main.cpp 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875
  1. #include "common.h"
  2. #include "console.h"
  3. #include "llama.h"
  4. #include "build-info.h"
  5. #include "grammar-parser.h"
  6. #include <cassert>
  7. #include <cinttypes>
  8. #include <cmath>
  9. #include <cstdio>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <fstream>
  13. #include <iostream>
  14. #include <sstream>
  15. #include <string>
  16. #include <vector>
  17. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  18. #include <signal.h>
  19. #include <unistd.h>
  20. #elif defined (_WIN32)
  21. #define WIN32_LEAN_AND_MEAN
  22. #ifndef NOMINMAX
  23. #define NOMINMAX
  24. #endif
  25. #include <windows.h>
  26. #include <signal.h>
  27. #endif
  28. #if defined(_MSC_VER)
  29. #pragma warning(disable: 4244 4267) // possible loss of data
  30. #endif
  31. static llama_context ** g_ctx;
  32. static llama_model ** g_model;
  33. static gpt_params * g_params;
  34. static std::vector<llama_token> * g_input_tokens;
  35. static std::ostringstream * g_output_ss;
  36. static std::vector<llama_token> * g_output_tokens;
  37. static bool is_interacting = false;
  38. void write_logfile(
  39. const llama_context * ctx, const gpt_params & params, const llama_model * model,
  40. const std::vector<llama_token> & input_tokens, const std::string & output,
  41. const std::vector<llama_token> & output_tokens
  42. ) {
  43. if (params.logdir.empty()) {
  44. return;
  45. }
  46. const std::string timestamp = get_sortable_timestamp();
  47. const bool success = create_directory_with_parents(params.logdir);
  48. if (!success) {
  49. fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
  50. __func__, params.logdir.c_str());
  51. return;
  52. }
  53. const std::string logfile_path = params.logdir + timestamp + ".yml";
  54. FILE * logfile = fopen(logfile_path.c_str(), "w");
  55. if (logfile == NULL) {
  56. fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
  57. return;
  58. }
  59. fprintf(logfile, "binary: main\n");
  60. char model_desc[128];
  61. llama_model_desc(model, model_desc, sizeof(model_desc));
  62. dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
  63. fprintf(logfile, "\n");
  64. fprintf(logfile, "######################\n");
  65. fprintf(logfile, "# Generation Results #\n");
  66. fprintf(logfile, "######################\n");
  67. fprintf(logfile, "\n");
  68. dump_string_yaml_multiline(logfile, "output", output.c_str());
  69. dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
  70. llama_dump_timing_info_yaml(logfile, ctx);
  71. fclose(logfile);
  72. }
  73. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  74. void sigint_handler(int signo) {
  75. if (signo == SIGINT) {
  76. if (!is_interacting) {
  77. is_interacting = true;
  78. } else {
  79. console::cleanup();
  80. printf("\n");
  81. llama_print_timings(*g_ctx);
  82. write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
  83. _exit(130);
  84. }
  85. }
  86. }
  87. #endif
  88. int main(int argc, char ** argv) {
  89. gpt_params params;
  90. g_params = &params;
  91. if (!gpt_params_parse(argc, argv, params)) {
  92. return 1;
  93. }
  94. #ifndef LOG_DISABLE_LOGS
  95. log_set_target(log_filename_generator("main", "log"));
  96. LOG_TEE("Log start\n");
  97. log_dump_cmdline(argc, argv);
  98. #endif // LOG_DISABLE_LOGS
  99. // TODO: Dump params ?
