
  7994. assert(dst->nb[0] == sizeof(float));
  7995. assert(src0->nb[0] == sizeof(float));
  7996. for (int i = 0; i < n; i++) {
  7997. ggml_vec_hardsigmoid_f32(nc,
  7998. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7999. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8000. }
  8001. }
  8002. static void ggml_compute_forward_hardsigmoid(
  8003. const struct ggml_compute_params * params,
  8004. struct ggml_tensor * dst) {
  8005. const struct ggml_tensor * src0 = dst->src[0];
  8006. switch (src0->type) {
  8007. case GGML_TYPE_F32:
  8008. {
  8009. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8010. } break;
  8011. default:
  8012. {
  8013. GGML_ASSERT(false);
  8014. } break;
  8015. }
  8016. }
  8017. // ggml_compute_forward_norm
  8018. static void ggml_compute_forward_norm_f32(
  8019. const struct ggml_compute_params * params,
  8020. struct ggml_tensor * dst) {
  8021. const struct ggml_tensor * src0 = dst->src[0];
  8022. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8023. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8024. return;
  8025. }
  8026. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8027. const int ith = params->ith;
  8028. const int nth = params->nth;
  8029. GGML_TENSOR_UNARY_OP_LOCALS
  8030. float eps;
  8031. memcpy(&eps, dst->op_params, sizeof(float));
  8032. GGML_ASSERT(eps > 0.0f);
  8033. // TODO: optimize
  8034. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8035. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8036. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8037. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8038. ggml_float sum = 0.0;
  8039. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8040. sum += (ggml_float)x[i00];
  8041. }
  8042. float mean = sum/ne00;
  8043. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8044. ggml_float sum2 = 0.0;
  8045. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8046. float v = x[i00] - mean;
  8047. y[i00] = v;
  8048. sum2 += (ggml_float)(v*v);
  8049. }
  8050. float variance = sum2/ne00;
  8051. const float scale = 1.0f/sqrtf(variance + eps);
  8052. ggml_vec_scale_f32(ne00, y, scale);
  8053. }
  8054. }
  8055. }
  8056. }
  8057. static void ggml_compute_forward_norm(
  8058. const struct ggml_compute_params * params,
  8059. struct ggml_tensor * dst) {
  8060. const struct ggml_tensor * src0 = dst->src[0];
  8061. switch (src0->type) {
  8062. case GGML_TYPE_F32:
  8063. {
  8064. ggml_compute_forward_norm_f32(params, dst);
  8065. } break;
  8066. default:
  8067. {
  8068. GGML_ASSERT(false);
  8069. } break;
  8070. }
  8071. }
  8072. // ggml_compute_forward_group_rms_norm
  8073. static void ggml_compute_forward_rms_norm_f32(
  8074. const struct ggml_compute_params * params,
  8075. struct ggml_tensor * dst) {
  8076. const struct ggml_tensor * src0 = dst->src[0];
  8077. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8078. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8079. return;
  8080. }
  8081. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8082. const int ith = params->ith;
  8083. const int nth = params->nth;
  8084. GGML_TENSOR_UNARY_OP_LOCALS
  8085. float eps;
  8086. memcpy(&eps, dst->op_params, sizeof(float));
  8087. GGML_ASSERT(eps > 0.0f);
  8088. // TODO: optimize
  8089. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8090. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8091. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8092. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8093. ggml_float sum = 0.0;
  8094. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8095. sum += (ggml_float)(x[i00] * x[i00]);
  8096. }
  8097. const float mean = sum/ne00;
  8098. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8099. memcpy(y, x, ne00 * sizeof(float));
  8100. // for (int i00 = 0; i00 < ne00; i00++) {
  8101. // y[i00] = x[i00];
  8102. // }
  8103. const float scale = 1.0f/sqrtf(mean + eps);
  8104. ggml_vec_scale_f32(ne00, y, scale);
  8105. }
  8106. }
  8107. }
  8108. }
  8109. static void ggml_compute_forward_rms_norm(
  8110. const struct ggml_compute_params * params,
  8111. struct ggml_tensor * dst) {
  8112. const struct ggml_tensor * src0 = dst->src[0];
  8113. switch (src0->type) {
  8114. case GGML_TYPE_F32:
  8115. {
  8116. ggml_compute_forward_rms_norm_f32(params, dst);
  8117. } break;
  8118. default:
  8119. {
  8120. GGML_ASSERT(false);
  8121. } break;
  8122. }
  8123. }
  8124. static void ggml_compute_forward_rms_norm_back_f32(
  8125. const struct ggml_compute_params * params,
  8126. struct ggml_tensor * dst) {
  8127. const struct ggml_tensor * src0 = dst->src[0];
  8128. const struct ggml_tensor * src1 = dst->src[1];
  8129. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8130. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8131. return;
  8132. }
  8133. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8134. const int ith = params->ith;
  8135. const int nth = params->nth;
  8136. GGML_TENSOR_BINARY_OP_LOCALS
  8137. float eps;
  8138. memcpy(&eps, dst->op_params, sizeof(float));
  8139. // TODO: optimize
  8140. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8141. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8142. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8143. // src1 is same shape as src0 => same indices
  8144. const int64_t i11 = i01;
  8145. const int64_t i12 = i02;
  8146. const int64_t i13 = i03;
  8147. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8148. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8149. ggml_float sum_xx = 0.0;
  8150. ggml_float sum_xdz = 0.0;
  8151. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8152. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8153. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8154. }
  8155. //const float mean = (float)(sum_xx)/ne00;
  8156. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8157. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8158. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8159. // we could cache rms from forward pass to improve performance.
  8160. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8161. //const float rms = sqrtf(mean_eps);
  8162. const float rrms = 1.0f / sqrtf(mean_eps);
  8163. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8164. {
  8165. // z = rms_norm(x)
  8166. //
  8167. // rms_norm(src0) =
  8168. // scale(
  8169. // src0,
  8170. // div(
  8171. // 1,
  8172. // sqrt(
  8173. // add(
  8174. // scale(
  8175. // sum(
  8176. // sqr(
  8177. // src0)),
  8178. // (1.0/N)),
  8179. // eps))));
  8180. // postorder:
  8181. // ## op args grad
  8182. // 00 param src0 grad[#00]
  8183. // 01 const 1
  8184. // 02 sqr (#00) grad[#02]
  8185. // 03 sum (#02) grad[#03]
  8186. // 04 const 1/N
  8187. // 05 scale (#03, #04) grad[#05]
  8188. // 06 const eps
  8189. // 07 add (#05, #06) grad[#07]
  8190. // 08 sqrt (#07) grad[#08]
  8191. // 09 div (#01,#08) grad[#09]
  8192. // 10 scale (#00,#09) grad[#10]
  8193. //
  8194. // backward pass, given grad[#10]
  8195. // #10: scale
  8196. // grad[#00] += scale(grad[#10],#09)
  8197. // grad[#09] += sum(mul(grad[#10],#00))
  8198. // #09: div
  8199. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8200. // #08: sqrt
  8201. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8202. // #07: add
  8203. // grad[#05] += grad[#07]
  8204. // #05: scale
  8205. // grad[#03] += scale(grad[#05],#04)
  8206. // #03: sum
  8207. // grad[#02] += repeat(grad[#03], #02)
  8208. // #02:
  8209. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8210. //
  8211. // substitute and simplify:
  8212. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8213. // grad[#02] = repeat(grad[#03], #02)
  8214. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8215. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8216. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8217. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8218. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8219. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8220. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8221. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8222. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8223. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8224. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8225. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8226. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8227. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8228. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8229. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8230. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8231. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8232. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8233. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8234. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8235. // a = b*c + d*e
  8236. // a = b*c*f/f + d*e*f/f
  8237. // a = (b*c*f + d*e*f)*(1/f)
  8238. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8239. // a = (b + d*e/c)*c
  8240. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8241. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8242. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8243. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8244. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8245. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8246. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8247. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8248. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8249. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8250. }
  8251. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8252. // post-order:
  8253. // dx := x
  8254. // dx := scale(dx,-mean_xdz/mean_eps)
  8255. // dx := add(dx, dz)
  8256. // dx := scale(dx, rrms)
  8257. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8258. ggml_vec_cpy_f32 (ne00, dx, x);
  8259. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8260. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8261. ggml_vec_acc_f32 (ne00, dx, dz);
  8262. ggml_vec_scale_f32(ne00, dx, rrms);
  8263. }
  8264. }
  8265. }
  8266. }
  8267. static void ggml_compute_forward_rms_norm_back(
  8268. const struct ggml_compute_params * params,
  8269. struct ggml_tensor * dst) {
  8270. const struct ggml_tensor * src0 = dst->src[0];
  8271. switch (src0->type) {
  8272. case GGML_TYPE_F32:
  8273. {
  8274. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8275. } break;
  8276. default:
  8277. {
  8278. GGML_ASSERT(false);
  8279. } break;
  8280. }
  8281. }
  8282. // ggml_compute_forward_group_norm
  8283. static void ggml_compute_forward_group_norm_f32(
  8284. const struct ggml_compute_params * params,
  8285. struct ggml_tensor * dst) {
  8286. const struct ggml_tensor * src0 = dst->src[0];
  8287. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8288. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8289. return;
  8290. }
  8291. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8292. const int ith = params->ith;
  8293. const int nth = params->nth;
  8294. GGML_TENSOR_UNARY_OP_LOCALS
  8295. const float eps = 1e-6f; // TODO: make this a parameter
  8296. // TODO: optimize
  8297. int n_channels = src0->ne[2];
  8298. int n_groups = dst->op_params[0];
  8299. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8300. for (int i = ith; i < n_groups; i+=nth) {
  8301. int start = i * n_channels_per_group;
  8302. int end = start + n_channels_per_group;
  8303. if (end > n_channels) {
  8304. end = n_channels;
  8305. }
  8306. int step = end - start;
  8307. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8308. ggml_float sum = 0.0;
  8309. for (int64_t i02 = start; i02 < end; i02++) {
  8310. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8311. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8312. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8313. sum += (ggml_float)x[i00];
  8314. }
  8315. }
  8316. }
  8317. float mean = sum / (ne00 * ne01 * step);
  8318. ggml_float sum2 = 0.0;
  8319. for (int64_t i02 = start; i02 < end; i02++) {
  8320. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8321. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8322. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8323. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8324. float v = x[i00] - mean;
  8325. y[i00] = v;
  8326. sum2 += (ggml_float)(v * v);
  8327. }
  8328. }
  8329. }
  8330. float variance = sum2 / (ne00 * ne01 * step);
  8331. const float scale = 1.0f / sqrtf(variance + eps);
  8332. for (int64_t i02 = start; i02 < end; i02++) {
  8333. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8334. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8335. ggml_vec_scale_f32(ne00, y, scale);
  8336. }
  8337. }
  8338. }
  8339. }
  8340. }
  8341. static void ggml_compute_forward_group_norm(
  8342. const struct ggml_compute_params * params,
  8343. struct ggml_tensor * dst) {
  8344. const struct ggml_tensor * src0 = dst->src[0];
  8345. switch (src0->type) {
  8346. case GGML_TYPE_F32:
  8347. {
  8348. ggml_compute_forward_group_norm_f32(params, dst);
  8349. } break;
  8350. default:
  8351. {
  8352. GGML_ASSERT(false);
  8353. } break;
  8354. }
  8355. }
  8356. // ggml_compute_forward_mul_mat
  8357. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8358. // helper function to determine if it is better to use BLAS or not
  8359. // for large matrices, BLAS is faster
  8360. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8361. const struct ggml_tensor * src0 = dst->src[0];
  8362. const struct ggml_tensor * src1 = dst->src[1];
  8363. //const int64_t ne00 = src0->ne[0];
  8364. //const int64_t ne01 = src0->ne[1];
  8365. const int64_t ne10 = src1->ne[0];
  8366. const int64_t ne0 = dst->ne[0];
  8367. const int64_t ne1 = dst->ne[1];
  8368. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8369. // all the experts for each batch element and the processing would become incredibly slow
  8370. // TODO: find the optimal values for these
  8371. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8372. ggml_is_contiguous(src0) &&
  8373. ggml_is_contiguous(src1) &&
  8374. //src0->type == GGML_TYPE_F32 &&
  8375. src1->type == GGML_TYPE_F32 &&
  8376. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8377. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8378. return true;
  8379. }
  8380. return false;
  8381. }
  8382. #endif
  8383. static void ggml_compute_forward_mul_mat(
  8384. const struct ggml_compute_params * params,
  8385. struct ggml_tensor * dst) {
  8386. const struct ggml_tensor * src0 = dst->src[0];
  8387. const struct ggml_tensor * src1 = dst->src[1];
  8388. int64_t t0 = ggml_perf_time_us();
  8389. UNUSED(t0);
  8390. GGML_TENSOR_BINARY_OP_LOCALS
  8391. const int ith = params->ith;
  8392. const int nth = params->nth;
  8393. const enum ggml_type type = src0->type;
  8394. const bool src1_cont = ggml_is_contiguous(src1);
  8395. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8396. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8397. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8398. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8399. GGML_ASSERT(ne0 == ne01);
  8400. GGML_ASSERT(ne1 == ne11);
  8401. GGML_ASSERT(ne2 == ne12);
  8402. GGML_ASSERT(ne3 == ne13);
  8403. // we don't support permuted src0 or src1
  8404. GGML_ASSERT(nb00 == ggml_type_size(type));
  8405. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8406. // dst cannot be transposed or permuted
  8407. GGML_ASSERT(nb0 == sizeof(float));
  8408. GGML_ASSERT(nb0 <= nb1);
  8409. GGML_ASSERT(nb1 <= nb2);
  8410. GGML_ASSERT(nb2 <= nb3);
  8411. // broadcast factors
  8412. const int64_t r2 = ne12/ne02;
  8413. const int64_t r3 = ne13/ne03;
  8414. // nb01 >= nb00 - src0 is not transposed
  8415. // compute by src0 rows
  8416. #if defined(GGML_USE_CLBLAST)
  8417. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8418. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8419. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8420. }
  8421. return;
  8422. }
  8423. #endif
  8424. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8425. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8426. const int64_t ne_plane = ne01*ne00;
  8427. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8428. UNUSED(desired_wsize);
  8429. if (params->type == GGML_TASK_TYPE_INIT) {
  8430. if (type != GGML_TYPE_F32) {
  8431. assert(params->wsize >= desired_wsize);
  8432. // parallelize by src0 rows
  8433. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8434. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8435. // broadcast src0 into src1 across 2nd,3rd dimension
  8436. const int64_t i03 = i13/r3;
  8437. const int64_t i02 = i12/r2;
  8438. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8439. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8440. ggml_to_float_t const to_float = type_traits[type].to_float;
  8441. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8442. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8443. }
  8444. }
  8445. }
  8446. }
  8447. return;
  8448. }
  8449. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8450. return;
  8451. }
  8452. // perform sgemm, parallelization controlled by blas lib
  8453. if (ith != 0) {
  8454. return;
  8455. }
  8456. //const int64_t tgemm0 = ggml_perf_time_us();
  8457. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8458. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8459. const int64_t i03 = i13/r3;
  8460. const int64_t i02 = i12/r2;
  8461. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8462. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8463. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8464. if (type != GGML_TYPE_F32) {
  8465. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8466. }
  8467. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8468. ne1, ne01, ne10,
  8469. 1.0f, y, ne10,
  8470. x, ne00,
  8471. 0.0f, d, ne01);
  8472. }
  8473. }
  8474. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8475. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8476. return;
  8477. }
  8478. #endif
  8479. if (params->type == GGML_TASK_TYPE_INIT) {
  8480. if (ith != 0) {
  8481. return;
  8482. }
  8483. if (src1->type != vec_dot_type) {
  8484. char * wdata = params->wdata;
  8485. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8486. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8487. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8488. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8489. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8490. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8491. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8492. wdata += row_size;
  8493. }
  8494. }
  8495. }
  8496. }
  8497. return;
  8498. }
  8499. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8500. return;
  8501. }
  8502. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8503. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8504. const int64_t nr0 = ne01; // src0 rows
  8505. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8506. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8507. // distribute the thread work across the inner or outer loop based on which one is larger
  8508. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8509. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8510. const int64_t ith0 = ith % nth0;
  8511. const int64_t ith1 = ith / nth0;
  8512. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8513. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8514. const int64_t ir010 = dr0*ith0;
  8515. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8516. const int64_t ir110 = dr1*ith1;
  8517. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8518. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8519. // threads with no work simply yield (not sure if it helps)
  8520. if (ir010 >= ir011 || ir110 >= ir111) {
  8521. sched_yield();
  8522. return;
  8523. }
  8524. assert(ne12 % ne02 == 0);
  8525. assert(ne13 % ne03 == 0);
  8526. // block-tiling attempt
  8527. const int64_t blck_0 = 16;
  8528. const int64_t blck_1 = 16;
  8529. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8530. int64_t nrc = vec_dot_num_rows;
  8531. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8532. // this check can be removed once they are extended to support odd numbered rows/cols too
  8533. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8534. nrc = 1;
  8535. }
  8536. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8537. // attempt to reduce false-sharing (does not seem to make a difference)
  8538. // 16 * 2, accounting for mmla kernels
  8539. float tmp[32];
  8540. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8541. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8542. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8543. const int64_t i13 = (ir1/(ne12*ne1));
  8544. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8545. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8546. // broadcast src0 into src1
  8547. const int64_t i03 = i13/r3;
  8548. const int64_t i02 = i12/r2;
  8549. const int64_t i1 = i11;
  8550. const int64_t i2 = i12;
  8551. const int64_t i3 = i13;
  8552. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8553. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8554. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8555. // the original src1 data pointer, so we should index using the indices directly
  8556. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8557. const char * src1_col = (const char *) wdata +
  8558. (src1_cont || src1->type != vec_dot_type
  8559. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8560. : (i11*nb11 + i12*nb12 + i13*nb13));
  8561. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8562. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8563. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8564. //}
  8565. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8566. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8567. }
  8568. for (int cn = 0; cn < nrc; ++cn) {
  8569. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8570. }
  8571. }
  8572. }
  8573. }
  8574. }
  8575. // ggml_compute_forward_mul_mat_id
  8576. static void ggml_compute_forward_mul_mat_id(
  8577. const struct ggml_compute_params * params,
  8578. struct ggml_tensor * dst) {
  8579. const struct ggml_tensor * ids = dst->src[0];
  8580. const struct ggml_tensor * src1 = dst->src[1];
  8581. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8582. GGML_TENSOR_BINARY_OP_LOCALS
  8583. const int ith = params->ith;
  8584. const int nth = params->nth;
  8585. const enum ggml_type type = src0->type;
  8586. const bool src1_cont = ggml_is_contiguous(src1);
  8587. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8588. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8589. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8590. GGML_ASSERT(ne0 == ne01);
  8591. GGML_ASSERT(ne1 == ne11);
  8592. GGML_ASSERT(ne2 == ne12);
  8593. GGML_ASSERT(ne3 == ne13);
  8594. // we don't support permuted src0 or src1
  8595. GGML_ASSERT(nb00 == ggml_type_size(type));
  8596. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8597. // dst cannot be transposed or permuted
  8598. GGML_ASSERT(nb0 == sizeof(float));
  8599. GGML_ASSERT(nb0 <= nb1);
  8600. GGML_ASSERT(nb1 <= nb2);
  8601. GGML_ASSERT(nb2 <= nb3);
  8602. // broadcast factors
  8603. const int64_t r2 = ne12/ne02;
  8604. const int64_t r3 = ne13/ne03;
  8605. // row groups
  8606. const int id = ggml_get_op_params_i32(dst, 0);
  8607. const int n_as = ggml_get_op_params_i32(dst, 1);
  8608. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8609. (char *) params->wdata :
  8610. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8611. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8612. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8613. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8614. if (params->type == GGML_TASK_TYPE_INIT) {
  8615. if (ith != 0) {
  8616. return;
  8617. }
  8618. char * wdata = params->wdata;
  8619. if (src1->type != vec_dot_type) {
  8620. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8621. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8622. assert(src1->type == GGML_TYPE_F32);
  8623. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8624. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8625. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8626. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8627. wdata += row_size;
  8628. }
  8629. }
  8630. }
  8631. }
  8632. // initialize matrix_row_counts
  8633. GGML_ASSERT(wdata == wdata_src1_end);
  8634. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8635. // group rows by src0 matrix
  8636. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8637. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8638. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8639. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8640. matrix_row_counts[row_id] += 1;
  8641. }
  8642. return;
  8643. }
  8644. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8645. return;
  8646. }
  8647. // compute each matrix multiplication in sequence
  8648. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8649. const int64_t cne1 = matrix_row_counts[cur_a];
  8650. if (cne1 == 0) {
  8651. continue;
  8652. }
  8653. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8654. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8655. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8656. const int64_t nr0 = ne01; // src0 rows
  8657. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8658. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8659. // distribute the thread work across the inner or outer loop based on which one is larger
  8660. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8661. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8662. const int64_t ith0 = ith % nth0;
  8663. const int64_t ith1 = ith / nth0;
  8664. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8665. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8666. const int64_t ir010 = dr0*ith0;
  8667. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8668. const int64_t ir110 = dr1*ith1;
  8669. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8670. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8671. // threads with no work simply yield (not sure if it helps)
  8672. if (ir010 >= ir011 || ir110 >= ir111) {
  8673. sched_yield();
  8674. continue;
  8675. }
  8676. assert(ne12 % ne02 == 0);
  8677. assert(ne13 % ne03 == 0);
  8678. // block-tiling attempt
  8679. const int64_t blck_0 = 16;
  8680. const int64_t blck_1 = 16;
  8681. // attempt to reduce false-sharing (does not seem to make a difference)
  8682. float tmp[16];
  8683. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8684. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8685. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8686. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8687. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8688. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8689. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8690. // broadcast src0 into src1
  8691. const int64_t i03 = i13/r3;
  8692. const int64_t i02 = i12/r2;
  8693. const int64_t i1 = i11;
  8694. const int64_t i2 = i12;
  8695. const int64_t i3 = i13;
  8696. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8697. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8698. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8699. // the original src1 data pointer, so we should index using the indices directly
  8700. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8701. const char * src1_col = (const char *) wdata +
  8702. (src1_cont || src1->type != vec_dot_type
  8703. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8704. : (i11*nb11 + i12*nb12 + i13*nb13));
  8705. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8706. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8707. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8708. //}
  8709. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8710. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8711. }
  8712. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8713. }
  8714. }
  8715. }
  8716. }
  8717. #undef MMID_MATRIX_ROW
  8718. }
  8719. // ggml_compute_forward_out_prod
  8720. static void ggml_compute_forward_out_prod_f32(
  8721. const struct ggml_compute_params * params,
  8722. struct ggml_tensor * dst) {
  8723. const struct ggml_tensor * src0 = dst->src[0];
  8724. const struct ggml_tensor * src1 = dst->src[1];
  8725. // int64_t t0 = ggml_perf_time_us();
  8726. // UNUSED(t0);
  8727. GGML_TENSOR_BINARY_OP_LOCALS
  8728. const int ith = params->ith;
  8729. const int nth = params->nth;
  8730. GGML_ASSERT(ne0 == ne00);
  8731. GGML_ASSERT(ne1 == ne10);
  8732. GGML_ASSERT(ne2 == ne02);
  8733. GGML_ASSERT(ne02 == ne12);
  8734. GGML_ASSERT(ne3 == ne13);
  8735. GGML_ASSERT(ne03 == ne13);
  8736. // we don't support permuted src0 or src1
  8737. GGML_ASSERT(nb00 == sizeof(float));
  8738. // dst cannot be transposed or permuted
  8739. GGML_ASSERT(nb0 == sizeof(float));
  8740. // GGML_ASSERT(nb0 <= nb1);
  8741. // GGML_ASSERT(nb1 <= nb2);
  8742. // GGML_ASSERT(nb2 <= nb3);
  8743. // nb01 >= nb00 - src0 is not transposed
  8744. // compute by src0 rows
  8745. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8746. // TODO: #if defined(GGML_USE_CLBLAST)
  8747. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8748. bool use_blas = ggml_is_matrix(src0) &&
  8749. ggml_is_matrix(src1) &&
  8750. ggml_is_contiguous(src0) &&
  8751. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8752. #endif
  8753. if (params->type == GGML_TASK_TYPE_INIT) {
  8754. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8755. if (use_blas) {
  8756. return;
  8757. }
  8758. #endif
  8759. if (ith != 0) {
  8760. return;
  8761. }
  8762. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8763. return;
  8764. }
  8765. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8766. return;
  8767. }
  8768. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8769. if (use_blas) {
  8770. if (params->ith != 0) { // All threads other than the first do no work.
  8771. return;
  8772. }
  8773. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8774. // src0: (k,n)
  8775. // src1: (k,m)
  8776. // dst: (m,n)
  8777. //
  8778. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8779. // Also expressed as (major,minor)
  8780. // a: (m,k): so src1 transposed
  8781. // b: (k,n): so src0
  8782. // c: (m,n)
  8783. //
  8784. // However, if ggml_is_transposed(src1) is true, then
  8785. // src1->data already contains a transposed version, so sgemm mustn't
  8786. // transpose it further.
  8787. int n = src0->ne[0];
  8788. int k = src0->ne[1];
  8789. int m = src1->ne[0];
  8790. int transposeA, lda;
  8791. if (!ggml_is_transposed(src1)) {
  8792. transposeA = CblasTrans;
  8793. lda = m;
  8794. } else {
  8795. transposeA = CblasNoTrans;
  8796. lda = k;
  8797. }
  8798. float * a = (float *) ((char *) src1->data);
  8799. float * b = (float *) ((char *) src0->data);
  8800. float * c = (float *) ((char *) dst->data);
  8801. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8802. return;
  8803. }
  8804. #endif
  8805. // dst[:,:,:,:] = 0
  8806. // for i2,i3:
  8807. // for i1:
  8808. // for i01:
  8809. // for i0:
  8810. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8811. // parallelize by last three dimensions
  8812. // total rows in dst
  8813. const int64_t nr = ne1*ne2*ne3;
  8814. // rows per thread
  8815. const int64_t dr = (nr + nth - 1)/nth;
  8816. // row range for this thread
  8817. const int64_t ir0 = dr*ith;
  8818. const int64_t ir1 = MIN(ir0 + dr, nr);
  8819. // block-tiling attempt
  8820. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8821. const int64_t blck_1 = 16;
  8822. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8823. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8824. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8825. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8826. for (int64_t ir = bir; ir < bir1; ++ir) {
  8827. // dst indices
  8828. const int64_t i3 = ir/(ne2*ne1);
  8829. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8830. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8831. const int64_t i02 = i2;
  8832. const int64_t i03 = i3;
  8833. //const int64_t i10 = i1;
  8834. const int64_t i12 = i2;
  8835. const int64_t i13 = i3;
  8836. #if GGML_VEC_MAD_UNROLL > 2
  8837. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8838. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8839. const int64_t i11 = i01;
  8840. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8841. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8842. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8843. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8844. }
  8845. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8846. const int64_t i11 = i01;
  8847. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8848. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8849. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8850. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8851. }
  8852. #else
  8853. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8854. const int64_t i11 = i01;
  8855. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8856. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8857. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8858. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8859. }
  8860. #endif
  8861. }
  8862. }
  8863. }
  8864. //int64_t t1 = ggml_perf_time_us();
  8865. //static int64_t acc = 0;
  8866. //acc += t1 - t0;
  8867. //if (t1 - t0 > 10) {
  8868. // printf("\n");
  8869. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8870. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8871. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8872. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8873. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8874. //}
  8875. }
  8876. static void ggml_compute_forward_out_prod_q_f32(
  8877. const struct ggml_compute_params * params,
  8878. struct ggml_tensor * dst) {
  8879. const struct ggml_tensor * src0 = dst->src[0];
  8880. const struct ggml_tensor * src1 = dst->src[1];
  8881. // int64_t t0 = ggml_perf_time_us();
  8882. // UNUSED(t0);
  8883. GGML_TENSOR_BINARY_OP_LOCALS;
  8884. const int ith = params->ith;
  8885. const int nth = params->nth;
  8886. const enum ggml_type type = src0->type;
  8887. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8888. GGML_ASSERT(ne02 == ne12);
  8889. GGML_ASSERT(ne03 == ne13);
  8890. GGML_ASSERT(ne2 == ne12);
  8891. GGML_ASSERT(ne3 == ne13);
  8892. // we don't support permuted src0 dim0
  8893. GGML_ASSERT(nb00 == ggml_type_size(type));
  8894. // dst dim0 cannot be transposed or permuted
  8895. GGML_ASSERT(nb0 == sizeof(float));
  8896. // GGML_ASSERT(nb0 <= nb1);
  8897. // GGML_ASSERT(nb1 <= nb2);
  8898. // GGML_ASSERT(nb2 <= nb3);
  8899. GGML_ASSERT(ne0 == ne00);
  8900. GGML_ASSERT(ne1 == ne10);
  8901. GGML_ASSERT(ne2 == ne02);
  8902. GGML_ASSERT(ne3 == ne03);
  8903. // nb01 >= nb00 - src0 is not transposed
  8904. // compute by src0 rows
  8905. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8906. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8907. if (params->type == GGML_TASK_TYPE_INIT) {
  8908. if (ith != 0) {
  8909. return;
  8910. }
  8911. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8912. return;
  8913. }
  8914. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8915. return;
  8916. }
  8917. // parallelize by last three dimensions
  8918. // total rows in dst
  8919. const int64_t nr = ne1*ne2*ne3;
  8920. // rows per thread
  8921. const int64_t dr = (nr + nth - 1)/nth;
  8922. // row range for this thread
  8923. const int64_t ir0 = dr*ith;
  8924. const int64_t ir1 = MIN(ir0 + dr, nr);
  8925. // dst[:,:,:,:] = 0
  8926. // for i2,i3:
  8927. // for i1:
  8928. // for i01:
  8929. // for i0:
  8930. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8931. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8932. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8933. // dst indices
  8934. const int64_t i3 = ir/(ne2*ne1);
  8935. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8936. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8937. const int64_t i02 = i2;
  8938. const int64_t i03 = i3;
  8939. //const int64_t i10 = i1;
  8940. const int64_t i12 = i2;
  8941. const int64_t i13 = i3;
  8942. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8943. const int64_t i11 = i01;
  8944. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8945. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8946. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8947. dequantize_row_q(s0, wdata, ne0);
  8948. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8949. }
  8950. }
  8951. //int64_t t1 = ggml_perf_time_us();
  8952. //static int64_t acc = 0;
  8953. //acc += t1 - t0;
  8954. //if (t1 - t0 > 10) {
  8955. // printf("\n");
  8956. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8957. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8958. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8959. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8960. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8961. //}
  8962. }
  8963. static void ggml_compute_forward_out_prod(
  8964. const struct ggml_compute_params * params,
  8965. struct ggml_tensor * dst) {
  8966. const struct ggml_tensor * src0 = dst->src[0];
  8967. switch (src0->type) {
  8968. case GGML_TYPE_Q4_0:
  8969. case GGML_TYPE_Q4_1:
  8970. case GGML_TYPE_Q5_0:
  8971. case GGML_TYPE_Q5_1:
  8972. case GGML_TYPE_Q8_0:
  8973. case GGML_TYPE_Q2_K:
  8974. case GGML_TYPE_Q3_K:
  8975. case GGML_TYPE_Q4_K:
  8976. case GGML_TYPE_Q5_K:
  8977. case GGML_TYPE_Q6_K:
  8978. case GGML_TYPE_IQ2_XXS:
  8979. case GGML_TYPE_IQ2_XS:
  8980. case GGML_TYPE_IQ3_XXS:
  8981. case GGML_TYPE_IQ1_S:
  8982. case GGML_TYPE_IQ4_NL:
  8983. case GGML_TYPE_IQ4_XS:
  8984. case GGML_TYPE_IQ3_S:
  8985. case GGML_TYPE_IQ2_S:
  8986. {
  8987. ggml_compute_forward_out_prod_q_f32(params, dst);
  8988. } break;
  8989. case GGML_TYPE_F16:
  8990. {
  8991. GGML_ASSERT(false); // todo
  8992. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  8993. } break;
  8994. case GGML_TYPE_F32:
  8995. {
  8996. ggml_compute_forward_out_prod_f32(params, dst);
  8997. } break;
  8998. default:
  8999. {
  9000. GGML_ASSERT(false);
  9001. } break;
  9002. }
  9003. }
  9004. // ggml_compute_forward_scale
  9005. static void ggml_compute_forward_scale_f32(
  9006. const struct ggml_compute_params * params,
  9007. struct ggml_tensor * dst) {
  9008. const struct ggml_tensor * src0 = dst->src[0];
  9009. GGML_ASSERT(ggml_is_contiguous(src0));
  9010. GGML_ASSERT(ggml_is_contiguous(dst));
  9011. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9012. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9013. return;
  9014. }
  9015. // scale factor
  9016. float v;
  9017. memcpy(&v, dst->op_params, sizeof(float));
  9018. const int ith = params->ith;
  9019. const int nth = params->nth;
  9020. const int nc = src0->ne[0];
  9021. const int nr = ggml_nrows(src0);
  9022. // rows per thread
  9023. const int dr = (nr + nth - 1)/nth;
  9024. // row range for this thread
  9025. const int ir0 = dr*ith;
  9026. const int ir1 = MIN(ir0 + dr, nr);
  9027. const size_t nb01 = src0->nb[1];
  9028. const size_t nb1 = dst->nb[1];
  9029. for (int i1 = ir0; i1 < ir1; i1++) {
  9030. if (dst->data != src0->data) {
  9031. // src0 is same shape as dst => same indices
  9032. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9033. }
  9034. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9035. }
  9036. }
  9037. static void ggml_compute_forward_scale(
  9038. const struct ggml_compute_params * params,
  9039. struct ggml_tensor * dst) {
  9040. const struct ggml_tensor * src0 = dst->src[0];
  9041. switch (src0->type) {
  9042. case GGML_TYPE_F32:
  9043. {
  9044. ggml_compute_forward_scale_f32(params, dst);
  9045. } break;
  9046. default:
  9047. {
  9048. GGML_ASSERT(false);
  9049. } break;
  9050. }
  9051. }
  9052. // ggml_compute_forward_set
  9053. static void ggml_compute_forward_set_f32(
  9054. const struct ggml_compute_params * params,
  9055. struct ggml_tensor * dst) {
  9056. const struct ggml_tensor * src0 = dst->src[0];
  9057. const struct ggml_tensor * src1 = dst->src[1];
  9058. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9059. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9060. // view src0 and dst with these strides and data offset inbytes during set
  9061. // nb0 is implicitly element_size because src0 and dst are contiguous
  9062. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9063. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9064. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9065. size_t offset = ((int32_t *) dst->op_params)[3];
  9066. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9067. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9068. if (params->ith != 0) {
  9069. return;
  9070. }
  9071. // memcpy needs to be synchronized across threads to avoid race conditions.
