ggml.c 668 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml.h"
  3. #ifdef GGML_USE_K_QUANTS
  4. #include "k_quants.h"
  5. #endif
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // static_assert should be a #define, but if it's not,
  28. // fall back to the _Static_assert C11 keyword.
  29. // if C99 - static_assert is noop
  30. // ref: https://stackoverflow.com/a/53923785/4039976
  31. #ifndef static_assert
  32. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  33. #define static_assert(cond, msg) _Static_assert(cond, msg)
  34. #else
  35. #define static_assert(cond, msg) struct global_scope_noop_trick
  36. #endif
  37. #endif
  38. #if defined(_MSC_VER)
  39. // disable "possible loss of data" to avoid hundreds of casts
  40. // we should just be careful :)
  41. #pragma warning(disable: 4244 4267)
  42. #endif
  43. #if defined(_WIN32)
  44. #include <windows.h>
  45. typedef volatile LONG atomic_int;
  46. typedef atomic_int atomic_bool;
  47. static void atomic_store(atomic_int * ptr, LONG val) {
  48. InterlockedExchange(ptr, val);
  49. }
  50. static LONG atomic_load(atomic_int * ptr) {
  51. return InterlockedCompareExchange(ptr, 0, 0);
  52. }
  53. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  54. return InterlockedExchangeAdd(ptr, inc);
  55. }
  56. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  57. return atomic_fetch_add(ptr, -(dec));
  58. }
  59. typedef HANDLE pthread_t;
  60. typedef DWORD thread_ret_t;
  61. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  62. (void) unused;
  63. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  64. if (handle == NULL)
  65. {
  66. return EAGAIN;
  67. }
  68. *out = handle;
  69. return 0;
  70. }
  71. static int pthread_join(pthread_t thread, void * unused) {
  72. (void) unused;
  73. return (int) WaitForSingleObject(thread, INFINITE);
  74. }
  75. static int sched_yield (void) {
  76. Sleep (0);
  77. return 0;
  78. }
  79. #else
  80. #include <pthread.h>
  81. #include <stdatomic.h>
  82. typedef void * thread_ret_t;
  83. #include <sys/types.h>
  84. #include <sys/stat.h>
  85. #include <unistd.h>
  86. #endif
  87. #ifdef GGML_USE_CPU_HBM
  88. #include <hbwmalloc.h>
  89. #endif
  90. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  91. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  92. #ifndef __FMA__
  93. #define __FMA__
  94. #endif
  95. #ifndef __F16C__
  96. #define __F16C__
  97. #endif
  98. #ifndef __SSE3__
  99. #define __SSE3__
  100. #endif
  101. #endif
  102. /*#define GGML_PERF*/
  103. #define GGML_DEBUG 0
  104. #define GGML_GELU_FP16
  105. #define GGML_GELU_QUICK_FP16
  106. #define GGML_SILU_FP16
  107. // #define GGML_CROSS_ENTROPY_EXP_FP16
  108. // #define GGML_FLASH_ATTN_EXP_FP16
  109. #define GGML_SOFT_MAX_UNROLL 4
  110. #define GGML_VEC_DOT_UNROLL 2
  111. //
  112. // logging
  113. //
  114. #if (GGML_DEBUG >= 1)
  115. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  116. #else
  117. #define GGML_PRINT_DEBUG(...)
  118. #endif
  119. #if (GGML_DEBUG >= 5)
  120. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  121. #else
  122. #define GGML_PRINT_DEBUG_5(...)
  123. #endif
  124. #if (GGML_DEBUG >= 10)
  125. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  126. #else
  127. #define GGML_PRINT_DEBUG_10(...)
  128. #endif
  129. #define GGML_PRINT(...) printf(__VA_ARGS__)
  130. #ifdef GGML_USE_ACCELERATE
  131. // uncomment to use vDSP for soft max computation
  132. // note: not sure if it is actually faster
  133. //#define GGML_SOFT_MAX_ACCELERATE
  134. #endif
  135. //
  136. // logging
  137. //
  138. #if (GGML_DEBUG >= 1)
  139. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  140. #else
  141. #define GGML_PRINT_DEBUG(...)
  142. #endif
  143. #if (GGML_DEBUG >= 5)
  144. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  145. #else
  146. #define GGML_PRINT_DEBUG_5(...)
  147. #endif
  148. #if (GGML_DEBUG >= 10)
  149. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  150. #else
  151. #define GGML_PRINT_DEBUG_10(...)
  152. #endif
  153. #define GGML_PRINT(...) printf(__VA_ARGS__)
  154. //
  155. // end of logging block
  156. //
  157. #if defined(_MSC_VER) || defined(__MINGW32__)
  158. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  159. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  160. #else
  161. inline static void * ggml_aligned_malloc(size_t size) {
  162. if (size == 0) {
  163. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  164. return NULL;
  165. }
  166. void * aligned_memory = NULL;
  167. #ifdef GGML_USE_CPU_HBM
  168. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  169. #elif GGML_USE_METAL
  170. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  171. #else
  172. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  173. #endif
  174. if (result != 0) {
  175. // Handle allocation failure
  176. const char *error_desc = "unknown allocation error";
  177. switch (result) {
  178. case EINVAL:
  179. error_desc = "invalid alignment value";
  180. break;
  181. case ENOMEM:
  182. error_desc = "insufficient memory";
  183. break;
  184. }
  185. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  186. return NULL;
  187. }
  188. return aligned_memory;
  189. }
  190. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  191. #ifdef GGML_USE_CPU_HBM
  192. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  193. #else
  194. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  195. #endif
  196. #endif
  197. #define UNUSED GGML_UNUSED
  198. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  199. //
  200. // tensor access macros
  201. //
  202. #define GGML_TENSOR_UNARY_OP_LOCALS \
  203. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  204. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  205. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  206. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  207. #define GGML_TENSOR_BINARY_OP_LOCALS \
  208. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  209. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  210. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  211. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  212. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  213. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  214. #if defined(GGML_USE_ACCELERATE)
  215. #include <Accelerate/Accelerate.h>
  216. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  217. #include "ggml-opencl.h"
  218. #endif
  219. #elif defined(GGML_USE_OPENBLAS)
  220. #if defined(GGML_BLAS_USE_MKL)
  221. #include <mkl.h>
  222. #else
  223. #include <cblas.h>
  224. #endif
  225. #elif defined(GGML_USE_CUBLAS)
  226. #include "ggml-cuda.h"
  227. #elif defined(GGML_USE_CLBLAST)
  228. #include "ggml-opencl.h"
  229. #endif
  230. #undef MIN
  231. #undef MAX
  232. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  233. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  234. // floating point type used to accumulate sums
  235. typedef double ggml_float;
  236. // 16-bit float
  237. // on Arm, we use __fp16
  238. // on x86, we use uint16_t
  239. #ifdef __ARM_NEON
  240. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  241. //
  242. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  243. //
  244. #include <arm_neon.h>
  245. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  246. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  247. #define GGML_FP16_TO_FP32(x) ((float) (x))
  248. #define GGML_FP32_TO_FP16(x) (x)
  249. #else
  250. #ifdef __wasm_simd128__
  251. #include <wasm_simd128.h>
  252. #else
  253. #ifdef __POWER9_VECTOR__
  254. #include <altivec.h>
  255. #undef bool
  256. #define bool _Bool
  257. #else
  258. #if defined(_MSC_VER) || defined(__MINGW32__)
  259. #include <intrin.h>
  260. #else
  261. #if !defined(__riscv)
  262. #include <immintrin.h>
  263. #endif
  264. #endif
  265. #endif
  266. #endif
  267. #ifdef __riscv_v_intrinsic
  268. #include <riscv_vector.h>
  269. #endif
  270. #ifdef __F16C__
  271. #ifdef _MSC_VER
  272. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  273. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  274. #else
  275. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  276. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  277. #endif
  278. #elif defined(__POWER9_VECTOR__)
  279. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  280. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  281. /* the inline asm below is about 12% faster than the lookup method */
  282. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  283. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  284. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  285. register float f;
  286. register double d;
  287. __asm__(
  288. "mtfprd %0,%2\n"
  289. "xscvhpdp %0,%0\n"
  290. "frsp %1,%0\n" :
  291. /* temp */ "=d"(d),
  292. /* out */ "=f"(f):
  293. /* in */ "r"(h));
  294. return f;
  295. }
  296. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  297. register double d;
  298. register ggml_fp16_t r;
  299. __asm__( /* xscvdphp can work on double or single precision */
  300. "xscvdphp %0,%2\n"
  301. "mffprd %1,%0\n" :
  302. /* temp */ "=d"(d),
  303. /* out */ "=r"(r):
  304. /* in */ "f"(f));
  305. return r;
  306. }
  307. #else
  308. // FP16 <-> FP32
  309. // ref: https://github.com/Maratyszcza/FP16
  310. static inline float fp32_from_bits(uint32_t w) {
  311. union {
  312. uint32_t as_bits;
  313. float as_value;
  314. } fp32;
  315. fp32.as_bits = w;
  316. return fp32.as_value;
  317. }
  318. static inline uint32_t fp32_to_bits(float f) {
  319. union {
  320. float as_value;
  321. uint32_t as_bits;
  322. } fp32;
  323. fp32.as_value = f;
  324. return fp32.as_bits;
  325. }
  326. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  327. const uint32_t w = (uint32_t) h << 16;
  328. const uint32_t sign = w & UINT32_C(0x80000000);
  329. const uint32_t two_w = w + w;
  330. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  331. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  332. const float exp_scale = 0x1.0p-112f;
  333. #else
  334. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  335. #endif
  336. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  337. const uint32_t magic_mask = UINT32_C(126) << 23;
  338. const float magic_bias = 0.5f;
  339. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  340. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  341. const uint32_t result = sign |
  342. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  343. return fp32_from_bits(result);
  344. }
  345. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  346. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  347. const float scale_to_inf = 0x1.0p+112f;
  348. const float scale_to_zero = 0x1.0p-110f;
  349. #else
  350. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  351. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  352. #endif
  353. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  354. const uint32_t w = fp32_to_bits(f);
  355. const uint32_t shl1_w = w + w;
  356. const uint32_t sign = w & UINT32_C(0x80000000);
  357. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  358. if (bias < UINT32_C(0x71000000)) {
  359. bias = UINT32_C(0x71000000);
  360. }
  361. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  362. const uint32_t bits = fp32_to_bits(base);
  363. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  364. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  365. const uint32_t nonsign = exp_bits + mantissa_bits;
  366. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  367. }
  368. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  369. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  370. #endif // __F16C__
  371. #endif // __ARM_NEON
  372. //
  373. // global data
  374. //
  375. // precomputed gelu table for f16 (128 KB)
  376. static ggml_fp16_t table_gelu_f16[1 << 16];
  377. // precomputed quick gelu table for f16 (128 KB)
  378. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  379. // precomputed silu table for f16 (128 KB)
  380. static ggml_fp16_t table_silu_f16[1 << 16];
  381. // precomputed exp table for f16 (128 KB)
  382. static ggml_fp16_t table_exp_f16[1 << 16];
  383. // precomputed f32 table for f16 (256 KB)
  384. static float table_f32_f16[1 << 16];
  385. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  386. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  387. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  388. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  389. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  390. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  391. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  392. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  393. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  394. // precomputed tables for expanding 8bits to 8 bytes:
  395. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  396. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  397. #endif
  398. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  399. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  400. // This is also true for POWER9.
  401. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  402. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  403. uint16_t s;
  404. memcpy(&s, &f, sizeof(uint16_t));
  405. return table_f32_f16[s];
  406. }
  407. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  408. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  409. #endif
  410. // note: do not use these inside ggml.c
  411. // these are meant to be used via the ggml.h API
  412. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  413. return (float) GGML_FP16_TO_FP32(x);
  414. }
  415. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  416. return GGML_FP32_TO_FP16(x);
  417. }
  418. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  419. for (int i = 0; i < n; i++) {
  420. y[i] = GGML_FP16_TO_FP32(x[i]);
  421. }
  422. }
  423. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  424. int i = 0;
  425. #if defined(__F16C__)
  426. for (; i + 7 < n; i += 8) {
  427. __m256 x_vec = _mm256_loadu_ps(x + i);
  428. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  429. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  430. }
  431. for(; i + 3 < n; i += 4) {
  432. __m128 x_vec = _mm_loadu_ps(x + i);
  433. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  434. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  435. }
  436. #endif
  437. for (; i < n; i++) {
  438. y[i] = GGML_FP32_TO_FP16(x[i]);
  439. }
  440. }
  441. //
  442. // timing
  443. //
  444. #if defined(_MSC_VER) || defined(__MINGW32__)
  445. static int64_t timer_freq, timer_start;
  446. void ggml_time_init(void) {
  447. LARGE_INTEGER t;
  448. QueryPerformanceFrequency(&t);
  449. timer_freq = t.QuadPart;
  450. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  451. // and the uptime is high enough.
  452. // We subtract the program start time to reduce the likelihood of that happening.
  453. QueryPerformanceCounter(&t);
  454. timer_start = t.QuadPart;
  455. }
  456. int64_t ggml_time_ms(void) {
  457. LARGE_INTEGER t;
  458. QueryPerformanceCounter(&t);
  459. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  460. }
  461. int64_t ggml_time_us(void) {
  462. LARGE_INTEGER t;
  463. QueryPerformanceCounter(&t);
  464. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  465. }
  466. #else
  467. void ggml_time_init(void) {}
  468. int64_t ggml_time_ms(void) {
  469. struct timespec ts;
  470. clock_gettime(CLOCK_MONOTONIC, &ts);
  471. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  472. }
  473. int64_t ggml_time_us(void) {
  474. struct timespec ts;
  475. clock_gettime(CLOCK_MONOTONIC, &ts);
  476. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  477. }
  478. #endif
  479. int64_t ggml_cycles(void) {
  480. return clock();
  481. }
  482. int64_t ggml_cycles_per_ms(void) {
  483. return CLOCKS_PER_SEC/1000;
  484. }
  485. #ifdef GGML_PERF
  486. #define ggml_perf_time_ms() ggml_time_ms()
  487. #define ggml_perf_time_us() ggml_time_us()
  488. #define ggml_perf_cycles() ggml_cycles()
  489. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  490. #else
  491. #define ggml_perf_time_ms() 0
  492. #define ggml_perf_time_us() 0
  493. #define ggml_perf_cycles() 0
  494. #define ggml_perf_cycles_per_ms() 0
  495. #endif
  496. //
  497. // cache line
  498. //
  499. #if defined(__cpp_lib_hardware_interference_size)
  500. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  501. #else
  502. #if defined(__POWER9_VECTOR__)
  503. #define CACHE_LINE_SIZE 128
  504. #else
  505. #define CACHE_LINE_SIZE 64
  506. #endif
  507. #endif
  508. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  509. //
  510. // quantization
  511. //
  512. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  513. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  514. // multiply int8_t, add results pairwise twice
  515. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  516. // Get absolute values of x vectors
  517. const __m128i ax = _mm_sign_epi8(x, x);
  518. // Sign the values of the y vectors
  519. const __m128i sy = _mm_sign_epi8(y, x);
  520. // Perform multiplication and create 16-bit values
  521. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  522. const __m128i ones = _mm_set1_epi16(1);
  523. return _mm_madd_epi16(ones, dot);
  524. }
  525. #if __AVX__ || __AVX2__ || __AVX512F__
  526. // horizontally add 8 floats
  527. static inline float hsum_float_8(const __m256 x) {
  528. __m128 res = _mm256_extractf128_ps(x, 1);
  529. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  530. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  531. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  532. return _mm_cvtss_f32(res);
  533. }
  534. // horizontally add 8 int32_t
  535. static inline int hsum_i32_8(const __m256i a) {
  536. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  537. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  538. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  539. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  540. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  541. }
  542. // horizontally add 4 int32_t
  543. static inline int hsum_i32_4(const __m128i a) {
  544. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  545. const __m128i sum64 = _mm_add_epi32(hi64, a);
  546. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  547. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  548. }
  549. #if defined(__AVX2__) || defined(__AVX512F__)
  550. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  551. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  552. uint32_t x32;
  553. memcpy(&x32, x, sizeof(uint32_t));
  554. const __m256i shuf_mask = _mm256_set_epi64x(
  555. 0x0303030303030303, 0x0202020202020202,
  556. 0x0101010101010101, 0x0000000000000000);
  557. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  558. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  559. bytes = _mm256_or_si256(bytes, bit_mask);
  560. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  561. }
  562. // Unpack 32 4-bit fields into 32 bytes
  563. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  564. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  565. {
  566. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  567. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  568. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  569. return _mm256_and_si256(lowMask, bytes);
  570. }
  571. // add int16_t pairwise and return as float vector
  572. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  573. const __m256i ones = _mm256_set1_epi16(1);
  574. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  575. return _mm256_cvtepi32_ps(summed_pairs);
  576. }
  577. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  578. #if __AVXVNNI__
  579. const __m256i zero = _mm256_setzero_si256();
  580. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  581. return _mm256_cvtepi32_ps(summed_pairs);
  582. #else
  583. // Perform multiplication and create 16-bit values
  584. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  585. return sum_i16_pairs_float(dot);
  586. #endif
  587. }
  588. // multiply int8_t, add results pairwise twice and return as float vector
  589. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  590. #if __AVXVNNIINT8__
  591. const __m256i zero = _mm256_setzero_si256();
  592. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  593. return _mm256_cvtepi32_ps(summed_pairs);
  594. #else
  595. // Get absolute values of x vectors
  596. const __m256i ax = _mm256_sign_epi8(x, x);
  597. // Sign the values of the y vectors
  598. const __m256i sy = _mm256_sign_epi8(y, x);
  599. return mul_sum_us8_pairs_float(ax, sy);
  600. #endif
  601. }
  602. static inline __m128i packNibbles( __m256i bytes )
  603. {
  604. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  605. #if __AVX512F__
  606. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  607. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  608. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  609. #else
  610. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  611. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  612. __m256i low = _mm256_and_si256( lowByte, bytes );
  613. high = _mm256_srli_epi16( high, 4 );
  614. bytes = _mm256_or_si256( low, high );
  615. // Compress uint16_t lanes into bytes
  616. __m128i r0 = _mm256_castsi256_si128( bytes );
  617. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  618. return _mm_packus_epi16( r0, r1 );
  619. #endif
  620. }
  621. #elif defined(__AVX__)
  622. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  623. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  624. uint32_t x32;
  625. memcpy(&x32, x, sizeof(uint32_t));
  626. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  627. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  628. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  629. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  630. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  631. bytesl = _mm_or_si128(bytesl, bit_mask);
  632. bytesh = _mm_or_si128(bytesh, bit_mask);
  633. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  634. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  635. return MM256_SET_M128I(bytesh, bytesl);
  636. }
  637. // Unpack 32 4-bit fields into 32 bytes
  638. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  639. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  640. {
  641. // Load 16 bytes from memory
  642. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  643. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  644. const __m128i lowMask = _mm_set1_epi8(0xF);
  645. tmpl = _mm_and_si128(lowMask, tmpl);
  646. tmph = _mm_and_si128(lowMask, tmph);
  647. return MM256_SET_M128I(tmph, tmpl);
  648. }
  649. // add int16_t pairwise and return as float vector
  650. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  651. const __m128i ones = _mm_set1_epi16(1);
  652. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  653. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  654. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  655. return _mm256_cvtepi32_ps(summed_pairs);
  656. }
  657. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  658. const __m128i axl = _mm256_castsi256_si128(ax);
  659. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  660. const __m128i syl = _mm256_castsi256_si128(sy);
  661. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  662. // Perform multiplication and create 16-bit values
  663. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  664. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  665. return sum_i16_pairs_float(doth, dotl);
  666. }
  667. // multiply int8_t, add results pairwise twice and return as float vector
  668. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  669. const __m128i xl = _mm256_castsi256_si128(x);
  670. const __m128i xh = _mm256_extractf128_si256(x, 1);
  671. const __m128i yl = _mm256_castsi256_si128(y);
  672. const __m128i yh = _mm256_extractf128_si256(y, 1);
  673. // Get absolute values of x vectors
  674. const __m128i axl = _mm_sign_epi8(xl, xl);
  675. const __m128i axh = _mm_sign_epi8(xh, xh);
  676. // Sign the values of the y vectors
  677. const __m128i syl = _mm_sign_epi8(yl, xl);
  678. const __m128i syh = _mm_sign_epi8(yh, xh);
  679. // Perform multiplication and create 16-bit values
  680. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  681. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  682. return sum_i16_pairs_float(doth, dotl);
  683. }
  684. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  685. {
  686. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  687. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  688. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  689. __m128i low = _mm_and_si128( lowByte, bytes1 );
  690. high = _mm_srli_epi16( high, 4 );
  691. bytes1 = _mm_or_si128( low, high );
  692. high = _mm_andnot_si128( lowByte, bytes2 );
  693. low = _mm_and_si128( lowByte, bytes2 );
  694. high = _mm_srli_epi16( high, 4 );
  695. bytes2 = _mm_or_si128( low, high );
  696. return _mm_packus_epi16( bytes1, bytes2);
  697. }
  698. #endif
  699. #elif defined(__SSSE3__)
  700. // horizontally add 4x4 floats
  701. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  702. __m128 res_0 =_mm_hadd_ps(a, b);
  703. __m128 res_1 =_mm_hadd_ps(c, d);
  704. __m128 res =_mm_hadd_ps(res_0, res_1);
  705. res =_mm_hadd_ps(res, res);
  706. res =_mm_hadd_ps(res, res);
  707. return _mm_cvtss_f32(res);
  708. }
  709. #endif // __AVX__ || __AVX2__ || __AVX512F__
  710. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  711. #if defined(__ARM_NEON)
  712. #if !defined(__aarch64__)
  713. inline static int32_t vaddvq_s32(int32x4_t v) {
  714. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  715. }
  716. inline static float vaddvq_f32(float32x4_t v) {
  717. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  718. }
  719. inline static float vmaxvq_f32(float32x4_t v) {
  720. return
  721. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  722. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  723. }
  724. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  725. int32x4_t res;
  726. res[0] = roundf(vgetq_lane_f32(v, 0));
  727. res[1] = roundf(vgetq_lane_f32(v, 1));
  728. res[2] = roundf(vgetq_lane_f32(v, 2));
  729. res[3] = roundf(vgetq_lane_f32(v, 3));
  730. return res;
  731. }
  732. #endif
  733. #endif
  734. #define QK4_0 32
  735. typedef struct {
  736. ggml_fp16_t d; // delta
  737. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  738. } block_q4_0;
  739. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  740. #define QK4_1 32
  741. typedef struct {
  742. ggml_fp16_t d; // delta
  743. ggml_fp16_t m; // min
  744. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  745. } block_q4_1;
  746. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  747. #define QK5_0 32
  748. typedef struct {
  749. ggml_fp16_t d; // delta
  750. uint8_t qh[4]; // 5-th bit of quants
  751. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  752. } block_q5_0;
  753. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  754. #define QK5_1 32
  755. typedef struct {
  756. ggml_fp16_t d; // delta
  757. ggml_fp16_t m; // min
  758. uint8_t qh[4]; // 5-th bit of quants
  759. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  760. } block_q5_1;
  761. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  762. #define QK8_0 32
  763. typedef struct {
  764. ggml_fp16_t d; // delta
  765. int8_t qs[QK8_0]; // quants
  766. } block_q8_0;
  767. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  768. #define QK8_1 32
  769. typedef struct {
  770. float d; // delta
  771. float s; // d * sum(qs[i])
  772. int8_t qs[QK8_1]; // quants
  773. } block_q8_1;
  774. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  775. // reference implementation for deterministic creation of model files
  776. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  777. static const int qk = QK4_0;
  778. assert(k % qk == 0);
  779. const int nb = k / qk;
  780. for (int i = 0; i < nb; i++) {
  781. float amax = 0.0f; // absolute max
  782. float max = 0.0f;
  783. for (int j = 0; j < qk; j++) {
  784. const float v = x[i*qk + j];
  785. if (amax < fabsf(v)) {
  786. amax = fabsf(v);
  787. max = v;
  788. }
  789. }
  790. const float d = max / -8;
  791. const float id = d ? 1.0f/d : 0.0f;
  792. y[i].d = GGML_FP32_TO_FP16(d);
  793. for (int j = 0; j < qk/2; ++j) {
  794. const float x0 = x[i*qk + 0 + j]*id;
  795. const float x1 = x[i*qk + qk/2 + j]*id;
  796. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  797. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  798. y[i].qs[j] = xi0;
  799. y[i].qs[j] |= xi1 << 4;
  800. }
  801. }
  802. }
  803. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  804. quantize_row_q4_0_reference(x, y, k);
  805. }
  806. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  807. const int qk = QK4_1;
  808. assert(k % qk == 0);
  809. const int nb = k / qk;
  810. for (int i = 0; i < nb; i++) {
  811. float min = FLT_MAX;
  812. float max = -FLT_MAX;
  813. for (int j = 0; j < qk; j++) {
  814. const float v = x[i*qk + j];
  815. if (v < min) min = v;
  816. if (v > max) max = v;
  817. }
  818. const float d = (max - min) / ((1 << 4) - 1);
  819. const float id = d ? 1.0f/d : 0.0f;
  820. y[i].d = GGML_FP32_TO_FP16(d);
  821. y[i].m = GGML_FP32_TO_FP16(min);
  822. for (int j = 0; j < qk/2; ++j) {
  823. const float x0 = (x[i*qk + 0 + j] - min)*id;
  824. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  825. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  826. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  827. y[i].qs[j] = xi0;
  828. y[i].qs[j] |= xi1 << 4;
  829. }
  830. }
  831. }
  832. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  833. quantize_row_q4_1_reference(x, y, k);
  834. }
  835. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  836. static const int qk = QK5_0;
  837. assert(k % qk == 0);
  838. const int nb = k / qk;
  839. for (int i = 0; i < nb; i++) {
  840. float amax = 0.0f; // absolute max
  841. float max = 0.0f;
  842. for (int j = 0; j < qk; j++) {
  843. const float v = x[i*qk + j];
  844. if (amax < fabsf(v)) {
  845. amax = fabsf(v);
  846. max = v;
  847. }
  848. }
  849. const float d = max / -16;
  850. const float id = d ? 1.0f/d : 0.0f;
  851. y[i].d = GGML_FP32_TO_FP16(d);
  852. uint32_t qh = 0;
  853. for (int j = 0; j < qk/2; ++j) {
  854. const float x0 = x[i*qk + 0 + j]*id;
  855. const float x1 = x[i*qk + qk/2 + j]*id;
  856. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  857. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  858. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  859. // get the 5-th bit and store it in qh at the right position
  860. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  861. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  862. }
  863. memcpy(&y[i].qh, &qh, sizeof(qh));
  864. }
  865. }
  866. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  867. quantize_row_q5_0_reference(x, y, k);
  868. }
  869. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  870. const int qk = QK5_1;
  871. assert(k % qk == 0);
  872. const int nb = k / qk;
  873. for (int i = 0; i < nb; i++) {
  874. float min = FLT_MAX;
  875. float max = -FLT_MAX;
  876. for (int j = 0; j < qk; j++) {
  877. const float v = x[i*qk + j];
  878. if (v < min) min = v;
  879. if (v > max) max = v;
  880. }
  881. const float d = (max - min) / ((1 << 5) - 1);
  882. const float id = d ? 1.0f/d : 0.0f;
  883. y[i].d = GGML_FP32_TO_FP16(d);
  884. y[i].m = GGML_FP32_TO_FP16(min);
  885. uint32_t qh = 0;
  886. for (int j = 0; j < qk/2; ++j) {
  887. const float x0 = (x[i*qk + 0 + j] - min)*id;
  888. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  889. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  890. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  891. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  892. // get the 5-th bit and store it in qh at the right position
  893. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  894. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  895. }
  896. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  897. }
  898. }
  899. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  900. quantize_row_q5_1_reference(x, y, k);
  901. }
  902. // reference implementation for deterministic creation of model files
  903. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  904. assert(k % QK8_0 == 0);
  905. const int nb = k / QK8_0;
  906. for (int i = 0; i < nb; i++) {
  907. float amax = 0.0f; // absolute max
  908. for (int j = 0; j < QK8_0; j++) {
  909. const float v = x[i*QK8_0 + j];
  910. amax = MAX(amax, fabsf(v));
  911. }
  912. const float d = amax / ((1 << 7) - 1);
  913. const float id = d ? 1.0f/d : 0.0f;
  914. y[i].d = GGML_FP32_TO_FP16(d);
  915. for (int j = 0; j < QK8_0; ++j) {
  916. const float x0 = x[i*QK8_0 + j]*id;
  917. y[i].qs[j] = roundf(x0);
  918. }
  919. }
  920. }
  921. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  922. assert(QK8_0 == 32);
  923. assert(k % QK8_0 == 0);
  924. const int nb = k / QK8_0;
  925. block_q8_0 * restrict y = vy;
  926. #if defined(__ARM_NEON)
  927. for (int i = 0; i < nb; i++) {
  928. float32x4_t srcv [8];
  929. float32x4_t asrcv[8];
  930. float32x4_t amaxv[8];
  931. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  932. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  933. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  934. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  935. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  936. const float amax = vmaxvq_f32(amaxv[0]);
  937. const float d = amax / ((1 << 7) - 1);
  938. const float id = d ? 1.0f/d : 0.0f;
  939. y[i].d = GGML_FP32_TO_FP16(d);
  940. for (int j = 0; j < 8; j++) {
  941. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  942. const int32x4_t vi = vcvtnq_s32_f32(v);
  943. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  944. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  945. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  946. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  947. }
  948. }
  949. #elif defined(__wasm_simd128__)
  950. for (int i = 0; i < nb; i++) {
  951. v128_t srcv [8];
  952. v128_t asrcv[8];
  953. v128_t amaxv[8];
  954. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  955. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  956. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  957. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  958. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  959. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  960. wasm_f32x4_extract_lane(amaxv[0], 1)),
  961. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  962. wasm_f32x4_extract_lane(amaxv[0], 3)));
  963. const float d = amax / ((1 << 7) - 1);
  964. const float id = d ? 1.0f/d : 0.0f;
  965. y[i].d = GGML_FP32_TO_FP16(d);
  966. for (int j = 0; j < 8; j++) {
  967. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  968. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  969. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  970. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  971. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  972. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  973. }
  974. }
  975. #elif defined(__AVX2__) || defined(__AVX__)
  976. for (int i = 0; i < nb; i++) {
  977. // Load elements into 4 AVX vectors
  978. __m256 v0 = _mm256_loadu_ps( x );
  979. __m256 v1 = _mm256_loadu_ps( x + 8 );
  980. __m256 v2 = _mm256_loadu_ps( x + 16 );
  981. __m256 v3 = _mm256_loadu_ps( x + 24 );
  982. x += 32;
  983. // Compute max(abs(e)) for the block
  984. const __m256 signBit = _mm256_set1_ps( -0.0f );
  985. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  986. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  987. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  988. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  989. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  990. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  991. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  992. const float maxScalar = _mm_cvtss_f32( max4 );
  993. // Quantize these floats
  994. const float d = maxScalar / 127.f;
  995. y[i].d = GGML_FP32_TO_FP16(d);
  996. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  997. const __m256 mul = _mm256_set1_ps( id );
  998. // Apply the multiplier
  999. v0 = _mm256_mul_ps( v0, mul );
  1000. v1 = _mm256_mul_ps( v1, mul );
  1001. v2 = _mm256_mul_ps( v2, mul );
  1002. v3 = _mm256_mul_ps( v3, mul );
  1003. // Round to nearest integer
  1004. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1005. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1006. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1007. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1008. // Convert floats to integers
  1009. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1010. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1011. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1012. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1013. #if defined(__AVX2__)
  1014. // Convert int32 to int16
  1015. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1016. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1017. // Convert int16 to int8
  1018. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1019. // We got our precious signed bytes, but the order is now wrong
  1020. // These AVX2 pack instructions process 16-byte pieces independently
  1021. // The following instruction is fixing the order
  1022. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1023. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1024. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1025. #else
  1026. // Since we don't have in AVX some necessary functions,
  1027. // we split the registers in half and call AVX2 analogs from SSE
  1028. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1029. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1030. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1031. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1032. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1033. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1034. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1035. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1036. // Convert int32 to int16
  1037. ni0 = _mm_packs_epi32( ni0, ni1 );
  1038. ni2 = _mm_packs_epi32( ni2, ni3 );
  1039. ni4 = _mm_packs_epi32( ni4, ni5 );
  1040. ni6 = _mm_packs_epi32( ni6, ni7 );
  1041. // Convert int16 to int8
  1042. ni0 = _mm_packs_epi16( ni0, ni2 );
  1043. ni4 = _mm_packs_epi16( ni4, ni6 );
  1044. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1045. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1046. #endif
  1047. }
  1048. #else
  1049. // scalar
  1050. quantize_row_q8_0_reference(x, y, k);
  1051. #endif
  1052. }
  1053. // reference implementation for deterministic creation of model files
  1054. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1055. assert(QK8_1 == 32);
  1056. assert(k % QK8_1 == 0);
  1057. const int nb = k / QK8_1;
  1058. for (int i = 0; i < nb; i++) {
  1059. float amax = 0.0f; // absolute max
  1060. for (int j = 0; j < QK8_1; j++) {
  1061. const float v = x[i*QK8_1 + j];
  1062. amax = MAX(amax, fabsf(v));
  1063. }
  1064. const float d = amax / ((1 << 7) - 1);
  1065. const float id = d ? 1.0f/d : 0.0f;
  1066. y[i].d = d;
  1067. int sum = 0;
  1068. for (int j = 0; j < QK8_1/2; ++j) {
  1069. const float v0 = x[i*QK8_1 + j]*id;
  1070. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1071. y[i].qs[ j] = roundf(v0);
  1072. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1073. sum += y[i].qs[ j];
  1074. sum += y[i].qs[QK8_1/2 + j];
  1075. }
  1076. y[i].s = sum*d;
  1077. }
  1078. }
  1079. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1080. assert(k % QK8_1 == 0);
  1081. const int nb = k / QK8_1;
  1082. block_q8_1 * restrict y = vy;
  1083. #if defined(__ARM_NEON)
  1084. for (int i = 0; i < nb; i++) {
  1085. float32x4_t srcv [8];
  1086. float32x4_t asrcv[8];
  1087. float32x4_t amaxv[8];
  1088. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1089. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1090. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1091. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1092. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1093. const float amax = vmaxvq_f32(amaxv[0]);
  1094. const float d = amax / ((1 << 7) - 1);
  1095. const float id = d ? 1.0f/d : 0.0f;
  1096. y[i].d = d;
  1097. int32x4_t accv = vdupq_n_s32(0);
  1098. for (int j = 0; j < 8; j++) {
  1099. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1100. const int32x4_t vi = vcvtnq_s32_f32(v);
  1101. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1102. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1103. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1104. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1105. accv = vaddq_s32(accv, vi);
  1106. }
  1107. y[i].s = d * vaddvq_s32(accv);
  1108. }
  1109. #elif defined(__wasm_simd128__)
  1110. for (int i = 0; i < nb; i++) {
  1111. v128_t srcv [8];
  1112. v128_t asrcv[8];
  1113. v128_t amaxv[8];
  1114. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1115. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1116. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1117. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1118. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1119. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1120. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1121. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1122. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1123. const float d = amax / ((1 << 7) - 1);
  1124. const float id = d ? 1.0f/d : 0.0f;
  1125. y[i].d = d;
  1126. v128_t accv = wasm_i32x4_splat(0);
  1127. for (int j = 0; j < 8; j++) {
  1128. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1129. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1130. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1131. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1132. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1133. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1134. accv = wasm_i32x4_add(accv, vi);
  1135. }
  1136. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1137. wasm_i32x4_extract_lane(accv, 1) +
  1138. wasm_i32x4_extract_lane(accv, 2) +
  1139. wasm_i32x4_extract_lane(accv, 3));
  1140. }
  1141. #elif defined(__AVX2__) || defined(__AVX__)
  1142. for (int i = 0; i < nb; i++) {
  1143. // Load elements into 4 AVX vectors
  1144. __m256 v0 = _mm256_loadu_ps( x );
  1145. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1146. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1147. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1148. x += 32;
  1149. // Compute max(abs(e)) for the block
  1150. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1151. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1152. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1153. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1154. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1155. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1156. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1157. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1158. const float maxScalar = _mm_cvtss_f32( max4 );
  1159. // Quantize these floats
  1160. const float d = maxScalar / 127.f;
  1161. y[i].d = d;
  1162. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1163. const __m256 mul = _mm256_set1_ps( id );
  1164. // Apply the multiplier
  1165. v0 = _mm256_mul_ps( v0, mul );
  1166. v1 = _mm256_mul_ps( v1, mul );
  1167. v2 = _mm256_mul_ps( v2, mul );
  1168. v3 = _mm256_mul_ps( v3, mul );
  1169. // Round to nearest integer
  1170. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1171. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1172. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1173. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1174. // Convert floats to integers
  1175. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1176. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1177. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1178. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1179. #if defined(__AVX2__)
  1180. // Compute the sum of the quants and set y[i].s
  1181. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1182. // Convert int32 to int16
  1183. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1184. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1185. // Convert int16 to int8
  1186. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1187. // We got our precious signed bytes, but the order is now wrong
  1188. // These AVX2 pack instructions process 16-byte pieces independently
  1189. // The following instruction is fixing the order
  1190. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1191. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1192. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1193. #else
  1194. // Since we don't have in AVX some necessary functions,
  1195. // we split the registers in half and call AVX2 analogs from SSE
  1196. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1197. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1198. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1199. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1200. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1201. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1202. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1203. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1204. // Compute the sum of the quants and set y[i].s
  1205. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1206. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1207. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1208. // Convert int32 to int16
  1209. ni0 = _mm_packs_epi32( ni0, ni1 );
  1210. ni2 = _mm_packs_epi32( ni2, ni3 );
  1211. ni4 = _mm_packs_epi32( ni4, ni5 );
  1212. ni6 = _mm_packs_epi32( ni6, ni7 );
  1213. // Convert int16 to int8
  1214. ni0 = _mm_packs_epi16( ni0, ni2 );
  1215. ni4 = _mm_packs_epi16( ni4, ni6 );
  1216. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1217. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1218. #endif
  1219. }
  1220. #else
  1221. // scalar
  1222. quantize_row_q8_1_reference(x, y, k);
  1223. #endif
  1224. }
  1225. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1226. static const int qk = QK4_0;
  1227. assert(k % qk == 0);
  1228. const int nb = k / qk;
  1229. for (int i = 0; i < nb; i++) {
  1230. const float d = GGML_FP16_TO_FP32(x[i].d);
  1231. for (int j = 0; j < qk/2; ++j) {
  1232. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1233. const int x1 = (x[i].qs[j] >> 4) - 8;
  1234. y[i*qk + j + 0 ] = x0*d;
  1235. y[i*qk + j + qk/2] = x1*d;
  1236. }
  1237. }
  1238. }
  1239. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1240. static const int qk = QK4_1;
  1241. assert(k % qk == 0);
  1242. const int nb = k / qk;
  1243. for (int i = 0; i < nb; i++) {
  1244. const float d = GGML_FP16_TO_FP32(x[i].d);
  1245. const float m = GGML_FP16_TO_FP32(x[i].m);
  1246. for (int j = 0; j < qk/2; ++j) {
  1247. const int x0 = (x[i].qs[j] & 0x0F);
  1248. const int x1 = (x[i].qs[j] >> 4);
  1249. y[i*qk + j + 0 ] = x0*d + m;
  1250. y[i*qk + j + qk/2] = x1*d + m;
  1251. }
  1252. }
  1253. }
  1254. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1255. static const int qk = QK5_0;
  1256. assert(k % qk == 0);
  1257. const int nb = k / qk;
  1258. for (int i = 0; i < nb; i++) {
  1259. const float d = GGML_FP16_TO_FP32(x[i].d);
  1260. uint32_t qh;
  1261. memcpy(&qh, x[i].qh, sizeof(qh));
  1262. for (int j = 0; j < qk/2; ++j) {
  1263. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1264. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1265. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1266. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1267. y[i*qk + j + 0 ] = x0*d;
  1268. y[i*qk + j + qk/2] = x1*d;
  1269. }
  1270. }
  1271. }
  1272. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1273. static const int qk = QK5_1;
  1274. assert(k % qk == 0);
  1275. const int nb = k / qk;
  1276. for (int i = 0; i < nb; i++) {
  1277. const float d = GGML_FP16_TO_FP32(x[i].d);
  1278. const float m = GGML_FP16_TO_FP32(x[i].m);
  1279. uint32_t qh;
  1280. memcpy(&qh, x[i].qh, sizeof(qh));
  1281. for (int j = 0; j < qk/2; ++j) {
  1282. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1283. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1284. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1285. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1286. y[i*qk + j + 0 ] = x0*d + m;
  1287. y[i*qk + j + qk/2] = x1*d + m;
  1288. }
  1289. }
  1290. }
  1291. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1292. static const int qk = QK8_0;
  1293. assert(k % qk == 0);
  1294. const int nb = k / qk;
  1295. const block_q8_0 * restrict x = vx;
  1296. for (int i = 0; i < nb; i++) {
  1297. const float d = GGML_FP16_TO_FP32(x[i].d);
  1298. for (int j = 0; j < qk; ++j) {
  1299. y[i*qk + j] = x[i].qs[j]*d;
  1300. }
  1301. }
  1302. }
  1303. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1304. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1305. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1306. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1307. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1308. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1309. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1310. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1311. [GGML_TYPE_I8] = {
  1312. .type_name = "i8",
  1313. .blck_size = 1,
  1314. .type_size = sizeof(int8_t),
  1315. .is_quantized = false,
  1316. },
  1317. [GGML_TYPE_I16] = {
  1318. .type_name = "i16",
  1319. .blck_size = 1,
  1320. .type_size = sizeof(int16_t),
  1321. .is_quantized = false,
  1322. },
  1323. [GGML_TYPE_I32] = {
  1324. .type_name = "i32",
  1325. .blck_size = 1,
  1326. .type_size = sizeof(int32_t),
  1327. .is_quantized = false,
  1328. },
  1329. [GGML_TYPE_F32] = {
  1330. .type_name = "f32",
  1331. .blck_size = 1,
  1332. .type_size = sizeof(float),
  1333. .is_quantized = false,
  1334. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1335. .vec_dot_type = GGML_TYPE_F32,
  1336. },
  1337. [GGML_TYPE_F16] = {
  1338. .type_name = "f16",
  1339. .blck_size = 1,
  1340. .type_size = sizeof(ggml_fp16_t),
  1341. .is_quantized = false,
  1342. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1343. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1344. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1345. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1346. .vec_dot_type = GGML_TYPE_F16,
  1347. },
  1348. [GGML_TYPE_Q4_0] = {
  1349. .type_name = "q4_0",
  1350. .blck_size = QK4_0,
  1351. .type_size = sizeof(block_q4_0),
  1352. .is_quantized = true,
  1353. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1354. .from_float = quantize_row_q4_0,
  1355. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1356. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1357. .vec_dot_type = GGML_TYPE_Q8_0,
  1358. },
  1359. [GGML_TYPE_Q4_1] = {
  1360. .type_name = "q4_1",
  1361. .blck_size = QK4_1,
  1362. .type_size = sizeof(block_q4_1),
  1363. .is_quantized = true,
  1364. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1365. .from_float = quantize_row_q4_1,
  1366. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1367. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1368. .vec_dot_type = GGML_TYPE_Q8_1,
  1369. },
  1370. [GGML_TYPE_Q5_0] = {
  1371. .type_name = "q5_0",
  1372. .blck_size = QK5_0,
  1373. .type_size = sizeof(block_q5_0),
  1374. .is_quantized = true,
  1375. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1376. .from_float = quantize_row_q5_0,
  1377. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1378. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1379. .vec_dot_type = GGML_TYPE_Q8_0,
  1380. },
  1381. [GGML_TYPE_Q5_1] = {
  1382. .type_name = "q5_1",
  1383. .blck_size = QK5_1,
  1384. .type_size = sizeof(block_q5_1),
  1385. .is_quantized = true,
  1386. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1387. .from_float = quantize_row_q5_1,
  1388. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1389. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1390. .vec_dot_type = GGML_TYPE_Q8_1,
  1391. },
  1392. [GGML_TYPE_Q8_0] = {
  1393. .type_name = "q8_0",
  1394. .blck_size = QK8_0,
  1395. .type_size = sizeof(block_q8_0),
  1396. .is_quantized = true,
  1397. .to_float = dequantize_row_q8_0,
  1398. .from_float = quantize_row_q8_0,
  1399. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1400. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1401. .vec_dot_type = GGML_TYPE_Q8_0,
  1402. },
  1403. [GGML_TYPE_Q8_1] = {
  1404. .type_name = "q8_1",
  1405. .blck_size = QK8_1,
  1406. .type_size = sizeof(block_q8_1),
  1407. .is_quantized = true,
  1408. .from_float = quantize_row_q8_1,
  1409. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1410. .vec_dot_type = GGML_TYPE_Q8_1,
  1411. },
  1412. #ifdef GGML_USE_K_QUANTS
  1413. [GGML_TYPE_Q2_K] = {
  1414. .type_name = "q2_K",
  1415. .blck_size = QK_K,
  1416. .type_size = sizeof(block_q2_K),
  1417. .is_quantized = true,
  1418. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1419. .from_float = quantize_row_q2_K,
  1420. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1421. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1422. .vec_dot_type = GGML_TYPE_Q8_K,
  1423. },
  1424. [GGML_TYPE_Q3_K] = {
  1425. .type_name = "q3_K",
  1426. .blck_size = QK_K,
  1427. .type_size = sizeof(block_q3_K),
  1428. .is_quantized = true,
  1429. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1430. .from_float = quantize_row_q3_K,
  1431. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1432. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1433. .vec_dot_type = GGML_TYPE_Q8_K,
  1434. },
  1435. [GGML_TYPE_Q4_K] = {
  1436. .type_name = "q4_K",
  1437. .blck_size = QK_K,
  1438. .type_size = sizeof(block_q4_K),
  1439. .is_quantized = true,
  1440. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1441. .from_float = quantize_row_q4_K,
  1442. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1443. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1444. .vec_dot_type = GGML_TYPE_Q8_K,
  1445. },
  1446. [GGML_TYPE_Q5_K] = {
  1447. .type_name = "q5_K",
  1448. .blck_size = QK_K,
  1449. .type_size = sizeof(block_q5_K),
  1450. .is_quantized = true,
  1451. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1452. .from_float = quantize_row_q5_K,
  1453. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1454. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1455. .vec_dot_type = GGML_TYPE_Q8_K,
  1456. },
  1457. [GGML_TYPE_Q6_K] = {
  1458. .type_name = "q6_K",
  1459. .blck_size = QK_K,
  1460. .type_size = sizeof(block_q6_K),
  1461. .is_quantized = true,
  1462. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1463. .from_float = quantize_row_q6_K,
  1464. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1465. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1466. .vec_dot_type = GGML_TYPE_Q8_K,
  1467. },
  1468. [GGML_TYPE_Q8_K] = {
  1469. .type_name = "q8_K",
  1470. .blck_size = QK_K,
  1471. .type_size = sizeof(block_q8_K),
  1472. .is_quantized = true,
  1473. .from_float = quantize_row_q8_K,
  1474. }
  1475. #endif
  1476. };
  1477. // For internal test use
  1478. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1479. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1480. return type_traits[type];
  1481. }
  1482. //
  1483. // simd mappings
  1484. //
  1485. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1486. // we then implement the fundamental computation operations below using only these macros
  1487. // adding support for new architectures requires to define the corresponding SIMD macros
  1488. //
  1489. // GGML_F32_STEP / GGML_F16_STEP
  1490. // number of elements to process in a single step
  1491. //
  1492. // GGML_F32_EPR / GGML_F16_EPR
  1493. // number of elements to fit in a single register
  1494. //
  1495. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1496. #define GGML_SIMD
  1497. // F32 NEON
  1498. #define GGML_F32_STEP 16
  1499. #define GGML_F32_EPR 4
  1500. #define GGML_F32x4 float32x4_t
  1501. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1502. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1503. #define GGML_F32x4_LOAD vld1q_f32
  1504. #define GGML_F32x4_STORE vst1q_f32
  1505. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1506. #define GGML_F32x4_ADD vaddq_f32
  1507. #define GGML_F32x4_MUL vmulq_f32
  1508. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1509. #define GGML_F32x4_REDUCE(res, x) \
  1510. { \
  1511. int offset = GGML_F32_ARR >> 1; \
  1512. for (int i = 0; i < offset; ++i) { \
  1513. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1514. } \
  1515. offset >>= 1; \
  1516. for (int i = 0; i < offset; ++i) { \
  1517. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1518. } \
  1519. offset >>= 1; \
  1520. for (int i = 0; i < offset; ++i) { \
  1521. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1522. } \
  1523. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1524. }
  1525. #define GGML_F32_VEC GGML_F32x4
  1526. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1527. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1528. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1529. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1530. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1531. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1532. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1533. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1534. // F16 NEON
  1535. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1536. #define GGML_F16_STEP 32
  1537. #define GGML_F16_EPR 8
  1538. #define GGML_F16x8 float16x8_t
  1539. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1540. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1541. #define GGML_F16x8_LOAD vld1q_f16
  1542. #define GGML_F16x8_STORE vst1q_f16
  1543. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1544. #define GGML_F16x8_ADD vaddq_f16
  1545. #define GGML_F16x8_MUL vmulq_f16
  1546. #define GGML_F16x8_REDUCE(res, x) \
  1547. { \
  1548. int offset = GGML_F16_ARR >> 1; \
  1549. for (int i = 0; i < offset; ++i) { \
  1550. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1551. } \
  1552. offset >>= 1; \
  1553. for (int i = 0; i < offset; ++i) { \
  1554. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1555. } \
  1556. offset >>= 1; \
  1557. for (int i = 0; i < offset; ++i) { \
  1558. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1559. } \
  1560. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1561. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1562. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1563. }
  1564. #define GGML_F16_VEC GGML_F16x8
  1565. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1566. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1567. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1568. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1569. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1570. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1571. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1572. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1573. #else
  1574. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1575. // and take advantage of the vcvt_ functions to convert to/from FP16
  1576. #define GGML_F16_STEP 16
  1577. #define GGML_F16_EPR 4
  1578. #define GGML_F32Cx4 float32x4_t
  1579. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1580. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1581. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1582. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1583. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1584. #define GGML_F32Cx4_ADD vaddq_f32
  1585. #define GGML_F32Cx4_MUL vmulq_f32
  1586. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1587. #define GGML_F16_VEC GGML_F32Cx4
  1588. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1589. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1590. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1591. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1592. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1593. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1594. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1595. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1596. #endif
  1597. #elif defined(__AVX__)
  1598. #define GGML_SIMD
  1599. // F32 AVX
  1600. #define GGML_F32_STEP 32
  1601. #define GGML_F32_EPR 8
  1602. #define GGML_F32x8 __m256
  1603. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1604. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1605. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1606. #define GGML_F32x8_STORE _mm256_storeu_ps
  1607. #if defined(__FMA__)
  1608. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1609. #else
  1610. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1611. #endif
  1612. #define GGML_F32x8_ADD _mm256_add_ps
  1613. #define GGML_F32x8_MUL _mm256_mul_ps
  1614. #define GGML_F32x8_REDUCE(res, x) \
  1615. { \
  1616. int offset = GGML_F32_ARR >> 1; \
  1617. for (int i = 0; i < offset; ++i) { \
  1618. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1619. } \
  1620. offset >>= 1; \
  1621. for (int i = 0; i < offset; ++i) { \
  1622. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1623. } \
  1624. offset >>= 1; \
  1625. for (int i = 0; i < offset; ++i) { \
  1626. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1627. } \
  1628. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1629. _mm256_extractf128_ps(x[0], 1)); \
  1630. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1631. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1632. }
  1633. // TODO: is this optimal ?
  1634. #define GGML_F32_VEC GGML_F32x8
  1635. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1636. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1637. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1638. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1639. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1640. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1641. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1642. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1643. // F16 AVX
  1644. #define GGML_F16_STEP 32
  1645. #define GGML_F16_EPR 8
  1646. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1647. #define GGML_F32Cx8 __m256
  1648. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1649. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1650. #if defined(__F16C__)
  1651. // the _mm256_cvt intrinsics require F16C
  1652. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1653. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1654. #else
  1655. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1656. float tmp[8];
  1657. for (int i = 0; i < 8; i++) {
  1658. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1659. }
  1660. return _mm256_loadu_ps(tmp);
  1661. }
  1662. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1663. float arr[8];
  1664. _mm256_storeu_ps(arr, y);
  1665. for (int i = 0; i < 8; i++)
  1666. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1667. }
  1668. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1669. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1670. #endif
  1671. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1672. #define GGML_F32Cx8_ADD _mm256_add_ps
  1673. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1674. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1675. #define GGML_F16_VEC GGML_F32Cx8
  1676. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1677. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1678. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1679. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1680. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1681. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1682. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1683. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1684. #elif defined(__POWER9_VECTOR__)
  1685. #define GGML_SIMD
  1686. // F32 POWER9
  1687. #define GGML_F32_STEP 32
  1688. #define GGML_F32_EPR 4
  1689. #define GGML_F32x4 vector float
  1690. #define GGML_F32x4_ZERO 0.0f
  1691. #define GGML_F32x4_SET1 vec_splats
  1692. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1693. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1694. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1695. #define GGML_F32x4_ADD vec_add
  1696. #define GGML_F32x4_MUL vec_mul
  1697. #define GGML_F32x4_REDUCE(res, x) \
  1698. { \
  1699. int offset = GGML_F32_ARR >> 1; \
  1700. for (int i = 0; i < offset; ++i) { \
  1701. x[i] = vec_add(x[i], x[offset+i]); \
  1702. } \
  1703. offset >>= 1; \
  1704. for (int i = 0; i < offset; ++i) { \
  1705. x[i] = vec_add(x[i], x[offset+i]); \
  1706. } \
  1707. offset >>= 1; \
  1708. for (int i = 0; i < offset; ++i) { \
  1709. x[i] = vec_add(x[i], x[offset+i]); \
  1710. } \
  1711. res = vec_extract(x[0], 0) + \
  1712. vec_extract(x[0], 1) + \
  1713. vec_extract(x[0], 2) + \
  1714. vec_extract(x[0], 3); \
  1715. }
  1716. #define GGML_F32_VEC GGML_F32x4
  1717. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1718. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1719. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1720. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1721. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1722. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1723. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1724. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1725. // F16 POWER9
  1726. #define GGML_F16_STEP GGML_F32_STEP
  1727. #define GGML_F16_EPR GGML_F32_EPR
  1728. #define GGML_F16_VEC GGML_F32x4
  1729. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1730. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1731. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1732. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1733. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1734. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1735. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1736. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1737. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1738. #define GGML_F16_VEC_STORE(p, r, i) \
  1739. if (i & 0x1) \
  1740. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1741. r[i - GGML_ENDIAN_BYTE(0)]), \
  1742. 0, p - GGML_F16_EPR)
  1743. #elif defined(__wasm_simd128__)
  1744. #define GGML_SIMD
  1745. // F32 WASM
  1746. #define GGML_F32_STEP 16
  1747. #define GGML_F32_EPR 4
  1748. #define GGML_F32x4 v128_t
  1749. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1750. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1751. #define GGML_F32x4_LOAD wasm_v128_load
  1752. #define GGML_F32x4_STORE wasm_v128_store
  1753. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1754. #define GGML_F32x4_ADD wasm_f32x4_add
  1755. #define GGML_F32x4_MUL wasm_f32x4_mul
  1756. #define GGML_F32x4_REDUCE(res, x) \
  1757. { \
  1758. int offset = GGML_F32_ARR >> 1; \
  1759. for (int i = 0; i < offset; ++i) { \
  1760. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1761. } \
  1762. offset >>= 1; \
  1763. for (int i = 0; i < offset; ++i) { \
  1764. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1765. } \
  1766. offset >>= 1; \
  1767. for (int i = 0; i < offset; ++i) { \
  1768. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1769. } \
  1770. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1771. wasm_f32x4_extract_lane(x[0], 1) + \
  1772. wasm_f32x4_extract_lane(x[0], 2) + \
  1773. wasm_f32x4_extract_lane(x[0], 3); \
  1774. }
  1775. #define GGML_F32_VEC GGML_F32x4
  1776. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1777. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1778. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1779. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1780. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1781. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1782. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1783. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1784. // F16 WASM
  1785. #define GGML_F16_STEP 16
  1786. #define GGML_F16_EPR 4
  1787. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1788. float tmp[4];
  1789. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1790. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1791. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1792. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1793. return wasm_v128_load(tmp);
  1794. }
  1795. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1796. float tmp[4];
  1797. wasm_v128_store(tmp, x);
  1798. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1799. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1800. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1801. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1802. }
  1803. #define GGML_F16x4 v128_t
  1804. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1805. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1806. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1807. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1808. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1809. #define GGML_F16x4_ADD wasm_f32x4_add
  1810. #define GGML_F16x4_MUL wasm_f32x4_mul
  1811. #define GGML_F16x4_REDUCE(res, x) \
  1812. { \
  1813. int offset = GGML_F16_ARR >> 1; \
  1814. for (int i = 0; i < offset; ++i) { \
  1815. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1816. } \
  1817. offset >>= 1; \
  1818. for (int i = 0; i < offset; ++i) { \
  1819. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1820. } \
  1821. offset >>= 1; \
  1822. for (int i = 0; i < offset; ++i) { \
  1823. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1824. } \
  1825. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1826. wasm_f32x4_extract_lane(x[0], 1) + \
  1827. wasm_f32x4_extract_lane(x[0], 2) + \
  1828. wasm_f32x4_extract_lane(x[0], 3); \
  1829. }
  1830. #define GGML_F16_VEC GGML_F16x4
  1831. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1832. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1833. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1834. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1835. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1836. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1837. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1838. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1839. #elif defined(__SSE3__)
  1840. #define GGML_SIMD
  1841. // F32 SSE
  1842. #define GGML_F32_STEP 32
  1843. #define GGML_F32_EPR 4
  1844. #define GGML_F32x4 __m128
  1845. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1846. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1847. #define GGML_F32x4_LOAD _mm_loadu_ps
  1848. #define GGML_F32x4_STORE _mm_storeu_ps
  1849. #if defined(__FMA__)
  1850. // TODO: Does this work?
  1851. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1852. #else
  1853. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1854. #endif
  1855. #define GGML_F32x4_ADD _mm_add_ps
  1856. #define GGML_F32x4_MUL _mm_mul_ps
  1857. #define GGML_F32x4_REDUCE(res, x) \
  1858. { \
  1859. int offset = GGML_F32_ARR >> 1; \
  1860. for (int i = 0; i < offset; ++i) { \
  1861. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1862. } \
  1863. offset >>= 1; \
  1864. for (int i = 0; i < offset; ++i) { \
  1865. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1866. } \
  1867. offset >>= 1; \
  1868. for (int i = 0; i < offset; ++i) { \
  1869. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1870. } \
  1871. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1872. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1873. }
  1874. // TODO: is this optimal ?
