ggml-backend.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  13. return buft->iface.get_name(buft);
  14. }
  15. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  16. return buft->iface.alloc_buffer(buft, size);
  17. }
  18. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  19. return buft->iface.get_alignment(buft);
  20. }
  21. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  22. // get_max_size is optional, defaults to SIZE_MAX
  23. if (buft->iface.get_max_size) {
  24. return buft->iface.get_max_size(buft);
  25. }
  26. return SIZE_MAX;
  27. }
  28. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  29. // get_alloc_size is optional, defaults to ggml_nbytes
  30. if (buft->iface.get_alloc_size) {
  31. size_t size = buft->iface.get_alloc_size(buft, tensor);
  32. assert(size >= ggml_nbytes(tensor));
  33. return size;
  34. }
  35. return ggml_nbytes(tensor);
  36. }
  37. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  38. return buft->iface.supports_backend(buft, backend);
  39. }
  40. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  41. if (buft->iface.is_host) {
  42. return buft->iface.is_host(buft);
  43. }
  44. return false;
  45. }
  46. // backend buffer
  47. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  48. ggml_backend_buffer_type_t buft,
  49. struct ggml_backend_buffer_i iface,
  50. ggml_backend_buffer_context_t context,
  51. size_t size) {
  52. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  53. (*buffer) = (struct ggml_backend_buffer) {
  54. /* .interface = */ iface,
  55. /* .buft = */ buft,
  56. /* .context = */ context,
  57. /* .size = */ size,
  58. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  59. };
  60. return buffer;
  61. }
  62. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  63. return buffer->iface.get_name(buffer);
  64. }
  65. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  66. if (buffer == NULL) {
  67. return;
  68. }
  69. if (buffer->iface.free_buffer != NULL) {
  70. buffer->iface.free_buffer(buffer);
  71. }
  72. free(buffer);
  73. }
  74. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  75. return buffer->size;
  76. }
  77. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  78. void * base = buffer->iface.get_base(buffer);
  79. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  80. return base;
  81. }
  82. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  83. // init_tensor is optional
  84. if (buffer->iface.init_tensor) {
  85. buffer->iface.init_tensor(buffer, tensor);
  86. }
  87. }
  88. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  89. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  90. }
  91. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  92. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  93. }
  94. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  95. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  96. }
  97. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  98. buffer->iface.clear(buffer, value);
  99. }
  100. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  101. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  102. }
  103. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  104. buffer->usage = usage;
  105. // FIXME: add a generic callback to the buffer interface
  106. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  107. ggml_backend_multi_buffer_set_usage(buffer, usage);
  108. }
  109. }
  110. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  111. return buffer->buft;
  112. }
  113. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  114. if (buffer->iface.reset) {
  115. buffer->iface.reset(buffer);
  116. }
  117. }
  118. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  119. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  120. if (dst_buf->iface.cpy_tensor) {
  121. return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
  122. }
  123. return false;
  124. }
  125. // backend
  126. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  127. if (backend == NULL) {
  128. return NULL;
  129. }
  130. return backend->guid;
  131. }
  132. const char * ggml_backend_name(ggml_backend_t backend) {
  133. if (backend == NULL) {
  134. return "NULL";
  135. }
  136. return backend->iface.get_name(backend);
  137. }
  138. void ggml_backend_free(ggml_backend_t backend) {
  139. if (backend == NULL) {
  140. return;
  141. }
  142. backend->iface.free(backend);
  143. }
  144. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  145. return backend->iface.get_default_buffer_type(backend);
  146. }
  147. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  148. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  149. }
  150. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  151. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  152. }
  153. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  154. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  155. }
  156. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  157. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  158. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  159. if (backend->iface.set_tensor_async == NULL) {
  160. ggml_backend_tensor_set(tensor, data, offset, size);
  161. } else {
  162. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  163. }
  164. }
  165. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  166. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  167. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  168. if (backend->iface.get_tensor_async == NULL) {
  169. ggml_backend_tensor_get(tensor, data, offset, size);
  170. } else {
  171. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  172. }
  173. }
  174. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  175. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  176. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  177. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  178. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  179. if (!size) {
  180. return;
  181. }
  182. tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size);
  183. }
  184. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  185. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  186. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  187. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  188. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  189. if (!size) {
  190. return;
  191. }
  192. tensor->buffer->iface.get_tensor(buf, tensor, data, offset, size);
  193. }
  194. void ggml_backend_synchronize(ggml_backend_t backend) {
  195. if (backend->iface.synchronize == NULL) {
  196. return;
  197. }
  198. backend->iface.synchronize(backend);
  199. }
  200. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  201. return backend->iface.graph_plan_create(backend, cgraph);
  202. }
  203. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  204. backend->iface.graph_plan_free(backend, plan);
  205. }
  206. void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  207. backend->iface.graph_plan_compute(backend, plan);
  208. }
  209. bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  210. return backend->iface.graph_compute(backend, cgraph);
  211. }
  212. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  213. return backend->iface.supports_op(backend, op);
  214. }
  215. // backend copy