  9072. // => do it in INIT phase
  9073. memcpy(
  9074. ((char *) dst->data),
  9075. ((char *) src0->data),
  9076. ggml_nbytes(dst));
  9077. }
  9078. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9079. return;
  9080. }
  9081. const int ith = params->ith;
  9082. const int nth = params->nth;
  9083. const int nr = ggml_nrows(src1);
  9084. const int nc = src1->ne[0];
  9085. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9086. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9087. // src0 and dst as viewed during set
  9088. const size_t nb0 = ggml_element_size(src0);
  9089. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9090. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9091. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9092. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9093. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9094. GGML_ASSERT(nb10 == sizeof(float));
  9095. // rows per thread
  9096. const int dr = (nr + nth - 1)/nth;
  9097. // row range for this thread
  9098. const int ir0 = dr*ith;
  9099. const int ir1 = MIN(ir0 + dr, nr);
  9100. for (int ir = ir0; ir < ir1; ++ir) {
  9101. // src0 and dst are viewed with shape of src1 and offset
  9102. // => same indices
  9103. const int i3 = ir/(ne12*ne11);
  9104. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9105. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9106. ggml_vec_cpy_f32(nc,
  9107. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9108. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9109. }
  9110. }
  9111. static void ggml_compute_forward_set(
  9112. const struct ggml_compute_params * params,
  9113. struct ggml_tensor * dst) {
  9114. const struct ggml_tensor * src0 = dst->src[0];
  9115. switch (src0->type) {
  9116. case GGML_TYPE_F32:
  9117. {
  9118. ggml_compute_forward_set_f32(params, dst);
  9119. } break;
  9120. case GGML_TYPE_F16:
  9121. case GGML_TYPE_Q4_0:
  9122. case GGML_TYPE_Q4_1:
  9123. case GGML_TYPE_Q5_0:
  9124. case GGML_TYPE_Q5_1:
  9125. case GGML_TYPE_Q8_0:
  9126. case GGML_TYPE_Q8_1:
  9127. case GGML_TYPE_Q2_K:
  9128. case GGML_TYPE_Q3_K:
  9129. case GGML_TYPE_Q4_K:
  9130. case GGML_TYPE_Q5_K:
  9131. case GGML_TYPE_Q6_K:
  9132. case GGML_TYPE_IQ2_XXS:
  9133. case GGML_TYPE_IQ2_XS:
  9134. case GGML_TYPE_IQ3_XXS:
  9135. case GGML_TYPE_IQ1_S:
  9136. case GGML_TYPE_IQ4_NL:
  9137. case GGML_TYPE_IQ4_XS:
  9138. case GGML_TYPE_IQ3_S:
  9139. case GGML_TYPE_IQ2_S:
  9140. default:
  9141. {
  9142. GGML_ASSERT(false);
  9143. } break;
  9144. }
  9145. }
  9146. // ggml_compute_forward_cpy
  9147. static void ggml_compute_forward_cpy(
  9148. const struct ggml_compute_params * params,
  9149. struct ggml_tensor * dst) {
  9150. ggml_compute_forward_dup(params, dst);
  9151. }
  9152. // ggml_compute_forward_cont
  9153. static void ggml_compute_forward_cont(
  9154. const struct ggml_compute_params * params,
  9155. struct ggml_tensor * dst) {
  9156. ggml_compute_forward_dup(params, dst);
  9157. }
  9158. // ggml_compute_forward_reshape
  9159. static void ggml_compute_forward_reshape(
  9160. const struct ggml_compute_params * params,
  9161. struct ggml_tensor * dst) {
  9162. // NOP
  9163. UNUSED(params);
  9164. UNUSED(dst);
  9165. }
  9166. // ggml_compute_forward_view
  9167. static void ggml_compute_forward_view(
  9168. const struct ggml_compute_params * params,
  9169. const struct ggml_tensor * dst) {
  9170. // NOP
  9171. UNUSED(params);
  9172. UNUSED(dst);
  9173. }
  9174. // ggml_compute_forward_permute
  9175. static void ggml_compute_forward_permute(
  9176. const struct ggml_compute_params * params,
  9177. const struct ggml_tensor * dst) {
  9178. // NOP
  9179. UNUSED(params);
  9180. UNUSED(dst);
  9181. }
  9182. // ggml_compute_forward_transpose
  9183. static void ggml_compute_forward_transpose(
  9184. const struct ggml_compute_params * params,
  9185. const struct ggml_tensor * dst) {
  9186. // NOP
  9187. UNUSED(params);
  9188. UNUSED(dst);
  9189. }
  9190. // ggml_compute_forward_get_rows
  9191. static void ggml_compute_forward_get_rows_q(
  9192. const struct ggml_compute_params * params,
  9193. struct ggml_tensor * dst) {
  9194. const struct ggml_tensor * src0 = dst->src[0];
  9195. const struct ggml_tensor * src1 = dst->src[1];
  9196. assert(params->ith == 0);
  9197. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9198. return;
  9199. }
  9200. GGML_TENSOR_BINARY_OP_LOCALS
  9201. const int64_t nc = ne00;
  9202. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9203. const enum ggml_type type = src0->type;
  9204. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9205. assert(ne0 == nc);
  9206. assert(ne02 == ne11);
  9207. assert(nb00 == ggml_type_size(type));
  9208. assert(ggml_nrows(dst) == nr);
  9209. // TODO: multi-thread
  9210. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9211. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9212. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9213. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9214. dequantize_row_q(
  9215. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9216. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9217. }
  9218. }
  9219. }
  9220. }
  9221. static void ggml_compute_forward_get_rows_f16(
  9222. const struct ggml_compute_params * params,
  9223. struct ggml_tensor * dst) {
  9224. const struct ggml_tensor * src0 = dst->src[0];
  9225. const struct ggml_tensor * src1 = dst->src[1];
  9226. assert(params->ith == 0);
  9227. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9228. return;
  9229. }
  9230. GGML_TENSOR_BINARY_OP_LOCALS
  9231. const int64_t nc = ne00;
  9232. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9233. assert(ne0 == nc);
  9234. assert(ne02 == ne11);
  9235. assert(nb00 == sizeof(ggml_fp16_t));
  9236. assert(ggml_nrows(dst) == nr);
  9237. // TODO: multi-thread
  9238. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9239. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9240. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9241. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9242. ggml_fp16_to_fp32_row(
  9243. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9244. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9245. }
  9246. }
  9247. }
  9248. }
  9249. static void ggml_compute_forward_get_rows_f32(
  9250. const struct ggml_compute_params * params,
  9251. struct ggml_tensor * dst) {
  9252. const struct ggml_tensor * src0 = dst->src[0];
  9253. const struct ggml_tensor * src1 = dst->src[1];
  9254. assert(params->ith == 0);
  9255. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9256. return;
  9257. }
  9258. GGML_TENSOR_BINARY_OP_LOCALS
  9259. const int64_t nc = ne00;
  9260. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9261. assert(ne0 == nc);
  9262. assert(ne02 == ne11);
  9263. assert(nb00 == sizeof(float));
  9264. assert(ggml_nrows(dst) == nr);
  9265. // TODO: multi-thread
  9266. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9267. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9268. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9269. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9270. ggml_vec_cpy_f32(nc,
  9271. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9272. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9273. }
  9274. }
  9275. }
  9276. }
  9277. static void ggml_compute_forward_get_rows(
  9278. const struct ggml_compute_params * params,
  9279. struct ggml_tensor * dst) {
  9280. const struct ggml_tensor * src0 = dst->src[0];
  9281. switch (src0->type) {
  9282. case GGML_TYPE_Q4_0:
  9283. case GGML_TYPE_Q4_1:
  9284. case GGML_TYPE_Q5_0:
  9285. case GGML_TYPE_Q5_1:
  9286. case GGML_TYPE_Q8_0:
  9287. case GGML_TYPE_Q8_1:
  9288. case GGML_TYPE_Q2_K:
  9289. case GGML_TYPE_Q3_K:
  9290. case GGML_TYPE_Q4_K:
  9291. case GGML_TYPE_Q5_K:
  9292. case GGML_TYPE_Q6_K:
  9293. case GGML_TYPE_IQ2_XXS:
  9294. case GGML_TYPE_IQ2_XS:
  9295. case GGML_TYPE_IQ3_XXS:
  9296. case GGML_TYPE_IQ1_S:
  9297. case GGML_TYPE_IQ4_NL:
  9298. case GGML_TYPE_IQ4_XS:
  9299. case GGML_TYPE_IQ3_S:
  9300. case GGML_TYPE_IQ2_S:
  9301. {
  9302. ggml_compute_forward_get_rows_q(params, dst);
  9303. } break;
  9304. case GGML_TYPE_F16:
  9305. {
  9306. ggml_compute_forward_get_rows_f16(params, dst);
  9307. } break;
  9308. case GGML_TYPE_F32:
  9309. case GGML_TYPE_I32:
  9310. {
  9311. ggml_compute_forward_get_rows_f32(params, dst);
  9312. } break;
  9313. default:
  9314. {
  9315. GGML_ASSERT(false);
  9316. } break;
  9317. }
  9318. //static bool first = true;
  9319. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9320. //if (first) {
  9321. // first = false;
  9322. //} else {
  9323. // for (int k = 0; k < dst->ne[1]; ++k) {
  9324. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9325. // for (int i = 0; i < 16; ++i) {
  9326. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9327. // }
  9328. // printf("\n");
  9329. // }
  9330. // printf("\n");
  9331. // }
  9332. // printf("\n");
  9333. // exit(0);
  9334. //}
  9335. }
  9336. // ggml_compute_forward_get_rows_back
  9337. static void ggml_compute_forward_get_rows_back_f32_f16(
  9338. const struct ggml_compute_params * params,
  9339. struct ggml_tensor * dst) {
  9340. const struct ggml_tensor * src0 = dst->src[0];
  9341. const struct ggml_tensor * src1 = dst->src[1];
  9342. GGML_ASSERT(params->ith == 0);
  9343. GGML_ASSERT(ggml_is_contiguous(dst));
  9344. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9345. if (params->type == GGML_TASK_TYPE_INIT) {
  9346. if (params->ith != 0) {
  9347. return;
  9348. }
  9349. memset(dst->data, 0, ggml_nbytes(dst));
  9350. }
  9351. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9352. return;
  9353. }
  9354. const int nc = src0->ne[0];
  9355. const int nr = ggml_nelements(src1);
  9356. GGML_ASSERT( dst->ne[0] == nc);
  9357. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9358. for (int i = 0; i < nr; ++i) {
  9359. const int r = ((int32_t *) src1->data)[i];
  9360. for (int j = 0; j < nc; ++j) {
  9361. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9362. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9363. }
  9364. }
  9365. }
  9366. static void ggml_compute_forward_get_rows_back_f32(
  9367. const struct ggml_compute_params * params,
  9368. struct ggml_tensor * dst) {
  9369. const struct ggml_tensor * src0 = dst->src[0];
  9370. const struct ggml_tensor * src1 = dst->src[1];
  9371. GGML_ASSERT(params->ith == 0);
  9372. GGML_ASSERT(ggml_is_contiguous(dst));
  9373. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9374. if (params->type == GGML_TASK_TYPE_INIT) {
  9375. if (params->ith != 0) {
  9376. return;
  9377. }
  9378. memset(dst->data, 0, ggml_nbytes(dst));
  9379. }
  9380. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9381. return;
  9382. }
  9383. const int nc = src0->ne[0];
  9384. const int nr = ggml_nelements(src1);
  9385. GGML_ASSERT( dst->ne[0] == nc);
  9386. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9387. for (int i = 0; i < nr; ++i) {
  9388. const int r = ((int32_t *) src1->data)[i];
  9389. ggml_vec_add_f32(nc,
  9390. (float *) ((char *) dst->data + r*dst->nb[1]),
  9391. (float *) ((char *) dst->data + r*dst->nb[1]),
  9392. (float *) ((char *) src0->data + i*src0->nb[1]));
  9393. }
  9394. }
  9395. static void ggml_compute_forward_get_rows_back(
  9396. const struct ggml_compute_params * params,
  9397. struct ggml_tensor * dst) {
  9398. const struct ggml_tensor * src0 = dst->src[0];
  9399. switch (src0->type) {
  9400. case GGML_TYPE_F16:
  9401. {
  9402. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9403. } break;
  9404. case GGML_TYPE_F32:
  9405. {
  9406. ggml_compute_forward_get_rows_back_f32(params, dst);
  9407. } break;
  9408. default:
  9409. {
  9410. GGML_ASSERT(false);
  9411. } break;
  9412. }
  9413. //static bool first = true;
  9414. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9415. //if (first) {
  9416. // first = false;
  9417. //} else {
  9418. // for (int k = 0; k < dst->ne[1]; ++k) {
  9419. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9420. // for (int i = 0; i < 16; ++i) {
  9421. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9422. // }
  9423. // printf("\n");
  9424. // }
  9425. // printf("\n");
  9426. // }
  9427. // printf("\n");
  9428. // exit(0);
  9429. //}
  9430. }
  9431. // ggml_compute_forward_diag
  9432. static void ggml_compute_forward_diag_f32(
  9433. const struct ggml_compute_params * params,
  9434. struct ggml_tensor * dst) {
  9435. const struct ggml_tensor * src0 = dst->src[0];
  9436. GGML_ASSERT(params->ith == 0);
  9437. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9438. return;
  9439. }
  9440. // TODO: handle transposed/permuted matrices
  9441. GGML_TENSOR_UNARY_OP_LOCALS
  9442. GGML_ASSERT(ne00 == ne0);
  9443. GGML_ASSERT(ne00 == ne1);
  9444. GGML_ASSERT(ne01 == 1);
  9445. GGML_ASSERT(ne02 == ne2);
  9446. GGML_ASSERT(ne03 == ne3);
  9447. GGML_ASSERT(nb00 == sizeof(float));
  9448. GGML_ASSERT(nb0 == sizeof(float));
  9449. for (int i3 = 0; i3 < ne3; i3++) {
  9450. for (int i2 = 0; i2 < ne2; i2++) {
  9451. for (int i1 = 0; i1 < ne1; i1++) {
  9452. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9453. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9454. for (int i0 = 0; i0 < i1; i0++) {
  9455. d[i0] = 0;
  9456. }
  9457. d[i1] = s[i1];
  9458. for (int i0 = i1+1; i0 < ne0; i0++) {
  9459. d[i0] = 0;
  9460. }
  9461. }
  9462. }
  9463. }
  9464. }
  9465. static void ggml_compute_forward_diag(
  9466. const struct ggml_compute_params * params,
  9467. struct ggml_tensor * dst) {
  9468. const struct ggml_tensor * src0 = dst->src[0];
  9469. switch (src0->type) {
  9470. case GGML_TYPE_F32:
  9471. {
  9472. ggml_compute_forward_diag_f32(params, dst);
  9473. } break;
  9474. default:
  9475. {
  9476. GGML_ASSERT(false);
  9477. } break;
  9478. }
  9479. }
  9480. // ggml_compute_forward_diag_mask_inf
  9481. static void ggml_compute_forward_diag_mask_f32(
  9482. const struct ggml_compute_params * params,
  9483. struct ggml_tensor * dst,
  9484. const float value) {
  9485. const struct ggml_tensor * src0 = dst->src[0];
  9486. const int ith = params->ith;
  9487. const int nth = params->nth;
  9488. const int n_past = ((int32_t *) dst->op_params)[0];
  9489. const bool inplace = src0->data == dst->data;
  9490. GGML_ASSERT(n_past >= 0);
  9491. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9492. if (ith != 0) {
  9493. return;
  9494. }
  9495. // memcpy needs to be synchronized across threads to avoid race conditions.
  9496. // => do it in INIT phase
  9497. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9498. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9499. memcpy(
  9500. ((char *) dst->data),
  9501. ((char *) src0->data),
  9502. ggml_nbytes(dst));
  9503. }
  9504. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9505. return;
  9506. }
  9507. // TODO: handle transposed/permuted matrices
  9508. const int n = ggml_nrows(src0);
  9509. const int nc = src0->ne[0];
  9510. const int nr = src0->ne[1];
  9511. const int nz = n/nr;
  9512. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9513. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9514. for (int k = 0; k < nz; k++) {
  9515. for (int j = ith; j < nr; j += nth) {
  9516. for (int i = n_past; i < nc; i++) {
  9517. if (i > n_past + j) {
  9518. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9519. }
  9520. }
  9521. }
  9522. }
  9523. }
  9524. static void ggml_compute_forward_diag_mask_inf(
  9525. const struct ggml_compute_params * params,
  9526. struct ggml_tensor * dst) {
  9527. const struct ggml_tensor * src0 = dst->src[0];
  9528. switch (src0->type) {
  9529. case GGML_TYPE_F32:
  9530. {
  9531. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9532. } break;
  9533. default:
  9534. {
  9535. GGML_ASSERT(false);
  9536. } break;
  9537. }
  9538. }
  9539. static void ggml_compute_forward_diag_mask_zero(
  9540. const struct ggml_compute_params * params,
  9541. struct ggml_tensor * dst) {
  9542. const struct ggml_tensor * src0 = dst->src[0];
  9543. switch (src0->type) {
  9544. case GGML_TYPE_F32:
  9545. {
  9546. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9547. } break;
  9548. default:
  9549. {
  9550. GGML_ASSERT(false);
  9551. } break;
  9552. }
  9553. }
  9554. // ggml_compute_forward_soft_max
  9555. static void ggml_compute_forward_soft_max_f32(
  9556. const struct ggml_compute_params * params,
  9557. struct ggml_tensor * dst) {
  9558. const struct ggml_tensor * src0 = dst->src[0];
  9559. const struct ggml_tensor * src1 = dst->src[1];
  9560. const struct ggml_tensor * src2 = dst->src[2];
  9561. assert(ggml_is_contiguous(dst));
  9562. assert(ggml_are_same_shape(src0, dst));
  9563. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9564. return;
  9565. }
  9566. float scale = 1.0f;
  9567. float max_bias = 0.0f;
  9568. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9569. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9570. // TODO: handle transposed/permuted matrices
  9571. const int ith = params->ith;
  9572. const int nth = params->nth;
  9573. GGML_TENSOR_UNARY_OP_LOCALS
  9574. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9575. // TODO: is this supposed to be ceil instead of floor?
  9576. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9577. const uint32_t n_head_kv = ne02;
  9578. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9579. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9580. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9581. const int nc = src0->ne[0];
  9582. const int nr = ggml_nrows(src0);
  9583. // rows per thread
  9584. const int dr = (nr + nth - 1)/nth;
  9585. // row range for this thread
  9586. const int ir0 = dr*ith;
  9587. const int ir1 = MIN(ir0 + dr, nr);
  9588. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9589. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9590. float * pos = src2 ? (float *) src2->data : src0->data;
  9591. for (int i1 = ir0; i1 < ir1; i1++) {
  9592. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9593. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9594. // broadcast the mask across rows
  9595. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9596. ggml_vec_cpy_f32 (nc, wp, sp);
  9597. ggml_vec_scale_f32(nc, wp, scale);
  9598. if (mp) {
  9599. ggml_vec_acc_f32(nc, wp, mp);
  9600. }
  9601. // ALiBi bias
  9602. if (max_bias > 0.0f) {
  9603. const uint32_t h = (i1/ne01)%ne02; // head
  9604. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9605. for (int i = 0; i < nc; i++) {
  9606. wp[i] = wp[i] + slope*pos[i];
  9607. }
  9608. }
  9609. #ifndef NDEBUG
  9610. for (int i = 0; i < nc; ++i) {
  9611. //printf("p[%d] = %f\n", i, p[i]);
  9612. assert(!isnan(wp[i]));
  9613. }
  9614. #endif
  9615. float max = -INFINITY;
  9616. ggml_vec_max_f32(nc, &max, wp);
  9617. ggml_float sum = 0.0;
  9618. uint16_t scvt;
  9619. for (int i = 0; i < nc; i++) {
  9620. if (wp[i] == -INFINITY) {
  9621. dp[i] = 0.0f;
  9622. } else {
  9623. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9624. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9625. memcpy(&scvt, &s, sizeof(scvt));
  9626. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9627. sum += (ggml_float)val;
  9628. dp[i] = val;
  9629. }
  9630. }
  9631. assert(sum > 0.0);
  9632. sum = 1.0/sum;
  9633. ggml_vec_scale_f32(nc, dp, sum);
  9634. #ifndef NDEBUG
  9635. for (int i = 0; i < nc; ++i) {
  9636. assert(!isnan(dp[i]));
  9637. assert(!isinf(dp[i]));
  9638. }
  9639. #endif
  9640. }
  9641. }
  9642. static void ggml_compute_forward_soft_max(
  9643. const struct ggml_compute_params * params,
  9644. struct ggml_tensor * dst) {
  9645. const struct ggml_tensor * src0 = dst->src[0];
  9646. switch (src0->type) {
  9647. case GGML_TYPE_F32:
  9648. {
  9649. ggml_compute_forward_soft_max_f32(params, dst);
  9650. } break;
  9651. default:
  9652. {
  9653. GGML_ASSERT(false);
  9654. } break;
  9655. }
  9656. }
  9657. // ggml_compute_forward_soft_max_back
  9658. static void ggml_compute_forward_soft_max_back_f32(
  9659. const struct ggml_compute_params * params,
  9660. struct ggml_tensor * dst) {
  9661. const struct ggml_tensor * src0 = dst->src[0];
  9662. const struct ggml_tensor * src1 = dst->src[1];
  9663. GGML_ASSERT(ggml_is_contiguous(src0));
  9664. GGML_ASSERT(ggml_is_contiguous(src1));
  9665. GGML_ASSERT(ggml_is_contiguous(dst));
  9666. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9667. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9669. return;
  9670. }
  9671. // TODO: handle transposed/permuted matrices
  9672. const int ith = params->ith;
  9673. const int nth = params->nth;
  9674. const int nc = src0->ne[0];
  9675. const int nr = ggml_nrows(src0);
  9676. // rows per thread
  9677. const int dr = (nr + nth - 1)/nth;
  9678. // row range for this thread
  9679. const int ir0 = dr*ith;
  9680. const int ir1 = MIN(ir0 + dr, nr);
  9681. for (int i1 = ir0; i1 < ir1; i1++) {
  9682. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9683. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9684. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9685. #ifndef NDEBUG
  9686. for (int i = 0; i < nc; ++i) {
  9687. //printf("p[%d] = %f\n", i, p[i]);
  9688. assert(!isnan(dy[i]));
  9689. assert(!isnan(y[i]));
  9690. }
  9691. #endif
  9692. // Jii = yi - yi*yi
  9693. // Jij = -yi*yj
  9694. // J = diag(y)-y.T*y
  9695. // dx = J * dy
  9696. // dxk = sum_i(Jki * dyi)
  9697. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9698. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9699. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9700. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9701. // dxk = -yk * dot(y, dy) + yk*dyk
  9702. // dxk = yk * (- dot(y, dy) + dyk)
  9703. // dxk = yk * (dyk - dot(y, dy))
  9704. //
  9705. // post-order:
  9706. // dot_y_dy := dot(y, dy)
  9707. // dx := dy
  9708. // dx := dx - dot_y_dy
  9709. // dx := dx * y
  9710. // linear runtime, no additional memory
  9711. float dot_y_dy = 0;
  9712. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9713. ggml_vec_cpy_f32 (nc, dx, dy);
  9714. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9715. ggml_vec_mul_f32 (nc, dx, dx, y);
  9716. #ifndef NDEBUG
  9717. for (int i = 0; i < nc; ++i) {
  9718. assert(!isnan(dx[i]));
  9719. assert(!isinf(dx[i]));
  9720. }
  9721. #endif
  9722. }
  9723. }
  9724. static void ggml_compute_forward_soft_max_back(
  9725. const struct ggml_compute_params * params,
  9726. struct ggml_tensor * dst) {
  9727. const struct ggml_tensor * src0 = dst->src[0];
  9728. switch (src0->type) {
  9729. case GGML_TYPE_F32:
  9730. {
  9731. ggml_compute_forward_soft_max_back_f32(params, dst);
  9732. } break;
  9733. default:
  9734. {
  9735. GGML_ASSERT(false);
  9736. } break;
  9737. }
  9738. }
  9739. // ggml_compute_forward_alibi
  9740. static void ggml_compute_forward_alibi_f32(
  9741. const struct ggml_compute_params * params,
  9742. struct ggml_tensor * dst) {
  9743. const struct ggml_tensor * src0 = dst->src[0];
  9744. assert(params->ith == 0);
  9745. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9746. return;
  9747. }
  9748. //const int n_past = ((int32_t *) dst->op_params)[0];
  9749. const int n_head = ((int32_t *) dst->op_params)[1];
  9750. float max_bias;
  9751. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9752. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9753. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9754. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9755. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9756. const int64_t n = ggml_nrows(src0);
  9757. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9758. const size_t nb0 = src0->nb[0];
  9759. const size_t nb1 = src0->nb[1];
  9760. const size_t nb2 = src0->nb[2];
  9761. //const int nb3 = src0->nb[3];
  9762. GGML_ASSERT(nb0 == sizeof(float));
  9763. GGML_ASSERT(n_head == ne2);
  9764. // add alibi to src0 (KQ_scaled)
  9765. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9766. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9767. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9768. for (int64_t k = 0; k < ne2_ne3; k++) {
  9769. // TODO: k*nb2 or k*nb3
  9770. float m_k;
  9771. if (k < n_heads_log2_floor) {
  9772. m_k = powf(m0, k + 1);
  9773. } else {
  9774. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9775. }
  9776. for (int64_t i = 0; i < ne0; i++) {
  9777. for (int64_t j = 0; j < ne1; j++) {
  9778. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9779. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9780. pdst[0] = i * m_k + src[0];
  9781. }
  9782. }
  9783. }
  9784. }
  9785. static void ggml_compute_forward_alibi_f16(
  9786. const struct ggml_compute_params * params,
  9787. struct ggml_tensor * dst) {
  9788. const struct ggml_tensor * src0 = dst->src[0];
  9789. assert(params->ith == 0);
  9790. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9791. return;
  9792. }
  9793. //const int n_past = ((int32_t *) dst->op_params)[0];
  9794. const int n_head = ((int32_t *) dst->op_params)[1];
  9795. float max_bias;
  9796. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9797. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9798. const int ne1 = src0->ne[1]; // seq_len_without_past
  9799. const int ne2 = src0->ne[2]; // n_head -> this is k
  9800. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9801. const int n = ggml_nrows(src0);
  9802. const int ne2_ne3 = n/ne1; // ne2*ne3
  9803. const int nb0 = src0->nb[0];
  9804. const int nb1 = src0->nb[1];
  9805. const int nb2 = src0->nb[2];
  9806. //const int nb3 = src0->nb[3];
  9807. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9808. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9809. GGML_ASSERT(n_head == ne2);
  9810. // add alibi to src0 (KQ_scaled)
  9811. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9812. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9813. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9814. for (int k = 0; k < ne2_ne3; k++) {
  9815. // TODO: k*nb2 or k*nb3
  9816. float m_k;
  9817. if (k < n_heads_log2_floor) {
  9818. m_k = powf(m0, k + 1);
  9819. } else {
  9820. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9821. }
  9822. for (int i = 0; i < ne0; i++) {
  9823. for (int j = 0; j < ne1; j++) {
  9824. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9825. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9826. // we return F32
  9827. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9828. }
  9829. }
  9830. }
  9831. }
  9832. static void ggml_compute_forward_alibi(
  9833. const struct ggml_compute_params * params,
  9834. struct ggml_tensor * dst) {
  9835. const struct ggml_tensor * src0 = dst->src[0];
  9836. switch (src0->type) {
  9837. case GGML_TYPE_F16:
  9838. {
  9839. ggml_compute_forward_alibi_f16(params, dst);
  9840. } break;
  9841. case GGML_TYPE_F32:
  9842. {
  9843. ggml_compute_forward_alibi_f32(params, dst);
  9844. } break;
  9845. case GGML_TYPE_Q4_0:
  9846. case GGML_TYPE_Q4_1:
  9847. case GGML_TYPE_Q5_0:
  9848. case GGML_TYPE_Q5_1:
  9849. case GGML_TYPE_Q8_0:
  9850. case GGML_TYPE_Q8_1:
  9851. case GGML_TYPE_Q2_K:
  9852. case GGML_TYPE_Q3_K:
  9853. case GGML_TYPE_Q4_K:
  9854. case GGML_TYPE_Q5_K:
  9855. case GGML_TYPE_Q6_K:
  9856. case GGML_TYPE_IQ2_XXS:
  9857. case GGML_TYPE_IQ2_XS:
  9858. case GGML_TYPE_IQ3_XXS:
  9859. case GGML_TYPE_IQ1_S:
  9860. case GGML_TYPE_IQ4_NL:
  9861. case GGML_TYPE_IQ4_XS:
  9862. case GGML_TYPE_IQ3_S:
  9863. case GGML_TYPE_IQ2_S:
  9864. case GGML_TYPE_Q8_K:
  9865. case GGML_TYPE_I8:
  9866. case GGML_TYPE_I16:
  9867. case GGML_TYPE_I32:
  9868. case GGML_TYPE_COUNT:
  9869. {
  9870. GGML_ASSERT(false);
  9871. } break;
  9872. }
  9873. }
  9874. // ggml_compute_forward_clamp
  9875. static void ggml_compute_forward_clamp_f32(
  9876. const struct ggml_compute_params * params,
  9877. struct ggml_tensor * dst) {
  9878. const struct ggml_tensor * src0 = dst->src[0];
  9879. assert(params->ith == 0);
  9880. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9881. return;
  9882. }
  9883. float min;
  9884. float max;
  9885. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9886. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9887. const int ith = params->ith;
  9888. const int nth = params->nth;
  9889. const int n = ggml_nrows(src0);
  9890. const int nc = src0->ne[0];
  9891. const size_t nb00 = src0->nb[0];
  9892. const size_t nb01 = src0->nb[1];
  9893. const size_t nb0 = dst->nb[0];
  9894. const size_t nb1 = dst->nb[1];
  9895. GGML_ASSERT( nb0 == sizeof(float));
  9896. GGML_ASSERT(nb00 == sizeof(float));
  9897. for (int j = ith; j < n; j += nth) {
  9898. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9899. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9900. for (int i = 0; i < nc; i++) {
  9901. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9902. }
  9903. }
  9904. }
  9905. static void ggml_compute_forward_clamp(
  9906. const struct ggml_compute_params * params,
  9907. struct ggml_tensor * dst) {
  9908. const struct ggml_tensor * src0 = dst->src[0];
  9909. switch (src0->type) {
  9910. case GGML_TYPE_F32:
  9911. {
  9912. ggml_compute_forward_clamp_f32(params, dst);
  9913. } break;
  9914. case GGML_TYPE_F16:
  9915. case GGML_TYPE_Q4_0:
  9916. case GGML_TYPE_Q4_1:
  9917. case GGML_TYPE_Q5_0:
  9918. case GGML_TYPE_Q5_1:
  9919. case GGML_TYPE_Q8_0:
  9920. case GGML_TYPE_Q8_1:
  9921. case GGML_TYPE_Q2_K:
  9922. case GGML_TYPE_Q3_K:
  9923. case GGML_TYPE_Q4_K:
  9924. case GGML_TYPE_Q5_K:
  9925. case GGML_TYPE_Q6_K:
  9926. case GGML_TYPE_IQ2_XXS:
  9927. case GGML_TYPE_IQ2_XS:
  9928. case GGML_TYPE_IQ3_XXS:
  9929. case GGML_TYPE_IQ1_S:
  9930. case GGML_TYPE_IQ4_NL:
  9931. case GGML_TYPE_IQ4_XS:
  9932. case GGML_TYPE_IQ3_S:
  9933. case GGML_TYPE_IQ2_S:
  9934. case GGML_TYPE_Q8_K:
  9935. case GGML_TYPE_I8:
  9936. case GGML_TYPE_I16:
  9937. case GGML_TYPE_I32:
  9938. case GGML_TYPE_COUNT:
  9939. {
  9940. GGML_ASSERT(false);
  9941. } break;
  9942. }
  9943. }
  9944. // ggml_compute_forward_rope
  9945. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9946. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9947. return 1 - MIN(1, MAX(0, y));
  9948. }
  9949. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9950. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9951. static void rope_yarn(
  9952. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9953. float * cos_theta, float * sin_theta
  9954. ) {
  9955. // Get n-d rotational scaling corrected for extrapolation
  9956. float theta_interp = freq_scale * theta_extrap;
  9957. float theta = theta_interp;
  9958. if (ext_factor != 0.0f) {
  9959. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9960. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9961. // Get n-d magnitude scaling corrected for interpolation
  9962. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9963. }
  9964. *cos_theta = cosf(theta) * mscale;
  9965. *sin_theta = sinf(theta) * mscale;
  9966. }
  9967. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9968. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9969. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9970. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9971. }
  9972. static void ggml_rope_cache_init(
  9973. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9974. float * cache, float sin_sign, float theta_scale
  9975. ) {
  9976. float theta = theta_base;
  9977. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9978. rope_yarn(
  9979. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9980. );
  9981. cache[i0 + 1] *= sin_sign;
  9982. theta *= theta_scale;
  9983. }
  9984. }
  9985. GGML_CALL void ggml_rope_yarn_corr_dims(
  9986. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9987. ) {
  9988. // start and end correction dims
  9989. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9990. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9991. dims[0] = MAX(0, start);
  9992. dims[1] = MIN(n_dims - 1, end);
  9993. }
  9994. static void ggml_compute_forward_rope_f32(
  9995. const struct ggml_compute_params * params,
  9996. struct ggml_tensor * dst,
  9997. const bool forward) {
  9998. const struct ggml_tensor * src0 = dst->src[0];
  9999. const struct ggml_tensor * src1 = dst->src[1];
  10000. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10001. return;
  10002. }
  10003. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10004. // these two only relevant for xPos RoPE:
  10005. float xpos_base;
  10006. bool xpos_down;
  10007. //const int n_past = ((int32_t *) dst->op_params)[0];
  10008. const int n_dims = ((int32_t *) dst->op_params)[1];
  10009. const int mode = ((int32_t *) dst->op_params)[2];
  10010. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10011. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10012. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10013. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10014. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10015. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10016. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10017. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10018. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10019. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10020. GGML_TENSOR_UNARY_OP_LOCALS
  10021. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10022. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10023. GGML_ASSERT(nb00 == sizeof(float));
  10024. const int ith = params->ith;
  10025. const int nth = params->nth;
  10026. const int nr = ggml_nrows(dst);
  10027. GGML_ASSERT(n_dims <= ne0);
  10028. GGML_ASSERT(n_dims % 2 == 0);
  10029. // rows per thread
  10030. const int dr = (nr + nth - 1)/nth;
  10031. // row range for this thread
  10032. const int ir0 = dr*ith;
  10033. const int ir1 = MIN(ir0 + dr, nr);
  10034. // row index used to determine which thread to use
  10035. int ir = 0;
  10036. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10037. const float inv_ndims = -1.f/n_dims;
  10038. float corr_dims[2];
  10039. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10040. const bool is_neox = mode & 2;
  10041. const bool is_glm = mode & 4;
  10042. // backward process uses inverse rotation by cos and sin.
  10043. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10044. // this essentially just switches the sign of sin.
  10045. const float sin_sign = forward ? 1.0f : -1.0f;
  10046. const int32_t * pos = (const int32_t *) src1->data;
  10047. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10048. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10049. const int64_t p = pos[i2];
  10050. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10051. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10052. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10053. }
  10054. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10055. if (ir++ < ir0) continue;
  10056. if (ir > ir1) break;
  10057. float theta_base = (float)p;
  10058. if (is_glm) {
  10059. theta_base = MIN(p, n_ctx - 2);
  10060. float block_theta = MAX(p - (n_ctx - 2), 0);
  10061. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10062. const float cos_theta = cosf(theta_base);
  10063. const float sin_theta = sinf(theta_base) * sin_sign;
  10064. const float cos_block_theta = cosf(block_theta);
  10065. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10066. theta_base *= theta_scale;
  10067. block_theta *= theta_scale;
  10068. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10069. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10070. const float x0 = src[0];
  10071. const float x1 = src[n_dims/2];
  10072. const float x2 = src[n_dims];
  10073. const float x3 = src[n_dims/2*3];
  10074. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10075. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10076. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10077. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10078. }
  10079. } else if (!is_neox) {
  10080. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10081. const float cos_theta = cache[i0 + 0];
  10082. const float sin_theta = cache[i0 + 1];
  10083. // zeta scaling for xPos only:
  10084. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10085. if (xpos_down) zeta = 1.0f / zeta;
  10086. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10087. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10088. const float x0 = src[0];
  10089. const float x1 = src[1];
  10090. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10091. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10092. }
  10093. } else {
  10094. // TODO: this might be wrong for ne0 != n_dims - need double check
  10095. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10096. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10097. theta_base *= freq_scale;
  10098. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10099. if (ic < n_dims) {
  10100. const int64_t ib = 0;
  10101. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10102. float cur_rot = inv_ndims * ic - ib;
  10103. float cos_theta, sin_theta;
  10104. rope_yarn(
  10105. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10106. &cos_theta, &sin_theta
  10107. );
  10108. sin_theta *= sin_sign;
  10109. theta_base *= theta_scale;
  10110. const int64_t i0 = ib*n_dims + ic/2;
  10111. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10112. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10113. const float x0 = src[0];
  10114. const float x1 = src[n_dims/2];
  10115. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10116. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10117. } else {
  10118. const int64_t i0 = ic;
  10119. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10120. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10121. dst_data[0] = src[0];
  10122. dst_data[1] = src[1];
  10123. }
  10124. }
  10125. }
  10126. }
  10127. }
  10128. }
  10129. }
  10130. static void ggml_compute_forward_rope_f16(
  10131. const struct ggml_compute_params * params,
  10132. struct ggml_tensor * dst,
  10133. const bool forward) {
  10134. const struct ggml_tensor * src0 = dst->src[0];
  10135. const struct ggml_tensor * src1 = dst->src[1];
  10136. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10137. return;
  10138. }
  10139. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10140. //const int n_past = ((int32_t *) dst->op_params)[0];
  10141. const int n_dims = ((int32_t *) dst->op_params)[1];
  10142. const int mode = ((int32_t *) dst->op_params)[2];
  10143. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10144. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10145. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10146. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10147. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10148. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10149. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10150. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10151. GGML_TENSOR_UNARY_OP_LOCALS
  10152. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10153. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10154. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10155. const int ith = params->ith;
  10156. const int nth = params->nth;
  10157. const int nr = ggml_nrows(dst);
  10158. GGML_ASSERT(n_dims <= ne0);
  10159. GGML_ASSERT(n_dims % 2 == 0);
  10160. // rows per thread
  10161. const int dr = (nr + nth - 1)/nth;
  10162. // row range for this thread
  10163. const int ir0 = dr*ith;
  10164. const int ir1 = MIN(ir0 + dr, nr);
  10165. // row index used to determine which thread to use
  10166. int ir = 0;
  10167. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10168. const float inv_ndims = -1.f/n_dims;
  10169. float corr_dims[2];
  10170. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10171. const bool is_neox = mode & 2;
  10172. const bool is_glm = mode & 4;
  10173. // backward process uses inverse rotation by cos and sin.
  10174. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10175. // this essentially just switches the sign of sin.