  100. //LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity));
  101. // save choice to use color for later
  102. // (note for later: this is a slightly awkward choice)
  103. console::init(params.simple_io, params.use_color);
  104. atexit([]() { console::cleanup(); });
  105. if (params.perplexity) {
  106. printf("\n************\n");
  107. printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
  108. printf("************\n\n");
  109. return 0;
  110. }
  111. if (params.embedding) {
  112. printf("\n************\n");
  113. printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
  114. printf("************\n\n");
  115. return 0;
  116. }
  117. if (params.rope_freq_base != 10000.0) {
  118. LOG_TEE("%s: warning: changing RoPE frequency base to %g (default 10000.0)\n", __func__, params.rope_freq_base);
  119. }
  120. if (params.rope_freq_scale != 1.0) {
  121. LOG_TEE("%s: warning: scaling RoPE frequency by %g (default 1.0)\n", __func__, params.rope_freq_scale);
  122. }
  123. LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
  124. if (params.seed == LLAMA_DEFAULT_SEED) {
  125. params.seed = time(NULL);
  126. }
  127. LOG_TEE("%s: seed = %u\n", __func__, params.seed);
  128. std::mt19937 rng(params.seed);
  129. if (params.random_prompt) {
  130. params.prompt = gpt_random_prompt(rng);
  131. }
  132. LOG("%s: llama backend init\n", __func__);
  133. llama_backend_init(params.numa);
  134. llama_model * model;
  135. llama_context * ctx;
  136. llama_context * ctx_guidance = NULL;
  137. g_model = &model;
  138. g_ctx = &ctx;
  139. // load the model and apply lora adapter, if any
  140. LOG("%s: load the model and apply lora adapter, if any\n", __func__);
  141. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  142. if (params.cfg_scale > 1.f) {
  143. struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
  144. ctx_guidance = llama_new_context_with_model(model, lparams);
  145. }
  146. if (model == NULL) {
  147. LOG_TEE("%s: error: unable to load model\n", __func__);
  148. return 1;
  149. }
  150. if (params.n_ctx > llama_n_ctx(ctx)) {
  151. LOG_TEE("%s: warning: base model only supports context sizes no greater than %d tokens (%d specified)\n", __func__, llama_n_ctx(ctx), params.n_ctx);
  152. } else if (params.n_ctx < 8) {
  153. LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
  154. params.n_ctx = 8;
  155. }
  156. // print system information
  157. {
  158. LOG_TEE("\n");
  159. LOG_TEE("system_info: n_threads = %d / %d | %s\n",
  160. params.n_threads, std::thread::hardware_concurrency(), llama_print_system_info());
  161. }
  162. // determine the maximum memory usage needed to do inference for the given n_batch and n_ctx parameters
  163. // uncomment the "used_mem" line in llama.cpp to see the results
  164. if (params.mem_test) {
  165. {
  166. LOG_TEE("%s: testing memory usage for n_batch = %d, n_ctx = %d\n", __func__, params.n_batch, params.n_ctx);
  167. const std::vector<llama_token> tmp(params.n_batch, llama_token_bos(ctx));
  168. llama_eval(ctx, tmp.data(), tmp.size(), params.n_ctx, params.n_threads);
  169. }
  170. llama_print_timings(ctx);
  171. llama_free(ctx);
  172. llama_free_model(model);
  173. return 0;
  174. }
  175. // export the cgraph and exit
  176. if (params.export_cgraph) {
  177. llama_eval_export(ctx, "llama.ggml");
  178. llama_free(ctx);
  179. llama_free_model(model);
  180. return 0;
  181. }
  182. std::string path_session = params.path_prompt_cache;
  183. std::vector<llama_token> session_tokens;
  184. if (!path_session.empty()) {
  185. LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
  186. // fopen to check for existing session
  187. FILE * fp = std::fopen(path_session.c_str(), "rb");
  188. if (fp != NULL) {
  189. std::fclose(fp);
  190. session_tokens.resize(params.n_ctx);
  191. size_t n_token_count_out = 0;
  192. if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
  193. LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
  194. return 1;
  195. }
  196. session_tokens.resize(n_token_count_out);
  197. llama_set_rng_seed(ctx, params.seed);
  198. LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
  199. } else {
  200. LOG_TEE("%s: session file does not exist, will create\n", __func__);
  201. }
  202. }
  203. const bool add_bos = llama_vocab_type(ctx) == LLAMA_VOCAB_TYPE_SPM;
  204. LOG("add_bos: %d\n", add_bos);
  205. std::vector<llama_token> embd_inp;
  206. if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
  207. LOG("tokenize the prompt\n");
  208. embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
  209. } else {
  210. LOG("use session tokens\n");
  211. embd_inp = session_tokens;
  212. }
  213. LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
  214. LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
  215. // Should not run without any tokens
  216. if (embd_inp.empty()) {
  217. embd_inp.push_back(llama_token_bos(ctx));
  218. LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