  216. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  217. if (a->type != b->type) {
  218. return false;
  219. }
  220. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  221. if (a->ne[i] != b->ne[i]) {
  222. return false;
  223. }
  224. if (a->nb[i] != b->nb[i]) {
  225. return false;
  226. }
  227. }
  228. return true;
  229. }
  230. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  231. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  232. if (src == dst) {
  233. return;
  234. }
  235. if (ggml_backend_buffer_is_host(src->buffer)) {
  236. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  237. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  238. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  239. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  240. #ifndef NDEBUG
  241. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  242. #endif
  243. size_t nbytes = ggml_nbytes(src);
  244. void * data = malloc(nbytes);
  245. ggml_backend_tensor_get(src, data, 0, nbytes);
  246. ggml_backend_tensor_set(dst, data, 0, nbytes);
  247. free(data);
  248. }
  249. }
  250. void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
  251. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  252. if (src == dst) {
  253. return;
  254. }
  255. if (ggml_backend_buft_supports_backend(src->buffer->buft, backend) && ggml_backend_buft_supports_backend(dst->buffer->buft, backend)) {
  256. if (backend->iface.cpy_tensor_async != NULL) {
  257. if (backend->iface.cpy_tensor_async(backend, src, dst)) {
  258. return;
  259. }
  260. }
  261. }
  262. size_t nbytes = ggml_nbytes(src);
  263. if (ggml_backend_buffer_is_host(src->buffer)) {
  264. ggml_backend_tensor_set_async(backend, dst, src->data, 0, nbytes);
  265. }
  266. else {
  267. ggml_backend_tensor_copy(src, dst);
  268. }
  269. }
  270. // backend registry
  271. #define GGML_MAX_BACKENDS_REG 16
  272. struct ggml_backend_reg {
  273. char name[128];
  274. ggml_backend_init_fn init_fn;
  275. ggml_backend_buffer_type_t default_buffer_type;
  276. void * user_data;
  277. };
  278. static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
  279. static size_t ggml_backend_registry_count = 0;
  280. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  281. GGML_CALL static void ggml_backend_registry_init(void) {
  282. static bool initialized = false;
  283. if (initialized) {
  284. return;
  285. }
  286. initialized = true;
  287. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  288. // add forward decls here to avoid including the backend headers
  289. #ifdef GGML_USE_CUBLAS
  290. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  291. ggml_backend_cuda_reg_devices();
  292. #endif
  293. #ifdef GGML_USE_SYCL
  294. extern void ggml_backend_sycl_reg_devices(void);
  295. ggml_backend_sycl_reg_devices();
  296. #endif
  297. #ifdef GGML_USE_METAL
  298. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  299. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  300. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  301. #endif
  302. #ifdef GGML_USE_VULKAN
  303. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  304. ggml_backend_vk_reg_devices();
  305. #endif
  306. #ifdef GGML_USE_KOMPUTE
  307. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  308. ggml_backend_kompute_reg_devices();
  309. #endif
  310. }
  311. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  312. GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
  313. size_t id = ggml_backend_registry_count;
  314. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  315. /* .name = */ {0},
  316. /* .fn = */ init_fn,
  317. /* .default_buffer_type = */ default_buffer_type,
  318. /* .user_data = */ user_data,
  319. };
  320. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  321. #ifndef NDEBUG
  322. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  323. #endif
  324. ggml_backend_registry_count++;
  325. }
  326. size_t ggml_backend_reg_get_count(void) {
  327. ggml_backend_registry_init();
  328. return ggml_backend_registry_count;
  329. }
  330. size_t ggml_backend_reg_find_by_name(const char * name) {
  331. ggml_backend_registry_init();
  332. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  333. // TODO: case insensitive in a portable way
  334. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  335. return i;
  336. }
  337. }
  338. // not found
  339. return SIZE_MAX;
  340. }
  341. // init from backend:params string
  342. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  343. ggml_backend_registry_init();
  344. const char * params = strchr(backend_str, ':');
  345. char backend_name[128];
  346. if (params == NULL) {
  347. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  348. params = "";
  349. } else {
  350. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  351. params++;
  352. }
  353. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  354. if (backend_i == SIZE_MAX) {
  355. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  356. return NULL;
  357. }
  358. return ggml_backend_reg_init_backend(backend_i, params);
  359. }
  360. const char * ggml_backend_reg_get_name(size_t i) {
  361. ggml_backend_registry_init();
  362. GGML_ASSERT(i < ggml_backend_registry_count);
  363. return ggml_backend_registry[i].name;
  364. }
  365. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  366. ggml_backend_registry_init();
  367. GGML_ASSERT(i < ggml_backend_registry_count);
  368. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  369. }
  370. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  371. ggml_backend_registry_init();
  372. GGML_ASSERT(i < ggml_backend_registry_count);
  373. return ggml_backend_registry[i].default_buffer_type;
  374. }
  375. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  376. ggml_backend_registry_init();
  377. GGML_ASSERT(i < ggml_backend_registry_count);
  378. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  379. }
  380. // backend CPU
  381. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  382. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  383. return "CPU";
  384. GGML_UNUSED(buffer);
  385. }
  386. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  387. uintptr_t data = (uintptr_t)buffer->context;
  388. // align the buffer
  389. if (data % TENSOR_ALIGNMENT != 0) {
  390. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  391. }
  392. return (void *)data;
  393. }
  394. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  395. free(buffer->context);
  396. }
  397. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  398. memcpy((char *)tensor->data + offset, data, size);
  399. GGML_UNUSED(buffer);
  400. }
  401. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  402. memcpy(data, (const char *)tensor->data + offset, size);
  403. GGML_UNUSED(buffer);
  404. }
  405. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  406. if (ggml_backend_buffer_is_host(src->buffer)) {
  407. memcpy(dst->data, src->data, ggml_nbytes(src));
  408. return true;
  409. }
  410. return false;
  411. GGML_UNUSED(buffer);
  412. }
  413. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  414. memset(buffer->context, value, buffer->size);
  415. }
  416. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  417. /* .get_name = */ ggml_backend_cpu_buffer_name,
  418. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  419. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  420. /* .init_tensor = */ NULL, // no initialization required