  1875. #define GGML_F32_VEC GGML_F32x4
  1876. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1877. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1878. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1879. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1880. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1881. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1882. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1883. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1884. // F16 SSE
  1885. #define GGML_F16_STEP 32
  1886. #define GGML_F16_EPR 4
  1887. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1888. float tmp[4];
  1889. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1890. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1891. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1892. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1893. return _mm_loadu_ps(tmp);
  1894. }
  1895. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1896. float arr[4];
  1897. _mm_storeu_ps(arr, y);
  1898. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1899. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1900. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1901. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1902. }
  1903. #define GGML_F32Cx4 __m128
  1904. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1905. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1906. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1907. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1908. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1909. #define GGML_F32Cx4_ADD _mm_add_ps
  1910. #define GGML_F32Cx4_MUL _mm_mul_ps
  1911. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1912. #define GGML_F16_VEC GGML_F32Cx4
  1913. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1914. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1915. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1916. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1917. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1918. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1919. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1920. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1921. #endif
  1922. // GGML_F32_ARR / GGML_F16_ARR
  1923. // number of registers to use per step
  1924. #ifdef GGML_SIMD
  1925. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1926. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1927. #endif
  1928. //
  1929. // fundamental operations
  1930. //
  1931. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1932. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1933. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1934. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1935. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1936. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1937. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1938. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1939. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1940. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1941. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1942. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1943. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1944. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1945. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1946. #ifdef GGML_SIMD
  1947. float sumf = 0.0f;
  1948. const int np = (n & ~(GGML_F32_STEP - 1));
  1949. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1950. GGML_F32_VEC ax[GGML_F32_ARR];
  1951. GGML_F32_VEC ay[GGML_F32_ARR];
  1952. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1953. for (int j = 0; j < GGML_F32_ARR; j++) {
  1954. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1955. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1956. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1957. }
  1958. }
  1959. // reduce sum0..sum3 to sum0
  1960. GGML_F32_VEC_REDUCE(sumf, sum);
  1961. // leftovers
  1962. for (int i = np; i < n; ++i) {
  1963. sumf += x[i]*y[i];
  1964. }
  1965. #else
  1966. // scalar
  1967. ggml_float sumf = 0.0;
  1968. for (int i = 0; i < n; ++i) {
  1969. sumf += (ggml_float)(x[i]*y[i]);
  1970. }
  1971. #endif
  1972. *s = sumf;
  1973. }
  1974. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1975. ggml_float sumf = 0.0;
  1976. #if defined(GGML_SIMD)
  1977. const int np = (n & ~(GGML_F16_STEP - 1));
  1978. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1979. GGML_F16_VEC ax[GGML_F16_ARR];
  1980. GGML_F16_VEC ay[GGML_F16_ARR];
  1981. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1982. for (int j = 0; j < GGML_F16_ARR; j++) {
  1983. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1984. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1985. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1986. }
  1987. }
  1988. // reduce sum0..sum3 to sum0
  1989. GGML_F16_VEC_REDUCE(sumf, sum);
  1990. // leftovers
  1991. for (int i = np; i < n; ++i) {
  1992. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1993. }
  1994. #else
  1995. for (int i = 0; i < n; ++i) {
  1996. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1997. }
  1998. #endif
  1999. *s = sumf;
  2000. }
  2001. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2002. const int qk = QK8_0;
  2003. const int nb = n / qk;
  2004. assert(n % qk == 0);
  2005. const block_q4_0 * restrict x = vx;
  2006. const block_q8_0 * restrict y = vy;
  2007. #if defined(__ARM_NEON)
  2008. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2009. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2010. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2011. for (int i = 0; i < nb; i += 2) {
  2012. const block_q4_0 * restrict x0 = &x[i + 0];
  2013. const block_q4_0 * restrict x1 = &x[i + 1];
  2014. const block_q8_0 * restrict y0 = &y[i + 0];
  2015. const block_q8_0 * restrict y1 = &y[i + 1];
  2016. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2017. const int8x16_t s8b = vdupq_n_s8(0x8);
  2018. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2019. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2020. // 4-bit -> 8-bit
  2021. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2022. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2023. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2024. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2025. // sub 8
  2026. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2027. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2028. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2029. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2030. // load y
  2031. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2032. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2033. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2034. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2035. #if defined(__ARM_FEATURE_DOTPROD)
  2036. // dot product into int32x4_t
  2037. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2038. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2039. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2040. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2041. #else
  2042. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2043. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2044. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2045. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2046. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2047. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2048. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2049. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2050. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2051. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2052. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2053. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2054. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2055. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2056. #endif
  2057. }
  2058. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2059. #elif defined(__AVX2__)
  2060. // Initialize accumulator with zeros
  2061. __m256 acc = _mm256_setzero_ps();
  2062. // Main loop
  2063. for (int i = 0; i < nb; ++i) {
  2064. /* Compute combined scale for the block */
  2065. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2066. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2067. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2068. const __m256i off = _mm256_set1_epi8( 8 );
  2069. bx = _mm256_sub_epi8( bx, off );
  2070. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2071. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2072. /* Multiply q with scale and accumulate */
  2073. acc = _mm256_fmadd_ps( d, q, acc );
  2074. }
  2075. *s = hsum_float_8(acc);
  2076. #elif defined(__AVX__)
  2077. // Initialize accumulator with zeros
  2078. __m256 acc = _mm256_setzero_ps();
  2079. // Main loop
  2080. for (int i = 0; i < nb; ++i) {
  2081. // Compute combined scale for the block
  2082. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2083. const __m128i lowMask = _mm_set1_epi8(0xF);
  2084. const __m128i off = _mm_set1_epi8(8);
  2085. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2086. __m128i bx = _mm_and_si128(lowMask, tmp);
  2087. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2088. bx = _mm_sub_epi8(bx, off);
  2089. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2090. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2091. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2092. bx = _mm_sub_epi8(bx, off);
  2093. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2094. // Convert int32_t to float
  2095. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2096. // Apply the scale, and accumulate
  2097. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2098. }
  2099. *s = hsum_float_8(acc);
  2100. #elif defined(__SSSE3__)
  2101. // set constants
  2102. const __m128i lowMask = _mm_set1_epi8(0xF);
  2103. const __m128i off = _mm_set1_epi8(8);
  2104. // Initialize accumulator with zeros
  2105. __m128 acc_0 = _mm_setzero_ps();
  2106. __m128 acc_1 = _mm_setzero_ps();
  2107. __m128 acc_2 = _mm_setzero_ps();
  2108. __m128 acc_3 = _mm_setzero_ps();
  2109. // First round without accumulation
  2110. {
  2111. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2112. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2113. // Compute combined scale for the block 0 and 1
  2114. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2115. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2116. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2117. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2118. bx_0 = _mm_sub_epi8(bx_0, off);
  2119. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2120. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2121. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2122. bx_1 = _mm_sub_epi8(bx_1, off);
  2123. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2124. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2125. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2126. // Compute combined scale for the block 2 and 3
  2127. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2128. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2129. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2130. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2131. bx_2 = _mm_sub_epi8(bx_2, off);
  2132. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2133. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2134. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2135. bx_3 = _mm_sub_epi8(bx_3, off);
  2136. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2137. // Convert int32_t to float
  2138. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2139. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2140. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2141. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2142. // Apply the scale
  2143. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2144. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2145. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2146. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2147. }
  2148. // Main loop
  2149. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2150. for (int i = 2; i < nb; i+=2) {
  2151. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2152. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2153. // Compute combined scale for the block 0 and 1
  2154. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2155. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2156. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2157. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2158. bx_0 = _mm_sub_epi8(bx_0, off);
  2159. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2160. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2161. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2162. bx_1 = _mm_sub_epi8(bx_1, off);
  2163. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2164. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2165. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2166. // Compute combined scale for the block 2 and 3
  2167. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2168. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2169. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2170. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2171. bx_2 = _mm_sub_epi8(bx_2, off);
  2172. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2173. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2174. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2175. bx_3 = _mm_sub_epi8(bx_3, off);
  2176. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2177. // Convert int32_t to float
  2178. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2179. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2180. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2181. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2182. // Apply the scale
  2183. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2184. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2185. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2186. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2187. // Acummulate
  2188. acc_0 = _mm_add_ps(p0_d, acc_0);
  2189. acc_1 = _mm_add_ps(p1_d, acc_1);
  2190. acc_2 = _mm_add_ps(p2_d, acc_2);
  2191. acc_3 = _mm_add_ps(p3_d, acc_3);
  2192. }
  2193. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2194. #elif defined(__riscv_v_intrinsic)
  2195. float sumf = 0.0;
  2196. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2197. for (int i = 0; i < nb; i++) {
  2198. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2199. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2200. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2201. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2202. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2203. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2204. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2205. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 8, vl);
  2206. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 8, vl);
  2207. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2208. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2209. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2210. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2211. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2212. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2213. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2214. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2215. }
  2216. *s = sumf;
  2217. #else
  2218. // scalar
  2219. float sumf = 0.0;
  2220. for (int i = 0; i < nb; i++) {
  2221. int sumi = 0;
  2222. for (int j = 0; j < qk/2; ++j) {
  2223. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2224. const int v1 = (x[i].qs[j] >> 4) - 8;
  2225. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2226. }
  2227. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2228. }
  2229. *s = sumf;
  2230. #endif
  2231. }
  2232. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2233. const int qk = QK8_1;
  2234. const int nb = n / qk;
  2235. assert(n % qk == 0);
  2236. const block_q4_1 * restrict x = vx;
  2237. const block_q8_1 * restrict y = vy;
  2238. // TODO: add WASM SIMD
  2239. #if defined(__ARM_NEON)
  2240. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2241. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2242. float summs = 0;
  2243. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2244. for (int i = 0; i < nb; i += 2) {
  2245. const block_q4_1 * restrict x0 = &x[i + 0];
  2246. const block_q4_1 * restrict x1 = &x[i + 1];
  2247. const block_q8_1 * restrict y0 = &y[i + 0];
  2248. const block_q8_1 * restrict y1 = &y[i + 1];
  2249. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2250. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2251. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2252. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2253. // 4-bit -> 8-bit
  2254. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2255. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2256. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2257. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2258. // load y
  2259. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2260. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2261. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2262. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2263. #if defined(__ARM_FEATURE_DOTPROD)
  2264. // dot product into int32x4_t
  2265. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2266. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2267. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2268. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2269. #else
  2270. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2271. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2272. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2273. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2274. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2275. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2276. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2277. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2278. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2279. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2280. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2281. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2282. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2283. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2284. #endif
  2285. }
  2286. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2287. #elif defined(__AVX2__) || defined(__AVX__)
  2288. // Initialize accumulator with zeros
  2289. __m256 acc = _mm256_setzero_ps();
  2290. float summs = 0;
  2291. // Main loop
  2292. for (int i = 0; i < nb; ++i) {
  2293. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2294. const float d1 = y[i].d;
  2295. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2296. const __m256 d0v = _mm256_set1_ps( d0 );
  2297. const __m256 d1v = _mm256_set1_ps( d1 );
  2298. // Compute combined scales
  2299. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2300. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2301. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2302. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2303. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2304. // Accumulate d0*d1*x*y
  2305. #if defined(__AVX2__)
  2306. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2307. #else
  2308. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2309. #endif
  2310. }
  2311. *s = hsum_float_8(acc) + summs;
  2312. #elif defined(__riscv_v_intrinsic)
  2313. float sumf = 0.0;
  2314. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2315. for (int i = 0; i < nb; i++) {
  2316. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2317. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2318. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2319. vuint8m1_t x_a = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2320. vuint8m1_t x_l = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2321. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2322. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2323. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2324. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2325. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2326. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2327. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2328. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2329. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2330. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2331. }
  2332. *s = sumf;
  2333. #else
  2334. // scalar
  2335. float sumf = 0.0;
  2336. for (int i = 0; i < nb; i++) {
  2337. int sumi = 0;
  2338. for (int j = 0; j < qk/2; ++j) {
  2339. const int v0 = (x[i].qs[j] & 0x0F);
  2340. const int v1 = (x[i].qs[j] >> 4);
  2341. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2342. }
  2343. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2344. }
  2345. *s = sumf;
  2346. #endif
  2347. }
  2348. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2349. const int qk = QK8_0;
  2350. const int nb = n / qk;
  2351. assert(n % qk == 0);
  2352. assert(qk == QK5_0);
  2353. const block_q5_0 * restrict x = vx;
  2354. const block_q8_0 * restrict y = vy;
  2355. #if defined(__ARM_NEON)
  2356. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2357. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2358. uint32_t qh0;
  2359. uint32_t qh1;
  2360. uint64_t tmp0[4];
  2361. uint64_t tmp1[4];
  2362. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2363. for (int i = 0; i < nb; i += 2) {
  2364. const block_q5_0 * restrict x0 = &x[i];
  2365. const block_q5_0 * restrict x1 = &x[i + 1];
  2366. const block_q8_0 * restrict y0 = &y[i];
  2367. const block_q8_0 * restrict y1 = &y[i + 1];
  2368. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2369. // extract the 5th bit via lookup table ((!b) << 4)
  2370. memcpy(&qh0, x0->qh, sizeof(qh0));
  2371. memcpy(&qh1, x1->qh, sizeof(qh1));
  2372. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2373. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2374. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2375. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2376. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2377. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2378. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2379. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2380. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2381. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2382. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2383. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2384. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2385. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2386. // 4-bit -> 8-bit
  2387. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2388. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2389. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2390. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2391. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2392. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2393. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2394. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2395. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2396. // load y
  2397. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2398. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2399. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2400. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2401. #if defined(__ARM_FEATURE_DOTPROD)
  2402. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2403. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2404. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2405. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2406. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2407. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2408. #else
  2409. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2410. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2411. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2412. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2413. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2414. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2415. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2416. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2417. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2418. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2419. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2420. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2421. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2422. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2423. #endif
  2424. }
  2425. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2426. #elif defined(__wasm_simd128__)
  2427. v128_t sumv = wasm_f32x4_splat(0.0f);
  2428. uint32_t qh;
  2429. uint64_t tmp[4];
  2430. // TODO: check if unrolling this is better
  2431. for (int i = 0; i < nb; ++i) {
  2432. const block_q5_0 * restrict x0 = &x[i];
  2433. const block_q8_0 * restrict y0 = &y[i];
  2434. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2435. // extract the 5th bit
  2436. memcpy(&qh, x0->qh, sizeof(qh));
  2437. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2438. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2439. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2440. tmp[3] = table_b2b_1[(qh >> 24) ];
  2441. const v128_t qhl = wasm_v128_load(tmp + 0);
  2442. const v128_t qhh = wasm_v128_load(tmp + 2);
  2443. const v128_t v0 = wasm_v128_load(x0->qs);
  2444. // 4-bit -> 8-bit
  2445. const v128_t v0l = wasm_v128_and (v0, m4b);
  2446. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2447. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2448. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2449. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2450. // load y
  2451. const v128_t v1l = wasm_v128_load(y0->qs);
  2452. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2453. // int8x16 -> int16x8
  2454. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2455. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2456. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2457. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2458. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2459. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2460. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2461. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2462. // dot product
  2463. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2464. wasm_i32x4_add(
  2465. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2466. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2467. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2468. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2469. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2470. }
  2471. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2472. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2473. #elif defined(__AVX2__)
  2474. // Initialize accumulator with zeros
  2475. __m256 acc = _mm256_setzero_ps();
  2476. // Main loop
  2477. for (int i = 0; i < nb; i++) {
  2478. /* Compute combined scale for the block */
  2479. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2480. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2481. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2482. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2483. bx = _mm256_or_si256(bx, bxhi);
  2484. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2485. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2486. /* Multiply q with scale and accumulate */
  2487. acc = _mm256_fmadd_ps(d, q, acc);
  2488. }
  2489. *s = hsum_float_8(acc);
  2490. #elif defined(__AVX__)
  2491. // Initialize accumulator with zeros
  2492. __m256 acc = _mm256_setzero_ps();
  2493. __m128i mask = _mm_set1_epi8((char)0xF0);
  2494. // Main loop
  2495. for (int i = 0; i < nb; i++) {
  2496. /* Compute combined scale for the block */
  2497. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2498. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2499. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2500. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2501. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2502. bxhil = _mm_andnot_si128(bxhil, mask);
  2503. bxhih = _mm_andnot_si128(bxhih, mask);
  2504. __m128i bxl = _mm256_castsi256_si128(bx);
  2505. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2506. bxl = _mm_or_si128(bxl, bxhil);
  2507. bxh = _mm_or_si128(bxh, bxhih);
  2508. bx = MM256_SET_M128I(bxh, bxl);
  2509. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2510. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2511. /* Multiply q with scale and accumulate */
  2512. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2513. }
  2514. *s = hsum_float_8(acc);
  2515. #elif defined(__riscv_v_intrinsic)
  2516. float sumf = 0.0;
  2517. uint32_t qh;
  2518. // These temp values are for masking and shift operations
  2519. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2520. uint32_t temp_2[16] = {0x1, 0x2, 0x4, 0x8, 0x10, 0x20, 0x40, 0x80,
  2521. 0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000, 0x8000};
  2522. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2523. for (int i = 0; i < nb; i++) {
  2524. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2525. // temporary registers
  2526. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_2, vl);
  2527. vuint32m4_t vt_2 = __riscv_vle32_v_u32m4(temp_1, vl);
  2528. vuint32m4_t vt_3 = __riscv_vsll_vx_u32m4(vt_1, 16, vl);
  2529. vuint32m4_t vt_4 = __riscv_vadd_vx_u32m4(vt_2, 12, vl);
  2530. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2531. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(vt_1, qh, vl);
  2532. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(xha_0, vt_2, vl);
  2533. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2534. // ((qh & (1u << (j + 16))) >> (j + 12));
  2535. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(vt_3, qh, vl);
  2536. vuint32m4_t xhl_1 = __riscv_vsrl_vv_u32m4(xha_1, vt_4, vl);
  2537. // narrowing
  2538. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xhl_0, vl);
  2539. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2540. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xhl_1, vl);
  2541. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2542. // load
  2543. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2544. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2545. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2546. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2547. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2548. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2549. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2550. vint8m1_t x_ai = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2551. vint8m1_t x_li = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2552. vint8m1_t v0 = __riscv_vsub_vx_i8m1(x_ai, 16, vl);
  2553. vint8m1_t v1 = __riscv_vsub_vx_i8m1(x_li, 16, vl);
  2554. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2555. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2556. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2557. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2558. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2559. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2560. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2561. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2562. }
  2563. *s = sumf;
  2564. #else
  2565. // scalar
  2566. float sumf = 0.0;
  2567. for (int i = 0; i < nb; i++) {
  2568. uint32_t qh;
  2569. memcpy(&qh, x[i].qh, sizeof(qh));
  2570. int sumi = 0;
  2571. for (int j = 0; j < qk/2; ++j) {
  2572. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2573. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2574. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2575. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2576. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2577. }
  2578. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2579. }
  2580. *s = sumf;
  2581. #endif
  2582. }
  2583. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2584. const int qk = QK8_1;
  2585. const int nb = n / qk;
  2586. assert(n % qk == 0);
  2587. assert(qk == QK5_1);
  2588. const block_q5_1 * restrict x = vx;
  2589. const block_q8_1 * restrict y = vy;
  2590. #if defined(__ARM_NEON)
  2591. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2592. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2593. float summs0 = 0.0f;
  2594. float summs1 = 0.0f;
  2595. uint32_t qh0;
  2596. uint32_t qh1;
  2597. uint64_t tmp0[4];
  2598. uint64_t tmp1[4];
  2599. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2600. for (int i = 0; i < nb; i += 2) {
  2601. const block_q5_1 * restrict x0 = &x[i];
  2602. const block_q5_1 * restrict x1 = &x[i + 1];
  2603. const block_q8_1 * restrict y0 = &y[i];
  2604. const block_q8_1 * restrict y1 = &y[i + 1];
  2605. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2606. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2607. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2608. // extract the 5th bit via lookup table ((b) << 4)
  2609. memcpy(&qh0, x0->qh, sizeof(qh0));
  2610. memcpy(&qh1, x1->qh, sizeof(qh1));
  2611. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2612. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2613. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2614. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2615. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2616. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2617. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2618. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2619. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2620. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2621. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2622. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2623. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2624. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2625. // 4-bit -> 8-bit
  2626. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2627. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2628. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2629. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2630. // add high bit
  2631. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2632. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2633. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2634. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2635. // load y
  2636. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2637. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2638. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2639. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2640. #if defined(__ARM_FEATURE_DOTPROD)
  2641. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2642. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2643. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2644. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2645. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2646. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2647. #else
  2648. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2649. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2650. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2651. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2652. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2653. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2654. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2655. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2656. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2657. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2658. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2659. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2660. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2661. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2662. #endif
  2663. }
  2664. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2665. #elif defined(__wasm_simd128__)
  2666. v128_t sumv = wasm_f32x4_splat(0.0f);
  2667. float summs = 0.0f;
  2668. uint32_t qh;
  2669. uint64_t tmp[4];
  2670. // TODO: check if unrolling this is better
  2671. for (int i = 0; i < nb; ++i) {
  2672. const block_q5_1 * restrict x0 = &x[i];
  2673. const block_q8_1 * restrict y0 = &y[i];
  2674. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2675. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2676. // extract the 5th bit
  2677. memcpy(&qh, x0->qh, sizeof(qh));
  2678. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2679. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2680. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2681. tmp[3] = table_b2b_0[(qh >> 24) ];
  2682. const v128_t qhl = wasm_v128_load(tmp + 0);
  2683. const v128_t qhh = wasm_v128_load(tmp + 2);
  2684. const v128_t v0 = wasm_v128_load(x0->qs);
  2685. // 4-bit -> 8-bit
  2686. const v128_t v0l = wasm_v128_and (v0, m4b);
  2687. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2688. // add high bit
  2689. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2690. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2691. // load y
  2692. const v128_t v1l = wasm_v128_load(y0->qs);
  2693. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2694. // int8x16 -> int16x8
  2695. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2696. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2697. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2698. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2699. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2700. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2701. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2702. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2703. // dot product
  2704. sumv = wasm_f32x4_add(sumv,
  2705. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2706. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2707. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2708. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2709. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2710. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2711. }
  2712. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2713. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2714. #elif defined(__AVX2__)
  2715. // Initialize accumulator with zeros
  2716. __m256 acc = _mm256_setzero_ps();
  2717. float summs = 0.0f;
  2718. // Main loop
  2719. for (int i = 0; i < nb; i++) {
  2720. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2721. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2722. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2723. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2724. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2725. bx = _mm256_or_si256(bx, bxhi);
  2726. const __m256 dy = _mm256_set1_ps(y[i].d);
  2727. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2728. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2729. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2730. }
  2731. *s = hsum_float_8(acc) + summs;
  2732. #elif defined(__AVX__)
  2733. // Initialize accumulator with zeros
  2734. __m256 acc = _mm256_setzero_ps();
  2735. __m128i mask = _mm_set1_epi8(0x10);
  2736. float summs = 0.0f;
  2737. // Main loop
  2738. for (int i = 0; i < nb; i++) {
  2739. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2740. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2741. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2742. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2743. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2744. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2745. bxhil = _mm_and_si128(bxhil, mask);
  2746. bxhih = _mm_and_si128(bxhih, mask);
  2747. __m128i bxl = _mm256_castsi256_si128(bx);
  2748. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2749. bxl = _mm_or_si128(bxl, bxhil);
  2750. bxh = _mm_or_si128(bxh, bxhih);
  2751. bx = MM256_SET_M128I(bxh, bxl);
  2752. const __m256 dy = _mm256_set1_ps(y[i].d);
  2753. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2754. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2755. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2756. }
  2757. *s = hsum_float_8(acc) + summs;
  2758. #elif defined(__riscv_v_intrinsic)
  2759. float sumf = 0.0;
  2760. uint32_t qh;
  2761. // These temp values are for shift operations
  2762. uint32_t temp_1[16] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15};
  2763. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2764. for (int i = 0; i < nb; i++) {
  2765. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2766. // temporary registers
  2767. vuint32m4_t vt_1 = __riscv_vle32_v_u32m4(temp_1, vl);
  2768. vuint32m4_t vt_2 = __riscv_vadd_vx_u32m4(vt_1, 12, vl);
  2769. // load qh
  2770. vuint32m4_t vqh = __riscv_vmv_v_x_u32m4(qh, vl);
  2771. // ((qh >> (j + 0)) << 4) & 0x10;
  2772. vuint32m4_t xhr_0 = __riscv_vsrl_vv_u32m4(vqh, vt_1, vl);
  2773. vuint32m4_t xhl_0 = __riscv_vsll_vx_u32m4(xhr_0, 4, vl);
  2774. vuint32m4_t xha_0 = __riscv_vand_vx_u32m4(xhl_0, 0x10, vl);
  2775. // ((qh >> (j + 12)) ) & 0x10;
  2776. vuint32m4_t xhr_1 = __riscv_vsrl_vv_u32m4(vqh, vt_2, vl);
  2777. vuint32m4_t xha_1 = __riscv_vand_vx_u32m4(xhr_1, 0x10, vl);
  2778. // narrowing
  2779. vuint16m2_t xhc_0 = __riscv_vncvt_x_x_w_u16m2(xha_0, vl);
  2780. vuint8m1_t xh_0 = __riscv_vncvt_x_x_w_u8m1(xhc_0, vl);
  2781. vuint16m2_t xhc_1 = __riscv_vncvt_x_x_w_u16m2(xha_1, vl);
  2782. vuint8m1_t xh_1 = __riscv_vncvt_x_x_w_u8m1(xhc_1, vl);
  2783. // load
  2784. vuint8m1_t tx = __riscv_vle8_v_u8m1(x[i].qs, vl);
  2785. vint8m1_t y0 = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2786. vint8m1_t y1 = __riscv_vle8_v_i8m1(y[i].qs+16, vl);
  2787. vuint8m1_t x_at = __riscv_vand_vx_u8m1(tx, 0x0F, vl);
  2788. vuint8m1_t x_lt = __riscv_vsrl_vx_u8m1(tx, 0x04, vl);
  2789. vuint8m1_t x_a = __riscv_vor_vv_u8m1(x_at, xh_0, vl);
  2790. vuint8m1_t x_l = __riscv_vor_vv_u8m1(x_lt, xh_1, vl);
  2791. vint8m1_t v0 = __riscv_vreinterpret_v_u8m1_i8m1(x_a);
  2792. vint8m1_t v1 = __riscv_vreinterpret_v_u8m1_i8m1(x_l);
  2793. vint16m2_t vec_mul1 = __riscv_vwmul_vv_i16m2(v0, y0, vl);
  2794. vint16m2_t vec_mul2 = __riscv_vwmul_vv_i16m2(v1, y1, vl);
  2795. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2796. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul1, vec_zero, vl);
  2797. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m2_i32m1(vec_mul2, vec_zero, vl);
  2798. int sumi = __riscv_vmv_x_s_i32m1_i32(vs1);
  2799. sumi += __riscv_vmv_x_s_i32m1_i32(vs2);
  2800. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2801. }
  2802. *s = sumf;
  2803. #else
  2804. // scalar
  2805. float sumf = 0.0;
  2806. for (int i = 0; i < nb; i++) {
  2807. uint32_t qh;
  2808. memcpy(&qh, x[i].qh, sizeof(qh));
  2809. int sumi = 0;
  2810. for (int j = 0; j < qk/2; ++j) {
  2811. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2812. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2813. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2814. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2815. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2816. }
  2817. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2818. }
  2819. *s = sumf;
  2820. #endif
  2821. }
  2822. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2823. const int qk = QK8_0;
  2824. const int nb = n / qk;
  2825. assert(n % qk == 0);
  2826. const block_q8_0 * restrict x = vx;
  2827. const block_q8_0 * restrict y = vy;
  2828. #if defined(__ARM_NEON)
  2829. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2830. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2831. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2832. for (int i = 0; i < nb; i += 2) {
  2833. const block_q8_0 * restrict x0 = &x[i + 0];
  2834. const block_q8_0 * restrict x1 = &x[i + 1];
  2835. const block_q8_0 * restrict y0 = &y[i + 0];
  2836. const block_q8_0 * restrict y1 = &y[i + 1];
  2837. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2838. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2839. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2840. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2841. // load y
  2842. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2843. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2844. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2845. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2846. #if defined(__ARM_FEATURE_DOTPROD)
  2847. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2848. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2849. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2850. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2851. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2852. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2853. #else
  2854. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2855. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2856. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2857. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2858. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2859. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2860. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2861. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2862. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2863. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2864. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2865. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2866. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2867. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2868. #endif
  2869. }
  2870. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2871. #elif defined(__AVX2__) || defined(__AVX__)
  2872. // Initialize accumulator with zeros
  2873. __m256 acc = _mm256_setzero_ps();
  2874. // Main loop
  2875. for (int i = 0; i < nb; ++i) {
  2876. // Compute combined scale for the block
  2877. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2878. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2879. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2880. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2881. // Multiply q with scale and accumulate
  2882. #if defined(__AVX2__)
  2883. acc = _mm256_fmadd_ps( d, q, acc );
  2884. #else
  2885. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2886. #endif
  2887. }
  2888. *s = hsum_float_8(acc);
  2889. #elif defined(__riscv_v_intrinsic)
  2890. float sumf = 0.0;
  2891. size_t vl = __riscv_vsetvl_e8m1(qk);
  2892. for (int i = 0; i < nb; i++) {
  2893. // load elements
  2894. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2895. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2896. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2897. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2898. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2899. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2900. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2901. }
  2902. *s = sumf;
  2903. #else
  2904. // scalar
  2905. float sumf = 0.0;
  2906. for (int i = 0; i < nb; i++) {
  2907. int sumi = 0;
  2908. for (int j = 0; j < qk; j++) {
  2909. sumi += x[i].qs[j]*y[i].qs[j];
  2910. }
  2911. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2912. }
  2913. *s = sumf;
  2914. #endif
  2915. }
  2916. // compute GGML_VEC_DOT_UNROLL dot products at once
  2917. // xs - x row stride in bytes
  2918. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2919. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2920. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2921. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2922. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2923. }
  2924. #if defined(GGML_SIMD)
  2925. const int np = (n & ~(GGML_F16_STEP - 1));
  2926. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2927. GGML_F16_VEC ax[GGML_F16_ARR];
  2928. GGML_F16_VEC ay[GGML_F16_ARR];
  2929. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2930. for (int j = 0; j < GGML_F16_ARR; j++) {
  2931. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2932. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2933. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2934. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2935. }
  2936. }
  2937. }
  2938. // reduce sum0..sum3 to sum0
  2939. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2940. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2941. }
  2942. // leftovers
  2943. for (int i = np; i < n; ++i) {
  2944. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2945. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2946. }
  2947. }
  2948. #else
  2949. for (int i = 0; i < n; ++i) {
  2950. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2951. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2952. }
  2953. }
  2954. #endif
  2955. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2956. s[i] = sumf[i];
  2957. }
  2958. }
  2959. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2960. #if defined(GGML_SIMD)
  2961. const int np = (n & ~(GGML_F32_STEP - 1));
  2962. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2963. GGML_F32_VEC ax[GGML_F32_ARR];
  2964. GGML_F32_VEC ay[GGML_F32_ARR];
  2965. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2966. for (int j = 0; j < GGML_F32_ARR; j++) {
  2967. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2968. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2969. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2970. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2971. }
  2972. }
  2973. // leftovers
  2974. for (int i = np; i < n; ++i) {
  2975. y[i] += x[i]*v;
  2976. }
  2977. #else
  2978. // scalar
  2979. for (int i = 0; i < n; ++i) {
  2980. y[i] += x[i]*v;
  2981. }
  2982. #endif
  2983. }
  2984. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2985. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2986. #if defined(GGML_USE_ACCELERATE)
  2987. vDSP_vsmul(y, 1, &v, y, 1, n);
  2988. #elif defined(GGML_SIMD)
  2989. const int np = (n & ~(GGML_F32_STEP - 1));
  2990. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2991. GGML_F32_VEC ay[GGML_F32_ARR];
  2992. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2993. for (int j = 0; j < GGML_F32_ARR; j++) {
  2994. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2995. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2996. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2997. }
  2998. }
  2999. // leftovers
  3000. for (int i = np; i < n; ++i) {
  3001. y[i] *= v;
  3002. }
  3003. #else
  3004. // scalar
  3005. for (int i = 0; i < n; ++i) {
  3006. y[i] *= v;
  3007. }
  3008. #endif
  3009. }
  3010. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3011. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3012. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3013. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3014. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3015. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3016. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3017. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3018. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3019. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3020. static const float GELU_COEF_A = 0.044715f;
  3021. static const float GELU_QUICK_COEF = -1.702f;
  3022. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3023. inline static float ggml_gelu_f32(float x) {
  3024. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3025. }
  3026. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3027. const uint16_t * i16 = (const uint16_t *) x;
  3028. for (int i = 0; i < n; ++i) {
  3029. y[i] = table_gelu_f16[i16[i]];
  3030. }
  3031. }
  3032. #ifdef GGML_GELU_FP16
  3033. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3034. uint16_t t;
  3035. for (int i = 0; i < n; ++i) {
  3036. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3037. memcpy(&t, &fp16, sizeof(uint16_t));
  3038. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3039. }
  3040. }
  3041. #else
  3042. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3043. for (int i = 0; i < n; ++i) {
  3044. y[i] = ggml_gelu_f32(x[i]);
  3045. }
  3046. }
  3047. #endif
  3048. inline static float ggml_gelu_quick_f32(float x) {
  3049. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3050. }
  3051. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3052. // const uint16_t * i16 = (const uint16_t *) x;
  3053. // for (int i = 0; i < n; ++i) {
  3054. // y[i] = table_gelu_quick_f16[i16[i]];
  3055. // }
  3056. //}
  3057. #ifdef GGML_GELU_QUICK_FP16
  3058. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3059. uint16_t t;
  3060. for (int i = 0; i < n; ++i) {
  3061. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3062. memcpy(&t, &fp16, sizeof(uint16_t));
  3063. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3064. }
  3065. }
  3066. #else
  3067. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3068. for (int i = 0; i < n; ++i) {
  3069. y[i] = ggml_gelu_quick_f32(x[i]);
  3070. }
  3071. }
  3072. #endif
  3073. // Sigmoid Linear Unit (SiLU) function
  3074. inline static float ggml_silu_f32(float x) {
  3075. return x/(1.0f + expf(-x));
  3076. }
  3077. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3078. // const uint16_t * i16 = (const uint16_t *) x;
  3079. // for (int i = 0; i < n; ++i) {
  3080. // y[i] = table_silu_f16[i16[i]];
  3081. // }
  3082. //}
  3083. #ifdef GGML_SILU_FP16
  3084. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3085. uint16_t t;
  3086. for (int i = 0; i < n; ++i) {
  3087. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3088. memcpy(&t, &fp16, sizeof(uint16_t));
  3089. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3090. }
  3091. }
  3092. #else
  3093. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3094. for (int i = 0; i < n; ++i) {
  3095. y[i] = ggml_silu_f32(x[i]);
  3096. }
  3097. }
  3098. #endif
  3099. inline static float ggml_silu_backward_f32(float x, float dy) {
  3100. const float s = 1.0f/(1.0f + expf(-x));
  3101. return dy*s*(1.0f + x*(1.0f - s));
  3102. }
  3103. #ifdef GGML_SILU_FP16
  3104. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3105. for (int i = 0; i < n; ++i) {
  3106. // we did not use x[i] to compute forward silu but its f16 equivalent
  3107. // take derivative at f16 of x[i]:
  3108. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3109. float usedx = GGML_FP16_TO_FP32(fp16);
  3110. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3111. }
  3112. }
  3113. #else
  3114. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3115. for (int i = 0; i < n; ++i) {
  3116. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3117. }
  3118. }
  3119. #endif
  3120. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3121. #ifndef GGML_USE_ACCELERATE
  3122. ggml_float sum = 0.0;
  3123. for (int i = 0; i < n; ++i) {
  3124. sum += (ggml_float)x[i];
  3125. }
  3126. *s = sum;
  3127. #else
  3128. vDSP_sve(x, 1, s, n);
  3129. #endif
  3130. }
  3131. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3132. ggml_float sum = 0.0;
  3133. for (int i = 0; i < n; ++i) {
  3134. sum += (ggml_float)x[i];
  3135. }
  3136. *s = sum;
  3137. }
  3138. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3139. float sum = 0.0f;
  3140. for (int i = 0; i < n; ++i) {
  3141. sum += GGML_FP16_TO_FP32(x[i]);
  3142. }
  3143. *s = sum;
  3144. }
  3145. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3146. #ifndef GGML_USE_ACCELERATE
  3147. float max = -INFINITY;
  3148. for (int i = 0; i < n; ++i) {
  3149. max = MAX(max, x[i]);
  3150. }
  3151. *s = max;
  3152. #else
  3153. vDSP_maxv(x, 1, s, n);
  3154. #endif
  3155. }
  3156. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3157. ggml_vec_norm_f32(n, s, x);
  3158. *s = 1.f/(*s);
  3159. }
  3160. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3161. float max = -INFINITY;
  3162. int idx = 0;
  3163. for (int i = 0; i < n; ++i) {
  3164. max = MAX(max, x[i]);
  3165. if (max == x[i]) { idx = i; }
  3166. }
  3167. *s = idx;
  3168. }
  3169. //
  3170. // data types
  3171. //
  3172. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3173. "NONE",
  3174. "DUP",
  3175. "ADD",
  3176. "ADD1",
  3177. "ACC",
  3178. "SUB",
  3179. "MUL",
  3180. "DIV",
  3181. "SQR",
  3182. "SQRT",
  3183. "LOG",
  3184. "SUM",
  3185. "SUM_ROWS",
  3186. "MEAN",
  3187. "ARGMAX",
  3188. "REPEAT",
  3189. "REPEAT_BACK",
  3190. "CONCAT",
  3191. "SILU_BACK",
  3192. "NORM",
  3193. "RMS_NORM",
  3194. "RMS_NORM_BACK",
  3195. "GROUP_NORM",
  3196. "MUL_MAT",
  3197. "OUT_PROD",
  3198. "SCALE",
  3199. "SET",
  3200. "CPY",
  3201. "CONT",
  3202. "RESHAPE",
  3203. "VIEW",
  3204. "PERMUTE",
  3205. "TRANSPOSE",
  3206. "GET_ROWS",
  3207. "GET_ROWS_BACK",
  3208. "DIAG",
  3209. "DIAG_MASK_INF",
  3210. "DIAG_MASK_ZERO",
  3211. "SOFT_MAX",
  3212. "SOFT_MAX_BACK",
  3213. "ROPE",
  3214. "ROPE_BACK",
  3215. "ALIBI",
  3216. "CLAMP",
  3217. "CONV_1D",
  3218. "CONV_2D",
  3219. "CONV_TRANSPOSE_2D",
  3220. "POOL_1D",
  3221. "POOL_2D",
  3222. "UPSCALE",
  3223. "FLASH_ATTN",
  3224. "FLASH_FF",
  3225. "FLASH_ATTN_BACK",
  3226. "WIN_PART",
  3227. "WIN_UNPART",
  3228. "GET_REL_POS",
  3229. "ADD_REL_POS",
  3230. "UNARY",
  3231. "MAP_UNARY",
  3232. "MAP_BINARY",
  3233. "MAP_CUSTOM1_F32",
  3234. "MAP_CUSTOM2_F32",
  3235. "MAP_CUSTOM3_F32",
  3236. "MAP_CUSTOM1",
  3237. "MAP_CUSTOM2",
  3238. "MAP_CUSTOM3",
  3239. "CROSS_ENTROPY_LOSS",
  3240. "CROSS_ENTROPY_LOSS_BACK",
  3241. };
  3242. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3243. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3244. "none",
  3245. "x",
  3246. "x+y",
  3247. "x+y",
  3248. "view(x,nb,offset)+=y->x",
  3249. "x-y",
  3250. "x*y",
  3251. "x/y",
  3252. "x^2",
  3253. "√x",
  3254. "log(x)",
  3255. "Σx",
  3256. "Σx_k",
  3257. "Σx/n",
  3258. "argmax(x)",
  3259. "repeat(x)",
  3260. "repeat_back(x)",
  3261. "concat(x, y)",
  3262. "silu_back(x)",
  3263. "norm(x)",
  3264. "rms_norm(x)",
  3265. "rms_norm_back(x)",
  3266. "group_norm(x)",
  3267. "X*Y",
  3268. "X*Y",
  3269. "x*v",
  3270. "y-\\>view(x)",
  3271. "x-\\>y",
  3272. "cont(x)",
  3273. "reshape(x)",
  3274. "view(x)",
  3275. "permute(x)",
  3276. "transpose(x)",
  3277. "get_rows(x)",
  3278. "get_rows_back(x)",
  3279. "diag(x)",
  3280. "diag_mask_inf(x)",
  3281. "diag_mask_zero(x)",
  3282. "soft_max(x)",
  3283. "soft_max_back(x)",
  3284. "rope(x)",
  3285. "rope_back(x)",
  3286. "alibi(x)",
  3287. "clamp(x)",
  3288. "conv_1d(x)",
  3289. "conv_2d(x)",
  3290. "conv_transpose_2d(x)",
  3291. "pool_1d(x)",
  3292. "pool_2d(x)",
  3293. "upscale(x)",
  3294. "flash_attn(x)",
  3295. "flash_ff(x)",
  3296. "flash_attn_back(x)",
  3297. "win_part(x)",
  3298. "win_unpart(x)",
  3299. "get_rel_pos(x)",
  3300. "add_rel_pos(x)",
  3301. "unary(x)",
  3302. "f(x)",
  3303. "f(x,y)",
  3304. "custom_f32(x)",
  3305. "custom_f32(x,y)",
  3306. "custom_f32(x,y,z)",
  3307. "custom(x)",
  3308. "custom(x,y)",
  3309. "custom(x,y,z)",
  3310. "cross_entropy_loss(x,y)",
  3311. "cross_entropy_loss_back(x,y)",
  3312. };
  3313. static_assert(GGML_OP_COUNT == 68, "GGML_OP_COUNT != 68");
  3314. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3315. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3316. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3317. // WARN:
  3318. // Mis-confguration can lead to problem that's hard to reason about:
  3319. // * At best it crash or talks nosense.
  3320. // * At worst it talks slightly difference but hard to perceive.
  3321. //
  3322. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3323. // Take care about compile options (e.g., GGML_USE_xxx).
  3324. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3325. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3326. static void ggml_setup_op_has_task_pass(void) {
  3327. { // INIT
  3328. bool * p = GGML_OP_HAS_INIT;
  3329. p[GGML_OP_ACC ] = true;
  3330. p[GGML_OP_MUL_MAT ] = true;
  3331. p[GGML_OP_OUT_PROD ] = true;
  3332. p[GGML_OP_SET ] = true;
  3333. p[GGML_OP_GET_ROWS_BACK ] = true;
  3334. p[GGML_OP_DIAG_MASK_INF ] = true;
  3335. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3336. p[GGML_OP_CONV_1D ] = true;
  3337. p[GGML_OP_CONV_2D ] = true;
  3338. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3339. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3340. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3341. p[GGML_OP_ADD_REL_POS ] = true;
  3342. }
  3343. { // FINALIZE
  3344. bool * p = GGML_OP_HAS_FINALIZE;
  3345. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3346. }
  3347. }
  3348. //
  3349. // ggml context
  3350. //
  3351. struct ggml_context {
  3352. size_t mem_size;
  3353. void * mem_buffer;
  3354. bool mem_buffer_owned;
  3355. bool no_alloc;
  3356. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3357. int n_objects;
  3358. struct ggml_object * objects_begin;
  3359. struct ggml_object * objects_end;
  3360. struct ggml_scratch scratch;
  3361. struct ggml_scratch scratch_save;
  3362. };
  3363. struct ggml_context_container {
  3364. bool used;
  3365. struct ggml_context context;
  3366. };
  3367. //
  3368. // NUMA support
  3369. //
  3370. #define GGML_NUMA_MAX_NODES 8
  3371. #define GGML_NUMA_MAX_CPUS 512
  3372. struct ggml_numa_node {
  3373. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3374. uint32_t n_cpus;
  3375. };
  3376. struct ggml_numa_nodes {
  3377. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3378. uint32_t n_nodes;
  3379. uint32_t total_cpus; // hardware threads on system
  3380. };
  3381. //
  3382. // ggml state
  3383. //
  3384. struct ggml_state {
  3385. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3386. struct ggml_numa_nodes numa;
  3387. };
  3388. // global state
  3389. static struct ggml_state g_state;
  3390. static atomic_int g_state_barrier = 0;
  3391. // barrier via spin lock
  3392. inline static void ggml_critical_section_start(void) {
  3393. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3394. while (processing > 0) {
  3395. // wait for other threads to finish
  3396. atomic_fetch_sub(&g_state_barrier, 1);
  3397. sched_yield(); // TODO: reconsider this
  3398. processing = atomic_fetch_add(&g_state_barrier, 1);
  3399. }
  3400. }
  3401. // TODO: make this somehow automatically executed
  3402. // some sort of "sentry" mechanism
  3403. inline static void ggml_critical_section_end(void) {
  3404. atomic_fetch_sub(&g_state_barrier, 1);
  3405. }
  3406. void ggml_numa_init(void) {
  3407. if (g_state.numa.n_nodes > 0) {
  3408. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3409. return;
  3410. }
  3411. #ifdef __linux__
  3412. struct stat st;
  3413. char path[256];
  3414. int rv;
  3415. // enumerate nodes
  3416. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3417. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3418. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3419. if (stat(path, &st) != 0) { break; }
  3420. ++g_state.numa.n_nodes;
  3421. }
  3422. // enumerate CPUs
  3423. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3424. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3425. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3426. if (stat(path, &st) != 0) { break; }
  3427. ++g_state.numa.total_cpus;
  3428. }
  3429. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3430. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3431. g_state.numa.n_nodes = 0;
  3432. return;
  3433. }
  3434. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3435. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3436. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3437. node->n_cpus = 0;
  3438. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3439. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3440. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3441. if (stat(path, &st) == 0) {
  3442. node->cpus[node->n_cpus++] = c;
  3443. GGML_PRINT_DEBUG(" %u", c);
  3444. }
  3445. }
  3446. GGML_PRINT_DEBUG("\n");
  3447. }
  3448. if (ggml_is_numa()) {
  3449. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3450. if (fptr != NULL) {
  3451. char buf[42];
  3452. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3453. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3454. }
  3455. fclose(fptr);
  3456. }
  3457. }
  3458. #else
  3459. // TODO
  3460. #endif
  3461. }
  3462. bool ggml_is_numa(void) {
  3463. return g_state.numa.n_nodes > 1;
  3464. }
  3465. ////////////////////////////////////////////////////////////////////////////////
  3466. void ggml_print_object(const struct ggml_object * obj) {
  3467. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3468. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3469. }
  3470. void ggml_print_objects(const struct ggml_context * ctx) {
  3471. struct ggml_object * obj = ctx->objects_begin;
  3472. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3473. while (obj != NULL) {
  3474. ggml_print_object(obj);
  3475. obj = obj->next;
  3476. }
  3477. GGML_PRINT("%s: --- end ---\n", __func__);
  3478. }
  3479. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3480. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3481. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3482. }
  3483. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3484. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3485. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3486. }
  3487. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3488. size_t nbytes = tensor->ne[0]*tensor->nb[0]/ggml_blck_size(tensor->type);
  3489. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3490. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3491. }
  3492. return nbytes;
  3493. }
  3494. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3495. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3496. }
  3497. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3498. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3499. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3500. }
  3501. int ggml_blck_size(enum ggml_type type) {
  3502. return type_traits[type].blck_size;
  3503. }
  3504. size_t ggml_type_size(enum ggml_type type) {
  3505. return type_traits[type].type_size;
  3506. }
  3507. float ggml_type_sizef(enum ggml_type type) {
  3508. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3509. }
  3510. const char * ggml_type_name(enum ggml_type type) {
  3511. return type_traits[type].type_name;
  3512. }
  3513. bool ggml_is_quantized(enum ggml_type type) {
  3514. return type_traits[type].is_quantized;
  3515. }
  3516. const char * ggml_op_name(enum ggml_op op) {
  3517. return GGML_OP_NAME[op];
  3518. }
  3519. const char * ggml_op_symbol(enum ggml_op op) {
  3520. return GGML_OP_SYMBOL[op];
  3521. }
  3522. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3523. return ggml_type_size(tensor->type);
  3524. }
  3525. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3526. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3527. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3528. }
  3529. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3530. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3531. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3532. }
  3533. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3534. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3535. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3536. }
  3537. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3538. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3539. return (t0->ne[0] == t1->ne[0]) &&
  3540. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3541. (t1->ne[3]%t0->ne[3] == 0);
  3542. }
  3543. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3544. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3545. return
  3546. (t0->ne[1] == t1->ne[1]) &&
  3547. (t0->ne[2] == t1->ne[2]) &&
  3548. (t0->ne[3] == t1->ne[3]);
  3549. }
  3550. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3551. enum ggml_type wtype = GGML_TYPE_COUNT;
  3552. switch (ftype) {
  3553. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3554. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3555. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3556. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3557. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3558. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3559. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3560. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3561. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3562. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3563. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3564. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3565. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3566. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3567. }
  3568. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3569. return wtype;
  3570. }
  3571. size_t ggml_tensor_overhead(void) {
  3572. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3573. }
  3574. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3575. return tensor->nb[0] > tensor->nb[1];
  3576. }
  3577. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3578. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3579. return
  3580. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3581. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3582. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3583. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3584. }
  3585. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3586. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3587. return
  3588. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3589. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3590. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3591. }
  3592. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3593. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3594. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3595. }
  3596. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3597. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3598. return
  3599. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3600. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3601. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3602. }
  3603. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3604. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3605. return
  3606. (t0->ne[0] == t1->ne[0] ) &&
  3607. (t0->ne[1] == t1->ne[1] ) &&
  3608. (t0->ne[2] == t1->ne[2] ) &&
  3609. (t0->ne[3] == t1->ne[3] );
  3610. }
  3611. // check if t1 can be represented as a repeatition of t0
  3612. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3613. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3614. return
  3615. (t1->ne[0]%t0->ne[0] == 0) &&
  3616. (t1->ne[1]%t0->ne[1] == 0) &&
  3617. (t1->ne[2]%t0->ne[2] == 0) &&
  3618. (t1->ne[3]%t0->ne[3] == 0);
  3619. }
  3620. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3621. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3622. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3623. }
  3624. static inline int ggml_up32(int n) {
  3625. return (n + 31) & ~31;
  3626. }
  3627. //static inline int ggml_up64(int n) {
  3628. // return (n + 63) & ~63;
  3629. //}
  3630. static inline int ggml_up(int n, int m) {
  3631. // assert m is a power of 2
  3632. GGML_ASSERT((m & (m - 1)) == 0);
  3633. return (n + m - 1) & ~(m - 1);
  3634. }
  3635. // assert that pointer is aligned to GGML_MEM_ALIGN
  3636. #define ggml_assert_aligned(ptr) \
  3637. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3638. ////////////////////////////////////////////////////////////////////////////////
  3639. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3640. // make this function thread safe
  3641. ggml_critical_section_start();
  3642. static bool is_first_call = true;
  3643. if (is_first_call) {
  3644. // initialize time system (required on Windows)
  3645. ggml_time_init();
  3646. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3647. {
  3648. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3649. ggml_fp16_t ii;
  3650. for (int i = 0; i < (1 << 16); ++i) {
  3651. uint16_t ui = i;
  3652. memcpy(&ii, &ui, sizeof(ii));
  3653. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3654. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3655. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3656. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3657. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3658. }
  3659. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3660. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3661. }
  3662. // initialize g_state
  3663. {
  3664. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3665. g_state = (struct ggml_state) {
  3666. /*.contexts =*/ { { 0 } },
  3667. /*.numa =*/ {
  3668. .n_nodes = 0,
  3669. .total_cpus = 0,
  3670. },
  3671. };
  3672. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3673. g_state.contexts[i].used = false;
  3674. }
  3675. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3676. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3677. }
  3678. #if defined(GGML_USE_CUBLAS)
  3679. ggml_init_cublas();
  3680. #elif defined(GGML_USE_CLBLAST)
  3681. ggml_cl_init();
  3682. #endif
  3683. ggml_setup_op_has_task_pass();
  3684. is_first_call = false;
  3685. }
  3686. // find non-used context in g_state
  3687. struct ggml_context * ctx = NULL;
  3688. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3689. if (!g_state.contexts[i].used) {
  3690. g_state.contexts[i].used = true;
  3691. ctx = &g_state.contexts[i].context;
  3692. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3693. break;
  3694. }
  3695. }
  3696. if (ctx == NULL) {
  3697. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3698. ggml_critical_section_end();
  3699. return NULL;
  3700. }
  3701. // allow to call ggml_init with 0 size
  3702. if (params.mem_size == 0) {
  3703. params.mem_size = GGML_MEM_ALIGN;
  3704. }