  10176. const float sin_sign = forward ? 1.0f : -1.0f;
  10177. const int32_t * pos = (const int32_t *) src1->data;
  10178. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10179. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10180. const int64_t p = pos[i2];
  10181. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10182. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10183. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10184. }
  10185. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10186. if (ir++ < ir0) continue;
  10187. if (ir > ir1) break;
  10188. float theta_base = (float)p;
  10189. if (is_glm) {
  10190. theta_base = MIN(p, n_ctx - 2);
  10191. float block_theta = MAX(p - (n_ctx - 2), 0);
  10192. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10193. const float cos_theta = cosf(theta_base);
  10194. const float sin_theta = sinf(theta_base) * sin_sign;
  10195. const float cos_block_theta = cosf(block_theta);
  10196. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10197. theta_base *= theta_scale;
  10198. block_theta *= theta_scale;
  10199. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10200. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10201. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10202. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10203. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10204. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10205. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10206. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10207. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10208. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10209. }
  10210. } else if (!is_neox) {
  10211. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10212. const float cos_theta = cache[i0 + 0];
  10213. const float sin_theta = cache[i0 + 1];
  10214. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10215. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10216. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10217. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10218. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10219. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10220. }
  10221. } else {
  10222. // TODO: this might be wrong for ne0 != n_dims - need double check
  10223. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10224. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10225. theta_base *= freq_scale;
  10226. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10227. if (ic < n_dims) {
  10228. const int64_t ib = 0;
  10229. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10230. float cur_rot = inv_ndims * ic - ib;
  10231. float cos_theta, sin_theta;
  10232. rope_yarn(
  10233. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10234. &cos_theta, &sin_theta
  10235. );
  10236. sin_theta *= sin_sign;
  10237. theta_base *= theta_scale;
  10238. const int64_t i0 = ib*n_dims + ic/2;
  10239. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10240. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10241. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10242. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10243. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10244. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10245. } else {
  10246. const int64_t i0 = ic;
  10247. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10248. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10249. dst_data[0] = src[0];
  10250. dst_data[1] = src[1];
  10251. }
  10252. }
  10253. }
  10254. }
  10255. }
  10256. }
  10257. }
  10258. static void ggml_compute_forward_rope(
  10259. const struct ggml_compute_params * params,
  10260. struct ggml_tensor * dst) {
  10261. const struct ggml_tensor * src0 = dst->src[0];
  10262. switch (src0->type) {
  10263. case GGML_TYPE_F16:
  10264. {
  10265. ggml_compute_forward_rope_f16(params, dst, true);
  10266. } break;
  10267. case GGML_TYPE_F32:
  10268. {
  10269. ggml_compute_forward_rope_f32(params, dst, true);
  10270. } break;
  10271. default:
  10272. {
  10273. GGML_ASSERT(false);
  10274. } break;
  10275. }
  10276. }
  10277. // ggml_compute_forward_rope_back
  10278. static void ggml_compute_forward_rope_back(
  10279. const struct ggml_compute_params * params,
  10280. struct ggml_tensor * dst) {
  10281. const struct ggml_tensor * src0 = dst->src[0];
  10282. switch (src0->type) {
  10283. case GGML_TYPE_F16:
  10284. {
  10285. ggml_compute_forward_rope_f16(params, dst, false);
  10286. } break;
  10287. case GGML_TYPE_F32:
  10288. {
  10289. ggml_compute_forward_rope_f32(params, dst, false);
  10290. } break;
  10291. default:
  10292. {
  10293. GGML_ASSERT(false);
  10294. } break;
  10295. }
  10296. }
  10297. // ggml_compute_forward_conv_transpose_1d
  10298. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10299. const struct ggml_compute_params * params,
  10300. struct ggml_tensor * dst) {
  10301. const struct ggml_tensor * src0 = dst->src[0];
  10302. const struct ggml_tensor * src1 = dst->src[1];
  10303. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10304. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10305. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10306. int64_t t0 = ggml_perf_time_us();
  10307. UNUSED(t0);
  10308. GGML_TENSOR_BINARY_OP_LOCALS
  10309. const int ith = params->ith;
  10310. const int nth = params->nth;
  10311. const int nk = ne00*ne01*ne02;
  10312. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10313. GGML_ASSERT(nb10 == sizeof(float));
  10314. if (params->type == GGML_TASK_TYPE_INIT) {
  10315. if (ith != 0) {
  10316. return;
  10317. }
  10318. memset(params->wdata, 0, params->wsize);
  10319. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10320. {
  10321. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10322. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10323. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10324. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10325. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10326. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10327. dst_data[i00*ne02 + i02] = src[i00];
  10328. }
  10329. }
  10330. }
  10331. }
  10332. // permute source data (src1) from (L x Cin) to (Cin x L)
  10333. {
  10334. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10335. ggml_fp16_t * dst_data = wdata;
  10336. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10337. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10338. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10339. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10340. }
  10341. }
  10342. }
  10343. // need to zero dst since we are accumulating into it
  10344. memset(dst->data, 0, ggml_nbytes(dst));
  10345. return;
  10346. }
  10347. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10348. return;
  10349. }
  10350. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10351. // total rows in dst
  10352. const int nr = ne1;
  10353. // rows per thread
  10354. const int dr = (nr + nth - 1)/nth;
  10355. // row range for this thread
  10356. const int ir0 = dr*ith;
  10357. const int ir1 = MIN(ir0 + dr, nr);
  10358. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10359. ggml_fp16_t * const wdata_src = wdata + nk;
  10360. for (int i1 = ir0; i1 < ir1; i1++) {
  10361. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10362. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10363. for (int i10 = 0; i10 < ne10; i10++) {
  10364. const int i1n = i10*ne11;
  10365. for (int i00 = 0; i00 < ne00; i00++) {
  10366. float v = 0;
  10367. ggml_vec_dot_f16(ne02, &v, 0,
  10368. (ggml_fp16_t *) wdata_src + i1n, 0,
  10369. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10370. dst_data[i10*s0 + i00] += v;
  10371. }
  10372. }
  10373. }
  10374. }
  10375. static void ggml_compute_forward_conv_transpose_1d_f32(
  10376. const struct ggml_compute_params * params,
  10377. struct ggml_tensor * dst) {
  10378. const struct ggml_tensor * src0 = dst->src[0];
  10379. const struct ggml_tensor * src1 = dst->src[1];
  10380. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10381. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10382. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10383. int64_t t0 = ggml_perf_time_us();
  10384. UNUSED(t0);
  10385. GGML_TENSOR_BINARY_OP_LOCALS
  10386. const int ith = params->ith;
  10387. const int nth = params->nth;
  10388. const int nk = ne00*ne01*ne02;
  10389. GGML_ASSERT(nb00 == sizeof(float));
  10390. GGML_ASSERT(nb10 == sizeof(float));
  10391. if (params->type == GGML_TASK_TYPE_INIT) {
  10392. if (ith != 0) {
  10393. return;
  10394. }
  10395. memset(params->wdata, 0, params->wsize);
  10396. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10397. {
  10398. float * const wdata = (float *) params->wdata + 0;
  10399. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10400. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10401. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10402. float * dst_data = wdata + i01*ne00*ne02;
  10403. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10404. dst_data[i00*ne02 + i02] = src[i00];
  10405. }
  10406. }
  10407. }
  10408. }
  10409. // prepare source data (src1)
  10410. {
  10411. float * const wdata = (float *) params->wdata + nk;
  10412. float * dst_data = wdata;
  10413. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10414. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10415. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10416. dst_data[i10*ne11 + i11] = src[i10];
  10417. }
  10418. }
  10419. }
  10420. // need to zero dst since we are accumulating into it
  10421. memset(dst->data, 0, ggml_nbytes(dst));
  10422. return;
  10423. }
  10424. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10425. return;
  10426. }
  10427. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10428. // total rows in dst
  10429. const int nr = ne1;
  10430. // rows per thread
  10431. const int dr = (nr + nth - 1)/nth;
  10432. // row range for this thread
  10433. const int ir0 = dr*ith;
  10434. const int ir1 = MIN(ir0 + dr, nr);
  10435. float * const wdata = (float *) params->wdata + 0;
  10436. float * const wdata_src = wdata + nk;
  10437. for (int i1 = ir0; i1 < ir1; i1++) {
  10438. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10439. float * wdata_kernel = wdata + i1*ne02*ne00;
  10440. for (int i10 = 0; i10 < ne10; i10++) {
  10441. const int i1n = i10*ne11;
  10442. for (int i00 = 0; i00 < ne00; i00++) {
  10443. float v = 0;
  10444. ggml_vec_dot_f32(ne02, &v, 0,
  10445. wdata_src + i1n, 0,
  10446. wdata_kernel + i00*ne02, 0, 1);
  10447. dst_data[i10*s0 + i00] += v;
  10448. }
  10449. }
  10450. }
  10451. }
  10452. static void ggml_compute_forward_conv_transpose_1d(
  10453. const struct ggml_compute_params * params,
  10454. struct ggml_tensor * dst) {
  10455. const struct ggml_tensor * src0 = dst->src[0];
  10456. switch (src0->type) {
  10457. case GGML_TYPE_F16:
  10458. {
  10459. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10460. } break;
  10461. case GGML_TYPE_F32:
  10462. {
  10463. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10464. } break;
  10465. default:
  10466. {
  10467. GGML_ASSERT(false);
  10468. } break;
  10469. }
  10470. }
  10471. // src0: kernel [OC, IC, KH, KW]
  10472. // src1: image [N, IC, IH, IW]
  10473. // dst: result [N, OH, OW, IC*KH*KW]
  10474. static void ggml_compute_forward_im2col_f32(
  10475. const struct ggml_compute_params * params,
  10476. struct ggml_tensor * dst) {
  10477. const struct ggml_tensor * src0 = dst->src[0];
  10478. const struct ggml_tensor * src1 = dst->src[1];
  10479. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10480. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10481. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10482. int64_t t0 = ggml_perf_time_us();
  10483. UNUSED(t0);
  10484. GGML_TENSOR_BINARY_OP_LOCALS;
  10485. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10486. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10487. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10488. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10489. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10490. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10491. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10492. const int ith = params->ith;
  10493. const int nth = params->nth;
  10494. const int64_t N = is_2D ? ne13 : ne12;
  10495. const int64_t IC = is_2D ? ne12 : ne11;
  10496. const int64_t IH = is_2D ? ne11 : 1;
  10497. const int64_t IW = ne10;
  10498. const int64_t KH = is_2D ? ne01 : 1;
  10499. const int64_t KW = ne00;
  10500. const int64_t OH = is_2D ? ne2 : 1;
  10501. const int64_t OW = ne1;
  10502. int ofs0 = is_2D ? nb13 : nb12;
  10503. int ofs1 = is_2D ? nb12 : nb11;
  10504. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10505. GGML_ASSERT(nb10 == sizeof(float));
  10506. if (params->type == GGML_TASK_TYPE_INIT) {
  10507. return;
  10508. }
  10509. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10510. return;
  10511. }
  10512. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10513. {
  10514. float * const wdata = (float *) dst->data;
  10515. for (int64_t in = 0; in < N; in++) {
  10516. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10517. for (int64_t iow = 0; iow < OW; iow++) {
  10518. for (int64_t iic = ith; iic < IC; iic += nth) {
  10519. // micro kernel
  10520. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10521. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10522. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10523. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10524. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10525. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10526. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10527. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10528. } else {
  10529. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10530. }
  10531. }
  10532. }
  10533. }
  10534. }
  10535. }
  10536. }
  10537. }
  10538. }
  10539. // src0: kernel [OC, IC, KH, KW]
  10540. // src1: image [N, IC, IH, IW]
  10541. // dst: result [N, OH, OW, IC*KH*KW]
  10542. static void ggml_compute_forward_im2col_f16(
  10543. const struct ggml_compute_params * params,
  10544. struct ggml_tensor * dst) {
  10545. const struct ggml_tensor * src0 = dst->src[0];
  10546. const struct ggml_tensor * src1 = dst->src[1];
  10547. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10548. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10549. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10550. int64_t t0 = ggml_perf_time_us();
  10551. UNUSED(t0);
  10552. GGML_TENSOR_BINARY_OP_LOCALS;
  10553. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10554. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10555. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10556. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10557. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10558. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10559. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10560. const int ith = params->ith;
  10561. const int nth = params->nth;
  10562. const int64_t N = is_2D ? ne13 : ne12;
  10563. const int64_t IC = is_2D ? ne12 : ne11;
  10564. const int64_t IH = is_2D ? ne11 : 1;
  10565. const int64_t IW = ne10;
  10566. const int64_t KH = is_2D ? ne01 : 1;
  10567. const int64_t KW = ne00;
  10568. const int64_t OH = is_2D ? ne2 : 1;
  10569. const int64_t OW = ne1;
  10570. int ofs0 = is_2D ? nb13 : nb12;
  10571. int ofs1 = is_2D ? nb12 : nb11;
  10572. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10573. GGML_ASSERT(nb10 == sizeof(float));
  10574. if (params->type == GGML_TASK_TYPE_INIT) {
  10575. return;
  10576. }
  10577. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10578. return;
  10579. }
  10580. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10581. {
  10582. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10583. for (int64_t in = 0; in < N; in++) {
  10584. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10585. for (int64_t iow = 0; iow < OW; iow++) {
  10586. for (int64_t iic = ith; iic < IC; iic += nth) {
  10587. // micro kernel
  10588. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10589. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10590. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10591. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10592. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10593. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10594. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10595. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10596. } else {
  10597. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10598. }
  10599. }
  10600. }
  10601. }
  10602. }
  10603. }
  10604. }
  10605. }
  10606. }
  10607. static void ggml_compute_forward_im2col(
  10608. const struct ggml_compute_params * params,
  10609. struct ggml_tensor * dst) {
  10610. switch (dst->type) {
  10611. case GGML_TYPE_F16:
  10612. {
  10613. ggml_compute_forward_im2col_f16(params, dst);
  10614. } break;
  10615. case GGML_TYPE_F32:
  10616. {
  10617. ggml_compute_forward_im2col_f32(params, dst);
  10618. } break;
  10619. default:
  10620. {
  10621. GGML_ASSERT(false);
  10622. } break;
  10623. }
  10624. }
  10625. // ggml_compute_forward_conv_transpose_2d
  10626. static void ggml_compute_forward_conv_transpose_2d(
  10627. const struct ggml_compute_params * params,
  10628. struct ggml_tensor * dst) {
  10629. const struct ggml_tensor * src0 = dst->src[0];
  10630. const struct ggml_tensor * src1 = dst->src[1];
  10631. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10632. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10633. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10634. int64_t t0 = ggml_perf_time_us();
  10635. UNUSED(t0);
  10636. GGML_TENSOR_BINARY_OP_LOCALS
  10637. const int ith = params->ith;
  10638. const int nth = params->nth;
  10639. const int nk = ne00*ne01*ne02*ne03;
  10640. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10641. GGML_ASSERT(nb10 == sizeof(float));
  10642. if (params->type == GGML_TASK_TYPE_INIT) {
  10643. if (ith != 0) {
  10644. return;
  10645. }
  10646. memset(params->wdata, 0, params->wsize);
  10647. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10648. {
  10649. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10650. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10651. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10652. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10653. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10654. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10655. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10656. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10657. }
  10658. }
  10659. }
  10660. }
  10661. }
  10662. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10663. {
  10664. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10665. for (int i12 = 0; i12 < ne12; i12++) {
  10666. for (int i11 = 0; i11 < ne11; i11++) {
  10667. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10668. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10669. for (int i10 = 0; i10 < ne10; i10++) {
  10670. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10671. }
  10672. }
  10673. }
  10674. }
  10675. memset(dst->data, 0, ggml_nbytes(dst));
  10676. return;
  10677. }
  10678. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10679. return;
  10680. }
  10681. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10682. // total patches in dst
  10683. const int np = ne2;
  10684. // patches per thread
  10685. const int dp = (np + nth - 1)/nth;
  10686. // patch range for this thread
  10687. const int ip0 = dp*ith;
  10688. const int ip1 = MIN(ip0 + dp, np);
  10689. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10690. ggml_fp16_t * const wdata_src = wdata + nk;
  10691. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10692. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10693. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10694. for (int i11 = 0; i11 < ne11; i11++) {
  10695. for (int i10 = 0; i10 < ne10; i10++) {
  10696. const int i1n = i11*ne10*ne12 + i10*ne12;
  10697. for (int i01 = 0; i01 < ne01; i01++) {
  10698. for (int i00 = 0; i00 < ne00; i00++) {
  10699. float v = 0;
  10700. ggml_vec_dot_f16(ne03, &v, 0,
  10701. wdata_src + i1n, 0,
  10702. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10703. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10704. }
  10705. }
  10706. }
  10707. }
  10708. }
  10709. }
  10710. // ggml_compute_forward_pool_1d_sk_p0
  10711. static void ggml_compute_forward_pool_1d_sk_p0(
  10712. const struct ggml_compute_params * params,
  10713. const enum ggml_op_pool op,
  10714. const int k,
  10715. struct ggml_tensor * dst) {
  10716. const struct ggml_tensor * src = dst->src[0];
  10717. assert(src->type == GGML_TYPE_F32);
  10718. assert(params->ith == 0);
  10719. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10720. return;
  10721. }
  10722. const char * cdata = (const char *)src->data;
  10723. const char * const data_end = cdata + ggml_nbytes(src);
  10724. float * drow = (float *)dst->data;
  10725. const int64_t rs = dst->ne[0];
  10726. while (cdata < data_end) {
  10727. const float * const srow = (const float *)cdata;
  10728. int j = 0;
  10729. for (int64_t i = 0; i < rs; ++i) {
  10730. switch (op) {
  10731. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10732. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10733. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10734. }
  10735. for (int ki = 0; ki < k; ++ki) {
  10736. switch (op) {
  10737. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10738. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10739. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10740. }
  10741. ++j;
  10742. }
  10743. switch (op) {
  10744. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10745. case GGML_OP_POOL_MAX: break;
  10746. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10747. }
  10748. }
  10749. cdata += src->nb[1];
  10750. drow += rs;
  10751. }
  10752. }
  10753. // ggml_compute_forward_pool_1d
  10754. static void ggml_compute_forward_pool_1d(
  10755. const struct ggml_compute_params * params,
  10756. struct ggml_tensor * dst) {
  10757. const int32_t * opts = (const int32_t *)dst->op_params;
  10758. enum ggml_op_pool op = opts[0];
  10759. const int k0 = opts[1];
  10760. const int s0 = opts[2];
  10761. const int p0 = opts[3];
  10762. GGML_ASSERT(p0 == 0); // padding not supported
  10763. GGML_ASSERT(k0 == s0); // only s = k supported
  10764. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10765. }
  10766. // ggml_compute_forward_pool_2d
  10767. static void ggml_compute_forward_pool_2d(
  10768. const struct ggml_compute_params * params,
  10769. struct ggml_tensor * dst) {
  10770. const struct ggml_tensor * src = dst->src[0];
  10771. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10772. GGML_ASSERT(params->ith == 0);
  10773. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10774. return;
  10775. }
  10776. const int32_t * opts = (const int32_t *)dst->op_params;
  10777. enum ggml_op_pool op = opts[0];
  10778. const int k0 = opts[1];
  10779. const int k1 = opts[2];
  10780. const int s0 = opts[3];
  10781. const int s1 = opts[4];
  10782. const int p0 = opts[5];
  10783. const int p1 = opts[6];
  10784. const char * cdata = (const char*)src->data;
  10785. const char * const data_end = cdata + ggml_nbytes(src);
  10786. const int64_t px = dst->ne[0];
  10787. const int64_t py = dst->ne[1];
  10788. const int64_t pa = px * py;
  10789. float * dplane = (float *)dst->data;
  10790. const int ka = k0 * k1;
  10791. const int offset0 = -p0;
  10792. const int offset1 = -p1;
  10793. while (cdata < data_end) {
  10794. for (int oy = 0; oy < py; ++oy) {
  10795. float * const drow = dplane + oy * px;
  10796. for (int ox = 0; ox < px; ++ox) {
  10797. float * const out = drow + ox;
  10798. switch (op) {
  10799. case GGML_OP_POOL_AVG: *out = 0; break;
  10800. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10801. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10802. }
  10803. const int ix = offset0 + ox * s0;
  10804. const int iy = offset1 + oy * s1;
  10805. for (int ky = 0; ky < k1; ++ky) {
  10806. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10807. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10808. for (int kx = 0; kx < k0; ++kx) {
  10809. int j = ix + kx;
  10810. if (j < 0 || j >= src->ne[0]) continue;
  10811. switch (op) {
  10812. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10813. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10814. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10815. }
  10816. }
  10817. }
  10818. switch (op) {
  10819. case GGML_OP_POOL_AVG: *out /= ka; break;
  10820. case GGML_OP_POOL_MAX: break;
  10821. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10822. }
  10823. }
  10824. }
  10825. cdata += src->nb[2];
  10826. dplane += pa;
  10827. }
  10828. }
  10829. // ggml_compute_forward_upscale
  10830. static void ggml_compute_forward_upscale_f32(
  10831. const struct ggml_compute_params * params,
  10832. struct ggml_tensor * dst) {
  10833. const struct ggml_tensor * src0 = dst->src[0];
  10834. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10835. return;
  10836. }
  10837. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10838. const int ith = params->ith;
  10839. const int nth = params->nth;
  10840. GGML_TENSOR_UNARY_OP_LOCALS
  10841. const int scale_factor = dst->op_params[0];
  10842. // TODO: optimize
  10843. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10844. const int64_t i03 = i3;
  10845. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10846. const int64_t i02 = i2;
  10847. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10848. const int64_t i01 = i1 / scale_factor;
  10849. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10850. const int64_t i00 = i0 / scale_factor;
  10851. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10852. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10853. *y = *x;
  10854. }
  10855. }
  10856. }
  10857. }
  10858. }
  10859. static void ggml_compute_forward_upscale(
  10860. const struct ggml_compute_params * params,
  10861. struct ggml_tensor * dst) {
  10862. const struct ggml_tensor * src0 = dst->src[0];
  10863. switch (src0->type) {
  10864. case GGML_TYPE_F32:
  10865. {
  10866. ggml_compute_forward_upscale_f32(params, dst);
  10867. } break;
  10868. default:
  10869. {
  10870. GGML_ASSERT(false);
  10871. } break;
  10872. }
  10873. }
  10874. // ggml_compute_forward_pad
  10875. static void ggml_compute_forward_pad_f32(
  10876. const struct ggml_compute_params * params,
  10877. struct ggml_tensor * dst) {
  10878. const struct ggml_tensor * src0 = dst->src[0];
  10879. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10880. return;
  10881. }
  10882. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10883. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10884. const int ith = params->ith;
  10885. const int nth = params->nth;
  10886. GGML_TENSOR_UNARY_OP_LOCALS
  10887. float * dst_ptr = (float *) dst->data;
  10888. // TODO: optimize
  10889. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10890. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10891. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10892. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10893. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10894. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10895. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10896. dst_ptr[dst_idx] = *src_ptr;
  10897. } else {
  10898. dst_ptr[dst_idx] = 0;
  10899. }
  10900. }
  10901. }
  10902. }
  10903. }
  10904. }
  10905. static void ggml_compute_forward_pad(
  10906. const struct ggml_compute_params * params,
  10907. struct ggml_tensor * dst) {
  10908. const struct ggml_tensor * src0 = dst->src[0];
  10909. switch (src0->type) {
  10910. case GGML_TYPE_F32:
  10911. {
  10912. ggml_compute_forward_pad_f32(params, dst);
  10913. } break;
  10914. default:
  10915. {
  10916. GGML_ASSERT(false);
  10917. } break;
  10918. }
  10919. }
  10920. // ggml_compute_forward_argsort
  10921. static void ggml_compute_forward_argsort_f32(
  10922. const struct ggml_compute_params * params,
  10923. struct ggml_tensor * dst) {
  10924. const struct ggml_tensor * src0 = dst->src[0];
  10925. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10926. return;
  10927. }
  10928. GGML_TENSOR_UNARY_OP_LOCALS
  10929. GGML_ASSERT(nb0 == sizeof(float));
  10930. const int ith = params->ith;
  10931. const int nth = params->nth;
  10932. const int64_t nr = ggml_nrows(src0);
  10933. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10934. for (int64_t i = ith; i < nr; i += nth) {
  10935. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10936. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10937. for (int64_t j = 0; j < ne0; j++) {
  10938. dst_data[j] = j;
  10939. }
  10940. // C doesn't have a functional sort, so we do a bubble sort instead
  10941. for (int64_t j = 0; j < ne0; j++) {
  10942. for (int64_t k = j + 1; k < ne0; k++) {
  10943. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10944. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10945. int32_t tmp = dst_data[j];
  10946. dst_data[j] = dst_data[k];
  10947. dst_data[k] = tmp;
  10948. }
  10949. }
  10950. }
  10951. }
  10952. }
  10953. static void ggml_compute_forward_argsort(
  10954. const struct ggml_compute_params * params,
  10955. struct ggml_tensor * dst) {
  10956. const struct ggml_tensor * src0 = dst->src[0];
  10957. switch (src0->type) {
  10958. case GGML_TYPE_F32:
  10959. {
  10960. ggml_compute_forward_argsort_f32(params, dst);
  10961. } break;
  10962. default:
  10963. {
  10964. GGML_ASSERT(false);
  10965. } break;
  10966. }
  10967. }
  10968. // ggml_compute_forward_flash_attn
  10969. static void ggml_compute_forward_flash_attn_f32(
  10970. const struct ggml_compute_params * params,
  10971. const bool masked,
  10972. struct ggml_tensor * dst) {
  10973. const struct ggml_tensor * q = dst->src[0];
  10974. const struct ggml_tensor * k = dst->src[1];
  10975. const struct ggml_tensor * v = dst->src[2];
  10976. int64_t t0 = ggml_perf_time_us();
  10977. UNUSED(t0);
  10978. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10979. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10980. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10981. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10982. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10983. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10984. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10985. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10986. const int ith = params->ith;
  10987. const int nth = params->nth;
  10988. const int64_t D = neq0;
  10989. const int64_t N = neq1;
  10990. const int64_t P = nek1 - N;
  10991. const int64_t M = P + N;
  10992. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10993. GGML_ASSERT(ne0 == D);
  10994. GGML_ASSERT(ne1 == N);
  10995. GGML_ASSERT(P >= 0);
  10996. GGML_ASSERT(nbq0 == sizeof(float));
  10997. GGML_ASSERT(nbk0 == sizeof(float));
  10998. GGML_ASSERT(nbv0 == sizeof(float));
  10999. GGML_ASSERT(neq0 == D);
  11000. GGML_ASSERT(nek0 == D);
  11001. GGML_ASSERT(nev1 == D);
  11002. GGML_ASSERT(neq1 == N);
  11003. GGML_ASSERT(nek1 == N + P);
  11004. GGML_ASSERT(nev1 == D);
  11005. // dst cannot be transposed or permuted
  11006. GGML_ASSERT(nb0 == sizeof(float));
  11007. GGML_ASSERT(nb0 <= nb1);
  11008. GGML_ASSERT(nb1 <= nb2);
  11009. GGML_ASSERT(nb2 <= nb3);
  11010. if (params->type == GGML_TASK_TYPE_INIT) {
  11011. return;
  11012. }
  11013. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11014. return;
  11015. }
  11016. // parallelize by q rows using ggml_vec_dot_f32
  11017. // total rows in q
  11018. const int nr = neq1*neq2*neq3;
  11019. // rows per thread
  11020. const int dr = (nr + nth - 1)/nth;
  11021. // row range for this thread
  11022. const int ir0 = dr*ith;
  11023. const int ir1 = MIN(ir0 + dr, nr);
  11024. const float scale = 1.0f/sqrtf(D);
  11025. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11026. for (int ir = ir0; ir < ir1; ++ir) {
  11027. // q indices
  11028. const int iq3 = ir/(neq2*neq1);
  11029. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11030. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11031. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11032. for (int i = M; i < Mup; ++i) {
  11033. S[i] = -INFINITY;
  11034. }
  11035. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11036. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11037. // k indices
  11038. const int ik3 = iq3;
  11039. const int ik2 = iq2 % nek2;
  11040. const int ik1 = ic;
  11041. // S indices
  11042. const int i1 = ik1;
  11043. ggml_vec_dot_f32(neq0,
  11044. S + i1, 0,
  11045. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11046. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11047. }
  11048. // scale
  11049. ggml_vec_scale_f32(masked_begin, S, scale);
  11050. for (int64_t i = masked_begin; i < M; i++) {
  11051. S[i] = -INFINITY;
  11052. }
  11053. // softmax
  11054. // exclude known -INF S[..] values from max and loop
  11055. // dont forget to set their SW values to zero
  11056. {
  11057. float max = -INFINITY;
  11058. ggml_vec_max_f32(masked_begin, &max, S);
  11059. ggml_float sum = 0.0;
  11060. {
  11061. #ifdef GGML_SOFT_MAX_ACCELERATE
  11062. max = -max;
  11063. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11064. vvexpf(S, S, &Mup);
  11065. ggml_vec_sum_f32(Mup, &sum, S);
  11066. #else
  11067. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11068. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11069. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11070. if (i >= masked_begin) {
  11071. break;
  11072. }
  11073. float * SS = S + i;
  11074. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11075. if (i + j >= masked_begin) {
  11076. break;
  11077. } else if (SS[j] == -INFINITY) {
  11078. SS[j] = 0.0f;
  11079. } else {
  11080. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11081. const float val = expf(SS[j] - max);
  11082. #else
  11083. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11084. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11085. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11086. #endif
  11087. sump[j] += (ggml_float)val;
  11088. SS[j] = val;
  11089. }
  11090. }
  11091. }
  11092. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11093. sum += sump[i];
  11094. }
  11095. #endif
  11096. }
  11097. assert(sum > 0.0);
  11098. sum = 1.0/sum;
  11099. ggml_vec_scale_f32(masked_begin, S, sum);
  11100. #ifndef NDEBUG
  11101. for (int i = 0; i < masked_begin; ++i) {
  11102. assert(!isnan(S[i]));
  11103. assert(!isinf(S[i]));
  11104. }
  11105. #endif
  11106. }
  11107. for (int64_t ic = 0; ic < nev1; ++ic) {
  11108. // dst indices
  11109. const int i1 = iq1;
  11110. const int i2 = iq2;
  11111. const int i3 = iq3;
  11112. // v indices
  11113. const int iv2 = iq2 % nev2;
  11114. const int iv3 = iq3;
  11115. ggml_vec_dot_f32(masked_begin,
  11116. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11117. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11118. S, 0, 1);
  11119. }
  11120. }
  11121. }
  11122. static void ggml_compute_forward_flash_attn_f16(
  11123. const struct ggml_compute_params * params,
  11124. const bool masked,
  11125. struct ggml_tensor * dst) {
  11126. const struct ggml_tensor * q = dst->src[0];
  11127. const struct ggml_tensor * k = dst->src[1];
  11128. const struct ggml_tensor * v = dst->src[2];
  11129. int64_t t0 = ggml_perf_time_us();
  11130. UNUSED(t0);
  11131. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11132. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11133. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11134. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11135. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11136. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11137. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11138. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11139. const int ith = params->ith;
  11140. const int nth = params->nth;
  11141. const int64_t D = neq0;
  11142. const int64_t N = neq1;
  11143. const int64_t P = nek1 - N;
  11144. const int64_t M = P + N;
  11145. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11146. GGML_ASSERT(ne0 == D);
  11147. GGML_ASSERT(ne1 == N);
  11148. GGML_ASSERT(P >= 0);
  11149. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11150. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11151. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11152. GGML_ASSERT(neq0 == D);
  11153. GGML_ASSERT(nek0 == D);
  11154. GGML_ASSERT(nev1 == D);
  11155. GGML_ASSERT(neq1 == N);
  11156. GGML_ASSERT(nek1 == N + P);
  11157. GGML_ASSERT(nev1 == D);
  11158. // dst cannot be transposed or permuted
  11159. GGML_ASSERT(nb0 == sizeof(float));
  11160. GGML_ASSERT(nb0 <= nb1);
  11161. GGML_ASSERT(nb1 <= nb2);
  11162. GGML_ASSERT(nb2 <= nb3);
  11163. if (params->type == GGML_TASK_TYPE_INIT) {
  11164. return;
  11165. }
  11166. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11167. return;
  11168. }
  11169. // parallelize by q rows using ggml_vec_dot_f32
  11170. // total rows in q
  11171. const int nr = neq1*neq2*neq3;
  11172. // rows per thread
  11173. const int dr = (nr + nth - 1)/nth;
  11174. // row range for this thread
  11175. const int ir0 = dr*ith;
  11176. const int ir1 = MIN(ir0 + dr, nr);
  11177. const float scale = 1.0f/sqrtf(D);
  11178. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11179. for (int ir = ir0; ir < ir1; ++ir) {
  11180. // q indices
  11181. const int iq3 = ir/(neq2*neq1);
  11182. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11183. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11184. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11185. for (int i = M; i < Mup; ++i) {
  11186. S[i] = -INFINITY;
  11187. }
  11188. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11189. for (int64_t ic = 0; ic < nek1; ++ic) {
  11190. // k indices
  11191. const int ik3 = iq3;
  11192. const int ik2 = iq2 % nek2;
  11193. const int ik1 = ic;
  11194. // S indices
  11195. const int i1 = ik1;
  11196. ggml_vec_dot_f16(neq0,
  11197. S + i1, 0,
  11198. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11199. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11200. }
  11201. } else {
  11202. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11203. // k indices
  11204. const int ik3 = iq3;
  11205. const int ik2 = iq2 % nek2;
  11206. const int ik1 = ic;
  11207. // S indices
  11208. const int i1 = ik1;
  11209. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11210. S + i1,
  11211. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11212. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11213. }
  11214. }
  11215. // scale
  11216. ggml_vec_scale_f32(nek1, S, scale);
  11217. if (masked) {
  11218. for (int64_t i = P; i < M; i++) {
  11219. if (i > P + iq1) {
  11220. S[i] = -INFINITY;
  11221. }
  11222. }
  11223. }
  11224. // softmax
  11225. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11226. // dont forget to set their S values to zero
  11227. {
  11228. float max = -INFINITY;
  11229. ggml_vec_max_f32(M, &max, S);
  11230. ggml_float sum = 0.0;
  11231. {
  11232. #ifdef GGML_SOFT_MAX_ACCELERATE
  11233. max = -max;
  11234. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11235. vvexpf(S, S, &Mup);
  11236. ggml_vec_sum_f32(Mup, &sum, S);
  11237. #else
  11238. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11239. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11240. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11241. float * SS = S + i;
  11242. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11243. if (SS[j] == -INFINITY) {
  11244. SS[j] = 0.0f;
  11245. } else {
  11246. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11247. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11248. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11249. sump[j] += (ggml_float)val;
  11250. SS[j] = val;
  11251. }
  11252. }
  11253. }
  11254. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11255. sum += sump[i];
  11256. }
  11257. #endif
  11258. }
  11259. assert(sum > 0.0);
  11260. sum = 1.0/sum;
  11261. ggml_vec_scale_f32(M, S, sum);
  11262. #ifndef NDEBUG
  11263. for (int i = 0; i < M; ++i) {
  11264. assert(!isnan(S[i]));
  11265. assert(!isinf(S[i]));
  11266. }
  11267. #endif
  11268. }
  11269. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11270. for (int64_t i = 0; i < M; i++) {
  11271. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11272. }
  11273. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11274. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11275. for (int64_t ic = 0; ic < nev1; ++ic) {
  11276. // dst indices
  11277. const int i1 = iq1;
  11278. const int i2 = iq2;
  11279. const int i3 = iq3;
  11280. // v indices
  11281. const int iv2 = iq2 % nev2;
  11282. const int iv3 = iq3;
  11283. ggml_vec_dot_f16(nev0,
  11284. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11285. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11286. S16, 0, 1);
  11287. }
  11288. } else {
  11289. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11290. // dst indices
  11291. const int i1 = iq1;
  11292. const int i2 = iq2;
  11293. const int i3 = iq3;
  11294. // v indices
  11295. const int iv2 = iq2 % nev2;
  11296. const int iv3 = iq3;
  11297. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11298. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11299. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11300. S16);
  11301. }
  11302. }
  11303. }
  11304. }
  11305. static void ggml_compute_forward_flash_attn(
  11306. const struct ggml_compute_params * params,
  11307. const bool masked,
  11308. struct ggml_tensor * dst) {
  11309. const struct ggml_tensor * q = dst->src[0];
  11310. switch (q->type) {
  11311. case GGML_TYPE_F16:
  11312. {
  11313. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11314. } break;
  11315. case GGML_TYPE_F32:
  11316. {
  11317. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11318. } break;
  11319. default:
  11320. {
  11321. GGML_ASSERT(false);
  11322. } break;
  11323. }
  11324. }
  11325. // ggml_compute_forward_flash_ff
  11326. static void ggml_compute_forward_flash_ff_f16(
  11327. const struct ggml_compute_params * params,
  11328. struct ggml_tensor * dst) {
  11329. const struct ggml_tensor * a = dst->src[0]; // F16
  11330. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11331. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11332. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11333. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11334. int64_t t0 = ggml_perf_time_us();
  11335. UNUSED(t0);
  11336. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11337. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11338. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11339. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11340. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11341. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11342. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11343. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11344. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11345. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11346. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11347. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11348. const int ith = params->ith;
  11349. const int nth = params->nth;
  11350. const int64_t D = nea0;
  11351. //const int64_t N = nea1;
  11352. const int64_t M = neb01;
  11353. GGML_ASSERT(ne0 == nea0);
  11354. GGML_ASSERT(ne1 == nea1);
  11355. GGML_ASSERT(ne2 == nea2);
  11356. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11357. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11358. GGML_ASSERT(nbb10 == sizeof(float));
  11359. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11360. GGML_ASSERT(nbc10 == sizeof(float));
  11361. GGML_ASSERT(neb00 == D);
  11362. GGML_ASSERT(neb01 == M);
  11363. GGML_ASSERT(neb10 == M);
  11364. GGML_ASSERT(neb11 == 1);
  11365. GGML_ASSERT(nec00 == M);
  11366. GGML_ASSERT(nec01 == D);
  11367. GGML_ASSERT(nec10 == D);
  11368. GGML_ASSERT(nec11 == 1);
  11369. // dst cannot be transposed or permuted
  11370. GGML_ASSERT(nb0 == sizeof(float));
  11371. GGML_ASSERT(nb0 <= nb1);
  11372. GGML_ASSERT(nb1 <= nb2);
  11373. GGML_ASSERT(nb2 <= nb3);
  11374. if (params->type == GGML_TASK_TYPE_INIT) {
  11375. return;
  11376. }
  11377. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11378. return;
  11379. }
  11380. // parallelize by a rows using ggml_vec_dot_f32
  11381. // total rows in a
  11382. const int nr = nea1*nea2*nea3;
  11383. // rows per thread
  11384. const int dr = (nr + nth - 1)/nth;
  11385. // row range for this thread
  11386. const int ir0 = dr*ith;
  11387. const int ir1 = MIN(ir0 + dr, nr);
  11388. for (int ir = ir0; ir < ir1; ++ir) {
  11389. // a indices
  11390. const int ia3 = ir/(nea2*nea1);
  11391. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11392. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11393. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11394. for (int64_t ic = 0; ic < neb01; ++ic) {
  11395. // b0 indices
  11396. const int ib03 = ia3;
  11397. const int ib02 = ia2;
  11398. const int ib01 = ic;
  11399. // S indices
  11400. const int i1 = ib01;
  11401. ggml_vec_dot_f16(nea0,
  11402. S + i1, 0,
  11403. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11404. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11405. }
  11406. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11407. //ggml_vec_gelu_f32(neb01, S, S);
  11408. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11409. for (int64_t i = 0; i < M; i++) {
  11410. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11411. }
  11412. ggml_vec_gelu_f16(neb01, S16, S16);
  11413. {
  11414. // dst indices
  11415. const int i1 = ia1;
  11416. const int i2 = ia2;
  11417. const int i3 = ia3;
  11418. for (int64_t ic = 0; ic < nec01; ++ic) {
  11419. ggml_vec_dot_f16(neb01,
  11420. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11421. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11422. S16, 0, 1);
  11423. }
  11424. ggml_vec_add_f32(nec01,
  11425. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11426. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11427. (float *) c1->data);
  11428. }
  11429. }
  11430. }
  11431. static void ggml_compute_forward_flash_ff(
  11432. const struct ggml_compute_params * params,
  11433. struct ggml_tensor * dst) {
  11434. const struct ggml_tensor * b0 = dst->src[1];
  11435. switch (b0->type) {
  11436. case GGML_TYPE_F16:
  11437. {
  11438. ggml_compute_forward_flash_ff_f16(params, dst);
  11439. } break;
  11440. case GGML_TYPE_F32:
  11441. {
  11442. GGML_ASSERT(false); // TODO
  11443. } break;
  11444. default:
  11445. {
  11446. GGML_ASSERT(false);
  11447. } break;
  11448. }
  11449. }
  11450. // ggml_compute_forward_flash_attn_back
  11451. static void ggml_compute_forward_flash_attn_back_f32(
  11452. const struct ggml_compute_params * params,
  11453. const bool masked,
  11454. struct ggml_tensor * dst) {
  11455. const struct ggml_tensor * q = dst->src[0];
  11456. const struct ggml_tensor * k = dst->src[1];
  11457. const struct ggml_tensor * v = dst->src[2];
  11458. const struct ggml_tensor * d = dst->src[3];
  11459. int64_t t0 = ggml_perf_time_us();
  11460. UNUSED(t0);
  11461. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11462. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11463. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11464. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11465. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11466. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11467. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11468. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11469. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11470. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11471. const int ith = params->ith;
  11472. const int nth = params->nth;
  11473. const int64_t D = neq0;
  11474. const int64_t N = neq1;
  11475. const int64_t P = nek1 - N;
  11476. const int64_t M = P + N;
  11477. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11478. const int mxDM = MAX(D, Mup);
  11479. // GGML_ASSERT(ne0 == D);
  11480. // GGML_ASSERT(ne1 == N);
  11481. GGML_ASSERT(P >= 0);
  11482. GGML_ASSERT(nbq0 == sizeof(float));
  11483. GGML_ASSERT(nbk0 == sizeof(float));
  11484. GGML_ASSERT(nbv0 == sizeof(float));
  11485. GGML_ASSERT(neq0 == D);
  11486. GGML_ASSERT(nek0 == D);
  11487. GGML_ASSERT(nev1 == D);
  11488. GGML_ASSERT(ned0 == D);
  11489. GGML_ASSERT(neq1 == N);
  11490. GGML_ASSERT(nek1 == N + P);
  11491. GGML_ASSERT(nev1 == D);
  11492. GGML_ASSERT(ned1 == N);
  11493. // dst cannot be transposed or permuted
  11494. GGML_ASSERT(nb0 == sizeof(float));
  11495. GGML_ASSERT(nb0 <= nb1);
  11496. GGML_ASSERT(nb1 <= nb2);
  11497. GGML_ASSERT(nb2 <= nb3);
  11498. if (params->type == GGML_TASK_TYPE_INIT) {
  11499. if (ith == 0) {
  11500. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11501. }
  11502. return;
  11503. }
  11504. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11505. return;
  11506. }
  11507. const int64_t elem_q = ggml_nelements(q);
  11508. const int64_t elem_k = ggml_nelements(k);
  11509. enum ggml_type result_type = dst->type;
  11510. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11511. const size_t tsize = ggml_type_size(result_type);
  11512. const size_t offs_q = 0;
  11513. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11514. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11515. void * grad_q = (char *) dst->data;
  11516. void * grad_k = (char *) dst->data + offs_k;
  11517. void * grad_v = (char *) dst->data + offs_v;
  11518. const size_t nbgq1 = nb0*neq0;
  11519. const size_t nbgq2 = nb0*neq0*neq1;
  11520. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11521. const size_t nbgk1 = nb0*nek0;
  11522. const size_t nbgk2 = nb0*nek0*nek1;
  11523. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11524. const size_t nbgv1 = nb0*nev0;
  11525. const size_t nbgv2 = nb0*nev0*nev1;
  11526. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11527. // parallelize by k rows using ggml_vec_dot_f32
  11528. // total rows in k
  11529. const int nr = nek2*nek3;
  11530. // rows per thread
  11531. const int dr = (nr + nth - 1)/nth;
  11532. // row range for this thread
  11533. const int ir0 = dr*ith;
  11534. const int ir1 = MIN(ir0 + dr, nr);
  11535. const float scale = 1.0f/sqrtf(D);
  11536. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11537. // how often k2 (and v2) is repeated in q2
  11538. int nrep = neq2/nek2;
  11539. for (int ir = ir0; ir < ir1; ++ir) {
  11540. // q indices
  11541. const int ik3 = ir/(nek2);
  11542. const int ik2 = ir - ik3*nek2;
  11543. const int iq3 = ik3;
  11544. const int id3 = ik3;
  11545. const int iv3 = ik3;
  11546. const int iv2 = ik2;
  11547. for (int irep = 0; irep < nrep; ++irep) {
  11548. const int iq2 = ik2 + irep*nek2;
  11549. const int id2 = iq2;
  11550. // (ik2 + irep*nek2) % nek2 == ik2
  11551. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11552. const int id1 = iq1;
  11553. // not sure about CACHE_LINE_SIZE_F32..