  421. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  422. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  423. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  424. /* .clear = */ ggml_backend_cpu_buffer_clear,
  425. /* .reset = */ NULL,
  426. };
  427. // for buffers from ptr, free is not called
  428. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  429. /* .get_name = */ ggml_backend_cpu_buffer_name,
  430. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  431. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  432. /* .init_tensor = */ NULL, // no initialization required
  433. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  434. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  435. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  436. /* .clear = */ ggml_backend_cpu_buffer_clear,
  437. /* .reset = */ NULL,
  438. };
  439. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  440. return "CPU";
  441. GGML_UNUSED(buft);
  442. }
  443. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  444. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  445. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  446. if (data == NULL) {
  447. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  448. return NULL;
  449. }
  450. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  451. }
  452. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  453. return TENSOR_ALIGNMENT;
  454. GGML_UNUSED(buft);
  455. }
  456. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  457. return ggml_backend_is_cpu(backend);
  458. GGML_UNUSED(buft);
  459. }
  460. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  461. return true;
  462. GGML_UNUSED(buft);
  463. }
  464. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  465. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  466. /* .iface = */ {
  467. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  468. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  469. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  470. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  471. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  472. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  473. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  474. },
  475. /* .context = */ NULL,
  476. };
  477. return &ggml_backend_cpu_buffer_type;
  478. }
  479. #ifdef GGML_USE_CPU_HBM
  480. // buffer type HBM
  481. #include <hbwmalloc.h>
  482. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  483. return "CPU_HBM";
  484. GGML_UNUSED(buft);
  485. }
  486. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  487. return "CPU_HBM";
  488. GGML_UNUSED(buf);
  489. }
  490. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  491. hbw_free(buffer->context);
  492. }
  493. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  494. //void * ptr = hbw_malloc(size);
  495. void * ptr;
  496. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  497. if (result != 0) {
  498. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  499. return NULL;
  500. }
  501. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  502. buffer->buft = buft;
  503. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  504. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  505. return buffer;
  506. }
  507. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  508. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  509. /* .iface = */ {
  510. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  511. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  512. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  513. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  514. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  515. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  516. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  517. },
  518. /* .context = */ NULL,
  519. };
  520. return &ggml_backend_cpu_buffer_type_hbm;
  521. }
  522. #endif
  523. struct ggml_backend_cpu_context {
  524. int n_threads;
  525. void * work_data;
  526. size_t work_size;
  527. ggml_abort_callback abort_callback;
  528. void * abort_callback_data;
  529. };
  530. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  531. return "CPU";
  532. GGML_UNUSED(backend);
  533. }
  534. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  535. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  536. free(cpu_ctx->work_data);
  537. free(cpu_ctx);
  538. free(backend);
  539. }
  540. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  541. return ggml_backend_cpu_buffer_type();
  542. GGML_UNUSED(backend);
  543. }
  544. struct ggml_backend_plan_cpu {
  545. struct ggml_cplan cplan;
  546. struct ggml_cgraph cgraph;
  547. };
  548. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  549. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  550. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  551. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  552. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  553. if (cpu_plan->cplan.work_size > 0) {
  554. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  555. }
  556. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  557. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  558. return cpu_plan;
  559. }
  560. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  561. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  562. free(cpu_plan->cplan.work_data);
  563. free(cpu_plan);
  564. GGML_UNUSED(backend);
  565. }
  566. GGML_CALL static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  567. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  568. ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  569. GGML_UNUSED(backend);
  570. }
  571. GGML_CALL static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  572. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  573. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  574. if (cpu_ctx->work_size < cplan.work_size) {
  575. // TODO: may be faster to free and use malloc to avoid the copy
  576. cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
  577. cpu_ctx->work_size = cplan.work_size;
  578. }
  579. cplan.work_data = cpu_ctx->work_data;
  580. cplan.abort_callback = cpu_ctx->abort_callback;
  581. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  582. ggml_graph_compute(cgraph, &cplan);
  583. return true;
  584. }
  585. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  586. switch (op->op) {
  587. case GGML_OP_CPY:
  588. return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && op->type != GGML_TYPE_IQ1_S; // missing type_traits.from_float
  589. case GGML_OP_MUL_MAT:
  590. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  591. default:
  592. return true;
  593. }
  594. GGML_UNUSED(backend);
  595. }
  596. static struct ggml_backend_i cpu_backend_i = {
  597. /* .get_name = */ ggml_backend_cpu_name,
  598. /* .free = */ ggml_backend_cpu_free,
  599. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  600. /* .set_tensor_async = */ NULL,
  601. /* .get_tensor_async = */ NULL,
  602. /* .cpy_tensor_async = */ NULL,
  603. /* .synchronize = */ NULL,
  604. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  605. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  606. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  607. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  608. /* .supports_op = */ ggml_backend_cpu_supports_op,