  219. }
  220. // Tokenize negative prompt
  221. std::vector<llama_token> guidance_inp;
  222. int guidance_offset = 0;
  223. int original_prompt_len = 0;
  224. if (ctx_guidance) {
  225. LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
  226. guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
  227. LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
  228. std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
  229. LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
  230. original_prompt_len = original_inp.size();
  231. guidance_offset = (int)guidance_inp.size() - original_prompt_len;
  232. LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
  233. LOG("guidance_offset: %s", log_tostr(guidance_offset));
  234. }
  235. const int n_ctx = llama_n_ctx(ctx);
  236. LOG("n_ctx: %d\n", n_ctx);
  237. if ((int) embd_inp.size() > n_ctx - 4) {
  238. LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
  239. return 1;
  240. }
  241. // debug message about similarity of saved session, if applicable
  242. size_t n_matching_session_tokens = 0;
  243. if (!session_tokens.empty()) {
  244. for (llama_token id : session_tokens) {
  245. if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
  246. break;
  247. }
  248. n_matching_session_tokens++;
  249. }
  250. if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
  251. LOG_TEE("%s: using full prompt from session file\n", __func__);
  252. } else if (n_matching_session_tokens >= embd_inp.size()) {
  253. LOG_TEE("%s: session file has exact match for prompt!\n", __func__);
  254. } else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
  255. LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
  256. __func__, n_matching_session_tokens, embd_inp.size());
  257. } else {
  258. LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
  259. __func__, n_matching_session_tokens, embd_inp.size());
  260. }
  261. }
  262. LOGLN(
  263. "recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu",
  264. log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size());
  265. // if we will use the cache for the full prompt without reaching the end of the cache, force
  266. // reevaluation of the last token token to recalculate the cached logits
  267. if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
  268. LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1);
  269. session_tokens.resize(embd_inp.size() - 1);
  270. }
  271. // number of tokens to keep when resetting context
  272. if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
  273. params.n_keep = (int)embd_inp.size();
  274. }
  275. // prefix & suffix for instruct mode
  276. const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos);
  277. const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false);
  278. LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
  279. LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
  280. // in instruct mode, we inject a prefix and a suffix to each input by the user
  281. if (params.instruct) {
  282. params.interactive_first = true;
  283. params.antiprompt.push_back("### Instruction:\n\n");
  284. }
  285. // enable interactive mode if interactive start is specified
  286. if (params.interactive_first) {
  287. params.interactive = true;
  288. }
  289. if (params.verbose_prompt) {
  290. LOG_TEE("\n");
  291. LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  292. LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  293. for (int i = 0; i < (int) embd_inp.size(); i++) {
  294. LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
  295. }
  296. if (ctx_guidance) {
  297. LOG_TEE("\n");
  298. LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
  299. LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
  300. for (int i = 0; i < (int) guidance_inp.size(); i++) {
  301. LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
  302. }
  303. }
  304. if (params.n_keep > 0) {
  305. LOG_TEE("%s: static prompt based on n_keep: '", __func__);
  306. for (int i = 0; i < params.n_keep; i++) {
  307. LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
  308. }
  309. LOG_TEE("'\n");
  310. }
  311. LOG_TEE("\n");
  312. }
  313. if (params.interactive) {
  314. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  315. struct sigaction sigint_action;
  316. sigint_action.sa_handler = sigint_handler;
  317. sigemptyset (&sigint_action.sa_mask);
  318. sigint_action.sa_flags = 0;
  319. sigaction(SIGINT, &sigint_action, NULL);
  320. #elif defined (_WIN32)
  321. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  322. return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
  323. };
  324. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  325. #endif
  326. LOG_TEE("%s: interactive mode on.\n", __func__);
  327. if (!params.antiprompt.empty()) {
  328. for (const auto & antiprompt : params.antiprompt) {
  329. LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
  330. }
  331. }