  11554. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11555. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11556. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11557. for (int i = M; i < Mup; ++i) {
  11558. S[i] = -INFINITY;
  11559. }
  11560. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11561. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11562. // k indices
  11563. const int ik1 = ic;
  11564. // S indices
  11565. const int i1 = ik1;
  11566. ggml_vec_dot_f32(neq0,
  11567. S + i1, 0,
  11568. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11569. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11570. }
  11571. // scale
  11572. ggml_vec_scale_f32(masked_begin, S, scale);
  11573. for (int64_t i = masked_begin; i < M; i++) {
  11574. S[i] = -INFINITY;
  11575. }
  11576. // softmax
  11577. // exclude known -INF S[..] values from max and loop
  11578. // dont forget to set their SM values to zero
  11579. {
  11580. float max = -INFINITY;
  11581. ggml_vec_max_f32(masked_begin, &max, S);
  11582. ggml_float sum = 0.0;
  11583. {
  11584. #ifdef GGML_SOFT_MAX_ACCELERATE
  11585. max = -max;
  11586. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11587. vvexpf(SM, SM, &Mup);
  11588. ggml_vec_sum_f32(Mup, &sum, SM);
  11589. #else
  11590. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11591. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11592. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11593. if (i >= masked_begin) {
  11594. break;
  11595. }
  11596. float * SR = S + i;
  11597. float * SW = SM + i;
  11598. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11599. if (i + j >= masked_begin) {
  11600. break;
  11601. } else if (SR[j] == -INFINITY) {
  11602. SW[j] = 0.0f;
  11603. } else {
  11604. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11605. const float val = expf(SR[j] - max);
  11606. #else
  11607. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11608. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11609. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11610. #endif
  11611. sump[j] += (ggml_float)val;
  11612. SW[j] = val;
  11613. }
  11614. }
  11615. }
  11616. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11617. sum += sump[i];
  11618. }
  11619. #endif
  11620. }
  11621. assert(sum > 0.0);
  11622. sum = 1.0/sum;
  11623. ggml_vec_scale_f32(masked_begin, SM, sum);
  11624. }
  11625. // step-by-step explanation
  11626. {
  11627. // forward-process shape grads from backward process
  11628. // parallel_for ik2,ik3:
  11629. // for irep:
  11630. // iq2 = ik2 + irep*nek2
  11631. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11632. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11633. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11634. // for iq1:
  11635. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11636. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11637. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11638. // S0 = -Inf [D,1,1,1]
  11639. // ~S1[i] = dot(kcur[:D,i], qcur)
  11640. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11641. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11642. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11643. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11644. // ~S5[i] = dot(vcur[:,i], S4)
  11645. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11646. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11647. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11648. // dst backward-/ grad[dst] = d
  11649. //
  11650. // output gradients with their dependencies:
  11651. //
  11652. // grad[kcur] = grad[S1].T @ qcur
  11653. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11654. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11655. // grad[S4] = grad[S5] @ vcur
  11656. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11657. // grad[qcur] = grad[S1] @ kcur
  11658. // grad[vcur] = grad[S5].T @ S4
  11659. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11660. //
  11661. // in post-order:
  11662. //
  11663. // S1 = qcur @ kcur.T
  11664. // S2 = S1 * scale
  11665. // S3 = diag_mask_inf(S2, P)
  11666. // S4 = softmax(S3)
  11667. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11668. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11669. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11670. // grad[qcur] = grad[S1] @ kcur
  11671. // grad[kcur] = grad[S1].T @ qcur
  11672. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11673. //
  11674. // using less variables (SM=S4):
  11675. //
  11676. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11677. // SM = softmax(S)
  11678. // S = d[:D,iq1,iq2,iq3] @ vcur
  11679. // dot_SM_gradSM = dot(SM, S)
  11680. // S = SM * (S - dot(SM, S))
  11681. // S = diag_mask_zero(S, P) * scale
  11682. //
  11683. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11684. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11685. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11686. }
  11687. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11688. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11689. // for ic:
  11690. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11691. // exclude known future zero S[..] values from operation
  11692. ggml_vec_set_f32(masked_begin, S, 0);
  11693. for (int64_t ic = 0; ic < D; ++ic) {
  11694. ggml_vec_mad_f32(masked_begin,
  11695. S,
  11696. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11697. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11698. }
  11699. // S = SM * (S - dot(SM, S))
  11700. float dot_SM_gradSM = 0;
  11701. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11702. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11703. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11704. // S = diag_mask_zero(S, P) * scale
  11705. // already done by above ggml_vec_set_f32
  11706. // exclude known zero S[..] values from operation
  11707. ggml_vec_scale_f32(masked_begin, S, scale);
  11708. // S shape [M,1]
  11709. // SM shape [M,1]
  11710. // kcur shape [D,M]
  11711. // qcur shape [D,1]
  11712. // vcur shape [M,D]
  11713. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11714. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11715. // for ic:
  11716. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11717. // exclude known zero S[..] values from loop
  11718. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11719. ggml_vec_mad_f32(D,
  11720. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11721. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11722. S[ic]);
  11723. }
  11724. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11725. // for ic:
  11726. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11727. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11728. // exclude known zero S[..] values from loop
  11729. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11730. ggml_vec_mad_f32(D,
  11731. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11732. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11733. S[ic]);
  11734. }
  11735. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11736. // for ic:
  11737. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11738. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11739. // exclude known zero SM[..] values from mad
  11740. for (int64_t ic = 0; ic < D; ++ic) {
  11741. ggml_vec_mad_f32(masked_begin,
  11742. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11743. SM,
  11744. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11745. }
  11746. }
  11747. }
  11748. }
  11749. }
  11750. static void ggml_compute_forward_flash_attn_back(
  11751. const struct ggml_compute_params * params,
  11752. const bool masked,
  11753. struct ggml_tensor * dst) {
  11754. const struct ggml_tensor * q = dst->src[0];
  11755. switch (q->type) {
  11756. case GGML_TYPE_F32:
  11757. {
  11758. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  11759. } break;
  11760. default:
  11761. {
  11762. GGML_ASSERT(false);
  11763. } break;
  11764. }
  11765. }
  11766. // ggml_compute_forward_win_part
  11767. static void ggml_compute_forward_win_part_f32(
  11768. const struct ggml_compute_params * params,
  11769. struct ggml_tensor * dst) {
  11770. const struct ggml_tensor * src0 = dst->src[0];
  11771. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11772. return;
  11773. }
  11774. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11775. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11776. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11777. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11778. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11779. assert(ne00 == ne0);
  11780. assert(ne3 == nep0*nep1);
  11781. // TODO: optimize / multi-thread
  11782. for (int py = 0; py < nep1; ++py) {
  11783. for (int px = 0; px < nep0; ++px) {
  11784. const int64_t i3 = py*nep0 + px;
  11785. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11786. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11787. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11788. const int64_t i02 = py*w + i2;
  11789. const int64_t i01 = px*w + i1;
  11790. const int64_t i00 = i0;
  11791. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11792. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11793. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11794. ((float *) dst->data)[i] = 0.0f;
  11795. } else {
  11796. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11797. }
  11798. }
  11799. }
  11800. }
  11801. }
  11802. }
  11803. }
  11804. static void ggml_compute_forward_win_part(
  11805. const struct ggml_compute_params * params,
  11806. struct ggml_tensor * dst) {
  11807. const struct ggml_tensor * src0 = dst->src[0];
  11808. switch (src0->type) {
  11809. case GGML_TYPE_F32:
  11810. {
  11811. ggml_compute_forward_win_part_f32(params, dst);
  11812. } break;
  11813. default:
  11814. {
  11815. GGML_ASSERT(false);
  11816. } break;
  11817. }
  11818. }
  11819. // ggml_compute_forward_win_unpart
  11820. static void ggml_compute_forward_win_unpart_f32(
  11821. const struct ggml_compute_params * params,
  11822. struct ggml_tensor * dst) {
  11823. const struct ggml_tensor * src0 = dst->src[0];
  11824. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11825. return;
  11826. }
  11827. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11828. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11829. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11830. // padding
  11831. const int px = (w - ne1%w)%w;
  11832. //const int py = (w - ne2%w)%w;
  11833. const int npx = (px + ne1)/w;
  11834. //const int npy = (py + ne2)/w;
  11835. assert(ne0 == ne00);
  11836. // TODO: optimize / multi-thread
  11837. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11838. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11839. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11840. const int ip2 = i2/w;
  11841. const int ip1 = i1/w;
  11842. const int64_t i02 = i2%w;
  11843. const int64_t i01 = i1%w;
  11844. const int64_t i00 = i0;
  11845. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11846. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11847. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11848. }
  11849. }
  11850. }
  11851. }
  11852. static void ggml_compute_forward_win_unpart(
  11853. const struct ggml_compute_params * params,
  11854. struct ggml_tensor * dst) {
  11855. const struct ggml_tensor * src0 = dst->src[0];
  11856. switch (src0->type) {
  11857. case GGML_TYPE_F32:
  11858. {
  11859. ggml_compute_forward_win_unpart_f32(params, dst);
  11860. } break;
  11861. default:
  11862. {
  11863. GGML_ASSERT(false);
  11864. } break;
  11865. }
  11866. }
  11867. //gmml_compute_forward_unary
  11868. static void ggml_compute_forward_unary(
  11869. const struct ggml_compute_params * params,
  11870. struct ggml_tensor * dst) {
  11871. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11872. switch (op) {
  11873. case GGML_UNARY_OP_ABS:
  11874. {
  11875. ggml_compute_forward_abs(params, dst);
  11876. } break;
  11877. case GGML_UNARY_OP_SGN:
  11878. {
  11879. ggml_compute_forward_sgn(params, dst);
  11880. } break;
  11881. case GGML_UNARY_OP_NEG:
  11882. {
  11883. ggml_compute_forward_neg(params, dst);
  11884. } break;
  11885. case GGML_UNARY_OP_STEP:
  11886. {
  11887. ggml_compute_forward_step(params, dst);
  11888. } break;
  11889. case GGML_UNARY_OP_TANH:
  11890. {
  11891. ggml_compute_forward_tanh(params, dst);
  11892. } break;
  11893. case GGML_UNARY_OP_ELU:
  11894. {
  11895. ggml_compute_forward_elu(params, dst);
  11896. } break;
  11897. case GGML_UNARY_OP_RELU:
  11898. {
  11899. ggml_compute_forward_relu(params, dst);
  11900. } break;
  11901. case GGML_UNARY_OP_GELU:
  11902. {
  11903. ggml_compute_forward_gelu(params, dst);
  11904. } break;
  11905. case GGML_UNARY_OP_GELU_QUICK:
  11906. {
  11907. ggml_compute_forward_gelu_quick(params, dst);
  11908. } break;
  11909. case GGML_UNARY_OP_SILU:
  11910. {
  11911. ggml_compute_forward_silu(params, dst);
  11912. } break;
  11913. case GGML_UNARY_OP_HARDSWISH:
  11914. {
  11915. ggml_compute_forward_hardswish(params, dst);
  11916. } break;
  11917. case GGML_UNARY_OP_HARDSIGMOID:
  11918. {
  11919. ggml_compute_forward_hardsigmoid(params, dst);
  11920. } break;
  11921. default:
  11922. {
  11923. GGML_ASSERT(false);
  11924. } break;
  11925. }
  11926. }
  11927. // ggml_compute_forward_get_rel_pos
  11928. static void ggml_compute_forward_get_rel_pos_f16(
  11929. const struct ggml_compute_params * params,
  11930. struct ggml_tensor * dst) {
  11931. const struct ggml_tensor * src0 = dst->src[0];
  11932. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11933. return;
  11934. }
  11935. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11936. GGML_TENSOR_UNARY_OP_LOCALS
  11937. const int64_t w = ne1;
  11938. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11939. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11940. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11941. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11942. const int64_t pos = (w - i1 - 1) + i2;
  11943. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11944. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11945. }
  11946. }
  11947. }
  11948. }
  11949. static void ggml_compute_forward_get_rel_pos(
  11950. const struct ggml_compute_params * params,
  11951. struct ggml_tensor * dst) {
  11952. const struct ggml_tensor * src0 = dst->src[0];
  11953. switch (src0->type) {
  11954. case GGML_TYPE_F16:
  11955. {
  11956. ggml_compute_forward_get_rel_pos_f16(params, dst);
  11957. } break;
  11958. default:
  11959. {
  11960. GGML_ASSERT(false);
  11961. } break;
  11962. }
  11963. }
  11964. // ggml_compute_forward_add_rel_pos
  11965. static void ggml_compute_forward_add_rel_pos_f32(
  11966. const struct ggml_compute_params * params,
  11967. struct ggml_tensor * dst) {
  11968. const struct ggml_tensor * src0 = dst->src[0];
  11969. const struct ggml_tensor * src1 = dst->src[1];
  11970. const struct ggml_tensor * src2 = dst->src[2];
  11971. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11972. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  11973. if (params->ith != 0) {
  11974. return;
  11975. }
  11976. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11977. return;
  11978. }
  11979. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11980. return;
  11981. }
  11982. int64_t t0 = ggml_perf_time_us();
  11983. UNUSED(t0);
  11984. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11985. float * src1_data = (float *) src1->data;
  11986. float * src2_data = (float *) src2->data;
  11987. float * dst_data = (float *) dst->data;
  11988. const int64_t ne10 = src1->ne[0];
  11989. const int64_t ne11 = src1->ne[1];
  11990. const int64_t ne12 = src1->ne[2];
  11991. const int64_t ne13 = src1->ne[3];
  11992. const int ith = params->ith;
  11993. const int nth = params->nth;
  11994. // total patches in dst
  11995. const int np = ne13;
  11996. // patches per thread
  11997. const int dp = (np + nth - 1)/nth;
  11998. // patch range for this thread
  11999. const int ip0 = dp*ith;
  12000. const int ip1 = MIN(ip0 + dp, np);
  12001. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12002. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12003. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12004. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12005. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12006. const int64_t jp0 = jp1 + i10;
  12007. const float src1_e = src1_data[jp0];
  12008. const float src2_e = src2_data[jp0];
  12009. const int64_t jdh = jp0 * ne10;
  12010. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12011. for (int64_t j = 0; j < ne10; ++j) {
  12012. dst_data[jdh + j ] += src2_e;
  12013. dst_data[jdw + j*ne10] += src1_e;
  12014. }
  12015. }
  12016. }
  12017. }
  12018. }
  12019. }
  12020. static void ggml_compute_forward_add_rel_pos(
  12021. const struct ggml_compute_params * params,
  12022. struct ggml_tensor * dst) {
  12023. const struct ggml_tensor * src0 = dst->src[0];
  12024. switch (src0->type) {
  12025. case GGML_TYPE_F32:
  12026. {
  12027. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12028. } break;
  12029. default:
  12030. {
  12031. GGML_ASSERT(false);
  12032. } break;
  12033. }
  12034. }
  12035. // ggml_compute_forward_map_unary
  12036. static void ggml_compute_forward_map_unary_f32(
  12037. const struct ggml_compute_params * params,
  12038. struct ggml_tensor * dst,
  12039. const ggml_unary_op_f32_t fun) {
  12040. const struct ggml_tensor * src0 = dst->src[0];
  12041. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12042. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12043. return;
  12044. }
  12045. const int n = ggml_nrows(src0);
  12046. const int nc = src0->ne[0];
  12047. assert( dst->nb[0] == sizeof(float));
  12048. assert(src0->nb[0] == sizeof(float));
  12049. for (int i = 0; i < n; i++) {
  12050. fun(nc,
  12051. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12052. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12053. }
  12054. }
  12055. static void ggml_compute_forward_map_unary(
  12056. const struct ggml_compute_params * params,
  12057. struct ggml_tensor * dst,
  12058. const ggml_unary_op_f32_t fun) {
  12059. const struct ggml_tensor * src0 = dst->src[0];
  12060. switch (src0->type) {
  12061. case GGML_TYPE_F32:
  12062. {
  12063. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12064. } break;
  12065. default:
  12066. {
  12067. GGML_ASSERT(false);
  12068. } break;
  12069. }
  12070. }
  12071. // ggml_compute_forward_map_binary
  12072. static void ggml_compute_forward_map_binary_f32(
  12073. const struct ggml_compute_params * params,
  12074. struct ggml_tensor * dst,
  12075. const ggml_binary_op_f32_t fun) {
  12076. const struct ggml_tensor * src0 = dst->src[0];
  12077. const struct ggml_tensor * src1 = dst->src[1];
  12078. assert(params->ith == 0);
  12079. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12080. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12081. return;
  12082. }
  12083. const int n = ggml_nrows(src0);
  12084. const int nc = src0->ne[0];
  12085. assert( dst->nb[0] == sizeof(float));
  12086. assert(src0->nb[0] == sizeof(float));
  12087. assert(src1->nb[0] == sizeof(float));
  12088. for (int i = 0; i < n; i++) {
  12089. fun(nc,
  12090. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12091. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12092. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12093. }
  12094. }
  12095. static void ggml_compute_forward_map_binary(
  12096. const struct ggml_compute_params * params,
  12097. struct ggml_tensor * dst,
  12098. const ggml_binary_op_f32_t fun) {
  12099. const struct ggml_tensor * src0 = dst->src[0];
  12100. switch (src0->type) {
  12101. case GGML_TYPE_F32:
  12102. {
  12103. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12104. } break;
  12105. default:
  12106. {
  12107. GGML_ASSERT(false);
  12108. } break;
  12109. }
  12110. }
  12111. // ggml_compute_forward_map_custom1
  12112. static void ggml_compute_forward_map_custom1_f32(
  12113. const struct ggml_compute_params * params,
  12114. struct ggml_tensor * dst,
  12115. const ggml_custom1_op_f32_t fun) {
  12116. const struct ggml_tensor * a = dst->src[0];
  12117. assert(params->ith == 0);
  12118. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12119. return;
  12120. }
  12121. fun(dst, a);
  12122. }
  12123. // ggml_compute_forward_map_custom2
  12124. static void ggml_compute_forward_map_custom2_f32(
  12125. const struct ggml_compute_params * params,
  12126. struct ggml_tensor * dst,
  12127. const ggml_custom2_op_f32_t fun) {
  12128. const struct ggml_tensor * a = dst->src[0];
  12129. const struct ggml_tensor * b = dst->src[1];
  12130. assert(params->ith == 0);
  12131. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12132. return;
  12133. }
  12134. fun(dst, a, b);
  12135. }
  12136. // ggml_compute_forward_map_custom3
  12137. static void ggml_compute_forward_map_custom3_f32(
  12138. const struct ggml_compute_params * params,
  12139. struct ggml_tensor * dst,
  12140. const ggml_custom3_op_f32_t fun) {
  12141. const struct ggml_tensor * a = dst->src[0];
  12142. const struct ggml_tensor * b = dst->src[1];
  12143. const struct ggml_tensor * c = dst->src[1];
  12144. assert(params->ith == 0);
  12145. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12146. return;
  12147. }
  12148. fun(dst, a, b, c);
  12149. }
  12150. // ggml_compute_forward_map_custom1
  12151. static void ggml_compute_forward_map_custom1(
  12152. const struct ggml_compute_params * params,
  12153. struct ggml_tensor * dst) {
  12154. const struct ggml_tensor * a = dst->src[0];
  12155. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12156. return;
  12157. }
  12158. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12159. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12160. }
  12161. // ggml_compute_forward_map_custom2
  12162. static void ggml_compute_forward_map_custom2(
  12163. const struct ggml_compute_params * params,
  12164. struct ggml_tensor * dst) {
  12165. const struct ggml_tensor * a = dst->src[0];
  12166. const struct ggml_tensor * b = dst->src[1];
  12167. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12168. return;
  12169. }
  12170. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12171. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12172. }
  12173. // ggml_compute_forward_map_custom3
  12174. static void ggml_compute_forward_map_custom3(
  12175. const struct ggml_compute_params * params,
  12176. struct ggml_tensor * dst) {
  12177. const struct ggml_tensor * a = dst->src[0];
  12178. const struct ggml_tensor * b = dst->src[1];
  12179. const struct ggml_tensor * c = dst->src[2];
  12180. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12181. return;
  12182. }
  12183. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12184. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12185. }
  12186. // ggml_compute_forward_cross_entropy_loss
  12187. static void ggml_compute_forward_cross_entropy_loss_f32(
  12188. const struct ggml_compute_params * params,
  12189. struct ggml_tensor * dst) {
  12190. const struct ggml_tensor * src0 = dst->src[0];
  12191. const struct ggml_tensor * src1 = dst->src[1];
  12192. GGML_ASSERT(ggml_is_contiguous(src0));
  12193. GGML_ASSERT(ggml_is_contiguous(src1));
  12194. GGML_ASSERT(ggml_is_scalar(dst));
  12195. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12196. const int ith = params->ith;
  12197. const int nth = params->nth;
  12198. float * sums = (float *) params->wdata;
  12199. // TODO: handle transposed/permuted matrices
  12200. const int nc = src0->ne[0];
  12201. const int nr = ggml_nrows(src0);
  12202. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12203. if (params->type == GGML_TASK_TYPE_INIT) {
  12204. if (ith == 0) {
  12205. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12206. }
  12207. return;
  12208. }
  12209. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12210. if (ith == 0) {
  12211. float * dp = (float *) dst->data;
  12212. ggml_vec_sum_f32(nth, dp, sums);
  12213. dp[0] *= -1.0f / (float) nr;
  12214. }
  12215. return;
  12216. }
  12217. const double eps = 1e-9;
  12218. // rows per thread
  12219. const int dr = (nr + nth - 1)/nth;
  12220. // row range for this thread
  12221. const int ir0 = dr*ith;
  12222. const int ir1 = MIN(ir0 + dr, nr);
  12223. for (int i1 = ir0; i1 < ir1; i1++) {
  12224. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12225. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12226. float * st = ((float *) params->wdata) + nth + ith*nc;
  12227. #ifndef NDEBUG
  12228. for (int i = 0; i < nc; ++i) {
  12229. //printf("p[%d] = %f\n", i, p[i]);
  12230. assert(!isnan(s0[i]));
  12231. assert(!isnan(s1[i]));
  12232. }
  12233. #endif
  12234. // soft_max
  12235. ggml_float sum = 0.0;
  12236. {
  12237. float max = -INFINITY;
  12238. ggml_vec_max_f32(nc, &max, s0);
  12239. uint16_t scvt; UNUSED(scvt);
  12240. for (int i = 0; i < nc; i++) {
  12241. if (s0[i] == -INFINITY) {
  12242. st[i] = 0.0f;
  12243. } else {
  12244. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12245. const float s = s0[i] - max;
  12246. const float val = expf(s);
  12247. #else
  12248. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12249. memcpy(&scvt, &s, sizeof(scvt));
  12250. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12251. #endif
  12252. sum += (ggml_float)val;
  12253. st[i] = val;
  12254. }
  12255. }
  12256. assert(sum > 0.0);
  12257. // sum = 1.0/sum;
  12258. }
  12259. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12260. sum = (1.0 - eps) / sum;
  12261. ggml_vec_scale_f32(nc, st, sum);
  12262. ggml_vec_add1_f32(nc, st, st, eps);
  12263. ggml_vec_log_f32(nc, st, st);
  12264. ggml_vec_mul_f32(nc, st, st, s1);
  12265. float st_sum = 0;
  12266. ggml_vec_sum_f32(nc, &st_sum, st);
  12267. sums[ith] += st_sum;
  12268. #ifndef NDEBUG
  12269. for (int i = 0; i < nc; ++i) {
  12270. assert(!isnan(st[i]));
  12271. assert(!isinf(st[i]));
  12272. }
  12273. #endif
  12274. }
  12275. }
  12276. static void ggml_compute_forward_cross_entropy_loss(
  12277. const struct ggml_compute_params * params,
  12278. struct ggml_tensor * dst) {
  12279. const struct ggml_tensor * src0 = dst->src[0];
  12280. switch (src0->type) {
  12281. case GGML_TYPE_F32:
  12282. {
  12283. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12284. } break;
  12285. default:
  12286. {
  12287. GGML_ASSERT(false);
  12288. } break;
  12289. }
  12290. }
  12291. // ggml_compute_forward_cross_entropy_loss_back
  12292. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12293. const struct ggml_compute_params * params,
  12294. struct ggml_tensor * dst) {
  12295. const struct ggml_tensor * src0 = dst->src[0];
  12296. const struct ggml_tensor * src1 = dst->src[1];
  12297. const struct ggml_tensor * opt0 = dst->src[2];
  12298. GGML_ASSERT(ggml_is_contiguous(dst));
  12299. GGML_ASSERT(ggml_is_contiguous(src0));
  12300. GGML_ASSERT(ggml_is_contiguous(src1));
  12301. GGML_ASSERT(ggml_is_contiguous(opt0));
  12302. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12303. const int64_t ith = params->ith;
  12304. const int64_t nth = params->nth;
  12305. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12306. return;
  12307. }
  12308. const double eps = 1e-9;
  12309. // TODO: handle transposed/permuted matrices
  12310. const int64_t nc = src0->ne[0];
  12311. const int64_t nr = ggml_nrows(src0);
  12312. // rows per thread
  12313. const int64_t dr = (nr + nth - 1)/nth;
  12314. // row range for this thread
  12315. const int64_t ir0 = dr*ith;
  12316. const int64_t ir1 = MIN(ir0 + dr, nr);
  12317. float * d = (float *) opt0->data;
  12318. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12319. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12320. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12321. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12322. #ifndef NDEBUG
  12323. for (int i = 0; i < nc; ++i) {
  12324. //printf("p[%d] = %f\n", i, p[i]);
  12325. assert(!isnan(s0[i]));
  12326. assert(!isnan(s1[i]));
  12327. }
  12328. #endif
  12329. // soft_max
  12330. ggml_float sum = 0.0;
  12331. {
  12332. float max = -INFINITY;
  12333. ggml_vec_max_f32(nc, &max, s0);
  12334. uint16_t scvt; UNUSED(scvt);
  12335. for (int i = 0; i < nc; i++) {
  12336. if (s0[i] == -INFINITY) {
  12337. ds0[i] = 0.0f;
  12338. } else {
  12339. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12340. const float s = s0[i] - max;
  12341. const float val = expf(s);
  12342. #else
  12343. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12344. memcpy(&scvt, &s, sizeof(scvt));
  12345. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12346. #endif
  12347. sum += (ggml_float)val;
  12348. ds0[i] = val;
  12349. }
  12350. }
  12351. assert(sum > 0.0);
  12352. sum = (1.0 - eps)/sum;
  12353. }
  12354. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12355. ggml_vec_scale_f32(nc, ds0, sum);
  12356. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12357. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12358. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12359. #ifndef NDEBUG
  12360. for (int i = 0; i < nc; ++i) {
  12361. assert(!isnan(ds0[i]));
  12362. assert(!isinf(ds0[i]));
  12363. }
  12364. #endif
  12365. }
  12366. }
  12367. static void ggml_compute_forward_cross_entropy_loss_back(
  12368. const struct ggml_compute_params * params,
  12369. struct ggml_tensor * dst) {
  12370. const struct ggml_tensor * src0 = dst->src[0];
  12371. switch (src0->type) {
  12372. case GGML_TYPE_F32:
  12373. {
  12374. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12375. } break;
  12376. default:
  12377. {
  12378. GGML_ASSERT(false);
  12379. } break;
  12380. }
  12381. }
  12382. /////////////////////////////////
  12383. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12384. GGML_ASSERT(params);
  12385. if (tensor->op == GGML_OP_NONE) {
  12386. return;
  12387. }
  12388. #ifdef GGML_USE_CUBLAS
  12389. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12390. if (skip_cpu) {
  12391. return;
  12392. }
  12393. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12394. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12395. #elif defined(GGML_USE_VULKAN)
  12396. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12397. #ifdef GGML_VULKAN_CHECK_RESULTS
  12398. if (skip_cpu) {
  12399. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12400. }
  12401. #endif
  12402. if (skip_cpu) {
  12403. return;
  12404. }
  12405. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12406. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12407. #endif // GGML_USE_CUBLAS
  12408. #ifdef GGML_USE_SYCL
  12409. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12410. if (skip_cpu) {
  12411. return;
  12412. }
  12413. #endif // GGML_USE_SYCL
  12414. switch (tensor->op) {
  12415. case GGML_OP_DUP:
  12416. {
  12417. ggml_compute_forward_dup(params, tensor);
  12418. } break;
  12419. case GGML_OP_ADD:
  12420. {
  12421. ggml_compute_forward_add(params, tensor);
  12422. } break;
  12423. case GGML_OP_ADD1:
  12424. {
  12425. ggml_compute_forward_add1(params, tensor);
  12426. } break;
  12427. case GGML_OP_ACC:
  12428. {
  12429. ggml_compute_forward_acc(params, tensor);
  12430. } break;
  12431. case GGML_OP_SUB:
  12432. {
  12433. ggml_compute_forward_sub(params, tensor);
  12434. } break;
  12435. case GGML_OP_MUL:
  12436. {
  12437. ggml_compute_forward_mul(params, tensor);
  12438. } break;
  12439. case GGML_OP_DIV:
  12440. {
  12441. ggml_compute_forward_div(params, tensor);
  12442. } break;
  12443. case GGML_OP_SQR:
  12444. {
  12445. ggml_compute_forward_sqr(params, tensor);
  12446. } break;
  12447. case GGML_OP_SQRT:
  12448. {
  12449. ggml_compute_forward_sqrt(params, tensor);
  12450. } break;
  12451. case GGML_OP_LOG:
  12452. {
  12453. ggml_compute_forward_log(params, tensor);
  12454. } break;
  12455. case GGML_OP_SUM:
  12456. {
  12457. ggml_compute_forward_sum(params, tensor);
  12458. } break;
  12459. case GGML_OP_SUM_ROWS:
  12460. {
  12461. ggml_compute_forward_sum_rows(params, tensor);
  12462. } break;
  12463. case GGML_OP_MEAN:
  12464. {
  12465. ggml_compute_forward_mean(params, tensor);
  12466. } break;
  12467. case GGML_OP_ARGMAX:
  12468. {
  12469. ggml_compute_forward_argmax(params, tensor);
  12470. } break;
  12471. case GGML_OP_REPEAT:
  12472. {
  12473. ggml_compute_forward_repeat(params, tensor);
  12474. } break;
  12475. case GGML_OP_REPEAT_BACK:
  12476. {
  12477. ggml_compute_forward_repeat_back(params, tensor);
  12478. } break;
  12479. case GGML_OP_CONCAT:
  12480. {
  12481. ggml_compute_forward_concat(params, tensor);
  12482. } break;
  12483. case GGML_OP_SILU_BACK:
  12484. {
  12485. ggml_compute_forward_silu_back(params, tensor);
  12486. } break;
  12487. case GGML_OP_NORM:
  12488. {
  12489. ggml_compute_forward_norm(params, tensor);
  12490. } break;
  12491. case GGML_OP_RMS_NORM:
  12492. {
  12493. ggml_compute_forward_rms_norm(params, tensor);
  12494. } break;
  12495. case GGML_OP_RMS_NORM_BACK:
  12496. {
  12497. ggml_compute_forward_rms_norm_back(params, tensor);
  12498. } break;
  12499. case GGML_OP_GROUP_NORM:
  12500. {
  12501. ggml_compute_forward_group_norm(params, tensor);
  12502. } break;
  12503. case GGML_OP_MUL_MAT:
  12504. {
  12505. ggml_compute_forward_mul_mat(params, tensor);
  12506. } break;
  12507. case GGML_OP_MUL_MAT_ID:
  12508. {
  12509. ggml_compute_forward_mul_mat_id(params, tensor);
  12510. } break;
  12511. case GGML_OP_OUT_PROD:
  12512. {
  12513. ggml_compute_forward_out_prod(params, tensor);
  12514. } break;
  12515. case GGML_OP_SCALE:
  12516. {
  12517. ggml_compute_forward_scale(params, tensor);
  12518. } break;
  12519. case GGML_OP_SET:
  12520. {
  12521. ggml_compute_forward_set(params, tensor);
  12522. } break;
  12523. case GGML_OP_CPY:
  12524. {
  12525. ggml_compute_forward_cpy(params, tensor);
  12526. } break;
  12527. case GGML_OP_CONT:
  12528. {
  12529. ggml_compute_forward_cont(params, tensor);
  12530. } break;
  12531. case GGML_OP_RESHAPE:
  12532. {
  12533. ggml_compute_forward_reshape(params, tensor);
  12534. } break;
  12535. case GGML_OP_VIEW:
  12536. {
  12537. ggml_compute_forward_view(params, tensor);
  12538. } break;
  12539. case GGML_OP_PERMUTE:
  12540. {
  12541. ggml_compute_forward_permute(params, tensor);
  12542. } break;
  12543. case GGML_OP_TRANSPOSE:
  12544. {
  12545. ggml_compute_forward_transpose(params, tensor);
  12546. } break;
  12547. case GGML_OP_GET_ROWS:
  12548. {
  12549. ggml_compute_forward_get_rows(params, tensor);
  12550. } break;
  12551. case GGML_OP_GET_ROWS_BACK:
  12552. {
  12553. ggml_compute_forward_get_rows_back(params, tensor);
  12554. } break;
  12555. case GGML_OP_DIAG:
  12556. {
  12557. ggml_compute_forward_diag(params, tensor);
  12558. } break;
  12559. case GGML_OP_DIAG_MASK_INF:
  12560. {
  12561. ggml_compute_forward_diag_mask_inf(params, tensor);
  12562. } break;
  12563. case GGML_OP_DIAG_MASK_ZERO:
  12564. {
  12565. ggml_compute_forward_diag_mask_zero(params, tensor);
  12566. } break;
  12567. case GGML_OP_SOFT_MAX:
  12568. {
  12569. ggml_compute_forward_soft_max(params, tensor);
  12570. } break;
  12571. case GGML_OP_SOFT_MAX_BACK:
  12572. {
  12573. ggml_compute_forward_soft_max_back(params, tensor);
  12574. } break;
  12575. case GGML_OP_ROPE:
  12576. {
  12577. ggml_compute_forward_rope(params, tensor);
  12578. } break;
  12579. case GGML_OP_ROPE_BACK:
  12580. {
  12581. ggml_compute_forward_rope_back(params, tensor);
  12582. } break;
  12583. case GGML_OP_ALIBI:
  12584. {
  12585. ggml_compute_forward_alibi(params, tensor);
  12586. } break;
  12587. case GGML_OP_CLAMP:
  12588. {
  12589. ggml_compute_forward_clamp(params, tensor);
  12590. } break;
  12591. case GGML_OP_CONV_TRANSPOSE_1D:
  12592. {
  12593. ggml_compute_forward_conv_transpose_1d(params, tensor);
  12594. } break;
  12595. case GGML_OP_IM2COL:
  12596. {
  12597. ggml_compute_forward_im2col(params, tensor);
  12598. } break;
  12599. case GGML_OP_CONV_TRANSPOSE_2D:
  12600. {
  12601. ggml_compute_forward_conv_transpose_2d(params, tensor);
  12602. } break;
  12603. case GGML_OP_POOL_1D:
  12604. {
  12605. ggml_compute_forward_pool_1d(params, tensor);
  12606. } break;
  12607. case GGML_OP_POOL_2D:
  12608. {
  12609. ggml_compute_forward_pool_2d(params, tensor);
  12610. } break;
  12611. case GGML_OP_UPSCALE:
  12612. {
  12613. ggml_compute_forward_upscale(params, tensor);
  12614. } break;
  12615. case GGML_OP_PAD:
  12616. {
  12617. ggml_compute_forward_pad(params, tensor);
  12618. } break;
  12619. case GGML_OP_ARGSORT:
  12620. {
  12621. ggml_compute_forward_argsort(params, tensor);
  12622. } break;
  12623. case GGML_OP_LEAKY_RELU:
  12624. {
  12625. ggml_compute_forward_leaky_relu(params, tensor);
  12626. } break;
  12627. case GGML_OP_FLASH_ATTN:
  12628. {
  12629. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12630. GGML_ASSERT(t == 0 || t == 1);
  12631. const bool masked = t != 0;
  12632. ggml_compute_forward_flash_attn(params, masked, tensor);
  12633. } break;
  12634. case GGML_OP_FLASH_FF:
  12635. {
  12636. ggml_compute_forward_flash_ff(params, tensor);
  12637. } break;
  12638. case GGML_OP_FLASH_ATTN_BACK:
  12639. {
  12640. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12641. GGML_ASSERT(t == 0 || t == 1);
  12642. bool masked = t != 0;
  12643. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  12644. } break;
  12645. case GGML_OP_WIN_PART:
  12646. {
  12647. ggml_compute_forward_win_part(params, tensor);
  12648. } break;
  12649. case GGML_OP_WIN_UNPART:
  12650. {
  12651. ggml_compute_forward_win_unpart(params, tensor);
  12652. } break;
  12653. case GGML_OP_UNARY:
  12654. {
  12655. ggml_compute_forward_unary(params, tensor);
  12656. } break;
  12657. case GGML_OP_GET_REL_POS:
  12658. {
  12659. ggml_compute_forward_get_rel_pos(params, tensor);
  12660. } break;
  12661. case GGML_OP_ADD_REL_POS:
  12662. {
  12663. ggml_compute_forward_add_rel_pos(params, tensor);
  12664. } break;
  12665. case GGML_OP_MAP_UNARY:
  12666. {
  12667. ggml_unary_op_f32_t fun;
  12668. memcpy(&fun, tensor->op_params, sizeof(fun));
  12669. ggml_compute_forward_map_unary(params, tensor, fun);
  12670. }
  12671. break;
  12672. case GGML_OP_MAP_BINARY:
  12673. {
  12674. ggml_binary_op_f32_t fun;
  12675. memcpy(&fun, tensor->op_params, sizeof(fun));
  12676. ggml_compute_forward_map_binary(params, tensor, fun);
  12677. }
  12678. break;
  12679. case GGML_OP_MAP_CUSTOM1_F32:
  12680. {
  12681. ggml_custom1_op_f32_t fun;
  12682. memcpy(&fun, tensor->op_params, sizeof(fun));
  12683. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  12684. }
  12685. break;
  12686. case GGML_OP_MAP_CUSTOM2_F32:
  12687. {
  12688. ggml_custom2_op_f32_t fun;
  12689. memcpy(&fun, tensor->op_params, sizeof(fun));
  12690. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  12691. }
  12692. break;
  12693. case GGML_OP_MAP_CUSTOM3_F32:
  12694. {
  12695. ggml_custom3_op_f32_t fun;
  12696. memcpy(&fun, tensor->op_params, sizeof(fun));
  12697. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  12698. }
  12699. break;
  12700. case GGML_OP_MAP_CUSTOM1:
  12701. {
  12702. ggml_compute_forward_map_custom1(params, tensor);
  12703. }
  12704. break;
  12705. case GGML_OP_MAP_CUSTOM2:
  12706. {
  12707. ggml_compute_forward_map_custom2(params, tensor);
  12708. }
  12709. break;
  12710. case GGML_OP_MAP_CUSTOM3:
  12711. {
  12712. ggml_compute_forward_map_custom3(params, tensor);
  12713. }
  12714. break;
  12715. case GGML_OP_CROSS_ENTROPY_LOSS:
  12716. {
  12717. ggml_compute_forward_cross_entropy_loss(params, tensor);
  12718. }
  12719. break;
  12720. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12721. {
  12722. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  12723. }
  12724. break;
  12725. case GGML_OP_NONE:
  12726. {
  12727. // nop
  12728. } break;
  12729. case GGML_OP_COUNT:
  12730. {
  12731. GGML_ASSERT(false);
  12732. } break;
  12733. }
  12734. }
  12735. ////////////////////////////////////////////////////////////////////////////////
  12736. static size_t ggml_hash_size(size_t min_sz) {
  12737. // next primes after powers of two
  12738. static const size_t primes[] = {
  12739. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12740. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12741. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12742. 16777259, 33554467, 67108879, 134217757, 268435459,
  12743. 536870923, 1073741827, 2147483659
  12744. };
  12745. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12746. // find the smallest prime that is larger or equal to min_sz
  12747. size_t l = 0;
  12748. size_t r = n_primes;
  12749. while (l < r) {
  12750. size_t m = (l + r)/2;
  12751. if (primes[m] < min_sz) {
  12752. l = m + 1;
  12753. } else {
  12754. r = m;
  12755. }
  12756. }
  12757. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12758. return sz;
  12759. }
  12760. static size_t ggml_hash(const void * p) {
  12761. return (size_t)p;
  12762. }
  12763. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12764. size_t h = ggml_hash(key) % hash_set.size;
  12765. // linear probing
  12766. size_t i = h;
  12767. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12768. i = (i + 1) % hash_set.size;
  12769. if (i == h) {
  12770. // visited all hash table entries -> not found
  12771. return GGML_HASHTABLE_FULL;
  12772. }
  12773. }
  12774. return i;
  12775. }