  609. };
  610. static ggml_guid_t ggml_backend_cpu_guid(void) {
  611. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  612. return &guid;
  613. }
  614. ggml_backend_t ggml_backend_cpu_init(void) {
  615. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  616. if (ctx == NULL) {
  617. return NULL;
  618. }
  619. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  620. ctx->work_data = NULL;
  621. ctx->work_size = 0;
  622. ctx->abort_callback = NULL;
  623. ctx->abort_callback_data = NULL;
  624. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  625. if (cpu_backend == NULL) {
  626. free(ctx);
  627. return NULL;
  628. }
  629. *cpu_backend = (struct ggml_backend) {
  630. /* .guid = */ ggml_backend_cpu_guid(),
  631. /* .interface = */ cpu_backend_i,
  632. /* .context = */ ctx
  633. };
  634. return cpu_backend;
  635. }
  636. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  637. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  638. }
  639. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  640. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  641. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  642. ctx->n_threads = n_threads;
  643. }
  644. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  645. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  646. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  647. ctx->abort_callback = abort_callback;
  648. ctx->abort_callback_data = abort_callback_data;
  649. }
  650. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  651. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  652. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  653. }
  654. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  655. return ggml_backend_cpu_init();
  656. GGML_UNUSED(params);
  657. GGML_UNUSED(user_data);
  658. }
  659. // multi-buffer buffer
  660. struct ggml_backend_multi_buffer_context {
  661. ggml_backend_buffer_t * buffers;
  662. size_t n_buffers;
  663. };
  664. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  665. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  666. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  667. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  668. }
  669. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  670. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  671. for (size_t i = 0; i < ctx->n_buffers; i++) {
  672. ggml_backend_buffer_free(ctx->buffers[i]);
  673. }
  674. free(ctx->buffers);
  675. free(ctx);
  676. }
  677. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  678. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  679. for (size_t i = 0; i < ctx->n_buffers; i++) {
  680. ggml_backend_buffer_clear(ctx->buffers[i], value);
  681. }
  682. }
  683. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  684. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  685. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  686. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  687. /* .get_base = */ NULL,
  688. /* .init_tensor = */ NULL,
  689. /* .set_tensor = */ NULL,
  690. /* .get_tensor = */ NULL,
  691. /* .cpy_tensor = */ NULL,
  692. /* .clear = */ ggml_backend_multi_buffer_clear,
  693. /* .reset = */ NULL,
  694. };
  695. return multi_backend_buffer_i;
  696. }
  697. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  698. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  699. ctx->n_buffers = n_buffers;
  700. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  701. GGML_ASSERT(ctx->buffers != NULL);
  702. size_t total_size = 0;
  703. for (size_t i = 0; i < n_buffers; i++) {
  704. ctx->buffers[i] = buffers[i];
  705. total_size += ggml_backend_buffer_get_size(buffers[i]);
  706. }
  707. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  708. }
  709. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  710. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  711. }
  712. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  713. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  714. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  715. for (size_t i = 0; i < ctx->n_buffers; i++) {
  716. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  717. }
  718. }
  719. // creates a copy of the tensor with the same memory layout
  720. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  721. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  722. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  723. dup->nb[i] = tensor->nb[i];
  724. }
  725. return dup;
  726. }
  727. static bool ggml_is_view_op(enum ggml_op op) {
  728. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  729. }
  730. // scheduler
  731. #define GGML_MAX_BACKENDS 16
  732. #define GGML_MAX_SPLITS 256
  733. #define GGML_MAX_SPLIT_INPUTS 16
  734. struct ggml_backend_sched_split {
  735. int backend_id;
  736. int i_start;
  737. int i_end;
  738. struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
  739. int n_inputs;
  740. // graph view of this split
  741. struct ggml_cgraph graph;
  742. };
  743. struct ggml_backend_sched {
  744. bool is_reset; // true if the scheduler has been reset since the last graph split
  745. int n_backends;
  746. ggml_backend_t backends[GGML_MAX_BACKENDS];
  747. ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS];
  748. ggml_gallocr_t galloc;
  749. // hash keys of the nodes in the graph
  750. struct ggml_hash_set hash_set;
  751. // hash values
  752. int * tensor_backend_id;
  753. struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS];
  754. int * node_backend_ids; // [n_nodes]
  755. int n_nodes;
  756. // copy of the graph with modified inputs
  757. struct ggml_cgraph * graph;
  758. struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
  759. int n_splits;
  760. struct ggml_context * ctx;
  761. ggml_backend_sched_eval_callback callback_eval;
  762. void * callback_eval_user_data;
  763. // align context_buffer to GGML_MEM_ALIGN
  764. #ifdef _MSC_VER
  765. __declspec(align(GGML_MEM_ALIGN))
  766. #else
  767. __attribute__((aligned(GGML_MEM_ALIGN)))
  768. #endif
  769. char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  770. };
  771. #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
  772. #define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)]
  773. #define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)])
  774. // returns the priority of the backend, lower id is higher priority
  775. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  776. for (int i = 0; i < sched->n_backends; i++) {
  777. if (sched->backends[i] == backend) {
  778. return i;
  779. }
  780. }
  781. return -1;
  782. }
  783. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
  784. if (buffer == NULL) {
  785. return -1;
  786. }
  787. // find highest prio backend that supports the buffer type
  788. for (int i = 0; i < sched->n_backends; i++) {
  789. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  790. return i;
  791. }
  792. }
  793. GGML_ASSERT(false && "tensor buffer type not supported by any backend");
  794. return -1; // silence warning
  795. }
  796. #if 0
  797. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only
  798. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  799. #define GET_CAUSE(node) causes[hash_id(node)]
  800. #else
  801. #define SET_CAUSE(node, ...)