  3705. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3706. *ctx = (struct ggml_context) {
  3707. /*.mem_size =*/ mem_size,
  3708. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3709. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3710. /*.no_alloc =*/ params.no_alloc,
  3711. /*.no_alloc_save =*/ params.no_alloc,
  3712. /*.n_objects =*/ 0,
  3713. /*.objects_begin =*/ NULL,
  3714. /*.objects_end =*/ NULL,
  3715. /*.scratch =*/ { 0, 0, NULL, },
  3716. /*.scratch_save =*/ { 0, 0, NULL, },
  3717. };
  3718. GGML_ASSERT(ctx->mem_buffer != NULL);
  3719. ggml_assert_aligned(ctx->mem_buffer);
  3720. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3721. ggml_critical_section_end();
  3722. return ctx;
  3723. }
  3724. void ggml_free(struct ggml_context * ctx) {
  3725. // make this function thread safe
  3726. ggml_critical_section_start();
  3727. bool found = false;
  3728. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3729. if (&g_state.contexts[i].context == ctx) {
  3730. g_state.contexts[i].used = false;
  3731. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3732. __func__, i, ggml_used_mem(ctx));
  3733. if (ctx->mem_buffer_owned) {
  3734. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3735. }
  3736. found = true;
  3737. break;
  3738. }
  3739. }
  3740. if (!found) {
  3741. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3742. }
  3743. ggml_critical_section_end();
  3744. }
  3745. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3746. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3747. }
  3748. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3749. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3750. ctx->scratch = scratch;
  3751. return result;
  3752. }
  3753. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3754. return ctx->no_alloc;
  3755. }
  3756. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3757. ctx->no_alloc = no_alloc;
  3758. }
  3759. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3760. return ctx->mem_buffer;
  3761. }
  3762. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3763. return ctx->mem_size;
  3764. }
  3765. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3766. size_t max_size = 0;
  3767. struct ggml_object * obj = ctx->objects_begin;
  3768. while (obj != NULL) {
  3769. if (obj->type == GGML_OBJECT_TENSOR) {
  3770. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3771. const size_t size = ggml_nbytes(tensor);
  3772. if (max_size < size) {
  3773. max_size = size;
  3774. }
  3775. }
  3776. obj = obj->next;
  3777. }
  3778. return max_size;
  3779. }
  3780. // IMPORTANT:
  3781. // when creating "opt" tensors, always save and load the scratch buffer
  3782. // this is an error prone process, but it is necessary to support inplace
  3783. // operators when using scratch buffers
  3784. // TODO: implement a better way
  3785. static void ggml_scratch_save(struct ggml_context * ctx) {
  3786. // this is needed to allow opt tensors to store their data
  3787. // TODO: again, need to find a better way
  3788. ctx->no_alloc_save = ctx->no_alloc;
  3789. ctx->no_alloc = false;
  3790. ctx->scratch_save = ctx->scratch;
  3791. ctx->scratch.data = NULL;
  3792. }
  3793. static void ggml_scratch_load(struct ggml_context * ctx) {
  3794. ctx->no_alloc = ctx->no_alloc_save;
  3795. ctx->scratch = ctx->scratch_save;
  3796. }
  3797. ////////////////////////////////////////////////////////////////////////////////
  3798. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3799. // always insert objects at the end of the context's memory pool
  3800. struct ggml_object * obj_cur = ctx->objects_end;
  3801. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3802. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3803. const size_t cur_end = cur_offs + cur_size;
  3804. // align to GGML_MEM_ALIGN
  3805. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3806. char * const mem_buffer = ctx->mem_buffer;
  3807. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3808. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3809. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3810. __func__, cur_end + size_needed, ctx->mem_size);
  3811. assert(false);
  3812. return NULL;
  3813. }
  3814. *obj_new = (struct ggml_object) {
  3815. .offs = cur_end + GGML_OBJECT_SIZE,
  3816. .size = size_needed,
  3817. .next = NULL,
  3818. .type = type,
  3819. };
  3820. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3821. if (obj_cur != NULL) {
  3822. obj_cur->next = obj_new;
  3823. } else {
  3824. // this is the first object in this context
  3825. ctx->objects_begin = obj_new;
  3826. }
  3827. ctx->objects_end = obj_new;
  3828. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3829. return obj_new;
  3830. }
  3831. static struct ggml_tensor * ggml_new_tensor_impl(
  3832. struct ggml_context * ctx,
  3833. enum ggml_type type,
  3834. int n_dims,
  3835. const int64_t * ne,
  3836. struct ggml_tensor * view_src,
  3837. size_t view_offs) {
  3838. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3839. // find the base tensor and absolute offset
  3840. if (view_src != NULL && view_src->view_src != NULL) {
  3841. view_offs += view_src->view_offs;
  3842. view_src = view_src->view_src;
  3843. }
  3844. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3845. for (int i = 1; i < n_dims; i++) {
  3846. data_size *= ne[i];
  3847. }
  3848. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3849. void * data = view_src != NULL ? view_src->data : NULL;
  3850. if (data != NULL) {
  3851. data = (char *) data + view_offs;
  3852. }
  3853. size_t obj_alloc_size = 0;
  3854. if (view_src == NULL && !ctx->no_alloc) {
  3855. if (ctx->scratch.data != NULL) {
  3856. // allocate tensor data in the scratch buffer
  3857. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3858. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3859. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3860. assert(false);
  3861. return NULL;
  3862. }
  3863. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3864. ctx->scratch.offs += data_size;
  3865. } else {
  3866. // allocate tensor data in the context's memory pool
  3867. obj_alloc_size = data_size;
  3868. }
  3869. }
  3870. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3871. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3872. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3873. *result = (struct ggml_tensor) {
  3874. /*.type =*/ type,
  3875. /*.backend =*/ GGML_BACKEND_CPU,
  3876. /*.n_dims =*/ n_dims,
  3877. /*.ne =*/ { 1, 1, 1, 1 },
  3878. /*.nb =*/ { 0, 0, 0, 0 },
  3879. /*.op =*/ GGML_OP_NONE,
  3880. /*.op_params =*/ { 0 },
  3881. /*.is_param =*/ false,
  3882. /*.grad =*/ NULL,
  3883. /*.src =*/ { NULL },
  3884. /*.perf_runs =*/ 0,
  3885. /*.perf_cycles =*/ 0,
  3886. /*.perf_time_us =*/ 0,
  3887. /*.view_src =*/ view_src,
  3888. /*.view_offs =*/ view_offs,
  3889. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3890. /*.name =*/ { 0 },
  3891. /*.extra =*/ NULL,
  3892. /*.padding =*/ { 0 },
  3893. };
  3894. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3895. //ggml_assert_aligned(result->data);
  3896. for (int i = 0; i < n_dims; i++) {
  3897. result->ne[i] = ne[i];
  3898. }
  3899. result->nb[0] = ggml_type_size(type);
  3900. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3901. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3902. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3903. }
  3904. ctx->n_objects++;
  3905. return result;
  3906. }
  3907. struct ggml_tensor * ggml_new_tensor(
  3908. struct ggml_context * ctx,
  3909. enum ggml_type type,
  3910. int n_dims,
  3911. const int64_t * ne) {
  3912. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3913. }
  3914. struct ggml_tensor * ggml_new_tensor_1d(
  3915. struct ggml_context * ctx,
  3916. enum ggml_type type,
  3917. int64_t ne0) {
  3918. return ggml_new_tensor(ctx, type, 1, &ne0);
  3919. }
  3920. struct ggml_tensor * ggml_new_tensor_2d(
  3921. struct ggml_context * ctx,
  3922. enum ggml_type type,
  3923. int64_t ne0,
  3924. int64_t ne1) {
  3925. const int64_t ne[2] = { ne0, ne1 };
  3926. return ggml_new_tensor(ctx, type, 2, ne);
  3927. }
  3928. struct ggml_tensor * ggml_new_tensor_3d(
  3929. struct ggml_context * ctx,
  3930. enum ggml_type type,
  3931. int64_t ne0,
  3932. int64_t ne1,
  3933. int64_t ne2) {
  3934. const int64_t ne[3] = { ne0, ne1, ne2 };
  3935. return ggml_new_tensor(ctx, type, 3, ne);
  3936. }
  3937. struct ggml_tensor * ggml_new_tensor_4d(
  3938. struct ggml_context * ctx,
  3939. enum ggml_type type,
  3940. int64_t ne0,
  3941. int64_t ne1,
  3942. int64_t ne2,
  3943. int64_t ne3) {
  3944. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3945. return ggml_new_tensor(ctx, type, 4, ne);
  3946. }
  3947. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3948. ggml_scratch_save(ctx);
  3949. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3950. ggml_scratch_load(ctx);
  3951. ggml_set_i32(result, value);
  3952. return result;
  3953. }
  3954. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3955. ggml_scratch_save(ctx);
  3956. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3957. ggml_scratch_load(ctx);
  3958. ggml_set_f32(result, value);
  3959. return result;
  3960. }
  3961. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3962. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  3963. }
  3964. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3965. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3966. assert(params_size <= GGML_MAX_OP_PARAMS);
  3967. memcpy(tensor->op_params, params, params_size);
  3968. }
  3969. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3970. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3971. return ((const int32_t *)(tensor->op_params))[i];
  3972. }
  3973. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3974. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3975. ((int32_t *)(tensor->op_params))[i] = value;
  3976. }
  3977. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3978. memset(tensor->data, 0, ggml_nbytes(tensor));
  3979. return tensor;
  3980. }
  3981. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3982. const int n = ggml_nrows(tensor);
  3983. const int nc = tensor->ne[0];
  3984. const size_t n1 = tensor->nb[1];
  3985. char * const data = tensor->data;
  3986. switch (tensor->type) {
  3987. case GGML_TYPE_I8:
  3988. {
  3989. assert(tensor->nb[0] == sizeof(int8_t));
  3990. for (int i = 0; i < n; i++) {
  3991. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3992. }
  3993. } break;
  3994. case GGML_TYPE_I16:
  3995. {
  3996. assert(tensor->nb[0] == sizeof(int16_t));
  3997. for (int i = 0; i < n; i++) {
  3998. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3999. }
  4000. } break;
  4001. case GGML_TYPE_I32:
  4002. {
  4003. assert(tensor->nb[0] == sizeof(int32_t));
  4004. for (int i = 0; i < n; i++) {
  4005. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4006. }
  4007. } break;
  4008. case GGML_TYPE_F16:
  4009. {
  4010. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4011. for (int i = 0; i < n; i++) {
  4012. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4013. }
  4014. } break;
  4015. case GGML_TYPE_F32:
  4016. {
  4017. assert(tensor->nb[0] == sizeof(float));
  4018. for (int i = 0; i < n; i++) {
  4019. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4020. }
  4021. } break;
  4022. default:
  4023. {
  4024. GGML_ASSERT(false);
  4025. } break;
  4026. }
  4027. return tensor;
  4028. }
  4029. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4030. const int n = ggml_nrows(tensor);
  4031. const int nc = tensor->ne[0];
  4032. const size_t n1 = tensor->nb[1];
  4033. char * const data = tensor->data;
  4034. switch (tensor->type) {
  4035. case GGML_TYPE_I8:
  4036. {
  4037. assert(tensor->nb[0] == sizeof(int8_t));
  4038. for (int i = 0; i < n; i++) {
  4039. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4040. }
  4041. } break;
  4042. case GGML_TYPE_I16:
  4043. {
  4044. assert(tensor->nb[0] == sizeof(int16_t));
  4045. for (int i = 0; i < n; i++) {
  4046. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4047. }
  4048. } break;
  4049. case GGML_TYPE_I32:
  4050. {
  4051. assert(tensor->nb[0] == sizeof(int32_t));
  4052. for (int i = 0; i < n; i++) {
  4053. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4054. }
  4055. } break;
  4056. case GGML_TYPE_F16:
  4057. {
  4058. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4059. for (int i = 0; i < n; i++) {
  4060. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4061. }
  4062. } break;
  4063. case GGML_TYPE_F32:
  4064. {
  4065. assert(tensor->nb[0] == sizeof(float));
  4066. for (int i = 0; i < n; i++) {
  4067. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4068. }
  4069. } break;
  4070. default:
  4071. {
  4072. GGML_ASSERT(false);
  4073. } break;
  4074. }
  4075. return tensor;
  4076. }
  4077. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4078. switch (tensor->type) {
  4079. case GGML_TYPE_I8:
  4080. {
  4081. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4082. return ((int8_t *)(tensor->data))[i];
  4083. } break;
  4084. case GGML_TYPE_I16:
  4085. {
  4086. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4087. return ((int16_t *)(tensor->data))[i];
  4088. } break;
  4089. case GGML_TYPE_I32:
  4090. {
  4091. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4092. return ((int32_t *)(tensor->data))[i];
  4093. } break;
  4094. case GGML_TYPE_F16:
  4095. {
  4096. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4097. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4098. } break;
  4099. case GGML_TYPE_F32:
  4100. {
  4101. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4102. return ((float *)(tensor->data))[i];
  4103. } break;
  4104. default:
  4105. {
  4106. GGML_ASSERT(false);
  4107. } break;
  4108. }
  4109. return 0.0f;
  4110. }
  4111. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4112. switch (tensor->type) {
  4113. case GGML_TYPE_I8:
  4114. {
  4115. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4116. ((int8_t *)(tensor->data))[i] = value;
  4117. } break;
  4118. case GGML_TYPE_I16:
  4119. {
  4120. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4121. ((int16_t *)(tensor->data))[i] = value;
  4122. } break;
  4123. case GGML_TYPE_I32:
  4124. {
  4125. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4126. ((int32_t *)(tensor->data))[i] = value;
  4127. } break;
  4128. case GGML_TYPE_F16:
  4129. {
  4130. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4131. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4132. } break;
  4133. case GGML_TYPE_F32:
  4134. {
  4135. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4136. ((float *)(tensor->data))[i] = value;
  4137. } break;
  4138. default:
  4139. {
  4140. GGML_ASSERT(false);
  4141. } break;
  4142. }
  4143. }
  4144. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4145. switch (tensor->type) {
  4146. case GGML_TYPE_I8:
  4147. {
  4148. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4149. return ((int8_t *)(tensor->data))[i];
  4150. } break;
  4151. case GGML_TYPE_I16:
  4152. {
  4153. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4154. return ((int16_t *)(tensor->data))[i];
  4155. } break;
  4156. case GGML_TYPE_I32:
  4157. {
  4158. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4159. return ((int32_t *)(tensor->data))[i];
  4160. } break;
  4161. case GGML_TYPE_F16:
  4162. {
  4163. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4164. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4165. } break;
  4166. case GGML_TYPE_F32:
  4167. {
  4168. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4169. return ((float *)(tensor->data))[i];
  4170. } break;
  4171. default:
  4172. {
  4173. GGML_ASSERT(false);
  4174. } break;
  4175. }
  4176. return 0.0f;
  4177. }
  4178. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4179. switch (tensor->type) {
  4180. case GGML_TYPE_I8:
  4181. {
  4182. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4183. ((int8_t *)(tensor->data))[i] = value;
  4184. } break;
  4185. case GGML_TYPE_I16:
  4186. {
  4187. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4188. ((int16_t *)(tensor->data))[i] = value;
  4189. } break;
  4190. case GGML_TYPE_I32:
  4191. {
  4192. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4193. ((int32_t *)(tensor->data))[i] = value;
  4194. } break;
  4195. case GGML_TYPE_F16:
  4196. {
  4197. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4198. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4199. } break;
  4200. case GGML_TYPE_F32:
  4201. {
  4202. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4203. ((float *)(tensor->data))[i] = value;
  4204. } break;
  4205. default:
  4206. {
  4207. GGML_ASSERT(false);
  4208. } break;
  4209. }
  4210. }
  4211. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4212. return tensor->data;
  4213. }
  4214. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4215. assert(tensor->type == GGML_TYPE_F32);
  4216. return (float *)(tensor->data);
  4217. }
  4218. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4219. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4220. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4221. }
  4222. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4223. return tensor->name;
  4224. }
  4225. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4226. strncpy(tensor->name, name, sizeof(tensor->name));
  4227. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4228. return tensor;
  4229. }
  4230. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4231. va_list args;
  4232. va_start(args, fmt);
  4233. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4234. va_end(args);
  4235. return tensor;
  4236. }
  4237. struct ggml_tensor * ggml_view_tensor(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * src) {
  4240. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4241. ggml_format_name(result, "%s (view)", src->name);
  4242. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4243. result->nb[i] = src->nb[i];
  4244. }
  4245. return result;
  4246. }
  4247. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4248. struct ggml_object * obj = ctx->objects_begin;
  4249. char * const mem_buffer = ctx->mem_buffer;
  4250. while (obj != NULL) {
  4251. if (obj->type == GGML_OBJECT_TENSOR) {
  4252. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4253. if (strcmp(cur->name, name) == 0) {
  4254. return cur;
  4255. }
  4256. }
  4257. obj = obj->next;
  4258. }
  4259. return NULL;
  4260. }
  4261. ////////////////////////////////////////////////////////////////////////////////
  4262. // ggml_dup
  4263. static struct ggml_tensor * ggml_dup_impl(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a,
  4266. bool inplace) {
  4267. bool is_node = false;
  4268. if (!inplace && (a->grad)) {
  4269. is_node = true;
  4270. }
  4271. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4272. result->op = GGML_OP_DUP;
  4273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4274. result->src[0] = a;
  4275. return result;
  4276. }
  4277. struct ggml_tensor * ggml_dup(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_dup_impl(ctx, a, false);
  4281. }
  4282. struct ggml_tensor * ggml_dup_inplace(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_dup_impl(ctx, a, true);
  4286. }
  4287. // ggml_add
  4288. static struct ggml_tensor * ggml_add_impl(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. struct ggml_tensor * b,
  4292. bool inplace) {
  4293. // TODO: support less-strict constraint
  4294. // GGML_ASSERT(ggml_can_repeat(b, a));
  4295. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4296. bool is_node = false;
  4297. if (!inplace && (a->grad || b->grad)) {
  4298. // TODO: support backward pass for broadcasting
  4299. GGML_ASSERT(ggml_are_same_shape(a, b));
  4300. is_node = true;
  4301. }
  4302. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4303. result->op = GGML_OP_ADD;
  4304. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4305. result->src[0] = a;
  4306. result->src[1] = b;
  4307. return result;
  4308. }
  4309. struct ggml_tensor * ggml_add(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b) {
  4313. return ggml_add_impl(ctx, a, b, false);
  4314. }
  4315. struct ggml_tensor * ggml_add_inplace(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a,
  4318. struct ggml_tensor * b) {
  4319. return ggml_add_impl(ctx, a, b, true);
  4320. }
  4321. // ggml_add1
  4322. static struct ggml_tensor * ggml_add1_impl(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b,
  4326. bool inplace) {
  4327. GGML_ASSERT(ggml_is_scalar(b));
  4328. GGML_ASSERT(ggml_is_padded_1d(a));
  4329. bool is_node = false;
  4330. if (a->grad || b->grad) {
  4331. is_node = true;
  4332. }
  4333. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4334. result->op = GGML_OP_ADD1;
  4335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4336. result->src[0] = a;
  4337. result->src[1] = b;
  4338. return result;
  4339. }
  4340. struct ggml_tensor * ggml_add1(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. struct ggml_tensor * b) {
  4344. return ggml_add1_impl(ctx, a, b, false);
  4345. }
  4346. struct ggml_tensor * ggml_add1_inplace(
  4347. struct ggml_context * ctx,
  4348. struct ggml_tensor * a,
  4349. struct ggml_tensor * b) {
  4350. return ggml_add1_impl(ctx, a, b, true);
  4351. }
  4352. // ggml_acc
  4353. static struct ggml_tensor * ggml_acc_impl(
  4354. struct ggml_context * ctx,
  4355. struct ggml_tensor * a,
  4356. struct ggml_tensor * b,
  4357. size_t nb1,
  4358. size_t nb2,
  4359. size_t nb3,
  4360. size_t offset,
  4361. bool inplace) {
  4362. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4363. GGML_ASSERT(ggml_is_contiguous(a));
  4364. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4365. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4366. bool is_node = false;
  4367. if (!inplace && (a->grad || b->grad)) {
  4368. is_node = true;
  4369. }
  4370. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4371. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4372. ggml_set_op_params(result, params, sizeof(params));
  4373. result->op = GGML_OP_ACC;
  4374. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4375. result->src[0] = a;
  4376. result->src[1] = b;
  4377. return result;
  4378. }
  4379. struct ggml_tensor * ggml_acc(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. struct ggml_tensor * b,
  4383. size_t nb1,
  4384. size_t nb2,
  4385. size_t nb3,
  4386. size_t offset) {
  4387. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4388. }
  4389. struct ggml_tensor * ggml_acc_inplace(
  4390. struct ggml_context * ctx,
  4391. struct ggml_tensor * a,
  4392. struct ggml_tensor * b,
  4393. size_t nb1,
  4394. size_t nb2,
  4395. size_t nb3,
  4396. size_t offset) {
  4397. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4398. }
  4399. // ggml_sub
  4400. static struct ggml_tensor * ggml_sub_impl(
  4401. struct ggml_context * ctx,
  4402. struct ggml_tensor * a,
  4403. struct ggml_tensor * b,
  4404. bool inplace) {
  4405. GGML_ASSERT(ggml_are_same_shape(a, b));
  4406. bool is_node = false;
  4407. if (!inplace && (a->grad || b->grad)) {
  4408. is_node = true;
  4409. }
  4410. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4411. result->op = GGML_OP_SUB;
  4412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4413. result->src[0] = a;
  4414. result->src[1] = b;
  4415. return result;
  4416. }
  4417. struct ggml_tensor * ggml_sub(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a,
  4420. struct ggml_tensor * b) {
  4421. return ggml_sub_impl(ctx, a, b, false);
  4422. }
  4423. struct ggml_tensor * ggml_sub_inplace(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a,
  4426. struct ggml_tensor * b) {
  4427. return ggml_sub_impl(ctx, a, b, true);
  4428. }
  4429. // ggml_mul
  4430. static struct ggml_tensor * ggml_mul_impl(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. struct ggml_tensor * b,
  4434. bool inplace) {
  4435. // TODO: support less-strict constraint
  4436. // GGML_ASSERT(ggml_can_repeat(b, a));
  4437. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4438. bool is_node = false;
  4439. if (!inplace && (a->grad || b->grad)) {
  4440. // TODO: support backward pass for broadcasting
  4441. GGML_ASSERT(ggml_are_same_shape(a, b));
  4442. is_node = true;
  4443. }
  4444. if (inplace) {
  4445. GGML_ASSERT(!is_node);
  4446. }
  4447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4448. result->op = GGML_OP_MUL;
  4449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4450. result->src[0] = a;
  4451. result->src[1] = b;
  4452. return result;
  4453. }
  4454. struct ggml_tensor * ggml_mul(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a,
  4457. struct ggml_tensor * b) {
  4458. return ggml_mul_impl(ctx, a, b, false);
  4459. }
  4460. struct ggml_tensor * ggml_mul_inplace(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * a,
  4463. struct ggml_tensor * b) {
  4464. return ggml_mul_impl(ctx, a, b, true);
  4465. }
  4466. // ggml_div
  4467. static struct ggml_tensor * ggml_div_impl(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. struct ggml_tensor * b,
  4471. bool inplace) {
  4472. GGML_ASSERT(ggml_are_same_shape(a, b));
  4473. bool is_node = false;
  4474. if (!inplace && (a->grad || b->grad)) {
  4475. is_node = true;
  4476. }
  4477. if (inplace) {
  4478. GGML_ASSERT(!is_node);
  4479. }
  4480. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4481. result->op = GGML_OP_DIV;
  4482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4483. result->src[0] = a;
  4484. result->src[1] = b;
  4485. return result;
  4486. }
  4487. struct ggml_tensor * ggml_div(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b) {
  4491. return ggml_div_impl(ctx, a, b, false);
  4492. }
  4493. struct ggml_tensor * ggml_div_inplace(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. struct ggml_tensor * b) {
  4497. return ggml_div_impl(ctx, a, b, true);
  4498. }
  4499. // ggml_sqr
  4500. static struct ggml_tensor * ggml_sqr_impl(
  4501. struct ggml_context * ctx,
  4502. struct ggml_tensor * a,
  4503. bool inplace) {
  4504. bool is_node = false;
  4505. if (!inplace && (a->grad)) {
  4506. is_node = true;
  4507. }
  4508. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4509. result->op = GGML_OP_SQR;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src[0] = a;
  4512. return result;
  4513. }
  4514. struct ggml_tensor * ggml_sqr(
  4515. struct ggml_context * ctx,
  4516. struct ggml_tensor * a) {
  4517. return ggml_sqr_impl(ctx, a, false);
  4518. }
  4519. struct ggml_tensor * ggml_sqr_inplace(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a) {
  4522. return ggml_sqr_impl(ctx, a, true);
  4523. }
  4524. // ggml_sqrt
  4525. static struct ggml_tensor * ggml_sqrt_impl(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a,
  4528. bool inplace) {
  4529. bool is_node = false;
  4530. if (!inplace && (a->grad)) {
  4531. is_node = true;
  4532. }
  4533. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4534. result->op = GGML_OP_SQRT;
  4535. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4536. result->src[0] = a;
  4537. return result;
  4538. }
  4539. struct ggml_tensor * ggml_sqrt(
  4540. struct ggml_context * ctx,
  4541. struct ggml_tensor * a) {
  4542. return ggml_sqrt_impl(ctx, a, false);
  4543. }
  4544. struct ggml_tensor * ggml_sqrt_inplace(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a) {
  4547. return ggml_sqrt_impl(ctx, a, true);
  4548. }
  4549. // ggml_log
  4550. static struct ggml_tensor * ggml_log_impl(
  4551. struct ggml_context * ctx,
  4552. struct ggml_tensor * a,
  4553. bool inplace) {
  4554. bool is_node = false;
  4555. if (!inplace && (a->grad)) {
  4556. is_node = true;
  4557. }
  4558. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4559. result->op = GGML_OP_LOG;
  4560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4561. result->src[0] = a;
  4562. return result;
  4563. }
  4564. struct ggml_tensor * ggml_log(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a) {
  4567. return ggml_log_impl(ctx, a, false);
  4568. }
  4569. struct ggml_tensor * ggml_log_inplace(
  4570. struct ggml_context * ctx,
  4571. struct ggml_tensor * a) {
  4572. return ggml_log_impl(ctx, a, true);
  4573. }
  4574. // ggml_sum
  4575. struct ggml_tensor * ggml_sum(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a) {
  4578. bool is_node = false;
  4579. if (a->grad) {
  4580. is_node = true;
  4581. }
  4582. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4583. result->op = GGML_OP_SUM;
  4584. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4585. result->src[0] = a;
  4586. return result;
  4587. }
  4588. // ggml_sum_rows
  4589. struct ggml_tensor * ggml_sum_rows(
  4590. struct ggml_context * ctx,
  4591. struct ggml_tensor * a) {
  4592. bool is_node = false;
  4593. if (a->grad) {
  4594. is_node = true;
  4595. }
  4596. int64_t ne[4] = {1,1,1,1};
  4597. for (int i=1; i<a->n_dims; ++i) {
  4598. ne[i] = a->ne[i];
  4599. }
  4600. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4601. result->op = GGML_OP_SUM_ROWS;
  4602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4603. result->src[0] = a;
  4604. return result;
  4605. }
  4606. // ggml_mean
  4607. struct ggml_tensor * ggml_mean(
  4608. struct ggml_context * ctx,
  4609. struct ggml_tensor * a) {
  4610. bool is_node = false;
  4611. if (a->grad) {
  4612. GGML_ASSERT(false); // TODO: implement
  4613. is_node = true;
  4614. }
  4615. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4616. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4617. result->op = GGML_OP_MEAN;
  4618. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4619. result->src[0] = a;
  4620. return result;
  4621. }
  4622. // ggml_argmax
  4623. struct ggml_tensor * ggml_argmax(
  4624. struct ggml_context * ctx,
  4625. struct ggml_tensor * a) {
  4626. GGML_ASSERT(ggml_is_matrix(a));
  4627. bool is_node = false;
  4628. if (a->grad) {
  4629. GGML_ASSERT(false);
  4630. is_node = true;
  4631. }
  4632. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4633. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4634. result->op = GGML_OP_ARGMAX;
  4635. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4636. result->src[0] = a;
  4637. return result;
  4638. }
  4639. // ggml_repeat
  4640. struct ggml_tensor * ggml_repeat(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a,
  4643. struct ggml_tensor * b) {
  4644. GGML_ASSERT(ggml_can_repeat(a, b));
  4645. bool is_node = false;
  4646. if (a->grad) {
  4647. is_node = true;
  4648. }
  4649. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4650. result->op = GGML_OP_REPEAT;
  4651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4652. result->src[0] = a;
  4653. result->src[1] = b;
  4654. return result;
  4655. }
  4656. // ggml_repeat_back
  4657. struct ggml_tensor * ggml_repeat_back(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. struct ggml_tensor * b) {
  4661. GGML_ASSERT(ggml_can_repeat(b, a));
  4662. bool is_node = false;
  4663. if (a->grad) {
  4664. is_node = true;
  4665. }
  4666. if (ggml_are_same_shape(a, b) && !is_node) {
  4667. return a;
  4668. }
  4669. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4670. result->op = GGML_OP_REPEAT_BACK;
  4671. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4672. result->src[0] = a;
  4673. result->src[1] = b;
  4674. return result;
  4675. }
  4676. // ggml_concat
  4677. struct ggml_tensor * ggml_concat(
  4678. struct ggml_context* ctx,
  4679. struct ggml_tensor* a,
  4680. struct ggml_tensor* b) {
  4681. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4682. bool is_node = false;
  4683. if (a->grad || b->grad) {
  4684. is_node = true;
  4685. }
  4686. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4687. result->op = GGML_OP_CONCAT;
  4688. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4689. result->src[0] = a;
  4690. result->src[1] = b;
  4691. return result;
  4692. }
  4693. // ggml_abs
  4694. struct ggml_tensor * ggml_abs(
  4695. struct ggml_context * ctx,
  4696. struct ggml_tensor * a) {
  4697. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4698. }
  4699. struct ggml_tensor * ggml_abs_inplace(
  4700. struct ggml_context * ctx,
  4701. struct ggml_tensor * a) {
  4702. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4703. }
  4704. // ggml_sgn
  4705. struct ggml_tensor * ggml_sgn(
  4706. struct ggml_context * ctx,
  4707. struct ggml_tensor * a) {
  4708. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4709. }
  4710. struct ggml_tensor * ggml_sgn_inplace(
  4711. struct ggml_context * ctx,
  4712. struct ggml_tensor * a) {
  4713. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4714. }
  4715. // ggml_neg
  4716. struct ggml_tensor * ggml_neg(
  4717. struct ggml_context * ctx,
  4718. struct ggml_tensor * a) {
  4719. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4720. }
  4721. struct ggml_tensor * ggml_neg_inplace(
  4722. struct ggml_context * ctx,
  4723. struct ggml_tensor * a) {
  4724. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4725. }
  4726. // ggml_step
  4727. struct ggml_tensor * ggml_step(
  4728. struct ggml_context * ctx,
  4729. struct ggml_tensor * a) {
  4730. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4731. }
  4732. struct ggml_tensor * ggml_step_inplace(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a) {
  4735. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4736. }
  4737. // ggml_tanh
  4738. struct ggml_tensor * ggml_tanh(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a) {
  4741. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4742. }
  4743. struct ggml_tensor * ggml_tanh_inplace(
  4744. struct ggml_context * ctx,
  4745. struct ggml_tensor * a) {
  4746. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4747. }
  4748. // ggml_elu
  4749. struct ggml_tensor * ggml_elu(
  4750. struct ggml_context * ctx,
  4751. struct ggml_tensor * a) {
  4752. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4753. }
  4754. struct ggml_tensor * ggml_elu_inplace(
  4755. struct ggml_context * ctx,
  4756. struct ggml_tensor * a) {
  4757. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4758. }
  4759. // ggml_relu
  4760. struct ggml_tensor * ggml_relu(
  4761. struct ggml_context * ctx,
  4762. struct ggml_tensor * a) {
  4763. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4764. }
  4765. struct ggml_tensor * ggml_relu_inplace(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a) {
  4768. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4769. }
  4770. // ggml_gelu
  4771. struct ggml_tensor * ggml_gelu(
  4772. struct ggml_context * ctx,
  4773. struct ggml_tensor * a) {
  4774. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4775. }
  4776. struct ggml_tensor * ggml_gelu_inplace(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a) {
  4779. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4780. }
  4781. // ggml_gelu_quick
  4782. struct ggml_tensor * ggml_gelu_quick(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a) {
  4785. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4786. }
  4787. struct ggml_tensor * ggml_gelu_quick_inplace(
  4788. struct ggml_context * ctx,
  4789. struct ggml_tensor * a) {
  4790. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4791. }
  4792. // ggml_silu
  4793. struct ggml_tensor * ggml_silu(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a) {
  4796. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4797. }
  4798. struct ggml_tensor * ggml_silu_inplace(
  4799. struct ggml_context * ctx,
  4800. struct ggml_tensor * a) {
  4801. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4802. }
  4803. // ggml_silu_back
  4804. struct ggml_tensor * ggml_silu_back(
  4805. struct ggml_context * ctx,
  4806. struct ggml_tensor * a,
  4807. struct ggml_tensor * b) {
  4808. bool is_node = false;
  4809. if (a->grad || b->grad) {
  4810. // TODO: implement backward
  4811. is_node = true;
  4812. }
  4813. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4814. result->op = GGML_OP_SILU_BACK;
  4815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4816. result->src[0] = a;
  4817. result->src[1] = b;
  4818. return result;
  4819. }
  4820. // ggml_norm
  4821. static struct ggml_tensor * ggml_norm_impl(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. float eps,
  4825. bool inplace) {
  4826. bool is_node = false;
  4827. if (!inplace && (a->grad)) {
  4828. GGML_ASSERT(false); // TODO: implement backward
  4829. is_node = true;
  4830. }
  4831. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4832. ggml_set_op_params(result, &eps, sizeof(eps));
  4833. result->op = GGML_OP_NORM;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src[0] = a;
  4836. return result;
  4837. }
  4838. struct ggml_tensor * ggml_norm(
  4839. struct ggml_context * ctx,
  4840. struct ggml_tensor * a,
  4841. float eps) {
  4842. return ggml_norm_impl(ctx, a, eps, false);
  4843. }
  4844. struct ggml_tensor * ggml_norm_inplace(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. float eps) {
  4848. return ggml_norm_impl(ctx, a, eps, true);
  4849. }
  4850. // ggml_rms_norm
  4851. static struct ggml_tensor * ggml_rms_norm_impl(
  4852. struct ggml_context * ctx,
  4853. struct ggml_tensor * a,
  4854. float eps,
  4855. bool inplace) {
  4856. bool is_node = false;
  4857. if (!inplace && (a->grad)) {
  4858. is_node = true;
  4859. }
  4860. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4861. ggml_set_op_params(result, &eps, sizeof(eps));
  4862. result->op = GGML_OP_RMS_NORM;
  4863. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4864. result->src[0] = a;
  4865. return result;
  4866. }
  4867. struct ggml_tensor * ggml_rms_norm(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a,
  4870. float eps) {
  4871. return ggml_rms_norm_impl(ctx, a, eps, false);
  4872. }
  4873. struct ggml_tensor * ggml_rms_norm_inplace(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. float eps) {
  4877. return ggml_rms_norm_impl(ctx, a, eps, true);
  4878. }
  4879. // ggml_rms_norm_back
  4880. struct ggml_tensor * ggml_rms_norm_back(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. struct ggml_tensor * b,
  4884. float eps) {
  4885. bool is_node = false;
  4886. if (a->grad) {
  4887. // TODO: implement backward
  4888. is_node = true;
  4889. }
  4890. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4891. ggml_set_op_params(result, &eps, sizeof(eps));
  4892. result->op = GGML_OP_RMS_NORM_BACK;
  4893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4894. result->src[0] = a;
  4895. result->src[1] = b;
  4896. return result;
  4897. }
  4898. // ggml_group_norm
  4899. static struct ggml_tensor * ggml_group_norm_impl(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. int n_groups,
  4903. bool inplace) {
  4904. bool is_node = false;
  4905. if (!inplace && (a->grad)) {
  4906. GGML_ASSERT(false); // TODO: implement backward
  4907. is_node = true;
  4908. }
  4909. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4910. result->op = GGML_OP_GROUP_NORM;
  4911. result->op_params[0] = n_groups;
  4912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4913. result->src[0] = a;
  4914. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4915. return result;
  4916. }
  4917. struct ggml_tensor * ggml_group_norm(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. int n_groups) {
  4921. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4922. }
  4923. struct ggml_tensor * ggml_group_norm_inplace(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * a,
  4926. int n_groups) {
  4927. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4928. }
  4929. // ggml_mul_mat
  4930. struct ggml_tensor * ggml_mul_mat(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b) {
  4934. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4935. GGML_ASSERT(!ggml_is_transposed(a));
  4936. bool is_node = false;
  4937. if (a->grad || b->grad) {
  4938. is_node = true;
  4939. }
  4940. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4941. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  4942. result->op = GGML_OP_MUL_MAT;
  4943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4944. result->src[0] = a;
  4945. result->src[1] = b;
  4946. return result;
  4947. }
  4948. // ggml_out_prod
  4949. struct ggml_tensor * ggml_out_prod(
  4950. struct ggml_context * ctx,
  4951. struct ggml_tensor * a,
  4952. struct ggml_tensor * b) {
  4953. GGML_ASSERT(ggml_can_out_prod(a, b));
  4954. GGML_ASSERT(!ggml_is_transposed(a));
  4955. bool is_node = false;
  4956. if (a->grad || b->grad) {
  4957. is_node = true;
  4958. }
  4959. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4960. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4961. result->op = GGML_OP_OUT_PROD;
  4962. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4963. result->src[0] = a;
  4964. result->src[1] = b;
  4965. return result;
  4966. }
  4967. // ggml_scale
  4968. static struct ggml_tensor * ggml_scale_impl(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. struct ggml_tensor * b,
  4972. bool inplace) {
  4973. GGML_ASSERT(ggml_is_scalar(b));
  4974. GGML_ASSERT(ggml_is_padded_1d(a));
  4975. bool is_node = false;
  4976. if (a->grad || b->grad) {
  4977. is_node = true;
  4978. }
  4979. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4980. result->op = GGML_OP_SCALE;
  4981. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4982. result->src[0] = a;
  4983. result->src[1] = b;
  4984. return result;
  4985. }
  4986. struct ggml_tensor * ggml_scale(
  4987. struct ggml_context * ctx,
  4988. struct ggml_tensor * a,
  4989. struct ggml_tensor * b) {
  4990. return ggml_scale_impl(ctx, a, b, false);
  4991. }
  4992. struct ggml_tensor * ggml_scale_inplace(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. struct ggml_tensor * b) {
  4996. return ggml_scale_impl(ctx, a, b, true);
  4997. }
  4998. // ggml_set
  4999. static struct ggml_tensor * ggml_set_impl(
  5000. struct ggml_context * ctx,
  5001. struct ggml_tensor * a,
  5002. struct ggml_tensor * b,
  5003. size_t nb1,
  5004. size_t nb2,
  5005. size_t nb3,
  5006. size_t offset,
  5007. bool inplace) {
  5008. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5009. bool is_node = false;
  5010. if (a->grad || b->grad) {
  5011. is_node = true;
  5012. }
  5013. // make a view of the destination
  5014. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5015. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5016. ggml_set_op_params(result, params, sizeof(params));
  5017. result->op = GGML_OP_SET;
  5018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5019. result->src[0] = a;
  5020. result->src[1] = b;
  5021. return result;
  5022. }
  5023. struct ggml_tensor * ggml_set(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * a,
  5026. struct ggml_tensor * b,
  5027. size_t nb1,
  5028. size_t nb2,
  5029. size_t nb3,
  5030. size_t offset) {
  5031. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5032. }
  5033. struct ggml_tensor * ggml_set_inplace(
  5034. struct ggml_context * ctx,
  5035. struct ggml_tensor * a,
  5036. struct ggml_tensor * b,
  5037. size_t nb1,
  5038. size_t nb2,
  5039. size_t nb3,
  5040. size_t offset) {
  5041. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5042. }
  5043. struct ggml_tensor * ggml_set_1d(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a,
  5046. struct ggml_tensor * b,
  5047. size_t offset) {
  5048. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5049. }
  5050. struct ggml_tensor * ggml_set_1d_inplace(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a,
  5053. struct ggml_tensor * b,
  5054. size_t offset) {
  5055. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5056. }
  5057. struct ggml_tensor * ggml_set_2d(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. struct ggml_tensor * b,
  5061. size_t nb1,
  5062. size_t offset) {
  5063. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5064. }
  5065. struct ggml_tensor * ggml_set_2d_inplace(
  5066. struct ggml_context * ctx,
  5067. struct ggml_tensor * a,
  5068. struct ggml_tensor * b,
  5069. size_t nb1,
  5070. size_t offset) {
  5071. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5072. }
  5073. // ggml_cpy
  5074. static struct ggml_tensor * ggml_cpy_impl(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. struct ggml_tensor * b,
  5078. bool inplace) {
  5079. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5080. bool is_node = false;
  5081. if (!inplace && (a->grad || b->grad)) {
  5082. is_node = true;
  5083. }
  5084. // make a view of the destination
  5085. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5086. if (strlen(b->name) > 0) {
  5087. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5088. } else {
  5089. ggml_format_name(result, "%s (copy)", a->name);
  5090. }
  5091. result->op = GGML_OP_CPY;
  5092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5093. result->src[0] = a;
  5094. result->src[1] = b;
  5095. return result;
  5096. }
  5097. struct ggml_tensor * ggml_cpy(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. struct ggml_tensor * b) {
  5101. return ggml_cpy_impl(ctx, a, b, false);
  5102. }
  5103. struct ggml_tensor * ggml_cpy_inplace(
  5104. struct ggml_context * ctx,
  5105. struct ggml_tensor * a,
  5106. struct ggml_tensor * b) {
  5107. return ggml_cpy_impl(ctx, a, b, true);
  5108. }
  5109. // ggml_cont
  5110. static struct ggml_tensor * ggml_cont_impl(
  5111. struct ggml_context * ctx,
  5112. struct ggml_tensor * a,
  5113. bool inplace) {
  5114. bool is_node = false;
  5115. if (!inplace && a->grad) {
  5116. is_node = true;
  5117. }
  5118. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5119. ggml_format_name(result, "%s (cont)", a->name);
  5120. result->op = GGML_OP_CONT;
  5121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5122. result->src[0] = a;
  5123. return result;
  5124. }
  5125. struct ggml_tensor * ggml_cont(
  5126. struct ggml_context * ctx,
  5127. struct ggml_tensor * a) {
  5128. return ggml_cont_impl(ctx, a, false);
  5129. }
  5130. struct ggml_tensor * ggml_cont_inplace(
  5131. struct ggml_context * ctx,
  5132. struct ggml_tensor * a) {
  5133. return ggml_cont_impl(ctx, a, true);
  5134. }
  5135. // ggml_reshape
  5136. struct ggml_tensor * ggml_reshape(
  5137. struct ggml_context * ctx,
  5138. struct ggml_tensor * a,
  5139. struct ggml_tensor * b) {
  5140. GGML_ASSERT(ggml_is_contiguous(a));
  5141. GGML_ASSERT(ggml_is_contiguous(b));
  5142. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5143. bool is_node = false;
  5144. if (a->grad) {
  5145. is_node = true;
  5146. }
  5147. if (b->grad) {
  5148. // gradient propagation is not supported
  5149. //GGML_ASSERT(false);
  5150. }
  5151. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5152. ggml_format_name(result, "%s (reshaped)", a->name);
  5153. result->op = GGML_OP_RESHAPE;
  5154. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5155. result->src[0] = a;
  5156. return result;
  5157. }
  5158. struct ggml_tensor * ggml_reshape_1d(
  5159. struct ggml_context * ctx,
  5160. struct ggml_tensor * a,
  5161. int64_t ne0) {
  5162. GGML_ASSERT(ggml_is_contiguous(a));
  5163. GGML_ASSERT(ggml_nelements(a) == ne0);
  5164. bool is_node = false;
  5165. if (a->grad) {
  5166. is_node = true;
  5167. }
  5168. const int64_t ne[1] = { ne0 };
  5169. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5170. ggml_format_name(result, "%s (reshaped)", a->name);
  5171. result->op = GGML_OP_RESHAPE;
  5172. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5173. result->src[0] = a;
  5174. return result;
  5175. }
  5176. struct ggml_tensor * ggml_reshape_2d(
  5177. struct ggml_context * ctx,
  5178. struct ggml_tensor * a,
  5179. int64_t ne0,
  5180. int64_t ne1) {
  5181. GGML_ASSERT(ggml_is_contiguous(a));
  5182. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5183. bool is_node = false;
  5184. if (a->grad) {
  5185. is_node = true;
  5186. }
  5187. const int64_t ne[2] = { ne0, ne1 };
  5188. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5189. ggml_format_name(result, "%s (reshaped)", a->name);
  5190. result->op = GGML_OP_RESHAPE;
  5191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5192. result->src[0] = a;
  5193. return result;
  5194. }
  5195. struct ggml_tensor * ggml_reshape_3d(
  5196. struct ggml_context * ctx,
  5197. struct ggml_tensor * a,
  5198. int64_t ne0,
  5199. int64_t ne1,
  5200. int64_t ne2) {
  5201. GGML_ASSERT(ggml_is_contiguous(a));
  5202. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5203. bool is_node = false;
  5204. if (a->grad) {
  5205. is_node = true;
  5206. }
  5207. const int64_t ne[3] = { ne0, ne1, ne2 };
  5208. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5209. ggml_format_name(result, "%s (reshaped)", a->name);
  5210. result->op = GGML_OP_RESHAPE;
  5211. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5212. result->src[0] = a;
  5213. return result;
  5214. }
  5215. struct ggml_tensor * ggml_reshape_4d(
  5216. struct ggml_context * ctx,
  5217. struct ggml_tensor * a,
  5218. int64_t ne0,
  5219. int64_t ne1,
  5220. int64_t ne2,
  5221. int64_t ne3) {
  5222. GGML_ASSERT(ggml_is_contiguous(a));
  5223. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5224. bool is_node = false;
  5225. if (a->grad) {
  5226. is_node = true;
  5227. }
  5228. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5229. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5230. ggml_format_name(result, "%s (reshaped)", a->name);
  5231. result->op = GGML_OP_RESHAPE;
  5232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5233. result->src[0] = a;
  5234. return result;
  5235. }
  5236. static struct ggml_tensor * ggml_view_impl(
  5237. struct ggml_context * ctx,
  5238. struct ggml_tensor * a,
  5239. int n_dims,
  5240. const int64_t * ne,
  5241. size_t offset) {
  5242. bool is_node = false;
  5243. if (a->grad) {
  5244. is_node = true;
  5245. }
  5246. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5247. ggml_format_name(result, "%s (view)", a->name);
  5248. ggml_set_op_params(result, &offset, sizeof(offset));
  5249. result->op = GGML_OP_VIEW;
  5250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5251. result->src[0] = a;
  5252. return result;
  5253. }
  5254. // ggml_view_1d
  5255. struct ggml_tensor * ggml_view_1d(
  5256. struct ggml_context * ctx,
  5257. struct ggml_tensor * a,
  5258. int64_t ne0,
  5259. size_t offset) {
  5260. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5261. return result;
  5262. }
  5263. // ggml_view_2d
  5264. struct ggml_tensor * ggml_view_2d(
  5265. struct ggml_context * ctx,
  5266. struct ggml_tensor * a,
  5267. int64_t ne0,
  5268. int64_t ne1,
  5269. size_t nb1,
  5270. size_t offset) {
  5271. const int64_t ne[2] = { ne0, ne1 };
  5272. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5273. result->nb[1] = nb1;
  5274. result->nb[2] = result->nb[1]*ne1;
  5275. result->nb[3] = result->nb[2];
  5276. return result;
  5277. }
  5278. // ggml_view_3d
  5279. struct ggml_tensor * ggml_view_3d(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. int64_t ne0,
  5283. int64_t ne1,
  5284. int64_t ne2,
  5285. size_t nb1,
  5286. size_t nb2,
  5287. size_t offset) {
  5288. const int64_t ne[3] = { ne0, ne1, ne2 };
  5289. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5290. result->nb[1] = nb1;
  5291. result->nb[2] = nb2;
  5292. result->nb[3] = result->nb[2]*ne2;
  5293. return result;
  5294. }
  5295. // ggml_view_4d
  5296. struct ggml_tensor * ggml_view_4d(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. int64_t ne0,
  5300. int64_t ne1,
  5301. int64_t ne2,
  5302. int64_t ne3,
  5303. size_t nb1,
  5304. size_t nb2,
  5305. size_t nb3,
  5306. size_t offset) {
  5307. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5308. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5309. result->nb[1] = nb1;
  5310. result->nb[2] = nb2;
  5311. result->nb[3] = nb3;
  5312. return result;
  5313. }
  5314. // ggml_permute
  5315. struct ggml_tensor * ggml_permute(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. int axis0,
  5319. int axis1,
  5320. int axis2,
  5321. int axis3) {
  5322. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5323. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5324. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5325. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5326. GGML_ASSERT(axis0 != axis1);
  5327. GGML_ASSERT(axis0 != axis2);
  5328. GGML_ASSERT(axis0 != axis3);
  5329. GGML_ASSERT(axis1 != axis2);
  5330. GGML_ASSERT(axis1 != axis3);
  5331. GGML_ASSERT(axis2 != axis3);
  5332. bool is_node = false;
  5333. if (a->grad) {
  5334. is_node = true;
  5335. }
  5336. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5337. ggml_format_name(result, "%s (permuted)", a->name);
  5338. int ne[GGML_MAX_DIMS];
  5339. int nb[GGML_MAX_DIMS];
  5340. ne[axis0] = a->ne[0];
  5341. ne[axis1] = a->ne[1];
  5342. ne[axis2] = a->ne[2];
  5343. ne[axis3] = a->ne[3];
  5344. nb[axis0] = a->nb[0];
  5345. nb[axis1] = a->nb[1];
  5346. nb[axis2] = a->nb[2];
  5347. nb[axis3] = a->nb[3];
  5348. result->ne[0] = ne[0];
  5349. result->ne[1] = ne[1];
  5350. result->ne[2] = ne[2];
  5351. result->ne[3] = ne[3];
  5352. result->nb[0] = nb[0];
  5353. result->nb[1] = nb[1];
  5354. result->nb[2] = nb[2];
  5355. result->nb[3] = nb[3];
  5356. result->op = GGML_OP_PERMUTE;
  5357. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5358. result->src[0] = a;
  5359. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5360. ggml_set_op_params(result, params, sizeof(params));
  5361. return result;
  5362. }
  5363. // ggml_transpose
  5364. struct ggml_tensor * ggml_transpose(
  5365. struct ggml_context * ctx,
  5366. struct ggml_tensor * a) {
  5367. bool is_node = false;
  5368. if (a->grad) {
  5369. is_node = true;
  5370. }
  5371. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5372. ggml_format_name(result, "%s (transposed)", a->name);
  5373. result->ne[0] = a->ne[1];
  5374. result->ne[1] = a->ne[0];
  5375. result->nb[0] = a->nb[1];
  5376. result->nb[1] = a->nb[0];
  5377. result->op = GGML_OP_TRANSPOSE;
  5378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5379. result->src[0] = a;
  5380. return result;
  5381. }
  5382. // ggml_get_rows
  5383. struct ggml_tensor * ggml_get_rows(
  5384. struct ggml_context * ctx,
  5385. struct ggml_tensor * a,
  5386. struct ggml_tensor * b) {
  5387. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5388. bool is_node = false;
  5389. if (a->grad || b->grad) {
  5390. is_node = true;
  5391. }
  5392. // TODO: implement non F32 return
  5393. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5394. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5395. result->op = GGML_OP_GET_ROWS;
  5396. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5397. result->src[0] = a;
  5398. result->src[1] = b;
  5399. return result;
  5400. }
  5401. // ggml_get_rows_back
  5402. struct ggml_tensor * ggml_get_rows_back(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a,
  5405. struct ggml_tensor * b,
  5406. struct ggml_tensor * c) {
  5407. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5408. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5409. bool is_node = false;
  5410. if (a->grad || b->grad) {
  5411. is_node = true;
  5412. }
  5413. // TODO: implement non F32 return
  5414. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5415. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5416. result->op = GGML_OP_GET_ROWS_BACK;
  5417. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5418. result->src[0] = a;
  5419. result->src[1] = b;
  5420. result->src[2] = c;
  5421. return result;
  5422. }
  5423. // ggml_diag
  5424. struct ggml_tensor * ggml_diag(
  5425. struct ggml_context * ctx,
  5426. struct ggml_tensor * a) {
  5427. GGML_ASSERT(a->ne[1] == 1);
  5428. bool is_node = false;
  5429. if (a->grad) {
  5430. is_node = true;
  5431. }
  5432. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5433. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5434. result->op = GGML_OP_DIAG;
  5435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5436. result->src[0] = a;
  5437. return result;
  5438. }
  5439. // ggml_diag_mask_inf
  5440. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5441. struct ggml_context * ctx,
  5442. struct ggml_tensor * a,
  5443. int n_past,
  5444. bool inplace) {
  5445. bool is_node = false;
  5446. if (a->grad) {
  5447. is_node = true;
  5448. }
  5449. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5450. int32_t params[] = { n_past };
  5451. ggml_set_op_params(result, params, sizeof(params));
  5452. result->op = GGML_OP_DIAG_MASK_INF;
  5453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5454. result->src[0] = a;
  5455. return result;
  5456. }
  5457. struct ggml_tensor * ggml_diag_mask_inf(
  5458. struct ggml_context * ctx,
  5459. struct ggml_tensor * a,
  5460. int n_past) {
  5461. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5462. }
  5463. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5464. struct ggml_context * ctx,
  5465. struct ggml_tensor * a,
  5466. int n_past) {
  5467. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5468. }
  5469. // ggml_diag_mask_zero
  5470. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5471. struct ggml_context * ctx,
  5472. struct ggml_tensor * a,
  5473. int n_past,
  5474. bool inplace) {
  5475. bool is_node = false;
  5476. if (a->grad) {
  5477. is_node = true;
  5478. }
  5479. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5480. int32_t params[] = { n_past };
  5481. ggml_set_op_params(result, params, sizeof(params));
  5482. result->op = GGML_OP_DIAG_MASK_ZERO;
  5483. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5484. result->src[0] = a;
  5485. return result;
  5486. }
  5487. struct ggml_tensor * ggml_diag_mask_zero(
  5488. struct ggml_context * ctx,
  5489. struct ggml_tensor * a,
  5490. int n_past) {
  5491. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5492. }
  5493. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. int n_past) {
  5497. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5498. }
  5499. // ggml_soft_max
  5500. static struct ggml_tensor * ggml_soft_max_impl(
  5501. struct ggml_context * ctx,
  5502. struct ggml_tensor * a,
  5503. bool inplace) {
  5504. bool is_node = false;
  5505. if (a->grad) {
  5506. is_node = true;
  5507. }
  5508. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5509. result->op = GGML_OP_SOFT_MAX;
  5510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5511. result->src[0] = a;
  5512. return result;
  5513. }
  5514. struct ggml_tensor * ggml_soft_max(
  5515. struct ggml_context * ctx,
  5516. struct ggml_tensor * a) {
  5517. return ggml_soft_max_impl(ctx, a, false);
  5518. }
  5519. struct ggml_tensor * ggml_soft_max_inplace(
  5520. struct ggml_context * ctx,
  5521. struct ggml_tensor * a) {
  5522. return ggml_soft_max_impl(ctx, a, true);
  5523. }
  5524. // ggml_soft_max_back
  5525. static struct ggml_tensor * ggml_soft_max_back_impl(
  5526. struct ggml_context * ctx,
  5527. struct ggml_tensor * a,
  5528. struct ggml_tensor * b,
  5529. bool inplace) {
  5530. bool is_node = false;
  5531. if (a->grad || b->grad) {
  5532. is_node = true; // TODO : implement backward pass
  5533. }
  5534. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5535. result->op = GGML_OP_SOFT_MAX_BACK;
  5536. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5537. result->src[0] = a;
  5538. result->src[1] = b;
  5539. return result;
  5540. }
  5541. struct ggml_tensor * ggml_soft_max_back(
  5542. struct ggml_context * ctx,
  5543. struct ggml_tensor * a,
  5544. struct ggml_tensor * b) {
  5545. return ggml_soft_max_back_impl(ctx, a, b, false);
  5546. }
  5547. struct ggml_tensor * ggml_soft_max_back_inplace(
  5548. struct ggml_context * ctx,
  5549. struct ggml_tensor * a,
  5550. struct ggml_tensor * b) {
  5551. return ggml_soft_max_back_impl(ctx, a, b, true);
  5552. }
  5553. // ggml_rope
  5554. static struct ggml_tensor * ggml_rope_impl(
  5555. struct ggml_context * ctx,
  5556. struct ggml_tensor * a,
  5557. int n_past,
  5558. int n_dims,
  5559. int mode,
  5560. int n_ctx,
  5561. float freq_base,
  5562. float freq_scale,
  5563. float xpos_base,
  5564. bool xpos_down,
  5565. bool inplace) {
  5566. GGML_ASSERT(n_past >= 0);
  5567. bool is_node = false;
  5568. if (a->grad) {
  5569. is_node = true;
  5570. }
  5571. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5572. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5573. memcpy(params + 4, &freq_base, sizeof(float));
  5574. memcpy(params + 5, &freq_scale, sizeof(float));
  5575. memcpy(params + 6, &xpos_base, sizeof(float));
  5576. memcpy(params + 7, &xpos_down, sizeof(bool));
  5577. ggml_set_op_params(result, params, sizeof(params));
  5578. result->op = GGML_OP_ROPE;
  5579. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5580. result->src[0] = a;
  5581. return result;
  5582. }
  5583. struct ggml_tensor * ggml_rope(
  5584. struct ggml_context * ctx,
  5585. struct ggml_tensor * a,
  5586. int n_past,
  5587. int n_dims,
  5588. int mode,
  5589. int n_ctx) {
  5590. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5591. }
  5592. struct ggml_tensor * ggml_rope_inplace(
  5593. struct ggml_context * ctx,
  5594. struct ggml_tensor * a,
  5595. int n_past,
  5596. int n_dims,
  5597. int mode,
  5598. int n_ctx) {
  5599. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5600. }
  5601. struct ggml_tensor * ggml_rope_custom(
  5602. struct ggml_context * ctx,
  5603. struct ggml_tensor * a,
  5604. int n_past,
  5605. int n_dims,
  5606. int mode,
  5607. int n_ctx,
  5608. float freq_base,
  5609. float freq_scale) {
  5610. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5611. }
  5612. struct ggml_tensor * ggml_rope_custom_inplace(
  5613. struct ggml_context * ctx,
  5614. struct ggml_tensor * a,
  5615. int n_past,
  5616. int n_dims,
  5617. int mode,
  5618. int n_ctx,
  5619. float freq_base,
  5620. float freq_scale) {
  5621. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5622. }
  5623. struct ggml_tensor * ggml_rope_xpos_inplace(
  5624. struct ggml_context * ctx,
  5625. struct ggml_tensor * a,
  5626. int n_past,
  5627. int n_dims,
  5628. float base,
  5629. bool down) {
  5630. return ggml_rope_impl(ctx, a, n_past, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5631. }
  5632. // ggml_rope_back
  5633. struct ggml_tensor * ggml_rope_back(
  5634. struct ggml_context * ctx,
  5635. struct ggml_tensor * a,
  5636. int n_past,
  5637. int n_dims,
  5638. int mode,
  5639. int n_ctx,
  5640. float freq_base,
  5641. float freq_scale,
  5642. float xpos_base,
  5643. bool xpos_down) {
  5644. GGML_ASSERT(n_past >= 0);
  5645. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5646. bool is_node = false;
  5647. if (a->grad) {
  5648. is_node = false; // TODO: implement backward
  5649. }
  5650. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5651. int32_t params[8] = { n_past, n_dims, mode, n_ctx };
  5652. memcpy(params + 4, &freq_base, sizeof(float));
  5653. memcpy(params + 5, &freq_scale, sizeof(float));
  5654. memcpy(params + 6, &xpos_base, sizeof(float));
  5655. memcpy(params + 7, &xpos_down, sizeof(bool));
  5656. ggml_set_op_params(result, params, sizeof(params));
  5657. result->op = GGML_OP_ROPE_BACK;
  5658. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5659. result->src[0] = a;
  5660. return result;
  5661. }
  5662. // ggml_alibi
  5663. struct ggml_tensor * ggml_alibi(
  5664. struct ggml_context * ctx,
  5665. struct ggml_tensor * a,
  5666. int n_past,
  5667. int n_head,
  5668. float bias_max) {
  5669. GGML_ASSERT(n_past >= 0);
  5670. bool is_node = false;
  5671. if (a->grad) {
  5672. GGML_ASSERT(false); // TODO: implement backward
  5673. is_node = true;
  5674. }
  5675. // TODO: when implement backward, fix this:
  5676. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5677. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5678. int32_t op_params[3] = { n_past, n_head };
  5679. memcpy(op_params + 2, &bias_max, sizeof(float));
  5680. ggml_set_op_params(result, op_params, sizeof(op_params));
  5681. result->op = GGML_OP_ALIBI;
  5682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5683. result->src[0] = a;
  5684. return result;
  5685. }
  5686. // ggml_clamp
  5687. struct ggml_tensor * ggml_clamp(
  5688. struct ggml_context * ctx,
  5689. struct ggml_tensor * a,
  5690. float min,
  5691. float max) {
  5692. bool is_node = false;
  5693. if (a->grad) {
  5694. GGML_ASSERT(false); // TODO: implement backward
  5695. is_node = true;
  5696. }
  5697. // TODO: when implement backward, fix this:
  5698. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5699. float params[] = { min, max };
  5700. ggml_set_op_params(result, params, sizeof(params));
  5701. result->op = GGML_OP_CLAMP;
  5702. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5703. result->src[0] = a;
  5704. return result;
  5705. }
  5706. // ggml_conv_1d
  5707. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5708. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5709. }
  5710. GGML_API struct ggml_tensor * ggml_conv_1d(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. struct ggml_tensor * b,
  5714. int s0,
  5715. int p0,
  5716. int d0) {
  5717. GGML_ASSERT(ggml_is_matrix(b));
  5718. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5719. bool is_node = false;
  5720. if (a->grad || b->grad) {
  5721. GGML_ASSERT(false); // TODO: implement backward
  5722. is_node = true;
  5723. }
  5724. const int64_t ne[4] = {
  5725. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5726. a->ne[2], 1, 1,
  5727. };
  5728. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5729. int32_t params[] = { s0, p0, d0 };
  5730. ggml_set_op_params(result, params, sizeof(params));
  5731. result->op = GGML_OP_CONV_1D;
  5732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5733. result->src[0] = a;
  5734. result->src[1] = b;
  5735. return result;
  5736. }
  5737. // ggml_conv_1d_ph
  5738. struct ggml_tensor* ggml_conv_1d_ph(
  5739. struct ggml_context * ctx,
  5740. struct ggml_tensor * a,
  5741. struct ggml_tensor * b,
  5742. int s,
  5743. int d) {
  5744. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5745. }
  5746. // ggml_conv_2d
  5747. struct ggml_tensor * ggml_conv_2d(
  5748. struct ggml_context * ctx,
  5749. struct ggml_tensor * a,
  5750. struct ggml_tensor * b,
  5751. int s0,
  5752. int s1,
  5753. int p0,
  5754. int p1,
  5755. int d0,
  5756. int d1) {
  5757. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5758. bool is_node = false;
  5759. if (a->grad || b->grad) {
  5760. GGML_ASSERT(false); // TODO: implement backward
  5761. is_node = true;
  5762. }
  5763. const int64_t ne[4] = {
  5764. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5765. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5766. a->ne[3], b->ne[3],
  5767. };
  5768. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5769. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  5770. ggml_set_op_params(result, params, sizeof(params));
  5771. result->op = GGML_OP_CONV_2D;
  5772. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5773. result->src[0] = a;
  5774. result->src[1] = b;
  5775. return result;
  5776. }
  5777. // ggml_conv_2d_sk_p0
  5778. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5779. struct ggml_context * ctx,
  5780. struct ggml_tensor * a,
  5781. struct ggml_tensor * b) {
  5782. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5783. }
  5784. // ggml_conv_2d_s1_ph
  5785. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5786. struct ggml_context * ctx,
  5787. struct ggml_tensor * a,
  5788. struct ggml_tensor * b) {
  5789. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5790. }
  5791. // ggml_conv_transpose_2d_p0
  5792. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5793. return (ins - 1) * s - 2 * p + ks;
  5794. }
  5795. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5796. struct ggml_context * ctx,
  5797. struct ggml_tensor * a,
  5798. struct ggml_tensor * b,
  5799. int stride) {
  5800. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5801. bool is_node = false;
  5802. if (a->grad || b->grad) {
  5803. GGML_ASSERT(false); // TODO: implement backward
  5804. is_node = true;
  5805. }
  5806. const int64_t ne[4] = {
  5807. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5808. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5809. a->ne[2], b->ne[3],
  5810. };
  5811. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5812. ggml_set_op_params_i32(result, 0, stride);
  5813. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5814. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5815. result->src[0] = a;
  5816. result->src[1] = b;
  5817. return result;
  5818. }
  5819. // ggml_pool_*
  5820. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  5821. return (ins + 2 * p - ks) / s + 1;
  5822. }
  5823. // ggml_pool_1d
  5824. struct ggml_tensor * ggml_pool_1d(
  5825. struct ggml_context * ctx,
  5826. struct ggml_tensor * a,
  5827. enum ggml_op_pool op,
  5828. int k0,
  5829. int s0,
  5830. int p0) {
  5831. bool is_node = false;
  5832. if (a->grad) {
  5833. GGML_ASSERT(false); // TODO: implement backward
  5834. is_node = true;
  5835. }
  5836. const int64_t ne[3] = {
  5837. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5838. a->ne[1],
  5839. };
  5840. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5841. int32_t params[] = { op, k0, s0, p0 };
  5842. ggml_set_op_params(result, params, sizeof(params));
  5843. result->op = GGML_OP_POOL_1D;
  5844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5845. result->src[0] = a;
  5846. return result;
  5847. }
  5848. // ggml_pool_2d
  5849. struct ggml_tensor * ggml_pool_2d(
  5850. struct ggml_context * ctx,
  5851. struct ggml_tensor * a,
  5852. enum ggml_op_pool op,
  5853. int k0,
  5854. int k1,
  5855. int s0,
  5856. int s1,
  5857. int p0,
  5858. int p1) {
  5859. bool is_node = false;
  5860. if (a->grad) {
  5861. GGML_ASSERT(false); // TODO: implement backward
  5862. is_node = true;
  5863. }
  5864. const int64_t ne[3] = {
  5865. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5866. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5867. a->ne[2],
  5868. };
  5869. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5870. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5871. ggml_set_op_params(result, params, sizeof(params));
  5872. result->op = GGML_OP_POOL_2D;
  5873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5874. result->src[0] = a;
  5875. return result;
  5876. }
  5877. // ggml_upscale
  5878. static struct ggml_tensor * ggml_upscale_impl(
  5879. struct ggml_context * ctx,
  5880. struct ggml_tensor * a,
  5881. int scale_factor) {
  5882. bool is_node = false;
  5883. if (a->grad) {
  5884. GGML_ASSERT(false); // TODO: implement backward
  5885. is_node = true;
  5886. }
  5887. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5888. a->ne[0] * scale_factor,
  5889. a->ne[1] * scale_factor,
  5890. a->ne[2], a->ne[3]);
  5891. result->op = GGML_OP_UPSCALE;
  5892. result->op_params[0] = scale_factor;
  5893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5894. result->src[0] = a;
  5895. result->src[1] = NULL;
  5896. return result;
  5897. }
  5898. struct ggml_tensor * ggml_upscale(
  5899. struct ggml_context * ctx,
  5900. struct ggml_tensor * a,
  5901. int scale_factor) {
  5902. return ggml_upscale_impl(ctx, a, scale_factor);
  5903. }
  5904. // ggml_flash_attn
  5905. struct ggml_tensor * ggml_flash_attn(
  5906. struct ggml_context * ctx,
  5907. struct ggml_tensor * q,
  5908. struct ggml_tensor * k,
  5909. struct ggml_tensor * v,
  5910. bool masked) {
  5911. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5912. // TODO: check if vT can be multiplied by (k*qT)
  5913. bool is_node = false;
  5914. if (q->grad || k->grad || v->grad) {
  5915. is_node = true;
  5916. }
  5917. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5918. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  5919. int32_t t = masked ? 1 : 0;
  5920. ggml_set_op_params(result, &t, sizeof(t));
  5921. result->op = GGML_OP_FLASH_ATTN;
  5922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5923. result->src[0] = q;
  5924. result->src[1] = k;
  5925. result->src[2] = v;
  5926. return result;
  5927. }
  5928. // ggml_flash_ff
  5929. struct ggml_tensor * ggml_flash_ff(
  5930. struct ggml_context * ctx,
  5931. struct ggml_tensor * a,
  5932. struct ggml_tensor * b0,
  5933. struct ggml_tensor * b1,
  5934. struct ggml_tensor * c0,
  5935. struct ggml_tensor * c1) {
  5936. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5937. // TODO: more checks
  5938. bool is_node = false;
  5939. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5940. is_node = true;
  5941. }
  5942. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5943. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  5944. result->op = GGML_OP_FLASH_FF;
  5945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5946. result->src[0] = a;
  5947. result->src[1] = b0;
  5948. result->src[2] = b1;
  5949. result->src[3] = c0;
  5950. result->src[4] = c1;
  5951. return result;
  5952. }
  5953. // ggml_flash_attn_back
  5954. struct ggml_tensor * ggml_flash_attn_back(
  5955. struct ggml_context * ctx,
  5956. struct ggml_tensor * q,
  5957. struct ggml_tensor * k,
  5958. struct ggml_tensor * v,
  5959. struct ggml_tensor * d,
  5960. bool masked) {
  5961. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5962. // TODO: check if vT can be multiplied by (k*qT)
  5963. // d shape [D,N,ne2,ne3]
  5964. // q shape [D,N,ne2,ne3]
  5965. // k shape [D,M,ne2,ne3]
  5966. // v shape [M,D,ne2,ne3]
  5967. const int64_t D = q->ne[0];
  5968. const int64_t N = q->ne[1];
  5969. const int64_t M = k->ne[1];
  5970. const int64_t ne2 = q->ne[2];
  5971. const int64_t ne3 = q->ne[3];
  5972. GGML_ASSERT(k->ne[0] == D);
  5973. GGML_ASSERT(v->ne[0] == M);
  5974. GGML_ASSERT(v->ne[1] == D);
  5975. GGML_ASSERT(d->ne[0] == D);
  5976. GGML_ASSERT(d->ne[1] == N);
  5977. GGML_ASSERT(k->ne[2] == ne2);
  5978. GGML_ASSERT(k->ne[3] == ne3);
  5979. GGML_ASSERT(v->ne[2] == ne2);
  5980. GGML_ASSERT(v->ne[3] == ne3);
  5981. GGML_ASSERT(d->ne[2] == ne2);
  5982. GGML_ASSERT(d->ne[3] == ne3);
  5983. bool is_node = false;
  5984. if (q->grad || k->grad || v->grad) {
  5985. // when using this operation (in backwards pass) these grads are set.
  5986. // we don't want to create (big) grad of our result, so is_node is false.
  5987. is_node = false;
  5988. }
  5989. // store gradients of q, k and v as continuous tensors concatenated in result.