  12776. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12777. size_t i = ggml_hash_find(hash_set, key);
  12778. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12779. }
  12780. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12781. size_t i = ggml_hash_find(hash_set, key);
  12782. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12783. if (hash_set.keys[i] == key) {
  12784. return GGML_HASHTABLE_ALREADY_EXISTS;
  12785. }
  12786. // insert
  12787. GGML_ASSERT(hash_set.keys[i] == NULL);
  12788. hash_set.keys[i] = key;
  12789. return i;
  12790. }
  12791. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12792. size_t i = ggml_hash_find(hash_set, key);
  12793. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12794. hash_set.keys[i] = key;
  12795. return i;
  12796. }
  12797. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12798. size = ggml_hash_size(size);
  12799. struct ggml_hash_set result;
  12800. result.size = size;
  12801. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12802. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12803. return result;
  12804. }
  12805. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12806. GGML_FREE(hash_set.keys);
  12807. }
  12808. struct hash_map {
  12809. struct ggml_hash_set set;
  12810. struct ggml_tensor ** vals;
  12811. };
  12812. static struct hash_map * ggml_new_hash_map(size_t size) {
  12813. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12814. result->set = ggml_hash_set_new(size);
  12815. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12816. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12817. return result;
  12818. }
  12819. static void ggml_hash_map_free(struct hash_map * map) {
  12820. ggml_hash_set_free(map->set);
  12821. GGML_FREE(map->vals);
  12822. GGML_FREE(map);
  12823. }
  12824. // gradient checkpointing
  12825. static struct ggml_tensor * ggml_recompute_graph_node(
  12826. struct ggml_context * ctx,
  12827. struct ggml_cgraph * graph,
  12828. struct hash_map * replacements,
  12829. struct ggml_tensor * node) {
  12830. if (node == NULL) {
  12831. return NULL;
  12832. }
  12833. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12834. return node;
  12835. }
  12836. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12837. return node;
  12838. }
  12839. int count_children = 0;
  12840. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12841. if (node->src[k]) {
  12842. ++count_children;
  12843. }
  12844. }
  12845. if (count_children == 0) {
  12846. return node;
  12847. }
  12848. size_t i = ggml_hash_find(replacements->set, node);
  12849. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12850. if (replacements->set.keys[i] == node) {
  12851. return replacements->vals[i];
  12852. }
  12853. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12854. // insert clone into replacements
  12855. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12856. replacements->set.keys[i] = node;
  12857. replacements->vals[i] = clone;
  12858. clone->op = node->op;
  12859. clone->grad = node->grad;
  12860. clone->flags = node->flags;
  12861. clone->extra = node->extra;
  12862. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12863. clone->nb[k] = node->nb[k];
  12864. }
  12865. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12866. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12867. }
  12868. if (node->view_src != NULL) {
  12869. clone->data = (node->view_src->data == NULL)
  12870. ? NULL // view_src not yet allocated
  12871. : (char *) node->view_src->data // view_src already allocated
  12872. + node->view_offs;
  12873. clone->view_src = node->view_src;
  12874. clone->view_offs = node->view_offs;
  12875. }
  12876. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12877. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12878. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12879. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12880. return clone;
  12881. }
  12882. void ggml_build_backward_gradient_checkpointing(
  12883. struct ggml_context * ctx,
  12884. struct ggml_cgraph * gf,
  12885. struct ggml_cgraph * gb,
  12886. struct ggml_cgraph * gb_tmp,
  12887. struct ggml_tensor * * checkpoints,
  12888. int n_checkpoints) {
  12889. ggml_graph_cpy(gf, gb_tmp);
  12890. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12891. if (n_checkpoints <= 0) {
  12892. ggml_graph_cpy(gb_tmp, gb);
  12893. return;
  12894. }
  12895. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12896. // insert checkpoints in replacements
  12897. for (int i = 0; i < n_checkpoints; ++i) {
  12898. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12899. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12900. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12901. replacements->set.keys[k] = checkpoints[i];
  12902. replacements->vals[k] = checkpoints[i];
  12903. }
  12904. ggml_graph_cpy(gf, gb);
  12905. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12906. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12907. // by recomputing them from checkpoints
  12908. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12909. struct ggml_tensor * node = gb_tmp->nodes[i];
  12910. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12911. // insert new tensors recomputing src, reusing already made replacements,
  12912. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12913. // recurse for input tensors,
  12914. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12915. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12916. }
  12917. // insert rewritten backward node with replacements made into resulting backward graph gb
  12918. ggml_build_forward_expand(gb, node);
  12919. }
  12920. ggml_hash_map_free(replacements);
  12921. }
  12922. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12923. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12924. if (ggml_hash_contains(zero_table, a)) {
  12925. return b;
  12926. } else {
  12927. return ggml_add_impl(ctx, a, b, false);
  12928. }
  12929. }
  12930. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12931. if (ggml_hash_contains(zero_table, a)) {
  12932. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12933. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12934. } else {
  12935. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12936. }
  12937. }
  12938. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12939. if (ggml_hash_contains(zero_table, a)) {
  12940. return ggml_repeat(ctx, b, a);
  12941. } else {
  12942. return ggml_add1_impl(ctx, a, b, false);
  12943. }
  12944. }
  12945. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12946. if (ggml_hash_contains(zero_table, a)) {
  12947. return ggml_neg(ctx, b);
  12948. } else {
  12949. return ggml_sub_impl(ctx, a, b, false);
  12950. }
  12951. }
  12952. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12953. struct ggml_tensor * src0 = tensor->src[0];
  12954. struct ggml_tensor * src1 = tensor->src[1];
  12955. switch (tensor->op) {
  12956. case GGML_OP_DUP:
  12957. {
  12958. if (src0->grad) {
  12959. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12960. }
  12961. } break;
  12962. case GGML_OP_ADD:
  12963. {
  12964. if (src0->grad) {
  12965. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12966. }
  12967. if (src1->grad) {
  12968. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12969. }
  12970. } break;
  12971. case GGML_OP_ADD1:
  12972. {
  12973. if (src0->grad) {
  12974. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12975. }
  12976. if (src1->grad) {
  12977. src1->grad = ggml_add_or_set(ctx,
  12978. src1->grad,
  12979. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12980. zero_table);
  12981. }
  12982. } break;
  12983. case GGML_OP_ACC:
  12984. {
  12985. if (src0->grad) {
  12986. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12987. }
  12988. if (src1->grad) {
  12989. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12990. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12991. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12992. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12993. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12994. tensor->grad,
  12995. src1->grad->ne[0],
  12996. src1->grad->ne[1],
  12997. src1->grad->ne[2],
  12998. src1->grad->ne[3],
  12999. nb1, nb2, nb3, offset);
  13000. src1->grad =
  13001. ggml_add_or_set(ctx,
  13002. src1->grad,
  13003. ggml_reshape(ctx,
  13004. ggml_cont(ctx, tensor_grad_view),
  13005. src1->grad),
  13006. zero_table);
  13007. }
  13008. } break;
  13009. case GGML_OP_SUB:
  13010. {
  13011. if (src0->grad) {
  13012. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13013. }
  13014. if (src1->grad) {
  13015. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13016. }
  13017. } break;
  13018. case GGML_OP_MUL:
  13019. {
  13020. if (src0->grad) {
  13021. src0->grad =
  13022. ggml_add_or_set(ctx,
  13023. src0->grad,
  13024. ggml_mul(ctx, src1, tensor->grad),
  13025. zero_table);
  13026. }
  13027. if (src1->grad) {
  13028. src1->grad =
  13029. ggml_add_or_set(ctx,
  13030. src1->grad,
  13031. ggml_mul(ctx, src0, tensor->grad),
  13032. zero_table);
  13033. }
  13034. } break;
  13035. case GGML_OP_DIV:
  13036. {
  13037. if (src0->grad) {
  13038. src0->grad =
  13039. ggml_add_or_set(ctx,
  13040. src0->grad,
  13041. ggml_div(ctx, tensor->grad, src1),
  13042. zero_table);
  13043. }
  13044. if (src1->grad) {
  13045. src1->grad =
  13046. ggml_sub_or_set(ctx,
  13047. src1->grad,
  13048. ggml_mul(ctx,
  13049. tensor->grad,
  13050. ggml_div(ctx, tensor, src1)),
  13051. zero_table);
  13052. }
  13053. } break;
  13054. case GGML_OP_SQR:
  13055. {
  13056. if (src0->grad) {
  13057. src0->grad =
  13058. ggml_add_or_set(ctx,
  13059. src0->grad,
  13060. ggml_scale(ctx,
  13061. ggml_mul(ctx, src0, tensor->grad),
  13062. 2.0f),
  13063. zero_table);
  13064. }
  13065. } break;
  13066. case GGML_OP_SQRT:
  13067. {
  13068. if (src0->grad) {
  13069. src0->grad =
  13070. ggml_add_or_set(ctx,
  13071. src0->grad,
  13072. ggml_scale(ctx,
  13073. ggml_div(ctx,
  13074. tensor->grad,
  13075. tensor),
  13076. 0.5f),
  13077. zero_table);
  13078. }
  13079. } break;
  13080. case GGML_OP_LOG:
  13081. {
  13082. if (src0->grad) {
  13083. src0->grad =
  13084. ggml_add_or_set(ctx,
  13085. src0->grad,
  13086. ggml_div(ctx,
  13087. tensor->grad,
  13088. src0),
  13089. zero_table);
  13090. }
  13091. } break;
  13092. case GGML_OP_SUM:
  13093. {
  13094. if (src0->grad) {
  13095. src0->grad =
  13096. ggml_add1_or_set(ctx,
  13097. src0->grad,
  13098. tensor->grad,
  13099. zero_table);
  13100. }
  13101. } break;
  13102. case GGML_OP_SUM_ROWS:
  13103. {
  13104. if (src0->grad) {
  13105. src0->grad =
  13106. ggml_add_or_set(ctx,
  13107. src0->grad,
  13108. ggml_repeat(ctx,
  13109. tensor->grad,
  13110. src0->grad),
  13111. zero_table);
  13112. }
  13113. } break;
  13114. case GGML_OP_MEAN:
  13115. case GGML_OP_ARGMAX:
  13116. {
  13117. GGML_ASSERT(false); // TODO: implement
  13118. } break;
  13119. case GGML_OP_REPEAT:
  13120. {
  13121. // necessary for llama
  13122. if (src0->grad) {
  13123. src0->grad = ggml_add_or_set(ctx,
  13124. src0->grad,
  13125. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13126. zero_table);
  13127. }
  13128. } break;
  13129. case GGML_OP_REPEAT_BACK:
  13130. {
  13131. if (src0->grad) {
  13132. // TODO: test this
  13133. src0->grad = ggml_add_or_set(ctx,
  13134. src0->grad,
  13135. ggml_repeat(ctx, tensor->grad, src0->grad),
  13136. zero_table);
  13137. }
  13138. } break;
  13139. case GGML_OP_CONCAT:
  13140. {
  13141. GGML_ASSERT(false); // TODO: implement
  13142. } break;
  13143. case GGML_OP_SILU_BACK:
  13144. {
  13145. GGML_ASSERT(false); // TODO: not implemented
  13146. } break;
  13147. case GGML_OP_NORM:
  13148. {
  13149. GGML_ASSERT(false); // TODO: not implemented
  13150. } break;
  13151. case GGML_OP_RMS_NORM:
  13152. {
  13153. // necessary for llama
  13154. if (src0->grad) {
  13155. float eps;
  13156. memcpy(&eps, tensor->op_params, sizeof(float));
  13157. src0->grad = ggml_add_or_set(ctx,
  13158. src0->grad,
  13159. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13160. zero_table);
  13161. }
  13162. } break;
  13163. case GGML_OP_RMS_NORM_BACK:
  13164. {
  13165. GGML_ASSERT(false); // TODO: not implemented
  13166. } break;
  13167. case GGML_OP_GROUP_NORM:
  13168. {
  13169. GGML_ASSERT(false); // TODO: not implemented
  13170. } break;
  13171. case GGML_OP_MUL_MAT:
  13172. {
  13173. // https://cs231n.github.io/optimization-2/#staged
  13174. // # forward pass
  13175. // s0 = np.random.randn(5, 10)
  13176. // s1 = np.random.randn(10, 3)
  13177. // t = s0.dot(s1)
  13178. // # now suppose we had the gradient on t from above in the circuit
  13179. // dt = np.random.randn(*t.shape) # same shape as t
  13180. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13181. // ds1 = t.T.dot(dt)
  13182. // tensor.shape [m,p,qq,rr]
  13183. // src0.shape [n,m,q1,r1]
  13184. // src1.shape [n,p,qq,rr]
  13185. // necessary for llama
  13186. if (src0->grad) {
  13187. struct ggml_tensor * s1_tg =
  13188. ggml_out_prod(ctx, // [n,m,qq,rr]
  13189. src1, // [n,p,qq,rr]
  13190. tensor->grad); // [m,p,qq,rr]
  13191. const int64_t qq = s1_tg->ne[2];
  13192. const int64_t rr = s1_tg->ne[3];
  13193. const int64_t q1 = src0->ne[2];
  13194. const int64_t r1 = src0->ne[3];
  13195. const bool ne2_broadcasted = qq > q1;
  13196. const bool ne3_broadcasted = rr > r1;
  13197. if (ne2_broadcasted || ne3_broadcasted) {
  13198. // sum broadcast repetitions of s1_tg into shape of src0
  13199. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13200. }
  13201. src0->grad =
  13202. ggml_add_or_set(ctx,
  13203. src0->grad, // [n,m,q1,r1]
  13204. s1_tg, // [n,m,q1,r1]
  13205. zero_table);
  13206. }
  13207. if (src1->grad) {
  13208. src1->grad =
  13209. ggml_add_or_set(ctx,
  13210. src1->grad, // [n,p,qq,rr]
  13211. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13212. // ggml_cont(ctx, // [m,n,q1,r1]
  13213. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13214. // tensor->grad), // [m,p,qq,rr]
  13215. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13216. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13217. // // and then use ggml_out_prod
  13218. ggml_out_prod(ctx, // [n,p,qq,rr]
  13219. src0, // [n,m,q1,r1]
  13220. ggml_transpose(ctx, // [p,m,qq,rr]
  13221. tensor->grad)), // [m,p,qq,rr]
  13222. zero_table);
  13223. }
  13224. } break;
  13225. case GGML_OP_MUL_MAT_ID:
  13226. {
  13227. GGML_ASSERT(false); // TODO: not implemented
  13228. } break;
  13229. case GGML_OP_OUT_PROD:
  13230. {
  13231. GGML_ASSERT(false); // TODO: not implemented
  13232. } break;
  13233. case GGML_OP_SCALE:
  13234. {
  13235. // necessary for llama
  13236. if (src0->grad) {
  13237. float s;
  13238. memcpy(&s, tensor->op_params, sizeof(float));
  13239. src0->grad =
  13240. ggml_add_or_set(ctx,
  13241. src0->grad,
  13242. ggml_scale_impl(ctx, tensor->grad, s, false),
  13243. zero_table);
  13244. }
  13245. } break;
  13246. case GGML_OP_SET:
  13247. {
  13248. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13249. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13250. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13251. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13252. struct ggml_tensor * tensor_grad_view = NULL;
  13253. if (src0->grad || src1->grad) {
  13254. GGML_ASSERT(src0->type == tensor->type);
  13255. GGML_ASSERT(tensor->grad->type == tensor->type);
  13256. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13257. tensor_grad_view = ggml_view_4d(ctx,
  13258. tensor->grad,
  13259. src1->grad->ne[0],
  13260. src1->grad->ne[1],
  13261. src1->grad->ne[2],
  13262. src1->grad->ne[3],
  13263. nb1, nb2, nb3, offset);
  13264. }
  13265. if (src0->grad) {
  13266. src0->grad = ggml_add_or_set(ctx,
  13267. src0->grad,
  13268. ggml_acc_impl(ctx,
  13269. tensor->grad,
  13270. ggml_neg(ctx, tensor_grad_view),
  13271. nb1, nb2, nb3, offset, false),
  13272. zero_table);
  13273. }
  13274. if (src1->grad) {
  13275. src1->grad =
  13276. ggml_add_or_set(ctx,
  13277. src1->grad,
  13278. ggml_reshape(ctx,
  13279. ggml_cont(ctx, tensor_grad_view),
  13280. src1->grad),
  13281. zero_table);
  13282. }
  13283. } break;
  13284. case GGML_OP_CPY:
  13285. {
  13286. // necessary for llama
  13287. // cpy overwrites value of src1 by src0 and returns view(src1)
  13288. // the overwriting is mathematically equivalent to:
  13289. // tensor = src0 * 1 + src1 * 0
  13290. if (src0->grad) {
  13291. // dsrc0 = dtensor * 1
  13292. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13293. }
  13294. if (src1->grad) {
  13295. // dsrc1 = dtensor * 0 -> noop
  13296. }
  13297. } break;
  13298. case GGML_OP_CONT:
  13299. {
  13300. // same as cpy
  13301. if (src0->grad) {
  13302. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13303. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13304. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13305. }
  13306. } break;
  13307. case GGML_OP_RESHAPE:
  13308. {
  13309. // necessary for llama
  13310. if (src0->grad) {
  13311. src0->grad =
  13312. ggml_add_or_set(ctx, src0->grad,
  13313. ggml_reshape(ctx,
  13314. ggml_is_contiguous(tensor->grad)
  13315. ? tensor->grad
  13316. : ggml_cont(ctx, tensor->grad),
  13317. src0->grad),
  13318. zero_table);
  13319. }
  13320. } break;
  13321. case GGML_OP_VIEW:
  13322. {
  13323. // necessary for llama
  13324. if (src0->grad) {
  13325. size_t offset;
  13326. memcpy(&offset, tensor->op_params, sizeof(offset));
  13327. size_t nb1 = tensor->nb[1];
  13328. size_t nb2 = tensor->nb[2];
  13329. size_t nb3 = tensor->nb[3];
  13330. if (src0->type != src0->grad->type) {
  13331. // gradient is typically F32, but src0 could be other type
  13332. size_t ng = ggml_element_size(src0->grad);
  13333. size_t n0 = ggml_element_size(src0);
  13334. GGML_ASSERT(offset % n0 == 0);
  13335. GGML_ASSERT(nb1 % n0 == 0);
  13336. GGML_ASSERT(nb2 % n0 == 0);
  13337. GGML_ASSERT(nb3 % n0 == 0);
  13338. offset = (offset / n0) * ng;
  13339. nb1 = (nb1 / n0) * ng;
  13340. nb2 = (nb2 / n0) * ng;
  13341. nb3 = (nb3 / n0) * ng;
  13342. }
  13343. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13344. }
  13345. } break;
  13346. case GGML_OP_PERMUTE:
  13347. {
  13348. // necessary for llama
  13349. if (src0->grad) {
  13350. int32_t * axes = (int32_t *) tensor->op_params;
  13351. int axis0 = axes[0] & 0x3;
  13352. int axis1 = axes[1] & 0x3;
  13353. int axis2 = axes[2] & 0x3;
  13354. int axis3 = axes[3] & 0x3;
  13355. int axes_backward[4] = {0,0,0,0};
  13356. axes_backward[axis0] = 0;
  13357. axes_backward[axis1] = 1;
  13358. axes_backward[axis2] = 2;
  13359. axes_backward[axis3] = 3;
  13360. src0->grad =
  13361. ggml_add_or_set(ctx, src0->grad,
  13362. ggml_permute(ctx,
  13363. tensor->grad,
  13364. axes_backward[0],
  13365. axes_backward[1],
  13366. axes_backward[2],
  13367. axes_backward[3]),
  13368. zero_table);
  13369. }
  13370. } break;
  13371. case GGML_OP_TRANSPOSE:
  13372. {
  13373. // necessary for llama
  13374. if (src0->grad) {
  13375. src0->grad =
  13376. ggml_add_or_set(ctx, src0->grad,
  13377. ggml_transpose(ctx, tensor->grad),
  13378. zero_table);
  13379. }
  13380. } break;
  13381. case GGML_OP_GET_ROWS:
  13382. {
  13383. // necessary for llama (only for tokenizer)
  13384. if (src0->grad) {
  13385. src0->grad =
  13386. ggml_add_or_set(ctx, src0->grad,
  13387. // last ggml_get_rows_back argument src0->grad is only
  13388. // necessary to setup correct output shape
  13389. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13390. zero_table);
  13391. }
  13392. if (src1->grad) {
  13393. // noop
  13394. }
  13395. } break;
  13396. case GGML_OP_GET_ROWS_BACK:
  13397. {
  13398. GGML_ASSERT(false); // TODO: not implemented
  13399. } break;
  13400. case GGML_OP_DIAG:
  13401. {
  13402. GGML_ASSERT(false); // TODO: not implemented
  13403. } break;
  13404. case GGML_OP_DIAG_MASK_INF:
  13405. {
  13406. // necessary for llama
  13407. if (src0->grad) {
  13408. const int n_past = ((int32_t *) tensor->op_params)[0];
  13409. src0->grad =
  13410. ggml_add_or_set(ctx, src0->grad,
  13411. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13412. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13413. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13414. zero_table);
  13415. }
  13416. } break;
  13417. case GGML_OP_DIAG_MASK_ZERO:
  13418. {
  13419. // necessary for llama
  13420. if (src0->grad) {
  13421. const int n_past = ((int32_t *) tensor->op_params)[0];
  13422. src0->grad =
  13423. ggml_add_or_set(ctx, src0->grad,
  13424. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13425. zero_table);
  13426. }
  13427. } break;
  13428. case GGML_OP_SOFT_MAX:
  13429. {
  13430. // necessary for llama
  13431. if (src0->grad) {
  13432. src0->grad =
  13433. ggml_add_or_set(ctx, src0->grad,
  13434. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13435. zero_table);
  13436. }
  13437. } break;
  13438. case GGML_OP_SOFT_MAX_BACK:
  13439. {
  13440. GGML_ASSERT(false); // TODO: not implemented
  13441. } break;
  13442. case GGML_OP_ROPE:
  13443. {
  13444. // necessary for llama
  13445. if (src0->grad) {
  13446. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13447. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13448. const int mode = ((int32_t *) tensor->op_params)[2];
  13449. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13450. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13451. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13452. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13453. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13454. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13455. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13456. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13457. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13458. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13459. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13460. src0->grad = ggml_add_or_set(ctx,
  13461. src0->grad,
  13462. ggml_rope_back(ctx,
  13463. tensor->grad,
  13464. src1,
  13465. n_dims,
  13466. mode,
  13467. n_ctx,
  13468. n_orig_ctx,
  13469. freq_base,
  13470. freq_scale,
  13471. ext_factor,
  13472. attn_factor,
  13473. beta_fast,
  13474. beta_slow,
  13475. xpos_base,
  13476. xpos_down),
  13477. zero_table);
  13478. }
  13479. } break;
  13480. case GGML_OP_ROPE_BACK:
  13481. {
  13482. if (src0->grad) {
  13483. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13484. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13485. const int mode = ((int32_t *) tensor->op_params)[2];
  13486. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13487. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13488. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13489. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13490. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13491. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13492. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13493. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13494. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13495. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13496. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13497. src0->grad = ggml_add_or_set(ctx,
  13498. src0->grad,
  13499. ggml_rope_impl(ctx,
  13500. tensor->grad,
  13501. src1,
  13502. n_dims,
  13503. mode,
  13504. n_ctx,
  13505. n_orig_ctx,
  13506. freq_base,
  13507. freq_scale,
  13508. ext_factor,
  13509. attn_factor,
  13510. beta_fast,
  13511. beta_slow,
  13512. xpos_base,
  13513. xpos_down,
  13514. false),
  13515. zero_table);
  13516. }
  13517. } break;
  13518. case GGML_OP_ALIBI:
  13519. {
  13520. GGML_ASSERT(false); // TODO: not implemented
  13521. } break;
  13522. case GGML_OP_CLAMP:
  13523. {
  13524. GGML_ASSERT(false); // TODO: not implemented
  13525. } break;
  13526. case GGML_OP_CONV_TRANSPOSE_1D:
  13527. {
  13528. GGML_ASSERT(false); // TODO: not implemented
  13529. } break;
  13530. case GGML_OP_IM2COL:
  13531. {
  13532. GGML_ASSERT(false); // TODO: not implemented
  13533. } break;
  13534. case GGML_OP_CONV_TRANSPOSE_2D:
  13535. {
  13536. GGML_ASSERT(false); // TODO: not implemented
  13537. } break;
  13538. case GGML_OP_POOL_1D:
  13539. {
  13540. GGML_ASSERT(false); // TODO: not implemented
  13541. } break;
  13542. case GGML_OP_POOL_2D:
  13543. {
  13544. GGML_ASSERT(false); // TODO: not implemented
  13545. } break;
  13546. case GGML_OP_UPSCALE:
  13547. {
  13548. GGML_ASSERT(false); // TODO: not implemented
  13549. } break;
  13550. case GGML_OP_PAD:
  13551. {
  13552. GGML_ASSERT(false); // TODO: not implemented
  13553. } break;
  13554. case GGML_OP_ARGSORT:
  13555. {
  13556. GGML_ASSERT(false); // TODO: not implemented
  13557. } break;
  13558. case GGML_OP_LEAKY_RELU:
  13559. {
  13560. GGML_ASSERT(false); // TODO: not implemented
  13561. } break;
  13562. case GGML_OP_FLASH_ATTN:
  13563. {
  13564. struct ggml_tensor * flash_grad = NULL;
  13565. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13566. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13567. GGML_ASSERT(t == 0 || t == 1);
  13568. bool masked = t != 0;
  13569. flash_grad =
  13570. ggml_flash_attn_back(ctx,
  13571. src0,
  13572. src1,
  13573. tensor->src[2],
  13574. tensor->grad,
  13575. masked);
  13576. }
  13577. struct ggml_tensor * src2 = tensor->src[2];
  13578. const int64_t elem_q = ggml_nelements(src0);
  13579. const int64_t elem_k = ggml_nelements(src1);
  13580. const int64_t elem_v = ggml_nelements(src2);
  13581. enum ggml_type result_type = flash_grad->type;
  13582. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13583. const size_t tsize = ggml_type_size(result_type);
  13584. const size_t offs_q = 0;
  13585. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13586. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13587. if (src0->grad) {
  13588. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13589. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13590. src0->grad = ggml_add_or_set(ctx,
  13591. src0->grad,
  13592. grad_q,
  13593. zero_table);
  13594. }
  13595. if (src1->grad) {
  13596. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13597. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13598. src1->grad = ggml_add_or_set(ctx,
  13599. src1->grad,
  13600. grad_k,
  13601. zero_table);
  13602. }
  13603. if (src2->grad) {
  13604. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13605. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13606. src2->grad = ggml_add_or_set(ctx,
  13607. src2->grad,
  13608. grad_v,
  13609. zero_table);
  13610. }
  13611. } break;
  13612. case GGML_OP_FLASH_FF:
  13613. {
  13614. GGML_ASSERT(false); // not supported
  13615. } break;
  13616. case GGML_OP_FLASH_ATTN_BACK:
  13617. {
  13618. GGML_ASSERT(false); // not supported
  13619. } break;
  13620. case GGML_OP_WIN_PART:
  13621. case GGML_OP_WIN_UNPART:
  13622. case GGML_OP_UNARY:
  13623. {
  13624. switch (ggml_get_unary_op(tensor)) {
  13625. case GGML_UNARY_OP_ABS:
  13626. {
  13627. if (src0->grad) {
  13628. src0->grad =
  13629. ggml_add_or_set(ctx,
  13630. src0->grad,
  13631. ggml_mul(ctx,
  13632. ggml_sgn(ctx, src0),
  13633. tensor->grad),
  13634. zero_table);
  13635. }
  13636. } break;
  13637. case GGML_UNARY_OP_SGN:
  13638. {
  13639. if (src0->grad) {
  13640. // noop
  13641. }
  13642. } break;
  13643. case GGML_UNARY_OP_NEG:
  13644. {
  13645. if (src0->grad) {
  13646. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13647. }
  13648. } break;
  13649. case GGML_UNARY_OP_STEP:
  13650. {
  13651. if (src0->grad) {
  13652. // noop
  13653. }
  13654. } break;
  13655. case GGML_UNARY_OP_TANH:
  13656. {
  13657. GGML_ASSERT(false); // TODO: not implemented
  13658. } break;
  13659. case GGML_UNARY_OP_ELU:
  13660. {
  13661. GGML_ASSERT(false); // TODO: not implemented
  13662. } break;
  13663. case GGML_UNARY_OP_RELU:
  13664. {
  13665. if (src0->grad) {
  13666. src0->grad = ggml_add_or_set(ctx,
  13667. src0->grad,
  13668. ggml_mul(ctx,
  13669. ggml_step(ctx, src0),
  13670. tensor->grad),
  13671. zero_table);
  13672. }
  13673. } break;
  13674. case GGML_UNARY_OP_GELU:
  13675. {
  13676. GGML_ASSERT(false); // TODO: not implemented
  13677. } break;
  13678. case GGML_UNARY_OP_GELU_QUICK:
  13679. {
  13680. GGML_ASSERT(false); // TODO: not implemented
  13681. } break;
  13682. case GGML_UNARY_OP_SILU:
  13683. {
  13684. // necessary for llama
  13685. if (src0->grad) {
  13686. src0->grad = ggml_add_or_set(ctx,
  13687. src0->grad,
  13688. ggml_silu_back(ctx, src0, tensor->grad),
  13689. zero_table);
  13690. }
  13691. } break;
  13692. default:
  13693. GGML_ASSERT(false);
  13694. }
  13695. } break;
  13696. case GGML_OP_GET_REL_POS:
  13697. case GGML_OP_ADD_REL_POS:
  13698. case GGML_OP_MAP_UNARY:
  13699. case GGML_OP_MAP_BINARY:
  13700. case GGML_OP_MAP_CUSTOM1_F32:
  13701. case GGML_OP_MAP_CUSTOM2_F32:
  13702. case GGML_OP_MAP_CUSTOM3_F32:
  13703. case GGML_OP_MAP_CUSTOM1:
  13704. case GGML_OP_MAP_CUSTOM2:
  13705. case GGML_OP_MAP_CUSTOM3:
  13706. {
  13707. GGML_ASSERT(false); // not supported
  13708. } break;
  13709. case GGML_OP_CROSS_ENTROPY_LOSS:
  13710. {
  13711. if (src0->grad) {
  13712. src0->grad = ggml_add_or_set(ctx,
  13713. src0->grad,
  13714. ggml_cross_entropy_loss_back(ctx,
  13715. src0,
  13716. src1,
  13717. tensor->grad),
  13718. zero_table);
  13719. }
  13720. } break;
  13721. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13722. {
  13723. GGML_ASSERT(false); // not supported
  13724. } break;
  13725. case GGML_OP_NONE:
  13726. {
  13727. // nop
  13728. } break;
  13729. case GGML_OP_COUNT:
  13730. {
  13731. GGML_ASSERT(false);
  13732. } break;
  13733. }
  13734. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13735. if (tensor->src[i] && tensor->src[i]->grad) {
  13736. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13737. }
  13738. }
  13739. }
  13740. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13741. if (node->grad == NULL) {
  13742. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13743. // it can also happen during forward pass, if the user performs computations with constants
  13744. if (node->op != GGML_OP_NONE) {
  13745. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13746. }
  13747. }
  13748. // check if already visited
  13749. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13750. return;
  13751. }
  13752. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13753. const int k =
  13754. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13755. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13756. /* unknown order, just fall back to using i*/ i;
  13757. if (node->src[k]) {
  13758. ggml_visit_parents(cgraph, node->src[k]);
  13759. }
  13760. }
  13761. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13762. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13763. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13764. if (strlen(node->name) == 0) {
  13765. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13766. }
  13767. cgraph->leafs[cgraph->n_leafs] = node;
  13768. cgraph->n_leafs++;
  13769. } else {
  13770. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13771. if (strlen(node->name) == 0) {
  13772. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13773. }
  13774. cgraph->nodes[cgraph->n_nodes] = node;
  13775. if (cgraph->grads) {
  13776. cgraph->grads[cgraph->n_nodes] = node->grad;
  13777. }
  13778. cgraph->n_nodes++;
  13779. }
  13780. }
  13781. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13782. if (!expand) {
  13783. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13784. ggml_graph_clear(cgraph);
  13785. }
  13786. const int n0 = cgraph->n_nodes;
  13787. UNUSED(n0);
  13788. ggml_visit_parents(cgraph, tensor);
  13789. const int n_new = cgraph->n_nodes - n0;
  13790. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13791. if (n_new > 0) {
  13792. // the last added node should always be starting point
  13793. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13794. }
  13795. }
  13796. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13797. ggml_build_forward_impl(cgraph, tensor, true);
  13798. }
  13799. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13800. GGML_ASSERT(gf->n_nodes > 0);
  13801. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13802. if (keep) {
  13803. for (int i = 0; i < gf->n_nodes; i++) {
  13804. struct ggml_tensor * node = gf->nodes[i];
  13805. if (node->grad) {
  13806. node->grad = ggml_dup_tensor(ctx, node);
  13807. gf->grads[i] = node->grad;
  13808. }
  13809. }
  13810. }
  13811. // remember original gradients which start with zero values
  13812. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13813. for (int i = 0; i < gf->n_nodes; i++) {
  13814. if (gf->grads[i]) {
  13815. ggml_hash_insert(zero_table, gf->grads[i]);
  13816. }
  13817. }
  13818. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13819. struct ggml_tensor * node = gf->nodes[i];
  13820. // inplace operations to add gradients are not created by ggml_compute_backward
  13821. // use allocator to automatically make inplace operations
  13822. if (node->grad) {
  13823. ggml_compute_backward(ctx, node, zero_table);
  13824. }
  13825. }
  13826. for (int i = 0; i < gf->n_nodes; i++) {
  13827. struct ggml_tensor * node = gf->nodes[i];
  13828. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13829. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13830. ggml_build_forward_expand(gb, node->grad);
  13831. }
  13832. }
  13833. ggml_hash_set_free(zero_table);
  13834. }
  13835. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13836. size_t nbytes = sizeof(struct ggml_cgraph);
  13837. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13838. if (grads) {
  13839. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13840. }
  13841. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13842. return nbytes;
  13843. }
  13844. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13845. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13846. }
  13847. size_t ggml_graph_overhead(void) {
  13848. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13849. }
  13850. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13851. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13852. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  13853. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13854. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13855. size_t hash_size = ggml_hash_size(size * 2);
  13856. struct ggml_tensor ** nodes_ptr = data_start;
  13857. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13858. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13859. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13860. // check that we allocated the correct amount of memory
  13861. assert(obj_size == (size_t) (
  13862. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13863. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13864. *cgraph = (struct ggml_cgraph) {
  13865. /*.size =*/ size,
  13866. /*.n_nodes =*/ 0,
  13867. /*.n_leafs =*/ 0,
  13868. /*.nodes =*/ nodes_ptr,
  13869. /*.grads =*/ grads_ptr,
  13870. /*.leafs =*/ leafs_ptr,
  13871. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13872. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13873. /*.perf_runs =*/ 0,
  13874. /*.perf_cycles =*/ 0,
  13875. /*.perf_time_us =*/ 0,
  13876. };
  13877. return cgraph;
  13878. }
  13879. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13880. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13881. }
  13882. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13883. struct ggml_cgraph cgraph = {
  13884. /*.size =*/ 0,
  13885. /*.n_nodes =*/ i1 - i0,
  13886. /*.n_leafs =*/ 0,
  13887. /*.nodes =*/ cgraph0->nodes + i0,
  13888. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13889. /*.leafs =*/ NULL,
  13890. /*.hash_table =*/ { 0, NULL },
  13891. /*.order =*/ cgraph0->order,
  13892. /*.perf_runs =*/ 0,
  13893. /*.perf_cycles =*/ 0,
  13894. /*.perf_time_us =*/ 0,
  13895. };
  13896. return cgraph;
  13897. }
  13898. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13899. GGML_ASSERT(dst->size >= src->n_leafs);
  13900. GGML_ASSERT(dst->size >= src->n_nodes);
  13901. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13902. dst->n_leafs = src->n_leafs;
  13903. dst->n_nodes = src->n_nodes;
  13904. dst->order = src->order;
  13905. for (int i = 0; i < src->n_leafs; ++i) {
  13906. dst->leafs[i] = src->leafs[i];
  13907. }
  13908. for (int i = 0; i < src->n_nodes; ++i) {
  13909. dst->nodes[i] = src->nodes[i];
  13910. }
  13911. if (src->grads) {
  13912. GGML_ASSERT(dst->grads != NULL);
  13913. for (int i = 0; i < src->n_nodes; ++i) {
  13914. dst->grads[i] = src->grads[i];
  13915. }
  13916. }
  13917. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13918. if (src->visited_hash_table.keys[i]) {
  13919. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13920. }
  13921. }
  13922. }
  13923. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13924. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13925. ggml_graph_cpy(cgraph, result);
  13926. return result;
  13927. }
  13928. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13929. GGML_ASSERT(cgraph->grads != NULL);
  13930. for (int i = 0; i < cgraph->n_nodes; i++) {
  13931. struct ggml_tensor * grad = cgraph->grads[i];
  13932. if (grad) {
  13933. ggml_set_zero(grad);
  13934. }
  13935. }
  13936. }
  13937. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13938. cgraph->n_leafs = 0;
  13939. cgraph->n_nodes = 0;
  13940. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13941. }
  13942. //
  13943. // thread data
  13944. //
  13945. // synchronization is done via busy loops
  13946. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13947. //
  13948. #ifdef __APPLE__
  13949. //#include <os/lock.h>
  13950. //
  13951. //typedef os_unfair_lock ggml_lock_t;
  13952. //
  13953. //#define ggml_lock_init(x) UNUSED(x)
  13954. //#define ggml_lock_destroy(x) UNUSED(x)
  13955. //#define ggml_lock_lock os_unfair_lock_lock
  13956. //#define ggml_lock_unlock os_unfair_lock_unlock
  13957. //
  13958. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13959. typedef int ggml_lock_t;
  13960. #define ggml_lock_init(x) UNUSED(x)
  13961. #define ggml_lock_destroy(x) UNUSED(x)
  13962. #define ggml_lock_lock(x) UNUSED(x)
  13963. #define ggml_lock_unlock(x) UNUSED(x)
  13964. #define GGML_LOCK_INITIALIZER 0
  13965. typedef pthread_t ggml_thread_t;
  13966. #define ggml_thread_create pthread_create
  13967. #define ggml_thread_join pthread_join
  13968. #else
  13969. //typedef pthread_spinlock_t ggml_lock_t;
  13970. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13971. //#define ggml_lock_destroy pthread_spin_destroy
  13972. //#define ggml_lock_lock pthread_spin_lock
  13973. //#define ggml_lock_unlock pthread_spin_unlock
  13974. typedef int ggml_lock_t;
  13975. #define ggml_lock_init(x) UNUSED(x)
  13976. #define ggml_lock_destroy(x) UNUSED(x)
  13977. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13978. #define ggml_lock_lock(x) _mm_pause()
  13979. #else
  13980. #define ggml_lock_lock(x) UNUSED(x)
  13981. #endif
  13982. #define ggml_lock_unlock(x) UNUSED(x)
  13983. #define GGML_LOCK_INITIALIZER 0
  13984. typedef pthread_t ggml_thread_t;
  13985. #define ggml_thread_create pthread_create
  13986. #define ggml_thread_join pthread_join
  13987. #endif
  13988. // Android's libc implementation "bionic" does not support setting affinity
  13989. #if defined(__gnu_linux__)
  13990. static void set_numa_thread_affinity(int thread_n) {
  13991. if (!ggml_is_numa()) {
  13992. return;
  13993. }
  13994. int node_num;
  13995. int rv;
  13996. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13997. switch(g_state.numa.numa_strategy) {
  13998. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  13999. // run thread on node_num thread_n / (threads per node)
  14000. node_num = thread_n % g_state.numa.n_nodes;
  14001. break;
  14002. case GGML_NUMA_STRATEGY_ISOLATE:
  14003. // run thread on current_node
  14004. node_num = g_state.numa.current_node;
  14005. break;
  14006. case GGML_NUMA_STRATEGY_NUMACTL:
  14007. // use the cpuset that numactl gave us
  14008. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14009. if (rv) {
  14010. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14011. }
  14012. return;
  14013. default:
  14014. return;
  14015. }
  14016. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14017. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14018. CPU_ZERO_S(setsize, cpus);
  14019. for (size_t i = 0; i < node->n_cpus; ++i) {
  14020. CPU_SET_S(node->cpus[i], setsize, cpus);
  14021. }
  14022. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14023. if (rv) {
  14024. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14025. }
  14026. CPU_FREE(cpus);
  14027. }
  14028. static void clear_numa_thread_affinity(void) {
  14029. if (!ggml_is_numa()) {
  14030. return;
  14031. }
  14032. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14033. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14034. CPU_ZERO_S(setsize, cpus);
  14035. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14036. CPU_SET_S(i, setsize, cpus);
  14037. }
  14038. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14039. if (rv) {
  14040. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14041. }
  14042. CPU_FREE(cpus);
  14043. }
  14044. #else
  14045. // TODO: Windows etc.