  802. #define GET_CAUSE(node) ""
  803. #endif
  804. // returns the backend that should be used for the node based on the current locations
  805. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  806. // TODO: use supports_op to check if the backend supports the op
  807. // assign pre-allocated nodes to their backend
  808. // dst
  809. int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer);
  810. if (cur_backend != -1) {
  811. SET_CAUSE(node, "1.dst");
  812. return cur_backend;
  813. }
  814. // view_src
  815. if (tensor->view_src != NULL) {
  816. cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer);
  817. if (cur_backend != -1) {
  818. SET_CAUSE(node, "1.vsrc");
  819. return cur_backend;
  820. }
  821. }
  822. // assign nodes that use weights to the backend of the weights
  823. for (int i = 0; i < GGML_MAX_SRC; i++) {
  824. const struct ggml_tensor * src = tensor->src[i];
  825. if (src == NULL) {
  826. continue;
  827. }
  828. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  829. int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer);
  830. // operations with weights are always run on the same backend as the weights
  831. SET_CAUSE(node, "1.wgt%d", i);
  832. return src_backend;
  833. }
  834. }
  835. return -1;
  836. }
  837. static char * fmt_size(size_t size) {
  838. static char buffer[128];
  839. if (size >= 1024*1024) {
  840. sprintf(buffer, "%zuM", size/1024/1024);
  841. } else {
  842. sprintf(buffer, "%zuK", size/1024);
  843. }
  844. return buffer;
  845. }
  846. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  847. int cur_split = 0;
  848. for (int i = 0; i < graph->n_nodes; i++) {
  849. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  850. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  851. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  852. sched->splits[cur_split].n_inputs);
  853. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  854. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  855. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  856. }
  857. fprintf(stderr, "\n");
  858. cur_split++;
  859. }
  860. struct ggml_tensor * node = graph->nodes[i];
  861. if (ggml_is_view_op(node->op)) {
  862. continue;
  863. }
  864. ggml_backend_t tensor_backend = tensor_backend(node);
  865. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  866. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  867. for (int j = 0; j < GGML_MAX_SRC; j++) {
  868. struct ggml_tensor * src = node->src[j];
  869. if (src == NULL) {
  870. continue;
  871. }
  872. ggml_backend_t src_backend = tensor_backend(src);
  873. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  874. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  875. }
  876. fprintf(stderr, "\n");
  877. }
  878. }
  879. //#define DEBUG_PASS1
  880. //#define DEBUG_PASS2
  881. //#define DEBUG_PASS3
  882. //#define DEBUG_PASS4
  883. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  884. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  885. // reset splits
  886. sched->n_splits = 0;
  887. sched->is_reset = false;
  888. struct ggml_init_params params = {
  889. /* .mem_size = */ sizeof(sched->context_buffer),
  890. /* .mem_buffer = */ sched->context_buffer,
  891. /* .no_alloc = */ true
  892. };
  893. ggml_free(sched->ctx);
  894. sched->ctx = ggml_init(params);
  895. if (sched->ctx == NULL) {
  896. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  897. GGML_ASSERT(false);
  898. }
  899. // pass 1: assign backends to ops with pre-allocated inputs
  900. for (int i = 0; i < graph->n_leafs; i++) {
  901. struct ggml_tensor * leaf = graph->leafs[i];
  902. if (tensor_backend_id(leaf) != -1) {
  903. // do not overwrite user assignments
  904. continue;
  905. }
  906. tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  907. }
  908. for (int i = 0; i < graph->n_nodes; i++) {
  909. struct ggml_tensor * node = graph->nodes[i];
  910. if (tensor_backend_id(node) != -1) {
  911. // do not overwrite user assignments
  912. continue;
  913. }
  914. tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
  915. // src
  916. for (int j = 0; j < GGML_MAX_SRC; j++) {
  917. struct ggml_tensor * src = node->src[j];
  918. if (src == NULL) {
  919. continue;
  920. }
  921. if (tensor_backend_id(src) == -1) {
  922. tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
  923. }
  924. }
  925. }
  926. #ifdef DEBUG_PASS1
  927. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  928. #endif
  929. // pass 2: expand current backend assignments
  930. // assign the same backend to adjacent nodes
  931. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  932. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  933. // pass 2.1 expand gpu up
  934. {
  935. int cur_backend_id = -1;
  936. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  937. struct ggml_tensor * node = graph->nodes[i];
  938. if (ggml_is_view_op(node->op)) {
  939. continue;
  940. }
  941. int tensor_backend_id = tensor_backend_id(node);
  942. if (tensor_backend_id != -1) {
  943. if (tensor_backend_id == sched->n_backends - 1) {
  944. // skip cpu (lowest prio backend)
  945. cur_backend_id = -1;
  946. } else {
  947. cur_backend_id = tensor_backend_id;
  948. }
  949. } else {
  950. tensor_backend_id(node) = cur_backend_id;
  951. SET_CAUSE(node, "2.1");
  952. }
  953. }
  954. }
  955. // pass 2.2 expand gpu down
  956. {
  957. int cur_backend_id = -1;
  958. for (int i = 0; i < graph->n_nodes; i++) {
  959. struct ggml_tensor * node = graph->nodes[i];
  960. if (ggml_is_view_op(node->op)) {
  961. continue;
  962. }
  963. int tensor_backend_id = tensor_backend_id(node);
  964. if (tensor_backend_id != -1) {
  965. if (tensor_backend_id == sched->n_backends - 1) {
  966. // skip cpu (lowest prio backend)
  967. cur_backend_id = -1;
  968. } else {
  969. cur_backend_id = tensor_backend_id;
  970. }
  971. } else {
  972. tensor_backend_id(node) = cur_backend_id;
  973. SET_CAUSE(node, "2.2");
  974. }
  975. }
  976. }
  977. // pass 2.3 expand rest up
  978. {
  979. int cur_backend_id = -1;
  980. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  981. struct ggml_tensor * node = graph->nodes[i];
  982. if (ggml_is_view_op(node->op)) {
  983. continue;
  984. }
  985. int tensor_backend_id = tensor_backend_id(node);
  986. if (tensor_backend_id != -1) {
  987. cur_backend_id = tensor_backend_id;
  988. } else {
  989. tensor_backend_id(node) = cur_backend_id;
  990. SET_CAUSE(node, "2.3");
  991. }
  992. }
  993. }
  994. // pass 2.4 expand rest down
  995. {
  996. int cur_backend_id = -1;
  997. for (int i = 0; i < graph->n_nodes; i++) {
  998. struct ggml_tensor * node = graph->nodes[i];
  999. if (ggml_is_view_op(node->op)) {
  1000. continue;