  5990. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5991. // gradq->data = result->data
  5992. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5993. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5994. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5995. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5996. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5997. int32_t masked_i = masked ? 1 : 0;
  5998. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5999. result->op = GGML_OP_FLASH_ATTN_BACK;
  6000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6001. result->src[0] = q;
  6002. result->src[1] = k;
  6003. result->src[2] = v;
  6004. result->src[3] = d;
  6005. return result;
  6006. }
  6007. // ggml_win_part
  6008. struct ggml_tensor * ggml_win_part(
  6009. struct ggml_context * ctx,
  6010. struct ggml_tensor * a,
  6011. int w) {
  6012. GGML_ASSERT(a->ne[3] == 1);
  6013. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6014. bool is_node = false;
  6015. if (a->grad) {
  6016. GGML_ASSERT(false); // TODO: implement backward
  6017. is_node = true;
  6018. }
  6019. // padding
  6020. const int px = (w - a->ne[1]%w)%w;
  6021. const int py = (w - a->ne[2]%w)%w;
  6022. const int npx = (px + a->ne[1])/w;
  6023. const int npy = (py + a->ne[2])/w;
  6024. const int np = npx*npy;
  6025. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6026. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6027. int32_t params[] = { npx, npy, w };
  6028. ggml_set_op_params(result, params, sizeof(params));
  6029. result->op = GGML_OP_WIN_PART;
  6030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6031. result->src[0] = a;
  6032. return result;
  6033. }
  6034. // ggml_win_unpart
  6035. struct ggml_tensor * ggml_win_unpart(
  6036. struct ggml_context * ctx,
  6037. struct ggml_tensor * a,
  6038. int w0,
  6039. int h0,
  6040. int w) {
  6041. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6042. bool is_node = false;
  6043. if (a->grad) {
  6044. GGML_ASSERT(false); // TODO: implement backward
  6045. is_node = true;
  6046. }
  6047. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6048. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6049. int32_t params[] = { w };
  6050. ggml_set_op_params(result, params, sizeof(params));
  6051. result->op = GGML_OP_WIN_UNPART;
  6052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6053. result->src[0] = a;
  6054. return result;
  6055. }
  6056. // ggml_get_rel_pos
  6057. struct ggml_tensor * ggml_get_rel_pos(
  6058. struct ggml_context * ctx,
  6059. struct ggml_tensor * a,
  6060. int qh,
  6061. int kh) {
  6062. GGML_ASSERT(qh == kh);
  6063. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6064. bool is_node = false;
  6065. if (a->grad) {
  6066. GGML_ASSERT(false); // TODO: implement backward
  6067. is_node = true;
  6068. }
  6069. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6070. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6071. result->op = GGML_OP_GET_REL_POS;
  6072. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6073. result->src[0] = a;
  6074. result->src[1] = NULL;
  6075. return result;
  6076. }
  6077. // ggml_add_rel_pos
  6078. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6079. struct ggml_context * ctx,
  6080. struct ggml_tensor * a,
  6081. struct ggml_tensor * pw,
  6082. struct ggml_tensor * ph,
  6083. bool inplace) {
  6084. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6085. GGML_ASSERT(ggml_is_contiguous(a));
  6086. GGML_ASSERT(ggml_is_contiguous(pw));
  6087. GGML_ASSERT(ggml_is_contiguous(ph));
  6088. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6089. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6090. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6091. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6092. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6093. bool is_node = false;
  6094. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6095. is_node = true;
  6096. }
  6097. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6098. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6099. result->op = GGML_OP_ADD_REL_POS;
  6100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6101. result->src[0] = a;
  6102. result->src[1] = pw;
  6103. result->src[2] = ph;
  6104. return result;
  6105. }
  6106. struct ggml_tensor * ggml_add_rel_pos(
  6107. struct ggml_context * ctx,
  6108. struct ggml_tensor * a,
  6109. struct ggml_tensor * pw,
  6110. struct ggml_tensor * ph) {
  6111. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6112. }
  6113. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6114. struct ggml_context * ctx,
  6115. struct ggml_tensor * a,
  6116. struct ggml_tensor * pw,
  6117. struct ggml_tensor * ph) {
  6118. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6119. }
  6120. // gmml_unary
  6121. static struct ggml_tensor * ggml_unary_impl(
  6122. struct ggml_context * ctx,
  6123. struct ggml_tensor * a,
  6124. enum ggml_unary_op op,
  6125. bool inplace) {
  6126. bool is_node = false;
  6127. if (!inplace && (a->grad)) {
  6128. is_node = true;
  6129. }
  6130. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6131. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6132. result->op = GGML_OP_UNARY;
  6133. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6134. result->src[0] = a;
  6135. return result;
  6136. }
  6137. struct ggml_tensor * ggml_unary(
  6138. struct ggml_context * ctx,
  6139. struct ggml_tensor * a,
  6140. enum ggml_unary_op op) {
  6141. return ggml_unary_impl(ctx, a, op, false);
  6142. }
  6143. struct ggml_tensor * ggml_unary_inplace(
  6144. struct ggml_context * ctx,
  6145. struct ggml_tensor * a,
  6146. enum ggml_unary_op op) {
  6147. return ggml_unary_impl(ctx, a, op, true);
  6148. }
  6149. // ggml_map_unary
  6150. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6151. struct ggml_context * ctx,
  6152. struct ggml_tensor * a,
  6153. const ggml_unary_op_f32_t fun,
  6154. bool inplace) {
  6155. bool is_node = false;
  6156. if (!inplace && a->grad) {
  6157. is_node = true;
  6158. }
  6159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6160. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6161. result->op = GGML_OP_MAP_UNARY;
  6162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6163. result->src[0] = a;
  6164. return result;
  6165. }
  6166. struct ggml_tensor * ggml_map_unary_f32(
  6167. struct ggml_context * ctx,
  6168. struct ggml_tensor * a,
  6169. const ggml_unary_op_f32_t fun) {
  6170. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6171. }
  6172. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6173. struct ggml_context * ctx,
  6174. struct ggml_tensor * a,
  6175. const ggml_unary_op_f32_t fun) {
  6176. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6177. }
  6178. // ggml_map_binary
  6179. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6180. struct ggml_context * ctx,
  6181. struct ggml_tensor * a,
  6182. struct ggml_tensor * b,
  6183. const ggml_binary_op_f32_t fun,
  6184. bool inplace) {
  6185. GGML_ASSERT(ggml_are_same_shape(a, b));
  6186. bool is_node = false;
  6187. if (!inplace && (a->grad || b->grad)) {
  6188. is_node = true;
  6189. }
  6190. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6191. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6192. result->op = GGML_OP_MAP_BINARY;
  6193. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6194. result->src[0] = a;
  6195. result->src[1] = b;
  6196. return result;
  6197. }
  6198. struct ggml_tensor * ggml_map_binary_f32(
  6199. struct ggml_context * ctx,
  6200. struct ggml_tensor * a,
  6201. struct ggml_tensor * b,
  6202. const ggml_binary_op_f32_t fun) {
  6203. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6204. }
  6205. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6206. struct ggml_context * ctx,
  6207. struct ggml_tensor * a,
  6208. struct ggml_tensor * b,
  6209. const ggml_binary_op_f32_t fun) {
  6210. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6211. }
  6212. // ggml_map_custom1_f32
  6213. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6214. struct ggml_context * ctx,
  6215. struct ggml_tensor * a,
  6216. const ggml_custom1_op_f32_t fun,
  6217. bool inplace) {
  6218. bool is_node = false;
  6219. if (!inplace && a->grad) {
  6220. is_node = true;
  6221. }
  6222. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6223. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6224. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6226. result->src[0] = a;
  6227. return result;
  6228. }
  6229. struct ggml_tensor * ggml_map_custom1_f32(
  6230. struct ggml_context * ctx,
  6231. struct ggml_tensor * a,
  6232. const ggml_custom1_op_f32_t fun) {
  6233. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6234. }
  6235. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6236. struct ggml_context * ctx,
  6237. struct ggml_tensor * a,
  6238. const ggml_custom1_op_f32_t fun) {
  6239. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6240. }
  6241. // ggml_map_custom2_f32
  6242. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6243. struct ggml_context * ctx,
  6244. struct ggml_tensor * a,
  6245. struct ggml_tensor * b,
  6246. const ggml_custom2_op_f32_t fun,
  6247. bool inplace) {
  6248. bool is_node = false;
  6249. if (!inplace && (a->grad || b->grad)) {
  6250. is_node = true;
  6251. }
  6252. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6253. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6254. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6255. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6256. result->src[0] = a;
  6257. result->src[1] = b;
  6258. return result;
  6259. }
  6260. struct ggml_tensor * ggml_map_custom2_f32(
  6261. struct ggml_context * ctx,
  6262. struct ggml_tensor * a,
  6263. struct ggml_tensor * b,
  6264. const ggml_custom2_op_f32_t fun) {
  6265. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6266. }
  6267. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6268. struct ggml_context * ctx,
  6269. struct ggml_tensor * a,
  6270. struct ggml_tensor * b,
  6271. const ggml_custom2_op_f32_t fun) {
  6272. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6273. }
  6274. // ggml_map_custom3_f32
  6275. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6276. struct ggml_context * ctx,
  6277. struct ggml_tensor * a,
  6278. struct ggml_tensor * b,
  6279. struct ggml_tensor * c,
  6280. const ggml_custom3_op_f32_t fun,
  6281. bool inplace) {
  6282. bool is_node = false;
  6283. if (!inplace && (a->grad || b->grad || c->grad)) {
  6284. is_node = true;
  6285. }
  6286. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6287. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6288. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6289. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6290. result->src[0] = a;
  6291. result->src[1] = b;
  6292. result->src[2] = c;
  6293. return result;
  6294. }
  6295. struct ggml_tensor * ggml_map_custom3_f32(
  6296. struct ggml_context * ctx,
  6297. struct ggml_tensor * a,
  6298. struct ggml_tensor * b,
  6299. struct ggml_tensor * c,
  6300. const ggml_custom3_op_f32_t fun) {
  6301. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6302. }
  6303. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6304. struct ggml_context * ctx,
  6305. struct ggml_tensor * a,
  6306. struct ggml_tensor * b,
  6307. struct ggml_tensor * c,
  6308. const ggml_custom3_op_f32_t fun) {
  6309. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6310. }
  6311. // ggml_map_custom1
  6312. struct ggml_map_custom1_op_params {
  6313. ggml_custom1_op_t fun;
  6314. int n_tasks;
  6315. void * userdata;
  6316. };
  6317. static struct ggml_tensor * ggml_map_custom1_impl(
  6318. struct ggml_context * ctx,
  6319. struct ggml_tensor * a,
  6320. const ggml_custom1_op_t fun,
  6321. int n_tasks,
  6322. void * userdata,
  6323. bool inplace) {
  6324. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6325. bool is_node = false;
  6326. if (!inplace && a->grad) {
  6327. is_node = true;
  6328. }
  6329. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6330. struct ggml_map_custom1_op_params params = {
  6331. /*.fun =*/ fun,
  6332. /*.n_tasks =*/ n_tasks,
  6333. /*.userdata =*/ userdata
  6334. };
  6335. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6336. result->op = GGML_OP_MAP_CUSTOM1;
  6337. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6338. result->src[0] = a;
  6339. return result;
  6340. }
  6341. struct ggml_tensor * ggml_map_custom1(
  6342. struct ggml_context * ctx,
  6343. struct ggml_tensor * a,
  6344. const ggml_custom1_op_t fun,
  6345. int n_tasks,
  6346. void * userdata) {
  6347. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6348. }
  6349. struct ggml_tensor * ggml_map_custom1_inplace(
  6350. struct ggml_context * ctx,
  6351. struct ggml_tensor * a,
  6352. const ggml_custom1_op_t fun,
  6353. int n_tasks,
  6354. void * userdata) {
  6355. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6356. }
  6357. // ggml_map_custom2
  6358. struct ggml_map_custom2_op_params {
  6359. ggml_custom2_op_t fun;
  6360. int n_tasks;
  6361. void * userdata;
  6362. };
  6363. static struct ggml_tensor * ggml_map_custom2_impl(
  6364. struct ggml_context * ctx,
  6365. struct ggml_tensor * a,
  6366. struct ggml_tensor * b,
  6367. const ggml_custom2_op_t fun,
  6368. int n_tasks,
  6369. void * userdata,
  6370. bool inplace) {
  6371. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6372. bool is_node = false;
  6373. if (!inplace && (a->grad || b->grad)) {
  6374. is_node = true;
  6375. }
  6376. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6377. struct ggml_map_custom2_op_params params = {
  6378. /*.fun =*/ fun,
  6379. /*.n_tasks =*/ n_tasks,
  6380. /*.userdata =*/ userdata
  6381. };
  6382. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6383. result->op = GGML_OP_MAP_CUSTOM2;
  6384. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6385. result->src[0] = a;
  6386. result->src[1] = b;
  6387. return result;
  6388. }
  6389. struct ggml_tensor * ggml_map_custom2(
  6390. struct ggml_context * ctx,
  6391. struct ggml_tensor * a,
  6392. struct ggml_tensor * b,
  6393. const ggml_custom2_op_t fun,
  6394. int n_tasks,
  6395. void * userdata) {
  6396. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6397. }
  6398. struct ggml_tensor * ggml_map_custom2_inplace(
  6399. struct ggml_context * ctx,
  6400. struct ggml_tensor * a,
  6401. struct ggml_tensor * b,
  6402. const ggml_custom2_op_t fun,
  6403. int n_tasks,
  6404. void * userdata) {
  6405. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6406. }
  6407. // ggml_map_custom3
  6408. struct ggml_map_custom3_op_params {
  6409. ggml_custom3_op_t fun;
  6410. int n_tasks;
  6411. void * userdata;
  6412. };
  6413. static struct ggml_tensor * ggml_map_custom3_impl(
  6414. struct ggml_context * ctx,
  6415. struct ggml_tensor * a,
  6416. struct ggml_tensor * b,
  6417. struct ggml_tensor * c,
  6418. const ggml_custom3_op_t fun,
  6419. int n_tasks,
  6420. void * userdata,
  6421. bool inplace) {
  6422. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6423. bool is_node = false;
  6424. if (!inplace && (a->grad || b->grad || c->grad)) {
  6425. is_node = true;
  6426. }
  6427. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6428. struct ggml_map_custom3_op_params params = {
  6429. /*.fun =*/ fun,
  6430. /*.n_tasks =*/ n_tasks,
  6431. /*.userdata =*/ userdata
  6432. };
  6433. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6434. result->op = GGML_OP_MAP_CUSTOM3;
  6435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6436. result->src[0] = a;
  6437. result->src[1] = b;
  6438. result->src[2] = c;
  6439. return result;
  6440. }
  6441. struct ggml_tensor * ggml_map_custom3(
  6442. struct ggml_context * ctx,
  6443. struct ggml_tensor * a,
  6444. struct ggml_tensor * b,
  6445. struct ggml_tensor * c,
  6446. const ggml_custom3_op_t fun,
  6447. int n_tasks,
  6448. void * userdata) {
  6449. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6450. }
  6451. struct ggml_tensor * ggml_map_custom3_inplace(
  6452. struct ggml_context * ctx,
  6453. struct ggml_tensor * a,
  6454. struct ggml_tensor * b,
  6455. struct ggml_tensor * c,
  6456. const ggml_custom3_op_t fun,
  6457. int n_tasks,
  6458. void * userdata) {
  6459. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6460. }
  6461. // ggml_cross_entropy_loss
  6462. struct ggml_tensor * ggml_cross_entropy_loss(
  6463. struct ggml_context * ctx,
  6464. struct ggml_tensor * a,
  6465. struct ggml_tensor * b) {
  6466. GGML_ASSERT(ggml_are_same_shape(a, b));
  6467. bool is_node = false;
  6468. if (a->grad || b->grad) {
  6469. is_node = true;
  6470. }
  6471. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6472. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6473. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6474. result->src[0] = a;
  6475. result->src[1] = b;
  6476. return result;
  6477. }
  6478. // ggml_cross_entropy_loss_back
  6479. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6480. struct ggml_context * ctx,
  6481. struct ggml_tensor * a,
  6482. struct ggml_tensor * b,
  6483. struct ggml_tensor * c) {
  6484. GGML_ASSERT(ggml_are_same_shape(a, b));
  6485. GGML_ASSERT(ggml_is_scalar(c));
  6486. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6487. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6488. result->grad = NULL;
  6489. result->src[0] = a;
  6490. result->src[1] = b;
  6491. result->src[2] = c;
  6492. return result;
  6493. }
  6494. ////////////////////////////////////////////////////////////////////////////////
  6495. void ggml_set_param(
  6496. struct ggml_context * ctx,
  6497. struct ggml_tensor * tensor) {
  6498. tensor->is_param = true;
  6499. GGML_ASSERT(tensor->grad == NULL);
  6500. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6501. }
  6502. // ggml_compute_forward_dup
  6503. static void ggml_compute_forward_dup_same_cont(
  6504. const struct ggml_compute_params * params,
  6505. const struct ggml_tensor * src0,
  6506. struct ggml_tensor * dst) {
  6507. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6508. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6509. GGML_ASSERT(src0->type == dst->type);
  6510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6511. return;
  6512. }
  6513. const size_t nb00 = src0->nb[0];
  6514. const size_t nb0 = dst->nb[0];
  6515. const int ith = params->ith; // thread index
  6516. const int nth = params->nth; // number of threads
  6517. // parallelize by elements
  6518. const int ne = ggml_nelements(dst);
  6519. const int dr = (ne + nth - 1) / nth;
  6520. const int ie0 = dr * ith;
  6521. const int ie1 = MIN(ie0 + dr, ne);
  6522. if (ie0 < ie1) {
  6523. memcpy(
  6524. ((char *) dst->data + ie0*nb0),
  6525. ((char *) src0->data + ie0*nb00),
  6526. (ie1 - ie0) * ggml_type_size(src0->type));
  6527. }
  6528. }
  6529. static void ggml_compute_forward_dup_f16(
  6530. const struct ggml_compute_params * params,
  6531. const struct ggml_tensor * src0,
  6532. struct ggml_tensor * dst) {
  6533. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6535. return;
  6536. }
  6537. GGML_TENSOR_UNARY_OP_LOCALS;
  6538. const int ith = params->ith; // thread index
  6539. const int nth = params->nth; // number of threads
  6540. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6541. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6542. return;
  6543. }
  6544. // parallelize by rows
  6545. const int nr = ne01;
  6546. // number of rows per thread
  6547. const int dr = (nr + nth - 1) / nth;
  6548. // row range for this thread
  6549. const int ir0 = dr * ith;
  6550. const int ir1 = MIN(ir0 + dr, nr);
  6551. if (src0->type == dst->type &&
  6552. ne00 == ne0 &&
  6553. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6554. // copy by rows
  6555. const size_t rs = ne00*nb00;
  6556. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6557. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6558. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6559. memcpy(
  6560. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6561. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6562. rs);
  6563. }
  6564. }
  6565. }
  6566. return;
  6567. }
  6568. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6569. if (ggml_is_contiguous(dst)) {
  6570. if (nb00 == sizeof(ggml_fp16_t)) {
  6571. if (dst->type == GGML_TYPE_F16) {
  6572. size_t id = 0;
  6573. const size_t rs = ne00 * nb00;
  6574. char * dst_ptr = (char *) dst->data;
  6575. for (int i03 = 0; i03 < ne03; i03++) {
  6576. for (int i02 = 0; i02 < ne02; i02++) {
  6577. id += rs * ir0;
  6578. for (int i01 = ir0; i01 < ir1; i01++) {
  6579. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6580. memcpy(dst_ptr + id, src0_ptr, rs);
  6581. id += rs;
  6582. }
  6583. id += rs * (ne01 - ir1);
  6584. }
  6585. }
  6586. } else if (dst->type == GGML_TYPE_F32) {
  6587. size_t id = 0;
  6588. float * dst_ptr = (float *) dst->data;
  6589. for (int i03 = 0; i03 < ne03; i03++) {
  6590. for (int i02 = 0; i02 < ne02; i02++) {
  6591. id += ne00 * ir0;
  6592. for (int i01 = ir0; i01 < ir1; i01++) {
  6593. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6594. for (int i00 = 0; i00 < ne00; i00++) {
  6595. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6596. id++;
  6597. }
  6598. }
  6599. id += ne00 * (ne01 - ir1);
  6600. }
  6601. }
  6602. } else if (type_traits[dst->type].from_float) {
  6603. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6604. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6605. size_t id = 0;
  6606. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6607. char * dst_ptr = (char *) dst->data;
  6608. for (int i03 = 0; i03 < ne03; i03++) {
  6609. for (int i02 = 0; i02 < ne02; i02++) {
  6610. id += rs * ir0;
  6611. for (int i01 = ir0; i01 < ir1; i01++) {
  6612. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6613. for (int i00 = 0; i00 < ne00; i00++) {
  6614. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6615. }
  6616. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6617. id += rs;
  6618. }
  6619. id += rs * (ne01 - ir1);
  6620. }
  6621. }
  6622. } else {
  6623. GGML_ASSERT(false); // TODO: implement
  6624. }
  6625. } else {
  6626. //printf("%s: this is not optimal - fix me\n", __func__);
  6627. if (dst->type == GGML_TYPE_F32) {
  6628. size_t id = 0;
  6629. float * dst_ptr = (float *) dst->data;
  6630. for (int i03 = 0; i03 < ne03; i03++) {
  6631. for (int i02 = 0; i02 < ne02; i02++) {
  6632. id += ne00 * ir0;
  6633. for (int i01 = ir0; i01 < ir1; i01++) {
  6634. for (int i00 = 0; i00 < ne00; i00++) {
  6635. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6636. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6637. id++;
  6638. }
  6639. }
  6640. id += ne00 * (ne01 - ir1);
  6641. }
  6642. }
  6643. } else if (dst->type == GGML_TYPE_F16) {
  6644. size_t id = 0;
  6645. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6646. for (int i03 = 0; i03 < ne03; i03++) {
  6647. for (int i02 = 0; i02 < ne02; i02++) {
  6648. id += ne00 * ir0;
  6649. for (int i01 = ir0; i01 < ir1; i01++) {
  6650. for (int i00 = 0; i00 < ne00; i00++) {
  6651. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6652. dst_ptr[id] = *src0_ptr;
  6653. id++;
  6654. }
  6655. }
  6656. id += ne00 * (ne01 - ir1);
  6657. }
  6658. }
  6659. } else {
  6660. GGML_ASSERT(false); // TODO: implement
  6661. }
  6662. }
  6663. return;
  6664. }
  6665. // dst counters
  6666. int64_t i10 = 0;
  6667. int64_t i11 = 0;
  6668. int64_t i12 = 0;
  6669. int64_t i13 = 0;
  6670. if (dst->type == GGML_TYPE_F16) {
  6671. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6672. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6673. i10 += ne00 * ir0;
  6674. while (i10 >= ne0) {
  6675. i10 -= ne0;
  6676. if (++i11 == ne1) {
  6677. i11 = 0;
  6678. if (++i12 == ne2) {
  6679. i12 = 0;
  6680. if (++i13 == ne3) {
  6681. i13 = 0;
  6682. }
  6683. }
  6684. }
  6685. }
  6686. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6687. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6688. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6689. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6690. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6691. if (++i10 == ne00) {
  6692. i10 = 0;
  6693. if (++i11 == ne01) {
  6694. i11 = 0;
  6695. if (++i12 == ne02) {
  6696. i12 = 0;
  6697. if (++i13 == ne03) {
  6698. i13 = 0;
  6699. }
  6700. }
  6701. }
  6702. }
  6703. }
  6704. }
  6705. i10 += ne00 * (ne01 - ir1);
  6706. while (i10 >= ne0) {
  6707. i10 -= ne0;
  6708. if (++i11 == ne1) {
  6709. i11 = 0;
  6710. if (++i12 == ne2) {
  6711. i12 = 0;
  6712. if (++i13 == ne3) {
  6713. i13 = 0;
  6714. }
  6715. }
  6716. }
  6717. }
  6718. }
  6719. }
  6720. } else if (dst->type == GGML_TYPE_F32) {
  6721. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6722. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6723. i10 += ne00 * ir0;
  6724. while (i10 >= ne0) {
  6725. i10 -= ne0;
  6726. if (++i11 == ne1) {
  6727. i11 = 0;
  6728. if (++i12 == ne2) {
  6729. i12 = 0;
  6730. if (++i13 == ne3) {
  6731. i13 = 0;
  6732. }
  6733. }
  6734. }
  6735. }
  6736. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6737. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6738. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6739. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6740. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6741. if (++i10 == ne0) {
  6742. i10 = 0;
  6743. if (++i11 == ne1) {
  6744. i11 = 0;
  6745. if (++i12 == ne2) {
  6746. i12 = 0;
  6747. if (++i13 == ne3) {
  6748. i13 = 0;
  6749. }
  6750. }
  6751. }
  6752. }
  6753. }
  6754. }
  6755. i10 += ne00 * (ne01 - ir1);
  6756. while (i10 >= ne0) {
  6757. i10 -= ne0;
  6758. if (++i11 == ne1) {
  6759. i11 = 0;
  6760. if (++i12 == ne2) {
  6761. i12 = 0;
  6762. if (++i13 == ne3) {
  6763. i13 = 0;
  6764. }
  6765. }
  6766. }
  6767. }
  6768. }
  6769. }
  6770. } else {
  6771. GGML_ASSERT(false); // TODO: implement
  6772. }
  6773. }
  6774. static void ggml_compute_forward_dup_f32(
  6775. const struct ggml_compute_params * params,
  6776. const struct ggml_tensor * src0,
  6777. struct ggml_tensor * dst) {
  6778. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6779. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6780. return;
  6781. }
  6782. GGML_TENSOR_UNARY_OP_LOCALS;
  6783. const int ith = params->ith; // thread index
  6784. const int nth = params->nth; // number of threads
  6785. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6786. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6787. return;
  6788. }
  6789. // parallelize by rows
  6790. const int nr = ne01;
  6791. // number of rows per thread
  6792. const int dr = (nr + nth - 1) / nth;
  6793. // row range for this thread
  6794. const int ir0 = dr * ith;
  6795. const int ir1 = MIN(ir0 + dr, nr);
  6796. if (src0->type == dst->type &&
  6797. ne00 == ne0 &&
  6798. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6799. // copy by rows
  6800. const size_t rs = ne00*nb00;
  6801. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6802. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6803. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6804. memcpy(
  6805. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6806. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6807. rs);
  6808. }
  6809. }
  6810. }
  6811. return;
  6812. }
  6813. if (ggml_is_contiguous(dst)) {
  6814. // TODO: simplify
  6815. if (nb00 == sizeof(float)) {
  6816. if (dst->type == GGML_TYPE_F32) {
  6817. size_t id = 0;
  6818. const size_t rs = ne00 * nb00;
  6819. char * dst_ptr = (char *) dst->data;
  6820. for (int i03 = 0; i03 < ne03; i03++) {
  6821. for (int i02 = 0; i02 < ne02; i02++) {
  6822. id += rs * ir0;
  6823. for (int i01 = ir0; i01 < ir1; i01++) {
  6824. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6825. memcpy(dst_ptr + id, src0_ptr, rs);
  6826. id += rs;
  6827. }
  6828. id += rs * (ne01 - ir1);
  6829. }
  6830. }
  6831. } else if (type_traits[dst->type].from_float) {
  6832. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6833. size_t id = 0;
  6834. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6835. char * dst_ptr = (char *) dst->data;
  6836. for (int i03 = 0; i03 < ne03; i03++) {
  6837. for (int i02 = 0; i02 < ne02; i02++) {
  6838. id += rs * ir0;
  6839. for (int i01 = ir0; i01 < ir1; i01++) {
  6840. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6841. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6842. id += rs;
  6843. }
  6844. id += rs * (ne01 - ir1);
  6845. }
  6846. }
  6847. } else {
  6848. GGML_ASSERT(false); // TODO: implement
  6849. }
  6850. } else {
  6851. //printf("%s: this is not optimal - fix me\n", __func__);
  6852. if (dst->type == GGML_TYPE_F32) {
  6853. size_t id = 0;
  6854. float * dst_ptr = (float *) dst->data;
  6855. for (int i03 = 0; i03 < ne03; i03++) {
  6856. for (int i02 = 0; i02 < ne02; i02++) {
  6857. id += ne00 * ir0;
  6858. for (int i01 = ir0; i01 < ir1; i01++) {
  6859. for (int i00 = 0; i00 < ne00; i00++) {
  6860. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6861. dst_ptr[id] = *src0_ptr;
  6862. id++;
  6863. }
  6864. }
  6865. id += ne00 * (ne01 - ir1);
  6866. }
  6867. }
  6868. } else if (dst->type == GGML_TYPE_F16) {
  6869. size_t id = 0;
  6870. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6871. for (int i03 = 0; i03 < ne03; i03++) {
  6872. for (int i02 = 0; i02 < ne02; i02++) {
  6873. id += ne00 * ir0;
  6874. for (int i01 = ir0; i01 < ir1; i01++) {
  6875. for (int i00 = 0; i00 < ne00; i00++) {
  6876. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6877. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6878. id++;
  6879. }
  6880. }
  6881. id += ne00 * (ne01 - ir1);
  6882. }
  6883. }
  6884. } else {
  6885. GGML_ASSERT(false); // TODO: implement
  6886. }
  6887. }
  6888. return;
  6889. }
  6890. // dst counters
  6891. int64_t i10 = 0;
  6892. int64_t i11 = 0;
  6893. int64_t i12 = 0;
  6894. int64_t i13 = 0;
  6895. if (dst->type == GGML_TYPE_F32) {
  6896. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6897. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6898. i10 += ne00 * ir0;
  6899. while (i10 >= ne0) {
  6900. i10 -= ne0;
  6901. if (++i11 == ne1) {
  6902. i11 = 0;
  6903. if (++i12 == ne2) {
  6904. i12 = 0;
  6905. if (++i13 == ne3) {
  6906. i13 = 0;
  6907. }
  6908. }
  6909. }
  6910. }
  6911. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6912. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6913. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6914. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6915. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6916. if (++i10 == ne0) {
  6917. i10 = 0;
  6918. if (++i11 == ne1) {
  6919. i11 = 0;
  6920. if (++i12 == ne2) {
  6921. i12 = 0;
  6922. if (++i13 == ne3) {
  6923. i13 = 0;
  6924. }
  6925. }
  6926. }
  6927. }
  6928. }
  6929. }
  6930. i10 += ne00 * (ne01 - ir1);
  6931. while (i10 >= ne0) {
  6932. i10 -= ne0;
  6933. if (++i11 == ne1) {
  6934. i11 = 0;
  6935. if (++i12 == ne2) {
  6936. i12 = 0;
  6937. if (++i13 == ne3) {
  6938. i13 = 0;
  6939. }
  6940. }
  6941. }
  6942. }
  6943. }
  6944. }
  6945. } else if (dst->type == GGML_TYPE_F16) {
  6946. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6947. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6948. i10 += ne00 * ir0;
  6949. while (i10 >= ne0) {
  6950. i10 -= ne0;
  6951. if (++i11 == ne1) {
  6952. i11 = 0;
  6953. if (++i12 == ne2) {
  6954. i12 = 0;
  6955. if (++i13 == ne3) {
  6956. i13 = 0;
  6957. }
  6958. }
  6959. }
  6960. }
  6961. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6962. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6963. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6964. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6965. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6966. if (++i10 == ne0) {
  6967. i10 = 0;
  6968. if (++i11 == ne1) {
  6969. i11 = 0;
  6970. if (++i12 == ne2) {
  6971. i12 = 0;
  6972. if (++i13 == ne3) {
  6973. i13 = 0;
  6974. }
  6975. }
  6976. }
  6977. }
  6978. }
  6979. }
  6980. i10 += ne00 * (ne01 - ir1);
  6981. while (i10 >= ne0) {
  6982. i10 -= ne0;
  6983. if (++i11 == ne1) {
  6984. i11 = 0;
  6985. if (++i12 == ne2) {
  6986. i12 = 0;
  6987. if (++i13 == ne3) {
  6988. i13 = 0;
  6989. }
  6990. }
  6991. }
  6992. }
  6993. }
  6994. }
  6995. } else {
  6996. GGML_ASSERT(false); // TODO: implement
  6997. }
  6998. }
  6999. static void ggml_compute_forward_dup(
  7000. const struct ggml_compute_params * params,
  7001. const struct ggml_tensor * src0,
  7002. struct ggml_tensor * dst) {
  7003. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7004. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7005. return;
  7006. }
  7007. switch (src0->type) {
  7008. case GGML_TYPE_F16:
  7009. {
  7010. ggml_compute_forward_dup_f16(params, src0, dst);
  7011. } break;
  7012. case GGML_TYPE_F32:
  7013. {
  7014. ggml_compute_forward_dup_f32(params, src0, dst);
  7015. } break;
  7016. default:
  7017. {
  7018. GGML_ASSERT(false);
  7019. } break;
  7020. }
  7021. }
  7022. // ggml_compute_forward_add
  7023. static void ggml_compute_forward_add_f32(
  7024. const struct ggml_compute_params * params,
  7025. const struct ggml_tensor * src0,
  7026. const struct ggml_tensor * src1,
  7027. struct ggml_tensor * dst) {
  7028. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7029. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7030. return;
  7031. }
  7032. const int ith = params->ith;
  7033. const int nth = params->nth;
  7034. const int nr = ggml_nrows(src0);
  7035. GGML_TENSOR_BINARY_OP_LOCALS;
  7036. GGML_ASSERT( nb0 == sizeof(float));
  7037. GGML_ASSERT(nb00 == sizeof(float));
  7038. // rows per thread
  7039. const int dr = (nr + nth - 1)/nth;
  7040. // row range for this thread
  7041. const int ir0 = dr*ith;
  7042. const int ir1 = MIN(ir0 + dr, nr);
  7043. if (nb10 == sizeof(float)) {
  7044. for (int ir = ir0; ir < ir1; ++ir) {
  7045. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7046. const int64_t i03 = ir/(ne02*ne01);
  7047. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7048. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7049. const int64_t i13 = i03 % ne13;
  7050. const int64_t i12 = i02 % ne12;
  7051. const int64_t i11 = i01 % ne11;
  7052. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7053. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7054. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7055. #ifdef GGML_USE_ACCELERATE
  7056. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7057. #else
  7058. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7059. #endif
  7060. // }
  7061. // }
  7062. }
  7063. } else {
  7064. // src1 is not contiguous
  7065. for (int ir = ir0; ir < ir1; ++ir) {
  7066. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7067. const int64_t i03 = ir/(ne02*ne01);
  7068. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7069. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7070. const int64_t i13 = i03 % ne13;
  7071. const int64_t i12 = i02 % ne12;
  7072. const int64_t i11 = i01 % ne11;
  7073. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7074. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7075. for (int i0 = 0; i0 < ne0; i0++) {
  7076. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7077. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7078. }
  7079. }
  7080. }
  7081. }
  7082. static void ggml_compute_forward_add_f16_f32(
  7083. const struct ggml_compute_params * params,
  7084. const struct ggml_tensor * src0,
  7085. const struct ggml_tensor * src1,
  7086. struct ggml_tensor * dst) {
  7087. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7088. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7089. return;
  7090. }
  7091. const int ith = params->ith;
  7092. const int nth = params->nth;
  7093. const int nr = ggml_nrows(src0);
  7094. GGML_TENSOR_BINARY_OP_LOCALS;
  7095. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7096. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7097. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7098. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7099. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7100. // rows per thread
  7101. const int dr = (nr + nth - 1)/nth;
  7102. // row range for this thread
  7103. const int ir0 = dr*ith;
  7104. const int ir1 = MIN(ir0 + dr, nr);
  7105. if (nb10 == sizeof(float)) {
  7106. for (int ir = ir0; ir < ir1; ++ir) {
  7107. // src0, src1 and dst are same shape => same indices
  7108. const int i3 = ir/(ne2*ne1);
  7109. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7110. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7111. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7112. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7113. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7114. for (int i = 0; i < ne0; i++) {
  7115. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7116. }
  7117. }
  7118. }
  7119. else {
  7120. // src1 is not contiguous
  7121. GGML_ASSERT(false);
  7122. }
  7123. }
  7124. static void ggml_compute_forward_add_f16_f16(
  7125. const struct ggml_compute_params * params,
  7126. const struct ggml_tensor * src0,
  7127. const struct ggml_tensor * src1,
  7128. struct ggml_tensor * dst) {
  7129. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7130. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7131. return;
  7132. }
  7133. const int ith = params->ith;
  7134. const int nth = params->nth;
  7135. const int nr = ggml_nrows(src0);
  7136. GGML_TENSOR_BINARY_OP_LOCALS;
  7137. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7138. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7139. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7140. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7141. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7142. // rows per thread
  7143. const int dr = (nr + nth - 1)/nth;
  7144. // row range for this thread
  7145. const int ir0 = dr*ith;
  7146. const int ir1 = MIN(ir0 + dr, nr);
  7147. if (nb10 == sizeof(ggml_fp16_t)) {
  7148. for (int ir = ir0; ir < ir1; ++ir) {
  7149. // src0, src1 and dst are same shape => same indices
  7150. const int i3 = ir/(ne2*ne1);
  7151. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7152. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7153. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7154. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7155. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7156. for (int i = 0; i < ne0; i++) {
  7157. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7158. }
  7159. }
  7160. }
  7161. else {
  7162. // src1 is not contiguous
  7163. GGML_ASSERT(false);
  7164. }
  7165. }
  7166. static void ggml_compute_forward_add_q_f32(
  7167. const struct ggml_compute_params * params,
  7168. const struct ggml_tensor * src0,
  7169. const struct ggml_tensor * src1,
  7170. struct ggml_tensor * dst) {
  7171. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7172. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7173. return;
  7174. }
  7175. const int nr = ggml_nrows(src0);
  7176. GGML_TENSOR_BINARY_OP_LOCALS;
  7177. const int ith = params->ith;
  7178. const int nth = params->nth;
  7179. const enum ggml_type type = src0->type;
  7180. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7181. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7182. // we don't support permuted src0 or src1
  7183. GGML_ASSERT(nb00 == ggml_type_size(type));
  7184. GGML_ASSERT(nb10 == sizeof(float));
  7185. // dst cannot be transposed or permuted
  7186. GGML_ASSERT(nb0 <= nb1);
  7187. GGML_ASSERT(nb1 <= nb2);
  7188. GGML_ASSERT(nb2 <= nb3);
  7189. GGML_ASSERT(ggml_is_quantized(src0->type));
  7190. GGML_ASSERT(dst->type == src0->type);
  7191. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7192. // rows per thread
  7193. const int dr = (nr + nth - 1)/nth;
  7194. // row range for this thread
  7195. const int ir0 = dr*ith;
  7196. const int ir1 = MIN(ir0 + dr, nr);
  7197. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7198. for (int ir = ir0; ir < ir1; ++ir) {
  7199. // src0 indices
  7200. const int i03 = ir/(ne02*ne01);
  7201. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7202. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7203. // src1 and dst are same shape as src0 => same indices
  7204. const int i13 = i03;
  7205. const int i12 = i02;
  7206. const int i11 = i01;
  7207. const int i3 = i03;
  7208. const int i2 = i02;
  7209. const int i1 = i01;
  7210. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7211. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7212. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7213. assert(ne00 % 32 == 0);
  7214. // unquantize row from src0 to temp buffer
  7215. dequantize_row_q(src0_row, wdata, ne00);
  7216. // add src1
  7217. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7218. // quantize row to dst
  7219. quantize_row_q(wdata, dst_row, ne00);
  7220. }
  7221. }
  7222. static void ggml_compute_forward_add(
  7223. const struct ggml_compute_params * params,
  7224. const struct ggml_tensor * src0,
  7225. const struct ggml_tensor * src1,
  7226. struct ggml_tensor * dst) {
  7227. switch (src0->type) {
  7228. case GGML_TYPE_F32:
  7229. {
  7230. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7231. } break;
  7232. case GGML_TYPE_F16:
  7233. {
  7234. if (src1->type == GGML_TYPE_F16) {
  7235. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7236. }
  7237. else if (src1->type == GGML_TYPE_F32) {
  7238. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7239. }
  7240. else {
  7241. GGML_ASSERT(false);
  7242. }
  7243. } break;
  7244. case GGML_TYPE_Q4_0:
  7245. case GGML_TYPE_Q4_1:
  7246. case GGML_TYPE_Q5_0:
  7247. case GGML_TYPE_Q5_1:
  7248. case GGML_TYPE_Q8_0:
  7249. case GGML_TYPE_Q2_K:
  7250. case GGML_TYPE_Q3_K:
  7251. case GGML_TYPE_Q4_K:
  7252. case GGML_TYPE_Q5_K:
  7253. case GGML_TYPE_Q6_K:
  7254. {
  7255. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7256. } break;
  7257. default:
  7258. {
  7259. GGML_ASSERT(false);
  7260. } break;
  7261. }
  7262. }
  7263. // ggml_compute_forward_add1
  7264. static void ggml_compute_forward_add1_f32(
  7265. const struct ggml_compute_params * params,
  7266. const struct ggml_tensor * src0,
  7267. const struct ggml_tensor * src1,
  7268. struct ggml_tensor * dst) {
  7269. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7270. GGML_ASSERT(ggml_is_scalar(src1));
  7271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7272. return;
  7273. }
  7274. const int ith = params->ith;
  7275. const int nth = params->nth;
  7276. const int nr = ggml_nrows(src0);
  7277. GGML_TENSOR_UNARY_OP_LOCALS;
  7278. GGML_ASSERT( nb0 == sizeof(float));
  7279. GGML_ASSERT(nb00 == sizeof(float));
  7280. // rows per thread
  7281. const int dr = (nr + nth - 1)/nth;
  7282. // row range for this thread
  7283. const int ir0 = dr*ith;
  7284. const int ir1 = MIN(ir0 + dr, nr);
  7285. for (int ir = ir0; ir < ir1; ++ir) {
  7286. // src0 and dst are same shape => same indices
  7287. const int i3 = ir/(ne2*ne1);
  7288. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7289. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7290. #ifdef GGML_USE_ACCELERATE
  7291. UNUSED(ggml_vec_add1_f32);
  7292. vDSP_vadd(
  7293. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7294. (float *) ((char *) src1->data), 0,
  7295. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7296. ne0);
  7297. #else
  7298. ggml_vec_add1_f32(ne0,
  7299. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7300. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7301. *(float *) src1->data);
  7302. #endif
  7303. }
  7304. }
  7305. static void ggml_compute_forward_add1_f16_f32(
  7306. const struct ggml_compute_params * params,
  7307. const struct ggml_tensor * src0,
  7308. const struct ggml_tensor * src1,
  7309. struct ggml_tensor * dst) {
  7310. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7311. GGML_ASSERT(ggml_is_scalar(src1));
  7312. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7313. return;
  7314. }
  7315. // scalar to add
  7316. const float v = *(float *) src1->data;
  7317. const int ith = params->ith;
  7318. const int nth = params->nth;
  7319. const int nr = ggml_nrows(src0);
  7320. GGML_TENSOR_UNARY_OP_LOCALS;
  7321. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7322. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7323. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7324. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7325. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7326. // rows per thread
  7327. const int dr = (nr + nth - 1)/nth;
  7328. // row range for this thread
  7329. const int ir0 = dr*ith;
  7330. const int ir1 = MIN(ir0 + dr, nr);
  7331. for (int ir = ir0; ir < ir1; ++ir) {
  7332. // src0 and dst are same shape => same indices
  7333. const int i3 = ir/(ne2*ne1);
  7334. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7335. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7336. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7337. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7338. for (int i = 0; i < ne0; i++) {
  7339. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7340. }
  7341. }
  7342. }
  7343. static void ggml_compute_forward_add1_f16_f16(
  7344. const struct ggml_compute_params * params,
  7345. const struct ggml_tensor * src0,
  7346. const struct ggml_tensor * src1,
  7347. struct ggml_tensor * dst) {
  7348. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7349. GGML_ASSERT(ggml_is_scalar(src1));
  7350. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7351. return;
  7352. }
  7353. // scalar to add
  7354. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7355. const int ith = params->ith;
  7356. const int nth = params->nth;
  7357. const int nr = ggml_nrows(src0);
  7358. GGML_TENSOR_UNARY_OP_LOCALS;
  7359. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7360. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7361. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7362. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7363. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7364. // rows per thread
  7365. const int dr = (nr + nth - 1)/nth;
  7366. // row range for this thread
  7367. const int ir0 = dr*ith;
  7368. const int ir1 = MIN(ir0 + dr, nr);
  7369. for (int ir = ir0; ir < ir1; ++ir) {
  7370. // src0 and dst are same shape => same indices
  7371. const int i3 = ir/(ne2*ne1);
  7372. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7373. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7374. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7375. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7376. for (int i = 0; i < ne0; i++) {
  7377. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7378. }
  7379. }
  7380. }
  7381. static void ggml_compute_forward_add1_q_f32(
  7382. const struct ggml_compute_params * params,
  7383. const struct ggml_tensor * src0,
  7384. const struct ggml_tensor * src1,
  7385. struct ggml_tensor * dst) {
  7386. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7387. GGML_ASSERT(ggml_is_scalar(src1));
  7388. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7389. return;
  7390. }
  7391. // scalar to add
  7392. const float v = *(float *) src1->data;
  7393. const int ith = params->ith;
  7394. const int nth = params->nth;
  7395. const int nr = ggml_nrows(src0);
  7396. GGML_TENSOR_UNARY_OP_LOCALS;
  7397. const enum ggml_type type = src0->type;
  7398. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7399. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7400. // we don't support permuted src0
  7401. GGML_ASSERT(nb00 == ggml_type_size(type));
  7402. // dst cannot be transposed or permuted
  7403. GGML_ASSERT(nb0 <= nb1);
  7404. GGML_ASSERT(nb1 <= nb2);
  7405. GGML_ASSERT(nb2 <= nb3);
  7406. GGML_ASSERT(ggml_is_quantized(src0->type));
  7407. GGML_ASSERT(dst->type == src0->type);
  7408. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7409. // rows per thread
  7410. const int dr = (nr + nth - 1)/nth;
  7411. // row range for this thread
  7412. const int ir0 = dr*ith;
  7413. const int ir1 = MIN(ir0 + dr, nr);
  7414. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7415. for (int ir = ir0; ir < ir1; ++ir) {
  7416. // src0 and dst are same shape => same indices
  7417. const int i3 = ir/(ne2*ne1);
  7418. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7419. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7420. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7421. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7422. assert(ne0 % 32 == 0);
  7423. // unquantize row from src0 to temp buffer
  7424. dequantize_row_q(src0_row, wdata, ne0);
  7425. // add src1
  7426. ggml_vec_acc1_f32(ne0, wdata, v);
  7427. // quantize row to dst
  7428. quantize_row_q(wdata, dst_row, ne0);
  7429. }
  7430. }
  7431. static void ggml_compute_forward_add1(
  7432. const struct ggml_compute_params * params,
  7433. const struct ggml_tensor * src0,
  7434. const struct ggml_tensor * src1,
  7435. struct ggml_tensor * dst) {
  7436. switch (src0->type) {
  7437. case GGML_TYPE_F32:
  7438. {
  7439. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7440. } break;
  7441. case GGML_TYPE_F16:
  7442. {
  7443. if (src1->type == GGML_TYPE_F16) {
  7444. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7445. }
  7446. else if (src1->type == GGML_TYPE_F32) {
  7447. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7448. }
  7449. else {
  7450. GGML_ASSERT(false);
  7451. }
  7452. } break;
  7453. case GGML_TYPE_Q4_0:
  7454. case GGML_TYPE_Q4_1:
  7455. case GGML_TYPE_Q5_0:
  7456. case GGML_TYPE_Q5_1:
  7457. case GGML_TYPE_Q8_0:
  7458. case GGML_TYPE_Q8_1:
  7459. case GGML_TYPE_Q2_K:
  7460. case GGML_TYPE_Q3_K:
  7461. case GGML_TYPE_Q4_K:
  7462. case GGML_TYPE_Q5_K:
  7463. case GGML_TYPE_Q6_K:
  7464. {
  7465. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7466. } break;
  7467. default:
  7468. {
  7469. GGML_ASSERT(false);
  7470. } break;
  7471. }
  7472. }
  7473. // ggml_compute_forward_acc
  7474. static void ggml_compute_forward_acc_f32(
  7475. const struct ggml_compute_params * params,
  7476. const struct ggml_tensor * src0,
  7477. const struct ggml_tensor * src1,
  7478. struct ggml_tensor * dst) {
  7479. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7480. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7481. // view src0 and dst with these strides and data offset inbytes during acc
  7482. // nb0 is implicitely element_size because src0 and dst are contiguous
  7483. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7484. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7485. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7486. size_t offset = ((int32_t *) dst->op_params)[3];
  7487. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7488. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7489. // memcpy needs to be synchronized across threads to avoid race conditions.
  7490. // => do it in INIT phase
  7491. memcpy(
  7492. ((char *) dst->data),
  7493. ((char *) src0->data),
  7494. ggml_nbytes(dst));
  7495. }
  7496. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7497. return;
  7498. }
  7499. const int ith = params->ith;
  7500. const int nth = params->nth;
  7501. const int nr = ggml_nrows(src1);
  7502. const int nc = src1->ne[0];
  7503. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7504. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7505. // src0 and dst as viewed during acc
  7506. const size_t nb0 = ggml_element_size(src0);
  7507. const size_t nb00 = nb0;
  7508. const size_t nb01 = nb1;
  7509. const size_t nb02 = nb2;
  7510. const size_t nb03 = nb3;
  7511. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7512. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7513. GGML_ASSERT(nb10 == sizeof(float));
  7514. // rows per thread
  7515. const int dr = (nr + nth - 1)/nth;
  7516. // row range for this thread
  7517. const int ir0 = dr*ith;
  7518. const int ir1 = MIN(ir0 + dr, nr);
  7519. for (int ir = ir0; ir < ir1; ++ir) {
  7520. // src0 and dst are viewed with shape of src1 and offset
  7521. // => same indices
  7522. const int i3 = ir/(ne12*ne11);
  7523. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7524. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7525. #ifdef GGML_USE_ACCELERATE
  7526. vDSP_vadd(
  7527. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7528. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7529. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7530. #else
  7531. ggml_vec_add_f32(nc,
  7532. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7533. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7534. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7535. #endif
  7536. }
  7537. }
  7538. static void ggml_compute_forward_acc(
  7539. const struct ggml_compute_params * params,
  7540. const struct ggml_tensor * src0,
  7541. const struct ggml_tensor * src1,
  7542. struct ggml_tensor * dst) {
  7543. switch (src0->type) {
  7544. case GGML_TYPE_F32:
  7545. {
  7546. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7547. } break;
  7548. case GGML_TYPE_F16:
  7549. case GGML_TYPE_Q4_0:
  7550. case GGML_TYPE_Q4_1:
  7551. case GGML_TYPE_Q5_0:
  7552. case GGML_TYPE_Q5_1:
  7553. case GGML_TYPE_Q8_0:
  7554. case GGML_TYPE_Q8_1:
  7555. case GGML_TYPE_Q2_K:
  7556. case GGML_TYPE_Q3_K:
  7557. case GGML_TYPE_Q4_K:
  7558. case GGML_TYPE_Q5_K:
  7559. case GGML_TYPE_Q6_K:
  7560. default:
  7561. {
  7562. GGML_ASSERT(false);
  7563. } break;
  7564. }
  7565. }
  7566. // ggml_compute_forward_sub
  7567. static void ggml_compute_forward_sub_f32(
  7568. const struct ggml_compute_params * params,
  7569. const struct ggml_tensor * src0,
  7570. const struct ggml_tensor * src1,
  7571. struct ggml_tensor * dst) {
  7572. assert(params->ith == 0);
  7573. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7574. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7575. return;
  7576. }
  7577. const int nr = ggml_nrows(src0);
  7578. GGML_TENSOR_BINARY_OP_LOCALS;
  7579. GGML_ASSERT( nb0 == sizeof(float));
  7580. GGML_ASSERT(nb00 == sizeof(float));
  7581. if (nb10 == sizeof(float)) {
  7582. for (int ir = 0; ir < nr; ++ir) {
  7583. // src0, src1 and dst are same shape => same indices
  7584. const int i3 = ir/(ne2*ne1);
  7585. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7586. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7587. #ifdef GGML_USE_ACCELERATE
  7588. vDSP_vsub(
  7589. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7590. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7591. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7592. ne0);
  7593. #else
  7594. ggml_vec_sub_f32(ne0,
  7595. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7596. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7597. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7598. #endif
  7599. // }
  7600. // }
  7601. }
  7602. } else {
  7603. // src1 is not contiguous
  7604. for (int ir = 0; ir < nr; ++ir) {
  7605. // src0, src1 and dst are same shape => same indices
  7606. const int i3 = ir/(ne2*ne1);
  7607. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7608. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7609. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7610. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7611. for (int i0 = 0; i0 < ne0; i0++) {
  7612. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7613. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7614. }
  7615. }
  7616. }
  7617. }
  7618. static void ggml_compute_forward_sub(
  7619. const struct ggml_compute_params * params,
  7620. const struct ggml_tensor * src0,
  7621. const struct ggml_tensor * src1,
  7622. struct ggml_tensor * dst) {
  7623. switch (src0->type) {
  7624. case GGML_TYPE_F32:
  7625. {
  7626. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7627. } break;
  7628. default:
  7629. {
  7630. GGML_ASSERT(false);
  7631. } break;
  7632. }
  7633. }
  7634. // ggml_compute_forward_mul
  7635. static void ggml_compute_forward_mul_f32(
  7636. const struct ggml_compute_params * params,
  7637. const struct ggml_tensor * src0,
  7638. const struct ggml_tensor * src1,
  7639. struct ggml_tensor * dst) {
  7640. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7641. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7642. return;
  7643. }
  7644. const int ith = params->ith;
  7645. const int nth = params->nth;
  7646. #ifdef GGML_USE_CLBLAST
  7647. if (src1->backend == GGML_BACKEND_GPU) {
  7648. if (ith == 0) {
  7649. ggml_cl_mul(src0, src1, dst);
  7650. }
  7651. return;
  7652. }
  7653. #endif
  7654. const int64_t nr = ggml_nrows(src0);
  7655. GGML_TENSOR_BINARY_OP_LOCALS;
  7656. GGML_ASSERT( nb0 == sizeof(float));
  7657. GGML_ASSERT(nb00 == sizeof(float));
  7658. GGML_ASSERT(ne00 == ne10);
  7659. if (nb10 == sizeof(float)) {
  7660. for (int64_t ir = ith; ir < nr; ir += nth) {
  7661. // src0 and dst are same shape => same indices
  7662. const int64_t i03 = ir/(ne02*ne01);
  7663. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7664. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7665. const int64_t i13 = i03 % ne13;
  7666. const int64_t i12 = i02 % ne12;
  7667. const int64_t i11 = i01 % ne11;
  7668. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7669. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7670. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7671. #ifdef GGML_USE_ACCELERATE
  7672. UNUSED(ggml_vec_mul_f32);
  7673. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7674. #else
  7675. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7676. #endif
  7677. // }
  7678. // }
  7679. }
  7680. } else {
  7681. // src1 is not contiguous
  7682. for (int64_t ir = ith; ir < nr; ir += nth) {
  7683. // src0 and dst are same shape => same indices
  7684. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7685. const int64_t i03 = ir/(ne02*ne01);
  7686. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7687. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7688. const int64_t i13 = i03 % ne13;
  7689. const int64_t i12 = i02 % ne12;
  7690. const int64_t i11 = i01 % ne11;
  7691. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7692. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7693. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7694. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7695. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7696. }
  7697. }
  7698. }
  7699. }
  7700. static void ggml_compute_forward_mul(
  7701. const struct ggml_compute_params * params,
  7702. const struct ggml_tensor * src0,
  7703. const struct ggml_tensor * src1,
  7704. struct ggml_tensor * dst) {
  7705. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7706. switch (src0->type) {
  7707. case GGML_TYPE_F32:
  7708. {
  7709. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7710. } break;
  7711. default:
  7712. {
  7713. GGML_ASSERT(false);
  7714. } break;
  7715. }
  7716. }
  7717. // ggml_compute_forward_div
  7718. static void ggml_compute_forward_div_f32(
  7719. const struct ggml_compute_params * params,
  7720. const struct ggml_tensor * src0,
  7721. const struct ggml_tensor * src1,
  7722. struct ggml_tensor * dst) {
  7723. assert(params->ith == 0);
  7724. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7725. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7726. return;
  7727. }
  7728. const int nr = ggml_nrows(src0);
  7729. GGML_TENSOR_BINARY_OP_LOCALS;
  7730. GGML_ASSERT( nb0 == sizeof(float));
  7731. GGML_ASSERT(nb00 == sizeof(float));
  7732. if (nb10 == sizeof(float)) {
  7733. for (int ir = 0; ir < nr; ++ir) {
  7734. // src0, src1 and dst are same shape => same indices
  7735. const int i3 = ir/(ne2*ne1);
  7736. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7737. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7738. #ifdef GGML_USE_ACCELERATE
  7739. UNUSED(ggml_vec_div_f32);
  7740. vDSP_vdiv(
  7741. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7742. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7743. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7744. ne0);
  7745. #else
  7746. ggml_vec_div_f32(ne0,
  7747. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7748. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7749. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7750. #endif
  7751. // }
  7752. // }
  7753. }
  7754. } else {
  7755. // src1 is not contiguous
  7756. for (int ir = 0; ir < nr; ++ir) {
  7757. // src0, src1 and dst are same shape => same indices
  7758. const int i3 = ir/(ne2*ne1);
  7759. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7760. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7761. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7762. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7763. for (int i0 = 0; i0 < ne0; i0++) {
  7764. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7765. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7766. }
  7767. }
  7768. }
  7769. }
  7770. static void ggml_compute_forward_div(
  7771. const struct ggml_compute_params * params,
  7772. const struct ggml_tensor * src0,
  7773. const struct ggml_tensor * src1,
  7774. struct ggml_tensor * dst) {
  7775. switch (src0->type) {
  7776. case GGML_TYPE_F32:
  7777. {
  7778. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7779. } break;
  7780. default:
  7781. {
  7782. GGML_ASSERT(false);
  7783. } break;
  7784. }
  7785. }
  7786. // ggml_compute_forward_sqr
  7787. static void ggml_compute_forward_sqr_f32(
  7788. const struct ggml_compute_params * params,
  7789. const struct ggml_tensor * src0,
  7790. struct ggml_tensor * dst) {
  7791. assert(params->ith == 0);
  7792. assert(ggml_are_same_shape(src0, dst));
  7793. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7794. return;
  7795. }
  7796. const int n = ggml_nrows(src0);
  7797. const int nc = src0->ne[0];
  7798. assert( dst->nb[0] == sizeof(float));
  7799. assert(src0->nb[0] == sizeof(float));
  7800. for (int i = 0; i < n; i++) {
  7801. ggml_vec_sqr_f32(nc,
  7802. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7803. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7804. }
  7805. }
  7806. static void ggml_compute_forward_sqr(
  7807. const struct ggml_compute_params * params,
  7808. const struct ggml_tensor * src0,
  7809. struct ggml_tensor * dst) {
  7810. switch (src0->type) {
  7811. case GGML_TYPE_F32:
  7812. {
  7813. ggml_compute_forward_sqr_f32(params, src0, dst);
  7814. } break;
  7815. default:
  7816. {
  7817. GGML_ASSERT(false);
  7818. } break;
  7819. }
  7820. }
  7821. // ggml_compute_forward_sqrt
  7822. static void ggml_compute_forward_sqrt_f32(
  7823. const struct ggml_compute_params * params,
  7824. const struct ggml_tensor * src0,
  7825. struct ggml_tensor * dst) {
  7826. assert(params->ith == 0);
  7827. assert(ggml_are_same_shape(src0, dst));
  7828. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7829. return;
  7830. }
  7831. const int n = ggml_nrows(src0);
  7832. const int nc = src0->ne[0];
  7833. assert( dst->nb[0] == sizeof(float));
  7834. assert(src0->nb[0] == sizeof(float));
  7835. for (int i = 0; i < n; i++) {
  7836. ggml_vec_sqrt_f32(nc,
  7837. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7838. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7839. }
  7840. }
  7841. static void ggml_compute_forward_sqrt(
  7842. const struct ggml_compute_params * params,
  7843. const struct ggml_tensor * src0,
  7844. struct ggml_tensor * dst) {
  7845. switch (src0->type) {
  7846. case GGML_TYPE_F32:
  7847. {
  7848. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7849. } break;
  7850. default:
  7851. {
  7852. GGML_ASSERT(false);
  7853. } break;
  7854. }
  7855. }
  7856. // ggml_compute_forward_log
  7857. static void ggml_compute_forward_log_f32(
  7858. const struct ggml_compute_params * params,
  7859. const struct ggml_tensor * src0,
  7860. struct ggml_tensor * dst) {
  7861. GGML_ASSERT(params->ith == 0);
  7862. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7863. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7864. return;
  7865. }
  7866. const int n = ggml_nrows(src0);
  7867. const int nc = src0->ne[0];
  7868. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7869. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7870. for (int i = 0; i < n; i++) {
  7871. ggml_vec_log_f32(nc,
  7872. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7873. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7874. }
  7875. }
  7876. static void ggml_compute_forward_log(
  7877. const struct ggml_compute_params * params,
  7878. const struct ggml_tensor * src0,
  7879. struct ggml_tensor * dst) {
  7880. switch (src0->type) {
  7881. case GGML_TYPE_F32:
  7882. {
  7883. ggml_compute_forward_log_f32(params, src0, dst);
  7884. } break;
  7885. default:
  7886. {
  7887. GGML_ASSERT(false);
  7888. } break;
  7889. }
  7890. }
  7891. // ggml_compute_forward_sum
  7892. static void ggml_compute_forward_sum_f32(
  7893. const struct ggml_compute_params * params,
  7894. const struct ggml_tensor * src0,
  7895. struct ggml_tensor * dst) {
  7896. assert(params->ith == 0);
  7897. assert(ggml_is_scalar(dst));
  7898. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7899. return;
  7900. }
  7901. assert(ggml_is_scalar(dst));
  7902. assert(src0->nb[0] == sizeof(float));
  7903. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7904. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7905. ggml_float sum = 0;
  7906. ggml_float row_sum = 0;
  7907. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7908. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7909. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7910. ggml_vec_sum_f32_ggf(ne00,
  7911. &row_sum,
  7912. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7913. sum += row_sum;
  7914. }
  7915. }
  7916. }
  7917. ((float *) dst->data)[0] = sum;
  7918. }
  7919. static void ggml_compute_forward_sum_f16(
  7920. const struct ggml_compute_params * params,
  7921. const struct ggml_tensor * src0,
  7922. struct ggml_tensor * dst) {
  7923. assert(params->ith == 0);
  7924. assert(ggml_is_scalar(dst));
  7925. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7926. return;
  7927. }
  7928. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7929. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7930. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7931. float sum = 0;
  7932. float row_sum = 0;
  7933. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7934. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7935. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7936. ggml_vec_sum_f16_ggf(ne00,
  7937. &row_sum,
  7938. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7939. sum += row_sum;
  7940. }
  7941. }
  7942. }
  7943. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7944. }
  7945. static void ggml_compute_forward_sum(
  7946. const struct ggml_compute_params * params,
  7947. const struct ggml_tensor * src0,
  7948. struct ggml_tensor * dst) {
  7949. switch (src0->type) {
  7950. case GGML_TYPE_F32:
  7951. {
  7952. ggml_compute_forward_sum_f32(params, src0, dst);
  7953. } break;
  7954. case GGML_TYPE_F16:
  7955. {
  7956. ggml_compute_forward_sum_f16(params, src0, dst);
  7957. } break;
  7958. default:
  7959. {
  7960. GGML_ASSERT(false);
  7961. } break;
  7962. }
  7963. }
  7964. // ggml_compute_forward_sum_rows
  7965. static void ggml_compute_forward_sum_rows_f32(
  7966. const struct ggml_compute_params * params,
  7967. const struct ggml_tensor * src0,
  7968. struct ggml_tensor * dst) {
  7969. GGML_ASSERT(params->ith == 0);
  7970. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7971. return;
  7972. }
  7973. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7974. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7975. GGML_TENSOR_UNARY_OP_LOCALS;
  7976. GGML_ASSERT(ne0 == 1);
  7977. GGML_ASSERT(ne1 == ne01);
  7978. GGML_ASSERT(ne2 == ne02);
  7979. GGML_ASSERT(ne3 == ne03);
  7980. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7981. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7982. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7983. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7984. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7985. float row_sum = 0;
  7986. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7987. dst_row[0] = row_sum;
  7988. }
  7989. }
  7990. }
  7991. }
  7992. static void ggml_compute_forward_sum_rows(
  7993. const struct ggml_compute_params * params,
  7994. const struct ggml_tensor * src0,
  7995. struct ggml_tensor * dst) {
  7996. switch (src0->type) {
  7997. case GGML_TYPE_F32:
  7998. {
  7999. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8000. } break;
  8001. default:
  8002. {
  8003. GGML_ASSERT(false);
  8004. } break;
  8005. }
  8006. }
  8007. // ggml_compute_forward_mean
  8008. static void ggml_compute_forward_mean_f32(
  8009. const struct ggml_compute_params * params,
  8010. const struct ggml_tensor * src0,
  8011. struct ggml_tensor * dst) {
  8012. assert(params->ith == 0);
  8013. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8014. return;
  8015. }
  8016. assert(src0->nb[0] == sizeof(float));
  8017. GGML_TENSOR_UNARY_OP_LOCALS;
  8018. assert(ne0 == 1);
  8019. assert(ne1 == ne01);
  8020. assert(ne2 == ne02);
  8021. assert(ne3 == ne03);
  8022. UNUSED(ne0);
  8023. UNUSED(ne1);
  8024. UNUSED(ne2);
  8025. UNUSED(ne3);
  8026. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8027. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8028. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8029. ggml_vec_sum_f32(ne00,
  8030. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8031. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8032. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8033. }
  8034. }
  8035. }
  8036. }
  8037. static void ggml_compute_forward_mean(
  8038. const struct ggml_compute_params * params,
  8039. const struct ggml_tensor * src0,
  8040. struct ggml_tensor * dst) {
  8041. switch (src0->type) {
  8042. case GGML_TYPE_F32:
  8043. {
  8044. ggml_compute_forward_mean_f32(params, src0, dst);
  8045. } break;
  8046. default:
  8047. {
  8048. GGML_ASSERT(false);
  8049. } break;
  8050. }
  8051. }
  8052. // ggml_compute_forward_argmax
  8053. static void ggml_compute_forward_argmax_f32(
  8054. const struct ggml_compute_params * params,
  8055. const struct ggml_tensor * src0,
  8056. struct ggml_tensor * dst) {
  8057. assert(params->ith == 0);
  8058. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8059. return;
  8060. }
  8061. assert(src0->nb[0] == sizeof(float));
  8062. assert(dst->nb[0] == sizeof(float));
  8063. const int64_t ne00 = src0->ne[0];
  8064. const int64_t ne01 = src0->ne[1];
  8065. const size_t nb01 = src0->nb[1];
  8066. const size_t nb0 = dst->nb[0];
  8067. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8068. float * src = (float *) ((char *) src0->data + i1*nb01);
  8069. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8070. int v = 0;
  8071. ggml_vec_argmax_f32(ne00, &v, src);
  8072. dst_[0] = v;
  8073. }
  8074. }
  8075. static void ggml_compute_forward_argmax(
  8076. const struct ggml_compute_params * params,
  8077. const struct ggml_tensor * src0,
  8078. struct ggml_tensor * dst) {
  8079. switch (src0->type) {
  8080. case GGML_TYPE_F32:
  8081. {
  8082. ggml_compute_forward_argmax_f32(params, src0, dst);
  8083. } break;
  8084. default:
  8085. {
  8086. GGML_ASSERT(false);
  8087. } break;
  8088. }
  8089. }
  8090. // ggml_compute_forward_repeat
  8091. static void ggml_compute_forward_repeat_f32(
  8092. const struct ggml_compute_params * params,
  8093. const struct ggml_tensor * src0,
  8094. struct ggml_tensor * dst) {
  8095. GGML_ASSERT(params->ith == 0);
  8096. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8097. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8098. return;
  8099. }
  8100. GGML_TENSOR_UNARY_OP_LOCALS;
  8101. // guaranteed to be an integer due to the check in ggml_can_repeat
  8102. const int nr0 = (int)(ne0/ne00);
  8103. const int nr1 = (int)(ne1/ne01);
  8104. const int nr2 = (int)(ne2/ne02);
  8105. const int nr3 = (int)(ne3/ne03);
  8106. // TODO: support for transposed / permuted tensors
  8107. GGML_ASSERT(nb0 == sizeof(float));
  8108. GGML_ASSERT(nb00 == sizeof(float));
  8109. // TODO: maybe this is not optimal?
  8110. for (int i3 = 0; i3 < nr3; i3++) {
  8111. for (int k3 = 0; k3 < ne03; k3++) {
  8112. for (int i2 = 0; i2 < nr2; i2++) {
  8113. for (int k2 = 0; k2 < ne02; k2++) {
  8114. for (int i1 = 0; i1 < nr1; i1++) {
  8115. for (int k1 = 0; k1 < ne01; k1++) {
  8116. for (int i0 = 0; i0 < nr0; i0++) {
  8117. ggml_vec_cpy_f32(ne00,
  8118. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8119. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8120. }
  8121. }
  8122. }
  8123. }
  8124. }
  8125. }
  8126. }
  8127. }
  8128. static void ggml_compute_forward_repeat(
  8129. const struct ggml_compute_params * params,
  8130. const struct ggml_tensor * src0,
  8131. struct ggml_tensor * dst) {
  8132. switch (src0->type) {
  8133. case GGML_TYPE_F32:
  8134. {
  8135. ggml_compute_forward_repeat_f32(params, src0, dst);
  8136. } break;
  8137. default:
  8138. {
  8139. GGML_ASSERT(false);
  8140. } break;
  8141. }
  8142. }
  8143. // ggml_compute_forward_repeat_back
  8144. static void ggml_compute_forward_repeat_back_f32(
  8145. const struct ggml_compute_params * params,
  8146. const struct ggml_tensor * src0,
  8147. struct ggml_tensor * dst) {
  8148. GGML_ASSERT(params->ith == 0);
  8149. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8150. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8151. return;
  8152. }
  8153. GGML_TENSOR_UNARY_OP_LOCALS;
  8154. // guaranteed to be an integer due to the check in ggml_can_repeat
  8155. const int nr0 = (int)(ne00/ne0);
  8156. const int nr1 = (int)(ne01/ne1);
  8157. const int nr2 = (int)(ne02/ne2);
  8158. const int nr3 = (int)(ne03/ne3);
  8159. // TODO: support for transposed / permuted tensors
  8160. GGML_ASSERT(nb0 == sizeof(float));
  8161. GGML_ASSERT(nb00 == sizeof(float));
  8162. if (ggml_is_contiguous(dst)) {
  8163. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8164. } else {
  8165. for (int k3 = 0; k3 < ne3; k3++) {
  8166. for (int k2 = 0; k2 < ne2; k2++) {
  8167. for (int k1 = 0; k1 < ne1; k1++) {
  8168. ggml_vec_set_f32(ne0,
  8169. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8170. 0);
  8171. }
  8172. }
  8173. }
  8174. }
  8175. // TODO: maybe this is not optimal?
  8176. for (int i3 = 0; i3 < nr3; i3++) {
  8177. for (int k3 = 0; k3 < ne3; k3++) {
  8178. for (int i2 = 0; i2 < nr2; i2++) {
  8179. for (int k2 = 0; k2 < ne2; k2++) {
  8180. for (int i1 = 0; i1 < nr1; i1++) {
  8181. for (int k1 = 0; k1 < ne1; k1++) {
  8182. for (int i0 = 0; i0 < nr0; i0++) {
  8183. ggml_vec_acc_f32(ne0,
  8184. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8185. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8186. }
  8187. }
  8188. }
  8189. }
  8190. }
  8191. }
  8192. }
  8193. }
  8194. static void ggml_compute_forward_repeat_back(
  8195. const struct ggml_compute_params * params,
  8196. const struct ggml_tensor * src0,
  8197. struct ggml_tensor * dst) {
  8198. switch (src0->type) {
  8199. case GGML_TYPE_F32:
  8200. {
  8201. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8202. } break;
  8203. default:
  8204. {
  8205. GGML_ASSERT(false);
  8206. } break;
  8207. }
  8208. }
  8209. // ggml_compute_forward_concat
  8210. static void ggml_compute_forward_concat_f32(
  8211. const struct ggml_compute_params * params,
  8212. const struct ggml_tensor * src0,
  8213. const struct ggml_tensor * src1,
  8214. struct ggml_tensor * dst) {
  8215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8216. return;
  8217. }
  8218. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8219. const int ith = params->ith;
  8220. GGML_TENSOR_BINARY_OP_LOCALS;
  8221. // TODO: support for transposed / permuted tensors
  8222. GGML_ASSERT(nb0 == sizeof(float));
  8223. GGML_ASSERT(nb00 == sizeof(float));
  8224. GGML_ASSERT(nb10 == sizeof(float));
  8225. for (int i3 = 0; i3 < ne3; i3++) {
  8226. for (int i2 = ith; i2 < ne2; i2++) {
  8227. if (i2 < ne02) { // src0
  8228. for (int i1 = 0; i1 < ne1; i1++) {
  8229. for (int i0 = 0; i0 < ne0; i0++) {
  8230. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8231. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8232. *y = *x;
  8233. }
  8234. }
  8235. } // src1
  8236. else {
  8237. for (int i1 = 0; i1 < ne1; i1++) {
  8238. for (int i0 = 0; i0 < ne0; i0++) {
  8239. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8240. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8241. *y = *x;
  8242. }
  8243. }
  8244. }
  8245. }
  8246. }
  8247. }
  8248. static void ggml_compute_forward_concat(
  8249. const struct ggml_compute_params* params,
  8250. const struct ggml_tensor* src0,
  8251. const struct ggml_tensor* src1,
  8252. struct ggml_tensor* dst) {
  8253. switch (src0->type) {
  8254. case GGML_TYPE_F32:
  8255. {
  8256. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8257. } break;
  8258. default:
  8259. {
  8260. GGML_ASSERT(false);
  8261. } break;
  8262. }
  8263. }
  8264. // ggml_compute_forward_abs
  8265. static void ggml_compute_forward_abs_f32(
  8266. const struct ggml_compute_params * params,
  8267. const struct ggml_tensor * src0,
  8268. struct ggml_tensor * dst) {
  8269. assert(params->ith == 0);
  8270. assert(ggml_are_same_shape(src0, dst));
  8271. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8272. return;
  8273. }
  8274. const int n = ggml_nrows(src0);
  8275. const int nc = src0->ne[0];
  8276. assert(dst->nb[0] == sizeof(float));
  8277. assert(src0->nb[0] == sizeof(float));
  8278. for (int i = 0; i < n; i++) {
  8279. ggml_vec_abs_f32(nc,
  8280. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8281. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8282. }
  8283. }
  8284. static void ggml_compute_forward_abs(
  8285. const struct ggml_compute_params * params,
  8286. const struct ggml_tensor * src0,
  8287. struct ggml_tensor * dst) {
  8288. switch (src0->type) {
  8289. case GGML_TYPE_F32:
  8290. {
  8291. ggml_compute_forward_abs_f32(params, src0, dst);
  8292. } break;
  8293. default:
  8294. {
  8295. GGML_ASSERT(false);
  8296. } break;
  8297. }
  8298. }
  8299. // ggml_compute_forward_sgn
  8300. static void ggml_compute_forward_sgn_f32(
  8301. const struct ggml_compute_params * params,
  8302. const struct ggml_tensor * src0,
  8303. struct ggml_tensor * dst) {
  8304. assert(params->ith == 0);
  8305. assert(ggml_are_same_shape(src0, dst));
  8306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8307. return;
  8308. }
  8309. const int n = ggml_nrows(src0);
  8310. const int nc = src0->ne[0];
  8311. assert(dst->nb[0] == sizeof(float));
  8312. assert(src0->nb[0] == sizeof(float));
  8313. for (int i = 0; i < n; i++) {
  8314. ggml_vec_sgn_f32(nc,
  8315. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8316. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8317. }
  8318. }
  8319. static void ggml_compute_forward_sgn(
  8320. const struct ggml_compute_params * params,
  8321. const struct ggml_tensor * src0,
  8322. struct ggml_tensor * dst) {
  8323. switch (src0->type) {
  8324. case GGML_TYPE_F32:
  8325. {
  8326. ggml_compute_forward_sgn_f32(params, src0, dst);
  8327. } break;
  8328. default:
  8329. {
  8330. GGML_ASSERT(false);
  8331. } break;
  8332. }
  8333. }
  8334. // ggml_compute_forward_neg
  8335. static void ggml_compute_forward_neg_f32(
  8336. const struct ggml_compute_params * params,
  8337. const struct ggml_tensor * src0,
  8338. struct ggml_tensor * dst) {
  8339. assert(params->ith == 0);
  8340. assert(ggml_are_same_shape(src0, dst));
  8341. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8342. return;
  8343. }
  8344. const int n = ggml_nrows(src0);
  8345. const int nc = src0->ne[0];
  8346. assert(dst->nb[0] == sizeof(float));
  8347. assert(src0->nb[0] == sizeof(float));
  8348. for (int i = 0; i < n; i++) {
  8349. ggml_vec_neg_f32(nc,
  8350. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8351. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8352. }
  8353. }
  8354. static void ggml_compute_forward_neg(
  8355. const struct ggml_compute_params * params,
  8356. const struct ggml_tensor * src0,
  8357. struct ggml_tensor * dst) {
  8358. switch (src0->type) {
  8359. case GGML_TYPE_F32:
  8360. {
  8361. ggml_compute_forward_neg_f32(params, src0, dst);
  8362. } break;
  8363. default:
  8364. {
  8365. GGML_ASSERT(false);
  8366. } break;
  8367. }
  8368. }
  8369. // ggml_compute_forward_step
  8370. static void ggml_compute_forward_step_f32(
  8371. const struct ggml_compute_params * params,
  8372. const struct ggml_tensor * src0,
  8373. struct ggml_tensor * dst) {
  8374. assert(params->ith == 0);
  8375. assert(ggml_are_same_shape(src0, dst));
  8376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8377. return;
  8378. }
  8379. const int n = ggml_nrows(src0);
  8380. const int nc = src0->ne[0];
  8381. assert(dst->nb[0] == sizeof(float));
  8382. assert(src0->nb[0] == sizeof(float));
  8383. for (int i = 0; i < n; i++) {
  8384. ggml_vec_step_f32(nc,
  8385. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8386. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8387. }
  8388. }
  8389. static void ggml_compute_forward_step(
  8390. const struct ggml_compute_params * params,
  8391. const struct ggml_tensor * src0,
  8392. struct ggml_tensor * dst) {
  8393. switch (src0->type) {
  8394. case GGML_TYPE_F32:
  8395. {
  8396. ggml_compute_forward_step_f32(params, src0, dst);
  8397. } break;
  8398. default:
  8399. {
  8400. GGML_ASSERT(false);
  8401. } break;
  8402. }
  8403. }
  8404. // ggml_compute_forward_tanh
  8405. static void ggml_compute_forward_tanh_f32(
  8406. const struct ggml_compute_params * params,
  8407. const struct ggml_tensor * src0,
  8408. struct ggml_tensor * dst) {
  8409. assert(params->ith == 0);
  8410. assert(ggml_are_same_shape(src0, dst));
  8411. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8412. return;
  8413. }
  8414. const int n = ggml_nrows(src0);
  8415. const int nc = src0->ne[0];
  8416. assert(dst->nb[0] == sizeof(float));
  8417. assert(src0->nb[0] == sizeof(float));
  8418. for (int i = 0; i < n; i++) {
  8419. ggml_vec_tanh_f32(nc,
  8420. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8421. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8422. }
  8423. }
  8424. static void ggml_compute_forward_tanh(
  8425. const struct ggml_compute_params * params,
  8426. const struct ggml_tensor * src0,
  8427. struct ggml_tensor * dst) {
  8428. switch (src0->type) {
  8429. case GGML_TYPE_F32:
  8430. {
  8431. ggml_compute_forward_tanh_f32(params, src0, dst);
  8432. } break;
  8433. default:
  8434. {
  8435. GGML_ASSERT(false);
  8436. } break;
  8437. }
  8438. }
  8439. // ggml_compute_forward_elu
  8440. static void ggml_compute_forward_elu_f32(
  8441. const struct ggml_compute_params * params,
  8442. const struct ggml_tensor * src0,
  8443. struct ggml_tensor * dst) {
  8444. assert(params->ith == 0);
  8445. assert(ggml_are_same_shape(src0, dst));
  8446. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8447. return;
  8448. }
  8449. const int n = ggml_nrows(src0);
  8450. const int nc = src0->ne[0];
  8451. assert(dst->nb[0] == sizeof(float));
  8452. assert(src0->nb[0] == sizeof(float));
  8453. for (int i = 0; i < n; i++) {
  8454. ggml_vec_elu_f32(nc,
  8455. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8456. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8457. }
  8458. }
  8459. static void ggml_compute_forward_elu(
  8460. const struct ggml_compute_params * params,
  8461. const struct ggml_tensor * src0,
  8462. struct ggml_tensor * dst) {
  8463. switch (src0->type) {
  8464. case GGML_TYPE_F32:
  8465. {
  8466. ggml_compute_forward_elu_f32(params, src0, dst);
  8467. } break;
  8468. default:
  8469. {
  8470. GGML_ASSERT(false);
  8471. } break;
  8472. }
  8473. }
  8474. // ggml_compute_forward_relu
  8475. static void ggml_compute_forward_relu_f32(
  8476. const struct ggml_compute_params * params,
  8477. const struct ggml_tensor * src0,
  8478. struct ggml_tensor * dst) {
  8479. assert(params->ith == 0);
  8480. assert(ggml_are_same_shape(src0, dst));
  8481. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8482. return;
  8483. }
  8484. const int n = ggml_nrows(src0);
  8485. const int nc = src0->ne[0];
  8486. assert(dst->nb[0] == sizeof(float));
  8487. assert(src0->nb[0] == sizeof(float));
  8488. for (int i = 0; i < n; i++) {
  8489. ggml_vec_relu_f32(nc,
  8490. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8491. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8492. }
  8493. }
  8494. static void ggml_compute_forward_relu(
  8495. const struct ggml_compute_params * params,
  8496. const struct ggml_tensor * src0,
  8497. struct ggml_tensor * dst) {
  8498. switch (src0->type) {
  8499. case GGML_TYPE_F32:
  8500. {
  8501. ggml_compute_forward_relu_f32(params, src0, dst);
  8502. } break;
  8503. default:
  8504. {
  8505. GGML_ASSERT(false);
  8506. } break;
  8507. }
  8508. }
  8509. // ggml_compute_forward_gelu
  8510. static void ggml_compute_forward_gelu_f32(
  8511. const struct ggml_compute_params * params,
  8512. const struct ggml_tensor * src0,
  8513. struct ggml_tensor * dst) {
  8514. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8515. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8516. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8517. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8518. return;
  8519. }
  8520. const int ith = params->ith;
  8521. const int nth = params->nth;
  8522. const int nc = src0->ne[0];
  8523. const int nr = ggml_nrows(src0);
  8524. // rows per thread
  8525. const int dr = (nr + nth - 1)/nth;
  8526. // row range for this thread
  8527. const int ir0 = dr*ith;
  8528. const int ir1 = MIN(ir0 + dr, nr);
  8529. for (int i1 = ir0; i1 < ir1; i1++) {
  8530. ggml_vec_gelu_f32(nc,
  8531. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8532. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8533. #ifndef NDEBUG
  8534. for (int k = 0; k < nc; k++) {
  8535. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8536. UNUSED(x);
  8537. assert(!isnan(x));
  8538. assert(!isinf(x));
  8539. }
  8540. #endif
  8541. }
  8542. }
  8543. static void ggml_compute_forward_gelu(
  8544. const struct ggml_compute_params * params,
  8545. const struct ggml_tensor * src0,
  8546. struct ggml_tensor * dst) {
  8547. switch (src0->type) {
  8548. case GGML_TYPE_F32:
  8549. {
  8550. ggml_compute_forward_gelu_f32(params, src0, dst);
  8551. } break;
  8552. default:
  8553. {
  8554. GGML_ASSERT(false);
  8555. } break;
  8556. }
  8557. }
  8558. // ggml_compute_forward_gelu_quick
  8559. static void ggml_compute_forward_gelu_quick_f32(
  8560. const struct ggml_compute_params * params,
  8561. const struct ggml_tensor * src0,
  8562. struct ggml_tensor * dst) {
  8563. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8564. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8565. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8566. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8567. return;
  8568. }
  8569. const int ith = params->ith;
  8570. const int nth = params->nth;
  8571. const int nc = src0->ne[0];
  8572. const int nr = ggml_nrows(src0);
  8573. // rows per thread
  8574. const int dr = (nr + nth - 1)/nth;
  8575. // row range for this thread
  8576. const int ir0 = dr*ith;
  8577. const int ir1 = MIN(ir0 + dr, nr);
  8578. for (int i1 = ir0; i1 < ir1; i1++) {
  8579. ggml_vec_gelu_quick_f32(nc,
  8580. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8581. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8582. #ifndef NDEBUG
  8583. for (int k = 0; k < nc; k++) {
  8584. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8585. UNUSED(x);
  8586. assert(!isnan(x));
  8587. assert(!isinf(x));
  8588. }
  8589. #endif
  8590. }
  8591. }
  8592. static void ggml_compute_forward_gelu_quick(
  8593. const struct ggml_compute_params * params,
  8594. const struct ggml_tensor * src0,
  8595. struct ggml_tensor * dst) {
  8596. switch (src0->type) {
  8597. case GGML_TYPE_F32:
  8598. {
  8599. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8600. } break;
  8601. default:
  8602. {
  8603. GGML_ASSERT(false);
  8604. } break;
  8605. }
  8606. }
  8607. // ggml_compute_forward_silu
  8608. static void ggml_compute_forward_silu_f32(
  8609. const struct ggml_compute_params * params,
  8610. const struct ggml_tensor * src0,
  8611. struct ggml_tensor * dst) {
  8612. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8613. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8614. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8615. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8616. return;
  8617. }
  8618. const int ith = params->ith;
  8619. const int nth = params->nth;
  8620. const int nc = src0->ne[0];
  8621. const int nr = ggml_nrows(src0);
  8622. // rows per thread
  8623. const int dr = (nr + nth - 1)/nth;
  8624. // row range for this thread
  8625. const int ir0 = dr*ith;
  8626. const int ir1 = MIN(ir0 + dr, nr);
  8627. for (int i1 = ir0; i1 < ir1; i1++) {
  8628. ggml_vec_silu_f32(nc,
  8629. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8630. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8631. #ifndef NDEBUG
  8632. for (int k = 0; k < nc; k++) {
  8633. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8634. UNUSED(x);
  8635. assert(!isnan(x));
  8636. assert(!isinf(x));
  8637. }
  8638. #endif
  8639. }
  8640. }
  8641. static void ggml_compute_forward_silu(
  8642. const struct ggml_compute_params * params,
  8643. const struct ggml_tensor * src0,
  8644. struct ggml_tensor * dst) {
  8645. switch (src0->type) {
  8646. case GGML_TYPE_F32:
  8647. {
  8648. ggml_compute_forward_silu_f32(params, src0, dst);
  8649. } break;
  8650. default:
  8651. {
  8652. GGML_ASSERT(false);
  8653. } break;
  8654. }
  8655. }
  8656. // ggml_compute_forward_silu_back
  8657. static void ggml_compute_forward_silu_back_f32(
  8658. const struct ggml_compute_params * params,
  8659. const struct ggml_tensor * src0,
  8660. const struct ggml_tensor * grad,
  8661. struct ggml_tensor * dst) {
  8662. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8663. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8664. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8665. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8666. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8667. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8668. return;
  8669. }
  8670. const int ith = params->ith;
  8671. const int nth = params->nth;
  8672. const int nc = src0->ne[0];
  8673. const int nr = ggml_nrows(src0);
  8674. // rows per thread
  8675. const int dr = (nr + nth - 1)/nth;
  8676. // row range for this thread
  8677. const int ir0 = dr*ith;
  8678. const int ir1 = MIN(ir0 + dr, nr);
  8679. for (int i1 = ir0; i1 < ir1; i1++) {
  8680. ggml_vec_silu_backward_f32(nc,
  8681. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8682. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8683. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8684. #ifndef NDEBUG
  8685. for (int k = 0; k < nc; k++) {
  8686. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8687. UNUSED(x);
  8688. assert(!isnan(x));
  8689. assert(!isinf(x));
  8690. }
  8691. #endif
  8692. }
  8693. }
  8694. static void ggml_compute_forward_silu_back(
  8695. const struct ggml_compute_params * params,
  8696. const struct ggml_tensor * src0,
  8697. const struct ggml_tensor * grad,
  8698. struct ggml_tensor * dst) {
  8699. switch (src0->type) {
  8700. case GGML_TYPE_F32:
  8701. {
  8702. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8703. } break;
  8704. default:
  8705. {
  8706. GGML_ASSERT(false);
  8707. } break;
  8708. }
  8709. }
  8710. // ggml_compute_forward_norm
  8711. static void ggml_compute_forward_norm_f32(
  8712. const struct ggml_compute_params * params,
  8713. const struct ggml_tensor * src0,
  8714. struct ggml_tensor * dst) {
  8715. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8716. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8717. return;
  8718. }
  8719. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8720. const int ith = params->ith;
  8721. const int nth = params->nth;
  8722. GGML_TENSOR_UNARY_OP_LOCALS;
  8723. float eps;
  8724. memcpy(&eps, dst->op_params, sizeof(float));
  8725. // TODO: optimize
  8726. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8727. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8728. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8729. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8730. ggml_float sum = 0.0;
  8731. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8732. sum += (ggml_float)x[i00];
  8733. }
  8734. float mean = sum/ne00;
  8735. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8736. ggml_float sum2 = 0.0;
  8737. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8738. float v = x[i00] - mean;
  8739. y[i00] = v;
  8740. sum2 += (ggml_float)(v*v);
  8741. }
  8742. float variance = sum2/ne00;
  8743. const float scale = 1.0f/sqrtf(variance + eps);
  8744. ggml_vec_scale_f32(ne00, y, scale);
  8745. }
  8746. }
  8747. }
  8748. }
  8749. static void ggml_compute_forward_norm(
  8750. const struct ggml_compute_params * params,
  8751. const struct ggml_tensor * src0,
  8752. struct ggml_tensor * dst) {
  8753. switch (src0->type) {
  8754. case GGML_TYPE_F32:
  8755. {
  8756. ggml_compute_forward_norm_f32(params, src0, dst);
  8757. } break;
  8758. default:
  8759. {
  8760. GGML_ASSERT(false);
  8761. } break;
  8762. }
  8763. }
  8764. // ggml_compute_forward_group_rms_norm
  8765. static void ggml_compute_forward_rms_norm_f32(
  8766. const struct ggml_compute_params * params,
  8767. const struct ggml_tensor * src0,
  8768. struct ggml_tensor * dst) {
  8769. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8770. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8771. return;
  8772. }
  8773. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8774. const int ith = params->ith;
  8775. const int nth = params->nth;
  8776. GGML_TENSOR_UNARY_OP_LOCALS;
  8777. float eps;
  8778. memcpy(&eps, dst->op_params, sizeof(float));
  8779. // TODO: optimize
  8780. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8781. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8782. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8783. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8784. ggml_float sum = 0.0;
  8785. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8786. sum += (ggml_float)(x[i00] * x[i00]);
  8787. }
  8788. const float mean = sum/ne00;
  8789. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8790. memcpy(y, x, ne00 * sizeof(float));
  8791. // for (int i00 = 0; i00 < ne00; i00++) {
  8792. // y[i00] = x[i00];
  8793. // }
  8794. const float scale = 1.0f/sqrtf(mean + eps);
  8795. ggml_vec_scale_f32(ne00, y, scale);
  8796. }
  8797. }
  8798. }
  8799. }
  8800. static void ggml_compute_forward_rms_norm(
  8801. const struct ggml_compute_params * params,
  8802. const struct ggml_tensor * src0,
  8803. struct ggml_tensor * dst) {
  8804. switch (src0->type) {
  8805. case GGML_TYPE_F32:
  8806. {
  8807. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8808. } break;
  8809. default:
  8810. {
  8811. GGML_ASSERT(false);
  8812. } break;
  8813. }
  8814. }
  8815. static void ggml_compute_forward_rms_norm_back_f32(
  8816. const struct ggml_compute_params * params,
  8817. const struct ggml_tensor * src0,
  8818. const struct ggml_tensor * src1,
  8819. struct ggml_tensor * dst) {
  8820. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8821. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8822. return;
  8823. }
  8824. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8825. const int ith = params->ith;
  8826. const int nth = params->nth;
  8827. GGML_TENSOR_BINARY_OP_LOCALS;
  8828. float eps;
  8829. memcpy(&eps, dst->op_params, sizeof(float));
  8830. // TODO: optimize
  8831. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8832. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8833. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8834. // src1 is same shape as src0 => same indices
  8835. const int64_t i11 = i01;
  8836. const int64_t i12 = i02;
  8837. const int64_t i13 = i03;
  8838. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8839. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8840. ggml_float sum_xx = 0.0;
  8841. ggml_float sum_xdz = 0.0;
  8842. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8843. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8844. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8845. }
  8846. //const float mean = (float)(sum_xx)/ne00;
  8847. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8848. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8849. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8850. // we could cache rms from forward pass to improve performance.