  14046. // (the linux implementation may also work on BSD, someone should test)
  14047. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14048. static void clear_numa_thread_affinity(void) {}
  14049. #endif
  14050. struct ggml_compute_state_shared {
  14051. const struct ggml_cgraph * cgraph;
  14052. const struct ggml_cplan * cplan;
  14053. int64_t perf_node_start_cycles;
  14054. int64_t perf_node_start_time_us;
  14055. const int n_threads;
  14056. // synchronization primitives
  14057. atomic_int n_active; // num active threads
  14058. atomic_int node_n; // active graph node
  14059. atomic_int node_task; // active graph node task phase
  14060. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14061. void * abort_callback_data;
  14062. };
  14063. struct ggml_compute_state {
  14064. ggml_thread_t thrd;
  14065. int ith;
  14066. struct ggml_compute_state_shared * shared;
  14067. };
  14068. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14069. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14070. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14071. node->perf_runs++;
  14072. node->perf_cycles += cycles_cur;
  14073. node->perf_time_us += time_us_cur;
  14074. }
  14075. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14076. int n_tasks = 0;
  14077. switch (node->op) {
  14078. case GGML_OP_CPY:
  14079. case GGML_OP_DUP:
  14080. case GGML_OP_ADD:
  14081. case GGML_OP_ADD1:
  14082. case GGML_OP_ACC:
  14083. {
  14084. n_tasks = n_threads;
  14085. } break;
  14086. case GGML_OP_SUB:
  14087. case GGML_OP_SQR:
  14088. case GGML_OP_SQRT:
  14089. case GGML_OP_LOG:
  14090. case GGML_OP_SUM:
  14091. case GGML_OP_SUM_ROWS:
  14092. case GGML_OP_MEAN:
  14093. case GGML_OP_ARGMAX:
  14094. case GGML_OP_REPEAT:
  14095. case GGML_OP_REPEAT_BACK:
  14096. case GGML_OP_LEAKY_RELU:
  14097. {
  14098. n_tasks = 1;
  14099. } break;
  14100. case GGML_OP_UNARY:
  14101. switch (ggml_get_unary_op(node)) {
  14102. case GGML_UNARY_OP_ABS:
  14103. case GGML_UNARY_OP_SGN:
  14104. case GGML_UNARY_OP_NEG:
  14105. case GGML_UNARY_OP_STEP:
  14106. case GGML_UNARY_OP_TANH:
  14107. case GGML_UNARY_OP_ELU:
  14108. case GGML_UNARY_OP_RELU:
  14109. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14110. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14111. {
  14112. n_tasks = 1;
  14113. } break;
  14114. case GGML_UNARY_OP_GELU:
  14115. case GGML_UNARY_OP_GELU_QUICK:
  14116. case GGML_UNARY_OP_SILU:
  14117. {
  14118. n_tasks = n_threads;
  14119. } break;
  14120. default:
  14121. GGML_ASSERT(false);
  14122. }
  14123. break;
  14124. case GGML_OP_SILU_BACK:
  14125. case GGML_OP_MUL:
  14126. case GGML_OP_DIV:
  14127. case GGML_OP_NORM:
  14128. case GGML_OP_RMS_NORM:
  14129. case GGML_OP_RMS_NORM_BACK:
  14130. case GGML_OP_GROUP_NORM:
  14131. case GGML_OP_CONCAT:
  14132. {
  14133. n_tasks = n_threads;
  14134. } break;
  14135. case GGML_OP_MUL_MAT:
  14136. {
  14137. n_tasks = n_threads;
  14138. // TODO: use different scheduling for different matrix sizes
  14139. //const int nr0 = ggml_nrows(node->src[0]);
  14140. //const int nr1 = ggml_nrows(node->src[1]);
  14141. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14142. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14143. } break;
  14144. case GGML_OP_MUL_MAT_ID:
  14145. {
  14146. n_tasks = n_threads;
  14147. } break;
  14148. case GGML_OP_OUT_PROD:
  14149. {
  14150. n_tasks = n_threads;
  14151. } break;
  14152. case GGML_OP_SCALE:
  14153. case GGML_OP_SET:
  14154. case GGML_OP_CONT:
  14155. case GGML_OP_RESHAPE:
  14156. case GGML_OP_VIEW:
  14157. case GGML_OP_PERMUTE:
  14158. case GGML_OP_TRANSPOSE:
  14159. case GGML_OP_GET_ROWS:
  14160. case GGML_OP_GET_ROWS_BACK:
  14161. case GGML_OP_DIAG:
  14162. {
  14163. n_tasks = 1;
  14164. } break;
  14165. case GGML_OP_DIAG_MASK_ZERO:
  14166. case GGML_OP_DIAG_MASK_INF:
  14167. case GGML_OP_SOFT_MAX_BACK:
  14168. case GGML_OP_ROPE:
  14169. case GGML_OP_ROPE_BACK:
  14170. case GGML_OP_ADD_REL_POS:
  14171. {
  14172. n_tasks = n_threads;
  14173. } break;
  14174. case GGML_OP_ALIBI:
  14175. {
  14176. n_tasks = 1; //TODO
  14177. } break;
  14178. case GGML_OP_CLAMP:
  14179. {
  14180. n_tasks = 1; //TODO
  14181. } break;
  14182. case GGML_OP_SOFT_MAX:
  14183. {
  14184. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14185. } break;
  14186. case GGML_OP_CONV_TRANSPOSE_1D:
  14187. {
  14188. n_tasks = n_threads;
  14189. } break;
  14190. case GGML_OP_IM2COL:
  14191. {
  14192. n_tasks = n_threads;
  14193. } break;
  14194. case GGML_OP_CONV_TRANSPOSE_2D:
  14195. {
  14196. n_tasks = n_threads;
  14197. } break;
  14198. case GGML_OP_POOL_1D:
  14199. case GGML_OP_POOL_2D:
  14200. {
  14201. n_tasks = 1;
  14202. } break;
  14203. case GGML_OP_UPSCALE:
  14204. {
  14205. n_tasks = n_threads;
  14206. } break;
  14207. case GGML_OP_PAD:
  14208. {
  14209. n_tasks = n_threads;
  14210. } break;
  14211. case GGML_OP_ARGSORT:
  14212. {
  14213. n_tasks = n_threads;
  14214. } break;
  14215. case GGML_OP_FLASH_ATTN:
  14216. {
  14217. n_tasks = n_threads;
  14218. } break;
  14219. case GGML_OP_FLASH_FF:
  14220. {
  14221. n_tasks = n_threads;
  14222. } break;
  14223. case GGML_OP_FLASH_ATTN_BACK:
  14224. {
  14225. n_tasks = n_threads;
  14226. } break;
  14227. case GGML_OP_WIN_PART:
  14228. case GGML_OP_WIN_UNPART:
  14229. case GGML_OP_GET_REL_POS:
  14230. case GGML_OP_MAP_UNARY:
  14231. case GGML_OP_MAP_BINARY:
  14232. case GGML_OP_MAP_CUSTOM1_F32:
  14233. case GGML_OP_MAP_CUSTOM2_F32:
  14234. case GGML_OP_MAP_CUSTOM3_F32:
  14235. {
  14236. n_tasks = 1;
  14237. } break;
  14238. case GGML_OP_MAP_CUSTOM1:
  14239. {
  14240. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14241. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14242. n_tasks = n_threads;
  14243. } else {
  14244. n_tasks = MIN(p->n_tasks, n_threads);
  14245. }
  14246. } break;
  14247. case GGML_OP_MAP_CUSTOM2:
  14248. {
  14249. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14250. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14251. n_tasks = n_threads;
  14252. } else {
  14253. n_tasks = MIN(p->n_tasks, n_threads);
  14254. }
  14255. } break;
  14256. case GGML_OP_MAP_CUSTOM3:
  14257. {
  14258. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14259. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14260. n_tasks = n_threads;
  14261. } else {
  14262. n_tasks = MIN(p->n_tasks, n_threads);
  14263. }
  14264. } break;
  14265. case GGML_OP_CROSS_ENTROPY_LOSS:
  14266. {
  14267. n_tasks = n_threads;
  14268. } break;
  14269. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14270. {
  14271. n_tasks = n_threads;
  14272. } break;
  14273. case GGML_OP_NONE:
  14274. {
  14275. n_tasks = 1;
  14276. } break;
  14277. case GGML_OP_COUNT:
  14278. {
  14279. GGML_ASSERT(false);
  14280. } break;
  14281. default:
  14282. {
  14283. fprintf(stderr, "%s: op not implemented: ", __func__);
  14284. if (node->op < GGML_OP_COUNT) {
  14285. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14286. } else {
  14287. fprintf(stderr, "%d\n", node->op);
  14288. }
  14289. GGML_ASSERT(false);
  14290. } break;
  14291. }
  14292. assert(n_tasks > 0);
  14293. return n_tasks;
  14294. }
  14295. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14296. // wait for other threads to finish
  14297. const int last_node_n = * node_n;
  14298. while (true) {
  14299. if (do_yield) {
  14300. sched_yield();
  14301. }
  14302. * node_n = atomic_load(&state->shared->node_n);
  14303. if (* node_n != last_node_n) break;
  14304. }
  14305. }
  14306. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14307. // wait for other threads to finish
  14308. const int last_task_phase = * task_phase;
  14309. while (true) {
  14310. if (do_yield) {
  14311. sched_yield();
  14312. }
  14313. * task_phase = atomic_load(&state->shared->node_task);
  14314. if (* task_phase != last_task_phase) break;
  14315. }
  14316. }
  14317. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14318. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14319. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14320. const struct ggml_cplan * cplan = state->shared->cplan;
  14321. const int n_threads = state->shared->n_threads;
  14322. set_numa_thread_affinity(state->ith);
  14323. int node_n = -1;
  14324. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14325. while (true) {
  14326. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14327. state->shared->node_n += 1;
  14328. return (thread_ret_t) GGML_EXIT_ABORTED;
  14329. }
  14330. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14331. // all other threads are finished and spinning
  14332. // do finalize and init here so we don't have synchronize again
  14333. struct ggml_compute_params params = {
  14334. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14335. /*.ith =*/ 0,
  14336. /*.nth =*/ 0,
  14337. /*.wsize =*/ cplan->work_size,
  14338. /*.wdata =*/ cplan->work_data,
  14339. };
  14340. if (node_n != -1) {
  14341. /* FINALIZE */
  14342. struct ggml_tensor * node = cgraph->nodes[node_n];
  14343. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14344. params.nth = ggml_get_n_tasks(node, n_threads);
  14345. ggml_compute_forward(&params, node);
  14346. }
  14347. ggml_graph_compute_perf_stats_node(node, state->shared);
  14348. }
  14349. // distribute new work or execute it direct if 1T
  14350. while (++node_n < cgraph->n_nodes) {
  14351. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14352. struct ggml_tensor * node = cgraph->nodes[node_n];
  14353. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14354. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14355. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14356. params.nth = n_tasks;
  14357. if (n_tasks == 1) {
  14358. /* INIT */
  14359. if (GGML_OP_HAS_INIT[node->op]) {
  14360. params.type = GGML_TASK_TYPE_INIT;
  14361. ggml_compute_forward(&params, node);
  14362. }
  14363. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14364. // they do something more efficient than spinning (?)
  14365. params.type = GGML_TASK_TYPE_COMPUTE;
  14366. ggml_compute_forward(&params, node);
  14367. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14368. params.type = GGML_TASK_TYPE_FINALIZE;
  14369. ggml_compute_forward(&params, node);
  14370. }
  14371. ggml_graph_compute_perf_stats_node(node, state->shared);
  14372. } else {
  14373. break;
  14374. }
  14375. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14376. break;
  14377. }
  14378. }
  14379. task_phase = GGML_TASK_TYPE_INIT;
  14380. atomic_store(&state->shared->n_active, n_threads);
  14381. atomic_store(&state->shared->node_n, node_n);
  14382. atomic_store(&state->shared->node_task, task_phase);
  14383. } else {
  14384. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14385. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14386. }
  14387. // check if we should stop
  14388. if (node_n >= cgraph->n_nodes) break;
  14389. /* INIT & COMPUTE */
  14390. struct ggml_tensor * node = cgraph->nodes[node_n];
  14391. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14392. struct ggml_compute_params params = {
  14393. /*.type =*/ GGML_TASK_TYPE_INIT,
  14394. /*.ith =*/ state->ith,
  14395. /*.nth =*/ n_tasks,
  14396. /*.wsize =*/ cplan->work_size,
  14397. /*.wdata =*/ cplan->work_data,
  14398. };
  14399. if (state->ith < n_tasks) {
  14400. if (GGML_OP_HAS_INIT[node->op]) {
  14401. ggml_compute_forward(&params, node);
  14402. }
  14403. }
  14404. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14405. task_phase = GGML_TASK_TYPE_COMPUTE;
  14406. atomic_store(&state->shared->n_active, n_threads);
  14407. atomic_store(&state->shared->node_task, task_phase);
  14408. }
  14409. else {
  14410. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14411. // depending on the workload and the operating system.
  14412. // since it is not clear what is the best approach, it should potentially become user-configurable
  14413. // ref: https://github.com/ggerganov/ggml/issues/291
  14414. // UPD: adding the do_yield flag seems to resolve the issue universally
  14415. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14416. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14417. }
  14418. if (state->ith < n_tasks) {
  14419. params.type = GGML_TASK_TYPE_COMPUTE;
  14420. ggml_compute_forward(&params, node);
  14421. }
  14422. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14423. task_phase = GGML_TASK_TYPE_FINALIZE;
  14424. atomic_store(&state->shared->n_active, n_threads);
  14425. atomic_store(&state->shared->node_task, task_phase);
  14426. }
  14427. else {
  14428. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14429. }
  14430. }
  14431. return GGML_EXIT_SUCCESS;
  14432. }
  14433. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14434. if (n_threads <= 0) {
  14435. n_threads = GGML_DEFAULT_N_THREADS;
  14436. }
  14437. size_t work_size = 0;
  14438. struct ggml_cplan cplan;
  14439. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14440. int max_tasks = 1;
  14441. // thread scheduling for the different operations + work buffer size estimation
  14442. for (int i = 0; i < cgraph->n_nodes; i++) {
  14443. struct ggml_tensor * node = cgraph->nodes[i];
  14444. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14445. max_tasks = MAX(max_tasks, n_tasks);
  14446. size_t cur = 0;
  14447. switch (node->op) {
  14448. case GGML_OP_CPY:
  14449. case GGML_OP_DUP:
  14450. {
  14451. if (ggml_is_quantized(node->type)) {
  14452. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14453. }
  14454. } break;
  14455. case GGML_OP_ADD:
  14456. case GGML_OP_ADD1:
  14457. {
  14458. if (ggml_is_quantized(node->src[0]->type)) {
  14459. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14460. }
  14461. } break;
  14462. case GGML_OP_ACC:
  14463. {
  14464. if (ggml_is_quantized(node->src[0]->type)) {
  14465. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14466. }
  14467. } break;
  14468. case GGML_OP_MUL_MAT:
  14469. {
  14470. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14471. #if defined(GGML_USE_CLBLAST)
  14472. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14473. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14474. } else
  14475. #endif
  14476. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14477. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14478. if (node->src[0]->type != GGML_TYPE_F32) {
  14479. // here we need memory for fully dequantized matrix from src0
  14480. // take into account that src0 can be broadcasted into src1[2,3]
  14481. cur = ggml_type_size(GGML_TYPE_F32)
  14482. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14483. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14484. }
  14485. } else
  14486. #endif
  14487. if (node->src[1]->type != vec_dot_type) {
  14488. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14489. }
  14490. } break;
  14491. case GGML_OP_MUL_MAT_ID:
  14492. {
  14493. cur = 0;
  14494. const struct ggml_tensor * src0 = node->src[2];
  14495. const struct ggml_tensor * src1 = node->src[1];
  14496. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14497. if (src1->type != vec_dot_type) {
  14498. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14499. }
  14500. const int n_as = ggml_get_op_params_i32(node, 1);
  14501. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14502. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14503. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14504. } break;
  14505. case GGML_OP_OUT_PROD:
  14506. {
  14507. if (ggml_is_quantized(node->src[0]->type)) {
  14508. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14509. }
  14510. } break;
  14511. case GGML_OP_SOFT_MAX:
  14512. case GGML_OP_ROPE:
  14513. {
  14514. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14515. } break;
  14516. case GGML_OP_CONV_TRANSPOSE_1D:
  14517. {
  14518. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14519. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14520. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14521. const int64_t ne00 = node->src[0]->ne[0]; // K
  14522. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14523. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14524. const int64_t ne10 = node->src[1]->ne[0]; // L
  14525. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14526. if (node->src[0]->type == GGML_TYPE_F16 &&
  14527. node->src[1]->type == GGML_TYPE_F32) {
  14528. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14529. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14530. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14531. node->src[1]->type == GGML_TYPE_F32) {
  14532. cur += sizeof(float)*ne00*ne01*ne02;
  14533. cur += sizeof(float)*ne10*ne11;
  14534. } else {
  14535. GGML_ASSERT(false);
  14536. }
  14537. } break;
  14538. case GGML_OP_CONV_TRANSPOSE_2D:
  14539. {
  14540. const int64_t ne00 = node->src[0]->ne[0]; // W
  14541. const int64_t ne01 = node->src[0]->ne[1]; // H
  14542. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14543. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14544. const int64_t ne10 = node->src[1]->ne[0]; // W
  14545. const int64_t ne11 = node->src[1]->ne[1]; // H
  14546. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14547. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14548. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14549. } break;
  14550. case GGML_OP_FLASH_ATTN:
  14551. {
  14552. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14553. if (node->src[1]->type == GGML_TYPE_F32) {
  14554. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14555. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14556. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14557. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14558. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14559. }
  14560. } break;
  14561. case GGML_OP_FLASH_FF:
  14562. {
  14563. if (node->src[1]->type == GGML_TYPE_F32) {
  14564. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14565. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14566. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14567. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14568. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14569. }
  14570. } break;
  14571. case GGML_OP_FLASH_ATTN_BACK:
  14572. {
  14573. const int64_t D = node->src[0]->ne[0];
  14574. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14575. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14576. if (node->src[1]->type == GGML_TYPE_F32) {
  14577. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14578. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14579. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14580. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14581. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14582. }
  14583. } break;
  14584. case GGML_OP_CROSS_ENTROPY_LOSS:
  14585. {
  14586. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14587. } break;
  14588. case GGML_OP_COUNT:
  14589. {
  14590. GGML_ASSERT(false);
  14591. } break;
  14592. default:
  14593. break;
  14594. }
  14595. work_size = MAX(work_size, cur);
  14596. }
  14597. if (work_size > 0) {
  14598. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14599. }
  14600. cplan.n_threads = MIN(max_tasks, n_threads);
  14601. cplan.work_size = work_size;
  14602. cplan.work_data = NULL;
  14603. return cplan;
  14604. }
  14605. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14606. {
  14607. GGML_ASSERT(cplan);
  14608. GGML_ASSERT(cplan->n_threads > 0);
  14609. if (cplan->work_size > 0) {
  14610. GGML_ASSERT(cplan->work_data);
  14611. }
  14612. }
  14613. #ifdef GGML_USE_VULKAN
  14614. for (int i = 0; i < cgraph->n_nodes; i++) {
  14615. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14616. }
  14617. ggml_vk_preallocate_buffers_cpu_assist();
  14618. for (int i = 0; i < cgraph->n_nodes; i++) {
  14619. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14620. }
  14621. #endif
  14622. const int n_threads = cplan->n_threads;
  14623. struct ggml_compute_state_shared state_shared = {
  14624. /*.cgraph =*/ cgraph,
  14625. /*.cgraph_plan =*/ cplan,
  14626. /*.perf_node_start_cycles =*/ 0,
  14627. /*.perf_node_start_time_us =*/ 0,
  14628. /*.n_threads =*/ n_threads,
  14629. /*.n_active =*/ n_threads,
  14630. /*.node_n =*/ -1,
  14631. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  14632. /*.abort_callback =*/ NULL,
  14633. /*.abort_callback_data =*/ NULL,
  14634. };
  14635. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14636. // create thread pool
  14637. if (n_threads > 1) {
  14638. for (int j = 1; j < n_threads; ++j) {
  14639. workers[j] = (struct ggml_compute_state) {
  14640. .thrd = 0,
  14641. .ith = j,
  14642. .shared = &state_shared,
  14643. };
  14644. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14645. GGML_ASSERT(rc == 0);
  14646. UNUSED(rc);
  14647. }
  14648. }
  14649. workers[0].ith = 0;
  14650. workers[0].shared = &state_shared;
  14651. const int64_t perf_start_cycles = ggml_perf_cycles();
  14652. const int64_t perf_start_time_us = ggml_perf_time_us();
  14653. // this is a work thread too
  14654. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14655. // don't leave affinity set on the main thread
  14656. clear_numa_thread_affinity();
  14657. // join or kill thread pool
  14658. if (n_threads > 1) {
  14659. for (int j = 1; j < n_threads; j++) {
  14660. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14661. GGML_ASSERT(rc == 0);
  14662. }
  14663. }
  14664. #ifdef GGML_USE_VULKAN
  14665. ggml_vk_graph_cleanup_cpu_assist();
  14666. #endif
  14667. // performance stats (graph)
  14668. {
  14669. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14670. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14671. cgraph->perf_runs++;
  14672. cgraph->perf_cycles += perf_cycles_cur;
  14673. cgraph->perf_time_us += perf_time_us_cur;
  14674. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14675. __func__, cgraph->perf_runs,
  14676. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14677. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14678. (double) perf_time_us_cur / 1000.0,
  14679. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14680. }
  14681. return compute_status;
  14682. }
  14683. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14684. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14685. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  14686. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14687. ggml_graph_compute(cgraph, &cplan);
  14688. }
  14689. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14690. for (int i = 0; i < cgraph->n_leafs; i++) {
  14691. struct ggml_tensor * leaf = cgraph->leafs[i];
  14692. if (strcmp(leaf->name, name) == 0) {
  14693. return leaf;
  14694. }
  14695. }
  14696. for (int i = 0; i < cgraph->n_nodes; i++) {
  14697. struct ggml_tensor * node = cgraph->nodes[i];
  14698. if (strcmp(node->name, name) == 0) {
  14699. return node;
  14700. }
  14701. }
  14702. return NULL;
  14703. }
  14704. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14705. const int64_t * ne = tensor->ne;
  14706. const size_t * nb = tensor->nb;
  14707. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14708. ggml_type_name(tensor->type),
  14709. ggml_op_name (tensor->op),
  14710. ggml_n_dims(tensor),
  14711. ne[0], ne[1], ne[2], ne[3],
  14712. nb[0], nb[1], nb[2], nb[3],
  14713. tensor->data,
  14714. tensor->name);
  14715. }
  14716. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14717. const int64_t * ne = tensor->ne;
  14718. const size_t * nb = tensor->nb;
  14719. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14720. arg,
  14721. ggml_type_name(tensor->type),
  14722. ggml_op_name (tensor->op),
  14723. ggml_n_dims(tensor),
  14724. ne[0], ne[1], ne[2], ne[3],
  14725. nb[0], nb[1], nb[2], nb[3],
  14726. tensor->data,
  14727. tensor->name);
  14728. }
  14729. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14730. uint64_t size_eval = 0;
  14731. // compute size of intermediate results
  14732. // TODO: does not take into account scratch buffers !!!!