  1001. }
  1002. int tensor_backend_id = tensor_backend_id(node);
  1003. if (tensor_backend_id != -1) {
  1004. cur_backend_id = tensor_backend_id;
  1005. } else {
  1006. tensor_backend_id(node) = cur_backend_id;
  1007. SET_CAUSE(node, "2.4");
  1008. }
  1009. }
  1010. }
  1011. #ifdef DEBUG_PASS2
  1012. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1013. #endif
  1014. // pass 3: assign backends to remaining src from dst and view_src
  1015. for (int i = 0; i < graph->n_nodes; i++) {
  1016. struct ggml_tensor * node = graph->nodes[i];
  1017. int cur_backend_id = tensor_backend_id(node);
  1018. if (node->view_src != NULL && cur_backend_id == -1) {
  1019. cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
  1020. SET_CAUSE(node, "3.vsrc");
  1021. }
  1022. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1023. struct ggml_tensor * src = node->src[j];
  1024. if (src == NULL) {
  1025. continue;
  1026. }
  1027. int src_backend_id = tensor_backend_id(src);
  1028. if (src_backend_id == -1) {
  1029. if (src->view_src != NULL) {
  1030. // views are always on the same backend as the source
  1031. tensor_backend_id(src) = tensor_backend_id(src->view_src);
  1032. SET_CAUSE(src, "3.vsrc");
  1033. } else {
  1034. tensor_backend_id(src) = cur_backend_id;
  1035. SET_CAUSE(src, "3.cur");
  1036. }
  1037. }
  1038. }
  1039. }
  1040. #ifdef DEBUG_PASS3
  1041. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1042. #endif
  1043. // pass 4: split graph, find tensors that need to be copied
  1044. {
  1045. int cur_split = 0;
  1046. // find the backend of the first split, skipping view ops
  1047. for (int i = 0; i < graph->n_nodes; i++) {
  1048. struct ggml_tensor * node = graph->nodes[i];
  1049. if (!ggml_is_view_op(node->op)) {
  1050. sched->splits[0].backend_id = tensor_backend_id(node);
  1051. break;
  1052. }
  1053. }
  1054. sched->splits[0].i_start = 0;
  1055. sched->splits[0].n_inputs = 0;
  1056. memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
  1057. int cur_backend_id = sched->splits[0].backend_id;
  1058. for (int i = 0; i < graph->n_nodes; i++) {
  1059. struct ggml_tensor * node = graph->nodes[i];
  1060. if (ggml_is_view_op(node->op)) {
  1061. continue;
  1062. }
  1063. int tensor_backend_id = tensor_backend_id(node);
  1064. GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
  1065. if (tensor_backend_id != cur_backend_id) {
  1066. sched->splits[cur_split].i_end = i;
  1067. cur_split++;
  1068. GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
  1069. sched->splits[cur_split].backend_id = tensor_backend_id;
  1070. sched->splits[cur_split].i_start = i;
  1071. sched->splits[cur_split].n_inputs = 0;
  1072. cur_backend_id = tensor_backend_id;
  1073. }
  1074. // find inputs that are not on the same backend
  1075. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1076. struct ggml_tensor * src = node->src[j];
  1077. if (src == NULL) {
  1078. continue;
  1079. }
  1080. int src_backend_id = tensor_backend_id(src);
  1081. assert(src_backend_id != -1); // all inputs should be assigned by now
  1082. if (src_backend_id != tensor_backend_id) {
  1083. // create a copy of the input in the split's backend
  1084. size_t id = hash_id(src);
  1085. if (sched->tensor_copies[id][cur_backend_id] == NULL) {
  1086. ggml_backend_t backend = sched->backends[cur_backend_id];
  1087. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1088. ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
  1089. sched->tensor_copies[id][cur_backend_id] = tensor_copy;
  1090. tensor_backend_id(tensor_copy) = cur_backend_id;
  1091. SET_CAUSE(tensor_copy, "4.cpy");
  1092. int n_inputs = sched->splits[cur_split].n_inputs++;
  1093. GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
  1094. sched->splits[cur_split].inputs[n_inputs] = src;
  1095. }
  1096. node->src[j] = sched->tensor_copies[id][cur_backend_id];
  1097. }
  1098. }
  1099. }
  1100. sched->splits[cur_split].i_end = graph->n_nodes;
  1101. sched->n_splits = cur_split + 1;
  1102. }
  1103. #ifdef DEBUG_PASS4
  1104. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1105. #endif
  1106. #ifndef NDEBUG
  1107. // sanity check: all sources should have the same backend as the node
  1108. for (int i = 0; i < graph->n_nodes; i++) {
  1109. struct ggml_tensor * node = graph->nodes[i];
  1110. ggml_backend_t tensor_backend = tensor_backend(node);
  1111. if (tensor_backend == NULL) {
  1112. fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
  1113. }
  1114. if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) {
  1115. fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
  1116. node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
  1117. node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL");
  1118. }
  1119. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1120. struct ggml_tensor * src = node->src[j];
  1121. if (src == NULL) {
  1122. continue;
  1123. }
  1124. ggml_backend_t src_backend = tensor_backend(src);
  1125. if (src_backend != tensor_backend /* && src_backend != NULL */) {
  1126. fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
  1127. node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
  1128. j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
  1129. }
  1130. if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) {
  1131. fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
  1132. src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
  1133. src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL");
  1134. }
  1135. }
  1136. }
  1137. fflush(stderr);
  1138. #endif
  1139. // create copies of the graph for each split
  1140. // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
  1141. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
  1142. for (int i = 0; i < sched->n_splits; i++) {
  1143. struct ggml_backend_sched_split * split = &sched->splits[i];
  1144. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1145. for (int j = 0; j < split->n_inputs; j++) {
  1146. struct ggml_tensor * input = split->inputs[j];
  1147. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id];
  1148. // add a dependency to the input source so that it is not freed before the copy is done
  1149. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1150. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
  1151. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1152. // add a dependency to the input copy so that it is allocated at the start of the split
  1153. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1154. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1155. }
  1156. for (int j = split->i_start; j < split->i_end; j++) {
  1157. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1158. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1159. }