  8851. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8852. //const float rms = sqrtf(mean_eps);
  8853. const float rrms = 1.0f / sqrtf(mean_eps);
  8854. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8855. {
  8856. // z = rms_norm(x)
  8857. //
  8858. // rms_norm(src0) =
  8859. // scale(
  8860. // src0,
  8861. // div(
  8862. // 1,
  8863. // sqrt(
  8864. // add(
  8865. // scale(
  8866. // sum(
  8867. // sqr(
  8868. // src0)),
  8869. // (1.0/N)),
  8870. // eps))));
  8871. // postorder:
  8872. // ## op args grad
  8873. // 00 param src0 grad[#00]
  8874. // 01 const 1
  8875. // 02 sqr (#00) grad[#02]
  8876. // 03 sum (#02) grad[#03]
  8877. // 04 const 1/N
  8878. // 05 scale (#03, #04) grad[#05]
  8879. // 06 const eps
  8880. // 07 add (#05, #06) grad[#07]
  8881. // 08 sqrt (#07) grad[#08]
  8882. // 09 div (#01,#08) grad[#09]
  8883. // 10 scale (#00,#09) grad[#10]
  8884. //
  8885. // backward pass, given grad[#10]
  8886. // #10: scale
  8887. // grad[#00] += scale(grad[#10],#09)
  8888. // grad[#09] += sum(mul(grad[#10],#00))
  8889. // #09: div
  8890. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8891. // #08: sqrt
  8892. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8893. // #07: add
  8894. // grad[#05] += grad[#07]
  8895. // #05: scale
  8896. // grad[#03] += scale(grad[#05],#04)
  8897. // #03: sum
  8898. // grad[#02] += repeat(grad[#03], #02)
  8899. // #02:
  8900. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8901. //
  8902. // substitute and simplify:
  8903. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8904. // grad[#02] = repeat(grad[#03], #02)
  8905. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8906. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8907. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8908. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8909. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8910. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8911. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8912. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8913. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8914. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8915. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8916. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8917. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8918. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8919. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8920. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8921. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8922. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8923. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8924. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8925. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8926. // a = b*c + d*e
  8927. // a = b*c*f/f + d*e*f/f
  8928. // a = (b*c*f + d*e*f)*(1/f)
  8929. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8930. // a = (b + d*e/c)*c
  8931. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8932. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8933. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8934. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8935. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8936. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8937. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8938. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8939. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8940. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8941. }
  8942. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8943. // post-order:
  8944. // dx := x
  8945. // dx := scale(dx,-mean_xdz/mean_eps)
  8946. // dx := add(dx, dz)
  8947. // dx := scale(dx, rrms)
  8948. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8949. ggml_vec_cpy_f32 (ne00, dx, x);
  8950. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8951. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8952. ggml_vec_acc_f32 (ne00, dx, dz);
  8953. ggml_vec_scale_f32(ne00, dx, rrms);
  8954. }
  8955. }
  8956. }
  8957. }
  8958. static void ggml_compute_forward_rms_norm_back(
  8959. const struct ggml_compute_params * params,
  8960. const struct ggml_tensor * src0,
  8961. const struct ggml_tensor * src1,
  8962. struct ggml_tensor * dst) {
  8963. switch (src0->type) {
  8964. case GGML_TYPE_F32:
  8965. {
  8966. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8967. } break;
  8968. default:
  8969. {
  8970. GGML_ASSERT(false);
  8971. } break;
  8972. }
  8973. }
  8974. // ggml_compute_forward_group_norm
  8975. static void ggml_compute_forward_group_norm_f32(
  8976. const struct ggml_compute_params * params,
  8977. const struct ggml_tensor * src0,
  8978. struct ggml_tensor * dst) {
  8979. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8981. return;
  8982. }
  8983. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8984. const int ith = params->ith;
  8985. const int nth = params->nth;
  8986. GGML_TENSOR_UNARY_OP_LOCALS;
  8987. const float eps = 1e-6f; // TODO: make this a parameter
  8988. // TODO: optimize
  8989. int n_channels = src0->ne[2];
  8990. int n_groups = dst->op_params[0];
  8991. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8992. for (int i = ith; i < n_groups; i+=nth) {
  8993. int start = i * n_channels_per_group;
  8994. int end = start + n_channels_per_group;
  8995. if (end > n_channels) {
  8996. end = n_channels;
  8997. }
  8998. int step = end - start;
  8999. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9000. ggml_float sum = 0.0;
  9001. for (int64_t i02 = start; i02 < end; i02++) {
  9002. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9003. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9004. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9005. sum += (ggml_float)x[i00];
  9006. }
  9007. }
  9008. }
  9009. float mean = sum / (ne00 * ne01 * step);
  9010. ggml_float sum2 = 0.0;
  9011. for (int64_t i02 = start; i02 < end; i02++) {
  9012. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9013. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9014. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9015. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9016. float v = x[i00] - mean;
  9017. y[i00] = v;
  9018. sum2 += (ggml_float)(v * v);
  9019. }
  9020. }
  9021. }
  9022. float variance = sum2 / (ne00 * ne01 * step);
  9023. const float scale = 1.0f / sqrtf(variance + eps);
  9024. for (int64_t i02 = start; i02 < end; i02++) {
  9025. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9026. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9027. ggml_vec_scale_f32(ne00, y, scale);
  9028. }
  9029. }
  9030. }
  9031. }
  9032. }
  9033. static void ggml_compute_forward_group_norm(
  9034. const struct ggml_compute_params * params,
  9035. const struct ggml_tensor * src0,
  9036. struct ggml_tensor * dst) {
  9037. switch (src0->type) {
  9038. case GGML_TYPE_F32:
  9039. {
  9040. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9041. } break;
  9042. default:
  9043. {
  9044. GGML_ASSERT(false);
  9045. } break;
  9046. }
  9047. }
  9048. // ggml_compute_forward_mul_mat
  9049. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9050. // helper function to determine if it is better to use BLAS or not
  9051. // for large matrices, BLAS is faster
  9052. static bool ggml_compute_forward_mul_mat_use_blas(
  9053. const struct ggml_tensor * src0,
  9054. const struct ggml_tensor * src1,
  9055. struct ggml_tensor * dst) {
  9056. //const int64_t ne00 = src0->ne[0];
  9057. //const int64_t ne01 = src0->ne[1];
  9058. const int64_t ne10 = src1->ne[0];
  9059. const int64_t ne0 = dst->ne[0];
  9060. const int64_t ne1 = dst->ne[1];
  9061. // TODO: find the optimal values for these
  9062. if (ggml_is_contiguous(src0) &&
  9063. ggml_is_contiguous(src1) &&
  9064. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9065. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9066. return true;
  9067. }
  9068. return false;
  9069. }
  9070. #endif
  9071. static void ggml_compute_forward_mul_mat(
  9072. const struct ggml_compute_params * params,
  9073. const struct ggml_tensor * src0,
  9074. const struct ggml_tensor * src1,
  9075. struct ggml_tensor * dst) {
  9076. int64_t t0 = ggml_perf_time_us();
  9077. UNUSED(t0);
  9078. GGML_TENSOR_BINARY_OP_LOCALS;
  9079. const int ith = params->ith;
  9080. const int nth = params->nth;
  9081. const enum ggml_type type = src0->type;
  9082. const bool src1_cont = ggml_is_contiguous(src1);
  9083. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9084. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9085. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9086. GGML_ASSERT(ne0 == ne01);
  9087. GGML_ASSERT(ne1 == ne11);
  9088. GGML_ASSERT(ne2 == ne12);
  9089. GGML_ASSERT(ne3 == ne13);
  9090. // we don't support permuted src0 or src1
  9091. GGML_ASSERT(nb00 == ggml_type_size(type));
  9092. GGML_ASSERT(nb10 == sizeof(float));
  9093. // dst cannot be transposed or permuted
  9094. GGML_ASSERT(nb0 == sizeof(float));
  9095. GGML_ASSERT(nb0 <= nb1);
  9096. GGML_ASSERT(nb1 <= nb2);
  9097. GGML_ASSERT(nb2 <= nb3);
  9098. // broadcast factors
  9099. const int64_t r2 = ne12/ne02;
  9100. const int64_t r3 = ne13/ne03;
  9101. // nb01 >= nb00 - src0 is not transposed
  9102. // compute by src0 rows
  9103. #if defined(GGML_USE_CLBLAST)
  9104. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9105. // TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
  9106. // ref: https://github.com/ggerganov/ggml/pull/224
  9107. GGML_ASSERT(ne02 == ne12);
  9108. GGML_ASSERT(ne03 == ne13);
  9109. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9110. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9111. }
  9112. return;
  9113. }
  9114. #endif
  9115. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9116. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9117. if (params->ith != 0) {
  9118. return;
  9119. }
  9120. if (params->type == GGML_TASK_INIT) {
  9121. return;
  9122. }
  9123. if (params->type == GGML_TASK_FINALIZE) {
  9124. return;
  9125. }
  9126. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9127. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9128. // broadcast src0 into src1 across 2nd,3rd dimension
  9129. const int64_t i03 = i13/r3;
  9130. const int64_t i02 = i12/r2;
  9131. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9132. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9133. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9134. if (type != GGML_TYPE_F32) {
  9135. float * const wdata = params->wdata;
  9136. ggml_to_float_t const to_float = type_traits[type].to_float;
  9137. size_t id = 0;
  9138. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9139. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9140. id += ne00;
  9141. }
  9142. assert(id*sizeof(float) <= params->wsize);
  9143. x = wdata;
  9144. }
  9145. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9146. ne11, ne01, ne10,
  9147. 1.0f, y, ne10,
  9148. x, ne00,
  9149. 0.0f, d, ne01);
  9150. }
  9151. }
  9152. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9153. return;
  9154. }
  9155. #endif
  9156. if (params->type == GGML_TASK_INIT) {
  9157. if (src1->type != vec_dot_type) {
  9158. char * wdata = params->wdata;
  9159. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9160. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9161. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9162. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9163. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9164. wdata += row_size;
  9165. }
  9166. }
  9167. }
  9168. }
  9169. return;
  9170. }
  9171. if (params->type == GGML_TASK_FINALIZE) {
  9172. return;
  9173. }
  9174. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9175. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9176. const int64_t nr0 = ne01; // src0 rows
  9177. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9178. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9179. // distribute the thread work across the inner or outer loop based on which one is larger
  9180. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9181. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9182. const int64_t ith0 = ith % nth0;
  9183. const int64_t ith1 = ith / nth0;
  9184. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9185. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9186. const int64_t ir010 = dr0*ith0;
  9187. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9188. const int64_t ir110 = dr1*ith1;
  9189. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9190. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9191. // threads with no work simply yield (not sure if it helps)
  9192. if (ir010 >= ir011 || ir110 >= ir111) {
  9193. sched_yield();
  9194. return;
  9195. }
  9196. assert(ne12 % ne02 == 0);
  9197. assert(ne13 % ne03 == 0);
  9198. // block-tiling attempt
  9199. const int64_t blck_0 = 16;
  9200. const int64_t blck_1 = 16;
  9201. // attempt to reduce false-sharing (does not seem to make a difference)
  9202. float tmp[16];
  9203. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9204. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9205. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9206. const int64_t i13 = (ir1/(ne12*ne11));
  9207. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9208. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9209. // broadcast src0 into src1
  9210. const int64_t i03 = i13/r3;
  9211. const int64_t i02 = i12/r2;
  9212. const int64_t i1 = i11;
  9213. const int64_t i2 = i12;
  9214. const int64_t i3 = i13;
  9215. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9216. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9217. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9218. // the original src1 data pointer, so we should index using the indices directly
  9219. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9220. const char * src1_col = (const char *) wdata +
  9221. (src1_cont || src1->type != vec_dot_type
  9222. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9223. : (i11*nb11 + i12*nb12 + i13*nb13));
  9224. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9225. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9226. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9227. //}
  9228. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9229. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9230. }
  9231. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9232. }
  9233. }
  9234. }
  9235. }
  9236. // ggml_compute_forward_out_prod
  9237. static void ggml_compute_forward_out_prod_f32(
  9238. const struct ggml_compute_params * params,
  9239. const struct ggml_tensor * src0,
  9240. const struct ggml_tensor * src1,
  9241. struct ggml_tensor * dst) {
  9242. int64_t t0 = ggml_perf_time_us();
  9243. UNUSED(t0);
  9244. GGML_TENSOR_BINARY_OP_LOCALS;
  9245. const int ith = params->ith;
  9246. const int nth = params->nth;
  9247. GGML_ASSERT(ne02 == ne12);
  9248. GGML_ASSERT(ne03 == ne13);
  9249. GGML_ASSERT(ne2 == ne12);
  9250. GGML_ASSERT(ne3 == ne13);
  9251. // we don't support permuted src0 or src1
  9252. GGML_ASSERT(nb00 == sizeof(float));
  9253. // dst cannot be transposed or permuted
  9254. GGML_ASSERT(nb0 == sizeof(float));
  9255. // GGML_ASSERT(nb0 <= nb1);
  9256. // GGML_ASSERT(nb1 <= nb2);
  9257. // GGML_ASSERT(nb2 <= nb3);
  9258. GGML_ASSERT(ne0 == ne00);
  9259. GGML_ASSERT(ne1 == ne10);
  9260. GGML_ASSERT(ne2 == ne02);
  9261. GGML_ASSERT(ne3 == ne03);
  9262. // nb01 >= nb00 - src0 is not transposed
  9263. // compute by src0 rows
  9264. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9265. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9266. if (params->type == GGML_TASK_INIT) {
  9267. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9268. return;
  9269. }
  9270. if (params->type == GGML_TASK_FINALIZE) {
  9271. return;
  9272. }
  9273. // parallelize by last three dimensions
  9274. // total rows in dst
  9275. const int64_t nr = ne1*ne2*ne3;
  9276. // rows per thread
  9277. const int64_t dr = (nr + nth - 1)/nth;
  9278. // row range for this thread
  9279. const int64_t ir0 = dr*ith;
  9280. const int64_t ir1 = MIN(ir0 + dr, nr);
  9281. // dst[:,:,:,:] = 0
  9282. // for i2,i3:
  9283. // for i1:
  9284. // for i01:
  9285. // for i0:
  9286. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9287. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9288. // dst indices
  9289. const int64_t i3 = ir/(ne2*ne1);
  9290. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9291. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9292. const int64_t i02 = i2;
  9293. const int64_t i03 = i3;
  9294. //const int64_t i10 = i1;
  9295. const int64_t i12 = i2;
  9296. const int64_t i13 = i3;
  9297. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9298. const int64_t i11 = i01;
  9299. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9300. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9301. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9302. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9303. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9304. // d[i0] += s0[i0] * s1[i1];
  9305. // }
  9306. }
  9307. }
  9308. //int64_t t1 = ggml_perf_time_us();
  9309. //static int64_t acc = 0;
  9310. //acc += t1 - t0;
  9311. //if (t1 - t0 > 10) {
  9312. // printf("\n");
  9313. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9314. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9315. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9316. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9317. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9318. //}
  9319. }
  9320. static void ggml_compute_forward_out_prod(
  9321. const struct ggml_compute_params * params,
  9322. const struct ggml_tensor * src0,
  9323. const struct ggml_tensor * src1,
  9324. struct ggml_tensor * dst) {
  9325. switch (src0->type) {
  9326. case GGML_TYPE_Q4_0:
  9327. case GGML_TYPE_Q4_1:
  9328. case GGML_TYPE_Q5_0:
  9329. case GGML_TYPE_Q5_1:
  9330. case GGML_TYPE_Q8_0:
  9331. case GGML_TYPE_Q8_1:
  9332. {
  9333. GGML_ASSERT(false); // todo
  9334. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9335. } break;
  9336. case GGML_TYPE_F16:
  9337. {
  9338. GGML_ASSERT(false); // todo
  9339. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9340. } break;
  9341. case GGML_TYPE_F32:
  9342. {
  9343. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9344. } break;
  9345. default:
  9346. {
  9347. GGML_ASSERT(false);
  9348. } break;
  9349. }
  9350. }
  9351. // ggml_compute_forward_scale
  9352. static void ggml_compute_forward_scale_f32(
  9353. const struct ggml_compute_params * params,
  9354. const struct ggml_tensor * src0,
  9355. const struct ggml_tensor * src1,
  9356. struct ggml_tensor * dst) {
  9357. GGML_ASSERT(ggml_is_contiguous(src0));
  9358. GGML_ASSERT(ggml_is_contiguous(dst));
  9359. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9360. GGML_ASSERT(ggml_is_scalar(src1));
  9361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9362. return;
  9363. }
  9364. // scale factor
  9365. const float v = *(float *) src1->data;
  9366. const int ith = params->ith;
  9367. const int nth = params->nth;
  9368. const int nc = src0->ne[0];
  9369. const int nr = ggml_nrows(src0);
  9370. // rows per thread
  9371. const int dr = (nr + nth - 1)/nth;
  9372. // row range for this thread
  9373. const int ir0 = dr*ith;
  9374. const int ir1 = MIN(ir0 + dr, nr);
  9375. const size_t nb01 = src0->nb[1];
  9376. const size_t nb1 = dst->nb[1];
  9377. for (int i1 = ir0; i1 < ir1; i1++) {
  9378. if (dst->data != src0->data) {
  9379. // src0 is same shape as dst => same indices
  9380. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9381. }
  9382. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9383. }
  9384. }
  9385. static void ggml_compute_forward_scale(
  9386. const struct ggml_compute_params * params,
  9387. const struct ggml_tensor * src0,
  9388. const struct ggml_tensor * src1,
  9389. struct ggml_tensor * dst) {
  9390. switch (src0->type) {
  9391. case GGML_TYPE_F32:
  9392. {
  9393. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9394. } break;
  9395. default:
  9396. {
  9397. GGML_ASSERT(false);
  9398. } break;
  9399. }
  9400. }
  9401. // ggml_compute_forward_set
  9402. static void ggml_compute_forward_set_f32(
  9403. const struct ggml_compute_params * params,
  9404. const struct ggml_tensor * src0,
  9405. const struct ggml_tensor * src1,
  9406. struct ggml_tensor * dst) {
  9407. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9408. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9409. // view src0 and dst with these strides and data offset inbytes during set
  9410. // nb0 is implicitely element_size because src0 and dst are contiguous
  9411. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9412. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9413. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9414. size_t offset = ((int32_t *) dst->op_params)[3];
  9415. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9416. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9417. // memcpy needs to be synchronized across threads to avoid race conditions.
  9418. // => do it in INIT phase
  9419. memcpy(
  9420. ((char *) dst->data),
  9421. ((char *) src0->data),
  9422. ggml_nbytes(dst));
  9423. }
  9424. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9425. return;
  9426. }
  9427. const int ith = params->ith;
  9428. const int nth = params->nth;
  9429. const int nr = ggml_nrows(src1);
  9430. const int nc = src1->ne[0];
  9431. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  9432. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  9433. // src0 and dst as viewed during set
  9434. const size_t nb0 = ggml_element_size(src0);
  9435. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9436. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9437. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9438. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9439. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9440. GGML_ASSERT(nb10 == sizeof(float));
  9441. // rows per thread
  9442. const int dr = (nr + nth - 1)/nth;
  9443. // row range for this thread
  9444. const int ir0 = dr*ith;
  9445. const int ir1 = MIN(ir0 + dr, nr);
  9446. for (int ir = ir0; ir < ir1; ++ir) {
  9447. // src0 and dst are viewed with shape of src1 and offset
  9448. // => same indices
  9449. const int i3 = ir/(ne12*ne11);
  9450. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9451. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9452. ggml_vec_cpy_f32(nc,
  9453. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9454. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9455. }
  9456. }
  9457. static void ggml_compute_forward_set(
  9458. const struct ggml_compute_params * params,
  9459. const struct ggml_tensor * src0,
  9460. const struct ggml_tensor * src1,
  9461. struct ggml_tensor * dst) {
  9462. switch (src0->type) {
  9463. case GGML_TYPE_F32:
  9464. {
  9465. ggml_compute_forward_set_f32(params, src0, src1, dst);
  9466. } break;
  9467. case GGML_TYPE_F16:
  9468. case GGML_TYPE_Q4_0:
  9469. case GGML_TYPE_Q4_1:
  9470. case GGML_TYPE_Q5_0:
  9471. case GGML_TYPE_Q5_1:
  9472. case GGML_TYPE_Q8_0:
  9473. case GGML_TYPE_Q8_1:
  9474. case GGML_TYPE_Q2_K:
  9475. case GGML_TYPE_Q3_K:
  9476. case GGML_TYPE_Q4_K:
  9477. case GGML_TYPE_Q5_K:
  9478. case GGML_TYPE_Q6_K:
  9479. default:
  9480. {
  9481. GGML_ASSERT(false);
  9482. } break;
  9483. }
  9484. }
  9485. // ggml_compute_forward_cpy
  9486. static void ggml_compute_forward_cpy(
  9487. const struct ggml_compute_params * params,
  9488. const struct ggml_tensor * src0,
  9489. struct ggml_tensor * dst) {
  9490. ggml_compute_forward_dup(params, src0, dst);
  9491. }
  9492. // ggml_compute_forward_cont
  9493. static void ggml_compute_forward_cont(
  9494. const struct ggml_compute_params * params,
  9495. const struct ggml_tensor * src0,
  9496. struct ggml_tensor * dst) {
  9497. ggml_compute_forward_dup(params, src0, dst);
  9498. }
  9499. // ggml_compute_forward_reshape
  9500. static void ggml_compute_forward_reshape(
  9501. const struct ggml_compute_params * params,
  9502. const struct ggml_tensor * src0,
  9503. struct ggml_tensor * dst) {
  9504. // NOP
  9505. UNUSED(params);
  9506. UNUSED(src0);
  9507. UNUSED(dst);
  9508. }
  9509. // ggml_compute_forward_view
  9510. static void ggml_compute_forward_view(
  9511. const struct ggml_compute_params * params,
  9512. const struct ggml_tensor * src0) {
  9513. // NOP
  9514. UNUSED(params);
  9515. UNUSED(src0);
  9516. }
  9517. // ggml_compute_forward_permute
  9518. static void ggml_compute_forward_permute(
  9519. const struct ggml_compute_params * params,
  9520. const struct ggml_tensor * src0) {
  9521. // NOP
  9522. UNUSED(params);
  9523. UNUSED(src0);
  9524. }
  9525. // ggml_compute_forward_transpose
  9526. static void ggml_compute_forward_transpose(
  9527. const struct ggml_compute_params * params,
  9528. const struct ggml_tensor * src0) {
  9529. // NOP
  9530. UNUSED(params);
  9531. UNUSED(src0);
  9532. }
  9533. // ggml_compute_forward_get_rows
  9534. static void ggml_compute_forward_get_rows_q(
  9535. const struct ggml_compute_params * params,
  9536. const struct ggml_tensor * src0,
  9537. const struct ggml_tensor * src1,
  9538. struct ggml_tensor * dst) {
  9539. assert(params->ith == 0);
  9540. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9541. return;
  9542. }
  9543. const int nc = src0->ne[0];
  9544. const int nr = ggml_nelements(src1);
  9545. const enum ggml_type type = src0->type;
  9546. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9547. assert( dst->ne[0] == nc);
  9548. assert( dst->ne[1] == nr);
  9549. assert(src0->nb[0] == ggml_type_size(type));
  9550. for (int i = 0; i < nr; ++i) {
  9551. const int r = ((int32_t *) src1->data)[i];
  9552. dequantize_row_q(
  9553. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9554. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9555. }
  9556. }
  9557. static void ggml_compute_forward_get_rows_f16(
  9558. const struct ggml_compute_params * params,
  9559. const struct ggml_tensor * src0,
  9560. const struct ggml_tensor * src1,
  9561. struct ggml_tensor * dst) {
  9562. assert(params->ith == 0);
  9563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9564. return;
  9565. }
  9566. const int nc = src0->ne[0];
  9567. const int nr = ggml_nelements(src1);
  9568. assert( dst->ne[0] == nc);
  9569. assert( dst->ne[1] == nr);
  9570. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9571. for (int i = 0; i < nr; ++i) {
  9572. const int r = ((int32_t *) src1->data)[i];
  9573. for (int j = 0; j < nc; ++j) {
  9574. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9575. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9576. }
  9577. }
  9578. }
  9579. static void ggml_compute_forward_get_rows_f32(
  9580. const struct ggml_compute_params * params,
  9581. const struct ggml_tensor * src0,
  9582. const struct ggml_tensor * src1,
  9583. struct ggml_tensor * dst) {
  9584. assert(params->ith == 0);
  9585. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9586. return;
  9587. }
  9588. const int nc = src0->ne[0];
  9589. const int nr = ggml_nelements(src1);
  9590. assert( dst->ne[0] == nc);
  9591. assert( dst->ne[1] == nr);
  9592. assert(src0->nb[0] == sizeof(float));
  9593. for (int i = 0; i < nr; ++i) {
  9594. const int r = ((int32_t *) src1->data)[i];
  9595. ggml_vec_cpy_f32(nc,
  9596. (float *) ((char *) dst->data + i*dst->nb[1]),
  9597. (float *) ((char *) src0->data + r*src0->nb[1]));
  9598. }
  9599. }
  9600. static void ggml_compute_forward_get_rows(
  9601. const struct ggml_compute_params * params,
  9602. const struct ggml_tensor * src0,
  9603. const struct ggml_tensor * src1,
  9604. struct ggml_tensor * dst) {
  9605. switch (src0->type) {
  9606. case GGML_TYPE_Q4_0:
  9607. case GGML_TYPE_Q4_1:
  9608. case GGML_TYPE_Q5_0:
  9609. case GGML_TYPE_Q5_1:
  9610. case GGML_TYPE_Q8_0:
  9611. case GGML_TYPE_Q8_1:
  9612. case GGML_TYPE_Q2_K:
  9613. case GGML_TYPE_Q3_K:
  9614. case GGML_TYPE_Q4_K:
  9615. case GGML_TYPE_Q5_K:
  9616. case GGML_TYPE_Q6_K:
  9617. {
  9618. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9619. } break;
  9620. case GGML_TYPE_F16:
  9621. {
  9622. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9623. } break;
  9624. case GGML_TYPE_F32:
  9625. {
  9626. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9627. } break;
  9628. default:
  9629. {
  9630. GGML_ASSERT(false);
  9631. } break;
  9632. }
  9633. //static bool first = true;
  9634. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9635. //if (first) {
  9636. // first = false;
  9637. //} else {
  9638. // for (int k = 0; k < dst->ne[1]; ++k) {
  9639. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9640. // for (int i = 0; i < 16; ++i) {
  9641. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9642. // }
  9643. // printf("\n");
  9644. // }
  9645. // printf("\n");
  9646. // }
  9647. // printf("\n");
  9648. // exit(0);
  9649. //}
  9650. }
  9651. // ggml_compute_forward_get_rows_back
  9652. static void ggml_compute_forward_get_rows_back_f32_f16(
  9653. const struct ggml_compute_params * params,
  9654. const struct ggml_tensor * src0,
  9655. const struct ggml_tensor * src1,
  9656. const struct ggml_tensor * opt0,
  9657. struct ggml_tensor * dst) {
  9658. GGML_ASSERT(params->ith == 0);
  9659. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9660. GGML_ASSERT(ggml_is_contiguous(opt0));
  9661. GGML_ASSERT(ggml_is_contiguous(dst));
  9662. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9663. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9664. return;
  9665. }
  9666. const int nc = src0->ne[0];
  9667. const int nr = ggml_nelements(src1);
  9668. GGML_ASSERT( dst->ne[0] == nc);
  9669. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9670. for (int i = 0; i < nr; ++i) {
  9671. const int r = ((int32_t *) src1->data)[i];
  9672. for (int j = 0; j < nc; ++j) {
  9673. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9674. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9675. }
  9676. }
  9677. }
  9678. static void ggml_compute_forward_get_rows_back_f32(
  9679. const struct ggml_compute_params * params,
  9680. const struct ggml_tensor * src0,
  9681. const struct ggml_tensor * src1,
  9682. const struct ggml_tensor * opt0,
  9683. struct ggml_tensor * dst) {
  9684. GGML_ASSERT(params->ith == 0);
  9685. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9686. GGML_ASSERT(ggml_is_contiguous(opt0));
  9687. GGML_ASSERT(ggml_is_contiguous(dst));
  9688. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9689. if (params->type == GGML_TASK_INIT) {
  9690. memset(dst->data, 0, ggml_nbytes(dst));
  9691. }
  9692. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9693. return;
  9694. }
  9695. const int nc = src0->ne[0];
  9696. const int nr = ggml_nelements(src1);
  9697. GGML_ASSERT( dst->ne[0] == nc);
  9698. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9699. for (int i = 0; i < nr; ++i) {
  9700. const int r = ((int32_t *) src1->data)[i];
  9701. ggml_vec_add_f32(nc,
  9702. (float *) ((char *) dst->data + r*dst->nb[1]),
  9703. (float *) ((char *) dst->data + r*dst->nb[1]),
  9704. (float *) ((char *) src0->data + i*src0->nb[1]));
  9705. }
  9706. }
  9707. static void ggml_compute_forward_get_rows_back(
  9708. const struct ggml_compute_params * params,
  9709. const struct ggml_tensor * src0,
  9710. const struct ggml_tensor * src1,
  9711. const struct ggml_tensor * opt0,
  9712. struct ggml_tensor * dst) {
  9713. switch (src0->type) {
  9714. case GGML_TYPE_F16:
  9715. {
  9716. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9717. } break;
  9718. case GGML_TYPE_F32:
  9719. {
  9720. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9721. } break;
  9722. default:
  9723. {
  9724. GGML_ASSERT(false);
  9725. } break;
  9726. }
  9727. //static bool first = true;
  9728. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9729. //if (first) {
  9730. // first = false;
  9731. //} else {
  9732. // for (int k = 0; k < dst->ne[1]; ++k) {
  9733. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9734. // for (int i = 0; i < 16; ++i) {
  9735. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9736. // }
  9737. // printf("\n");
  9738. // }
  9739. // printf("\n");
  9740. // }
  9741. // printf("\n");
  9742. // exit(0);
  9743. //}
  9744. }
  9745. // ggml_compute_forward_diag
  9746. static void ggml_compute_forward_diag_f32(
  9747. const struct ggml_compute_params * params,
  9748. const struct ggml_tensor * src0,
  9749. struct ggml_tensor * dst) {
  9750. GGML_ASSERT(params->ith == 0);
  9751. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9752. return;
  9753. }
  9754. // TODO: handle transposed/permuted matrices
  9755. GGML_TENSOR_UNARY_OP_LOCALS;
  9756. GGML_ASSERT(ne00 == ne0);
  9757. GGML_ASSERT(ne00 == ne1);
  9758. GGML_ASSERT(ne01 == 1);
  9759. GGML_ASSERT(ne02 == ne2);
  9760. GGML_ASSERT(ne03 == ne3);
  9761. GGML_ASSERT(nb00 == sizeof(float));
  9762. GGML_ASSERT(nb0 == sizeof(float));
  9763. for (int i3 = 0; i3 < ne3; i3++) {
  9764. for (int i2 = 0; i2 < ne2; i2++) {
  9765. for (int i1 = 0; i1 < ne1; i1++) {
  9766. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9767. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9768. for (int i0 = 0; i0 < i1; i0++) {
  9769. d[i0] = 0;
  9770. }
  9771. d[i1] = s[i1];
  9772. for (int i0 = i1+1; i0 < ne0; i0++) {
  9773. d[i0] = 0;
  9774. }
  9775. }
  9776. }
  9777. }
  9778. }
  9779. static void ggml_compute_forward_diag(
  9780. const struct ggml_compute_params * params,
  9781. const struct ggml_tensor * src0,
  9782. struct ggml_tensor * dst) {
  9783. switch (src0->type) {
  9784. case GGML_TYPE_F32:
  9785. {
  9786. ggml_compute_forward_diag_f32(params, src0, dst);
  9787. } break;
  9788. default:
  9789. {
  9790. GGML_ASSERT(false);
  9791. } break;
  9792. }
  9793. }
  9794. // ggml_compute_forward_diag_mask_inf
  9795. static void ggml_compute_forward_diag_mask_f32(
  9796. const struct ggml_compute_params * params,
  9797. const struct ggml_tensor * src0,
  9798. struct ggml_tensor * dst,
  9799. const float value) {
  9800. const int ith = params->ith;
  9801. const int nth = params->nth;
  9802. const int n_past = ((int32_t *) dst->op_params)[0];
  9803. const bool inplace = src0->data == dst->data;
  9804. GGML_ASSERT(n_past >= 0);
  9805. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9806. // memcpy needs to be synchronized across threads to avoid race conditions.
  9807. // => do it in INIT phase
  9808. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9809. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9810. memcpy(
  9811. ((char *) dst->data),
  9812. ((char *) src0->data),
  9813. ggml_nbytes(dst));
  9814. }
  9815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9816. return;
  9817. }
  9818. // TODO: handle transposed/permuted matrices
  9819. const int n = ggml_nrows(src0);
  9820. const int nc = src0->ne[0];
  9821. const int nr = src0->ne[1];
  9822. const int nz = n/nr;
  9823. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9824. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9825. for (int k = 0; k < nz; k++) {
  9826. for (int j = ith; j < nr; j += nth) {
  9827. for (int i = n_past; i < nc; i++) {
  9828. if (i > n_past + j) {
  9829. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9830. }
  9831. }
  9832. }
  9833. }
  9834. }
  9835. static void ggml_compute_forward_diag_mask_inf(
  9836. const struct ggml_compute_params * params,
  9837. const struct ggml_tensor * src0,
  9838. struct ggml_tensor * dst) {
  9839. switch (src0->type) {
  9840. case GGML_TYPE_F32:
  9841. {
  9842. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  9843. } break;
  9844. default:
  9845. {
  9846. GGML_ASSERT(false);
  9847. } break;
  9848. }
  9849. }
  9850. static void ggml_compute_forward_diag_mask_zero(
  9851. const struct ggml_compute_params * params,
  9852. const struct ggml_tensor * src0,
  9853. struct ggml_tensor * dst) {
  9854. switch (src0->type) {
  9855. case GGML_TYPE_F32:
  9856. {
  9857. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  9858. } break;
  9859. default:
  9860. {
  9861. GGML_ASSERT(false);
  9862. } break;
  9863. }
  9864. }
  9865. // ggml_compute_forward_soft_max
  9866. static void ggml_compute_forward_soft_max_f32(
  9867. const struct ggml_compute_params * params,
  9868. const struct ggml_tensor * src0,
  9869. struct ggml_tensor * dst) {
  9870. GGML_ASSERT(ggml_is_contiguous(src0));
  9871. GGML_ASSERT(ggml_is_contiguous(dst));
  9872. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9873. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9874. return;
  9875. }
  9876. // TODO: handle transposed/permuted matrices
  9877. const int ith = params->ith;
  9878. const int nth = params->nth;
  9879. const int nc = src0->ne[0];
  9880. const int nr = ggml_nrows(src0);
  9881. // rows per thread
  9882. const int dr = (nr + nth - 1)/nth;
  9883. // row range for this thread
  9884. const int ir0 = dr*ith;
  9885. const int ir1 = MIN(ir0 + dr, nr);
  9886. for (int i1 = ir0; i1 < ir1; i1++) {
  9887. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9888. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9889. #ifndef NDEBUG
  9890. for (int i = 0; i < nc; ++i) {
  9891. //printf("p[%d] = %f\n", i, p[i]);
  9892. assert(!isnan(sp[i]));
  9893. }
  9894. #endif
  9895. float max = -INFINITY;
  9896. ggml_vec_max_f32(nc, &max, sp);
  9897. ggml_float sum = 0.0;
  9898. uint16_t scvt;
  9899. for (int i = 0; i < nc; i++) {
  9900. if (sp[i] == -INFINITY) {
  9901. dp[i] = 0.0f;
  9902. } else {
  9903. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9904. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9905. memcpy(&scvt, &s, sizeof(scvt));
  9906. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9907. sum += (ggml_float)val;
  9908. dp[i] = val;
  9909. }
  9910. }
  9911. assert(sum > 0.0);
  9912. sum = 1.0/sum;
  9913. ggml_vec_scale_f32(nc, dp, sum);
  9914. #ifndef NDEBUG
  9915. for (int i = 0; i < nc; ++i) {
  9916. assert(!isnan(dp[i]));
  9917. assert(!isinf(dp[i]));
  9918. }
  9919. #endif
  9920. }
  9921. }
  9922. static void ggml_compute_forward_soft_max(
  9923. const struct ggml_compute_params * params,
  9924. const struct ggml_tensor * src0,
  9925. struct ggml_tensor * dst) {
  9926. switch (src0->type) {
  9927. case GGML_TYPE_F32:
  9928. {
  9929. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9930. } break;
  9931. default:
  9932. {
  9933. GGML_ASSERT(false);
  9934. } break;
  9935. }
  9936. }
  9937. // ggml_compute_forward_soft_max_back
  9938. static void ggml_compute_forward_soft_max_back_f32(
  9939. const struct ggml_compute_params * params,
  9940. const struct ggml_tensor * src0,
  9941. const struct ggml_tensor * src1,
  9942. struct ggml_tensor * dst) {
  9943. GGML_ASSERT(ggml_is_contiguous(src0));
  9944. GGML_ASSERT(ggml_is_contiguous(src1));
  9945. GGML_ASSERT(ggml_is_contiguous(dst));
  9946. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9947. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9949. return;
  9950. }
  9951. // TODO: handle transposed/permuted matrices
  9952. const int ith = params->ith;
  9953. const int nth = params->nth;
  9954. const int nc = src0->ne[0];
  9955. const int nr = ggml_nrows(src0);
  9956. // rows per thread
  9957. const int dr = (nr + nth - 1)/nth;
  9958. // row range for this thread
  9959. const int ir0 = dr*ith;
  9960. const int ir1 = MIN(ir0 + dr, nr);
  9961. for (int i1 = ir0; i1 < ir1; i1++) {
  9962. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9963. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9964. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9965. #ifndef NDEBUG
  9966. for (int i = 0; i < nc; ++i) {
  9967. //printf("p[%d] = %f\n", i, p[i]);
  9968. assert(!isnan(dy[i]));
  9969. assert(!isnan(y[i]));
  9970. }
  9971. #endif
  9972. // Jii = yi - yi*yi
  9973. // Jij = -yi*yj
  9974. // J = diag(y)-y.T*y
  9975. // dx = J * dy
  9976. // dxk = sum_i(Jki * dyi)
  9977. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9978. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9979. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9980. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9981. // dxk = -yk * dot(y, dy) + yk*dyk
  9982. // dxk = yk * (- dot(y, dy) + dyk)
  9983. // dxk = yk * (dyk - dot(y, dy))
  9984. //
  9985. // post-order:
  9986. // dot_y_dy := dot(y, dy)
  9987. // dx := dy
  9988. // dx := dx - dot_y_dy
  9989. // dx := dx * y
  9990. // linear runtime, no additional memory
  9991. float dot_y_dy = 0;
  9992. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9993. ggml_vec_cpy_f32 (nc, dx, dy);
  9994. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9995. ggml_vec_mul_f32 (nc, dx, dx, y);
  9996. #ifndef NDEBUG
  9997. for (int i = 0; i < nc; ++i) {
  9998. assert(!isnan(dx[i]));
  9999. assert(!isinf(dx[i]));
  10000. }
  10001. #endif
  10002. }
  10003. }
  10004. static void ggml_compute_forward_soft_max_back(
  10005. const struct ggml_compute_params * params,
  10006. const struct ggml_tensor * src0,
  10007. const struct ggml_tensor * src1,
  10008. struct ggml_tensor * dst) {
  10009. switch (src0->type) {
  10010. case GGML_TYPE_F32:
  10011. {
  10012. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10013. } break;
  10014. default:
  10015. {
  10016. GGML_ASSERT(false);
  10017. } break;
  10018. }
  10019. }
  10020. // ggml_compute_forward_alibi
  10021. static void ggml_compute_forward_alibi_f32(
  10022. const struct ggml_compute_params * params,
  10023. const struct ggml_tensor * src0,
  10024. struct ggml_tensor * dst) {
  10025. assert(params->ith == 0);
  10026. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10027. return;
  10028. }
  10029. const int n_past = ((int32_t *) dst->op_params)[0];
  10030. const int n_head = ((int32_t *) dst->op_params)[1];
  10031. float max_bias;
  10032. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10033. assert(n_past >= 0);
  10034. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10035. const int ne1 = src0->ne[1]; // seq_len_without_past
  10036. const int ne2 = src0->ne[2]; // n_head -> this is k
  10037. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10038. const int n = ggml_nrows(src0);
  10039. const int ne2_ne3 = n/ne1; // ne2*ne3
  10040. const int nb0 = src0->nb[0];
  10041. const int nb1 = src0->nb[1];
  10042. const int nb2 = src0->nb[2];
  10043. //const int nb3 = src0->nb[3];
  10044. GGML_ASSERT(nb0 == sizeof(float));
  10045. GGML_ASSERT(ne1 + n_past == ne0);
  10046. GGML_ASSERT(n_head == ne2);
  10047. // add alibi to src0 (KQ_scaled)
  10048. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10049. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10050. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10051. for (int i = 0; i < ne0; i++) {
  10052. for (int j = 0; j < ne1; j++) {
  10053. for (int k = 0; k < ne2_ne3; k++) {
  10054. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10055. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10056. // TODO: k*nb2 or k*nb3
  10057. float m_k;
  10058. if (k < n_heads_log2_floor) {
  10059. m_k = powf(m0, k + 1);
  10060. } else {
  10061. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10062. }
  10063. pdst[0] = i * m_k + src[0];
  10064. }
  10065. }
  10066. }
  10067. }
  10068. static void ggml_compute_forward_alibi_f16(
  10069. const struct ggml_compute_params * params,
  10070. const struct ggml_tensor * src0,
  10071. struct ggml_tensor * dst) {
  10072. assert(params->ith == 0);
  10073. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10074. return;
  10075. }
  10076. const int n_past = ((int32_t *) dst->op_params)[0];
  10077. const int n_head = ((int32_t *) dst->op_params)[1];
  10078. float max_bias;
  10079. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10080. assert(n_past >= 0);
  10081. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10082. const int ne1 = src0->ne[1]; // seq_len_without_past
  10083. const int ne2 = src0->ne[2]; // n_head -> this is k
  10084. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10085. const int n = ggml_nrows(src0);
  10086. const int ne2_ne3 = n/ne1; // ne2*ne3
  10087. const int nb0 = src0->nb[0];
  10088. const int nb1 = src0->nb[1];
  10089. const int nb2 = src0->nb[2];
  10090. //const int nb3 = src0->nb[3];
  10091. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10092. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10093. GGML_ASSERT(n_head == ne2);
  10094. // add alibi to src0 (KQ_scaled)
  10095. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10096. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10097. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10098. for (int i = 0; i < ne0; i++) {
  10099. for (int j = 0; j < ne1; j++) {
  10100. for (int k = 0; k < ne2_ne3; k++) {
  10101. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10102. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10103. // TODO: k*nb2 or k*nb3
  10104. float m_k;
  10105. if (k < n_heads_log2_floor) {
  10106. m_k = powf(m0, k + 1);
  10107. } else {
  10108. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10109. }
  10110. // we return F32
  10111. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10112. }
  10113. }
  10114. }
  10115. }
  10116. static void ggml_compute_forward_alibi(
  10117. const struct ggml_compute_params * params,
  10118. const struct ggml_tensor * src0,
  10119. struct ggml_tensor * dst) {
  10120. switch (src0->type) {
  10121. case GGML_TYPE_F16:
  10122. {
  10123. ggml_compute_forward_alibi_f16(params, src0, dst);
  10124. } break;
  10125. case GGML_TYPE_F32:
  10126. {
  10127. ggml_compute_forward_alibi_f32(params, src0, dst);
  10128. } break;
  10129. case GGML_TYPE_Q4_0:
  10130. case GGML_TYPE_Q4_1:
  10131. case GGML_TYPE_Q5_0:
  10132. case GGML_TYPE_Q5_1:
  10133. case GGML_TYPE_Q8_0:
  10134. case GGML_TYPE_Q8_1:
  10135. case GGML_TYPE_Q2_K:
  10136. case GGML_TYPE_Q3_K:
  10137. case GGML_TYPE_Q4_K:
  10138. case GGML_TYPE_Q5_K:
  10139. case GGML_TYPE_Q6_K:
  10140. case GGML_TYPE_Q8_K:
  10141. case GGML_TYPE_I8:
  10142. case GGML_TYPE_I16:
  10143. case GGML_TYPE_I32:
  10144. case GGML_TYPE_COUNT:
  10145. {
  10146. GGML_ASSERT(false);
  10147. } break;
  10148. }
  10149. }
  10150. // ggml_compute_forward_clamp
  10151. static void ggml_compute_forward_clamp_f32(
  10152. const struct ggml_compute_params * params,
  10153. const struct ggml_tensor * src0,
  10154. struct ggml_tensor * dst) {
  10155. assert(params->ith == 0);
  10156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10157. return;
  10158. }
  10159. float min;
  10160. float max;
  10161. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10162. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10163. const int ith = params->ith;
  10164. const int nth = params->nth;
  10165. const int n = ggml_nrows(src0);
  10166. const int nc = src0->ne[0];
  10167. const size_t nb00 = src0->nb[0];
  10168. const size_t nb01 = src0->nb[1];
  10169. const size_t nb0 = dst->nb[0];
  10170. const size_t nb1 = dst->nb[1];
  10171. GGML_ASSERT( nb0 == sizeof(float));
  10172. GGML_ASSERT(nb00 == sizeof(float));
  10173. for (int j = ith; j < n; j += nth) {
  10174. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10175. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10176. for (int i = 0; i < nc; i++) {
  10177. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10178. }
  10179. }
  10180. }
  10181. static void ggml_compute_forward_clamp(
  10182. const struct ggml_compute_params * params,
  10183. const struct ggml_tensor * src0,
  10184. struct ggml_tensor * dst) {
  10185. switch (src0->type) {
  10186. case GGML_TYPE_F32:
  10187. {
  10188. ggml_compute_forward_clamp_f32(params, src0, dst);
  10189. } break;
  10190. case GGML_TYPE_F16:
  10191. case GGML_TYPE_Q4_0:
  10192. case GGML_TYPE_Q4_1:
  10193. case GGML_TYPE_Q5_0:
  10194. case GGML_TYPE_Q5_1:
  10195. case GGML_TYPE_Q8_0:
  10196. case GGML_TYPE_Q8_1:
  10197. case GGML_TYPE_Q2_K:
  10198. case GGML_TYPE_Q3_K:
  10199. case GGML_TYPE_Q4_K:
  10200. case GGML_TYPE_Q5_K:
  10201. case GGML_TYPE_Q6_K:
  10202. case GGML_TYPE_Q8_K:
  10203. case GGML_TYPE_I8:
  10204. case GGML_TYPE_I16:
  10205. case GGML_TYPE_I32:
  10206. case GGML_TYPE_COUNT:
  10207. {
  10208. GGML_ASSERT(false);
  10209. } break;
  10210. }
  10211. }
  10212. // ggml_compute_forward_rope
  10213. static void ggml_compute_forward_rope_f32(
  10214. const struct ggml_compute_params * params,
  10215. const struct ggml_tensor * src0,
  10216. struct ggml_tensor * dst) {
  10217. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10218. return;
  10219. }
  10220. float freq_base;
  10221. float freq_scale;
  10222. // these two only relevant for xPos RoPE:
  10223. float xpos_base;
  10224. bool xpos_down;
  10225. const int n_past = ((int32_t *) dst->op_params)[0];
  10226. const int n_dims = ((int32_t *) dst->op_params)[1];
  10227. const int mode = ((int32_t *) dst->op_params)[2];
  10228. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10229. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10230. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10231. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10232. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10233. assert(n_past >= 0);
  10234. GGML_TENSOR_UNARY_OP_LOCALS;
  10235. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10236. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10237. GGML_ASSERT(nb00 == sizeof(float));
  10238. const int ith = params->ith;
  10239. const int nth = params->nth;
  10240. const int nr = ggml_nrows(dst);
  10241. GGML_ASSERT(n_dims <= ne0);
  10242. GGML_ASSERT(n_dims % 2 == 0);
  10243. // rows per thread
  10244. const int dr = (nr + nth - 1)/nth;
  10245. // row range for this thread
  10246. const int ir0 = dr*ith;
  10247. const int ir1 = MIN(ir0 + dr, nr);
  10248. // row index used to determine which thread to use
  10249. int ir = 0;
  10250. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10251. const bool is_neox = mode & 2;
  10252. const bool is_glm = mode & 4;
  10253. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10254. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10255. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10256. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10257. if (ir++ < ir0) continue;
  10258. if (ir > ir1) break;
  10259. float theta = freq_scale * (float)p;
  10260. if (is_glm) {
  10261. theta = MIN(p, n_ctx - 2);
  10262. float block_theta = MAX(p - (n_ctx - 2), 0);
  10263. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10264. const float cos_theta = cosf(theta);
  10265. const float sin_theta = sinf(theta);
  10266. const float cos_block_theta = cosf(block_theta);
  10267. const float sin_block_theta = sinf(block_theta);
  10268. theta *= theta_scale;
  10269. block_theta *= theta_scale;
  10270. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10271. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10272. const float x0 = src[0];
  10273. const float x1 = src[n_dims/2];
  10274. const float x2 = src[n_dims];
  10275. const float x3 = src[n_dims/2*3];
  10276. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10277. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10278. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10279. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10280. }
  10281. } else if (!is_neox) {
  10282. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10283. const float cos_theta = cosf(theta);
  10284. const float sin_theta = sinf(theta);
  10285. // zeta scaling for xPos only:
  10286. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10287. if (xpos_down) zeta = 1.0f / zeta;
  10288. theta *= theta_scale;
  10289. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10290. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10291. const float x0 = src[0];
  10292. const float x1 = src[1];
  10293. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10294. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10295. }
  10296. } else {
  10297. // TODO: this might be wrong for ne0 != n_dims - need double check
  10298. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10299. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10300. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10301. const float cos_theta = cosf(theta);
  10302. const float sin_theta = sinf(theta);
  10303. theta *= theta_scale;
  10304. const int64_t i0 = ib*n_dims + ic/2;
  10305. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10306. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10307. const float x0 = src[0];
  10308. const float x1 = src[n_dims/2];
  10309. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10310. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10311. }
  10312. }
  10313. }
  10314. }
  10315. }
  10316. }
  10317. }
  10318. static void ggml_compute_forward_rope_f16(
  10319. const struct ggml_compute_params * params,
  10320. const struct ggml_tensor * src0,
  10321. struct ggml_tensor * dst) {
  10322. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10323. return;
  10324. }
  10325. float freq_base;
  10326. float freq_scale;
  10327. const int n_past = ((int32_t *) dst->op_params)[0];
  10328. const int n_dims = ((int32_t *) dst->op_params)[1];
  10329. const int mode = ((int32_t *) dst->op_params)[2];
  10330. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10331. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10332. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10333. assert(n_past >= 0);
  10334. GGML_TENSOR_UNARY_OP_LOCALS;
  10335. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10336. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10337. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10338. const int ith = params->ith;
  10339. const int nth = params->nth;
  10340. const int nr = ggml_nrows(dst);
  10341. GGML_ASSERT(n_dims <= ne0);
  10342. GGML_ASSERT(n_dims % 2 == 0);
  10343. // rows per thread
  10344. const int dr = (nr + nth - 1)/nth;
  10345. // row range for this thread
  10346. const int ir0 = dr*ith;
  10347. const int ir1 = MIN(ir0 + dr, nr);
  10348. // row index used to determine which thread to use
  10349. int ir = 0;
  10350. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10351. const bool is_neox = mode & 2;
  10352. const bool is_glm = mode & 4;
  10353. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10354. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10355. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10356. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10357. if (ir++ < ir0) continue;
  10358. if (ir > ir1) break;
  10359. float theta = freq_scale * (float)p;
  10360. if (is_glm) {
  10361. theta = MIN(p, n_ctx - 2);
  10362. float block_theta = MAX(p - (n_ctx - 2), 0);
  10363. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10364. const float cos_theta = cosf(theta);
  10365. const float sin_theta = sinf(theta);
  10366. const float cos_block_theta = cosf(block_theta);
  10367. const float sin_block_theta = sinf(block_theta);
  10368. theta *= theta_scale;
  10369. block_theta *= theta_scale;
  10370. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10371. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10372. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10373. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10374. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10375. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10376. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10377. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10378. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10379. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10380. }
  10381. } if (!is_neox) {
  10382. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10383. const float cos_theta = cosf(theta);
  10384. const float sin_theta = sinf(theta);
  10385. theta *= theta_scale;
  10386. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10387. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10388. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10389. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10390. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10391. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10392. }
  10393. } else {
  10394. // TODO: this might be wrong for ne0 != n_dims - need double check
  10395. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10396. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10397. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10398. const float cos_theta = cosf(theta);
  10399. const float sin_theta = sinf(theta);
  10400. theta *= theta_scale;
  10401. const int64_t i0 = ib*n_dims + ic/2;
  10402. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10403. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10404. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10405. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10406. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10407. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10408. }
  10409. }
  10410. }
  10411. }
  10412. }
  10413. }
  10414. }
  10415. static void ggml_compute_forward_rope(
  10416. const struct ggml_compute_params * params,
  10417. const struct ggml_tensor * src0,
  10418. struct ggml_tensor * dst) {
  10419. switch (src0->type) {
  10420. case GGML_TYPE_F16:
  10421. {
  10422. ggml_compute_forward_rope_f16(params, src0, dst);
  10423. } break;
  10424. case GGML_TYPE_F32:
  10425. {
  10426. ggml_compute_forward_rope_f32(params, src0, dst);
  10427. } break;
  10428. default:
  10429. {
  10430. GGML_ASSERT(false);
  10431. } break;
  10432. }
  10433. }
  10434. // ggml_compute_forward_rope_back
  10435. static void ggml_compute_forward_rope_back_f32(
  10436. const struct ggml_compute_params * params,
  10437. const struct ggml_tensor * src0,
  10438. struct ggml_tensor * dst) {
  10439. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10440. return;
  10441. }
  10442. // y = rope(x, src1)
  10443. // dx = rope_back(dy, src1)
  10444. // src0 is dy, src1 contains options
  10445. float freq_base;
  10446. float freq_scale;
  10447. // these two only relevant for xPos RoPE:
  10448. float xpos_base;
  10449. bool xpos_down;
  10450. const int n_past = ((int32_t *) dst->op_params)[0];
  10451. const int n_dims = ((int32_t *) dst->op_params)[1];
  10452. const int mode = ((int32_t *) dst->op_params)[2];
  10453. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  10454. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10455. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10456. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10457. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10458. assert(n_past >= 0);
  10459. GGML_TENSOR_UNARY_OP_LOCALS;
  10460. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10461. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10462. assert(nb0 == sizeof(float));
  10463. const int ith = params->ith;
  10464. const int nth = params->nth;
  10465. const int nr = ggml_nrows(dst);
  10466. // rows per thread
  10467. const int dr = (nr + nth - 1)/nth;
  10468. // row range for this thread
  10469. const int ir0 = dr*ith;
  10470. const int ir1 = MIN(ir0 + dr, nr);
  10471. // row index used to determine which thread to use
  10472. int ir = 0;
  10473. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10474. const bool is_neox = mode & 2;
  10475. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10476. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10477. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10478. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10479. if (ir++ < ir0) continue;
  10480. if (ir > ir1) break;
  10481. float theta = freq_scale * (float)p;
  10482. if (!is_neox) {
  10483. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10484. const float cos_theta = cosf(theta);
  10485. const float sin_theta = sinf(theta);
  10486. // zeta scaling for xPos only:
  10487. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), (n_past + i2) / xpos_base) : 1.0f;
  10488. if (xpos_down) zeta = 1.0f / zeta;
  10489. theta *= theta_scale;
  10490. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10491. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10492. const float dy0 = dy[0];
  10493. const float dy1 = dy[1];
  10494. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  10495. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  10496. }
  10497. } else {
  10498. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10499. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10500. const float cos_theta = cosf(theta);
  10501. const float sin_theta = sinf(theta);
  10502. theta *= theta_scale;
  10503. const int64_t i0 = ib*n_dims + ic/2;
  10504. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10505. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10506. const float dy0 = dy[0];
  10507. const float dy1 = dy[n_dims/2];
  10508. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10509. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10510. }
  10511. }
  10512. }
  10513. }
  10514. }
  10515. }
  10516. }
  10517. static void ggml_compute_forward_rope_back_f16(
  10518. const struct ggml_compute_params * params,
  10519. const struct ggml_tensor * src0,
  10520. struct ggml_tensor * dst) {
  10521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10522. return;
  10523. }
  10524. // y = rope(x, src1)
  10525. // dx = rope_back(dy, src1)
  10526. // src0 is dy, src1 contains options
  10527. const int n_past = ((int32_t *) dst->op_params)[0];
  10528. const int n_dims = ((int32_t *) dst->op_params)[1];
  10529. const int mode = ((int32_t *) dst->op_params)[2];
  10530. assert(n_past >= 0);
  10531. GGML_TENSOR_UNARY_OP_LOCALS;
  10532. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10533. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10534. assert(nb0 == sizeof(ggml_fp16_t));
  10535. const int ith = params->ith;
  10536. const int nth = params->nth;
  10537. const int nr = ggml_nrows(dst);
  10538. // rows per thread
  10539. const int dr = (nr + nth - 1)/nth;
  10540. // row range for this thread
  10541. const int ir0 = dr*ith;
  10542. const int ir1 = MIN(ir0 + dr, nr);
  10543. // row index used to determine which thread to use
  10544. int ir = 0;
  10545. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10546. const bool is_neox = mode & 2;
  10547. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10548. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10549. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10550. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10551. if (ir++ < ir0) continue;
  10552. if (ir > ir1) break;
  10553. float theta = (float)p;
  10554. if (!is_neox) {
  10555. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10556. const float cos_theta = cosf(theta);
  10557. const float sin_theta = sinf(theta);
  10558. theta *= theta_scale;
  10559. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10560. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10561. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10562. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10563. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10564. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10565. }
  10566. } else {
  10567. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10568. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10569. const float cos_theta = cosf(theta);
  10570. const float sin_theta = sinf(theta);
  10571. theta *= theta_scale;
  10572. const int64_t i0 = ib*n_dims + ic/2;
  10573. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10574. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10575. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10576. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10577. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10578. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10579. }
  10580. }
  10581. }
  10582. }
  10583. }
  10584. }
  10585. }
  10586. static void ggml_compute_forward_rope_back(
  10587. const struct ggml_compute_params * params,
  10588. const struct ggml_tensor * src0,
  10589. struct ggml_tensor * dst) {
  10590. switch (src0->type) {
  10591. case GGML_TYPE_F16:
  10592. {
  10593. ggml_compute_forward_rope_back_f16(params, src0, dst);
  10594. } break;
  10595. case GGML_TYPE_F32:
  10596. {
  10597. ggml_compute_forward_rope_back_f32(params, src0, dst);
  10598. } break;
  10599. default:
  10600. {
  10601. GGML_ASSERT(false);
  10602. } break;
  10603. }
  10604. }
  10605. // ggml_compute_forward_conv_1d
  10606. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10607. const struct ggml_compute_params * params,
  10608. const struct ggml_tensor * src0,
  10609. const struct ggml_tensor * src1,
  10610. struct ggml_tensor * dst) {
  10611. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10612. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10613. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10614. int64_t t0 = ggml_perf_time_us();
  10615. UNUSED(t0);
  10616. GGML_TENSOR_BINARY_OP_LOCALS;
  10617. const int ith = params->ith;
  10618. const int nth = params->nth;
  10619. const int nk = ne00;
  10620. const int nh = nk/2;
  10621. const int ew0 = ggml_up32(ne01);
  10622. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10623. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10624. GGML_ASSERT(nb10 == sizeof(float));
  10625. if (params->type == GGML_TASK_INIT) {
  10626. // TODO: fix this memset (wsize is overestimated)
  10627. memset(params->wdata, 0, params->wsize);
  10628. // prepare kernel data (src0)
  10629. {
  10630. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10631. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10632. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10633. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10634. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10635. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10636. dst_data[i00*ew0 + i01] = src[i00];
  10637. }
  10638. }
  10639. }
  10640. }
  10641. // prepare source data (src1)
  10642. {
  10643. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10644. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10645. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10646. ggml_fp16_t * dst_data = wdata;
  10647. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10648. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10649. }
  10650. }
  10651. }
  10652. return;
  10653. }
  10654. if (params->type == GGML_TASK_FINALIZE) {
  10655. return;
  10656. }
  10657. // total rows in dst
  10658. const int nr = ne02;
  10659. // rows per thread
  10660. const int dr = (nr + nth - 1)/nth;
  10661. // row range for this thread
  10662. const int ir0 = dr*ith;
  10663. const int ir1 = MIN(ir0 + dr, nr);
  10664. for (int i1 = ir0; i1 < ir1; i1++) {
  10665. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10666. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10667. dst_data[i0] = 0;
  10668. for (int k = -nh; k <= nh; k++) {
  10669. float v = 0.0f;
  10670. ggml_vec_dot_f16(ew0, &v,
  10671. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10672. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10673. dst_data[i0] += v;
  10674. }
  10675. }
  10676. }
  10677. }