  14733. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14734. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14735. }
  14736. // print
  14737. {
  14738. FILE * fout = stdout;
  14739. fprintf(fout, "\n");
  14740. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14741. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14742. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14743. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14744. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14745. // header
  14746. fprintf(fout, "\n");
  14747. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14748. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14749. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14750. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14751. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14752. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14753. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14754. }
  14755. // header
  14756. fprintf(fout, "\n");
  14757. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14758. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14759. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14760. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14761. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14762. if (cgraph->nodes[i]->src[j]) {
  14763. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14764. }
  14765. }
  14766. fprintf(fout, "\n");
  14767. }
  14768. fprintf(fout, "\n");
  14769. }
  14770. // write binary data
  14771. {
  14772. FILE * fout = fopen(fname, "wb");
  14773. if (!fout) {
  14774. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14775. return;
  14776. }
  14777. // header
  14778. {
  14779. const uint32_t magic = GGML_FILE_MAGIC;
  14780. const uint32_t version = GGML_FILE_VERSION;
  14781. const uint32_t n_leafs = cgraph->n_leafs;
  14782. const uint32_t n_nodes = cgraph->n_nodes;
  14783. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14784. fwrite(&version, sizeof(uint32_t), 1, fout);
  14785. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14786. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14787. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14788. }
  14789. // leafs
  14790. {
  14791. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14792. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14793. const uint32_t type = tensor->type;
  14794. const uint32_t op = tensor->op;
  14795. fwrite(&type, sizeof(uint32_t), 1, fout);
  14796. fwrite(&op, sizeof(uint32_t), 1, fout);
  14797. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14798. const uint64_t ne = tensor->ne[j];
  14799. const uint64_t nb = tensor->nb[j];
  14800. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14801. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14802. }
  14803. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14804. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14805. // dump the data
  14806. // TODO: pad this to 32 byte boundary
  14807. {
  14808. const size_t size = ggml_nbytes(tensor);
  14809. fwrite(tensor->data, sizeof(char), size, fout);
  14810. }
  14811. }
  14812. }
  14813. // nodes
  14814. {
  14815. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14816. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14817. const uint32_t type = tensor->type;
  14818. const uint32_t op = tensor->op;
  14819. fwrite(&type, sizeof(uint32_t), 1, fout);
  14820. fwrite(&op, sizeof(uint32_t), 1, fout);
  14821. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14822. const uint64_t ne = tensor->ne[j];
  14823. const uint64_t nb = tensor->nb[j];
  14824. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14825. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14826. }
  14827. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14828. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14829. // output the op arguments
  14830. {
  14831. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14832. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14833. args[j] = tensor->src[j];
  14834. }
  14835. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14836. if (args[j]) {
  14837. int32_t idx = -1;
  14838. // check if leaf
  14839. {
  14840. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14841. if (args[j] == cgraph->leafs[k]) {
  14842. idx = k;
  14843. break;
  14844. }
  14845. }
  14846. }
  14847. // check if node
  14848. if (idx == -1) {
  14849. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14850. if (args[j] == cgraph->nodes[k]) {
  14851. idx = cgraph->n_leafs + k;
  14852. break;
  14853. }
  14854. }
  14855. }
  14856. if (idx == -1) {
  14857. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14858. fclose(fout);
  14859. return;
  14860. }
  14861. fwrite(&idx, sizeof(int32_t), 1, fout);
  14862. } else {
  14863. const int32_t nul = -1;
  14864. fwrite(&nul, sizeof(int32_t), 1, fout);
  14865. }
  14866. }
  14867. }
  14868. }
  14869. }
  14870. fclose(fout);
  14871. }
  14872. }
  14873. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14874. assert(*ctx_data == NULL);
  14875. assert(*ctx_eval == NULL);
  14876. struct ggml_cgraph * result = NULL;
  14877. struct ggml_tensor * data = NULL;
  14878. // read file into data
  14879. {
  14880. FILE * fin = fopen(fname, "rb");
  14881. if (!fin) {
  14882. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14883. return result;
  14884. }
  14885. size_t fsize = 0;
  14886. fseek(fin, 0, SEEK_END);
  14887. fsize = ftell(fin);
  14888. fseek(fin, 0, SEEK_SET);
  14889. // create the data context
  14890. {
  14891. const size_t overhead = 1*ggml_tensor_overhead();
  14892. struct ggml_init_params params = {
  14893. .mem_size = fsize + overhead,
  14894. .mem_buffer = NULL,
  14895. .no_alloc = false,
  14896. };
  14897. *ctx_data = ggml_init(params);
  14898. if (!*ctx_data) {
  14899. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14900. fclose(fin);
  14901. return result;
  14902. }
  14903. }
  14904. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14905. {
  14906. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14907. if (ret != fsize) {
  14908. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14909. fclose(fin);
  14910. return result;
  14911. }
  14912. }
  14913. fclose(fin);
  14914. }
  14915. // populate result
  14916. {
  14917. char * ptr = (char *) data->data;
  14918. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14919. if (magic != GGML_FILE_MAGIC) {
  14920. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14921. return result;
  14922. }
  14923. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14924. if (version != GGML_FILE_VERSION) {
  14925. fprintf(stderr, "%s: invalid version number\n", __func__);
  14926. return result;
  14927. }
  14928. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14929. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14930. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14931. const int graph_size = MAX(n_leafs, n_nodes);
  14932. // create the data context
  14933. {
  14934. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14935. struct ggml_init_params params = {
  14936. .mem_size = size_eval + overhead,
  14937. .mem_buffer = NULL,
  14938. .no_alloc = true,
  14939. };
  14940. *ctx_eval = ggml_init(params);
  14941. if (!*ctx_eval) {
  14942. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14943. return result;
  14944. }
  14945. }
  14946. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14947. result->n_leafs = n_leafs;
  14948. result->n_nodes = n_nodes;
  14949. // leafs
  14950. {
  14951. uint32_t type;
  14952. uint32_t op;
  14953. for (uint32_t i = 0; i < n_leafs; ++i) {
  14954. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14955. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14956. int64_t ne[GGML_MAX_DIMS];
  14957. size_t nb[GGML_MAX_DIMS];
  14958. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14959. uint64_t ne_cur;
  14960. uint64_t nb_cur;
  14961. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14962. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14963. ne[j] = ne_cur;
  14964. nb[j] = nb_cur;
  14965. }
  14966. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14967. tensor->op = (enum ggml_op) op;
  14968. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14969. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14970. tensor->data = (void *) ptr;
  14971. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14972. tensor->nb[j] = nb[j];
  14973. }
  14974. result->leafs[i] = tensor;
  14975. ptr += ggml_nbytes(tensor);
  14976. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14977. }
  14978. }
  14979. ggml_set_no_alloc(*ctx_eval, false);
  14980. // nodes
  14981. {
  14982. uint32_t type;
  14983. uint32_t op;
  14984. for (uint32_t i = 0; i < n_nodes; ++i) {
  14985. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14986. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14987. enum ggml_op eop = (enum ggml_op) op;
  14988. int64_t ne[GGML_MAX_DIMS];
  14989. size_t nb[GGML_MAX_DIMS];
  14990. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14991. uint64_t ne_cur;
  14992. uint64_t nb_cur;
  14993. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14994. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14995. ne[j] = ne_cur;
  14996. nb[j] = nb_cur;
  14997. }
  14998. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14999. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15000. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15001. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15002. // parse args
  15003. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15004. const int32_t arg_idx = ptr_arg_idx[j];
  15005. if (arg_idx == -1) {
  15006. continue;
  15007. }
  15008. if (arg_idx < result->n_leafs) {
  15009. args[j] = result->leafs[arg_idx];
  15010. } else {
  15011. args[j] = result->nodes[arg_idx - result->n_leafs];
  15012. }
  15013. }
  15014. // create the tensor
  15015. // "view" operations are handled differently
  15016. // TODO: handle inplace ops - currently a copy is always made
  15017. struct ggml_tensor * tensor = NULL;
  15018. switch (eop) {
  15019. // TODO: implement other view ops
  15020. case GGML_OP_RESHAPE:
  15021. {
  15022. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15023. } break;
  15024. case GGML_OP_VIEW:
  15025. {
  15026. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15027. size_t offs;
  15028. memcpy(&offs, ptr_op_params, sizeof(offs));
  15029. tensor->data = ((char *) tensor->data) + offs;
  15030. } break;
  15031. case GGML_OP_TRANSPOSE:
  15032. {
  15033. tensor = ggml_transpose(*ctx_eval, args[0]);
  15034. } break;
  15035. case GGML_OP_PERMUTE:
  15036. {
  15037. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15038. } break;
  15039. default:
  15040. {
  15041. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15042. tensor->op = eop;
  15043. } break;
  15044. }
  15045. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15046. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15047. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15048. tensor->nb[j] = nb[j];
  15049. }
  15050. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15051. tensor->src[j] = args[j];
  15052. }
  15053. result->nodes[i] = tensor;
  15054. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15055. }
  15056. }
  15057. }
  15058. return result;
  15059. }
  15060. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15061. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15062. GGML_PRINT("=== GRAPH ===\n");
  15063. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15064. for (int i = 0; i < cgraph->n_nodes; i++) {
  15065. struct ggml_tensor * node = cgraph->nodes[i];
  15066. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15067. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15068. i,
  15069. node->ne[0], node->ne[1], node->ne[2],
  15070. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15071. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15072. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15073. (double) node->perf_time_us / 1000.0,
  15074. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15075. }
  15076. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15077. for (int i = 0; i < cgraph->n_leafs; i++) {
  15078. struct ggml_tensor * node = cgraph->leafs[i];
  15079. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15080. i,
  15081. node->ne[0], node->ne[1],
  15082. ggml_op_name(node->op),
  15083. ggml_get_name(node));
  15084. }
  15085. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15086. if (perf_total_per_op_us[i] == 0) {
  15087. continue;
  15088. }
  15089. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15090. }
  15091. GGML_PRINT("========================================\n");
  15092. }
  15093. // check if node is part of the graph
  15094. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15095. if (cgraph == NULL) {
  15096. return true;
  15097. }
  15098. for (int i = 0; i < cgraph->n_nodes; i++) {
  15099. if (cgraph->nodes[i] == node) {
  15100. return true;
  15101. }
  15102. }
  15103. return false;
  15104. }
  15105. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15106. for (int i = 0; i < cgraph->n_nodes; i++) {
  15107. struct ggml_tensor * parent = cgraph->nodes[i];
  15108. if (parent->grad == node) {
  15109. return parent;
  15110. }
  15111. }
  15112. return NULL;
  15113. }
  15114. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15115. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15116. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15117. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15118. gparent0 ? (void *) gparent0 : (void *) parent,
  15119. gparent0 ? "g" : "x",
  15120. gparent ? (void *) gparent : (void *) node,
  15121. gparent ? "g" : "x",
  15122. gparent ? "empty" : "vee",
  15123. gparent ? "dashed" : "solid",
  15124. label);
  15125. }
  15126. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15127. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15128. (void *) parent, "x",
  15129. (void *) node, "x",
  15130. label);
  15131. }
  15132. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15133. char color[16];
  15134. FILE * fp = fopen(filename, "w");
  15135. GGML_ASSERT(fp);
  15136. fprintf(fp, "digraph G {\n");
  15137. fprintf(fp, " newrank = true;\n");
  15138. fprintf(fp, " rankdir = LR;\n");
  15139. for (int i = 0; i < gb->n_nodes; i++) {
  15140. struct ggml_tensor * node = gb->nodes[i];
  15141. if (ggml_graph_get_parent(gb, node) != NULL) {
  15142. continue;
  15143. }
  15144. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15145. snprintf(color, sizeof(color), "yellow");
  15146. } else if (node->grad) {
  15147. if (ggml_graph_find(gf, node)) {
  15148. snprintf(color, sizeof(color), "green");
  15149. } else {
  15150. snprintf(color, sizeof(color), "lightblue");
  15151. }
  15152. } else {
  15153. snprintf(color, sizeof(color), "white");
  15154. }
  15155. fprintf(fp, " \"%p\" [ "
  15156. "style = filled; fillcolor = %s; shape = record; "
  15157. "label=\"",
  15158. (void *) node, color);
  15159. if (strlen(node->name) > 0) {
  15160. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15161. } else {
  15162. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15163. }
  15164. if (ggml_is_matrix(node)) {
  15165. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15166. } else {
  15167. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15168. }
  15169. if (node->grad) {
  15170. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15171. } else {
  15172. fprintf(fp, "\"; ]\n");
  15173. }
  15174. }
  15175. for (int i = 0; i < gb->n_leafs; i++) {
  15176. struct ggml_tensor * node = gb->leafs[i];
  15177. snprintf(color, sizeof(color), "pink");
  15178. fprintf(fp, " \"%p\" [ "
  15179. "style = filled; fillcolor = %s; shape = record; "
  15180. "label=\"<x>",
  15181. (void *) node, color);
  15182. if (strlen(node->name) > 0) {
  15183. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15184. } else {
  15185. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15186. }
  15187. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15188. if (ggml_nelements(node) < 5) {
  15189. fprintf(fp, " | (");
  15190. for (int j = 0; j < ggml_nelements(node); j++) {
  15191. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15192. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15193. }
  15194. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15195. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15196. }
  15197. else {
  15198. fprintf(fp, "#");
  15199. }
  15200. if (j < ggml_nelements(node) - 1) {
  15201. fprintf(fp, ", ");
  15202. }
  15203. }
  15204. fprintf(fp, ")");
  15205. }
  15206. fprintf(fp, "\"; ]\n");
  15207. }
  15208. for (int i = 0; i < gb->n_nodes; i++) {
  15209. struct ggml_tensor * node = gb->nodes[i];
  15210. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15211. if (node->src[j]) {
  15212. char label[16];
  15213. snprintf(label, sizeof(label), "src %d", j);
  15214. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15215. }
  15216. }
  15217. }
  15218. for (int i = 0; i < gb->n_leafs; i++) {
  15219. struct ggml_tensor * node = gb->leafs[i];
  15220. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15221. if (node->src[j]) {
  15222. char label[16];
  15223. snprintf(label, sizeof(label), "src %d", j);
  15224. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15225. }
  15226. }
  15227. }
  15228. fprintf(fp, "}\n");
  15229. fclose(fp);
  15230. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15231. }
  15232. ////////////////////////////////////////////////////////////////////////////////
  15233. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15234. int i = 0;
  15235. for (int p = 0; p < np; ++p) {
  15236. const int64_t ne = ggml_nelements(ps[p]) ;
  15237. // TODO: add function to set tensor from array
  15238. for (int64_t j = 0; j < ne; ++j) {
  15239. ggml_set_f32_1d(ps[p], j, x[i++]);
  15240. }
  15241. }
  15242. }
  15243. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15244. int i = 0;
  15245. for (int p = 0; p < np; ++p) {
  15246. const int64_t ne = ggml_nelements(ps[p]) ;
  15247. // TODO: add function to get all elements at once
  15248. for (int64_t j = 0; j < ne; ++j) {
  15249. x[i++] = ggml_get_f32_1d(ps[p], j);
  15250. }
  15251. }
  15252. }
  15253. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15254. int64_t i = 0;
  15255. for (int p = 0; p < np; ++p) {
  15256. const int64_t ne = ggml_nelements(ps[p]) ;
  15257. // TODO: add function to get all elements at once
  15258. for (int64_t j = 0; j < ne; ++j) {
  15259. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15260. }
  15261. }
  15262. }
  15263. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15264. int64_t i = 0;
  15265. for (int p = 0; p < np; ++p) {
  15266. const int64_t ne = ggml_nelements(ps[p]) ;
  15267. // TODO: add function to get all elements at once
  15268. for (int64_t j = 0; j < ne; ++j) {
  15269. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15270. }
  15271. }
  15272. }
  15273. //
  15274. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15275. //
  15276. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15277. //
  15278. static enum ggml_opt_result ggml_opt_adam(
  15279. struct ggml_context * ctx,
  15280. struct ggml_opt_context * opt,
  15281. struct ggml_opt_params params,
  15282. struct ggml_tensor * f,
  15283. struct ggml_cgraph * gf,
  15284. struct ggml_cgraph * gb,
  15285. ggml_opt_callback callback,
  15286. void * callback_data) {
  15287. GGML_ASSERT(ggml_is_scalar(f));
  15288. // these will store the parameters we want to optimize
  15289. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15290. int np = 0;
  15291. int64_t nx = 0;
  15292. for (int i = 0; i < gf->n_nodes; ++i) {
  15293. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15294. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15295. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15296. ps[np++] = gf->nodes[i];
  15297. nx += ggml_nelements(gf->nodes[i]);
  15298. }
  15299. }
  15300. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15301. int iter = opt->iter;
  15302. ggml_opt_init(opt->ctx, opt, params, nx);
  15303. opt->iter = iter;
  15304. }
  15305. // constants
  15306. float sched = params.adam.sched;
  15307. const float alpha = params.adam.alpha;
  15308. const float decay = params.adam.decay * alpha;
  15309. const float beta1 = params.adam.beta1;
  15310. const float beta2 = params.adam.beta2;
  15311. const float eps = params.adam.eps;
  15312. const float gclip = params.adam.gclip;
  15313. const int decay_min_ndim = params.adam.decay_min_ndim;
  15314. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15315. const float accum_norm = 1.0f / (float) n_accum;
  15316. float * g = opt->adam.g->data; // gradients
  15317. float * m = opt->adam.m->data; // first moment
  15318. float * v = opt->adam.v->data; // second moment
  15319. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15320. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15321. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15322. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15323. bool cancel = false;
  15324. // compute the function value
  15325. float fx = 0;
  15326. ggml_set_zero(opt->adam.g);
  15327. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15328. if (callback) {
  15329. callback(callback_data, accum_step, &sched, &cancel);
  15330. if (cancel) {
  15331. return GGML_OPT_RESULT_CANCEL;
  15332. }
  15333. }
  15334. // ggml_graph_reset (gf);
  15335. ggml_set_f32 (f->grad, 1.0f);
  15336. ggml_graph_compute(gb, &cplan);
  15337. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15338. fx += ggml_get_f32_1d(f, 0);
  15339. }
  15340. fx *= accum_norm;
  15341. opt->adam.fx_prev = fx;
  15342. opt->adam.fx_best = opt->adam.fx_prev;
  15343. if (pf) {
  15344. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15345. }
  15346. opt->loss_before = opt->adam.fx_prev;
  15347. opt->loss_after = opt->adam.fx_prev;
  15348. // initialize
  15349. if (opt->just_initialized) {
  15350. opt->adam.n_no_improvement = 0;
  15351. opt->just_initialized = false;
  15352. }
  15353. float * fx_best = &opt->adam.fx_best;
  15354. float * fx_prev = &opt->adam.fx_prev;
  15355. int * n_no_improvement = &opt->adam.n_no_improvement;
  15356. int iter0 = opt->iter;
  15357. // run the optimizer
  15358. for (int t = 0; t < params.adam.n_iter; ++t) {
  15359. opt->iter = iter0 + t + 1;
  15360. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15361. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15362. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15363. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15364. for (int i = 0; i < np; ++i) {
  15365. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15366. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15367. }
  15368. const int64_t t_start_wall = ggml_time_us();
  15369. const int64_t t_start_cpu = ggml_cycles();
  15370. UNUSED(t_start_wall);
  15371. UNUSED(t_start_cpu);
  15372. {
  15373. float gnorm = 1.0f;
  15374. if (gclip > 0.0f) {
  15375. // gradient clipping
  15376. ggml_float sum = 0.0;
  15377. for (int64_t i = 0; i < nx; ++i) {
  15378. sum += (ggml_float)(g[i]*g[i]);
  15379. }
  15380. ggml_float norm = sqrt(sum);
  15381. if (norm > (ggml_float) gclip) {
  15382. gnorm = (float) ((ggml_float) gclip / norm);
  15383. }
  15384. }
  15385. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15386. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15387. int64_t i = 0;
  15388. for (int p = 0; p < np; ++p) {
  15389. const int64_t ne = ggml_nelements(ps[p]);
  15390. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15391. for (int64_t j = 0; j < ne; ++j) {
  15392. float x = ggml_get_f32_1d(ps[p], j);
  15393. float g_ = g[i]*gnorm;
  15394. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15395. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15396. float mh = m[i]*beta1h;
  15397. float vh = v[i]*beta2h;
  15398. vh = sqrtf(vh) + eps;
  15399. x = x*(1.0f - p_decay) - mh/vh;
  15400. ggml_set_f32_1d(ps[p], j, x);
  15401. ++i;
  15402. }
  15403. }
  15404. }
  15405. fx = 0;
  15406. ggml_set_zero(opt->adam.g);
  15407. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15408. if (callback) {
  15409. callback(callback_data, accum_step, &sched, &cancel);
  15410. if (cancel) {
  15411. return GGML_OPT_RESULT_CANCEL;;
  15412. }
  15413. }
  15414. // ggml_graph_reset (gf);
  15415. ggml_set_f32 (f->grad, 1.0f);
  15416. ggml_graph_compute(gb, &cplan);
  15417. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15418. fx += ggml_get_f32_1d(f, 0);
  15419. }
  15420. fx *= accum_norm;
  15421. opt->loss_after = fx;
  15422. // check convergence
  15423. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15424. GGML_PRINT_DEBUG("converged\n");
  15425. return GGML_OPT_RESULT_OK;
  15426. }
  15427. // delta-based convergence test
  15428. if (pf != NULL) {
  15429. // need at least params.past iterations to start checking for convergence
  15430. if (params.past <= iter0 + t) {
  15431. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15432. if (fabsf(rate) < params.delta) {
  15433. return GGML_OPT_RESULT_OK;
  15434. }
  15435. }
  15436. pf[(iter0 + t)%params.past] = fx;
  15437. }
  15438. // check for improvement
  15439. if (params.max_no_improvement > 0) {
  15440. if (fx_best[0] > fx) {
  15441. fx_best[0] = fx;
  15442. n_no_improvement[0] = 0;
  15443. } else {
  15444. ++n_no_improvement[0];
  15445. if (n_no_improvement[0] >= params.max_no_improvement) {
  15446. return GGML_OPT_RESULT_OK;
  15447. }
  15448. }
  15449. }
  15450. fx_prev[0] = fx;
  15451. {
  15452. const int64_t t_end_cpu = ggml_cycles();
  15453. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15454. UNUSED(t_end_cpu);
  15455. const int64_t t_end_wall = ggml_time_us();
  15456. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15457. UNUSED(t_end_wall);
  15458. }
  15459. }
  15460. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15461. }
  15462. //
  15463. // L-BFGS
  15464. //
  15465. // the L-BFGS implementation below is based on the following implementation:
  15466. //
  15467. // https://github.com/chokkan/liblbfgs
  15468. //
  15469. struct ggml_lbfgs_iteration_data {
  15470. float alpha;
  15471. float ys;
  15472. float * s;
  15473. float * y;
  15474. };
  15475. static enum ggml_opt_result linesearch_backtracking(
  15476. const struct ggml_opt_params * params,
  15477. int nx,
  15478. float * x,
  15479. float * fx,
  15480. float * g,
  15481. float * d,
  15482. float * step,
  15483. const float * xp,
  15484. struct ggml_tensor * f,
  15485. struct ggml_cgraph * gb,
  15486. struct ggml_cplan * cplan,
  15487. const int np,
  15488. struct ggml_tensor * ps[],
  15489. bool * cancel,
  15490. ggml_opt_callback callback,
  15491. void * callback_data) {
  15492. int count = 0;
  15493. float width = 0.0f;
  15494. float dg = 0.0f;
  15495. float finit = 0.0f;
  15496. float dginit = 0.0f;
  15497. float dgtest = 0.0f;
  15498. const float dec = 0.5f;
  15499. const float inc = 2.1f;
  15500. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15501. const float accum_norm = 1.0f / (float) n_accum;
  15502. if (*step <= 0.f) {
  15503. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15504. }
  15505. // compute the initial gradient in the search direction
  15506. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15507. // make sure that d points to a descent direction
  15508. if (0 < dginit) {
  15509. return GGML_LINESEARCH_FAIL;
  15510. }
  15511. // initialize local variables
  15512. finit = *fx;
  15513. dgtest = params->lbfgs.ftol*dginit;
  15514. while (true) {
  15515. ggml_vec_cpy_f32(nx, x, xp);
  15516. ggml_vec_mad_f32(nx, x, d, *step);
  15517. // evaluate the function and gradient values
  15518. {
  15519. ggml_opt_set_params(np, ps, x);
  15520. *fx = 0;
  15521. memset(g, 0, sizeof(float)*nx);
  15522. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15523. if (callback) {
  15524. // LBFG-S does not support learning rate -> ignore learning schedule
  15525. float sched = 0;
  15526. callback(callback_data, accum_step, &sched, cancel);
  15527. if (*cancel) {
  15528. return GGML_OPT_RESULT_CANCEL;
  15529. }
  15530. }
  15531. // ggml_graph_reset (gf);
  15532. ggml_set_f32 (f->grad, 1.0f);
  15533. ggml_graph_compute(gb, cplan);
  15534. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15535. *fx += ggml_get_f32_1d(f, 0);
  15536. }
  15537. *fx *= accum_norm;
  15538. }
  15539. ++count;
  15540. if (*fx > finit + (*step)*dgtest) {
  15541. width = dec;
  15542. } else {
  15543. // Armijo condition is satisfied
  15544. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15545. return count;
  15546. }
  15547. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15548. // check the Wolfe condition
  15549. if (dg < params->lbfgs.wolfe * dginit) {
  15550. width = inc;
  15551. } else {
  15552. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15553. // regular Wolfe conditions
  15554. return count;
  15555. }
  15556. if(dg > -params->lbfgs.wolfe*dginit) {
  15557. width = dec;
  15558. } else {
  15559. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15560. return count;
  15561. }
  15562. }
  15563. }
  15564. if (*step < params->lbfgs.min_step) {
  15565. return GGML_LINESEARCH_MINIMUM_STEP;
  15566. }
  15567. if (*step > params->lbfgs.max_step) {
  15568. return GGML_LINESEARCH_MAXIMUM_STEP;
  15569. }
  15570. if (params->lbfgs.max_linesearch <= count) {
  15571. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15572. }
  15573. (*step) *= width;
  15574. }
  15575. GGML_ASSERT(false && "line search failed");
  15576. return GGML_LINESEARCH_FAIL;
  15577. }
  15578. static enum ggml_opt_result ggml_opt_lbfgs(
  15579. struct ggml_context * ctx,
  15580. struct ggml_opt_context * opt,
  15581. struct ggml_opt_params params,
  15582. struct ggml_tensor * f,
  15583. struct ggml_cgraph * gf,
  15584. struct ggml_cgraph * gb,
  15585. ggml_opt_callback callback,
  15586. void * callback_data) {
  15587. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15588. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15589. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15590. return GGML_OPT_RESULT_INVALID_WOLFE;
  15591. }
  15592. }
  15593. const int m = params.lbfgs.m;
  15594. // these will store the parameters we want to optimize
  15595. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15596. int np = 0;
  15597. int nx = 0;
  15598. for (int i = 0; i < gf->n_nodes; ++i) {
  15599. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15600. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15601. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15602. ps[np++] = gf->nodes[i];
  15603. nx += ggml_nelements(gf->nodes[i]);
  15604. }
  15605. }
  15606. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15607. int iter = opt->iter;
  15608. ggml_opt_init(ctx, opt, params, nx);
  15609. opt->iter = iter;
  15610. }
  15611. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15612. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15613. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15614. float * x = opt->lbfgs.x->data; // current parameters
  15615. float * xp = opt->lbfgs.xp->data; // previous parameters
  15616. float * g = opt->lbfgs.g->data; // current gradient
  15617. float * gp = opt->lbfgs.gp->data; // previous gradient
  15618. float * d = opt->lbfgs.d->data; // search direction
  15619. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15620. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15621. const float accum_norm = 1.0f / (float) n_accum;
  15622. float fx = 0.0f; // cost function value
  15623. float xnorm = 0.0f; // ||x||
  15624. float gnorm = 0.0f; // ||g||
  15625. // initialize x from the graph nodes
  15626. ggml_opt_get_params(np, ps, x);
  15627. // the L-BFGS memory
  15628. float * lm_alpha = opt->lbfgs.lmal->data;
  15629. float * lm_ys = opt->lbfgs.lmys->data;
  15630. float * lm_s = opt->lbfgs.lms->data;
  15631. float * lm_y = opt->lbfgs.lmy->data;
  15632. bool cancel = false;
  15633. // evaluate the function value and its gradient
  15634. {
  15635. ggml_opt_set_params(np, ps, x);
  15636. fx = 0;
  15637. memset(g, 0, sizeof(float)*nx);
  15638. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15639. if (callback) {
  15640. // LBFG-S does not support learning rate -> ignore learning schedule
  15641. float sched = 0;
  15642. callback(callback_data, accum_step, &sched, &cancel);
  15643. if (cancel) {
  15644. return GGML_OPT_RESULT_CANCEL;
  15645. }
  15646. }
  15647. // ggml_graph_reset (gf);
  15648. ggml_set_f32 (f->grad, 1.0f);
  15649. ggml_graph_compute(gb, &cplan);
  15650. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15651. fx += ggml_get_f32_1d(f, 0);
  15652. }
  15653. fx *= accum_norm;
  15654. opt->loss_before = fx;
  15655. opt->loss_after = fx;
  15656. }
  15657. // search direction = -gradient
  15658. ggml_vec_neg_f32(nx, d, g);
  15659. // ||x||, ||g||
  15660. ggml_vec_norm_f32(nx, &xnorm, x);
  15661. ggml_vec_norm_f32(nx, &gnorm, g);
  15662. if (xnorm < 1.0f) {
  15663. xnorm = 1.0f;
  15664. }
  15665. // already optimized
  15666. if (gnorm/xnorm <= params.lbfgs.eps) {
  15667. return GGML_OPT_RESULT_OK;
  15668. }
  15669. if (opt->just_initialized) {
  15670. if (pf) {
  15671. pf[0] = fx;
  15672. }
  15673. opt->lbfgs.fx_best = fx;
  15674. // initial step
  15675. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15676. opt->lbfgs.j = 0;
  15677. opt->lbfgs.k = 1;
  15678. opt->lbfgs.end = 0;
  15679. opt->lbfgs.n_no_improvement = 0;
  15680. opt->just_initialized = false;
  15681. }
  15682. float * fx_best = &opt->lbfgs.fx_best;
  15683. float * step = &opt->lbfgs.step;
  15684. int * j = &opt->lbfgs.j;
  15685. int * k = &opt->lbfgs.k;
  15686. int * end = &opt->lbfgs.end;
  15687. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15688. int ls = 0;
  15689. int bound = 0;
  15690. float ys = 0.0f;
  15691. float yy = 0.0f;
  15692. float beta = 0.0f;
  15693. int it = 0;
  15694. while (true) {
  15695. // store the current position and gradient vectors
  15696. ggml_vec_cpy_f32(nx, xp, x);
  15697. ggml_vec_cpy_f32(nx, gp, g);
  15698. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15699. // to determine if the optimization should be cancelled
  15700. // this is a simple change, but not doing this atm, since I don't have a nice
  15701. // way to test and don't want to break something with so many changes lined up
  15702. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15703. if (cancel) {
  15704. return GGML_OPT_RESULT_CANCEL;
  15705. }
  15706. if (ls < 0) {
  15707. // linesearch failed - go back to the previous point and return
  15708. ggml_vec_cpy_f32(nx, x, xp);
  15709. ggml_vec_cpy_f32(nx, g, gp);
  15710. return ls;
  15711. }
  15712. opt->loss_after = fx;
  15713. ggml_vec_norm_f32(nx, &xnorm, x);
  15714. ggml_vec_norm_f32(nx, &gnorm, g);
  15715. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15716. if (xnorm < 1.0f) {
  15717. xnorm = 1.0f;
  15718. }
  15719. if (gnorm/xnorm <= params.lbfgs.eps) {
  15720. // converged
  15721. return GGML_OPT_RESULT_OK;
  15722. }
  15723. // delta-based convergence test
  15724. if (pf != NULL) {
  15725. // need at least params.past iterations to start checking for convergence
  15726. if (params.past <= k[0]) {
  15727. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15728. if (fabsf(rate) < params.delta) {
  15729. return GGML_OPT_RESULT_OK;
  15730. }
  15731. }
  15732. pf[k[0]%params.past] = fx;
  15733. }
  15734. // check for improvement
  15735. if (params.max_no_improvement > 0) {
  15736. if (fx < fx_best[0]) {
  15737. fx_best[0] = fx;
  15738. n_no_improvement[0] = 0;
  15739. } else {
  15740. n_no_improvement[0]++;
  15741. if (n_no_improvement[0] >= params.max_no_improvement) {
  15742. return GGML_OPT_RESULT_OK;
  15743. }
  15744. }
  15745. }
  15746. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15747. // reached the maximum number of iterations
  15748. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15749. }
  15750. // update vectors s and y:
  15751. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15752. // y_{k+1} = g_{k+1} - g_{k}.
  15753. //
  15754. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15755. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15756. // compute scalars ys and yy:
  15757. // ys = y^t \cdot s -> 1 / \rho.
  15758. // yy = y^t \cdot y.
  15759. //
  15760. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15761. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15762. lm_ys[end[0]] = ys;
  15763. // find new search direction
  15764. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15765. bound = (m <= k[0]) ? m : k[0];
  15766. k[0]++;
  15767. it++;
  15768. end[0] = (end[0] + 1)%m;
  15769. // initialize search direction with -g
  15770. ggml_vec_neg_f32(nx, d, g);
  15771. j[0] = end[0];
  15772. for (int i = 0; i < bound; ++i) {
  15773. j[0] = (j[0] + m - 1) % m;
  15774. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15775. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15776. lm_alpha[j[0]] /= lm_ys[j[0]];
  15777. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15778. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15779. }
  15780. ggml_vec_scale_f32(nx, d, ys/yy);
  15781. for (int i = 0; i < bound; ++i) {
  15782. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15783. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15784. beta /= lm_ys[j[0]];
  15785. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15786. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15787. j[0] = (j[0] + 1)%m;
  15788. }
  15789. step[0] = 1.0;
  15790. }
  15791. GGML_ASSERT(false && "lbfgs failed");
  15792. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15793. }
  15794. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15795. struct ggml_opt_params result;
  15796. switch (type) {
  15797. case GGML_OPT_TYPE_ADAM:
  15798. {
  15799. result = (struct ggml_opt_params) {
  15800. .type = GGML_OPT_TYPE_ADAM,
  15801. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15802. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15803. .past = 0,
  15804. .delta = 1e-5f,
  15805. .max_no_improvement = 100,
  15806. .print_forward_graph = true,
  15807. .print_backward_graph = true,
  15808. .n_gradient_accumulation = 1,
  15809. .adam = {
  15810. .n_iter = 10000,
  15811. .sched = 1.000f,
  15812. .decay = 0.0f,
  15813. .decay_min_ndim = 2,
  15814. .alpha = 0.001f,
  15815. .beta1 = 0.9f,
  15816. .beta2 = 0.999f,
  15817. .eps = 1e-8f,
  15818. .eps_f = 1e-5f,
  15819. .eps_g = 1e-3f,
  15820. .gclip = 0.0f,
  15821. },
  15822. };
  15823. } break;
  15824. case GGML_OPT_TYPE_LBFGS:
  15825. {
  15826. result = (struct ggml_opt_params) {
  15827. .type = GGML_OPT_TYPE_LBFGS,
  15828. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15829. .n_threads = 1,
  15830. .past = 0,
  15831. .delta = 1e-5f,
  15832. .max_no_improvement = 0,
  15833. .print_forward_graph = true,
  15834. .print_backward_graph = true,
  15835. .n_gradient_accumulation = 1,
  15836. .lbfgs = {
  15837. .m = 6,
  15838. .n_iter = 100,
  15839. .max_linesearch = 20,
  15840. .eps = 1e-5f,
  15841. .ftol = 1e-4f,
  15842. .wolfe = 0.9f,
  15843. .min_step = 1e-20f,
  15844. .max_step = 1e+20f,
  15845. .linesearch = GGML_LINESEARCH_DEFAULT,
  15846. },
  15847. };
  15848. } break;
  15849. }
  15850. return result;
  15851. }
  15852. GGML_API void ggml_opt_init(
  15853. struct ggml_context * ctx,
  15854. struct ggml_opt_context * opt,
  15855. struct ggml_opt_params params,
  15856. int64_t nx) {
  15857. opt->ctx = ctx;
  15858. opt->params = params;
  15859. opt->iter = 0;
  15860. opt->nx = nx;
  15861. opt->just_initialized = true;
  15862. if (opt->ctx == NULL) {
  15863. struct ggml_init_params ctx_opt_params;
  15864. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  15865. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15866. if (opt->params.past > 0) {
  15867. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15868. }
  15869. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  15870. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15871. if (opt->params.past > 0) {
  15872. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15873. }
  15874. }
  15875. ctx_opt_params.mem_buffer = NULL;
  15876. ctx_opt_params.no_alloc = false;
  15877. opt->ctx = ggml_init(ctx_opt_params);
  15878. }
  15879. switch (opt->params.type) {
  15880. case GGML_OPT_TYPE_ADAM:
  15881. {
  15882. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15883. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15884. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15885. opt->adam.pf = params.past > 0
  15886. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15887. : NULL;
  15888. ggml_set_zero(opt->adam.m);
  15889. ggml_set_zero(opt->adam.v);
  15890. if (opt->adam.pf) {
  15891. ggml_set_zero(opt->adam.pf);
  15892. }
  15893. } break;
  15894. case GGML_OPT_TYPE_LBFGS:
  15895. {
  15896. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15897. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15898. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15899. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15900. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15901. opt->lbfgs.pf = params.past > 0
  15902. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15903. : NULL;
  15904. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15905. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15906. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15907. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15908. ggml_set_zero(opt->lbfgs.x);
  15909. ggml_set_zero(opt->lbfgs.xp);
  15910. ggml_set_zero(opt->lbfgs.g);
  15911. ggml_set_zero(opt->lbfgs.gp);
  15912. ggml_set_zero(opt->lbfgs.d);
  15913. if (opt->lbfgs.pf) {
  15914. ggml_set_zero(opt->lbfgs.pf);
  15915. }
  15916. ggml_set_zero(opt->lbfgs.lmal);
  15917. ggml_set_zero(opt->lbfgs.lmys);
  15918. ggml_set_zero(opt->lbfgs.lms);
  15919. ggml_set_zero(opt->lbfgs.lmy);
  15920. } break;
  15921. }
  15922. }
  15923. enum ggml_opt_result ggml_opt(
  15924. struct ggml_context * ctx,
  15925. struct ggml_opt_params params,
  15926. struct ggml_tensor * f) {
  15927. bool free_ctx = false;
  15928. if (ctx == NULL) {
  15929. struct ggml_init_params params_ctx = {
  15930. .mem_size = 16*1024*1024,
  15931. .mem_buffer = NULL,
  15932. .no_alloc = false,
  15933. };
  15934. ctx = ggml_init(params_ctx);
  15935. if (ctx == NULL) {
  15936. return GGML_OPT_RESULT_NO_CONTEXT;
  15937. }
  15938. free_ctx = true;
  15939. }
  15940. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15941. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15942. ggml_opt_init(ctx, opt, params, 0);
  15943. result = ggml_opt_resume(ctx, opt, f);
  15944. if (free_ctx) {
  15945. ggml_free(ctx);
  15946. }
  15947. return result;
  15948. }
  15949. enum ggml_opt_result ggml_opt_resume(
  15950. struct ggml_context * ctx,
  15951. struct ggml_opt_context * opt,
  15952. struct ggml_tensor * f) {
  15953. // build forward + backward compute graphs
  15954. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15955. ggml_build_forward_expand(gf, f);
  15956. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15957. ggml_build_backward_expand(ctx, gf, gb, true);
  15958. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15959. }
  15960. enum ggml_opt_result ggml_opt_resume_g(
  15961. struct ggml_context * ctx,
  15962. struct ggml_opt_context * opt,
  15963. struct ggml_tensor * f,
  15964. struct ggml_cgraph * gf,
  15965. struct ggml_cgraph * gb,
  15966. ggml_opt_callback callback,
  15967. void * callback_data) {
  15968. // build forward + backward compute graphs
  15969. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15970. switch (opt->params.type) {
  15971. case GGML_OPT_TYPE_ADAM:
  15972. {
  15973. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15974. } break;
  15975. case GGML_OPT_TYPE_LBFGS:
  15976. {
  15977. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15978. } break;
  15979. }
  15980. if (opt->params.print_forward_graph) {
  15981. ggml_graph_print (gf);
  15982. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15983. }
  15984. if (opt->params.print_backward_graph) {
  15985. ggml_graph_print (gb);
  15986. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15987. }
  15988. return result;
  15989. }
  15990. ////////////////////////////////////////////////////////////////////////////////
  15991. void ggml_set_input(struct ggml_tensor * tensor) {
  15992. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  15993. }
  15994. void ggml_set_output(struct ggml_tensor * tensor) {
  15995. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  15996. }
  15997. ////////////////////////////////////////////////////////////////////////////////
  15998. void ggml_quantize_init(enum ggml_type type) {
  15999. ggml_critical_section_start();
  16000. switch (type) {
  16001. case GGML_TYPE_IQ2_XXS:
  16002. case GGML_TYPE_IQ2_XS:
  16003. case GGML_TYPE_IQ2_S:
  16004. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16005. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16006. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16007. default: // nothing
  16008. break;
  16009. }
  16010. ggml_critical_section_end();
  16011. }
  16012. void ggml_quantize_free(void) {
  16013. ggml_critical_section_start();
  16014. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16015. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16016. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16017. iq3xs_free_impl(256);
  16018. ggml_critical_section_end();
  16019. }
  16020. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16021. assert(k % QK4_0 == 0);
  16022. const int nb = k / QK4_0;
  16023. for (int b = 0; b < n; b += k) {
  16024. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16025. quantize_row_q4_0_reference(src + b, y, k);
  16026. for (int i = 0; i < nb; i++) {
  16027. for (int j = 0; j < QK4_0; j += 2) {
  16028. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16029. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16030. hist[vi0]++;
  16031. hist[vi1]++;
  16032. }
  16033. }
  16034. }
  16035. return (n/QK4_0*sizeof(block_q4_0));
  16036. }
  16037. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16038. assert(k % QK4_1 == 0);
  16039. const int nb = k / QK4_1;
  16040. for (int b = 0; b < n; b += k) {
  16041. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16042. quantize_row_q4_1_reference(src + b, y, k);
  16043. for (int i = 0; i < nb; i++) {
  16044. for (int j = 0; j < QK4_1; j += 2) {
  16045. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16046. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16047. hist[vi0]++;
  16048. hist[vi1]++;
  16049. }
  16050. }
  16051. }
  16052. return (n/QK4_1*sizeof(block_q4_1));
  16053. }
  16054. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16055. assert(k % QK5_0 == 0);
  16056. const int nb = k / QK5_0;
  16057. for (int b = 0; b < n; b += k) {
  16058. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16059. quantize_row_q5_0_reference(src + b, y, k);
  16060. for (int i = 0; i < nb; i++) {
  16061. uint32_t qh;
  16062. memcpy(&qh, &y[i].qh, sizeof(qh));
  16063. for (int j = 0; j < QK5_0; j += 2) {
  16064. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16065. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16066. // cast to 16 bins
  16067. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16068. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16069. hist[vi0]++;
  16070. hist[vi1]++;
  16071. }
  16072. }
  16073. }
  16074. return (n/QK5_0*sizeof(block_q5_0));
  16075. }