  1160. }
  1161. sched->graph = graph_copy;
  1162. }
  1163. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1164. // ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
  1165. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1166. #ifndef NDEBUG
  1167. fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n");
  1168. #endif
  1169. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
  1170. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1171. fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n");
  1172. return false;
  1173. }
  1174. }
  1175. return true;
  1176. }
  1177. static bool ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1178. uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
  1179. uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
  1180. struct ggml_backend_sched_split * splits = sched->splits;
  1181. for (int i = 0; i < sched->n_splits; i++) {
  1182. struct ggml_backend_sched_split * split = &splits[i];
  1183. int split_backend_id = split->backend_id;
  1184. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1185. // copy the input tensors to the split backend
  1186. uint64_t copy_start_us = ggml_time_us();
  1187. for (int j = 0; j < split->n_inputs; j++) {
  1188. struct ggml_tensor * input = split->inputs[j];
  1189. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id];
  1190. GGML_ASSERT(input->buffer != NULL);
  1191. GGML_ASSERT(input_cpy->buffer != NULL);
  1192. ggml_backend_tensor_copy_async(split_backend, input, input_cpy);
  1193. }
  1194. //ggml_backend_synchronize(split_backend); // necessary to measure copy time
  1195. int64_t copy_end_us = ggml_time_us();
  1196. copy_us[split_backend_id] += copy_end_us - copy_start_us;
  1197. #if 0
  1198. char split_filename[GGML_MAX_NAME];
  1199. snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
  1200. ggml_graph_dump_dot(split->graph, NULL, split_filename);
  1201. #endif
  1202. uint64_t compute_start_us = ggml_time_us();
  1203. if (!sched->callback_eval) {
  1204. if (!ggml_backend_graph_compute(split_backend, &split->graph)) {
  1205. return false;
  1206. }
  1207. //ggml_backend_synchronize(split_backend); // necessary to measure compute time
  1208. } else {
  1209. // similar to ggml_backend_compare_graph_backend
  1210. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1211. struct ggml_tensor * t = split->graph.nodes[j0];
  1212. // check if the user needs data from this node
  1213. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1214. int j1 = j0;
  1215. // determine the range [j0, j1] of nodes that can be computed together
  1216. while (!need && j1 < split->graph.n_nodes - 1) {
  1217. t = split->graph.nodes[++j1];
  1218. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1219. }
  1220. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1221. if (!ggml_backend_graph_compute(split_backend, &gv)) {
  1222. return false;
  1223. }
  1224. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1225. break;
  1226. }
  1227. j0 = j1;
  1228. }
  1229. }
  1230. uint64_t compute_end_us = ggml_time_us();
  1231. compute_us[split_backend_id] += compute_end_us - compute_start_us;
  1232. }
  1233. #if 0
  1234. // per-backend timings
  1235. fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
  1236. for (int i = 0; i < sched->n_backends; i++) {
  1237. if (copy_us[i] > 0 || compute_us[i] > 0) {
  1238. fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
  1239. }
  1240. }
  1241. #endif
  1242. return true;
  1243. }
  1244. ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) {
  1245. GGML_ASSERT(n_backends > 0);
  1246. GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
  1247. struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
  1248. // initialize hash table
  1249. sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  1250. sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
  1251. sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
  1252. sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
  1253. sched->n_backends = n_backends;
  1254. for (int i = 0; i < n_backends; i++) {
  1255. sched->backends[i] = backends[i];
  1256. sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]);
  1257. }
  1258. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1259. ggml_backend_sched_reset(sched);
  1260. return sched;
  1261. }
  1262. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1263. if (sched == NULL) {
  1264. return;
  1265. }
  1266. ggml_gallocr_free(sched->galloc);
  1267. ggml_free(sched->ctx);
  1268. free(sched->hash_set.keys);
  1269. free(sched->tensor_backend_id);
  1270. free(sched->tensor_copies);
  1271. free(sched->node_backend_ids);
  1272. free(sched);
  1273. }
  1274. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1275. // reset state for the next run
  1276. size_t hash_size = sched->hash_set.size;
  1277. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1278. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1279. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1280. sched->is_reset = true;
  1281. }
  1282. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1283. ggml_backend_sched_split_graph(sched, measure_graph);
  1284. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) {
  1285. return false;
  1286. }
  1287. ggml_backend_sched_reset(sched);
  1288. return true;
  1289. }
  1290. bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1291. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  1292. if (!sched->is_reset) {
  1293. ggml_backend_sched_reset(sched);
  1294. }
  1295. ggml_backend_sched_split_graph(sched, graph);
  1296. if (!ggml_backend_sched_alloc_splits(sched)) {
  1297. return false;
  1298. }
  1299. if (!ggml_backend_sched_compute_splits(sched)) {
  1300. return false;
  1301. }
  1302. return true;
  1303. }
  1304. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1305. sched->callback_eval = callback;
  1306. sched->callback_eval_user_data = user_data;
  1307. }
  1308. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1309. return sched->n_splits;
  1310. }
  1311. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1312. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1313. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1314. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1315. }
  1316. void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1317. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1318. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1319. tensor_backend_id(node) = backend_index;
  1320. }
  1321. ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1322. int backend_index = tensor_backend_id(node);
  1323. if (backend_index == -1) {
  1324. return NULL;
  1325. }
  1326. return sched->backends[backend_index];