  332. if (params.input_prefix_bos) {
  333. LOG_TEE("Input prefix with BOS\n");
  334. }
  335. if (!params.input_prefix.empty()) {
  336. LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
  337. }
  338. if (!params.input_suffix.empty()) {
  339. LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
  340. }
  341. }
  342. LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
  343. params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
  344. LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
  345. LOG_TEE("\n\n");
  346. struct llama_grammar * grammar = NULL;
  347. grammar_parser::parse_state parsed_grammar;
  348. if (!params.grammar.empty()) {
  349. parsed_grammar = grammar_parser::parse(params.grammar.c_str());
  350. // will be empty (default) if there are parse errors
  351. if (parsed_grammar.rules.empty()) {
  352. return 1;
  353. }
  354. LOG_TEE("%s: grammar:\n", __func__);
  355. grammar_parser::print_grammar(stderr, parsed_grammar);
  356. LOG_TEE("\n");
  357. {
  358. auto it = params.logit_bias.find(llama_token_eos(ctx));
  359. if (it != params.logit_bias.end() && it->second == -INFINITY) {
  360. LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
  361. }
  362. }
  363. std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
  364. grammar = llama_grammar_init(
  365. grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
  366. }
  367. // TODO: replace with ring-buffer
  368. std::vector<llama_token> last_tokens(n_ctx);
  369. std::fill(last_tokens.begin(), last_tokens.end(), 0);
  370. if (params.interactive) {
  371. const char *control_message;
  372. if (params.multiline_input) {
  373. control_message = " - To return control to LLaMa, end your input with '\\'.\n"
  374. " - To return control without starting a new line, end your input with '/'.\n";
  375. } else {
  376. control_message = " - Press Return to return control to LLaMa.\n"
  377. " - To return control without starting a new line, end your input with '/'.\n"
  378. " - If you want to submit another line, end your input with '\\'.\n";
  379. }
  380. LOG_TEE("== Running in interactive mode. ==\n");
  381. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
  382. LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
  383. #endif
  384. LOG_TEE( "%s\n", control_message);
  385. is_interacting = params.interactive_first;
  386. }
  387. bool is_antiprompt = false;
  388. bool input_echo = true;
  389. bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
  390. int n_past = 0;
  391. int n_remain = params.n_predict;
  392. int n_consumed = 0;
  393. int n_session_consumed = 0;
  394. int n_past_guidance = 0;
  395. std::vector<int> input_tokens; g_input_tokens = &input_tokens;
  396. std::vector<int> output_tokens; g_output_tokens = &output_tokens;
  397. std::ostringstream output_ss; g_output_ss = &output_ss;
  398. // the first thing we will do is to output the prompt, so set color accordingly
  399. console::set_display(console::prompt);
  400. std::vector<llama_token> embd;
  401. std::vector<llama_token> embd_guidance;
  402. const int n_vocab = llama_n_vocab(ctx);
  403. std::vector<llama_token_data> candidates;
  404. candidates.reserve(n_vocab);
  405. while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
  406. // predict
  407. if (!embd.empty()) {
  408. // Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
  409. // --prompt or --file which uses the same value.
  410. int max_embd_size = n_ctx - 4;
  411. // Ensure the input doesn't exceed the context size by truncating embd if necessary.
  412. if ((int) embd.size() > max_embd_size) {
  413. const int skipped_tokens = (int) embd.size() - max_embd_size;
  414. embd.resize(max_embd_size);
  415. console::set_display(console::error);
  416. printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
  417. console::set_display(console::reset);
  418. fflush(stdout);
  419. }
  420. // infinite text generation via context swapping
  421. // if we run out of context:
  422. // - take the n_keep first tokens from the original prompt (via n_past)
  423. // - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
  424. if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
  425. if (params.n_predict == -2) {
  426. LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
  427. break;
  428. }
  429. const int n_left = n_past - params.n_keep;
  430. LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d\n", n_past, n_left, n_ctx, params.n_keep);
  431. // always keep the first token - BOS
  432. n_past = std::max(1, params.n_keep);
  433. n_past_guidance = std::max(1, params.n_keep + guidance_offset);
  434. LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
  435. // insert n_left/2 tokens at the start of embd from last_tokens
  436. embd.insert(embd.begin(), last_tokens.begin() + n_ctx - n_left/2 - embd.size(), last_tokens.end() - embd.size());
  437. LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
  438. LOG("clear session path\n");