  10678. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10679. const struct ggml_compute_params * params,
  10680. const struct ggml_tensor * src0,
  10681. const struct ggml_tensor * src1,
  10682. struct ggml_tensor * dst) {
  10683. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10684. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10685. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10686. int64_t t0 = ggml_perf_time_us();
  10687. UNUSED(t0);
  10688. GGML_TENSOR_BINARY_OP_LOCALS;
  10689. const int ith = params->ith;
  10690. const int nth = params->nth;
  10691. const int nk = ne00;
  10692. const int nh = nk/2;
  10693. const int ew0 = ggml_up32(ne01);
  10694. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10695. GGML_ASSERT(nb00 == sizeof(float));
  10696. GGML_ASSERT(nb10 == sizeof(float));
  10697. if (params->type == GGML_TASK_INIT) {
  10698. // TODO: fix this memset (wsize is overestimated)
  10699. memset(params->wdata, 0, params->wsize);
  10700. // prepare kernel data (src0)
  10701. {
  10702. float * const wdata = (float *) params->wdata + 0;
  10703. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10704. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10705. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10706. float * dst_data = wdata + i02*ew0*ne00;
  10707. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10708. dst_data[i00*ew0 + i01] = src[i00];
  10709. }
  10710. }
  10711. }
  10712. }
  10713. // prepare source data (src1)
  10714. {
  10715. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10716. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10717. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10718. float * dst_data = wdata;
  10719. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10720. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10721. }
  10722. }
  10723. }
  10724. return;
  10725. }
  10726. if (params->type == GGML_TASK_FINALIZE) {
  10727. return;
  10728. }
  10729. // total rows in dst
  10730. const int nr = ne02;
  10731. // rows per thread
  10732. const int dr = (nr + nth - 1)/nth;
  10733. // row range for this thread
  10734. const int ir0 = dr*ith;
  10735. const int ir1 = MIN(ir0 + dr, nr);
  10736. for (int i1 = ir0; i1 < ir1; i1++) {
  10737. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10738. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10739. dst_data[i0] = 0;
  10740. for (int k = -nh; k <= nh; k++) {
  10741. float v = 0.0f;
  10742. ggml_vec_dot_f32(ew0, &v,
  10743. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10744. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10745. dst_data[i0] += v;
  10746. }
  10747. }
  10748. }
  10749. }
  10750. static void ggml_compute_forward_conv_1d_s1_ph(
  10751. const struct ggml_compute_params * params,
  10752. const struct ggml_tensor * src0,
  10753. const struct ggml_tensor * src1,
  10754. struct ggml_tensor * dst) {
  10755. switch (src0->type) {
  10756. case GGML_TYPE_F16:
  10757. {
  10758. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10759. } break;
  10760. case GGML_TYPE_F32:
  10761. {
  10762. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10763. } break;
  10764. default:
  10765. {
  10766. GGML_ASSERT(false);
  10767. } break;
  10768. }
  10769. }
  10770. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10771. const struct ggml_compute_params * params,
  10772. const struct ggml_tensor * src0,
  10773. const struct ggml_tensor * src1,
  10774. struct ggml_tensor * dst) {
  10775. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10776. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10777. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10778. int64_t t0 = ggml_perf_time_us();
  10779. UNUSED(t0);
  10780. GGML_TENSOR_BINARY_OP_LOCALS;
  10781. const int ith = params->ith;
  10782. const int nth = params->nth;
  10783. const int nk = ne00;
  10784. const int nh = nk/2;
  10785. const int ew0 = ggml_up32(ne01);
  10786. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10787. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10788. GGML_ASSERT(nb10 == sizeof(float));
  10789. if (params->type == GGML_TASK_INIT) {
  10790. // TODO: fix this memset (wsize is overestimated)
  10791. memset(params->wdata, 0, params->wsize);
  10792. // prepare kernel data (src0)
  10793. {
  10794. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10795. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10796. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10797. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10798. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10799. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10800. dst_data[i00*ew0 + i01] = src[i00];
  10801. }
  10802. }
  10803. }
  10804. }
  10805. // prepare source data (src1)
  10806. {
  10807. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10808. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10809. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10810. ggml_fp16_t * dst_data = wdata;
  10811. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10812. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10813. }
  10814. }
  10815. }
  10816. return;
  10817. }
  10818. if (params->type == GGML_TASK_FINALIZE) {
  10819. return;
  10820. }
  10821. // total rows in dst
  10822. const int nr = ne02;
  10823. // rows per thread
  10824. const int dr = (nr + nth - 1)/nth;
  10825. // row range for this thread
  10826. const int ir0 = dr*ith;
  10827. const int ir1 = MIN(ir0 + dr, nr);
  10828. for (int i1 = ir0; i1 < ir1; i1++) {
  10829. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10830. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10831. dst_data[i0/2] = 0;
  10832. for (int k = -nh; k <= nh; k++) {
  10833. float v = 0.0f;
  10834. ggml_vec_dot_f16(ew0, &v,
  10835. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10836. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10837. dst_data[i0/2] += v;
  10838. }
  10839. }
  10840. }
  10841. }
  10842. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10843. const struct ggml_compute_params * params,
  10844. const struct ggml_tensor * src0,
  10845. const struct ggml_tensor * src1,
  10846. struct ggml_tensor * dst) {
  10847. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10848. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10849. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10850. int64_t t0 = ggml_perf_time_us();
  10851. UNUSED(t0);
  10852. GGML_TENSOR_BINARY_OP_LOCALS;
  10853. const int ith = params->ith;
  10854. const int nth = params->nth;
  10855. const int nk = ne00;
  10856. const int nh = nk/2;
  10857. const int ew0 = ggml_up32(ne01);
  10858. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10859. GGML_ASSERT(nb00 == sizeof(float));
  10860. GGML_ASSERT(nb10 == sizeof(float));
  10861. if (params->type == GGML_TASK_INIT) {
  10862. // TODO: fix this memset (wsize is overestimated)
  10863. memset(params->wdata, 0, params->wsize);
  10864. // prepare kernel data (src0)
  10865. {
  10866. float * const wdata = (float *) params->wdata + 0;
  10867. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10868. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10869. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10870. float * dst_data = wdata + i02*ew0*ne00;
  10871. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10872. dst_data[i00*ew0 + i01] = src[i00];
  10873. }
  10874. }
  10875. }
  10876. }
  10877. // prepare source data (src1)
  10878. {
  10879. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10880. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10881. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10882. float * dst_data = wdata;
  10883. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10884. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10885. }
  10886. }
  10887. }
  10888. return;
  10889. }
  10890. if (params->type == GGML_TASK_FINALIZE) {
  10891. return;
  10892. }
  10893. // total rows in dst
  10894. const int nr = ne02;
  10895. // rows per thread
  10896. const int dr = (nr + nth - 1)/nth;
  10897. // row range for this thread
  10898. const int ir0 = dr*ith;
  10899. const int ir1 = MIN(ir0 + dr, nr);
  10900. for (int i1 = ir0; i1 < ir1; i1++) {
  10901. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10902. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10903. dst_data[i0/2] = 0;
  10904. for (int k = -nh; k <= nh; k++) {
  10905. float v = 0.0f;
  10906. ggml_vec_dot_f32(ew0, &v,
  10907. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10908. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10909. dst_data[i0/2] += v;
  10910. }
  10911. }
  10912. }
  10913. }
  10914. static void ggml_compute_forward_conv_1d_s2_ph(
  10915. const struct ggml_compute_params * params,
  10916. const struct ggml_tensor * src0,
  10917. const struct ggml_tensor * src1,
  10918. struct ggml_tensor * dst) {
  10919. switch (src0->type) {
  10920. case GGML_TYPE_F16:
  10921. {
  10922. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10923. } break;
  10924. case GGML_TYPE_F32:
  10925. {
  10926. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10927. } break;
  10928. default:
  10929. {
  10930. GGML_ASSERT(false);
  10931. } break;
  10932. }
  10933. }
  10934. // ggml_compute_forward_conv_1d
  10935. static void ggml_compute_forward_conv_1d(
  10936. const struct ggml_compute_params * params,
  10937. const struct ggml_tensor * src0,
  10938. const struct ggml_tensor * src1,
  10939. struct ggml_tensor * dst) {
  10940. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10941. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  10942. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  10943. GGML_ASSERT(d0 == 1); // dilation not supported
  10944. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10945. if (s0 == 1) {
  10946. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10947. } else if (s0 == 2) {
  10948. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10949. } else {
  10950. GGML_ASSERT(false); // only stride 1 and 2 supported
  10951. };
  10952. }
  10953. // ggml_compute_forward_conv_2d
  10954. static void ggml_compute_forward_conv_2d_f16_f32(
  10955. const struct ggml_compute_params * params,
  10956. const struct ggml_tensor * src0,
  10957. const struct ggml_tensor * src1,
  10958. struct ggml_tensor * dst) {
  10959. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10960. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10961. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10962. int64_t t0 = ggml_perf_time_us();
  10963. UNUSED(t0);
  10964. GGML_TENSOR_BINARY_OP_LOCALS;
  10965. const int ith = params->ith;
  10966. const int nth = params->nth;
  10967. const int nk0 = ne00;
  10968. const int nk1 = ne01;
  10969. // size of the convolution row - the kernel size unrolled across all channels
  10970. const int ew0 = nk0*nk1*ne02;
  10971. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10972. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  10973. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  10974. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  10975. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  10976. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  10977. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10978. GGML_ASSERT(nb10 == sizeof(float));
  10979. if (params->type == GGML_TASK_INIT) {
  10980. memset(params->wdata, 0, params->wsize);
  10981. // prepare source data (src1)
  10982. {
  10983. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10984. for (int i12 = 0; i12 < ne12; i12++) {
  10985. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10986. ggml_fp16_t * dst_data = wdata;
  10987. for (int i1 = 0; i1 < ne1; i1++) {
  10988. for (int i0 = 0; i0 < ne0; i0++) {
  10989. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10990. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10991. const int idx0 = i0*s0 + ik0*d0 - p0;
  10992. const int idx1 = i1*s1 + ik1*d1 - p1;
  10993. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  10994. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10995. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  10996. }
  10997. }
  10998. }
  10999. }
  11000. }
  11001. }
  11002. }
  11003. return;
  11004. }
  11005. if (params->type == GGML_TASK_FINALIZE) {
  11006. return;
  11007. }
  11008. // total patches in dst
  11009. const int np = ne2;
  11010. // patches per thread
  11011. const int dp = (np + nth - 1)/nth;
  11012. // patch range for this thread
  11013. const int ip0 = dp*ith;
  11014. const int ip1 = MIN(ip0 + dp, np);
  11015. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11016. for (int i3 = 0; i3 < ne3; i3++) {
  11017. for (int i2 = ip0; i2 < ip1; i2++) {
  11018. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11019. for (int i1 = 0; i1 < ne1; ++i1) {
  11020. for (int i0 = 0; i0 < ne0; ++i0) {
  11021. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11022. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11023. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11024. }
  11025. }
  11026. }
  11027. }
  11028. }
  11029. static void ggml_compute_forward_conv_2d(
  11030. const struct ggml_compute_params * params,
  11031. const struct ggml_tensor * src0,
  11032. const struct ggml_tensor * src1,
  11033. struct ggml_tensor * dst) {
  11034. switch (src0->type) {
  11035. case GGML_TYPE_F16:
  11036. {
  11037. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11038. } break;
  11039. case GGML_TYPE_F32:
  11040. {
  11041. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11042. GGML_ASSERT(false);
  11043. } break;
  11044. default:
  11045. {
  11046. GGML_ASSERT(false);
  11047. } break;
  11048. }
  11049. }
  11050. // ggml_compute_forward_conv_transpose_2d
  11051. static void ggml_compute_forward_conv_transpose_2d(
  11052. const struct ggml_compute_params * params,
  11053. const struct ggml_tensor * src0,
  11054. const struct ggml_tensor * src1,
  11055. struct ggml_tensor * dst) {
  11056. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11057. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11058. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11059. int64_t t0 = ggml_perf_time_us();
  11060. UNUSED(t0);
  11061. GGML_TENSOR_BINARY_OP_LOCALS;
  11062. const int ith = params->ith;
  11063. const int nth = params->nth;
  11064. const int nk = ne00*ne01*ne02*ne03;
  11065. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11066. GGML_ASSERT(nb10 == sizeof(float));
  11067. if (params->type == GGML_TASK_INIT) {
  11068. memset(params->wdata, 0, params->wsize);
  11069. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11070. {
  11071. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11072. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11073. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11074. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11075. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11076. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11077. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11078. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11079. }
  11080. }
  11081. }
  11082. }
  11083. }
  11084. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11085. {
  11086. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11087. for (int i12 = 0; i12 < ne12; i12++) {
  11088. for (int i11 = 0; i11 < ne11; i11++) {
  11089. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11090. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11091. for (int i10 = 0; i10 < ne10; i10++) {
  11092. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11093. }
  11094. }
  11095. }
  11096. }
  11097. return;
  11098. }
  11099. if (params->type == GGML_TASK_FINALIZE) {
  11100. return;
  11101. }
  11102. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11103. // total patches in dst
  11104. const int np = ne2;
  11105. // patches per thread
  11106. const int dp = (np + nth - 1)/nth;
  11107. // patch range for this thread
  11108. const int ip0 = dp*ith;
  11109. const int ip1 = MIN(ip0 + dp, np);
  11110. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11111. ggml_fp16_t * const wdata_src = wdata + nk;
  11112. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11113. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11114. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11115. for (int i11 = 0; i11 < ne11; i11++) {
  11116. for (int i10 = 0; i10 < ne10; i10++) {
  11117. const int i1n = i11*ne10*ne12 + i10*ne12;
  11118. for (int i01 = 0; i01 < ne01; i01++) {
  11119. for (int i00 = 0; i00 < ne00; i00++) {
  11120. float v = 0;
  11121. ggml_vec_dot_f16(ne03, &v,
  11122. wdata_src + i1n,
  11123. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11124. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11125. }
  11126. }
  11127. }
  11128. }
  11129. }
  11130. }
  11131. // ggml_compute_forward_pool_1d_sk_p0
  11132. static void ggml_compute_forward_pool_1d_sk_p0(
  11133. const struct ggml_compute_params * params,
  11134. const enum ggml_op_pool op,
  11135. const struct ggml_tensor * src,
  11136. const int k,
  11137. struct ggml_tensor * dst) {
  11138. assert(src->type == GGML_TYPE_F32);
  11139. assert(params->ith == 0);
  11140. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11141. return;
  11142. }
  11143. const char * cdata = (const char *)src->data;
  11144. const char * const data_end = cdata + ggml_nbytes(src);
  11145. float * drow = (float *)dst->data;
  11146. const int64_t rs = dst->ne[0];
  11147. while (cdata < data_end) {
  11148. const float * const srow = (const float *)cdata;
  11149. int j = 0;
  11150. for (int64_t i = 0; i < rs; ++i) {
  11151. switch (op) {
  11152. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11153. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11154. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11155. }
  11156. for (int ki = 0; ki < k; ++ki) {
  11157. switch (op) {
  11158. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11159. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11160. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11161. }
  11162. ++j;
  11163. }
  11164. switch (op) {
  11165. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11166. case GGML_OP_POOL_MAX: break;
  11167. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11168. }
  11169. }
  11170. cdata += src->nb[1];
  11171. drow += rs;
  11172. }
  11173. }
  11174. // ggml_compute_forward_pool_1d
  11175. static void ggml_compute_forward_pool_1d(
  11176. const struct ggml_compute_params * params,
  11177. const struct ggml_tensor * src0,
  11178. struct ggml_tensor * dst) {
  11179. const int32_t * opts = (const int32_t *)dst->op_params;
  11180. enum ggml_op_pool op = opts[0];
  11181. const int k0 = opts[1];
  11182. const int s0 = opts[2];
  11183. const int p0 = opts[3];
  11184. GGML_ASSERT(p0 == 0); // padding not supported
  11185. GGML_ASSERT(k0 == s0); // only s = k supported
  11186. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11187. }
  11188. // ggml_compute_forward_pool_2d_sk_p0
  11189. static void ggml_compute_forward_pool_2d_sk_p0(
  11190. const struct ggml_compute_params * params,
  11191. const enum ggml_op_pool op,
  11192. const struct ggml_tensor * src,
  11193. const int k0,
  11194. const int k1,
  11195. struct ggml_tensor * dst) {
  11196. assert(src->type == GGML_TYPE_F32);
  11197. assert(params->ith == 0);
  11198. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11199. return;
  11200. }
  11201. const char * cdata = (const char*)src->data;
  11202. const char * const data_end = cdata + ggml_nbytes(src);
  11203. const int64_t px = dst->ne[0];
  11204. const int64_t py = dst->ne[1];
  11205. const int64_t pa = px * py;
  11206. float * dplane = (float *)dst->data;
  11207. const int ka = k0 * k1;
  11208. while (cdata < data_end) {
  11209. for (int oy = 0; oy < py; ++oy) {
  11210. float * const drow = dplane + oy * px;
  11211. for (int ox = 0; ox < px; ++ox) {
  11212. float * const out = drow + ox;
  11213. switch (op) {
  11214. case GGML_OP_POOL_AVG: *out = 0; break;
  11215. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11216. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11217. }
  11218. const int ix = ox * k0;
  11219. const int iy = oy * k1;
  11220. for (int ky = 0; ky < k1; ++ky) {
  11221. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11222. for (int kx = 0; kx < k0; ++kx) {
  11223. int j = ix + kx;
  11224. switch (op) {
  11225. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11226. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11227. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11228. }
  11229. }
  11230. }
  11231. switch (op) {
  11232. case GGML_OP_POOL_AVG: *out /= ka; break;
  11233. case GGML_OP_POOL_MAX: break;
  11234. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11235. }
  11236. }
  11237. }
  11238. cdata += src->nb[2];
  11239. dplane += pa;
  11240. }
  11241. }
  11242. // ggml_compute_forward_pool_2d
  11243. static void ggml_compute_forward_pool_2d(
  11244. const struct ggml_compute_params * params,
  11245. const struct ggml_tensor * src0,
  11246. struct ggml_tensor * dst) {
  11247. const int32_t * opts = (const int32_t *)dst->op_params;
  11248. enum ggml_op_pool op = opts[0];
  11249. const int k0 = opts[1];
  11250. const int k1 = opts[2];
  11251. const int s0 = opts[3];
  11252. const int s1 = opts[4];
  11253. const int p0 = opts[5];
  11254. const int p1 = opts[6];
  11255. GGML_ASSERT(p0 == 0);
  11256. GGML_ASSERT(p1 == 0); // padding not supported
  11257. GGML_ASSERT(k0 == s0);
  11258. GGML_ASSERT(k1 == s1); // only s = k supported
  11259. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11260. }
  11261. // ggml_compute_forward_upscale
  11262. static void ggml_compute_forward_upscale_f32(
  11263. const struct ggml_compute_params * params,
  11264. const struct ggml_tensor * src0,
  11265. struct ggml_tensor * dst) {
  11266. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11267. return;
  11268. }
  11269. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11270. const int ith = params->ith;
  11271. GGML_TENSOR_UNARY_OP_LOCALS;
  11272. const int scale_factor = dst->op_params[0];
  11273. // TODO: optimize
  11274. for (int i03 = 0; i03 < ne03; i03++) {
  11275. for (int i02 = ith; i02 < ne02; i02++) {
  11276. for (int m = 0; m < dst->ne[1]; m++) {
  11277. int i01 = m / scale_factor;
  11278. for (int n = 0; n < dst->ne[0]; n++) {
  11279. int i00 = n / scale_factor;
  11280. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  11281. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  11282. *y = *x;
  11283. }
  11284. }
  11285. }
  11286. }
  11287. }
  11288. static void ggml_compute_forward_upscale(
  11289. const struct ggml_compute_params * params,
  11290. const struct ggml_tensor * src0,
  11291. struct ggml_tensor * dst) {
  11292. switch (src0->type) {
  11293. case GGML_TYPE_F32:
  11294. {
  11295. ggml_compute_forward_upscale_f32(params, src0, dst);
  11296. } break;
  11297. default:
  11298. {
  11299. GGML_ASSERT(false);
  11300. } break;
  11301. }
  11302. }
  11303. // ggml_compute_forward_flash_attn
  11304. static void ggml_compute_forward_flash_attn_f32(
  11305. const struct ggml_compute_params * params,
  11306. const struct ggml_tensor * q,
  11307. const struct ggml_tensor * k,
  11308. const struct ggml_tensor * v,
  11309. const bool masked,
  11310. struct ggml_tensor * dst) {
  11311. int64_t t0 = ggml_perf_time_us();
  11312. UNUSED(t0);
  11313. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11314. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11315. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11316. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11317. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11318. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11319. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11320. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11321. const int ith = params->ith;
  11322. const int nth = params->nth;
  11323. const int64_t D = neq0;
  11324. const int64_t N = neq1;
  11325. const int64_t P = nek1 - N;
  11326. const int64_t M = P + N;
  11327. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11328. GGML_ASSERT(ne0 == D);
  11329. GGML_ASSERT(ne1 == N);
  11330. GGML_ASSERT(P >= 0);
  11331. GGML_ASSERT(nbq0 == sizeof(float));
  11332. GGML_ASSERT(nbk0 == sizeof(float));
  11333. GGML_ASSERT(nbv0 == sizeof(float));
  11334. GGML_ASSERT(neq0 == D);
  11335. GGML_ASSERT(nek0 == D);
  11336. GGML_ASSERT(nev1 == D);
  11337. GGML_ASSERT(neq1 == N);
  11338. GGML_ASSERT(nek1 == N + P);
  11339. GGML_ASSERT(nev1 == D);
  11340. // dst cannot be transposed or permuted
  11341. GGML_ASSERT(nb0 == sizeof(float));
  11342. GGML_ASSERT(nb0 <= nb1);
  11343. GGML_ASSERT(nb1 <= nb2);
  11344. GGML_ASSERT(nb2 <= nb3);
  11345. if (params->type == GGML_TASK_INIT) {
  11346. return;
  11347. }
  11348. if (params->type == GGML_TASK_FINALIZE) {
  11349. return;
  11350. }
  11351. // parallelize by q rows using ggml_vec_dot_f32
  11352. // total rows in q
  11353. const int nr = neq1*neq2*neq3;
  11354. // rows per thread
  11355. const int dr = (nr + nth - 1)/nth;
  11356. // row range for this thread
  11357. const int ir0 = dr*ith;
  11358. const int ir1 = MIN(ir0 + dr, nr);
  11359. const float scale = 1.0f/sqrtf(D);
  11360. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11361. for (int ir = ir0; ir < ir1; ++ir) {
  11362. // q indices
  11363. const int iq3 = ir/(neq2*neq1);
  11364. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11365. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11366. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11367. for (int i = M; i < Mup; ++i) {
  11368. S[i] = -INFINITY;
  11369. }
  11370. for (int64_t ic = 0; ic < nek1; ++ic) {
  11371. // k indices
  11372. const int ik3 = iq3;
  11373. const int ik2 = iq2;
  11374. const int ik1 = ic;
  11375. // S indices
  11376. const int i1 = ik1;
  11377. ggml_vec_dot_f32(neq0,
  11378. S + i1,
  11379. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11380. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11381. }
  11382. // scale
  11383. ggml_vec_scale_f32(nek1, S, scale);
  11384. if (masked) {
  11385. for (int64_t i = P; i < M; i++) {
  11386. if (i > P + iq1) {
  11387. S[i] = -INFINITY;
  11388. }
  11389. }
  11390. }
  11391. // softmax
  11392. {
  11393. float max = -INFINITY;
  11394. ggml_vec_max_f32(M, &max, S);
  11395. ggml_float sum = 0.0;
  11396. {
  11397. #ifdef GGML_SOFT_MAX_ACCELERATE
  11398. max = -max;
  11399. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11400. vvexpf(S, S, &Mup);
  11401. ggml_vec_sum_f32(Mup, &sum, S);
  11402. #else
  11403. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11404. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11405. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11406. float * SS = S + i;
  11407. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11408. if (SS[j] == -INFINITY) {
  11409. SS[j] = 0.0f;
  11410. } else {
  11411. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11412. const float val = expf(SS[j] - max);
  11413. #else
  11414. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11415. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11416. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11417. #endif
  11418. sump[j] += (ggml_float)val;
  11419. SS[j] = val;
  11420. }
  11421. }
  11422. }
  11423. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11424. sum += sump[i];
  11425. }
  11426. #endif
  11427. }
  11428. assert(sum > 0.0);
  11429. sum = 1.0/sum;
  11430. ggml_vec_scale_f32(M, S, sum);
  11431. #ifndef NDEBUG
  11432. for (int i = 0; i < M; ++i) {
  11433. assert(!isnan(S[i]));
  11434. assert(!isinf(S[i]));
  11435. }
  11436. #endif
  11437. }
  11438. for (int64_t ic = 0; ic < nev1; ++ic) {
  11439. // dst indices
  11440. const int i1 = iq1;
  11441. const int i2 = iq2;
  11442. const int i3 = iq3;
  11443. ggml_vec_dot_f32(nek1,
  11444. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11445. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11446. S);
  11447. }
  11448. }
  11449. }
  11450. static void ggml_compute_forward_flash_attn_f16(
  11451. const struct ggml_compute_params * params,
  11452. const struct ggml_tensor * q,
  11453. const struct ggml_tensor * k,
  11454. const struct ggml_tensor * v,
  11455. const bool masked,
  11456. struct ggml_tensor * dst) {
  11457. int64_t t0 = ggml_perf_time_us();
  11458. UNUSED(t0);
  11459. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11460. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11461. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11462. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11463. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11464. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11465. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11466. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11467. const int ith = params->ith;
  11468. const int nth = params->nth;
  11469. const int64_t D = neq0;
  11470. const int64_t N = neq1;
  11471. const int64_t P = nek1 - N;
  11472. const int64_t M = P + N;
  11473. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11474. GGML_ASSERT(ne0 == D);
  11475. GGML_ASSERT(ne1 == N);
  11476. GGML_ASSERT(P >= 0);
  11477. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11478. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11479. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11480. GGML_ASSERT(neq0 == D);
  11481. GGML_ASSERT(nek0 == D);
  11482. GGML_ASSERT(nev1 == D);
  11483. GGML_ASSERT(neq1 == N);
  11484. GGML_ASSERT(nek1 == N + P);
  11485. GGML_ASSERT(nev1 == D);
  11486. // dst cannot be transposed or permuted
  11487. GGML_ASSERT(nb0 == sizeof(float));
  11488. GGML_ASSERT(nb0 <= nb1);
  11489. GGML_ASSERT(nb1 <= nb2);
  11490. GGML_ASSERT(nb2 <= nb3);
  11491. if (params->type == GGML_TASK_INIT) {
  11492. return;
  11493. }
  11494. if (params->type == GGML_TASK_FINALIZE) {
  11495. return;
  11496. }
  11497. // parallelize by q rows using ggml_vec_dot_f32
  11498. // total rows in q
  11499. const int nr = neq1*neq2*neq3;
  11500. // rows per thread
  11501. const int dr = (nr + nth - 1)/nth;
  11502. // row range for this thread
  11503. const int ir0 = dr*ith;
  11504. const int ir1 = MIN(ir0 + dr, nr);
  11505. const float scale = 1.0f/sqrtf(D);
  11506. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11507. for (int ir = ir0; ir < ir1; ++ir) {
  11508. // q indices
  11509. const int iq3 = ir/(neq2*neq1);
  11510. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11511. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11512. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11513. for (int i = M; i < Mup; ++i) {
  11514. S[i] = -INFINITY;
  11515. }
  11516. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11517. for (int64_t ic = 0; ic < nek1; ++ic) {
  11518. // k indices
  11519. const int ik3 = iq3;
  11520. const int ik2 = iq2;
  11521. const int ik1 = ic;
  11522. // S indices
  11523. const int i1 = ik1;
  11524. ggml_vec_dot_f16(neq0,
  11525. S + i1,
  11526. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11527. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11528. }
  11529. } else {
  11530. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11531. // k indices
  11532. const int ik3 = iq3;
  11533. const int ik2 = iq2;
  11534. const int ik1 = ic;
  11535. // S indices
  11536. const int i1 = ik1;
  11537. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11538. S + i1,
  11539. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11540. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11541. }
  11542. }
  11543. // scale
  11544. ggml_vec_scale_f32(nek1, S, scale);
  11545. if (masked) {
  11546. for (int64_t i = P; i < M; i++) {
  11547. if (i > P + iq1) {
  11548. S[i] = -INFINITY;
  11549. }
  11550. }
  11551. }
  11552. // softmax
  11553. {
  11554. float max = -INFINITY;
  11555. ggml_vec_max_f32(M, &max, S);
  11556. ggml_float sum = 0.0;
  11557. {
  11558. #ifdef GGML_SOFT_MAX_ACCELERATE
  11559. max = -max;
  11560. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11561. vvexpf(S, S, &Mup);
  11562. ggml_vec_sum_f32(Mup, &sum, S);
  11563. #else
  11564. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11565. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11566. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11567. float * SS = S + i;
  11568. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11569. if (SS[j] == -INFINITY) {
  11570. SS[j] = 0.0f;
  11571. } else {
  11572. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11573. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11574. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11575. sump[j] += (ggml_float)val;
  11576. SS[j] = val;
  11577. }
  11578. }
  11579. }
  11580. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11581. sum += sump[i];
  11582. }
  11583. #endif
  11584. }
  11585. assert(sum > 0.0);
  11586. sum = 1.0/sum;
  11587. ggml_vec_scale_f32(M, S, sum);
  11588. #ifndef NDEBUG
  11589. for (int i = 0; i < M; ++i) {
  11590. assert(!isnan(S[i]));
  11591. assert(!isinf(S[i]));
  11592. }
  11593. #endif
  11594. }
  11595. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11596. for (int64_t i = 0; i < M; i++) {
  11597. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11598. }
  11599. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11600. for (int64_t ic = 0; ic < nev1; ++ic) {
  11601. // dst indices
  11602. const int i1 = iq1;
  11603. const int i2 = iq2;
  11604. const int i3 = iq3;
  11605. ggml_vec_dot_f16(nek1,
  11606. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11607. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11608. S16);
  11609. }
  11610. } else {
  11611. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11612. // dst indices
  11613. const int i1 = iq1;
  11614. const int i2 = iq2;
  11615. const int i3 = iq3;
  11616. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11617. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11618. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11619. S16);
  11620. }
  11621. }
  11622. }
  11623. }
  11624. static void ggml_compute_forward_flash_attn(
  11625. const struct ggml_compute_params * params,
  11626. const struct ggml_tensor * q,
  11627. const struct ggml_tensor * k,
  11628. const struct ggml_tensor * v,
  11629. const bool masked,
  11630. struct ggml_tensor * dst) {
  11631. switch (q->type) {
  11632. case GGML_TYPE_F16:
  11633. {
  11634. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11635. } break;
  11636. case GGML_TYPE_F32:
  11637. {
  11638. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11639. } break;
  11640. default:
  11641. {
  11642. GGML_ASSERT(false);
  11643. } break;
  11644. }
  11645. }
  11646. // ggml_compute_forward_flash_ff
  11647. static void ggml_compute_forward_flash_ff_f16(
  11648. const struct ggml_compute_params * params,
  11649. const struct ggml_tensor * a, // F16
  11650. const struct ggml_tensor * b0, // F16 fc_w
  11651. const struct ggml_tensor * b1, // F32 fc_b
  11652. const struct ggml_tensor * c0, // F16 proj_w
  11653. const struct ggml_tensor * c1, // F32 proj_b
  11654. struct ggml_tensor * dst) {
  11655. int64_t t0 = ggml_perf_time_us();
  11656. UNUSED(t0);
  11657. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  11658. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  11659. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  11660. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  11661. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  11662. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  11663. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  11664. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  11665. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  11666. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  11667. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11668. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11669. const int ith = params->ith;
  11670. const int nth = params->nth;
  11671. const int64_t D = nea0;
  11672. //const int64_t N = nea1;
  11673. const int64_t M = neb01;
  11674. GGML_ASSERT(ne0 == nea0);
  11675. GGML_ASSERT(ne1 == nea1);
  11676. GGML_ASSERT(ne2 == nea2);
  11677. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11678. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11679. GGML_ASSERT(nbb10 == sizeof(float));
  11680. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11681. GGML_ASSERT(nbc10 == sizeof(float));
  11682. GGML_ASSERT(neb00 == D);
  11683. GGML_ASSERT(neb01 == M);
  11684. GGML_ASSERT(neb10 == M);
  11685. GGML_ASSERT(neb11 == 1);
  11686. GGML_ASSERT(nec00 == M);
  11687. GGML_ASSERT(nec01 == D);
  11688. GGML_ASSERT(nec10 == D);
  11689. GGML_ASSERT(nec11 == 1);
  11690. // dst cannot be transposed or permuted
  11691. GGML_ASSERT(nb0 == sizeof(float));
  11692. GGML_ASSERT(nb0 <= nb1);
  11693. GGML_ASSERT(nb1 <= nb2);
  11694. GGML_ASSERT(nb2 <= nb3);
  11695. if (params->type == GGML_TASK_INIT) {
  11696. return;
  11697. }
  11698. if (params->type == GGML_TASK_FINALIZE) {
  11699. return;
  11700. }
  11701. // parallelize by a rows using ggml_vec_dot_f32
  11702. // total rows in a
  11703. const int nr = nea1*nea2*nea3;
  11704. // rows per thread
  11705. const int dr = (nr + nth - 1)/nth;
  11706. // row range for this thread
  11707. const int ir0 = dr*ith;
  11708. const int ir1 = MIN(ir0 + dr, nr);
  11709. for (int ir = ir0; ir < ir1; ++ir) {
  11710. // a indices
  11711. const int ia3 = ir/(nea2*nea1);
  11712. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11713. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11714. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11715. for (int64_t ic = 0; ic < neb01; ++ic) {
  11716. // b0 indices
  11717. const int ib03 = ia3;
  11718. const int ib02 = ia2;
  11719. const int ib01 = ic;
  11720. // S indices
  11721. const int i1 = ib01;
  11722. ggml_vec_dot_f16(nea0,
  11723. S + i1,
  11724. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11725. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11726. }
  11727. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11728. //ggml_vec_gelu_f32(neb01, S, S);
  11729. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11730. for (int64_t i = 0; i < M; i++) {
  11731. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11732. }
  11733. ggml_vec_gelu_f16(neb01, S16, S16);
  11734. {
  11735. // dst indices
  11736. const int i1 = ia1;
  11737. const int i2 = ia2;
  11738. const int i3 = ia3;
  11739. for (int64_t ic = 0; ic < nec01; ++ic) {
  11740. ggml_vec_dot_f16(neb01,
  11741. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11742. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11743. S16);
  11744. }
  11745. ggml_vec_add_f32(nec01,
  11746. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11747. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11748. (float *) c1->data);
  11749. }
  11750. }
  11751. }
  11752. static void ggml_compute_forward_flash_ff(
  11753. const struct ggml_compute_params * params,
  11754. const struct ggml_tensor * a,
  11755. const struct ggml_tensor * b0,
  11756. const struct ggml_tensor * b1,
  11757. const struct ggml_tensor * c0,
  11758. const struct ggml_tensor * c1,
  11759. struct ggml_tensor * dst) {
  11760. switch (b0->type) {
  11761. case GGML_TYPE_F16:
  11762. {
  11763. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11764. } break;
  11765. case GGML_TYPE_F32:
  11766. {
  11767. GGML_ASSERT(false); // TODO
  11768. } break;
  11769. default:
  11770. {
  11771. GGML_ASSERT(false);
  11772. } break;
  11773. }
  11774. }
  11775. // ggml_compute_forward_flash_attn_back
  11776. static void ggml_compute_forward_flash_attn_back_f32(
  11777. const struct ggml_compute_params * params,
  11778. const struct ggml_tensor * q,
  11779. const struct ggml_tensor * k,
  11780. const struct ggml_tensor * v,
  11781. const struct ggml_tensor * d,
  11782. const bool masked,
  11783. struct ggml_tensor * dst) {
  11784. int64_t t0 = ggml_perf_time_us();
  11785. UNUSED(t0);
  11786. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11787. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11788. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11789. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11790. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11791. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11792. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11793. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11794. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11795. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11796. const int ith = params->ith;
  11797. const int nth = params->nth;
  11798. const int64_t D = neq0;
  11799. const int64_t N = neq1;
  11800. const int64_t P = nek1 - N;
  11801. const int64_t M = P + N;
  11802. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11803. const int mxDM = MAX(D, Mup);
  11804. // GGML_ASSERT(ne0 == D);
  11805. // GGML_ASSERT(ne1 == N);
  11806. GGML_ASSERT(P >= 0);
  11807. GGML_ASSERT(nbq0 == sizeof(float));
  11808. GGML_ASSERT(nbk0 == sizeof(float));
  11809. GGML_ASSERT(nbv0 == sizeof(float));
  11810. GGML_ASSERT(neq0 == D);
  11811. GGML_ASSERT(nek0 == D);
  11812. GGML_ASSERT(nev1 == D);
  11813. GGML_ASSERT(ned0 == D);
  11814. GGML_ASSERT(neq1 == N);
  11815. GGML_ASSERT(nek1 == N + P);
  11816. GGML_ASSERT(nev1 == D);
  11817. GGML_ASSERT(ned1 == N);
  11818. // dst cannot be transposed or permuted
  11819. GGML_ASSERT(nb0 == sizeof(float));
  11820. GGML_ASSERT(nb0 <= nb1);
  11821. GGML_ASSERT(nb1 <= nb2);
  11822. GGML_ASSERT(nb2 <= nb3);
  11823. if (params->type == GGML_TASK_INIT) {
  11824. if (ith == 0) {
  11825. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11826. }
  11827. return;
  11828. }
  11829. if (params->type == GGML_TASK_FINALIZE) {
  11830. return;
  11831. }
  11832. // parallelize by q rows using ggml_vec_dot_f32
  11833. // total rows in q
  11834. const int nr = neq2*neq3;
  11835. // rows per thread
  11836. const int dr = (nr + nth - 1)/nth;
  11837. // row range for this thread
  11838. const int ir0 = dr*ith;
  11839. const int ir1 = MIN(ir0 + dr, nr);
  11840. const float scale = 1.0f/sqrtf(D);
  11841. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11842. for (int ir = ir0; ir < ir1; ++ir) {
  11843. // q indices
  11844. const int iq3 = ir/(neq2);
  11845. const int iq2 = ir - iq3*neq2;
  11846. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11847. // not sure about CACHE_LINE_SIZE_F32..
  11848. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11849. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11850. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11851. for (int i = M; i < Mup; ++i) {
  11852. S[i] = -INFINITY;
  11853. }
  11854. for (int64_t ic = 0; ic < nek1; ++ic) {
  11855. // k indices
  11856. const int ik3 = iq3;
  11857. const int ik2 = iq2;
  11858. const int ik1 = ic;
  11859. // S indices
  11860. const int i1 = ik1;
  11861. ggml_vec_dot_f32(neq0,
  11862. S + i1,
  11863. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11864. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11865. }
  11866. // scale
  11867. ggml_vec_scale_f32(nek1, S, scale);
  11868. if (masked) {
  11869. for (int64_t i = P; i < M; i++) {
  11870. if (i > P + iq1) {
  11871. S[i] = -INFINITY;
  11872. }
  11873. }
  11874. }
  11875. // softmax
  11876. {
  11877. float max = -INFINITY;
  11878. ggml_vec_max_f32(M, &max, S);
  11879. ggml_float sum = 0.0;
  11880. {
  11881. #ifdef GGML_SOFT_MAX_ACCELERATE
  11882. max = -max;
  11883. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11884. vvexpf(SM, SM, &Mup);
  11885. ggml_vec_sum_f32(Mup, &sum, SM);
  11886. #else
  11887. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11888. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11889. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11890. float * SR = S + i;
  11891. float * SW = SM + i;
  11892. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11893. if (SR[j] == -INFINITY) {
  11894. SW[j] = 0.0f;
  11895. } else {
  11896. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11897. const float val = expf(SR[j] - max);
  11898. #else
  11899. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11900. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11901. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11902. #endif
  11903. sump[j] += (ggml_float)val;
  11904. SW[j] = val;
  11905. }
  11906. }
  11907. }
  11908. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11909. sum += sump[i];
  11910. }
  11911. #endif
  11912. }
  11913. assert(sum > 0.0);
  11914. sum = 1.0/sum;
  11915. ggml_vec_scale_f32(M, SM, sum);
  11916. }
  11917. // step-by-step explanation
  11918. {
  11919. // forward-process shape grads from backward process
  11920. // parallel_for iq2,iq3:
  11921. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11922. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11923. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11924. // for iq1:
  11925. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11926. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11927. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11928. // S0 = -Inf [D,1,1,1]
  11929. // ~S1[i] = dot(kcur[:D,i], qcur)
  11930. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11931. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11932. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11933. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11934. // ~S5[i] = dot(vcur[:,i], S4)
  11935. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11936. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11937. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11938. // dst backward-/ grad[dst] = d
  11939. //
  11940. // output gradients with their dependencies:
  11941. //
  11942. // grad[kcur] = grad[S1].T @ qcur
  11943. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11944. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11945. // grad[S4] = grad[S5] @ vcur
  11946. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11947. // grad[qcur] = grad[S1] @ kcur
  11948. // grad[vcur] = grad[S5].T @ S4
  11949. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11950. //
  11951. // in post-order:
  11952. //
  11953. // S1 = qcur @ kcur.T
  11954. // S2 = S1 * scale
  11955. // S3 = diag_mask_inf(S2, P)
  11956. // S4 = softmax(S3)
  11957. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11958. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11959. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11960. // grad[qcur] = grad[S1] @ kcur
  11961. // grad[kcur] = grad[S1].T @ qcur
  11962. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11963. //
  11964. // using less variables (SM=S4):
  11965. //
  11966. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11967. // SM = softmax(S)
  11968. // S = d[:D,iq1,iq2,iq3] @ vcur
  11969. // dot_SM_gradSM = dot(SM, S)
  11970. // S = SM * (S - dot(SM, S))
  11971. // S = diag_mask_zero(S, P) * scale
  11972. //
  11973. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11974. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11975. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11976. }
  11977. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11978. // S = d[:D,iq1,iq2,iq3] @ vcur
  11979. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11980. ggml_vec_set_f32(M, S, 0);
  11981. for (int64_t ic = 0; ic < D; ++ic) {
  11982. // dst indices
  11983. const int i1 = iq1;
  11984. const int i2 = iq2;
  11985. const int i3 = iq3;
  11986. ggml_vec_mad_f32(M,
  11987. S,
  11988. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11989. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11990. }
  11991. // S = SM * (S - dot(SM, S))
  11992. float dot_SM_gradSM = 0;
  11993. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11994. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11995. ggml_vec_mul_f32 (M, S, S, SM);
  11996. // S = diag_mask_zero(S, P) * scale
  11997. if (masked) {
  11998. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11999. // S[i] = 0;
  12000. // }
  12001. for (int64_t i = P; i < M; i++) {
  12002. if (i > P + iq1) {
  12003. S[i] = 0;
  12004. }
  12005. }
  12006. }
  12007. ggml_vec_scale_f32(M, S, scale);
  12008. void * grad_q = (char *) dst->data;
  12009. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  12010. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  12011. const size_t nbgq1 = nb0*neq0;
  12012. const size_t nbgq2 = nb0*neq0*neq1;
  12013. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12014. const size_t nbgk1 = nb0*nek0;
  12015. const size_t nbgk2 = nb0*nek0*nek1;
  12016. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12017. const size_t nbgv1 = nb0*nev0;
  12018. const size_t nbgv2 = nb0*nev0*nev1;
  12019. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12020. // S shape [M,1]
  12021. // SM shape [M,1]
  12022. // kcur shape [D,M]
  12023. // qcur shape [D,1]
  12024. // vcur shape [M,D]
  12025. //
  12026. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12027. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12028. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  12029. //
  12030. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  12031. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  12032. for (int64_t ic = 0; ic < M; ++ic) {
  12033. // dst indices
  12034. const int i1 = iq1;
  12035. const int i2 = iq2;
  12036. const int i3 = iq3;
  12037. ggml_vec_mad_f32(D,
  12038. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  12039. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  12040. S[ic]);
  12041. }
  12042. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12043. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12044. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12045. for (int64_t ic = 0; ic < M; ++ic) {
  12046. // dst indices
  12047. const int i1 = iq1;
  12048. const int i2 = iq2;
  12049. const int i3 = iq3;
  12050. // ggml_vec_set_f32(D,
  12051. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12052. // 0);
  12053. ggml_vec_mad_f32(D,
  12054. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  12055. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  12056. S[ic]);
  12057. }
  12058. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  12059. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  12060. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  12061. for (int64_t ic = 0; ic < D; ++ic) {
  12062. // dst indices
  12063. const int i1 = iq1;
  12064. const int i2 = iq2;
  12065. const int i3 = iq3;
  12066. // ggml_vec_set_f32(M,
  12067. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12068. // 0);
  12069. ggml_vec_mad_f32(M,
  12070. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  12071. SM,
  12072. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  12073. }
  12074. }
  12075. }
  12076. }
  12077. static void ggml_compute_forward_flash_attn_back(
  12078. const struct ggml_compute_params * params,
  12079. const struct ggml_tensor * q,
  12080. const struct ggml_tensor * k,
  12081. const struct ggml_tensor * v,
  12082. const struct ggml_tensor * d,
  12083. const bool masked,
  12084. struct ggml_tensor * dst) {
  12085. switch (q->type) {
  12086. case GGML_TYPE_F32:
  12087. {
  12088. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12089. } break;
  12090. default:
  12091. {
  12092. GGML_ASSERT(false);
  12093. } break;
  12094. }
  12095. }
  12096. // ggml_compute_forward_win_part
  12097. static void ggml_compute_forward_win_part_f32(
  12098. const struct ggml_compute_params * params,
  12099. const struct ggml_tensor * src0,
  12100. struct ggml_tensor * dst) {
  12101. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12102. return;
  12103. }
  12104. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12105. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12106. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12107. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12108. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12109. assert(ne00 == ne0);
  12110. assert(ne3 == nep0*nep1);
  12111. // TODO: optimize / multi-thread
  12112. for (int py = 0; py < nep1; ++py) {
  12113. for (int px = 0; px < nep0; ++px) {
  12114. const int64_t i3 = py*nep0 + px;
  12115. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12116. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12117. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12118. const int64_t i02 = py*w + i2;
  12119. const int64_t i01 = px*w + i1;
  12120. const int64_t i00 = i0;
  12121. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12122. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12123. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12124. ((float *) dst->data)[i] = 0.0f;
  12125. } else {
  12126. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12127. }
  12128. }
  12129. }
  12130. }
  12131. }
  12132. }
  12133. }
  12134. static void ggml_compute_forward_win_part(
  12135. const struct ggml_compute_params * params,
  12136. const struct ggml_tensor * src0,
  12137. struct ggml_tensor * dst) {
  12138. switch (src0->type) {
  12139. case GGML_TYPE_F32:
  12140. {
  12141. ggml_compute_forward_win_part_f32(params, src0, dst);
  12142. } break;
  12143. default:
  12144. {
  12145. GGML_ASSERT(false);
  12146. } break;
  12147. }
  12148. }
  12149. // ggml_compute_forward_win_unpart
  12150. static void ggml_compute_forward_win_unpart_f32(
  12151. const struct ggml_compute_params * params,
  12152. const struct ggml_tensor * src0,
  12153. struct ggml_tensor * dst) {
  12154. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12155. return;
  12156. }
  12157. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  12158. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  12159. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12160. // padding
  12161. const int px = (w - ne1%w)%w;
  12162. //const int py = (w - ne2%w)%w;
  12163. const int npx = (px + ne1)/w;
  12164. //const int npy = (py + ne2)/w;
  12165. assert(ne0 == ne00);
  12166. // TODO: optimize / multi-thread
  12167. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12168. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12169. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12170. const int ip2 = i2/w;
  12171. const int ip1 = i1/w;
  12172. const int64_t i02 = i2%w;
  12173. const int64_t i01 = i1%w;
  12174. const int64_t i00 = i0;
  12175. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12176. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12177. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12178. }
  12179. }
  12180. }
  12181. }
  12182. static void ggml_compute_forward_win_unpart(
  12183. const struct ggml_compute_params * params,
  12184. const struct ggml_tensor * src0,
  12185. struct ggml_tensor * dst) {
  12186. switch (src0->type) {
  12187. case GGML_TYPE_F32:
  12188. {
  12189. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12190. } break;
  12191. default:
  12192. {
  12193. GGML_ASSERT(false);
  12194. } break;
  12195. }
  12196. }
  12197. //gmml_compute_forward_unary
  12198. static void ggml_compute_forward_unary(
  12199. const struct ggml_compute_params * params,
  12200. const struct ggml_tensor * src0,
  12201. struct ggml_tensor * dst) {
  12202. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12203. switch (op) {
  12204. case GGML_UNARY_OP_ABS:
  12205. {
  12206. ggml_compute_forward_abs(params, src0, dst);
  12207. } break;
  12208. case GGML_UNARY_OP_SGN:
  12209. {
  12210. ggml_compute_forward_sgn(params, src0, dst);
  12211. } break;
  12212. case GGML_UNARY_OP_NEG:
  12213. {
  12214. ggml_compute_forward_neg(params, src0, dst);
  12215. } break;
  12216. case GGML_UNARY_OP_STEP:
  12217. {
  12218. ggml_compute_forward_step(params, src0, dst);
  12219. } break;
  12220. case GGML_UNARY_OP_TANH:
  12221. {
  12222. ggml_compute_forward_tanh(params, src0, dst);
  12223. } break;
  12224. case GGML_UNARY_OP_ELU:
  12225. {
  12226. ggml_compute_forward_elu(params, src0, dst);
  12227. } break;
  12228. case GGML_UNARY_OP_RELU:
  12229. {
  12230. ggml_compute_forward_relu(params, src0, dst);
  12231. } break;
  12232. case GGML_UNARY_OP_GELU:
  12233. {
  12234. ggml_compute_forward_gelu(params, src0, dst);
  12235. } break;
  12236. case GGML_UNARY_OP_GELU_QUICK:
  12237. {
  12238. ggml_compute_forward_gelu_quick(params, src0, dst);
  12239. } break;
  12240. case GGML_UNARY_OP_SILU:
  12241. {
  12242. ggml_compute_forward_silu(params, src0, dst);
  12243. } break;
  12244. default:
  12245. {
  12246. GGML_ASSERT(false);
  12247. } break;
  12248. }
  12249. }
  12250. // ggml_compute_forward_get_rel_pos
  12251. static void ggml_compute_forward_get_rel_pos_f16(
  12252. const struct ggml_compute_params * params,
  12253. const struct ggml_tensor * src0,
  12254. struct ggml_tensor * dst) {
  12255. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12256. return;
  12257. }
  12258. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12259. GGML_TENSOR_UNARY_OP_LOCALS;
  12260. const int64_t w = ne1;
  12261. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12262. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12263. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12264. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12265. const int64_t pos = (w - i1 - 1) + i2;
  12266. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12267. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12268. }
  12269. }
  12270. }
  12271. }
  12272. static void ggml_compute_forward_get_rel_pos(
  12273. const struct ggml_compute_params * params,
  12274. const struct ggml_tensor * src0,
  12275. struct ggml_tensor * dst) {
  12276. switch (src0->type) {
  12277. case GGML_TYPE_F16:
  12278. {
  12279. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  12280. } break;
  12281. default:
  12282. {
  12283. GGML_ASSERT(false);
  12284. } break;
  12285. }
  12286. }
  12287. // ggml_compute_forward_add_rel_pos
  12288. static void ggml_compute_forward_add_rel_pos_f32(
  12289. const struct ggml_compute_params * params,
  12290. const struct ggml_tensor * src0,
  12291. const struct ggml_tensor * src1,
  12292. const struct ggml_tensor * src2,
  12293. struct ggml_tensor * dst) {
  12294. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12295. if (!inplace && params->type == GGML_TASK_INIT) {
  12296. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12297. return;
  12298. }
  12299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12300. return;
  12301. }
  12302. int64_t t0 = ggml_perf_time_us();
  12303. UNUSED(t0);
  12304. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12305. float * src1_data = (float *) src1->data;
  12306. float * src2_data = (float *) src2->data;
  12307. float * dst_data = (float *) dst->data;
  12308. const int64_t ne10 = src1->ne[0];
  12309. const int64_t ne11 = src1->ne[1];
  12310. const int64_t ne12 = src1->ne[2];
  12311. const int64_t ne13 = src1->ne[3];
  12312. const int ith = params->ith;
  12313. const int nth = params->nth;
  12314. // total patches in dst
  12315. const int np = ne13;
  12316. // patches per thread
  12317. const int dp = (np + nth - 1)/nth;
  12318. // patch range for this thread
  12319. const int ip0 = dp*ith;
  12320. const int ip1 = MIN(ip0 + dp, np);
  12321. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12322. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12323. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12324. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12325. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12326. const int64_t jp0 = jp1 + i10;
  12327. const float src1_e = src1_data[jp0];
  12328. const float src2_e = src2_data[jp0];
  12329. const int64_t jdh = jp0 * ne10;
  12330. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12331. for (int64_t j = 0; j < ne10; ++j) {
  12332. dst_data[jdh + j ] += src2_e;
  12333. dst_data[jdw + j*ne10] += src1_e;
  12334. }
  12335. }
  12336. }
  12337. }
  12338. }
  12339. }
  12340. static void ggml_compute_forward_add_rel_pos(
  12341. const struct ggml_compute_params * params,
  12342. const struct ggml_tensor * src0,
  12343. const struct ggml_tensor * src1,
  12344. const struct ggml_tensor * src2,
  12345. struct ggml_tensor * dst) {
  12346. switch (src0->type) {
  12347. case GGML_TYPE_F32:
  12348. {
  12349. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  12350. } break;
  12351. default:
  12352. {
  12353. GGML_ASSERT(false);
  12354. } break;
  12355. }
  12356. }
  12357. // ggml_compute_forward_map_unary
  12358. static void ggml_compute_forward_map_unary_f32(
  12359. const struct ggml_compute_params * params,
  12360. const struct ggml_tensor * src0,
  12361. struct ggml_tensor * dst,
  12362. const ggml_unary_op_f32_t fun) {
  12363. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12364. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12365. return;
  12366. }
  12367. const int n = ggml_nrows(src0);
  12368. const int nc = src0->ne[0];
  12369. assert( dst->nb[0] == sizeof(float));
  12370. assert(src0->nb[0] == sizeof(float));
  12371. for (int i = 0; i < n; i++) {
  12372. fun(nc,
  12373. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12374. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12375. }
  12376. }
  12377. static void ggml_compute_forward_map_unary(
  12378. const struct ggml_compute_params * params,
  12379. const struct ggml_tensor * src0,
  12380. struct ggml_tensor * dst,
  12381. const ggml_unary_op_f32_t fun) {
  12382. switch (src0->type) {
  12383. case GGML_TYPE_F32:
  12384. {
  12385. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12386. } break;
  12387. default:
  12388. {
  12389. GGML_ASSERT(false);
  12390. } break;
  12391. }
  12392. }
  12393. // ggml_compute_forward_map_binary
  12394. static void ggml_compute_forward_map_binary_f32(
  12395. const struct ggml_compute_params * params,
  12396. const struct ggml_tensor * src0,
  12397. const struct ggml_tensor * src1,
  12398. struct ggml_tensor * dst,
  12399. const ggml_binary_op_f32_t fun) {
  12400. assert(params->ith == 0);
  12401. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12402. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12403. return;
  12404. }
  12405. const int n = ggml_nrows(src0);
  12406. const int nc = src0->ne[0];
  12407. assert( dst->nb[0] == sizeof(float));
  12408. assert(src0->nb[0] == sizeof(float));
  12409. assert(src1->nb[0] == sizeof(float));
  12410. for (int i = 0; i < n; i++) {
  12411. fun(nc,
  12412. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12413. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12414. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12415. }
  12416. }
  12417. static void ggml_compute_forward_map_binary(
  12418. const struct ggml_compute_params * params,
  12419. const struct ggml_tensor * src0,
  12420. const struct ggml_tensor * src1,
  12421. struct ggml_tensor * dst,
  12422. const ggml_binary_op_f32_t fun) {
  12423. switch (src0->type) {
  12424. case GGML_TYPE_F32:
  12425. {
  12426. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12427. } break;
  12428. default:
  12429. {
  12430. GGML_ASSERT(false);
  12431. } break;
  12432. }
  12433. }
  12434. // ggml_compute_forward_map_custom1
  12435. static void ggml_compute_forward_map_custom1_f32(
  12436. const struct ggml_compute_params * params,
  12437. const struct ggml_tensor * a,
  12438. struct ggml_tensor * dst,
  12439. const ggml_custom1_op_f32_t fun) {
  12440. assert(params->ith == 0);
  12441. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12442. return;
  12443. }
  12444. fun(dst, a);
  12445. }
  12446. // ggml_compute_forward_map_custom2
  12447. static void ggml_compute_forward_map_custom2_f32(
  12448. const struct ggml_compute_params * params,
  12449. const struct ggml_tensor * a,
  12450. const struct ggml_tensor * b,
  12451. struct ggml_tensor * dst,
  12452. const ggml_custom2_op_f32_t fun) {
  12453. assert(params->ith == 0);
  12454. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12455. return;
  12456. }
  12457. fun(dst, a, b);
  12458. }
  12459. // ggml_compute_forward_map_custom3
  12460. static void ggml_compute_forward_map_custom3_f32(
  12461. const struct ggml_compute_params * params,
  12462. const struct ggml_tensor * a,
  12463. const struct ggml_tensor * b,
  12464. const struct ggml_tensor * c,
  12465. struct ggml_tensor * dst,
  12466. const ggml_custom3_op_f32_t fun) {
  12467. assert(params->ith == 0);
  12468. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12469. return;
  12470. }
  12471. fun(dst, a, b, c);
  12472. }
  12473. // ggml_compute_forward_map_custom1
  12474. static void ggml_compute_forward_map_custom1(
  12475. const struct ggml_compute_params * params,
  12476. const struct ggml_tensor * a,
  12477. struct ggml_tensor * dst) {
  12478. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12479. return;
  12480. }
  12481. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12482. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12483. }
  12484. // ggml_compute_forward_map_custom2
  12485. static void ggml_compute_forward_map_custom2(
  12486. const struct ggml_compute_params * params,
  12487. const struct ggml_tensor * a,
  12488. const struct ggml_tensor * b,
  12489. struct ggml_tensor * dst) {
  12490. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12491. return;
  12492. }
  12493. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12494. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12495. }
  12496. // ggml_compute_forward_map_custom3
  12497. static void ggml_compute_forward_map_custom3(
  12498. const struct ggml_compute_params * params,
  12499. const struct ggml_tensor * a,
  12500. const struct ggml_tensor * b,
  12501. const struct ggml_tensor * c,
  12502. struct ggml_tensor * dst) {
  12503. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12504. return;
  12505. }
  12506. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12507. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12508. }
  12509. // ggml_compute_forward_cross_entropy_loss
  12510. static void ggml_compute_forward_cross_entropy_loss_f32(
  12511. const struct ggml_compute_params * params,
  12512. const struct ggml_tensor * src0,
  12513. const struct ggml_tensor * src1,
  12514. struct ggml_tensor * dst) {
  12515. GGML_ASSERT(ggml_is_contiguous(src0));
  12516. GGML_ASSERT(ggml_is_contiguous(src1));
  12517. GGML_ASSERT(ggml_is_scalar(dst));
  12518. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12519. const int ith = params->ith;
  12520. const int nth = params->nth;
  12521. float * sums = (float *) params->wdata;
  12522. // TODO: handle transposed/permuted matrices
  12523. const int nc = src0->ne[0];
  12524. const int nr = ggml_nrows(src0);
  12525. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12526. if (params->type == GGML_TASK_INIT) {
  12527. if (ith == 0) {
  12528. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12529. }
  12530. return;
  12531. }
  12532. if (params->type == GGML_TASK_FINALIZE) {
  12533. if (ith == 0) {
  12534. float * dp = (float *) dst->data;
  12535. ggml_vec_sum_f32(nth, dp, sums);
  12536. dp[0] *= -1.0f / (float) nr;
  12537. }
  12538. return;
  12539. }
  12540. const double eps = 1e-9;
  12541. // rows per thread
  12542. const int dr = (nr + nth - 1)/nth;
  12543. // row range for this thread
  12544. const int ir0 = dr*ith;
  12545. const int ir1 = MIN(ir0 + dr, nr);
  12546. for (int i1 = ir0; i1 < ir1; i1++) {