  1327. }
  1328. // utils
  1329. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1330. GGML_ASSERT(tensor->buffer == NULL);
  1331. GGML_ASSERT(tensor->view_src != NULL);
  1332. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1333. GGML_ASSERT(tensor->view_src->data != NULL);
  1334. tensor->buffer = buffer;
  1335. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1336. tensor->backend = tensor->view_src->backend;
  1337. ggml_backend_buffer_init_tensor(buffer, tensor);
  1338. }
  1339. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1340. GGML_ASSERT(tensor->buffer == NULL);
  1341. GGML_ASSERT(tensor->data == NULL);
  1342. GGML_ASSERT(tensor->view_src == NULL);
  1343. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1344. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1345. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1346. tensor->buffer = buffer;
  1347. tensor->data = addr;
  1348. ggml_backend_buffer_init_tensor(buffer, tensor);
  1349. }
  1350. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1351. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1352. GGML_ASSERT(src != NULL);
  1353. GGML_ASSERT(src->data && "graph must be allocated");
  1354. size_t id = ggml_hash_insert(hash_set, src);
  1355. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1356. return node_copies[ggml_hash_find(hash_set, src)];
  1357. }
  1358. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1359. if (src->view_src != NULL) {
  1360. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1361. dst->view_offs = src->view_offs;
  1362. }
  1363. dst->op = src->op;
  1364. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1365. ggml_set_name(dst, src->name);
  1366. // copy src
  1367. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1368. struct ggml_tensor * s = src->src[i];
  1369. if (s == NULL) {
  1370. continue;
  1371. }
  1372. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1373. }
  1374. node_copies[id] = dst;
  1375. return dst;
  1376. }
  1377. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1378. size_t id = ggml_hash_find(hash_set, src);
  1379. if (node_init[id]) {
  1380. return;
  1381. }
  1382. node_init[id] = true;
  1383. struct ggml_tensor * dst = node_copies[id];
  1384. if (dst->view_src != NULL) {
  1385. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1386. ggml_backend_view_init(dst->view_src->buffer, dst);
  1387. }
  1388. else {
  1389. ggml_backend_tensor_copy(src, dst);
  1390. }
  1391. // init src
  1392. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1393. struct ggml_tensor * s = src->src[i];
  1394. if (s == NULL) {
  1395. continue;
  1396. }
  1397. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1398. }
  1399. }
  1400. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1401. struct ggml_hash_set hash_set = {
  1402. /* .size = */ graph->visited_hash_table.size,
  1403. /* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT
  1404. };
  1405. struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT
  1406. bool * node_init = calloc(sizeof(node_init[0]), hash_set.size);
  1407. struct ggml_init_params params = {
  1408. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1409. /* .mem_buffer = */ NULL,
  1410. /* .no_alloc = */ true
  1411. };
  1412. struct ggml_context * ctx_allocated = ggml_init(params);
  1413. struct ggml_context * ctx_unallocated = ggml_init(params);
  1414. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1415. fprintf(stderr, "failed to allocate context for graph copy\n");
  1416. free(hash_set.keys);
  1417. free(node_copies);
  1418. free(node_init);
  1419. ggml_free(ctx_allocated);
  1420. ggml_free(ctx_unallocated);
  1421. return (struct ggml_backend_graph_copy) {
  1422. /* .buffer = */ NULL,
  1423. /* .ctx_allocated = */ NULL,
  1424. /* .ctx_unallocated = */ NULL,
  1425. /* .graph = */ NULL,
  1426. };
  1427. }
  1428. // dup nodes
  1429. for (int i = 0; i < graph->n_nodes; i++) {
  1430. struct ggml_tensor * node = graph->nodes[i];
  1431. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1432. }
  1433. // allocate nodes
  1434. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1435. if (buffer == NULL) {
  1436. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1437. free(hash_set.keys);
  1438. free(node_copies);
  1439. free(node_init);
  1440. ggml_free(ctx_allocated);
  1441. ggml_free(ctx_unallocated);
  1442. return (struct ggml_backend_graph_copy) {
  1443. /* .buffer = */ NULL,
  1444. /* .ctx_allocated = */ NULL,
  1445. /* .ctx_unallocated = */ NULL,
  1446. /* .graph = */ NULL,
  1447. };
  1448. }
  1449. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1450. // copy data and init views
  1451. for (int i = 0; i < graph->n_nodes; i++) {
  1452. struct ggml_tensor * node = graph->nodes[i];
  1453. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1454. }
  1455. // build graph copy
  1456. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1457. for (int i = 0; i < graph->n_nodes; i++) {
  1458. struct ggml_tensor * node = graph->nodes[i];
  1459. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1460. graph_copy->nodes[i] = node_copy;
  1461. }
  1462. graph_copy->n_nodes = graph->n_nodes;
  1463. free(hash_set.keys);
  1464. free(node_copies);
  1465. free(node_init);
  1466. return (struct ggml_backend_graph_copy) {
  1467. /* .buffer = */ buffer,
  1468. /* .ctx_allocated = */ ctx_allocated,
  1469. /* .ctx_unallocated = */ ctx_unallocated,
  1470. /* .graph = */ graph_copy,
  1471. };
  1472. }
  1473. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1474. ggml_backend_buffer_free(copy.buffer);
  1475. ggml_free(copy.ctx_allocated);
  1476. ggml_free(copy.ctx_unallocated);
  1477. }
  1478. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1479. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1480. if (copy.buffer == NULL) {
  1481. return false;
  1482. }
  1483. struct ggml_cgraph * g1 = graph;
  1484. struct ggml_cgraph * g2 = copy.graph;
  1485. assert(g1->n_nodes == g2->n_nodes);
  1486. for (int i = 0; i < g1->n_nodes; i++) {
  1487. //printf("eval %d/%d\n", i, g1->n_nodes);
  1488. struct ggml_tensor * t1 = g1->nodes[i];
  1489. struct ggml_tensor * t2 = g2->nodes[i];
  1490. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1491. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1492. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1493. ggml_backend_graph_compute(backend1, &g1v);
  1494. ggml_backend_graph_compute(backend2, &g2v);
  1495. if (ggml_is_view_op(t1->op)) {
  1496. continue;
  1497. }
  1498. // compare results, calculate rms etc
  1499. if (!callback(i, t1, t2, user_data)) {
  1500. break;
  1501. }
  1502. }
  1503. ggml_backend_graph_copy_free(copy);
  1504. return true;
  1505. }