  439. path_session.clear();
  440. }
  441. // try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
  442. if (n_session_consumed < (int) session_tokens.size()) {
  443. size_t i = 0;
  444. for ( ; i < embd.size(); i++) {
  445. if (embd[i] != session_tokens[n_session_consumed]) {
  446. session_tokens.resize(n_session_consumed);
  447. break;
  448. }
  449. n_past++;
  450. n_session_consumed++;
  451. if (n_session_consumed >= (int) session_tokens.size()) {
  452. ++i;
  453. break;
  454. }
  455. }
  456. if (i > 0) {
  457. embd.erase(embd.begin(), embd.begin() + i);
  458. }
  459. }
  460. // evaluate tokens in batches
  461. // embd is typically prepared beforehand to fit within a batch, but not always
  462. if (ctx_guidance) {
  463. int input_size = 0;
  464. llama_token * input_buf = NULL;
  465. if (n_past_guidance < (int) guidance_inp.size()) {
  466. // Guidance context should have the same data with these modifications:
  467. //
  468. // * Replace the initial prompt
  469. // * Shift everything by guidance_offset
  470. embd_guidance = guidance_inp;
  471. if (embd.begin() + original_prompt_len < embd.end()) {
  472. embd_guidance.insert(
  473. embd_guidance.end(),
  474. embd.begin() + original_prompt_len,
  475. embd.end()
  476. );
  477. }
  478. input_buf = embd_guidance.data();
  479. input_size = embd_guidance.size();
  480. LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
  481. } else {
  482. input_buf = embd.data();
  483. input_size = embd.size();
  484. }
  485. for (int i = 0; i < input_size; i += params.n_batch) {
  486. int n_eval = std::min(input_size - i, params.n_batch);
  487. if (llama_eval(ctx_guidance, input_buf + i, n_eval, n_past_guidance, params.n_threads)) {
  488. LOG_TEE("%s : failed to eval\n", __func__);
  489. return 1;
  490. }
  491. n_past_guidance += n_eval;
  492. }
  493. }
  494. for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
  495. int n_eval = (int) embd.size() - i;
  496. if (n_eval > params.n_batch) {
  497. n_eval = params.n_batch;
  498. }
  499. LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
  500. if (llama_eval(ctx, &embd[i], n_eval, n_past, params.n_threads)) {
  501. LOG_TEE("%s : failed to eval\n", __func__);
  502. return 1;
  503. }
  504. n_past += n_eval;
  505. LOG("n_past = %d\n", n_past);
  506. }
  507. if (!embd.empty() && !path_session.empty()) {
  508. session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
  509. n_session_consumed = session_tokens.size();
  510. }
  511. }
  512. embd.clear();
  513. embd_guidance.clear();
  514. if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
  515. // optionally save the session on first sample (for faster prompt loading next time)
  516. if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
  517. need_to_save_session = false;
  518. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  519. LOG("saved session to %s\n", path_session.c_str());
  520. }
  521. const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
  522. last_tokens.erase(last_tokens.begin());
  523. last_tokens.push_back(id);
  524. LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
  525. embd.push_back(id);
  526. // echo this to console
  527. input_echo = true;
  528. // decrement remaining sampling budget
  529. --n_remain;
  530. LOG("n_remain: %d\n", n_remain);
  531. } else {
  532. // some user input remains from prompt or interaction, forward it to processing
  533. LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
  534. while ((int) embd_inp.size() > n_consumed) {
  535. embd.push_back(embd_inp[n_consumed]);
  536. last_tokens.erase(last_tokens.begin());
  537. last_tokens.push_back(embd_inp[n_consumed]);
  538. ++n_consumed;
  539. if ((int) embd.size() >= params.n_batch) {
  540. break;
  541. }
  542. }
  543. }
  544. // display text
  545. if (input_echo) {
  546. for (auto id : embd) {
  547. const std::string token_str = llama_token_to_piece(ctx, id);
  548. printf("%s", token_str.c_str());
  549. if (embd.size() > 1) {
  550. input_tokens.push_back(id);
  551. } else {
  552. output_tokens.push_back(id);
  553. output_ss << token_str;
  554. }
  555. }
  556. fflush(stdout);
  557. }
  558. // reset color to default if we there is no pending user input
  559. if (input_echo && (int) embd_inp.size() == n_consumed) {
  560. console::set_display(console::reset);
  561. }
  562. // if not currently processing queued inputs;
  563. if ((int) embd_inp.size() <= n_consumed) {
  564. // check for reverse prompt
  565. if (!params.antiprompt.empty()) {
  566. std::string last_output;
  567. for (auto id : last_tokens) {
  568. last_output += llama_token_to_piece(ctx, id);
  569. }
  570. is_antiprompt = false;
  571. // Check if each of the reverse prompts appears at the end of the output.
  572. // If we're not running interactively, the reverse prompt might be tokenized with some following characters
  573. // so we'll compensate for that by widening the search window a bit.