  12547. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12548. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12549. float * st = ((float *) params->wdata) + nth + ith*nc;
  12550. #ifndef NDEBUG
  12551. for (int i = 0; i < nc; ++i) {
  12552. //printf("p[%d] = %f\n", i, p[i]);
  12553. assert(!isnan(s0[i]));
  12554. assert(!isnan(s1[i]));
  12555. }
  12556. #endif
  12557. // soft_max
  12558. ggml_float sum = 0.0;
  12559. {
  12560. float max = -INFINITY;
  12561. ggml_vec_max_f32(nc, &max, s0);
  12562. uint16_t scvt; UNUSED(scvt);
  12563. for (int i = 0; i < nc; i++) {
  12564. if (s0[i] == -INFINITY) {
  12565. st[i] = 0.0f;
  12566. } else {
  12567. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12568. const float s = s0[i] - max;
  12569. const float val = expf(s);
  12570. #else
  12571. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12572. memcpy(&scvt, &s, sizeof(scvt));
  12573. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12574. #endif
  12575. sum += (ggml_float)val;
  12576. st[i] = val;
  12577. }
  12578. }
  12579. assert(sum > 0.0);
  12580. // sum = 1.0/sum;
  12581. }
  12582. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12583. sum = (1.0 - eps) / sum;
  12584. ggml_vec_scale_f32(nc, st, sum);
  12585. ggml_vec_add1_f32(nc, st, st, eps);
  12586. ggml_vec_log_f32(nc, st, st);
  12587. ggml_vec_mul_f32(nc, st, st, s1);
  12588. float st_sum = 0;
  12589. ggml_vec_sum_f32(nc, &st_sum, st);
  12590. sums[ith] += st_sum;
  12591. #ifndef NDEBUG
  12592. for (int i = 0; i < nc; ++i) {
  12593. assert(!isnan(st[i]));
  12594. assert(!isinf(st[i]));
  12595. }
  12596. #endif
  12597. }
  12598. }
  12599. static void ggml_compute_forward_cross_entropy_loss(
  12600. const struct ggml_compute_params * params,
  12601. const struct ggml_tensor * src0,
  12602. const struct ggml_tensor * src1,
  12603. struct ggml_tensor * dst) {
  12604. switch (src0->type) {
  12605. case GGML_TYPE_F32:
  12606. {
  12607. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12608. } break;
  12609. default:
  12610. {
  12611. GGML_ASSERT(false);
  12612. } break;
  12613. }
  12614. }
  12615. // ggml_compute_forward_cross_entropy_loss_back
  12616. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12617. const struct ggml_compute_params * params,
  12618. const struct ggml_tensor * src0,
  12619. const struct ggml_tensor * src1,
  12620. const struct ggml_tensor * opt0,
  12621. struct ggml_tensor * dst) {
  12622. GGML_ASSERT(ggml_is_contiguous(dst));
  12623. GGML_ASSERT(ggml_is_contiguous(src0));
  12624. GGML_ASSERT(ggml_is_contiguous(src1));
  12625. GGML_ASSERT(ggml_is_contiguous(opt0));
  12626. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12627. const int64_t ith = params->ith;
  12628. const int64_t nth = params->nth;
  12629. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12630. return;
  12631. }
  12632. const double eps = 1e-9;
  12633. // TODO: handle transposed/permuted matrices
  12634. const int64_t nc = src0->ne[0];
  12635. const int64_t nr = ggml_nrows(src0);
  12636. // rows per thread
  12637. const int64_t dr = (nr + nth - 1)/nth;
  12638. // row range for this thread
  12639. const int64_t ir0 = dr*ith;
  12640. const int64_t ir1 = MIN(ir0 + dr, nr);
  12641. float * d = (float *) opt0->data;
  12642. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12643. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12644. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12645. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12646. #ifndef NDEBUG
  12647. for (int i = 0; i < nc; ++i) {
  12648. //printf("p[%d] = %f\n", i, p[i]);
  12649. assert(!isnan(s0[i]));
  12650. assert(!isnan(s1[i]));
  12651. }
  12652. #endif
  12653. // soft_max
  12654. ggml_float sum = 0.0;
  12655. {
  12656. float max = -INFINITY;
  12657. ggml_vec_max_f32(nc, &max, s0);
  12658. uint16_t scvt; UNUSED(scvt);
  12659. for (int i = 0; i < nc; i++) {
  12660. if (s0[i] == -INFINITY) {
  12661. ds0[i] = 0.0f;
  12662. } else {
  12663. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12664. const float s = s0[i] - max;
  12665. const float val = expf(s);
  12666. #else
  12667. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12668. memcpy(&scvt, &s, sizeof(scvt));
  12669. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12670. #endif
  12671. sum += (ggml_float)val;
  12672. ds0[i] = val;
  12673. }
  12674. }
  12675. assert(sum > 0.0);
  12676. sum = (1.0 - eps)/sum;
  12677. }
  12678. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12679. ggml_vec_scale_f32(nc, ds0, sum);
  12680. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12681. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12682. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12683. #ifndef NDEBUG
  12684. for (int i = 0; i < nc; ++i) {
  12685. assert(!isnan(ds0[i]));
  12686. assert(!isinf(ds0[i]));
  12687. }
  12688. #endif
  12689. }
  12690. }
  12691. static void ggml_compute_forward_cross_entropy_loss_back(
  12692. const struct ggml_compute_params * params,
  12693. const struct ggml_tensor * src0,
  12694. const struct ggml_tensor * src1,
  12695. const struct ggml_tensor * opt0,
  12696. struct ggml_tensor * dst) {
  12697. switch (src0->type) {
  12698. case GGML_TYPE_F32:
  12699. {
  12700. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12701. } break;
  12702. default:
  12703. {
  12704. GGML_ASSERT(false);
  12705. } break;
  12706. }
  12707. }
  12708. /////////////////////////////////
  12709. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12710. GGML_ASSERT(params);
  12711. #ifdef GGML_USE_CUBLAS
  12712. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12713. if (skip_cpu) {
  12714. return;
  12715. }
  12716. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  12717. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  12718. #endif // GGML_USE_CUBLAS
  12719. switch (tensor->op) {
  12720. case GGML_OP_DUP:
  12721. {
  12722. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  12723. } break;
  12724. case GGML_OP_ADD:
  12725. {
  12726. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  12727. } break;
  12728. case GGML_OP_ADD1:
  12729. {
  12730. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  12731. } break;
  12732. case GGML_OP_ACC:
  12733. {
  12734. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  12735. } break;
  12736. case GGML_OP_SUB:
  12737. {
  12738. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  12739. } break;
  12740. case GGML_OP_MUL:
  12741. {
  12742. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  12743. } break;
  12744. case GGML_OP_DIV:
  12745. {
  12746. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  12747. } break;
  12748. case GGML_OP_SQR:
  12749. {
  12750. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  12751. } break;
  12752. case GGML_OP_SQRT:
  12753. {
  12754. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  12755. } break;
  12756. case GGML_OP_LOG:
  12757. {
  12758. ggml_compute_forward_log(params, tensor->src[0], tensor);
  12759. } break;
  12760. case GGML_OP_SUM:
  12761. {
  12762. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  12763. } break;
  12764. case GGML_OP_SUM_ROWS:
  12765. {
  12766. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  12767. } break;
  12768. case GGML_OP_MEAN:
  12769. {
  12770. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  12771. } break;
  12772. case GGML_OP_ARGMAX:
  12773. {
  12774. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  12775. } break;
  12776. case GGML_OP_REPEAT:
  12777. {
  12778. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  12779. } break;
  12780. case GGML_OP_REPEAT_BACK:
  12781. {
  12782. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  12783. } break;
  12784. case GGML_OP_CONCAT:
  12785. {
  12786. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  12787. } break;
  12788. case GGML_OP_SILU_BACK:
  12789. {
  12790. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  12791. } break;
  12792. case GGML_OP_NORM:
  12793. {
  12794. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  12795. } break;
  12796. case GGML_OP_RMS_NORM:
  12797. {
  12798. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  12799. } break;
  12800. case GGML_OP_RMS_NORM_BACK:
  12801. {
  12802. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  12803. } break;
  12804. case GGML_OP_GROUP_NORM:
  12805. {
  12806. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  12807. } break;
  12808. case GGML_OP_MUL_MAT:
  12809. {
  12810. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  12811. } break;
  12812. case GGML_OP_OUT_PROD:
  12813. {
  12814. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  12815. } break;
  12816. case GGML_OP_SCALE:
  12817. {
  12818. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  12819. } break;
  12820. case GGML_OP_SET:
  12821. {
  12822. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  12823. } break;
  12824. case GGML_OP_CPY:
  12825. {
  12826. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  12827. } break;
  12828. case GGML_OP_CONT:
  12829. {
  12830. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  12831. } break;
  12832. case GGML_OP_RESHAPE:
  12833. {
  12834. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  12835. } break;
  12836. case GGML_OP_VIEW:
  12837. {
  12838. ggml_compute_forward_view(params, tensor->src[0]);
  12839. } break;
  12840. case GGML_OP_PERMUTE:
  12841. {
  12842. ggml_compute_forward_permute(params, tensor->src[0]);
  12843. } break;
  12844. case GGML_OP_TRANSPOSE:
  12845. {
  12846. ggml_compute_forward_transpose(params, tensor->src[0]);
  12847. } break;
  12848. case GGML_OP_GET_ROWS:
  12849. {
  12850. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  12851. } break;
  12852. case GGML_OP_GET_ROWS_BACK:
  12853. {
  12854. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12855. } break;
  12856. case GGML_OP_DIAG:
  12857. {
  12858. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12859. } break;
  12860. case GGML_OP_DIAG_MASK_INF:
  12861. {
  12862. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  12863. } break;
  12864. case GGML_OP_DIAG_MASK_ZERO:
  12865. {
  12866. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  12867. } break;
  12868. case GGML_OP_SOFT_MAX:
  12869. {
  12870. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12871. } break;
  12872. case GGML_OP_SOFT_MAX_BACK:
  12873. {
  12874. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12875. } break;
  12876. case GGML_OP_ROPE:
  12877. {
  12878. ggml_compute_forward_rope(params, tensor->src[0], tensor);
  12879. } break;
  12880. case GGML_OP_ROPE_BACK:
  12881. {
  12882. ggml_compute_forward_rope_back(params, tensor->src[0], tensor);
  12883. } break;
  12884. case GGML_OP_ALIBI:
  12885. {
  12886. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  12887. } break;
  12888. case GGML_OP_CLAMP:
  12889. {
  12890. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  12891. } break;
  12892. case GGML_OP_CONV_1D:
  12893. {
  12894. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  12895. } break;
  12896. case GGML_OP_CONV_2D:
  12897. {
  12898. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  12899. } break;
  12900. case GGML_OP_CONV_TRANSPOSE_2D:
  12901. {
  12902. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  12903. } break;
  12904. case GGML_OP_POOL_1D:
  12905. {
  12906. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  12907. } break;
  12908. case GGML_OP_POOL_2D:
  12909. {
  12910. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  12911. } break;
  12912. case GGML_OP_UPSCALE:
  12913. {
  12914. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  12915. } break;
  12916. case GGML_OP_FLASH_ATTN:
  12917. {
  12918. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12919. GGML_ASSERT(t == 0 || t == 1);
  12920. const bool masked = t != 0;
  12921. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12922. } break;
  12923. case GGML_OP_FLASH_FF:
  12924. {
  12925. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12926. } break;
  12927. case GGML_OP_FLASH_ATTN_BACK:
  12928. {
  12929. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12930. GGML_ASSERT(t == 0 || t == 1);
  12931. bool masked = t != 0;
  12932. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12933. } break;
  12934. case GGML_OP_WIN_PART:
  12935. {
  12936. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  12937. } break;
  12938. case GGML_OP_WIN_UNPART:
  12939. {
  12940. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  12941. } break;
  12942. case GGML_OP_UNARY:
  12943. {
  12944. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  12945. } break;
  12946. case GGML_OP_GET_REL_POS:
  12947. {
  12948. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  12949. } break;
  12950. case GGML_OP_ADD_REL_POS:
  12951. {
  12952. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12953. } break;
  12954. case GGML_OP_MAP_UNARY:
  12955. {
  12956. ggml_unary_op_f32_t fun;
  12957. memcpy(&fun, tensor->op_params, sizeof(fun));
  12958. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12959. }
  12960. break;
  12961. case GGML_OP_MAP_BINARY:
  12962. {
  12963. ggml_binary_op_f32_t fun;
  12964. memcpy(&fun, tensor->op_params, sizeof(fun));
  12965. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12966. }
  12967. break;
  12968. case GGML_OP_MAP_CUSTOM1_F32:
  12969. {
  12970. ggml_custom1_op_f32_t fun;
  12971. memcpy(&fun, tensor->op_params, sizeof(fun));
  12972. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  12973. }
  12974. break;
  12975. case GGML_OP_MAP_CUSTOM2_F32:
  12976. {
  12977. ggml_custom2_op_f32_t fun;
  12978. memcpy(&fun, tensor->op_params, sizeof(fun));
  12979. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  12980. }
  12981. break;
  12982. case GGML_OP_MAP_CUSTOM3_F32:
  12983. {
  12984. ggml_custom3_op_f32_t fun;
  12985. memcpy(&fun, tensor->op_params, sizeof(fun));
  12986. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  12987. }
  12988. break;
  12989. case GGML_OP_MAP_CUSTOM1:
  12990. {
  12991. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  12992. }
  12993. break;
  12994. case GGML_OP_MAP_CUSTOM2:
  12995. {
  12996. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  12997. }
  12998. break;
  12999. case GGML_OP_MAP_CUSTOM3:
  13000. {
  13001. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13002. }
  13003. break;
  13004. case GGML_OP_CROSS_ENTROPY_LOSS:
  13005. {
  13006. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13007. }
  13008. break;
  13009. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13010. {
  13011. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13012. }
  13013. break;
  13014. case GGML_OP_NONE:
  13015. {
  13016. // nop
  13017. } break;
  13018. case GGML_OP_COUNT:
  13019. {
  13020. GGML_ASSERT(false);
  13021. } break;
  13022. }
  13023. }
  13024. ////////////////////////////////////////////////////////////////////////////////
  13025. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  13026. struct ggml_tensor * src0 = tensor->src[0];
  13027. struct ggml_tensor * src1 = tensor->src[1];
  13028. switch (tensor->op) {
  13029. case GGML_OP_DUP:
  13030. {
  13031. if (src0->grad) {
  13032. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13033. }
  13034. } break;
  13035. case GGML_OP_ADD:
  13036. {
  13037. if (src0->grad) {
  13038. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13039. }
  13040. if (src1->grad) {
  13041. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  13042. }
  13043. } break;
  13044. case GGML_OP_ADD1:
  13045. {
  13046. if (src0->grad) {
  13047. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13048. }
  13049. if (src1->grad) {
  13050. src1->grad = ggml_add_impl(ctx,
  13051. src1->grad,
  13052. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13053. inplace);
  13054. }
  13055. } break;
  13056. case GGML_OP_ACC:
  13057. {
  13058. if (src0->grad) {
  13059. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13060. }
  13061. if (src1->grad) {
  13062. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13063. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13064. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13065. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13066. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13067. tensor->grad,
  13068. src1->grad->ne[0],
  13069. src1->grad->ne[1],
  13070. src1->grad->ne[2],
  13071. src1->grad->ne[3],
  13072. nb1, nb2, nb3, offset);
  13073. src1->grad =
  13074. ggml_add_impl(ctx,
  13075. src1->grad,
  13076. ggml_reshape(ctx,
  13077. ggml_cont(ctx, tensor_grad_view),
  13078. src1->grad),
  13079. inplace);
  13080. }
  13081. } break;
  13082. case GGML_OP_SUB:
  13083. {
  13084. if (src0->grad) {
  13085. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13086. }
  13087. if (src1->grad) {
  13088. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  13089. }
  13090. } break;
  13091. case GGML_OP_MUL:
  13092. {
  13093. if (src0->grad) {
  13094. src0->grad =
  13095. ggml_add_impl(ctx,
  13096. src0->grad,
  13097. ggml_mul(ctx, src1, tensor->grad),
  13098. inplace);
  13099. }
  13100. if (src1->grad) {
  13101. src1->grad =
  13102. ggml_add_impl(ctx,
  13103. src1->grad,
  13104. ggml_mul(ctx, src0, tensor->grad),
  13105. inplace);
  13106. }
  13107. } break;
  13108. case GGML_OP_DIV:
  13109. {
  13110. if (src0->grad) {
  13111. src0->grad =
  13112. ggml_add_impl(ctx,
  13113. src0->grad,
  13114. ggml_div(ctx, tensor->grad, src1),
  13115. inplace);
  13116. }
  13117. if (src1->grad) {
  13118. src1->grad =
  13119. ggml_sub_impl(ctx,
  13120. src1->grad,
  13121. ggml_mul(ctx,
  13122. tensor->grad,
  13123. ggml_div(ctx, tensor, src1)),
  13124. inplace);
  13125. }
  13126. } break;
  13127. case GGML_OP_SQR:
  13128. {
  13129. if (src0->grad) {
  13130. src0->grad =
  13131. ggml_add_impl(ctx,
  13132. src0->grad,
  13133. ggml_scale(ctx,
  13134. ggml_mul(ctx, src0, tensor->grad),
  13135. ggml_new_f32(ctx, 2.0f)),
  13136. inplace);
  13137. }
  13138. } break;
  13139. case GGML_OP_SQRT:
  13140. {
  13141. if (src0->grad) {
  13142. src0->grad =
  13143. ggml_add_impl(ctx,
  13144. src0->grad,
  13145. ggml_scale(ctx,
  13146. ggml_div(ctx,
  13147. tensor->grad,
  13148. tensor),
  13149. ggml_new_f32(ctx, 0.5f)),
  13150. inplace);
  13151. }
  13152. } break;
  13153. case GGML_OP_LOG:
  13154. {
  13155. if (src0->grad) {
  13156. src0->grad =
  13157. ggml_add_impl(ctx,
  13158. src0->grad,
  13159. ggml_div(ctx,
  13160. tensor->grad,
  13161. src0),
  13162. inplace);
  13163. }
  13164. } break;
  13165. case GGML_OP_SUM:
  13166. {
  13167. if (src0->grad) {
  13168. src0->grad =
  13169. ggml_add1_impl(ctx,
  13170. src0->grad,
  13171. tensor->grad,
  13172. inplace);
  13173. }
  13174. } break;
  13175. case GGML_OP_SUM_ROWS:
  13176. {
  13177. if (src0->grad) {
  13178. src0->grad =
  13179. ggml_add_impl(ctx,
  13180. src0->grad,
  13181. ggml_repeat(ctx,
  13182. tensor->grad,
  13183. src0->grad),
  13184. inplace);
  13185. }
  13186. } break;
  13187. case GGML_OP_MEAN:
  13188. case GGML_OP_ARGMAX:
  13189. {
  13190. GGML_ASSERT(false); // TODO: implement
  13191. } break;
  13192. case GGML_OP_REPEAT:
  13193. {
  13194. // necessary for llama
  13195. if (src0->grad) {
  13196. src0->grad = ggml_add_impl(ctx,
  13197. src0->grad,
  13198. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13199. inplace);
  13200. }
  13201. } break;
  13202. case GGML_OP_REPEAT_BACK:
  13203. {
  13204. if (src0->grad) {
  13205. // TODO: test this
  13206. src0->grad = ggml_add_impl(ctx,
  13207. src0->grad,
  13208. ggml_repeat(ctx, tensor->grad, src0->grad),
  13209. inplace);
  13210. }
  13211. } break;
  13212. case GGML_OP_CONCAT:
  13213. {
  13214. GGML_ASSERT(false); // TODO: implement
  13215. } break;
  13216. case GGML_OP_SILU_BACK:
  13217. {
  13218. GGML_ASSERT(false); // TODO: not implemented
  13219. } break;
  13220. case GGML_OP_NORM:
  13221. {
  13222. GGML_ASSERT(false); // TODO: not implemented
  13223. } break;
  13224. case GGML_OP_RMS_NORM:
  13225. {
  13226. // necessary for llama
  13227. if (src0->grad) {
  13228. float eps;
  13229. memcpy(&eps, tensor->op_params, sizeof(float));
  13230. src0->grad = ggml_add_impl(ctx,
  13231. src0->grad,
  13232. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13233. inplace);
  13234. }
  13235. } break;
  13236. case GGML_OP_RMS_NORM_BACK:
  13237. {
  13238. GGML_ASSERT(false); // TODO: not implemented
  13239. } break;
  13240. case GGML_OP_GROUP_NORM:
  13241. {
  13242. GGML_ASSERT(false); // TODO: not implemented
  13243. } break;
  13244. case GGML_OP_MUL_MAT:
  13245. {
  13246. // https://cs231n.github.io/optimization-2/#staged
  13247. // # forward pass
  13248. // s0 = np.random.randn(5, 10)
  13249. // s1 = np.random.randn(10, 3)
  13250. // t = s0.dot(s1)
  13251. // # now suppose we had the gradient on t from above in the circuit
  13252. // dt = np.random.randn(*t.shape) # same shape as t
  13253. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13254. // ds1 = t.T.dot(dt)
  13255. // tensor.shape [m,p]
  13256. // src0.shape [n,m]
  13257. // src1.shape [n,p]
  13258. // necessary for llama
  13259. if (src0->grad) {
  13260. src0->grad =
  13261. ggml_add_impl(ctx,
  13262. src0->grad,
  13263. ggml_out_prod(ctx, // [n,m]
  13264. src1, // [n,p]
  13265. tensor->grad), // [m,p]
  13266. inplace);
  13267. }
  13268. if (src1->grad) {
  13269. src1->grad =
  13270. ggml_add_impl(ctx,
  13271. src1->grad,
  13272. // ggml_mul_mat(ctx, // [n,p]
  13273. // ggml_cont(ctx, // [m,n]
  13274. // ggml_transpose(ctx, src0)), // [m,n]
  13275. // tensor->grad), // [m,p]
  13276. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13277. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13278. // // and then use ggml_out_prod
  13279. ggml_out_prod(ctx, // [n,p]
  13280. src0, // [n,m]
  13281. ggml_transpose(ctx, // [p,m]
  13282. tensor->grad)), // [m,p]
  13283. inplace);
  13284. }
  13285. } break;
  13286. case GGML_OP_OUT_PROD:
  13287. {
  13288. GGML_ASSERT(false); // TODO: not implemented
  13289. } break;
  13290. case GGML_OP_SCALE:
  13291. {
  13292. // necessary for llama
  13293. if (src0->grad) {
  13294. src0->grad =
  13295. ggml_add_impl(ctx,
  13296. src0->grad,
  13297. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13298. inplace);
  13299. }
  13300. if (src1->grad) {
  13301. src1->grad =
  13302. ggml_add_impl(ctx,
  13303. src1->grad,
  13304. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13305. inplace);
  13306. }
  13307. } break;
  13308. case GGML_OP_SET:
  13309. {
  13310. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13311. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13312. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13313. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13314. struct ggml_tensor * tensor_grad_view = NULL;
  13315. if (src0->grad || src1->grad) {
  13316. GGML_ASSERT(src0->type == tensor->type);
  13317. GGML_ASSERT(tensor->grad->type == tensor->type);
  13318. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13319. tensor_grad_view = ggml_view_4d(ctx,
  13320. tensor->grad,
  13321. src1->grad->ne[0],
  13322. src1->grad->ne[1],
  13323. src1->grad->ne[2],
  13324. src1->grad->ne[3],
  13325. nb1, nb2, nb3, offset);
  13326. }
  13327. if (src0->grad) {
  13328. src0->grad = ggml_add_impl(ctx,
  13329. src0->grad,
  13330. ggml_acc_impl(ctx,
  13331. tensor->grad,
  13332. ggml_neg(ctx, tensor_grad_view),
  13333. nb1, nb2, nb3, offset, false),
  13334. inplace);
  13335. }
  13336. if (src1->grad) {
  13337. src1->grad =
  13338. ggml_add_impl(ctx,
  13339. src1->grad,
  13340. ggml_reshape(ctx,
  13341. ggml_cont(ctx, tensor_grad_view),
  13342. src1->grad),
  13343. inplace);
  13344. }
  13345. } break;
  13346. case GGML_OP_CPY:
  13347. {
  13348. // necessary for llama
  13349. // cpy overwrites value of src1 by src0 and returns view(src1)
  13350. // the overwriting is mathematically equivalent to:
  13351. // tensor = src0 * 1 + src1 * 0
  13352. if (src0->grad) {
  13353. // dsrc0 = dtensor * 1
  13354. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13355. }
  13356. if (src1->grad) {
  13357. // dsrc1 = dtensor * 0 -> noop
  13358. }
  13359. } break;
  13360. case GGML_OP_CONT:
  13361. {
  13362. // same as cpy
  13363. if (src0->grad) {
  13364. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13365. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13366. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13367. }
  13368. } break;
  13369. case GGML_OP_RESHAPE:
  13370. {
  13371. // necessary for llama
  13372. if (src0->grad) {
  13373. src0->grad =
  13374. ggml_add_impl(ctx, src0->grad,
  13375. ggml_reshape(ctx, tensor->grad, src0->grad),
  13376. inplace);
  13377. }
  13378. } break;
  13379. case GGML_OP_VIEW:
  13380. {
  13381. // necessary for llama
  13382. if (src0->grad) {
  13383. size_t offset;
  13384. memcpy(&offset, tensor->op_params, sizeof(offset));
  13385. size_t nb1 = tensor->nb[1];
  13386. size_t nb2 = tensor->nb[2];
  13387. size_t nb3 = tensor->nb[3];
  13388. if (src0->type != src0->grad->type) {
  13389. // gradient is typically F32, but src0 could be other type
  13390. size_t ng = ggml_element_size(src0->grad);
  13391. size_t n0 = ggml_element_size(src0);
  13392. GGML_ASSERT(offset % n0 == 0);
  13393. GGML_ASSERT(nb1 % n0 == 0);
  13394. GGML_ASSERT(nb2 % n0 == 0);
  13395. GGML_ASSERT(nb3 % n0 == 0);
  13396. offset = (offset / n0) * ng;
  13397. nb1 = (nb1 / n0) * ng;
  13398. nb2 = (nb2 / n0) * ng;
  13399. nb3 = (nb3 / n0) * ng;
  13400. }
  13401. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13402. }
  13403. } break;
  13404. case GGML_OP_PERMUTE:
  13405. {
  13406. // necessary for llama
  13407. if (src0->grad) {
  13408. int32_t * axes = (int32_t *) tensor->op_params;
  13409. int axis0 = axes[0] & 0x3;
  13410. int axis1 = axes[1] & 0x3;
  13411. int axis2 = axes[2] & 0x3;
  13412. int axis3 = axes[3] & 0x3;
  13413. int axes_backward[4] = {0,0,0,0};
  13414. axes_backward[axis0] = 0;
  13415. axes_backward[axis1] = 1;
  13416. axes_backward[axis2] = 2;
  13417. axes_backward[axis3] = 3;
  13418. src0->grad =
  13419. ggml_add_impl(ctx, src0->grad,
  13420. ggml_permute(ctx,
  13421. tensor->grad,
  13422. axes_backward[0],
  13423. axes_backward[1],
  13424. axes_backward[2],
  13425. axes_backward[3]),
  13426. inplace);
  13427. }
  13428. } break;
  13429. case GGML_OP_TRANSPOSE:
  13430. {
  13431. // necessary for llama
  13432. if (src0->grad) {
  13433. src0->grad =
  13434. ggml_add_impl(ctx, src0->grad,
  13435. ggml_transpose(ctx, tensor->grad),
  13436. inplace);
  13437. }
  13438. } break;
  13439. case GGML_OP_GET_ROWS:
  13440. {
  13441. // necessary for llama (only for tokenizer)
  13442. if (src0->grad) {
  13443. src0->grad =
  13444. ggml_add_impl(ctx, src0->grad,
  13445. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13446. inplace);
  13447. }
  13448. if (src1->grad) {
  13449. // noop
  13450. }
  13451. } break;
  13452. case GGML_OP_GET_ROWS_BACK:
  13453. {
  13454. GGML_ASSERT(false); // TODO: not implemented
  13455. } break;
  13456. case GGML_OP_DIAG:
  13457. {
  13458. GGML_ASSERT(false); // TODO: not implemented
  13459. } break;
  13460. case GGML_OP_DIAG_MASK_INF:
  13461. {
  13462. // necessary for llama
  13463. if (src0->grad) {
  13464. const int n_past = ((int32_t *) tensor->op_params)[0];
  13465. src0->grad =
  13466. ggml_add_impl(ctx, src0->grad,
  13467. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13468. inplace);
  13469. }
  13470. } break;
  13471. case GGML_OP_DIAG_MASK_ZERO:
  13472. {
  13473. // necessary for llama
  13474. if (src0->grad) {
  13475. const int n_past = ((int32_t *) tensor->op_params)[0];
  13476. src0->grad =
  13477. ggml_add_impl(ctx, src0->grad,
  13478. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13479. inplace);
  13480. }
  13481. } break;
  13482. case GGML_OP_SOFT_MAX:
  13483. {
  13484. // necessary for llama
  13485. if (src0->grad) {
  13486. src0->grad =
  13487. ggml_add_impl(ctx, src0->grad,
  13488. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13489. inplace);
  13490. }
  13491. } break;
  13492. case GGML_OP_SOFT_MAX_BACK:
  13493. {
  13494. GGML_ASSERT(false); // TODO: not implemented
  13495. } break;
  13496. case GGML_OP_ROPE:
  13497. {
  13498. // necessary for llama
  13499. if (src0->grad) {
  13500. const int n_past = ((int32_t *) tensor->op_params)[0];
  13501. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13502. const int mode = ((int32_t *) tensor->op_params)[2];
  13503. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13504. float freq_base;
  13505. float freq_scale;
  13506. float xpos_base;
  13507. bool xpos_down;
  13508. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13509. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13510. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13511. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13512. src0->grad = ggml_add_impl(ctx,
  13513. src0->grad,
  13514. ggml_rope_back(ctx,
  13515. tensor->grad,
  13516. n_past,
  13517. n_dims,
  13518. mode,
  13519. n_ctx,
  13520. freq_base,
  13521. freq_scale,
  13522. xpos_base,
  13523. xpos_down),
  13524. inplace);
  13525. }
  13526. } break;
  13527. case GGML_OP_ROPE_BACK:
  13528. {
  13529. if (src0->grad) {
  13530. const int n_past = ((int32_t *) tensor->op_params)[0];
  13531. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13532. const int mode = ((int32_t *) tensor->op_params)[2];
  13533. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13534. float freq_base;
  13535. float freq_scale;
  13536. float xpos_base;
  13537. bool xpos_down;
  13538. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  13539. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  13540. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  13541. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  13542. src0->grad = ggml_add_impl(ctx,
  13543. src0->grad,
  13544. ggml_rope_impl(ctx,
  13545. tensor->grad,
  13546. n_past,
  13547. n_dims,
  13548. mode,
  13549. n_ctx,
  13550. freq_base,
  13551. freq_scale,
  13552. xpos_base,
  13553. xpos_down,
  13554. false),
  13555. inplace);
  13556. }
  13557. } break;
  13558. case GGML_OP_ALIBI:
  13559. {
  13560. GGML_ASSERT(false); // TODO: not implemented
  13561. } break;
  13562. case GGML_OP_CLAMP:
  13563. {
  13564. GGML_ASSERT(false); // TODO: not implemented
  13565. } break;
  13566. case GGML_OP_CONV_1D:
  13567. {
  13568. GGML_ASSERT(false); // TODO: not implemented
  13569. } break;
  13570. case GGML_OP_CONV_2D:
  13571. {
  13572. GGML_ASSERT(false); // TODO: not implemented
  13573. } break;
  13574. case GGML_OP_CONV_TRANSPOSE_2D:
  13575. {
  13576. GGML_ASSERT(false); // TODO: not implemented
  13577. } break;
  13578. case GGML_OP_POOL_1D:
  13579. {
  13580. GGML_ASSERT(false); // TODO: not implemented
  13581. } break;
  13582. case GGML_OP_POOL_2D:
  13583. {
  13584. GGML_ASSERT(false); // TODO: not implemented
  13585. } break;
  13586. case GGML_OP_UPSCALE:
  13587. {
  13588. GGML_ASSERT(false); // TODO: not implemented
  13589. } break;
  13590. case GGML_OP_FLASH_ATTN:
  13591. {
  13592. struct ggml_tensor * flash_grad = NULL;
  13593. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13594. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13595. GGML_ASSERT(t == 0 || t == 1);
  13596. bool masked = t != 0;
  13597. flash_grad =
  13598. ggml_flash_attn_back(ctx,
  13599. src0,
  13600. src1,
  13601. tensor->src[2],
  13602. tensor->grad,
  13603. masked);
  13604. }
  13605. if (src0->grad) {
  13606. struct ggml_tensor * grad_q = NULL;
  13607. const size_t nb0 = flash_grad->nb[0];
  13608. const size_t offset = 0;
  13609. switch(src0->n_dims) {
  13610. case 2:
  13611. {
  13612. grad_q = ggml_view_2d(ctx,
  13613. flash_grad,
  13614. src0->ne[0],
  13615. src0->ne[1],
  13616. nb0*src0->ne[0],
  13617. offset);
  13618. } break;
  13619. case 3:
  13620. {
  13621. grad_q = ggml_view_3d(ctx,
  13622. flash_grad,
  13623. src0->ne[0],
  13624. src0->ne[1],
  13625. src0->ne[2],
  13626. nb0*src0->ne[0],
  13627. nb0*src0->ne[0]*src0->ne[1],
  13628. offset);
  13629. } break;
  13630. case 4:
  13631. {
  13632. grad_q = ggml_view_4d(ctx,
  13633. flash_grad,
  13634. src0->ne[0],
  13635. src0->ne[1],
  13636. src0->ne[2],
  13637. src0->ne[3],
  13638. nb0*src0->ne[0],
  13639. nb0*src0->ne[0]*src0->ne[1],
  13640. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13641. offset);
  13642. } break;
  13643. }
  13644. src0->grad = ggml_add_impl(ctx,
  13645. src0->grad,
  13646. grad_q,
  13647. inplace);
  13648. }
  13649. if (src1->grad) {
  13650. struct ggml_tensor * grad_k = NULL;
  13651. const size_t nb0 = flash_grad->nb[0];
  13652. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13653. switch(src1->n_dims) {
  13654. case 2:
  13655. {
  13656. grad_k = ggml_view_2d(ctx,
  13657. flash_grad,
  13658. src1->ne[0],
  13659. src1->ne[1],
  13660. nb0*src1->ne[0],
  13661. offset);
  13662. } break;
  13663. case 3:
  13664. {
  13665. grad_k = ggml_view_3d(ctx,
  13666. flash_grad,
  13667. src1->ne[0],
  13668. src1->ne[1],
  13669. src1->ne[2],
  13670. nb0*src1->ne[0],
  13671. nb0*src1->ne[0]*src1->ne[1],
  13672. offset);
  13673. } break;
  13674. case 4:
  13675. {
  13676. grad_k = ggml_view_4d(ctx,
  13677. flash_grad,
  13678. src1->ne[0],
  13679. src1->ne[1],
  13680. src1->ne[2],
  13681. src1->ne[3],
  13682. nb0*src1->ne[0],
  13683. nb0*src1->ne[0]*src1->ne[1],
  13684. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13685. offset);
  13686. } break;
  13687. }
  13688. src1->grad = ggml_add_impl(ctx,
  13689. src1->grad,
  13690. grad_k,
  13691. inplace);
  13692. }
  13693. struct ggml_tensor * opt0 = tensor->src[2];
  13694. if (opt0->grad) {
  13695. struct ggml_tensor * grad_v = NULL;
  13696. const size_t nb0 = flash_grad->nb[0];
  13697. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13698. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13699. switch(opt0->n_dims) {
  13700. case 2:
  13701. {
  13702. grad_v = ggml_view_2d(ctx,
  13703. flash_grad,
  13704. opt0->ne[0],
  13705. opt0->ne[1],
  13706. nb0*opt0->ne[0],
  13707. offset);
  13708. } break;
  13709. case 3:
  13710. {
  13711. grad_v = ggml_view_3d(ctx,
  13712. flash_grad,
  13713. opt0->ne[0],
  13714. opt0->ne[1],
  13715. opt0->ne[2],
  13716. nb0*opt0->ne[0],
  13717. nb0*opt0->ne[0]*opt0->ne[1],
  13718. offset);
  13719. } break;
  13720. case 4:
  13721. {
  13722. grad_v = ggml_view_4d(ctx,
  13723. flash_grad,
  13724. opt0->ne[0],
  13725. opt0->ne[1],
  13726. opt0->ne[2],
  13727. opt0->ne[3],
  13728. nb0*opt0->ne[0],
  13729. nb0*opt0->ne[0]*opt0->ne[1],
  13730. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13731. offset);
  13732. } break;
  13733. }
  13734. opt0->grad = ggml_add_impl(ctx,
  13735. opt0->grad,
  13736. grad_v,
  13737. inplace);
  13738. }
  13739. } break;
  13740. case GGML_OP_FLASH_FF:
  13741. {
  13742. GGML_ASSERT(false); // not supported
  13743. } break;
  13744. case GGML_OP_FLASH_ATTN_BACK:
  13745. {
  13746. GGML_ASSERT(false); // not supported
  13747. } break;
  13748. case GGML_OP_WIN_PART:
  13749. case GGML_OP_WIN_UNPART:
  13750. case GGML_OP_UNARY:
  13751. {
  13752. switch (ggml_get_unary_op(tensor)) {
  13753. case GGML_UNARY_OP_ABS:
  13754. {
  13755. if (src0->grad) {
  13756. src0->grad =
  13757. ggml_add_impl(ctx,
  13758. src0->grad,
  13759. ggml_mul(ctx,
  13760. ggml_sgn(ctx, src0),
  13761. tensor->grad),
  13762. inplace);
  13763. }
  13764. } break;
  13765. case GGML_UNARY_OP_SGN:
  13766. {
  13767. if (src0->grad) {
  13768. // noop
  13769. }
  13770. } break;
  13771. case GGML_UNARY_OP_NEG:
  13772. {
  13773. if (src0->grad) {
  13774. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13775. }
  13776. } break;
  13777. case GGML_UNARY_OP_STEP:
  13778. {
  13779. if (src0->grad) {
  13780. // noop
  13781. }
  13782. } break;
  13783. case GGML_UNARY_OP_TANH:
  13784. {
  13785. GGML_ASSERT(false); // TODO: not implemented
  13786. } break;
  13787. case GGML_UNARY_OP_ELU:
  13788. {
  13789. GGML_ASSERT(false); // TODO: not implemented
  13790. } break;
  13791. case GGML_UNARY_OP_RELU:
  13792. {
  13793. if (src0->grad) {
  13794. src0->grad = ggml_add_impl(ctx,
  13795. src0->grad,
  13796. ggml_mul(ctx,
  13797. ggml_step(ctx, src0),
  13798. tensor->grad),
  13799. inplace);
  13800. }
  13801. } break;
  13802. case GGML_UNARY_OP_GELU:
  13803. {
  13804. GGML_ASSERT(false); // TODO: not implemented
  13805. } break;
  13806. case GGML_UNARY_OP_GELU_QUICK:
  13807. {
  13808. GGML_ASSERT(false); // TODO: not implemented
  13809. } break;
  13810. case GGML_UNARY_OP_SILU:
  13811. {
  13812. // necessary for llama
  13813. if (src0->grad) {
  13814. src0->grad = ggml_add_impl(ctx,
  13815. src0->grad,
  13816. ggml_silu_back(ctx, src0, tensor->grad),
  13817. inplace);
  13818. }
  13819. } break;
  13820. default:
  13821. GGML_ASSERT(false);
  13822. }
  13823. } break;
  13824. case GGML_OP_GET_REL_POS:
  13825. case GGML_OP_ADD_REL_POS:
  13826. case GGML_OP_MAP_UNARY:
  13827. case GGML_OP_MAP_BINARY:
  13828. case GGML_OP_MAP_CUSTOM1_F32:
  13829. case GGML_OP_MAP_CUSTOM2_F32:
  13830. case GGML_OP_MAP_CUSTOM3_F32:
  13831. case GGML_OP_MAP_CUSTOM1:
  13832. case GGML_OP_MAP_CUSTOM2:
  13833. case GGML_OP_MAP_CUSTOM3:
  13834. {
  13835. GGML_ASSERT(false); // not supported
  13836. } break;
  13837. case GGML_OP_CROSS_ENTROPY_LOSS:
  13838. {
  13839. if (src0->grad) {
  13840. src0->grad = ggml_add_impl(ctx,
  13841. src0->grad,
  13842. ggml_cross_entropy_loss_back(ctx,
  13843. src0,
  13844. src1,
  13845. tensor->grad),
  13846. inplace);
  13847. }
  13848. } break;
  13849. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13850. {
  13851. GGML_ASSERT(false); // not supported
  13852. } break;
  13853. case GGML_OP_NONE:
  13854. {
  13855. // nop
  13856. } break;
  13857. case GGML_OP_COUNT:
  13858. {
  13859. GGML_ASSERT(false);
  13860. } break;
  13861. }
  13862. }
  13863. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13864. static size_t hash(void * p) {
  13865. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13866. }
  13867. static bool hash_insert(void * hash_table[], void * p) {
  13868. size_t h = hash(p);
  13869. // linear probing
  13870. size_t i = h;
  13871. while (hash_table[i] != NULL && hash_table[i] != p) {
  13872. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13873. if (i == h) {
  13874. // hash table is full
  13875. GGML_ASSERT(false);
  13876. }
  13877. }
  13878. if (hash_table[i] == p) {
  13879. return true;
  13880. }
  13881. // insert
  13882. hash_table[i] = p;
  13883. return false;
  13884. }
  13885. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13886. if (node->grad == NULL) {
  13887. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13888. // it can also happen during forward pass, if the user performs computations with constants
  13889. if (node->op != GGML_OP_NONE) {
  13890. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13891. }
  13892. }
  13893. // check if already visited
  13894. if (hash_insert(cgraph->visited_hash_table, node)) {
  13895. return;
  13896. }
  13897. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13898. if (node->src[i]) {
  13899. ggml_visit_parents(cgraph, node->src[i]);
  13900. }
  13901. }
  13902. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13903. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13904. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13905. if (strlen(node->name) == 0) {
  13906. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13907. }
  13908. cgraph->leafs[cgraph->n_leafs] = node;
  13909. cgraph->n_leafs++;
  13910. } else {
  13911. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13912. if (strlen(node->name) == 0) {
  13913. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13914. }
  13915. cgraph->nodes[cgraph->n_nodes] = node;
  13916. cgraph->grads[cgraph->n_nodes] = node->grad;
  13917. cgraph->n_nodes++;
  13918. }
  13919. }
  13920. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13921. if (!expand) {
  13922. cgraph->n_nodes = 0;
  13923. cgraph->n_leafs = 0;
  13924. }
  13925. const int n0 = cgraph->n_nodes;
  13926. UNUSED(n0);
  13927. ggml_visit_parents(cgraph, tensor);
  13928. const int n_new = cgraph->n_nodes - n0;
  13929. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13930. if (n_new > 0) {
  13931. // the last added node should always be starting point
  13932. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13933. }
  13934. }
  13935. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13936. ggml_build_forward_impl(cgraph, tensor, true);
  13937. }
  13938. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13939. struct ggml_cgraph result = {
  13940. /*.n_nodes =*/ 0,
  13941. /*.n_leafs =*/ 0,
  13942. /*.nodes =*/ { NULL },
  13943. /*.grads =*/ { NULL },
  13944. /*.leafs =*/ { NULL },
  13945. /*.hash_table =*/ { NULL },
  13946. /*.perf_runs =*/ 0,
  13947. /*.perf_cycles =*/ 0,
  13948. /*.perf_time_us =*/ 0,
  13949. };
  13950. ggml_build_forward_impl(&result, tensor, false);
  13951. return result;
  13952. }
  13953. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13954. GGML_ASSERT(gf->n_nodes > 0);
  13955. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13956. if (keep) {
  13957. for (int i = 0; i < gf->n_nodes; i++) {
  13958. struct ggml_tensor * node = gf->nodes[i];
  13959. if (node->grad) {
  13960. node->grad = ggml_dup_tensor(ctx, node);
  13961. gf->grads[i] = node->grad;
  13962. }
  13963. }
  13964. }
  13965. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13966. struct ggml_tensor * node = gf->nodes[i];
  13967. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13968. if (node->grad) {
  13969. ggml_compute_backward(ctx, node, keep);
  13970. }
  13971. }
  13972. for (int i = 0; i < gf->n_nodes; i++) {
  13973. struct ggml_tensor * node = gf->nodes[i];
  13974. if (node->is_param) {
  13975. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13976. ggml_build_forward_expand(gb, node->grad);
  13977. }
  13978. }
  13979. }
  13980. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13981. struct ggml_cgraph result = *gf;
  13982. ggml_build_backward_expand(ctx, gf, &result, keep);
  13983. return result;
  13984. }
  13985. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13986. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  13987. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13988. *cgraph = (struct ggml_cgraph) {
  13989. /*.n_nodes =*/ 0,
  13990. /*.n_leafs =*/ 0,
  13991. /*.nodes =*/ { NULL },
  13992. /*.grads =*/ { NULL },
  13993. /*.leafs =*/ { NULL },
  13994. /*.hash_table =*/ { NULL },
  13995. /*.perf_runs =*/ 0,
  13996. /*.perf_cycles =*/ 0,
  13997. /*.perf_time_us =*/ 0,
  13998. };
  13999. return cgraph;
  14000. }
  14001. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14002. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14003. ggml_build_forward_impl(cgraph, tensor, false);
  14004. return cgraph;
  14005. }
  14006. size_t ggml_graph_overhead(void) {
  14007. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14008. }
  14009. //
  14010. // thread data
  14011. //
  14012. // synchronization is done via busy loops
  14013. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14014. //
  14015. #ifdef __APPLE__
  14016. //#include <os/lock.h>
  14017. //
  14018. //typedef os_unfair_lock ggml_lock_t;
  14019. //
  14020. //#define ggml_lock_init(x) UNUSED(x)
  14021. //#define ggml_lock_destroy(x) UNUSED(x)
  14022. //#define ggml_lock_lock os_unfair_lock_lock
  14023. //#define ggml_lock_unlock os_unfair_lock_unlock
  14024. //
  14025. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14026. typedef int ggml_lock_t;
  14027. #define ggml_lock_init(x) UNUSED(x)
  14028. #define ggml_lock_destroy(x) UNUSED(x)
  14029. #define ggml_lock_lock(x) UNUSED(x)
  14030. #define ggml_lock_unlock(x) UNUSED(x)
  14031. #define GGML_LOCK_INITIALIZER 0
  14032. typedef pthread_t ggml_thread_t;
  14033. #define ggml_thread_create pthread_create
  14034. #define ggml_thread_join pthread_join
  14035. #else
  14036. //typedef pthread_spinlock_t ggml_lock_t;
  14037. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14038. //#define ggml_lock_destroy pthread_spin_destroy
  14039. //#define ggml_lock_lock pthread_spin_lock
  14040. //#define ggml_lock_unlock pthread_spin_unlock
  14041. typedef int ggml_lock_t;
  14042. #define ggml_lock_init(x) UNUSED(x)
  14043. #define ggml_lock_destroy(x) UNUSED(x)
  14044. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14045. #define ggml_lock_lock(x) _mm_pause()
  14046. #else
  14047. #define ggml_lock_lock(x) UNUSED(x)
  14048. #endif
  14049. #define ggml_lock_unlock(x) UNUSED(x)
  14050. #define GGML_LOCK_INITIALIZER 0
  14051. typedef pthread_t ggml_thread_t;
  14052. #define ggml_thread_create pthread_create
  14053. #define ggml_thread_join pthread_join
  14054. #endif
  14055. // Android's libc implementation "bionic" does not support setting affinity
  14056. #if defined(__linux__) && !defined(__BIONIC__)
  14057. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14058. if (!ggml_is_numa()) {
  14059. return;
  14060. }
  14061. // run thread on node_num thread_n / (threads per node)
  14062. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14063. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14064. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14065. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14066. CPU_ZERO_S(setsize, cpus);
  14067. for (size_t i = 0; i < node->n_cpus; ++i) {
  14068. CPU_SET_S(node->cpus[i], setsize, cpus);
  14069. }
  14070. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14071. if (rv) {
  14072. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14073. strerror(rv));
  14074. }
  14075. CPU_FREE(cpus);
  14076. }
  14077. static void clear_numa_thread_affinity(void) {
  14078. if (!ggml_is_numa()) {
  14079. return;
  14080. }
  14081. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14082. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14083. CPU_ZERO_S(setsize, cpus);
  14084. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14085. CPU_SET_S(i, setsize, cpus);
  14086. }
  14087. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14088. if (rv) {
  14089. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14090. strerror(rv));
  14091. }
  14092. CPU_FREE(cpus);
  14093. }
  14094. #else
  14095. // TODO: Windows etc.
  14096. // (the linux implementation may also work on BSD, someone should test)
  14097. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14098. static void clear_numa_thread_affinity(void) {}
  14099. #endif
  14100. struct ggml_compute_state_shared {
  14101. const struct ggml_cgraph * cgraph;
  14102. const struct ggml_cplan * cplan;
  14103. int64_t perf_node_start_cycles;
  14104. int64_t perf_node_start_time_us;
  14105. const int n_threads;
  14106. // synchronization primitives
  14107. atomic_int n_active; // num active threads
  14108. atomic_int node_n; // active graph node
  14109. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14110. void * abort_callback_data;
  14111. };
  14112. struct ggml_compute_state {
  14113. ggml_thread_t thrd;
  14114. int ith;
  14115. struct ggml_compute_state_shared * shared;
  14116. };
  14117. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14118. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14119. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14120. node->perf_runs++;
  14121. node->perf_cycles += cycles_cur;
  14122. node->perf_time_us += time_us_cur;
  14123. }
  14124. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14125. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14126. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14127. const struct ggml_cplan * cplan = state->shared->cplan;
  14128. const int * n_tasks_arr = cplan->n_tasks;
  14129. const int n_threads = state->shared->n_threads;
  14130. set_numa_thread_affinity(state->ith, n_threads);
  14131. int node_n = -1;
  14132. while (true) {
  14133. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14134. state->shared->node_n += 1;
  14135. return (thread_ret_t) GGML_EXIT_ABORTED;
  14136. }
  14137. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14138. // all other threads are finished and spinning
  14139. // do finalize and init here so we don't have synchronize again
  14140. struct ggml_compute_params params = {
  14141. /*.type =*/ GGML_TASK_FINALIZE,
  14142. /*.ith =*/ 0,
  14143. /*.nth =*/ 0,
  14144. /*.wsize =*/ cplan->work_size,
  14145. /*.wdata =*/ cplan->work_data,
  14146. };
  14147. if (node_n != -1) {
  14148. /* FINALIZE */
  14149. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  14150. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14151. params.nth = n_tasks_arr[node_n];
  14152. ggml_compute_forward(&params, node);
  14153. }
  14154. ggml_graph_compute_perf_stats_node(node, state->shared);
  14155. }
  14156. // distribute new work or execute it direct if 1T
  14157. while (++node_n < cgraph->n_nodes) {
  14158. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14159. struct ggml_tensor * node = cgraph->nodes[node_n];
  14160. const int n_tasks = n_tasks_arr[node_n];
  14161. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14162. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14163. params.nth = n_tasks;
  14164. /* INIT */
  14165. if (GGML_OP_HAS_INIT[node->op]) {
  14166. params.type = GGML_TASK_INIT;
  14167. ggml_compute_forward(&params, node);
  14168. }
  14169. if (n_tasks == 1) {
  14170. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14171. // they do something more efficient than spinning (?)
  14172. params.type = GGML_TASK_COMPUTE;
  14173. ggml_compute_forward(&params, node);
  14174. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14175. params.type = GGML_TASK_FINALIZE;
  14176. ggml_compute_forward(&params, node);
  14177. }
  14178. ggml_graph_compute_perf_stats_node(node, state->shared);
  14179. } else {
  14180. break;
  14181. }
  14182. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14183. break;
  14184. }
  14185. }
  14186. atomic_store(&state->shared->n_active, n_threads);
  14187. atomic_store(&state->shared->node_n, node_n);
  14188. } else {
  14189. // wait for other threads to finish
  14190. const int last = node_n;
  14191. do {
  14192. //sched_yield();
  14193. node_n = atomic_load(&state->shared->node_n);
  14194. } while (node_n == last);
  14195. }
  14196. // check if we should stop
  14197. if (node_n >= cgraph->n_nodes) break;
  14198. /* COMPUTE */
  14199. struct ggml_tensor * node = cgraph->nodes[node_n];
  14200. const int n_tasks = n_tasks_arr[node_n];
  14201. struct ggml_compute_params params = {
  14202. /*.type =*/ GGML_TASK_COMPUTE,
  14203. /*.ith =*/ state->ith,
  14204. /*.nth =*/ n_tasks,
  14205. /*.wsize =*/ cplan->work_size,
  14206. /*.wdata =*/ cplan->work_data,
  14207. };
  14208. if (state->ith < n_tasks) {
  14209. ggml_compute_forward(&params, node);
  14210. }
  14211. }
  14212. return GGML_EXIT_SUCCESS;
  14213. }
  14214. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  14215. if (n_threads <= 0) {
  14216. n_threads = GGML_DEFAULT_N_THREADS;
  14217. }
  14218. size_t work_size = 0;
  14219. struct ggml_cplan cplan;
  14220. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14221. // thread scheduling for the different operations + work buffer size estimation
  14222. for (int i = 0; i < cgraph->n_nodes; i++) {
  14223. int n_tasks = 1;
  14224. struct ggml_tensor * node = cgraph->nodes[i];
  14225. switch (node->op) {
  14226. case GGML_OP_CPY:
  14227. case GGML_OP_DUP:
  14228. {
  14229. n_tasks = n_threads;
  14230. size_t cur = 0;
  14231. if (ggml_is_quantized(node->type)) {
  14232. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14233. }
  14234. work_size = MAX(work_size, cur);
  14235. } break;
  14236. case GGML_OP_ADD:
  14237. case GGML_OP_ADD1:
  14238. {
  14239. n_tasks = n_threads;
  14240. size_t cur = 0;
  14241. if (ggml_is_quantized(node->src[0]->type)) {
  14242. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14243. }
  14244. work_size = MAX(work_size, cur);
  14245. } break;
  14246. case GGML_OP_ACC:
  14247. {
  14248. n_tasks = n_threads;
  14249. size_t cur = 0;
  14250. if (ggml_is_quantized(node->src[0]->type)) {
  14251. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14252. }
  14253. work_size = MAX(work_size, cur);
  14254. } break;
  14255. case GGML_OP_SUB:
  14256. case GGML_OP_DIV:
  14257. case GGML_OP_SQR:
  14258. case GGML_OP_SQRT:
  14259. case GGML_OP_LOG:
  14260. case GGML_OP_SUM:
  14261. case GGML_OP_SUM_ROWS:
  14262. case GGML_OP_MEAN:
  14263. case GGML_OP_ARGMAX:
  14264. case GGML_OP_REPEAT:
  14265. case GGML_OP_REPEAT_BACK:
  14266. {
  14267. n_tasks = 1;
  14268. } break;
  14269. case GGML_OP_UNARY:
  14270. {
  14271. switch (ggml_get_unary_op(node)) {
  14272. case GGML_UNARY_OP_ABS:
  14273. case GGML_UNARY_OP_SGN:
  14274. case GGML_UNARY_OP_NEG:
  14275. case GGML_UNARY_OP_STEP:
  14276. case GGML_UNARY_OP_TANH:
  14277. case GGML_UNARY_OP_ELU:
  14278. case GGML_UNARY_OP_RELU:
  14279. {
  14280. n_tasks = 1;
  14281. } break;
  14282. case GGML_UNARY_OP_GELU:
  14283. case GGML_UNARY_OP_GELU_QUICK:
  14284. case GGML_UNARY_OP_SILU:
  14285. {
  14286. n_tasks = n_threads;
  14287. } break;
  14288. }
  14289. } break;
  14290. case GGML_OP_SILU_BACK:
  14291. case GGML_OP_MUL:
  14292. case GGML_OP_NORM:
  14293. case GGML_OP_RMS_NORM:
  14294. case GGML_OP_RMS_NORM_BACK:
  14295. case GGML_OP_GROUP_NORM:
  14296. {
  14297. n_tasks = n_threads;
  14298. } break;
  14299. case GGML_OP_CONCAT:
  14300. case GGML_OP_MUL_MAT:
  14301. case GGML_OP_OUT_PROD:
  14302. {
  14303. n_tasks = n_threads;
  14304. // TODO: use different scheduling for different matrix sizes
  14305. //const int nr0 = ggml_nrows(node->src[0]);
  14306. //const int nr1 = ggml_nrows(node->src[1]);
  14307. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14308. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14309. size_t cur = 0;
  14310. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14311. #if defined(GGML_USE_CUBLAS)
  14312. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  14313. n_tasks = 1; // TODO: this actually is doing nothing
  14314. // the threads are still spinning
  14315. } else
  14316. #elif defined(GGML_USE_CLBLAST)
  14317. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14318. n_tasks = 1; // TODO: this actually is doing nothing
  14319. // the threads are still spinning
  14320. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14321. } else
  14322. #endif
  14323. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14324. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  14325. n_tasks = 1; // TODO: this actually is doing nothing
  14326. // the threads are still spinning
  14327. if (node->src[0]->type != GGML_TYPE_F32) {
  14328. // here we need memory just for single 2D matrix from src0
  14329. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  14330. }
  14331. } else
  14332. #endif
  14333. if (node->src[1]->type != vec_dot_type) {
  14334. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  14335. } else {
  14336. cur = 0;
  14337. }
  14338. work_size = MAX(work_size, cur);
  14339. } break;
  14340. case GGML_OP_SCALE:
  14341. {
  14342. n_tasks = 1;
  14343. } break;
  14344. case GGML_OP_SET:
  14345. case GGML_OP_CONT:
  14346. case GGML_OP_RESHAPE:
  14347. case GGML_OP_VIEW:
  14348. case GGML_OP_PERMUTE:
  14349. case GGML_OP_TRANSPOSE:
  14350. case GGML_OP_GET_ROWS:
  14351. case GGML_OP_GET_ROWS_BACK:
  14352. case GGML_OP_DIAG:
  14353. {
  14354. n_tasks = 1;
  14355. } break;
  14356. case GGML_OP_DIAG_MASK_ZERO:
  14357. case GGML_OP_DIAG_MASK_INF:
  14358. case GGML_OP_SOFT_MAX:
  14359. case GGML_OP_SOFT_MAX_BACK:
  14360. case GGML_OP_ROPE:
  14361. case GGML_OP_ROPE_BACK:
  14362. case GGML_OP_ADD_REL_POS:
  14363. {
  14364. n_tasks = n_threads;
  14365. } break;
  14366. case GGML_OP_ALIBI:
  14367. {
  14368. n_tasks = 1; //TODO
  14369. } break;
  14370. case GGML_OP_CLAMP:
  14371. {
  14372. n_tasks = 1; //TODO
  14373. } break;
  14374. case GGML_OP_CONV_1D:
  14375. {
  14376. n_tasks = n_threads;
  14377. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14378. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14379. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14380. size_t cur = 0;
  14381. const int nk = node->src[0]->ne[0];
  14382. if (node->src[0]->type == GGML_TYPE_F16 &&
  14383. node->src[1]->type == GGML_TYPE_F32) {
  14384. cur = sizeof(ggml_fp16_t)*(
  14385. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14386. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14387. );
  14388. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14389. node->src[1]->type == GGML_TYPE_F32) {
  14390. cur = sizeof(float)*(
  14391. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  14392. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  14393. );
  14394. } else {
  14395. GGML_ASSERT(false);
  14396. }
  14397. work_size = MAX(work_size, cur);
  14398. } break;
  14399. case GGML_OP_CONV_2D:
  14400. {
  14401. n_tasks = n_threads;
  14402. const int64_t ne00 = node->src[0]->ne[0]; // W
  14403. const int64_t ne01 = node->src[0]->ne[1]; // H
  14404. const int64_t ne02 = node->src[0]->ne[2]; // C
  14405. const int64_t ne03 = node->src[0]->ne[3]; // N
  14406. const int64_t ne10 = node->src[1]->ne[0]; // W
  14407. const int64_t ne11 = node->src[1]->ne[1]; // H
  14408. const int64_t ne12 = node->src[1]->ne[2]; // C
  14409. const int64_t ne0 = node->ne[0];
  14410. const int64_t ne1 = node->ne[1];
  14411. const int64_t ne2 = node->ne[2];
  14412. const int64_t nk = ne00*ne01;
  14413. const int64_t ew0 = nk * ne02;
  14414. UNUSED(ne03);
  14415. UNUSED(ne2);
  14416. size_t cur = 0;
  14417. if (node->src[0]->type == GGML_TYPE_F16 &&
  14418. node->src[1]->type == GGML_TYPE_F32) {
  14419. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  14420. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14421. node->src[1]->type == GGML_TYPE_F32) {
  14422. cur = sizeof(float)* (ne10*ne11*ne12);
  14423. } else {
  14424. GGML_ASSERT(false);
  14425. }
  14426. work_size = MAX(work_size, cur);
  14427. } break;
  14428. case GGML_OP_CONV_TRANSPOSE_2D:
  14429. {
  14430. n_tasks = n_threads;
  14431. const int64_t ne00 = node->src[0]->ne[0]; // W
  14432. const int64_t ne01 = node->src[0]->ne[1]; // H
  14433. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14434. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14435. const int64_t ne10 = node->src[1]->ne[0]; // W
  14436. const int64_t ne11 = node->src[1]->ne[1]; // H
  14437. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14438. size_t cur = 0;
  14439. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14440. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14441. work_size = MAX(work_size, cur);
  14442. } break;
  14443. case GGML_OP_POOL_1D:
  14444. case GGML_OP_POOL_2D:
  14445. {
  14446. n_tasks = 1;
  14447. } break;
  14448. case GGML_OP_UPSCALE:
  14449. {
  14450. n_tasks = n_threads;
  14451. } break;
  14452. case GGML_OP_FLASH_ATTN:
  14453. {
  14454. n_tasks = n_threads;
  14455. size_t cur = 0;
  14456. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14457. if (node->src[1]->type == GGML_TYPE_F32) {
  14458. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14459. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14460. }
  14461. if (node->src[1]->type == GGML_TYPE_F16) {
  14462. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14463. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14464. }
  14465. work_size = MAX(work_size, cur);
  14466. } break;
  14467. case GGML_OP_FLASH_FF:
  14468. {
  14469. n_tasks = n_threads;
  14470. size_t cur = 0;
  14471. if (node->src[1]->type == GGML_TYPE_F32) {
  14472. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14473. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14474. }
  14475. if (node->src[1]->type == GGML_TYPE_F16) {
  14476. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14477. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14478. }
  14479. work_size = MAX(work_size, cur);
  14480. } break;
  14481. case GGML_OP_FLASH_ATTN_BACK:
  14482. {
  14483. n_tasks = n_threads;
  14484. size_t cur = 0;
  14485. const int64_t D = node->src[0]->ne[0];
  14486. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14487. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14488. if (node->src[1]->type == GGML_TYPE_F32) {
  14489. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14490. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14491. }
  14492. if (node->src[1]->type == GGML_TYPE_F16) {
  14493. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14494. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14495. }
  14496. work_size = MAX(work_size, cur);
  14497. } break;
  14498. case GGML_OP_WIN_PART:
  14499. case GGML_OP_WIN_UNPART:
  14500. case GGML_OP_GET_REL_POS:
  14501. case GGML_OP_MAP_UNARY:
  14502. case GGML_OP_MAP_BINARY:
  14503. case GGML_OP_MAP_CUSTOM1_F32:
  14504. case GGML_OP_MAP_CUSTOM2_F32:
  14505. case GGML_OP_MAP_CUSTOM3_F32:
  14506. {
  14507. n_tasks = 1;
  14508. } break;
  14509. case GGML_OP_MAP_CUSTOM1:
  14510. {
  14511. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14512. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14513. n_tasks = n_threads;
  14514. } else {
  14515. n_tasks = MIN(p->n_tasks, n_threads);
  14516. }
  14517. } break;
  14518. case GGML_OP_MAP_CUSTOM2:
  14519. {
  14520. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14521. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14522. n_tasks = n_threads;
  14523. } else {
  14524. n_tasks = MIN(p->n_tasks, n_threads);
  14525. }
  14526. } break;
  14527. case GGML_OP_MAP_CUSTOM3:
  14528. {
  14529. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14530. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14531. n_tasks = n_threads;
  14532. } else {
  14533. n_tasks = MIN(p->n_tasks, n_threads);
  14534. }
  14535. } break;
  14536. case GGML_OP_CROSS_ENTROPY_LOSS:
  14537. {
  14538. n_tasks = n_threads;
  14539. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14540. work_size = MAX(work_size, cur);
  14541. } break;
  14542. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14543. {
  14544. n_tasks = n_threads;
  14545. } break;
  14546. case GGML_OP_NONE:
  14547. {
  14548. n_tasks = 1;
  14549. } break;
  14550. case GGML_OP_COUNT:
  14551. {
  14552. GGML_ASSERT(false);
  14553. } break;
  14554. }
  14555. cplan.n_tasks[i] = n_tasks;
  14556. }
  14557. if (work_size > 0) {
  14558. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14559. }
  14560. cplan.n_threads = n_threads;
  14561. cplan.work_size = work_size;
  14562. cplan.work_data = NULL;
  14563. return cplan;
  14564. }
  14565. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14566. {
  14567. GGML_ASSERT(cplan);
  14568. GGML_ASSERT(cplan->n_threads > 0);
  14569. if (cplan->work_size > 0) {
  14570. GGML_ASSERT(cplan->work_data);
  14571. }
  14572. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14573. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  14574. GGML_ASSERT(cplan->n_tasks[i] > 0);
  14575. }
  14576. }
  14577. }
  14578. const int n_threads = cplan->n_threads;
  14579. struct ggml_compute_state_shared state_shared = {
  14580. /*.cgraph =*/ cgraph,
  14581. /*.cgraph_plan =*/ cplan,
  14582. /*.perf_node_start_cycles =*/ 0,
  14583. /*.perf_node_start_time_us =*/ 0,
  14584. /*.n_threads =*/ n_threads,
  14585. /*.n_active =*/ n_threads,
  14586. /*.node_n =*/ -1,
  14587. /*.abort_callback =*/ NULL,
  14588. /*.abort_callback_data =*/ NULL,
  14589. };
  14590. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14591. // create thread pool
  14592. if (n_threads > 1) {
  14593. for (int j = 1; j < n_threads; ++j) {
  14594. workers[j] = (struct ggml_compute_state) {
  14595. .thrd = 0,
  14596. .ith = j,
  14597. .shared = &state_shared,
  14598. };
  14599. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14600. GGML_ASSERT(rc == 0);
  14601. UNUSED(rc);
  14602. }
  14603. }
  14604. workers[0].ith = 0;
  14605. workers[0].shared = &state_shared;
  14606. const int64_t perf_start_cycles = ggml_perf_cycles();
  14607. const int64_t perf_start_time_us = ggml_perf_time_us();
  14608. // this is a work thread too
  14609. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14610. // don't leave affinity set on the main thread
  14611. clear_numa_thread_affinity();
  14612. // join or kill thread pool
  14613. if (n_threads > 1) {
  14614. for (int j = 1; j < n_threads; j++) {
  14615. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14616. GGML_ASSERT(rc == 0);
  14617. }
  14618. }
  14619. // performance stats (graph)
  14620. {
  14621. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14622. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14623. cgraph->perf_runs++;
  14624. cgraph->perf_cycles += perf_cycles_cur;
  14625. cgraph->perf_time_us += perf_time_us_cur;
  14626. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14627. __func__, cgraph->perf_runs,
  14628. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14629. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14630. (double) perf_time_us_cur / 1000.0,
  14631. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14632. }
  14633. return compute_status;
  14634. }
  14635. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14636. for (int i = 0; i < cgraph->n_nodes; i++) {
  14637. struct ggml_tensor * grad = cgraph->grads[i];
  14638. if (grad) {
  14639. ggml_set_zero(grad);
  14640. }
  14641. }
  14642. }
  14643. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14644. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14645. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  14646. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14647. ggml_graph_compute(cgraph, &cplan);
  14648. }
  14649. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14650. for (int i = 0; i < cgraph->n_leafs; i++) {
  14651. struct ggml_tensor * leaf = cgraph->leafs[i];
  14652. if (strcmp(leaf->name, name) == 0) {
  14653. return leaf;
  14654. }
  14655. }
  14656. for (int i = 0; i < cgraph->n_nodes; i++) {
  14657. struct ggml_tensor * node = cgraph->nodes[i];
  14658. if (strcmp(node->name, name) == 0) {
  14659. return node;
  14660. }
  14661. }
  14662. return NULL;
  14663. }
  14664. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14665. const int64_t * ne = tensor->ne;
  14666. const size_t * nb = tensor->nb;
  14667. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14668. ggml_type_name(tensor->type),
  14669. ggml_op_name (tensor->op),
  14670. tensor->n_dims,
  14671. ne[0], ne[1], ne[2], ne[3],
  14672. nb[0], nb[1], nb[2], nb[3],
  14673. tensor->data,
  14674. tensor->name);
  14675. }
  14676. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14677. const int64_t * ne = tensor->ne;
  14678. const size_t * nb = tensor->nb;
  14679. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14680. arg,
  14681. ggml_type_name(tensor->type),
  14682. ggml_op_name (tensor->op),
  14683. tensor->n_dims,
  14684. ne[0], ne[1], ne[2], ne[3],
  14685. nb[0], nb[1], nb[2], nb[3],
  14686. tensor->data,
  14687. tensor->name);
  14688. }
  14689. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14690. uint64_t size_eval = 0;
  14691. // compute size of intermediate results
  14692. // TODO: does not take into account scratch buffers !!!!