  16076. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16077. assert(k % QK5_1 == 0);
  16078. const int nb = k / QK5_1;
  16079. for (int b = 0; b < n; b += k) {
  16080. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16081. quantize_row_q5_1_reference(src + b, y, k);
  16082. for (int i = 0; i < nb; i++) {
  16083. uint32_t qh;
  16084. memcpy(&qh, &y[i].qh, sizeof(qh));
  16085. for (int j = 0; j < QK5_1; j += 2) {
  16086. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16087. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16088. // cast to 16 bins
  16089. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16090. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16091. hist[vi0]++;
  16092. hist[vi1]++;
  16093. }
  16094. }
  16095. }
  16096. return (n/QK5_1*sizeof(block_q5_1));
  16097. }
  16098. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16099. assert(k % QK8_0 == 0);
  16100. const int nb = k / QK8_0;
  16101. for (int b = 0; b < n; b += k) {
  16102. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16103. quantize_row_q8_0_reference(src + b, y, k);
  16104. for (int i = 0; i < nb; i++) {
  16105. for (int j = 0; j < QK8_0; ++j) {
  16106. const int8_t vi = y[i].qs[j];
  16107. hist[vi/16 + 8]++;
  16108. }
  16109. }
  16110. }
  16111. return (n/QK8_0*sizeof(block_q8_0));
  16112. }
  16113. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16114. return
  16115. type == GGML_TYPE_IQ2_XXS ||
  16116. type == GGML_TYPE_IQ2_XS ||
  16117. type == GGML_TYPE_IQ1_S;
  16118. }
  16119. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16120. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16121. ggml_quantize_init(type); // this is noop if already initialized
  16122. size_t result = 0;
  16123. int n = nrows * n_per_row;
  16124. switch (type) {
  16125. case GGML_TYPE_Q4_0:
  16126. {
  16127. GGML_ASSERT(start % QK4_0 == 0);
  16128. GGML_ASSERT(start % n_per_row == 0);
  16129. size_t start_row = start / n_per_row;
  16130. size_t row_size = ggml_row_size(type, n_per_row);
  16131. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16132. GGML_ASSERT(result == row_size * nrows);
  16133. } break;
  16134. case GGML_TYPE_Q4_1:
  16135. {
  16136. GGML_ASSERT(start % QK4_1 == 0);
  16137. GGML_ASSERT(start % n_per_row == 0);
  16138. size_t start_row = start / n_per_row;
  16139. size_t row_size = ggml_row_size(type, n_per_row);
  16140. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16141. GGML_ASSERT(result == row_size * nrows);
  16142. } break;
  16143. case GGML_TYPE_Q5_0:
  16144. {
  16145. GGML_ASSERT(start % QK5_0 == 0);
  16146. GGML_ASSERT(start % n_per_row == 0);
  16147. size_t start_row = start / n_per_row;
  16148. size_t row_size = ggml_row_size(type, n_per_row);
  16149. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16150. GGML_ASSERT(result == row_size * nrows);
  16151. } break;
  16152. case GGML_TYPE_Q5_1:
  16153. {
  16154. GGML_ASSERT(start % QK5_1 == 0);
  16155. GGML_ASSERT(start % n_per_row == 0);
  16156. size_t start_row = start / n_per_row;
  16157. size_t row_size = ggml_row_size(type, n_per_row);
  16158. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16159. GGML_ASSERT(result == row_size * nrows);
  16160. } break;
  16161. case GGML_TYPE_Q8_0:
  16162. {
  16163. GGML_ASSERT(start % QK8_0 == 0);
  16164. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16165. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16166. } break;
  16167. case GGML_TYPE_Q2_K:
  16168. {
  16169. GGML_ASSERT(start % QK_K == 0);
  16170. GGML_ASSERT(start % n_per_row == 0);
  16171. size_t start_row = start / n_per_row;
  16172. size_t row_size = ggml_row_size(type, n_per_row);
  16173. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16174. GGML_ASSERT(result == row_size * nrows);
  16175. } break;
  16176. case GGML_TYPE_Q3_K:
  16177. {
  16178. GGML_ASSERT(start % QK_K == 0);
  16179. GGML_ASSERT(start % n_per_row == 0);
  16180. size_t start_row = start / n_per_row;
  16181. size_t row_size = ggml_row_size(type, n_per_row);
  16182. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16183. GGML_ASSERT(result == row_size * nrows);
  16184. } break;
  16185. case GGML_TYPE_Q4_K:
  16186. {
  16187. GGML_ASSERT(start % QK_K == 0);
  16188. GGML_ASSERT(start % n_per_row == 0);
  16189. size_t start_row = start / n_per_row;
  16190. size_t row_size = ggml_row_size(type, n_per_row);
  16191. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16192. GGML_ASSERT(result == row_size * nrows);
  16193. } break;
  16194. case GGML_TYPE_Q5_K:
  16195. {
  16196. GGML_ASSERT(start % QK_K == 0);
  16197. GGML_ASSERT(start % n_per_row == 0);
  16198. size_t start_row = start / n_per_row;
  16199. size_t row_size = ggml_row_size(type, n_per_row);
  16200. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16201. GGML_ASSERT(result == row_size * nrows);
  16202. } break;
  16203. case GGML_TYPE_Q6_K:
  16204. {
  16205. GGML_ASSERT(start % QK_K == 0);
  16206. GGML_ASSERT(start % n_per_row == 0);
  16207. size_t start_row = start / n_per_row;
  16208. size_t row_size = ggml_row_size(type, n_per_row);
  16209. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16210. GGML_ASSERT(result == row_size * nrows);
  16211. } break;
  16212. case GGML_TYPE_IQ2_XXS:
  16213. {
  16214. GGML_ASSERT(start % QK_K == 0);
  16215. GGML_ASSERT(start % n_per_row == 0);
  16216. GGML_ASSERT(imatrix);
  16217. size_t start_row = start / n_per_row;
  16218. size_t row_size = ggml_row_size(type, n_per_row);
  16219. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16220. GGML_ASSERT(result == row_size * nrows);
  16221. } break;
  16222. case GGML_TYPE_IQ2_XS:
  16223. {
  16224. GGML_ASSERT(start % QK_K == 0);
  16225. GGML_ASSERT(start % n_per_row == 0);
  16226. GGML_ASSERT(imatrix);
  16227. size_t start_row = start / n_per_row;
  16228. size_t row_size = ggml_row_size(type, n_per_row);
  16229. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16230. GGML_ASSERT(result == row_size * nrows);
  16231. } break;
  16232. case GGML_TYPE_IQ3_XXS:
  16233. {
  16234. GGML_ASSERT(start % QK_K == 0);
  16235. GGML_ASSERT(start % n_per_row == 0);
  16236. size_t start_row = start / n_per_row;
  16237. size_t row_size = ggml_row_size(type, n_per_row);
  16238. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16239. GGML_ASSERT(result == row_size * nrows);
  16240. } break;
  16241. case GGML_TYPE_IQ3_S:
  16242. {
  16243. GGML_ASSERT(start % QK_K == 0);
  16244. GGML_ASSERT(start % n_per_row == 0);
  16245. size_t start_row = start / n_per_row;
  16246. size_t row_size = ggml_row_size(type, n_per_row);
  16247. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16248. GGML_ASSERT(result == row_size * nrows);
  16249. } break;
  16250. case GGML_TYPE_IQ2_S:
  16251. {
  16252. GGML_ASSERT(start % QK_K == 0);
  16253. GGML_ASSERT(start % n_per_row == 0);
  16254. size_t start_row = start / n_per_row;
  16255. size_t row_size = ggml_row_size(type, n_per_row);
  16256. result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16257. GGML_ASSERT(result == row_size * nrows);
  16258. } break;
  16259. case GGML_TYPE_IQ1_S:
  16260. {
  16261. GGML_ASSERT(start % QK_K == 0);
  16262. GGML_ASSERT(start % n_per_row == 0);
  16263. size_t start_row = start / n_per_row;
  16264. size_t row_size = ggml_row_size(type, n_per_row);
  16265. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16266. GGML_ASSERT(result == row_size * nrows);
  16267. } break;
  16268. case GGML_TYPE_IQ4_NL:
  16269. {
  16270. GGML_ASSERT(start % QK4_NL == 0);
  16271. GGML_ASSERT(start % n_per_row == 0);
  16272. size_t start_row = start / n_per_row;
  16273. size_t row_size = ggml_row_size(type, n_per_row);
  16274. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16275. GGML_ASSERT(result == row_size * nrows);
  16276. } break;
  16277. case GGML_TYPE_IQ4_XS:
  16278. {
  16279. GGML_ASSERT(start % QK4_NL == 0);
  16280. GGML_ASSERT(start % n_per_row == 0);
  16281. size_t start_row = start / n_per_row;
  16282. size_t row_size = ggml_row_size(type, n_per_row);
  16283. result = quantize_iq4_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16284. GGML_ASSERT(result == row_size * nrows);
  16285. } break;
  16286. case GGML_TYPE_F16:
  16287. {
  16288. size_t elemsize = sizeof(ggml_fp16_t);
  16289. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16290. result = n * elemsize;
  16291. } break;
  16292. case GGML_TYPE_F32:
  16293. {
  16294. size_t elemsize = sizeof(float);
  16295. result = n * elemsize;
  16296. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16297. } break;
  16298. default:
  16299. assert(false);
  16300. }
  16301. return result;
  16302. }
  16303. ////////////////////////////////////////////////////////////////////////////////
  16304. struct gguf_str {
  16305. uint64_t n; // GGUFv2
  16306. char * data;
  16307. };
  16308. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16309. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16310. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16311. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16312. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16313. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16314. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16315. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16316. [GGUF_TYPE_BOOL] = sizeof(bool),
  16317. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16318. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16319. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16320. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16321. [GGUF_TYPE_ARRAY] = 0, // undefined
  16322. };
  16323. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16324. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16325. [GGUF_TYPE_UINT8] = "u8",
  16326. [GGUF_TYPE_INT8] = "i8",
  16327. [GGUF_TYPE_UINT16] = "u16",
  16328. [GGUF_TYPE_INT16] = "i16",
  16329. [GGUF_TYPE_UINT32] = "u32",
  16330. [GGUF_TYPE_INT32] = "i32",
  16331. [GGUF_TYPE_FLOAT32] = "f32",
  16332. [GGUF_TYPE_BOOL] = "bool",
  16333. [GGUF_TYPE_STRING] = "str",
  16334. [GGUF_TYPE_ARRAY] = "arr",
  16335. [GGUF_TYPE_UINT64] = "u64",
  16336. [GGUF_TYPE_INT64] = "i64",
  16337. [GGUF_TYPE_FLOAT64] = "f64",
  16338. };
  16339. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16340. union gguf_value {
  16341. uint8_t uint8;
  16342. int8_t int8;
  16343. uint16_t uint16;
  16344. int16_t int16;
  16345. uint32_t uint32;
  16346. int32_t int32;
  16347. float float32;
  16348. uint64_t uint64;
  16349. int64_t int64;
  16350. double float64;
  16351. bool bool_;
  16352. struct gguf_str str;
  16353. struct {
  16354. enum gguf_type type;
  16355. uint64_t n; // GGUFv2
  16356. void * data;
  16357. } arr;
  16358. };
  16359. struct gguf_kv {
  16360. struct gguf_str key;
  16361. enum gguf_type type;
  16362. union gguf_value value;
  16363. };
  16364. struct gguf_header {
  16365. char magic[4];
  16366. uint32_t version;
  16367. uint64_t n_tensors; // GGUFv2
  16368. uint64_t n_kv; // GGUFv2
  16369. };
  16370. struct gguf_tensor_info {
  16371. struct gguf_str name;
  16372. uint32_t n_dims;
  16373. uint64_t ne[GGML_MAX_DIMS];
  16374. enum ggml_type type;
  16375. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16376. // for writing API
  16377. const void * data;
  16378. size_t size;
  16379. };
  16380. struct gguf_context {
  16381. struct gguf_header header;
  16382. struct gguf_kv * kv;
  16383. struct gguf_tensor_info * infos;
  16384. size_t alignment;
  16385. size_t offset; // offset of `data` from beginning of file
  16386. size_t size; // size of `data` in bytes
  16387. //uint8_t * padding;
  16388. void * data;
  16389. };
  16390. static size_t gguf_type_size(enum gguf_type type) {
  16391. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16392. return GGUF_TYPE_SIZE[type];
  16393. }
  16394. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16395. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16396. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16397. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16398. GGML_ASSERT(info->ne[i] > 0);
  16399. }
  16400. // prevent overflow for total number of elements
  16401. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16402. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16403. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16404. }
  16405. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16406. const size_t n = fread(dst, 1, size, file);
  16407. *offset += n;
  16408. return n == size;
  16409. }
  16410. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16411. p->n = 0;
  16412. p->data = NULL;
  16413. bool ok = true;
  16414. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16415. // early exit if string length is invalid, prevents from integer overflow
  16416. if (p->n == SIZE_MAX) {
  16417. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16418. return false;
  16419. }
  16420. p->data = GGML_CALLOC(p->n + 1, 1);
  16421. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16422. return ok;
  16423. }
  16424. struct gguf_context * gguf_init_empty(void) {
  16425. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16426. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16427. ctx->header.version = GGUF_VERSION;
  16428. ctx->header.n_tensors = 0;
  16429. ctx->header.n_kv = 0;
  16430. ctx->kv = NULL;
  16431. ctx->infos = NULL;
  16432. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16433. ctx->offset = 0;
  16434. ctx->size = 0;
  16435. ctx->data = NULL;
  16436. return ctx;
  16437. }
  16438. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16439. FILE * file = fopen(fname, "rb");
  16440. if (!file) {
  16441. return NULL;
  16442. }
  16443. // offset from start of file
  16444. size_t offset = 0;
  16445. char magic[4];
  16446. // check the magic before making allocations
  16447. {
  16448. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16449. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16450. if (magic[i] != GGUF_MAGIC[i]) {
  16451. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16452. fclose(file);
  16453. return NULL;
  16454. }
  16455. }
  16456. }
  16457. bool ok = true;
  16458. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16459. // read the header
  16460. {
  16461. strncpy(ctx->header.magic, magic, 4);
  16462. ctx->kv = NULL;
  16463. ctx->infos = NULL;
  16464. ctx->data = NULL;
  16465. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16466. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16467. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16468. if (ctx->header.version == 1) {
  16469. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16470. fclose(file);
  16471. gguf_free(ctx);
  16472. return NULL;
  16473. }
  16474. // sanity-checks to prevent from integer/buffer overflows
  16475. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16476. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16477. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16478. if (!ok) {
  16479. fprintf(stderr, "%s: failed to read header\n", __func__);
  16480. fclose(file);
  16481. gguf_free(ctx);
  16482. return NULL;
  16483. }
  16484. }
  16485. // read the kv pairs
  16486. {
  16487. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16488. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16489. struct gguf_kv * kv = &ctx->kv[i];
  16490. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16491. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16492. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16493. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16494. switch (kv->type) {
  16495. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16496. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16497. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16498. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16499. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16500. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16501. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16502. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16503. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16504. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16505. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16506. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16507. case GGUF_TYPE_ARRAY:
  16508. {
  16509. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16510. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16511. switch (kv->value.arr.type) {
  16512. case GGUF_TYPE_UINT8:
  16513. case GGUF_TYPE_INT8:
  16514. case GGUF_TYPE_UINT16:
  16515. case GGUF_TYPE_INT16:
  16516. case GGUF_TYPE_UINT32:
  16517. case GGUF_TYPE_INT32:
  16518. case GGUF_TYPE_FLOAT32:
  16519. case GGUF_TYPE_UINT64:
  16520. case GGUF_TYPE_INT64:
  16521. case GGUF_TYPE_FLOAT64:
  16522. case GGUF_TYPE_BOOL:
  16523. {
  16524. // prevent from integer overflow in the malloc below
  16525. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16526. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16527. fclose(file);
  16528. gguf_free(ctx);
  16529. return NULL;
  16530. }
  16531. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16532. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16533. } break;
  16534. case GGUF_TYPE_STRING:
  16535. {
  16536. // prevent from integer overflow in the malloc below
  16537. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16538. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16539. fclose(file);
  16540. gguf_free(ctx);
  16541. return NULL;
  16542. }
  16543. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16544. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16545. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16546. }
  16547. } break;
  16548. case GGUF_TYPE_ARRAY:
  16549. default: GGML_ASSERT(false && "invalid type"); break;
  16550. }
  16551. } break;
  16552. default: GGML_ASSERT(false && "invalid type");
  16553. }
  16554. if (!ok) {
  16555. break;
  16556. }
  16557. }
  16558. if (!ok) {
  16559. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16560. fclose(file);
  16561. gguf_free(ctx);
  16562. return NULL;
  16563. }
  16564. }
  16565. // read the tensor infos
  16566. {
  16567. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16568. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16569. struct gguf_tensor_info * info = &ctx->infos[i];
  16570. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16571. info->ne[j] = 1;
  16572. }
  16573. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16574. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16575. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16576. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16577. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16578. }
  16579. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16580. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16581. gguf_tensor_info_sanitize(info);
  16582. if (!ok) {
  16583. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16584. fclose(file);
  16585. gguf_free(ctx);
  16586. return NULL;
  16587. }
  16588. }
  16589. }
  16590. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16591. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16592. if (alignment_idx != -1) {
  16593. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16594. }
  16595. // we require the data section to be aligned, so take into account any padding
  16596. {
  16597. const size_t offset_pad = offset % ctx->alignment;
  16598. if (offset_pad != 0) {
  16599. offset += ctx->alignment - offset_pad;
  16600. fseek(file, offset, SEEK_SET);
  16601. }
  16602. }
  16603. // store the current file offset - this is where the data section starts
  16604. ctx->offset = offset;
  16605. // compute the total size of the data section, taking into account the alignment
  16606. {
  16607. ctx->size = 0;
  16608. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16609. struct gguf_tensor_info * info = &ctx->infos[i];
  16610. const int64_t ne =
  16611. (int64_t) info->ne[0] *
  16612. (int64_t) info->ne[1] *
  16613. (int64_t) info->ne[2] *
  16614. (int64_t) info->ne[3];
  16615. if (ne % ggml_blck_size(info->type) != 0) {
  16616. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16617. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16618. fclose(file);
  16619. gguf_free(ctx);
  16620. return NULL;
  16621. }
  16622. const size_t size_cur = ggml_row_size(info->type, ne);
  16623. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16624. }
  16625. }
  16626. // load the tensor data only if requested
  16627. if (params.ctx != NULL) {
  16628. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16629. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16630. // the ggml_tensor structs to the appropriate locations in the binary blob
  16631. // compute the exact size needed for the new ggml_context
  16632. const size_t mem_size =
  16633. params.no_alloc ?
  16634. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16635. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16636. struct ggml_init_params pdata = {
  16637. .mem_size = mem_size,
  16638. .mem_buffer = NULL,
  16639. .no_alloc = params.no_alloc,
  16640. };
  16641. *params.ctx = ggml_init(pdata);
  16642. struct ggml_context * ctx_data = *params.ctx;
  16643. struct ggml_tensor * data = NULL;
  16644. if (!params.no_alloc) {
  16645. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16646. ok = ok && data != NULL;
  16647. // read the binary blob with the tensor data
  16648. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16649. if (!ok) {
  16650. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16651. fclose(file);
  16652. ggml_free(ctx_data);
  16653. gguf_free(ctx);
  16654. return NULL;
  16655. }
  16656. ctx->data = data->data;
  16657. }
  16658. ggml_set_no_alloc(ctx_data, true);
  16659. // create the tensors
  16660. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16661. const int64_t ne[GGML_MAX_DIMS] = {
  16662. ctx->infos[i].ne[0],
  16663. ctx->infos[i].ne[1],
  16664. ctx->infos[i].ne[2],
  16665. ctx->infos[i].ne[3],
  16666. };
  16667. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16668. ok = ok && cur != NULL;
  16669. ggml_set_name(cur, ctx->infos[i].name.data);
  16670. if (!ok) {
  16671. break;
  16672. }
  16673. // point the data member to the appropriate location in the binary blob using the tensor infos
  16674. if (!params.no_alloc) {
  16675. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16676. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16677. }
  16678. }
  16679. if (!ok) {
  16680. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16681. fclose(file);
  16682. ggml_free(ctx_data);
  16683. gguf_free(ctx);
  16684. return NULL;
  16685. }
  16686. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16687. }
  16688. fclose(file);
  16689. return ctx;
  16690. }
  16691. void gguf_free(struct gguf_context * ctx) {
  16692. if (ctx == NULL) {
  16693. return;
  16694. }
  16695. if (ctx->kv) {
  16696. // free string memory - not great..
  16697. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16698. struct gguf_kv * kv = &ctx->kv[i];
  16699. if (kv->key.data) {
  16700. GGML_FREE(kv->key.data);
  16701. }
  16702. if (kv->type == GGUF_TYPE_STRING) {
  16703. if (kv->value.str.data) {
  16704. GGML_FREE(kv->value.str.data);
  16705. }
  16706. }
  16707. if (kv->type == GGUF_TYPE_ARRAY) {
  16708. if (kv->value.arr.data) {
  16709. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16710. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16711. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16712. if (str->data) {
  16713. GGML_FREE(str->data);
  16714. }
  16715. }
  16716. }
  16717. GGML_FREE(kv->value.arr.data);
  16718. }
  16719. }
  16720. }
  16721. GGML_FREE(ctx->kv);
  16722. }
  16723. if (ctx->infos) {
  16724. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16725. struct gguf_tensor_info * info = &ctx->infos[i];
  16726. if (info->name.data) {
  16727. GGML_FREE(info->name.data);
  16728. }
  16729. }
  16730. GGML_FREE(ctx->infos);
  16731. }
  16732. GGML_ALIGNED_FREE(ctx);
  16733. }
  16734. const char * gguf_type_name(enum gguf_type type) {
  16735. return GGUF_TYPE_NAME[type];
  16736. }
  16737. int gguf_get_version(const struct gguf_context * ctx) {
  16738. return ctx->header.version;
  16739. }
  16740. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16741. return ctx->alignment;
  16742. }
  16743. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16744. return ctx->offset;
  16745. }
  16746. void * gguf_get_data(const struct gguf_context * ctx) {
  16747. return ctx->data;
  16748. }
  16749. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16750. return ctx->header.n_kv;
  16751. }
  16752. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16753. // return -1 if key not found
  16754. int keyfound = -1;
  16755. const int n_kv = gguf_get_n_kv(ctx);
  16756. for (int i = 0; i < n_kv; ++i) {
  16757. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16758. keyfound = i;
  16759. break;
  16760. }
  16761. }
  16762. return keyfound;
  16763. }
  16764. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16765. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16766. return ctx->kv[key_id].key.data;
  16767. }
  16768. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16769. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16770. return ctx->kv[key_id].type;
  16771. }
  16772. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16773. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16774. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16775. return ctx->kv[key_id].value.arr.type;
  16776. }
  16777. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16778. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16779. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16780. return ctx->kv[key_id].value.arr.data;
  16781. }
  16782. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16783. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16784. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16785. struct gguf_kv * kv = &ctx->kv[key_id];
  16786. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16787. return str->data;
  16788. }
  16789. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16790. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16791. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16792. return ctx->kv[key_id].value.arr.n;
  16793. }
  16794. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16795. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16796. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16797. return ctx->kv[key_id].value.uint8;
  16798. }
  16799. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16800. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16801. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16802. return ctx->kv[key_id].value.int8;
  16803. }
  16804. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16805. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16806. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16807. return ctx->kv[key_id].value.uint16;
  16808. }
  16809. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16810. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16811. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16812. return ctx->kv[key_id].value.int16;
  16813. }
  16814. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16815. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16816. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16817. return ctx->kv[key_id].value.uint32;
  16818. }
  16819. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16820. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16821. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16822. return ctx->kv[key_id].value.int32;
  16823. }
  16824. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16825. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16826. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16827. return ctx->kv[key_id].value.float32;
  16828. }
  16829. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16830. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16831. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16832. return ctx->kv[key_id].value.uint64;
  16833. }
  16834. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16835. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16836. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16837. return ctx->kv[key_id].value.int64;
  16838. }
  16839. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16840. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16841. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16842. return ctx->kv[key_id].value.float64;
  16843. }
  16844. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16845. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16846. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16847. return ctx->kv[key_id].value.bool_;
  16848. }
  16849. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16850. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16851. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16852. return ctx->kv[key_id].value.str.data;
  16853. }
  16854. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16855. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16856. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16857. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16858. return &ctx->kv[key_id].value;
  16859. }
  16860. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16861. return ctx->header.n_tensors;
  16862. }
  16863. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16864. // return -1 if tensor not found
  16865. int tensorfound = -1;
  16866. const int n_tensors = gguf_get_n_tensors(ctx);
  16867. for (int i = 0; i < n_tensors; ++i) {
  16868. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16869. tensorfound = i;
  16870. break;
  16871. }
  16872. }
  16873. return tensorfound;
  16874. }
  16875. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16876. return ctx->infos[i].offset;
  16877. }
  16878. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16879. return ctx->infos[i].name.data;
  16880. }
  16881. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16882. return ctx->infos[i].type;
  16883. }
  16884. // returns the index
  16885. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16886. const int idx = gguf_find_key(ctx, key);
  16887. if (idx >= 0) {
  16888. return idx;
  16889. }
  16890. const int n_kv = gguf_get_n_kv(ctx);
  16891. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16892. ctx->kv[n_kv].key.n = strlen(key);
  16893. ctx->kv[n_kv].key.data = strdup(key);
  16894. ctx->header.n_kv++;
  16895. return n_kv;
  16896. }
  16897. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16898. const int idx = gguf_get_or_add_key(ctx, key);
  16899. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16900. ctx->kv[idx].value.uint8 = val;
  16901. }
  16902. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16903. const int idx = gguf_get_or_add_key(ctx, key);
  16904. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16905. ctx->kv[idx].value.int8 = val;
  16906. }
  16907. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16908. const int idx = gguf_get_or_add_key(ctx, key);
  16909. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16910. ctx->kv[idx].value.uint16 = val;
  16911. }
  16912. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16913. const int idx = gguf_get_or_add_key(ctx, key);
  16914. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16915. ctx->kv[idx].value.int16 = val;
  16916. }
  16917. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16918. const int idx = gguf_get_or_add_key(ctx, key);
  16919. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16920. ctx->kv[idx].value.uint32 = val;
  16921. }
  16922. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16923. const int idx = gguf_get_or_add_key(ctx, key);
  16924. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16925. ctx->kv[idx].value.int32 = val;
  16926. }
  16927. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16928. const int idx = gguf_get_or_add_key(ctx, key);
  16929. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16930. ctx->kv[idx].value.float32 = val;
  16931. }
  16932. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16933. const int idx = gguf_get_or_add_key(ctx, key);
  16934. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16935. ctx->kv[idx].value.uint64 = val;
  16936. }
  16937. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16938. const int idx = gguf_get_or_add_key(ctx, key);
  16939. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16940. ctx->kv[idx].value.int64 = val;
  16941. }
  16942. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16943. const int idx = gguf_get_or_add_key(ctx, key);
  16944. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16945. ctx->kv[idx].value.float64 = val;
  16946. }
  16947. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16948. const int idx = gguf_get_or_add_key(ctx, key);
  16949. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16950. ctx->kv[idx].value.bool_ = val;
  16951. }
  16952. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16953. const int idx = gguf_get_or_add_key(ctx, key);
  16954. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16955. ctx->kv[idx].value.str.n = strlen(val);
  16956. ctx->kv[idx].value.str.data = strdup(val);
  16957. }
  16958. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16959. const int idx = gguf_get_or_add_key(ctx, key);
  16960. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16961. ctx->kv[idx].value.arr.type = type;
  16962. ctx->kv[idx].value.arr.n = n;
  16963. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16964. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16965. }
  16966. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16967. const int idx = gguf_get_or_add_key(ctx, key);
  16968. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16969. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16970. ctx->kv[idx].value.arr.n = n;
  16971. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16972. for (int i = 0; i < n; i++) {
  16973. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16974. str->n = strlen(data[i]);
  16975. str->data = strdup(data[i]);
  16976. }
  16977. }
  16978. // set or add KV pairs from another context
  16979. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16980. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16981. switch (src->kv[i].type) {
  16982. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16983. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16984. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16985. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16986. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16987. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16988. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16989. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16990. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16991. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16992. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16993. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16994. case GGUF_TYPE_ARRAY:
  16995. {
  16996. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16997. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16998. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16999. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17000. }
  17001. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17002. GGML_FREE((void *)data);
  17003. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17004. GGML_ASSERT(false && "nested arrays not supported");
  17005. } else {
  17006. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17007. }
  17008. } break;
  17009. default: GGML_ASSERT(false && "invalid type"); break;
  17010. }
  17011. }
  17012. }
  17013. void gguf_add_tensor(
  17014. struct gguf_context * ctx,
  17015. const struct ggml_tensor * tensor) {
  17016. const int idx = ctx->header.n_tensors;
  17017. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17018. ctx->infos[idx].name.n = strlen(tensor->name);
  17019. ctx->infos[idx].name.data = strdup(tensor->name);
  17020. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17021. ctx->infos[idx].ne[i] = 1;
  17022. }
  17023. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17024. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17025. ctx->infos[idx].ne[i] = tensor->ne[i];
  17026. }
  17027. ctx->infos[idx].type = tensor->type;
  17028. ctx->infos[idx].offset = 0;
  17029. ctx->infos[idx].data = tensor->data;
  17030. ctx->infos[idx].size = ggml_nbytes(tensor);
  17031. if (ctx->header.n_tensors > 0) {
  17032. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17033. }
  17034. ctx->header.n_tensors++;
  17035. }
  17036. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17037. const int idx = gguf_find_tensor(ctx, name);
  17038. if (idx < 0) {
  17039. GGML_ASSERT(false && "tensor not found");
  17040. }
  17041. ctx->infos[idx].type = type;
  17042. }
  17043. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17044. const int idx = gguf_find_tensor(ctx, name);
  17045. if (idx < 0) {
  17046. GGML_ASSERT(false && "tensor not found");
  17047. }
  17048. ctx->infos[idx].data = data;
  17049. ctx->infos[idx].size = size;
  17050. // update offsets
  17051. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17052. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17053. }
  17054. }
  17055. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17056. // fwrite(&val->n, sizeof(val->n), 1, file);
  17057. // fwrite(val->data, sizeof(char), val->n, file);
  17058. //}
  17059. //
  17060. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17061. // fwrite(val, sizeof(char), size, file);
  17062. //}
  17063. struct gguf_buf {
  17064. void * data;
  17065. size_t size;
  17066. size_t offset;
  17067. };
  17068. static struct gguf_buf gguf_buf_init(size_t size) {
  17069. struct gguf_buf buf = {
  17070. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17071. /*buf.size =*/ size,
  17072. /*buf.offset =*/ 0,
  17073. };
  17074. return buf;
  17075. }
  17076. static void gguf_buf_free(struct gguf_buf buf) {
  17077. if (buf.data) {
  17078. GGML_FREE(buf.data);
  17079. }
  17080. }
  17081. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17082. if (buf->offset + size > buf->size) {
  17083. buf->size = 1.5*(buf->offset + size);
  17084. if (buf->data) {
  17085. buf->data = realloc(buf->data, buf->size);
  17086. }
  17087. }
  17088. }
  17089. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17090. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17091. if (buf->data) {
  17092. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17093. }
  17094. buf->offset += sizeof(val->n);
  17095. if (buf->data) {
  17096. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17097. }
  17098. buf->offset += val->n;
  17099. }
  17100. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17101. gguf_buf_grow(buf, el_size);
  17102. if (buf->data) {
  17103. memcpy((char *) buf->data + buf->offset, val, el_size);
  17104. }
  17105. buf->offset += el_size;
  17106. }
  17107. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17108. // write header
  17109. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17110. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17111. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17112. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17113. // write key-value pairs
  17114. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17115. struct gguf_kv * kv = &ctx->kv[i];
  17116. gguf_bwrite_str(buf, &kv->key);
  17117. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17118. switch (kv->type) {
  17119. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17120. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17121. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17122. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17123. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17124. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17125. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17126. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17127. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17128. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17129. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17130. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17131. case GGUF_TYPE_ARRAY:
  17132. {
  17133. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17134. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17135. switch (kv->value.arr.type) {
  17136. case GGUF_TYPE_UINT8:
  17137. case GGUF_TYPE_INT8:
  17138. case GGUF_TYPE_UINT16:
  17139. case GGUF_TYPE_INT16:
  17140. case GGUF_TYPE_UINT32:
  17141. case GGUF_TYPE_INT32:
  17142. case GGUF_TYPE_FLOAT32:
  17143. case GGUF_TYPE_UINT64:
  17144. case GGUF_TYPE_INT64:
  17145. case GGUF_TYPE_FLOAT64:
  17146. case GGUF_TYPE_BOOL:
  17147. {
  17148. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17149. } break;
  17150. case GGUF_TYPE_STRING:
  17151. {
  17152. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17153. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17154. }
  17155. } break;
  17156. case GGUF_TYPE_ARRAY:
  17157. default: GGML_ASSERT(false && "invalid type"); break;
  17158. }
  17159. } break;
  17160. default: GGML_ASSERT(false && "invalid type");
  17161. }
  17162. }
  17163. // write tensor infos
  17164. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17165. struct gguf_tensor_info * info = &ctx->infos[i];
  17166. gguf_bwrite_str(buf, &info->name);
  17167. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17168. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17169. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17170. }
  17171. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17172. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17173. }
  17174. // we require the data section to be aligned, so take into account any padding
  17175. {
  17176. const size_t offset = buf->offset;
  17177. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17178. if (offset_pad != offset) {
  17179. uint8_t pad = 0;
  17180. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17181. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17182. }
  17183. }
  17184. }
  17185. if (only_meta) {
  17186. return;
  17187. }
  17188. size_t offset = 0;
  17189. // write tensor data
  17190. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17191. struct gguf_tensor_info * info = &ctx->infos[i];
  17192. const size_t size = info->size;
  17193. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17194. gguf_bwrite_el(buf, info->data, size);
  17195. if (size_pad != size) {
  17196. uint8_t pad = 0;
  17197. for (size_t j = 0; j < size_pad - size; ++j) {
  17198. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17199. }
  17200. }
  17201. GGML_ASSERT(offset == info->offset);
  17202. offset += size_pad;
  17203. }
  17204. }
  17205. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17206. FILE * file = fopen(fname, "wb");
  17207. if (!file) {
  17208. GGML_ASSERT(false && "failed to open file for writing");
  17209. }
  17210. struct gguf_buf buf = gguf_buf_init(16*1024);
  17211. gguf_write_to_buf(ctx, &buf, only_meta);
  17212. fwrite(buf.data, 1, buf.offset, file);
  17213. gguf_buf_free(buf);
  17214. fclose(file);
  17215. }
  17216. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17217. // no allocs - only compute size
  17218. struct gguf_buf buf = gguf_buf_init(0);
  17219. gguf_write_to_buf(ctx, &buf, true);
  17220. return buf.offset;
  17221. }
  17222. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17223. struct gguf_buf buf = gguf_buf_init(16*1024);
  17224. gguf_write_to_buf(ctx, &buf, true);
  17225. memcpy(data, buf.data, buf.offset);
  17226. gguf_buf_free(buf);
  17227. }
  17228. ////////////////////////////////////////////////////////////////////////////////
  17229. int ggml_cpu_has_avx(void) {
  17230. #if defined(__AVX__)
  17231. return 1;
  17232. #else
  17233. return 0;
  17234. #endif
  17235. }
  17236. int ggml_cpu_has_avx_vnni(void) {
  17237. #if defined(__AVXVNNI__)
  17238. return 1;
  17239. #else
  17240. return 0;
  17241. #endif
  17242. }
  17243. int ggml_cpu_has_avx2(void) {
  17244. #if defined(__AVX2__)
  17245. return 1;
  17246. #else
  17247. return 0;
  17248. #endif
  17249. }
  17250. int ggml_cpu_has_avx512(void) {
  17251. #if defined(__AVX512F__)
  17252. return 1;
  17253. #else
  17254. return 0;
  17255. #endif
  17256. }
  17257. int ggml_cpu_has_avx512_vbmi(void) {
  17258. #if defined(__AVX512VBMI__)
  17259. return 1;
  17260. #else
  17261. return 0;
  17262. #endif
  17263. }
  17264. int ggml_cpu_has_avx512_vnni(void) {
  17265. #if defined(__AVX512VNNI__)
  17266. return 1;
  17267. #else
  17268. return 0;
  17269. #endif
  17270. }
  17271. int ggml_cpu_has_fma(void) {
  17272. #if defined(__FMA__)
  17273. return 1;
  17274. #else
  17275. return 0;
  17276. #endif
  17277. }
  17278. int ggml_cpu_has_neon(void) {
  17279. #if defined(__ARM_NEON)
  17280. return 1;
  17281. #else
  17282. return 0;
  17283. #endif
  17284. }
  17285. int ggml_cpu_has_arm_fma(void) {
  17286. #if defined(__ARM_FEATURE_FMA)
  17287. return 1;
  17288. #else
  17289. return 0;
  17290. #endif
  17291. }
  17292. int ggml_cpu_has_metal(void) {
  17293. #if defined(GGML_USE_METAL)
  17294. return 1;
  17295. #else
  17296. return 0;
  17297. #endif
  17298. }
  17299. int ggml_cpu_has_f16c(void) {
  17300. #if defined(__F16C__)
  17301. return 1;
  17302. #else
  17303. return 0;
  17304. #endif
  17305. }
  17306. int ggml_cpu_has_fp16_va(void) {
  17307. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17308. return 1;
  17309. #else
  17310. return 0;
  17311. #endif
  17312. }
  17313. int ggml_cpu_has_wasm_simd(void) {
  17314. #if defined(__wasm_simd128__)
  17315. return 1;
  17316. #else
  17317. return 0;
  17318. #endif
  17319. }
  17320. int ggml_cpu_has_blas(void) {
  17321. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17322. return 1;
  17323. #else
  17324. return 0;
  17325. #endif
  17326. }
  17327. int ggml_cpu_has_cublas(void) {
  17328. #if defined(GGML_USE_CUBLAS)
  17329. return 1;
  17330. #else
  17331. return 0;
  17332. #endif
  17333. }
  17334. int ggml_cpu_has_clblast(void) {
  17335. #if defined(GGML_USE_CLBLAST)
  17336. return 1;
  17337. #else
  17338. return 0;
  17339. #endif
  17340. }
  17341. int ggml_cpu_has_vulkan(void) {
  17342. #if defined(GGML_USE_VULKAN)
  17343. return 1;
  17344. #else
  17345. return 0;
  17346. #endif
  17347. }
  17348. int ggml_cpu_has_kompute(void) {
  17349. #if defined(GGML_USE_KOMPUTE)
  17350. return 1;
  17351. #else
  17352. return 0;
  17353. #endif
  17354. }
  17355. int ggml_cpu_has_sycl(void) {
  17356. #if defined(GGML_USE_SYCL)
  17357. return 1;
  17358. #else
  17359. return 0;
  17360. #endif
  17361. }
  17362. int ggml_cpu_has_gpublas(void) {
  17363. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17364. ggml_cpu_has_sycl();
  17365. }
  17366. int ggml_cpu_has_sse3(void) {
  17367. #if defined(__SSE3__)
  17368. return 1;
  17369. #else
  17370. return 0;
  17371. #endif
  17372. }
  17373. int ggml_cpu_has_ssse3(void) {
  17374. #if defined(__SSSE3__)
  17375. return 1;
  17376. #else
  17377. return 0;
  17378. #endif
  17379. }
  17380. int ggml_cpu_has_vsx(void) {
  17381. #if defined(__POWER9_VECTOR__)
  17382. return 1;
  17383. #else
  17384. return 0;
  17385. #endif
  17386. }
  17387. int ggml_cpu_has_matmul_int8(void) {
  17388. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17389. return 1;
  17390. #else
  17391. return 0;
  17392. #endif
  17393. }
  17394. ////////////////////////////////////////////////////////////////////////////////