  574. for (std::string & antiprompt : params.antiprompt) {
  575. size_t extra_padding = params.interactive ? 0 : 2;
  576. size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
  577. ? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
  578. : 0;
  579. if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
  580. if (params.interactive) {
  581. is_interacting = true;
  582. console::set_display(console::user_input);
  583. }
  584. is_antiprompt = true;
  585. fflush(stdout);
  586. break;
  587. }
  588. }
  589. if (is_antiprompt) {
  590. LOG("found antiprompt: %s\n", last_output.c_str());
  591. }
  592. }
  593. // deal with end of text token in interactive mode
  594. if (last_tokens.back() == llama_token_eos(ctx)) {
  595. LOG("found EOS token\n");
  596. if (params.interactive) {
  597. if (!params.antiprompt.empty()) {
  598. // tokenize and inject first reverse prompt
  599. const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
  600. embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
  601. is_antiprompt = true;
  602. }
  603. is_interacting = true;
  604. printf("\n");
  605. console::set_display(console::user_input);
  606. fflush(stdout);
  607. } else if (params.instruct) {
  608. is_interacting = true;
  609. }
  610. }
  611. if (n_past > 0 && is_interacting) {
  612. LOG("waiting for user input\n");
  613. if (params.instruct) {
  614. printf("\n> ");
  615. }
  616. if (params.input_prefix_bos) {
  617. LOG("adding input prefix BOS token\n");
  618. embd_inp.push_back(llama_token_bos(ctx));
  619. }
  620. std::string buffer;
  621. if (!params.input_prefix.empty()) {
  622. LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
  623. buffer += params.input_prefix;
  624. printf("%s", buffer.c_str());
  625. }
  626. std::string line;
  627. bool another_line = true;
  628. do {
  629. another_line = console::readline(line, params.multiline_input);
  630. buffer += line;
  631. } while (another_line);
  632. // done taking input, reset color
  633. console::set_display(console::reset);
  634. // Add tokens to embd only if the input buffer is non-empty
  635. // Entering a empty line lets the user pass control back
  636. if (buffer.length() > 1) {
  637. // append input suffix if any
  638. if (!params.input_suffix.empty()) {
  639. LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
  640. buffer += params.input_suffix;
  641. printf("%s", params.input_suffix.c_str());
  642. }
  643. LOG("buffer: '%s'\n", buffer.c_str());
  644. const size_t original_size = embd_inp.size();
  645. // instruct mode: insert instruction prefix
  646. if (params.instruct && !is_antiprompt) {
  647. LOG("inserting instruction prefix\n");
  648. n_consumed = embd_inp.size();
  649. embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
  650. }
  651. const auto line_inp = ::llama_tokenize(ctx, buffer, false);
  652. LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
  653. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  654. // instruct mode: insert response suffix
  655. if (params.instruct) {
  656. LOG("inserting instruction suffix\n");
  657. embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
  658. }
  659. for (size_t i = original_size; i < embd_inp.size(); ++i) {
  660. const llama_token token = embd_inp[i];
  661. output_tokens.push_back(token);
  662. output_ss << llama_token_to_piece(ctx, token);
  663. }
  664. n_remain -= line_inp.size();
  665. LOG("n_remain: %d\n", n_remain);
  666. } else {
  667. LOG("empty line, passing control back\n");
  668. }
  669. input_echo = false; // do not echo this again
  670. }
  671. if (n_past > 0) {
  672. if (is_interacting) {
  673. // reset grammar state if we're restarting generation
  674. if (grammar != NULL) {
  675. llama_grammar_free(grammar);
  676. std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
  677. grammar = llama_grammar_init(
  678. grammar_rules.data(), grammar_rules.size(),
  679. parsed_grammar.symbol_ids.at("root"));
  680. }
  681. }
  682. is_interacting = false;
  683. }
  684. }
  685. // end of text token
  686. if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !(params.instruct || params.interactive)) {
  687. LOG_TEE(" [end of text]\n");
  688. break;
  689. }
  690. // In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
  691. // We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
  692. if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
  693. n_remain = params.n_predict;
  694. is_interacting = true;
  695. }
  696. }
  697. if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
  698. LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
  699. llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
  700. }
  701. llama_print_timings(ctx);
  702. write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
  703. if (ctx_guidance) { llama_free(ctx_guidance); }
  704. llama_free(ctx);
  705. llama_free_model(model);
  706. if (grammar != NULL) {
  707. llama_grammar_free(grammar);
  708. }
  709. llama_backend_free();
  710. #ifndef LOG_DISABLE_LOGS
  711. LOG_TEE("Log end\n")
  712. #endif // LOG_DISABLE_LOGS
  713. return 0;
  714. }