  14693. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14694. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14695. }
  14696. // print
  14697. {
  14698. FILE * fout = stdout;
  14699. fprintf(fout, "\n");
  14700. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14701. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14702. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14703. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14704. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14705. // header
  14706. fprintf(fout, "\n");
  14707. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14708. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14709. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14710. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14711. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14712. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14713. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14714. }
  14715. // header
  14716. fprintf(fout, "\n");
  14717. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14718. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14719. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14720. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14721. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14722. if (cgraph->nodes[i]->src[j]) {
  14723. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14724. }
  14725. }
  14726. fprintf(fout, "\n");
  14727. }
  14728. fprintf(fout, "\n");
  14729. }
  14730. // write binary data
  14731. {
  14732. FILE * fout = fopen(fname, "wb");
  14733. if (!fout) {
  14734. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14735. return;
  14736. }
  14737. // header
  14738. {
  14739. const uint32_t magic = GGML_FILE_MAGIC;
  14740. const uint32_t version = GGML_FILE_VERSION;
  14741. const uint32_t n_leafs = cgraph->n_leafs;
  14742. const uint32_t nodes = cgraph->n_nodes;
  14743. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14744. fwrite(&version, sizeof(uint32_t), 1, fout);
  14745. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14746. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14747. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14748. }
  14749. // leafs
  14750. {
  14751. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14752. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14753. const uint32_t type = tensor->type;
  14754. const uint32_t op = tensor->op;
  14755. const uint32_t n_dims = tensor->n_dims;
  14756. fwrite(&type, sizeof(uint32_t), 1, fout);
  14757. fwrite(&op, sizeof(uint32_t), 1, fout);
  14758. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14759. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14760. const uint64_t ne = tensor->ne[j];
  14761. const uint64_t nb = tensor->nb[j];
  14762. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14763. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14764. }
  14765. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14766. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14767. // dump the data
  14768. // TODO: pad this to 32 byte boundary
  14769. {
  14770. const size_t size = ggml_nbytes(tensor);
  14771. fwrite(tensor->data, sizeof(char), size, fout);
  14772. }
  14773. }
  14774. }
  14775. // nodes
  14776. {
  14777. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14778. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14779. const uint32_t type = tensor->type;
  14780. const uint32_t op = tensor->op;
  14781. const uint32_t n_dims = tensor->n_dims;
  14782. fwrite(&type, sizeof(uint32_t), 1, fout);
  14783. fwrite(&op, sizeof(uint32_t), 1, fout);
  14784. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14785. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14786. const uint64_t ne = tensor->ne[j];
  14787. const uint64_t nb = tensor->nb[j];
  14788. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14789. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14790. }
  14791. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14792. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14793. // output the op arguments
  14794. {
  14795. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14796. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14797. args[j] = tensor->src[j];
  14798. }
  14799. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14800. if (args[j]) {
  14801. int32_t idx = -1;
  14802. // check if leaf
  14803. {
  14804. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14805. if (args[j] == cgraph->leafs[k]) {
  14806. idx = k;
  14807. break;
  14808. }
  14809. }
  14810. }
  14811. // check if node
  14812. if (idx == -1) {
  14813. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14814. if (args[j] == cgraph->nodes[k]) {
  14815. idx = GGML_MAX_NODES + k;
  14816. break;
  14817. }
  14818. }
  14819. }
  14820. if (idx == -1) {
  14821. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14822. return;
  14823. }
  14824. fwrite(&idx, sizeof(int32_t), 1, fout);
  14825. } else {
  14826. const int32_t nul = -1;
  14827. fwrite(&nul, sizeof(int32_t), 1, fout);
  14828. }
  14829. }
  14830. }
  14831. }
  14832. }
  14833. fclose(fout);
  14834. }
  14835. }
  14836. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14837. assert(*ctx_data == NULL);
  14838. assert(*ctx_eval == NULL);
  14839. struct ggml_cgraph result = { 0 };
  14840. struct ggml_tensor * data = NULL;
  14841. // read file into data
  14842. {
  14843. FILE * fin = fopen(fname, "rb");
  14844. if (!fin) {
  14845. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14846. return result;
  14847. }
  14848. size_t fsize = 0;
  14849. fseek(fin, 0, SEEK_END);
  14850. fsize = ftell(fin);
  14851. fseek(fin, 0, SEEK_SET);
  14852. // create the data context
  14853. {
  14854. const size_t overhead = 1*ggml_tensor_overhead();
  14855. struct ggml_init_params params = {
  14856. .mem_size = fsize + overhead,
  14857. .mem_buffer = NULL,
  14858. .no_alloc = false,
  14859. };
  14860. *ctx_data = ggml_init(params);
  14861. if (!*ctx_data) {
  14862. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14863. fclose(fin);
  14864. return result;
  14865. }
  14866. }
  14867. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14868. {
  14869. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14870. if (ret != fsize) {
  14871. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14872. fclose(fin);
  14873. return result;
  14874. }
  14875. }
  14876. fclose(fin);
  14877. }
  14878. // populate result
  14879. {
  14880. char * ptr = (char *) data->data;
  14881. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14882. if (magic != GGML_FILE_MAGIC) {
  14883. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14884. return result;
  14885. }
  14886. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14887. if (version != GGML_FILE_VERSION) {
  14888. fprintf(stderr, "%s: invalid version number\n", __func__);
  14889. return result;
  14890. }
  14891. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14892. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14893. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14894. result.n_leafs = n_leafs;
  14895. result.n_nodes = n_nodes;
  14896. // create the data context
  14897. {
  14898. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14899. struct ggml_init_params params = {
  14900. .mem_size = size_eval + overhead,
  14901. .mem_buffer = NULL,
  14902. .no_alloc = true,
  14903. };
  14904. *ctx_eval = ggml_init(params);
  14905. if (!*ctx_eval) {
  14906. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14907. return result;
  14908. }
  14909. }
  14910. // leafs
  14911. {
  14912. uint32_t type;
  14913. uint32_t op;
  14914. uint32_t n_dims;
  14915. for (uint32_t i = 0; i < n_leafs; ++i) {
  14916. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14917. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14918. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14919. int64_t ne[GGML_MAX_DIMS];
  14920. size_t nb[GGML_MAX_DIMS];
  14921. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14922. uint64_t ne_cur;
  14923. uint64_t nb_cur;
  14924. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14925. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14926. ne[j] = ne_cur;
  14927. nb[j] = nb_cur;
  14928. }
  14929. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14930. tensor->op = (enum ggml_op) op;
  14931. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14932. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14933. tensor->data = (void *) ptr;
  14934. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14935. tensor->nb[j] = nb[j];
  14936. }
  14937. result.leafs[i] = tensor;
  14938. ptr += ggml_nbytes(tensor);
  14939. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14940. }
  14941. }
  14942. ggml_set_no_alloc(*ctx_eval, false);
  14943. // nodes
  14944. {
  14945. uint32_t type;
  14946. uint32_t op;
  14947. uint32_t n_dims;
  14948. for (uint32_t i = 0; i < n_nodes; ++i) {
  14949. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14950. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14951. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14952. enum ggml_op eop = (enum ggml_op) op;
  14953. int64_t ne[GGML_MAX_DIMS];
  14954. size_t nb[GGML_MAX_DIMS];
  14955. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14956. uint64_t ne_cur;
  14957. uint64_t nb_cur;
  14958. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14959. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14960. ne[j] = ne_cur;
  14961. nb[j] = nb_cur;
  14962. }
  14963. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14964. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14965. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14966. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14967. // parse args
  14968. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14969. const int32_t arg_idx = ptr_arg_idx[j];
  14970. if (arg_idx == -1) {
  14971. continue;
  14972. }
  14973. if (arg_idx < GGML_MAX_NODES) {
  14974. args[j] = result.leafs[arg_idx];
  14975. } else {
  14976. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14977. }
  14978. }
  14979. // create the tensor
  14980. // "view" operations are handled differently
  14981. // TODO: handle inplace ops - currently a copy is always made
  14982. struct ggml_tensor * tensor = NULL;
  14983. switch (eop) {
  14984. // TODO: implement other view ops
  14985. case GGML_OP_RESHAPE:
  14986. {
  14987. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14988. } break;
  14989. case GGML_OP_VIEW:
  14990. {
  14991. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14992. size_t offs;
  14993. memcpy(&offs, ptr_op_params, sizeof(offs));
  14994. tensor->data = ((char *) tensor->data) + offs;
  14995. } break;
  14996. case GGML_OP_TRANSPOSE:
  14997. {
  14998. tensor = ggml_transpose(*ctx_eval, args[0]);
  14999. } break;
  15000. case GGML_OP_PERMUTE:
  15001. {
  15002. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15003. } break;
  15004. default:
  15005. {
  15006. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15007. tensor->op = eop;
  15008. } break;
  15009. }
  15010. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15011. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15012. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15013. tensor->nb[j] = nb[j];
  15014. }
  15015. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15016. tensor->src[j] = args[j];
  15017. }
  15018. result.nodes[i] = tensor;
  15019. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15020. }
  15021. }
  15022. }
  15023. return result;
  15024. }
  15025. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15026. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15027. GGML_PRINT("=== GRAPH ===\n");
  15028. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15029. for (int i = 0; i < cgraph->n_nodes; i++) {
  15030. struct ggml_tensor * node = cgraph->nodes[i];
  15031. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15032. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15033. i,
  15034. node->ne[0], node->ne[1], node->ne[2],
  15035. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15036. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15037. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15038. (double) node->perf_time_us / 1000.0,
  15039. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15040. }
  15041. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15042. for (int i = 0; i < cgraph->n_leafs; i++) {
  15043. struct ggml_tensor * node = cgraph->leafs[i];
  15044. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  15045. i,
  15046. node->ne[0], node->ne[1],
  15047. ggml_op_name(node->op));
  15048. }
  15049. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15050. if (perf_total_per_op_us[i] == 0) {
  15051. continue;
  15052. }
  15053. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15054. }
  15055. GGML_PRINT("========================================\n");
  15056. }
  15057. // check if node is part of the graph
  15058. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15059. if (cgraph == NULL) {
  15060. return true;
  15061. }
  15062. for (int i = 0; i < cgraph->n_nodes; i++) {
  15063. if (cgraph->nodes[i] == node) {
  15064. return true;
  15065. }
  15066. }
  15067. return false;
  15068. }
  15069. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15070. for (int i = 0; i < cgraph->n_nodes; i++) {
  15071. struct ggml_tensor * parent = cgraph->nodes[i];
  15072. if (parent->grad == node) {
  15073. return parent;
  15074. }
  15075. }
  15076. return NULL;
  15077. }
  15078. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15079. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15080. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15081. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15082. gparent0 ? (void *) gparent0 : (void *) parent,
  15083. gparent0 ? "g" : "x",
  15084. gparent ? (void *) gparent : (void *) node,
  15085. gparent ? "g" : "x",
  15086. gparent ? "empty" : "vee",
  15087. gparent ? "dashed" : "solid",
  15088. label);
  15089. }
  15090. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15091. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15092. (void *) parent, "x",
  15093. (void *) node, "x",
  15094. label);
  15095. }
  15096. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15097. char color[16];
  15098. FILE * fp = fopen(filename, "w");
  15099. GGML_ASSERT(fp);
  15100. fprintf(fp, "digraph G {\n");
  15101. fprintf(fp, " newrank = true;\n");
  15102. fprintf(fp, " rankdir = LR;\n");
  15103. for (int i = 0; i < gb->n_nodes; i++) {
  15104. struct ggml_tensor * node = gb->nodes[i];
  15105. if (ggml_graph_get_parent(gb, node) != NULL) {
  15106. continue;
  15107. }
  15108. if (node->is_param) {
  15109. snprintf(color, sizeof(color), "yellow");
  15110. } else if (node->grad) {
  15111. if (ggml_graph_find(gf, node)) {
  15112. snprintf(color, sizeof(color), "green");
  15113. } else {
  15114. snprintf(color, sizeof(color), "lightblue");
  15115. }
  15116. } else {
  15117. snprintf(color, sizeof(color), "white");
  15118. }
  15119. fprintf(fp, " \"%p\" [ "
  15120. "style = filled; fillcolor = %s; shape = record; "
  15121. "label=\"",
  15122. (void *) node, color);
  15123. if (strlen(node->name) > 0) {
  15124. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15125. } else {
  15126. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15127. }
  15128. if (node->n_dims == 2) {
  15129. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15130. } else {
  15131. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15132. }
  15133. if (node->grad) {
  15134. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15135. } else {
  15136. fprintf(fp, "\"; ]\n");
  15137. }
  15138. }
  15139. for (int i = 0; i < gb->n_leafs; i++) {
  15140. struct ggml_tensor * node = gb->leafs[i];
  15141. snprintf(color, sizeof(color), "pink");
  15142. fprintf(fp, " \"%p\" [ "
  15143. "style = filled; fillcolor = %s; shape = record; "
  15144. "label=\"<x>",
  15145. (void *) node, color);
  15146. if (strlen(node->name) > 0) {
  15147. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15148. } else {
  15149. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15150. }
  15151. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15152. if (ggml_nelements(node) < 5) {
  15153. fprintf(fp, " | (");
  15154. for (int j = 0; j < ggml_nelements(node); j++) {
  15155. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15156. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15157. }
  15158. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15159. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15160. }
  15161. else {
  15162. fprintf(fp, "#");
  15163. }
  15164. if (j < ggml_nelements(node) - 1) {
  15165. fprintf(fp, ", ");
  15166. }
  15167. }
  15168. fprintf(fp, ")");
  15169. }
  15170. fprintf(fp, "\"; ]\n");
  15171. }
  15172. for (int i = 0; i < gb->n_nodes; i++) {
  15173. struct ggml_tensor * node = gb->nodes[i];
  15174. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15175. if (node->src[j]) {
  15176. char label[16];
  15177. snprintf(label, sizeof(label), "src %d", j);
  15178. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15179. }
  15180. }
  15181. }
  15182. for (int i = 0; i < gb->n_leafs; i++) {
  15183. struct ggml_tensor * node = gb->leafs[i];
  15184. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15185. if (node->src[j]) {
  15186. char label[16];
  15187. snprintf(label, sizeof(label), "src %d", j);
  15188. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15189. }
  15190. }
  15191. }
  15192. fprintf(fp, "}\n");
  15193. fclose(fp);
  15194. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15195. }
  15196. ////////////////////////////////////////////////////////////////////////////////
  15197. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15198. int i = 0;
  15199. for (int p = 0; p < np; ++p) {
  15200. const int64_t ne = ggml_nelements(ps[p]) ;
  15201. // TODO: add function to set tensor from array
  15202. for (int64_t j = 0; j < ne; ++j) {
  15203. ggml_set_f32_1d(ps[p], j, x[i++]);
  15204. }
  15205. }
  15206. }
  15207. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15208. int i = 0;
  15209. for (int p = 0; p < np; ++p) {
  15210. const int64_t ne = ggml_nelements(ps[p]) ;
  15211. // TODO: add function to get all elements at once
  15212. for (int64_t j = 0; j < ne; ++j) {
  15213. x[i++] = ggml_get_f32_1d(ps[p], j);
  15214. }
  15215. }
  15216. }
  15217. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15218. int i = 0;
  15219. for (int p = 0; p < np; ++p) {
  15220. const int64_t ne = ggml_nelements(ps[p]) ;
  15221. // TODO: add function to get all elements at once
  15222. for (int64_t j = 0; j < ne; ++j) {
  15223. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15224. }
  15225. }
  15226. }
  15227. //
  15228. // ADAM
  15229. //
  15230. // ref: https://arxiv.org/pdf/1412.6980.pdf
  15231. //
  15232. static enum ggml_opt_result ggml_opt_adam(
  15233. struct ggml_context * ctx,
  15234. struct ggml_opt_context * opt,
  15235. struct ggml_opt_params params,
  15236. struct ggml_tensor * f,
  15237. struct ggml_cgraph * gf,
  15238. struct ggml_cgraph * gb,
  15239. ggml_opt_callback callback,
  15240. void * callback_data) {
  15241. GGML_ASSERT(ggml_is_scalar(f));
  15242. // these will store the parameters we want to optimize
  15243. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15244. int np = 0;
  15245. int64_t nx = 0;
  15246. for (int i = 0; i < gf->n_nodes; ++i) {
  15247. if (gf->nodes[i]->is_param) {
  15248. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15249. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15250. ps[np++] = gf->nodes[i];
  15251. nx += ggml_nelements(gf->nodes[i]);
  15252. }
  15253. }
  15254. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15255. int iter = opt->iter;
  15256. ggml_opt_init(opt->ctx, opt, params, nx);
  15257. opt->iter = iter;
  15258. }
  15259. // constants
  15260. float sched = params.adam.sched;
  15261. const float alpha = params.adam.alpha;
  15262. const float decay = params.adam.decay * alpha;
  15263. const float beta1 = params.adam.beta1;
  15264. const float beta2 = params.adam.beta2;
  15265. const float eps = params.adam.eps;
  15266. const float gclip = params.adam.gclip;
  15267. const int decay_min_ndim = params.adam.decay_min_ndim;
  15268. float * m = opt->adam.m->data; // first moment
  15269. float * v = opt->adam.v->data; // second moment
  15270. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15271. if (callback) {
  15272. callback(callback_data, &sched);
  15273. }
  15274. // compute the function value
  15275. ggml_graph_reset (gf);
  15276. ggml_set_f32 (f->grad, 1.0f);
  15277. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15278. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15279. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15280. ggml_graph_compute(gb, &cplan);
  15281. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  15282. opt->adam.fx_best = opt->adam.fx_prev;
  15283. if (pf) {
  15284. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15285. }
  15286. opt->loss_before = opt->adam.fx_prev;
  15287. opt->loss_after = opt->adam.fx_prev;
  15288. // initialize
  15289. if (opt->just_initialized) {
  15290. opt->adam.n_no_improvement = 0;
  15291. opt->just_initialized = false;
  15292. }
  15293. float * fx_best = &opt->adam.fx_best;
  15294. float * fx_prev = &opt->adam.fx_prev;
  15295. int * n_no_improvement = &opt->adam.n_no_improvement;
  15296. int iter0 = opt->iter;
  15297. // run the optimizer
  15298. for (int t = 0; t < params.adam.n_iter; ++t) {
  15299. opt->iter = iter0 + t + 1;
  15300. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15301. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15302. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15303. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15304. for (int i = 0; i < np; ++i) {
  15305. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15306. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15307. }
  15308. const int64_t t_start_wall = ggml_time_us();
  15309. const int64_t t_start_cpu = ggml_cycles();
  15310. UNUSED(t_start_wall);
  15311. UNUSED(t_start_cpu);
  15312. {
  15313. float gnorm = 1.0f;
  15314. if (gclip > 0.0f) {
  15315. // gradient clipping
  15316. ggml_float sum = 0.0;
  15317. for (int p = 0; p < np; ++p) {
  15318. const int64_t ne = ggml_nelements(ps[p]);
  15319. for (int64_t j = 0; j < ne; ++j) {
  15320. float g = ggml_get_f32_1d(ps[p]->grad, j);
  15321. sum += (ggml_float)(g*g);
  15322. }
  15323. }
  15324. ggml_float norm = sqrt(sum);
  15325. if (norm > (ggml_float) gclip) {
  15326. gnorm = (float) ((ggml_float) gclip / norm);
  15327. }
  15328. }
  15329. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15330. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15331. int64_t i = 0;
  15332. for (int p = 0; p < np; ++p) {
  15333. const int64_t ne = ggml_nelements(ps[p]);
  15334. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  15335. for (int64_t j = 0; j < ne; ++j) {
  15336. float x = ggml_get_f32_1d(ps[p], j);
  15337. float g = ggml_get_f32_1d(ps[p]->grad, j)*gnorm;
  15338. m[i] = m[i]*beta1 + g*(1.0f - beta1);
  15339. v[i] = v[i]*beta2 + g*g*(1.0f - beta2);
  15340. float mh = m[i]*beta1h;
  15341. float vh = v[i]*beta2h;
  15342. vh = sqrtf(vh) + eps;
  15343. x = x*(1.0f - p_decay) - mh/vh;
  15344. ggml_set_f32_1d(ps[p], j, x);
  15345. ++i;
  15346. }
  15347. }
  15348. }
  15349. if (callback) {
  15350. callback(callback_data, &sched);
  15351. }
  15352. ggml_graph_reset (gf);
  15353. ggml_set_f32 (f->grad, 1.0f);
  15354. ggml_graph_compute(gb, &cplan);
  15355. const float fx = ggml_get_f32_1d(f, 0);
  15356. opt->loss_after = fx;
  15357. // check convergence
  15358. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15359. GGML_PRINT_DEBUG("converged\n");
  15360. return GGML_OPT_OK;
  15361. }
  15362. // delta-based convergence test
  15363. if (pf != NULL) {
  15364. // need at least params.past iterations to start checking for convergence
  15365. if (params.past <= iter0 + t) {
  15366. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15367. if (fabsf(rate) < params.delta) {
  15368. return GGML_OPT_OK;
  15369. }
  15370. }
  15371. pf[(iter0 + t)%params.past] = fx;
  15372. }
  15373. // check for improvement
  15374. if (params.max_no_improvement > 0) {
  15375. if (fx_best[0] > fx) {
  15376. fx_best[0] = fx;
  15377. n_no_improvement[0] = 0;
  15378. } else {
  15379. ++n_no_improvement[0];
  15380. if (n_no_improvement[0] >= params.max_no_improvement) {
  15381. return GGML_OPT_OK;
  15382. }
  15383. }
  15384. }
  15385. fx_prev[0] = fx;
  15386. {
  15387. const int64_t t_end_cpu = ggml_cycles();
  15388. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15389. UNUSED(t_end_cpu);
  15390. const int64_t t_end_wall = ggml_time_us();
  15391. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15392. UNUSED(t_end_wall);
  15393. }
  15394. }
  15395. return GGML_OPT_DID_NOT_CONVERGE;
  15396. }
  15397. //
  15398. // L-BFGS
  15399. //
  15400. // the L-BFGS implementation below is based on the following implementation:
  15401. //
  15402. // https://github.com/chokkan/liblbfgs
  15403. //
  15404. struct ggml_lbfgs_iteration_data {
  15405. float alpha;
  15406. float ys;
  15407. float * s;
  15408. float * y;
  15409. };
  15410. static enum ggml_opt_result linesearch_backtracking(
  15411. const struct ggml_opt_params * params,
  15412. int nx,
  15413. float * x,
  15414. float * fx,
  15415. float * g,
  15416. float * d,
  15417. float * step,
  15418. const float * xp,
  15419. struct ggml_tensor * f,
  15420. struct ggml_cgraph * gf,
  15421. struct ggml_cgraph * gb,
  15422. struct ggml_cplan * cplan,
  15423. const int np,
  15424. struct ggml_tensor * ps[],
  15425. ggml_opt_callback callback,
  15426. void * callback_data) {
  15427. int count = 0;
  15428. float width = 0.0f;
  15429. float dg = 0.0f;
  15430. float finit = 0.0f;
  15431. float dginit = 0.0f;
  15432. float dgtest = 0.0f;
  15433. const float dec = 0.5f;
  15434. const float inc = 2.1f;
  15435. if (*step <= 0.f) {
  15436. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15437. }
  15438. // compute the initial gradient in the search direction
  15439. ggml_vec_dot_f32(nx, &dginit, g, d);
  15440. // make sure that d points to a descent direction
  15441. if (0 < dginit) {
  15442. return GGML_LINESEARCH_FAIL;
  15443. }
  15444. // initialize local variables
  15445. finit = *fx;
  15446. dgtest = params->lbfgs.ftol*dginit;
  15447. while (true) {
  15448. if (callback) {
  15449. // LBFG-S does not support learning rate -> ignore learning schedule
  15450. float sched = 0;
  15451. callback(callback_data, &sched);
  15452. }
  15453. ggml_vec_cpy_f32(nx, x, xp);
  15454. ggml_vec_mad_f32(nx, x, d, *step);
  15455. // evaluate the function and gradient values
  15456. {
  15457. ggml_opt_set_params(np, ps, x);
  15458. ggml_graph_reset (gf);
  15459. ggml_set_f32 (f->grad, 1.0f);
  15460. ggml_graph_compute(gb, cplan);
  15461. ggml_opt_get_grad(np, ps, g);
  15462. *fx = ggml_get_f32_1d(f, 0);
  15463. }
  15464. ++count;
  15465. if (*fx > finit + (*step)*dgtest) {
  15466. width = dec;
  15467. } else {
  15468. // Armijo condition is satisfied
  15469. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15470. return count;
  15471. }
  15472. ggml_vec_dot_f32(nx, &dg, g, d);
  15473. // check the Wolfe condition
  15474. if (dg < params->lbfgs.wolfe * dginit) {
  15475. width = inc;
  15476. } else {
  15477. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15478. // regular Wolfe conditions
  15479. return count;
  15480. }
  15481. if(dg > -params->lbfgs.wolfe*dginit) {
  15482. width = dec;
  15483. } else {
  15484. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15485. return count;
  15486. }
  15487. return count;
  15488. }
  15489. }
  15490. if (*step < params->lbfgs.min_step) {
  15491. return GGML_LINESEARCH_MINIMUM_STEP;
  15492. }
  15493. if (*step > params->lbfgs.max_step) {
  15494. return GGML_LINESEARCH_MAXIMUM_STEP;
  15495. }
  15496. if (params->lbfgs.max_linesearch <= count) {
  15497. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15498. }
  15499. (*step) *= width;
  15500. }
  15501. return GGML_LINESEARCH_FAIL;
  15502. }
  15503. static enum ggml_opt_result ggml_opt_lbfgs(
  15504. struct ggml_context * ctx,
  15505. struct ggml_opt_context * opt,
  15506. struct ggml_opt_params params,
  15507. struct ggml_tensor * f,
  15508. struct ggml_cgraph * gf,
  15509. struct ggml_cgraph * gb,
  15510. ggml_opt_callback callback,
  15511. void * callback_data) {
  15512. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15513. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15514. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15515. return GGML_OPT_INVALID_WOLFE;
  15516. }
  15517. }
  15518. const int m = params.lbfgs.m;
  15519. // these will store the parameters we want to optimize
  15520. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15521. int np = 0;
  15522. int nx = 0;
  15523. for (int i = 0; i < gf->n_nodes; ++i) {
  15524. if (gf->nodes[i]->is_param) {
  15525. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15526. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15527. ps[np++] = gf->nodes[i];
  15528. nx += ggml_nelements(gf->nodes[i]);
  15529. }
  15530. }
  15531. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15532. int iter = opt->iter;
  15533. ggml_opt_init(ctx, opt, params, nx);
  15534. opt->iter = iter;
  15535. }
  15536. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15537. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15538. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15539. float * x = opt->lbfgs.x->data; // current parameters
  15540. float * xp = opt->lbfgs.xp->data; // previous parameters
  15541. float * g = opt->lbfgs.g->data; // current gradient
  15542. float * gp = opt->lbfgs.gp->data; // previous gradient
  15543. float * d = opt->lbfgs.d->data; // search direction
  15544. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15545. float fx = 0.0f; // cost function value
  15546. float xnorm = 0.0f; // ||x||
  15547. float gnorm = 0.0f; // ||g||
  15548. // initialize x from the graph nodes
  15549. ggml_opt_get_params(np, ps, x);
  15550. // the L-BFGS memory
  15551. float * lm_alpha = opt->lbfgs.lmal->data;
  15552. float * lm_ys = opt->lbfgs.lmys->data;
  15553. float * lm_s = opt->lbfgs.lms->data;
  15554. float * lm_y = opt->lbfgs.lmy->data;
  15555. if (callback) {
  15556. // LBFG-S does not support learning rate -> ignore learning schedule
  15557. float sched = 0;
  15558. callback(callback_data, &sched);
  15559. }
  15560. // evaluate the function value and its gradient
  15561. {
  15562. ggml_opt_set_params(np, ps, x);
  15563. ggml_graph_reset (gf);
  15564. ggml_set_f32 (f->grad, 1.0f);
  15565. ggml_graph_compute(gb, &cplan);
  15566. ggml_opt_get_grad(np, ps, g);
  15567. fx = ggml_get_f32_1d(f, 0);
  15568. opt->loss_before = fx;
  15569. opt->loss_after = fx;
  15570. }
  15571. // search direction = -gradient
  15572. ggml_vec_neg_f32(nx, d, g);
  15573. // ||x||, ||g||
  15574. ggml_vec_norm_f32(nx, &xnorm, x);
  15575. ggml_vec_norm_f32(nx, &gnorm, g);
  15576. if (xnorm < 1.0f) {
  15577. xnorm = 1.0f;
  15578. }
  15579. // already optimized
  15580. if (gnorm/xnorm <= params.lbfgs.eps) {
  15581. return GGML_OPT_OK;
  15582. }
  15583. if (opt->just_initialized) {
  15584. if (pf) {
  15585. pf[0] = fx;
  15586. }
  15587. opt->lbfgs.fx_best = fx;
  15588. // initial step
  15589. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15590. opt->lbfgs.j = 0;
  15591. opt->lbfgs.k = 1;
  15592. opt->lbfgs.end = 0;
  15593. opt->lbfgs.n_no_improvement = 0;
  15594. opt->just_initialized = false;
  15595. }
  15596. float * fx_best = &opt->lbfgs.fx_best;
  15597. float * step = &opt->lbfgs.step;
  15598. int * j = &opt->lbfgs.j;
  15599. int * k = &opt->lbfgs.k;
  15600. int * end = &opt->lbfgs.end;
  15601. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15602. int ls = 0;
  15603. int bound = 0;
  15604. float ys = 0.0f;
  15605. float yy = 0.0f;
  15606. float beta = 0.0f;
  15607. int it = 0;
  15608. while (true) {
  15609. // store the current position and gradient vectors
  15610. ggml_vec_cpy_f32(nx, xp, x);
  15611. ggml_vec_cpy_f32(nx, gp, g);
  15612. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gf, gb, &cplan, np, ps, callback, callback_data);
  15613. if (ls < 0) {
  15614. // linesearch failed - go back to the previous point and return
  15615. ggml_vec_cpy_f32(nx, x, xp);
  15616. ggml_vec_cpy_f32(nx, g, gp);
  15617. return ls;
  15618. }
  15619. opt->loss_after = fx;
  15620. ggml_vec_norm_f32(nx, &xnorm, x);
  15621. ggml_vec_norm_f32(nx, &gnorm, g);
  15622. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15623. if (xnorm < 1.0f) {
  15624. xnorm = 1.0f;
  15625. }
  15626. if (gnorm/xnorm <= params.lbfgs.eps) {
  15627. // converged
  15628. return GGML_OPT_OK;
  15629. }
  15630. // delta-based convergence test
  15631. if (pf != NULL) {
  15632. // need at least params.past iterations to start checking for convergence
  15633. if (params.past <= k[0]) {
  15634. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15635. if (fabsf(rate) < params.delta) {
  15636. return GGML_OPT_OK;
  15637. }
  15638. }
  15639. pf[k[0]%params.past] = fx;
  15640. }
  15641. // check for improvement
  15642. if (params.max_no_improvement > 0) {
  15643. if (fx < fx_best[0]) {
  15644. fx_best[0] = fx;
  15645. n_no_improvement[0] = 0;
  15646. } else {
  15647. n_no_improvement[0]++;
  15648. if (n_no_improvement[0] >= params.max_no_improvement) {
  15649. return GGML_OPT_OK;
  15650. }
  15651. }
  15652. }
  15653. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15654. // reached the maximum number of iterations
  15655. return GGML_OPT_DID_NOT_CONVERGE;
  15656. }
  15657. // update vectors s and y:
  15658. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15659. // y_{k+1} = g_{k+1} - g_{k}.
  15660. //
  15661. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15662. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15663. // compute scalars ys and yy:
  15664. // ys = y^t \cdot s -> 1 / \rho.
  15665. // yy = y^t \cdot y.
  15666. //
  15667. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  15668. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15669. lm_ys[end[0]] = ys;
  15670. // find new search direction
  15671. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15672. bound = (m <= k[0]) ? m : k[0];
  15673. k[0]++;
  15674. it++;
  15675. end[0] = (end[0] + 1)%m;
  15676. // initialize search direction with -g
  15677. ggml_vec_neg_f32(nx, d, g);
  15678. j[0] = end[0];
  15679. for (int i = 0; i < bound; ++i) {
  15680. j[0] = (j[0] + m - 1) % m;
  15681. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15682. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15683. lm_alpha[j[0]] /= lm_ys[j[0]];
  15684. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15685. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15686. }
  15687. ggml_vec_scale_f32(nx, d, ys/yy);
  15688. for (int i = 0; i < bound; ++i) {
  15689. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15690. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15691. beta /= lm_ys[j[0]];
  15692. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15693. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15694. j[0] = (j[0] + 1)%m;
  15695. }
  15696. step[0] = 1.0;
  15697. }
  15698. return GGML_OPT_DID_NOT_CONVERGE;
  15699. }
  15700. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15701. struct ggml_opt_params result;
  15702. switch (type) {
  15703. case GGML_OPT_ADAM:
  15704. {
  15705. result = (struct ggml_opt_params) {
  15706. .type = GGML_OPT_ADAM,
  15707. .n_threads = 1,
  15708. .past = 0,
  15709. .delta = 1e-5f,
  15710. .max_no_improvement = 100,
  15711. .print_forward_graph = true,
  15712. .print_backward_graph = true,
  15713. .adam = {
  15714. .n_iter = 10000,
  15715. .sched = 1.000f,
  15716. .decay = 0.0f,
  15717. .decay_min_ndim = 2,
  15718. .alpha = 0.001f,
  15719. .beta1 = 0.9f,
  15720. .beta2 = 0.999f,
  15721. .eps = 1e-8f,
  15722. .eps_f = 1e-5f,
  15723. .eps_g = 1e-3f,
  15724. .gclip = 0.0f,
  15725. },
  15726. };
  15727. } break;
  15728. case GGML_OPT_LBFGS:
  15729. {
  15730. result = (struct ggml_opt_params) {
  15731. .type = GGML_OPT_LBFGS,
  15732. .n_threads = 1,
  15733. .past = 0,
  15734. .delta = 1e-5f,
  15735. .max_no_improvement = 0,
  15736. .print_forward_graph = true,
  15737. .print_backward_graph = true,
  15738. .lbfgs = {
  15739. .m = 6,
  15740. .n_iter = 100,
  15741. .max_linesearch = 20,
  15742. .eps = 1e-5f,
  15743. .ftol = 1e-4f,
  15744. .wolfe = 0.9f,
  15745. .min_step = 1e-20f,
  15746. .max_step = 1e+20f,
  15747. .linesearch = GGML_LINESEARCH_DEFAULT,
  15748. },
  15749. };
  15750. } break;
  15751. }
  15752. return result;
  15753. }
  15754. GGML_API void ggml_opt_init(
  15755. struct ggml_context * ctx,
  15756. struct ggml_opt_context * opt,
  15757. struct ggml_opt_params params,
  15758. int64_t nx) {
  15759. opt->ctx = ctx;
  15760. opt->params = params;
  15761. opt->iter = 0;
  15762. opt->nx = nx;
  15763. opt->just_initialized = true;
  15764. switch (opt->params.type) {
  15765. case GGML_OPT_ADAM:
  15766. {
  15767. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15768. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15769. opt->adam.pf = params.past > 0
  15770. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15771. : NULL;
  15772. ggml_set_zero(opt->adam.m);
  15773. ggml_set_zero(opt->adam.v);
  15774. if (opt->adam.pf) {
  15775. ggml_set_zero(opt->adam.pf);
  15776. }
  15777. } break;
  15778. case GGML_OPT_LBFGS:
  15779. {
  15780. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15781. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15782. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15783. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15784. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15785. opt->lbfgs.pf = params.past > 0
  15786. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15787. : NULL;
  15788. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15789. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15790. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15791. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15792. ggml_set_zero(opt->lbfgs.x);
  15793. ggml_set_zero(opt->lbfgs.xp);
  15794. ggml_set_zero(opt->lbfgs.g);
  15795. ggml_set_zero(opt->lbfgs.gp);
  15796. ggml_set_zero(opt->lbfgs.d);
  15797. if (opt->lbfgs.pf) {
  15798. ggml_set_zero(opt->lbfgs.pf);
  15799. }
  15800. ggml_set_zero(opt->lbfgs.lmal);
  15801. ggml_set_zero(opt->lbfgs.lmys);
  15802. ggml_set_zero(opt->lbfgs.lms);
  15803. ggml_set_zero(opt->lbfgs.lmy);
  15804. } break;
  15805. }
  15806. }
  15807. enum ggml_opt_result ggml_opt(
  15808. struct ggml_context * ctx,
  15809. struct ggml_opt_params params,
  15810. struct ggml_tensor * f) {
  15811. bool free_ctx = false;
  15812. if (ctx == NULL) {
  15813. struct ggml_init_params params_ctx = {
  15814. .mem_size = 16*1024*1024,
  15815. .mem_buffer = NULL,
  15816. .no_alloc = false,
  15817. };
  15818. ctx = ggml_init(params_ctx);
  15819. if (ctx == NULL) {
  15820. return GGML_OPT_NO_CONTEXT;
  15821. }
  15822. free_ctx = true;
  15823. }
  15824. enum ggml_opt_result result = GGML_OPT_OK;
  15825. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15826. ggml_opt_init(ctx, opt, params, 0);
  15827. result = ggml_opt_resume(ctx, opt, f);
  15828. if (free_ctx) {
  15829. ggml_free(ctx);
  15830. }
  15831. return result;
  15832. }
  15833. enum ggml_opt_result ggml_opt_resume(
  15834. struct ggml_context * ctx,
  15835. struct ggml_opt_context * opt,
  15836. struct ggml_tensor * f) {
  15837. // build forward + backward compute graphs
  15838. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15839. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  15840. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15841. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15842. *gf = ggml_build_forward (f);
  15843. *gb = ggml_build_backward(ctx, gf, true);
  15844. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15845. }
  15846. enum ggml_opt_result ggml_opt_resume_g(
  15847. struct ggml_context * ctx,
  15848. struct ggml_opt_context * opt,
  15849. struct ggml_tensor * f,
  15850. struct ggml_cgraph * gf,
  15851. struct ggml_cgraph * gb,
  15852. ggml_opt_callback callback,
  15853. void * callback_data) {
  15854. // build forward + backward compute graphs
  15855. enum ggml_opt_result result = GGML_OPT_OK;
  15856. switch (opt->params.type) {
  15857. case GGML_OPT_ADAM:
  15858. {
  15859. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15860. } break;
  15861. case GGML_OPT_LBFGS:
  15862. {
  15863. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15864. } break;
  15865. }
  15866. if (opt->params.print_forward_graph) {
  15867. ggml_graph_print (gf);
  15868. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15869. }
  15870. if (opt->params.print_backward_graph) {
  15871. ggml_graph_print (gb);
  15872. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15873. }
  15874. return result;
  15875. }
  15876. ////////////////////////////////////////////////////////////////////////////////
  15877. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15878. assert(k % QK4_0 == 0);
  15879. const int nb = k / QK4_0;
  15880. for (int b = 0; b < n; b += k) {
  15881. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15882. quantize_row_q4_0_reference(src + b, y, k);
  15883. for (int i = 0; i < nb; i++) {
  15884. for (int j = 0; j < QK4_0; j += 2) {
  15885. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15886. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15887. hist[vi0]++;
  15888. hist[vi1]++;
  15889. }
  15890. }
  15891. }
  15892. return (n/QK4_0*sizeof(block_q4_0));
  15893. }
  15894. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15895. assert(k % QK4_1 == 0);
  15896. const int nb = k / QK4_1;
  15897. for (int b = 0; b < n; b += k) {
  15898. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15899. quantize_row_q4_1_reference(src + b, y, k);
  15900. for (int i = 0; i < nb; i++) {
  15901. for (int j = 0; j < QK4_1; j += 2) {
  15902. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15903. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15904. hist[vi0]++;
  15905. hist[vi1]++;
  15906. }
  15907. }
  15908. }
  15909. return (n/QK4_1*sizeof(block_q4_1));
  15910. }
  15911. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15912. assert(k % QK5_0 == 0);
  15913. const int nb = k / QK5_0;
  15914. for (int b = 0; b < n; b += k) {
  15915. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15916. quantize_row_q5_0_reference(src + b, y, k);
  15917. for (int i = 0; i < nb; i++) {
  15918. uint32_t qh;
  15919. memcpy(&qh, &y[i].qh, sizeof(qh));
  15920. for (int j = 0; j < QK5_0; j += 2) {
  15921. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15922. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15923. // cast to 16 bins
  15924. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15925. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15926. hist[vi0]++;
  15927. hist[vi1]++;
  15928. }
  15929. }
  15930. }
  15931. return (n/QK5_0*sizeof(block_q5_0));
  15932. }
  15933. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15934. assert(k % QK5_1 == 0);
  15935. const int nb = k / QK5_1;
  15936. for (int b = 0; b < n; b += k) {
  15937. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15938. quantize_row_q5_1_reference(src + b, y, k);
  15939. for (int i = 0; i < nb; i++) {
  15940. uint32_t qh;
  15941. memcpy(&qh, &y[i].qh, sizeof(qh));
  15942. for (int j = 0; j < QK5_1; j += 2) {
  15943. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15944. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15945. // cast to 16 bins
  15946. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15947. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15948. hist[vi0]++;
  15949. hist[vi1]++;
  15950. }
  15951. }
  15952. }
  15953. return (n/QK5_1*sizeof(block_q5_1));
  15954. }
  15955. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15956. assert(k % QK8_0 == 0);
  15957. const int nb = k / QK8_0;
  15958. for (int b = 0; b < n; b += k) {
  15959. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15960. quantize_row_q8_0_reference(src + b, y, k);
  15961. for (int i = 0; i < nb; i++) {
  15962. for (int j = 0; j < QK8_0; ++j) {
  15963. const int8_t vi = y[i].qs[j];
  15964. hist[vi/16 + 8]++;
  15965. }
  15966. }
  15967. }
  15968. return (n/QK8_0*sizeof(block_q8_0));
  15969. }
  15970. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15971. size_t result = 0;
  15972. switch (type) {
  15973. case GGML_TYPE_Q4_0:
  15974. {
  15975. GGML_ASSERT(start % QK4_0 == 0);
  15976. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15977. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15978. } break;
  15979. case GGML_TYPE_Q4_1:
  15980. {
  15981. GGML_ASSERT(start % QK4_1 == 0);
  15982. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15983. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15984. } break;
  15985. case GGML_TYPE_Q5_0:
  15986. {
  15987. GGML_ASSERT(start % QK5_0 == 0);
  15988. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15989. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15990. } break;
  15991. case GGML_TYPE_Q5_1:
  15992. {
  15993. GGML_ASSERT(start % QK5_1 == 0);
  15994. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15995. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15996. } break;
  15997. case GGML_TYPE_Q8_0:
  15998. {
  15999. GGML_ASSERT(start % QK8_0 == 0);
  16000. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16001. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16002. } break;
  16003. #ifdef GGML_USE_K_QUANTS
  16004. case GGML_TYPE_Q2_K:
  16005. {
  16006. GGML_ASSERT(start % QK_K == 0);
  16007. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  16008. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  16009. } break;
  16010. case GGML_TYPE_Q3_K:
  16011. {
  16012. GGML_ASSERT(start % QK_K == 0);
  16013. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  16014. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  16015. } break;
  16016. case GGML_TYPE_Q4_K:
  16017. {
  16018. GGML_ASSERT(start % QK_K == 0);
  16019. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  16020. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  16021. } break;
  16022. case GGML_TYPE_Q5_K:
  16023. {
  16024. GGML_ASSERT(start % QK_K == 0);
  16025. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  16026. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  16027. } break;
  16028. case GGML_TYPE_Q6_K:
  16029. {
  16030. GGML_ASSERT(start % QK_K == 0);
  16031. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  16032. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  16033. } break;
  16034. #endif
  16035. case GGML_TYPE_F16:
  16036. {
  16037. int elemsize = sizeof(ggml_fp16_t);
  16038. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16039. result = n * elemsize;
  16040. } break;
  16041. case GGML_TYPE_F32:
  16042. {
  16043. int elemsize = sizeof(float);
  16044. result = n * elemsize;
  16045. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16046. } break;
  16047. default:
  16048. assert(false);
  16049. }
  16050. return result;
  16051. }
  16052. ////////////////////////////////////////////////////////////////////////////////
  16053. struct gguf_str {
  16054. uint64_t n; // GGUFv2
  16055. char * data;
  16056. };
  16057. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16058. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16059. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16060. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16061. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16062. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16063. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16064. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16065. [GGUF_TYPE_BOOL] = sizeof(bool),
  16066. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16067. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16068. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16069. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16070. [GGUF_TYPE_ARRAY] = 0, // undefined
  16071. };
  16072. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16073. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16074. [GGUF_TYPE_UINT8] = "u8",
  16075. [GGUF_TYPE_INT8] = "i8",
  16076. [GGUF_TYPE_UINT16] = "u16",
  16077. [GGUF_TYPE_INT16] = "i16",
  16078. [GGUF_TYPE_UINT32] = "u32",
  16079. [GGUF_TYPE_INT32] = "i32",
  16080. [GGUF_TYPE_FLOAT32] = "f32",
  16081. [GGUF_TYPE_BOOL] = "bool",
  16082. [GGUF_TYPE_STRING] = "str",
  16083. [GGUF_TYPE_ARRAY] = "arr",
  16084. [GGUF_TYPE_UINT64] = "u64",
  16085. [GGUF_TYPE_INT64] = "i64",
  16086. [GGUF_TYPE_FLOAT64] = "f64",
  16087. };
  16088. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16089. union gguf_value {
  16090. uint8_t uint8;
  16091. int8_t int8;
  16092. uint16_t uint16;
  16093. int16_t int16;
  16094. uint32_t uint32;
  16095. int32_t int32;
  16096. float float32;
  16097. uint64_t uint64;
  16098. int64_t int64;
  16099. double float64;
  16100. bool bool_;
  16101. struct gguf_str str;
  16102. struct {
  16103. enum gguf_type type;
  16104. uint64_t n; // GGUFv2
  16105. void * data;
  16106. } arr;
  16107. };
  16108. struct gguf_kv {
  16109. struct gguf_str key;
  16110. enum gguf_type type;
  16111. union gguf_value value;
  16112. };
  16113. struct gguf_header {
  16114. uint32_t magic;
  16115. uint32_t version;
  16116. uint64_t n_tensors; // GGUFv2
  16117. uint64_t n_kv; // GGUFv2
  16118. };
  16119. struct gguf_tensor_info {
  16120. struct gguf_str name;
  16121. uint32_t n_dims;
  16122. uint64_t ne[GGML_MAX_DIMS];
  16123. enum ggml_type type;
  16124. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16125. // for writing API
  16126. const void * data;
  16127. size_t size;
  16128. };
  16129. struct gguf_context {
  16130. struct gguf_header header;
  16131. struct gguf_kv * kv;
  16132. struct gguf_tensor_info * infos;
  16133. size_t alignment;
  16134. size_t offset; // offset of `data` from beginning of file
  16135. size_t size; // size of `data` in bytes
  16136. //uint8_t * padding;
  16137. void * data;
  16138. };
  16139. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16140. const size_t n = fread(dst, 1, size, file);
  16141. *offset += n;
  16142. return n == size;
  16143. }
  16144. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16145. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  16146. p->n = 0;
  16147. p->data = NULL;
  16148. bool ok = true;
  16149. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  16150. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16151. return ok;
  16152. }
  16153. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  16154. p->n = 0;
  16155. p->data = NULL;
  16156. bool ok = true;
  16157. uint32_t n = 0;
  16158. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  16159. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16160. return ok;
  16161. }
  16162. struct gguf_context * gguf_init_empty(void) {
  16163. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16164. ctx->header.magic = GGUF_MAGIC;
  16165. ctx->header.version = GGUF_VERSION;
  16166. ctx->header.n_tensors = 0;
  16167. ctx->header.n_kv = 0;
  16168. ctx->kv = NULL;
  16169. ctx->infos = NULL;
  16170. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16171. ctx->offset = 0;
  16172. ctx->size = 0;
  16173. ctx->data = NULL;
  16174. return ctx;
  16175. }
  16176. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16177. FILE * file = fopen(fname, "rb");
  16178. if (!file) {
  16179. return NULL;
  16180. }
  16181. // offset from start of file
  16182. size_t offset = 0;
  16183. uint32_t magic = 0;
  16184. // check the magic before making allocations
  16185. {
  16186. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16187. if (magic != GGUF_MAGIC) {
  16188. fprintf(stderr, "%s: invalid magic number %08x\n", __func__, magic);
  16189. fclose(file);
  16190. return NULL;
  16191. }
  16192. }
  16193. bool ok = true;
  16194. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16195. // read the header
  16196. {
  16197. ctx->header.magic = magic;
  16198. ctx->kv = NULL;
  16199. ctx->infos = NULL;
  16200. ctx->data = NULL;
  16201. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16202. if (ctx->header.version == 1) {
  16203. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16204. uint32_t n_tensors = 0;
  16205. uint32_t n_kv = 0;
  16206. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  16207. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  16208. ctx->header.n_tensors = n_tensors;
  16209. ctx->header.n_kv = n_kv;
  16210. } else {
  16211. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16212. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16213. }
  16214. if (!ok) {
  16215. fprintf(stderr, "%s: failed to read header\n", __func__);
  16216. fclose(file);
  16217. gguf_free(ctx);
  16218. return NULL;
  16219. }
  16220. }
  16221. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16222. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  16223. if (ctx->header.version == 1) {
  16224. gguf_fread_str = gguf_fread_str_v1;
  16225. }
  16226. // read the kv pairs
  16227. {
  16228. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  16229. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16230. struct gguf_kv * kv = &ctx->kv[i];
  16231. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16232. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16233. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16234. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16235. switch (kv->type) {
  16236. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16237. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16238. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16239. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16240. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16241. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16242. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16243. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16244. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16245. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16246. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16247. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16248. case GGUF_TYPE_ARRAY:
  16249. {
  16250. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16251. if (ctx->header.version == 1) {
  16252. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16253. uint32_t n = 0;
  16254. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  16255. kv->value.arr.n = n;
  16256. } else {
  16257. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16258. }
  16259. switch (kv->value.arr.type) {
  16260. case GGUF_TYPE_UINT8:
  16261. case GGUF_TYPE_INT8:
  16262. case GGUF_TYPE_UINT16:
  16263. case GGUF_TYPE_INT16:
  16264. case GGUF_TYPE_UINT32:
  16265. case GGUF_TYPE_INT32:
  16266. case GGUF_TYPE_FLOAT32:
  16267. case GGUF_TYPE_UINT64:
  16268. case GGUF_TYPE_INT64:
  16269. case GGUF_TYPE_FLOAT64:
  16270. case GGUF_TYPE_BOOL:
  16271. {
  16272. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16273. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  16274. } break;
  16275. case GGUF_TYPE_STRING:
  16276. {
  16277. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  16278. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16279. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16280. }
  16281. } break;
  16282. case GGUF_TYPE_ARRAY:
  16283. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16284. };
  16285. } break;
  16286. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16287. };
  16288. if (!ok) {
  16289. break;
  16290. }
  16291. }
  16292. if (!ok) {
  16293. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16294. fclose(file);
  16295. gguf_free(ctx);
  16296. return NULL;
  16297. }
  16298. }
  16299. // read the tensor infos
  16300. {
  16301. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16302. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16303. struct gguf_tensor_info * info = &ctx->infos[i];
  16304. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16305. info->ne[j] = 1;
  16306. }
  16307. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16308. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16309. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16310. if (ctx->header.version == 1) {
  16311. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  16312. uint32_t t = 0;
  16313. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  16314. info->ne[j] = t;
  16315. } else {
  16316. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16317. }
  16318. }
  16319. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16320. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16321. if (!ok) {
  16322. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16323. fclose(file);
  16324. gguf_free(ctx);
  16325. return NULL;
  16326. }
  16327. }
  16328. }
  16329. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16330. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16331. if (alignment_idx != -1) {
  16332. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16333. }
  16334. // we require the data section to be aligned, so take into account any padding
  16335. {
  16336. const size_t offset_pad = offset % ctx->alignment;
  16337. if (offset_pad != 0) {
  16338. offset += ctx->alignment - offset_pad;
  16339. fseek(file, offset, SEEK_SET);
  16340. }
  16341. }
  16342. // store the current file offset - this is where the data section starts
  16343. ctx->offset = offset;
  16344. // compute the total size of the data section, taking into account the alignment
  16345. {
  16346. ctx->size = 0;
  16347. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16348. struct gguf_tensor_info * info = &ctx->infos[i];
  16349. const int64_t ne =
  16350. (int64_t) info->ne[0] *
  16351. (int64_t) info->ne[1] *
  16352. (int64_t) info->ne[2] *
  16353. (int64_t) info->ne[3];
  16354. if (ne % ggml_blck_size(info->type) != 0) {
  16355. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16356. __func__, info->name.data, ne, ggml_blck_size(info->type));
  16357. fclose(file);
  16358. gguf_free(ctx);
  16359. return NULL;
  16360. }
  16361. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  16362. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16363. }
  16364. }
  16365. // load the tensor data only if requested
  16366. if (params.ctx != NULL) {
  16367. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16368. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16369. // the ggml_tensor structs to the appropriate locations in the binary blob
  16370. // compute the exact size needed for the new ggml_context
  16371. const size_t mem_size =
  16372. params.no_alloc ?
  16373. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16374. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16375. struct ggml_init_params pdata = {
  16376. .mem_size = mem_size,
  16377. .mem_buffer = NULL,
  16378. .no_alloc = params.no_alloc,
  16379. };
  16380. *params.ctx = ggml_init(pdata);
  16381. struct ggml_context * ctx_data = *params.ctx;
  16382. struct ggml_tensor * data = NULL;
  16383. if (!params.no_alloc) {
  16384. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16385. ok = ok && data != NULL;
  16386. // read the binary blob with the tensor data
  16387. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16388. if (!ok) {
  16389. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16390. fclose(file);
  16391. ggml_free(ctx_data);
  16392. gguf_free(ctx);
  16393. return NULL;
  16394. }
  16395. ctx->data = data->data;
  16396. }
  16397. ggml_set_no_alloc(ctx_data, true);
  16398. // create the tensors
  16399. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16400. const int64_t ne[GGML_MAX_DIMS] = {
  16401. ctx->infos[i].ne[0],
  16402. ctx->infos[i].ne[1],
  16403. ctx->infos[i].ne[2],
  16404. ctx->infos[i].ne[3],
  16405. };
  16406. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16407. ok = ok && cur != NULL;
  16408. ggml_set_name(cur, ctx->infos[i].name.data);
  16409. if (!ok) {
  16410. break;
  16411. }
  16412. // point the data member to the appropriate location in the binary blob using the tensor infos
  16413. if (!params.no_alloc) {
  16414. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16415. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16416. }
  16417. }
  16418. if (!ok) {
  16419. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16420. fclose(file);
  16421. ggml_free(ctx_data);
  16422. gguf_free(ctx);
  16423. return NULL;
  16424. }
  16425. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16426. }
  16427. fclose(file);
  16428. return ctx;
  16429. }
  16430. void gguf_free(struct gguf_context * ctx) {
  16431. if (ctx == NULL) {
  16432. return;
  16433. }
  16434. if (ctx->kv) {
  16435. // free string memory - not great..
  16436. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16437. struct gguf_kv * kv = &ctx->kv[i];
  16438. if (kv->key.data) {
  16439. free(kv->key.data);
  16440. }
  16441. if (kv->type == GGUF_TYPE_STRING) {
  16442. if (kv->value.str.data) {
  16443. free(kv->value.str.data);
  16444. }
  16445. }
  16446. if (kv->type == GGUF_TYPE_ARRAY) {
  16447. if (kv->value.arr.data) {
  16448. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16449. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16450. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16451. if (str->data) {
  16452. free(str->data);
  16453. }
  16454. }
  16455. }
  16456. free(kv->value.arr.data);
  16457. }
  16458. }
  16459. }
  16460. free(ctx->kv);
  16461. }
  16462. if (ctx->infos) {
  16463. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16464. struct gguf_tensor_info * info = &ctx->infos[i];
  16465. if (info->name.data) {
  16466. free(info->name.data);
  16467. }
  16468. }
  16469. free(ctx->infos);
  16470. }
  16471. GGML_ALIGNED_FREE(ctx);
  16472. }
  16473. const char * gguf_type_name(enum gguf_type type) {
  16474. return GGUF_TYPE_NAME[type];
  16475. }
  16476. int gguf_get_version(struct gguf_context * ctx) {
  16477. return ctx->header.version;
  16478. }
  16479. size_t gguf_get_alignment(struct gguf_context * ctx) {
  16480. return ctx->alignment;
  16481. }
  16482. size_t gguf_get_data_offset(struct gguf_context * ctx) {
  16483. return ctx->offset;
  16484. }
  16485. void * gguf_get_data(struct gguf_context * ctx) {
  16486. return ctx->data;
  16487. }
  16488. int gguf_get_n_kv(struct gguf_context * ctx) {
  16489. return ctx->header.n_kv;
  16490. }
  16491. int gguf_find_key(struct gguf_context * ctx, const char * key) {
  16492. // return -1 if key not found
  16493. int keyfound = -1;
  16494. const int n_kv = gguf_get_n_kv(ctx);
  16495. for (int i = 0; i < n_kv; ++i) {
  16496. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16497. keyfound = i;
  16498. break;
  16499. }
  16500. }
  16501. return keyfound;
  16502. }
  16503. const char * gguf_get_key(struct gguf_context * ctx, int i) {
  16504. return ctx->kv[i].key.data;
  16505. }
  16506. enum gguf_type gguf_get_kv_type(struct gguf_context * ctx, int i) {
  16507. return ctx->kv[i].type;
  16508. }
  16509. enum gguf_type gguf_get_arr_type(struct gguf_context * ctx, int i) {
  16510. return ctx->kv[i].value.arr.type;
  16511. }
  16512. const void * gguf_get_arr_data(struct gguf_context * ctx, int i) {
  16513. return ctx->kv[i].value.arr.data;
  16514. }
  16515. const char * gguf_get_arr_str(struct gguf_context * ctx, int key_id, int i) {
  16516. struct gguf_kv * kv = &ctx->kv[key_id];
  16517. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16518. return str->data;
  16519. }
  16520. int gguf_get_arr_n(struct gguf_context * ctx, int i) {
  16521. return ctx->kv[i].value.arr.n;
  16522. }
  16523. uint8_t gguf_get_val_u8(struct gguf_context * ctx, int i) {
  16524. return ctx->kv[i].value.uint8;
  16525. }
  16526. int8_t gguf_get_val_i8(struct gguf_context * ctx, int i) {
  16527. return ctx->kv[i].value.int8;
  16528. }
  16529. uint16_t gguf_get_val_u16(struct gguf_context * ctx, int i) {
  16530. return ctx->kv[i].value.uint16;
  16531. }
  16532. int16_t gguf_get_val_i16(struct gguf_context * ctx, int i) {
  16533. return ctx->kv[i].value.int16;
  16534. }
  16535. uint32_t gguf_get_val_u32(struct gguf_context * ctx, int i) {
  16536. return ctx->kv[i].value.uint32;
  16537. }
  16538. int32_t gguf_get_val_i32(struct gguf_context * ctx, int i) {
  16539. return ctx->kv[i].value.int32;
  16540. }
  16541. float gguf_get_val_f32(struct gguf_context * ctx, int i) {
  16542. return ctx->kv[i].value.float32;
  16543. }
  16544. uint64_t gguf_get_val_u64(struct gguf_context * ctx, int i) {
  16545. return ctx->kv[i].value.uint64;
  16546. }
  16547. int64_t gguf_get_val_i64(struct gguf_context * ctx, int i) {
  16548. return ctx->kv[i].value.int64;
  16549. }
  16550. double gguf_get_val_f64(struct gguf_context * ctx, int i) {
  16551. return ctx->kv[i].value.float64;
  16552. }
  16553. bool gguf_get_val_bool(struct gguf_context * ctx, int i) {
  16554. return ctx->kv[i].value.bool_;
  16555. }
  16556. const char * gguf_get_val_str (struct gguf_context * ctx, int i) {
  16557. return ctx->kv[i].value.str.data;
  16558. }
  16559. int gguf_get_n_tensors(struct gguf_context * ctx) {
  16560. return ctx->header.n_tensors;
  16561. }
  16562. int gguf_find_tensor(struct gguf_context * ctx, const char * name) {
  16563. // return -1 if tensor not found
  16564. int tensorfound = -1;
  16565. const int n_tensors = gguf_get_n_tensors(ctx);
  16566. for (int i = 0; i < n_tensors; ++i) {
  16567. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16568. tensorfound = i;
  16569. break;
  16570. }
  16571. }
  16572. return tensorfound;
  16573. }
  16574. size_t gguf_get_tensor_offset(struct gguf_context * ctx, int i) {
  16575. return ctx->infos[i].offset;
  16576. }
  16577. char * gguf_get_tensor_name(struct gguf_context * ctx, int i) {
  16578. return ctx->infos[i].name.data;
  16579. }
  16580. // returns the index
  16581. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16582. const int idx = gguf_find_key(ctx, key);
  16583. if (idx >= 0) {
  16584. return idx;
  16585. }
  16586. const int n_kv = gguf_get_n_kv(ctx);
  16587. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16588. ctx->kv[n_kv].key.n = strlen(key);
  16589. ctx->kv[n_kv].key.data = strdup(key);
  16590. ctx->header.n_kv++;
  16591. return n_kv;
  16592. }
  16593. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16594. const int idx = gguf_get_or_add_key(ctx, key);
  16595. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16596. ctx->kv[idx].value.uint8 = val;
  16597. }
  16598. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16599. const int idx = gguf_get_or_add_key(ctx, key);
  16600. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16601. ctx->kv[idx].value.int8 = val;
  16602. }
  16603. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16604. const int idx = gguf_get_or_add_key(ctx, key);
  16605. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16606. ctx->kv[idx].value.uint16 = val;
  16607. }
  16608. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16609. const int idx = gguf_get_or_add_key(ctx, key);
  16610. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16611. ctx->kv[idx].value.int16 = val;
  16612. }
  16613. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16614. const int idx = gguf_get_or_add_key(ctx, key);
  16615. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16616. ctx->kv[idx].value.uint32 = val;
  16617. }
  16618. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16619. const int idx = gguf_get_or_add_key(ctx, key);
  16620. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16621. ctx->kv[idx].value.int32 = val;
  16622. }
  16623. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16624. const int idx = gguf_get_or_add_key(ctx, key);
  16625. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16626. ctx->kv[idx].value.float32 = val;
  16627. }
  16628. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16629. const int idx = gguf_get_or_add_key(ctx, key);
  16630. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16631. ctx->kv[idx].value.uint64 = val;
  16632. }
  16633. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16634. const int idx = gguf_get_or_add_key(ctx, key);
  16635. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16636. ctx->kv[idx].value.int64 = val;
  16637. }
  16638. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16639. const int idx = gguf_get_or_add_key(ctx, key);
  16640. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16641. ctx->kv[idx].value.float64 = val;
  16642. }
  16643. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16644. const int idx = gguf_get_or_add_key(ctx, key);
  16645. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16646. ctx->kv[idx].value.bool_ = val;
  16647. }
  16648. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16649. const int idx = gguf_get_or_add_key(ctx, key);
  16650. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16651. ctx->kv[idx].value.str.n = strlen(val);
  16652. ctx->kv[idx].value.str.data = strdup(val);
  16653. }
  16654. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16655. const int idx = gguf_get_or_add_key(ctx, key);
  16656. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16657. ctx->kv[idx].value.arr.type = type;
  16658. ctx->kv[idx].value.arr.n = n;
  16659. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  16660. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  16661. }
  16662. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16663. const int idx = gguf_get_or_add_key(ctx, key);
  16664. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16665. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16666. ctx->kv[idx].value.arr.n = n;
  16667. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  16668. for (int i = 0; i < n; i++) {
  16669. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16670. str->n = strlen(data[i]);
  16671. str->data = strdup(data[i]);
  16672. }
  16673. }
  16674. // set or add KV pairs from another context
  16675. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16676. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16677. switch (src->kv[i].type) {
  16678. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16679. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16680. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16681. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16682. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16683. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16684. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16685. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16686. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16687. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16688. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16689. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16690. case GGUF_TYPE_ARRAY:
  16691. {
  16692. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16693. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  16694. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16695. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16696. }
  16697. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16698. free(data);
  16699. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16700. GGML_ASSERT(false && "nested arrays not supported");
  16701. } else {
  16702. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16703. }
  16704. } break;
  16705. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16706. }
  16707. }
  16708. }
  16709. void gguf_add_tensor(
  16710. struct gguf_context * ctx,
  16711. const struct ggml_tensor * tensor) {
  16712. const int idx = ctx->header.n_tensors;
  16713. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16714. ctx->infos[idx].name.n = strlen(tensor->name);
  16715. ctx->infos[idx].name.data = strdup(tensor->name);
  16716. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16717. ctx->infos[idx].ne[i] = 1;
  16718. }
  16719. ctx->infos[idx].n_dims = tensor->n_dims;
  16720. for (int i = 0; i < tensor->n_dims; i++) {
  16721. ctx->infos[idx].ne[i] = tensor->ne[i];
  16722. }
  16723. ctx->infos[idx].type = tensor->type;
  16724. ctx->infos[idx].offset = 0;
  16725. ctx->infos[idx].data = tensor->data;
  16726. ctx->infos[idx].size = ggml_nbytes(tensor);
  16727. if (ctx->header.n_tensors > 0) {
  16728. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  16729. }
  16730. ctx->header.n_tensors++;
  16731. }
  16732. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  16733. const int idx = gguf_find_tensor(ctx, name);
  16734. if (idx < 0) {
  16735. GGML_ASSERT(false && "tensor not found");
  16736. }
  16737. ctx->infos[idx].type = type;
  16738. }
  16739. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  16740. const int idx = gguf_find_tensor(ctx, name);
  16741. if (idx < 0) {
  16742. GGML_ASSERT(false && "tensor not found");
  16743. }
  16744. ctx->infos[idx].data = data;
  16745. ctx->infos[idx].size = size;
  16746. // update offsets
  16747. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  16748. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  16749. }
  16750. }
  16751. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  16752. // fwrite(&val->n, sizeof(val->n), 1, file);
  16753. // fwrite(val->data, sizeof(char), val->n, file);
  16754. //}
  16755. //
  16756. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  16757. // fwrite(val, sizeof(char), size, file);
  16758. //}
  16759. struct gguf_buf {
  16760. void * data;
  16761. size_t size;
  16762. size_t offset;
  16763. };
  16764. static struct gguf_buf gguf_buf_init(size_t size) {
  16765. struct gguf_buf buf = {
  16766. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  16767. /*buf.size =*/ size,
  16768. /*buf.offset =*/ 0,
  16769. };
  16770. return buf;
  16771. }
  16772. static void gguf_buf_free(struct gguf_buf buf) {
  16773. if (buf.data) {
  16774. free(buf.data);
  16775. }
  16776. }
  16777. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  16778. if (buf->offset + size > buf->size) {
  16779. buf->size = 1.5*(buf->offset + size);
  16780. if (buf->data) {
  16781. buf->data = realloc(buf->data, buf->size);
  16782. }
  16783. }
  16784. }
  16785. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  16786. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  16787. if (buf->data) {
  16788. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  16789. }
  16790. buf->offset += sizeof(val->n);
  16791. if (buf->data) {
  16792. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  16793. }
  16794. buf->offset += val->n;
  16795. }
  16796. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  16797. gguf_buf_grow(buf, el_size);
  16798. if (buf->data) {
  16799. memcpy((char *) buf->data + buf->offset, val, el_size);
  16800. }
  16801. buf->offset += el_size;
  16802. }
  16803. static void gguf_write_to_buf(struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  16804. // write header
  16805. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  16806. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  16807. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  16808. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  16809. // write key-value pairs
  16810. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  16811. struct gguf_kv * kv = &ctx->kv[i];
  16812. gguf_bwrite_str(buf, &kv->key);
  16813. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  16814. switch (kv->type) {
  16815. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  16816. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  16817. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  16818. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  16819. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  16820. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  16821. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  16822. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  16823. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  16824. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  16825. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  16826. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  16827. case GGUF_TYPE_ARRAY:
  16828. {
  16829. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  16830. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  16831. switch (kv->value.arr.type) {
  16832. case GGUF_TYPE_UINT8:
  16833. case GGUF_TYPE_INT8:
  16834. case GGUF_TYPE_UINT16:
  16835. case GGUF_TYPE_INT16:
  16836. case GGUF_TYPE_UINT32:
  16837. case GGUF_TYPE_INT32:
  16838. case GGUF_TYPE_FLOAT32:
  16839. case GGUF_TYPE_UINT64:
  16840. case GGUF_TYPE_INT64:
  16841. case GGUF_TYPE_FLOAT64:
  16842. case GGUF_TYPE_BOOL:
  16843. {
  16844. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  16845. } break;
  16846. case GGUF_TYPE_STRING:
  16847. {
  16848. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  16849. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  16850. }
  16851. } break;
  16852. case GGUF_TYPE_ARRAY:
  16853. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  16854. };
  16855. } break;
  16856. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  16857. };
  16858. }
  16859. // write tensor infos
  16860. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16861. struct gguf_tensor_info * info = &ctx->infos[i];
  16862. gguf_bwrite_str(buf, &info->name);
  16863. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  16864. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16865. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  16866. }
  16867. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  16868. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  16869. }
  16870. // we require the data section to be aligned, so take into account any padding
  16871. {
  16872. const size_t offset = buf->offset;
  16873. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  16874. if (offset_pad != offset) {
  16875. uint8_t pad = 0;
  16876. for (size_t i = 0; i < offset_pad - offset; ++i) {
  16877. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16878. }
  16879. }
  16880. }
  16881. if (only_meta) {
  16882. return;
  16883. }
  16884. size_t offset = 0;
  16885. // write tensor data
  16886. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  16887. struct gguf_tensor_info * info = &ctx->infos[i];
  16888. const size_t size = info->size;
  16889. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  16890. gguf_bwrite_el(buf, info->data, size);
  16891. if (size_pad != size) {
  16892. uint8_t pad = 0;
  16893. for (size_t j = 0; j < size_pad - size; ++j) {
  16894. gguf_bwrite_el(buf, &pad, sizeof(pad));
  16895. }
  16896. }
  16897. GGML_ASSERT(offset == info->offset);
  16898. offset += size_pad;
  16899. }
  16900. }
  16901. void gguf_write_to_file(struct gguf_context * ctx, const char * fname, bool only_meta) {
  16902. FILE * file = fopen(fname, "wb");
  16903. if (!file) {
  16904. GGML_ASSERT(false && "failed to open file for writing");
  16905. }
  16906. struct gguf_buf buf = gguf_buf_init(16*1024);
  16907. gguf_write_to_buf(ctx, &buf, only_meta);
  16908. fwrite(buf.data, 1, buf.offset, file);
  16909. gguf_buf_free(buf);
  16910. fclose(file);
  16911. }
  16912. size_t gguf_get_meta_size(struct gguf_context * ctx) {
  16913. // no allocs - only compute size
  16914. struct gguf_buf buf = gguf_buf_init(0);
  16915. gguf_write_to_buf(ctx, &buf, true);
  16916. return buf.offset;
  16917. }
  16918. void gguf_get_meta_data(struct gguf_context * ctx, void * data) {
  16919. struct gguf_buf buf = gguf_buf_init(16*1024);
  16920. gguf_write_to_buf(ctx, &buf, true);
  16921. memcpy(data, buf.data, buf.offset);
  16922. gguf_buf_free(buf);
  16923. }
  16924. ////////////////////////////////////////////////////////////////////////////////
  16925. int ggml_cpu_has_avx(void) {
  16926. #if defined(__AVX__)
  16927. return 1;
  16928. #else
  16929. return 0;
  16930. #endif
  16931. }
  16932. int ggml_cpu_has_avx2(void) {
  16933. #if defined(__AVX2__)
  16934. return 1;
  16935. #else
  16936. return 0;
  16937. #endif
  16938. }
  16939. int ggml_cpu_has_avx512(void) {
  16940. #if defined(__AVX512F__)
  16941. return 1;
  16942. #else
  16943. return 0;
  16944. #endif
  16945. }
  16946. int ggml_cpu_has_avx512_vbmi(void) {
  16947. #if defined(__AVX512VBMI__)
  16948. return 1;
  16949. #else
  16950. return 0;
  16951. #endif
  16952. }
  16953. int ggml_cpu_has_avx512_vnni(void) {
  16954. #if defined(__AVX512VNNI__)
  16955. return 1;
  16956. #else
  16957. return 0;
  16958. #endif
  16959. }
  16960. int ggml_cpu_has_fma(void) {
  16961. #if defined(__FMA__)
  16962. return 1;
  16963. #else
  16964. return 0;
  16965. #endif
  16966. }
  16967. int ggml_cpu_has_neon(void) {
  16968. #if defined(__ARM_NEON)
  16969. return 1;
  16970. #else
  16971. return 0;
  16972. #endif
  16973. }
  16974. int ggml_cpu_has_arm_fma(void) {
  16975. #if defined(__ARM_FEATURE_FMA)
  16976. return 1;
  16977. #else
  16978. return 0;
  16979. #endif
  16980. }
  16981. int ggml_cpu_has_f16c(void) {
  16982. #if defined(__F16C__)
  16983. return 1;
  16984. #else
  16985. return 0;
  16986. #endif
  16987. }
  16988. int ggml_cpu_has_fp16_va(void) {
  16989. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  16990. return 1;
  16991. #else
  16992. return 0;
  16993. #endif
  16994. }
  16995. int ggml_cpu_has_wasm_simd(void) {
  16996. #if defined(__wasm_simd128__)
  16997. return 1;
  16998. #else
  16999. return 0;
  17000. #endif
  17001. }
  17002. int ggml_cpu_has_blas(void) {
  17003. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  17004. return 1;
  17005. #else
  17006. return 0;
  17007. #endif
  17008. }
  17009. int ggml_cpu_has_cublas(void) {
  17010. #if defined(GGML_USE_CUBLAS)
  17011. return 1;
  17012. #else
  17013. return 0;
  17014. #endif
  17015. }
  17016. int ggml_cpu_has_clblast(void) {
  17017. #if defined(GGML_USE_CLBLAST)
  17018. return 1;
  17019. #else
  17020. return 0;
  17021. #endif
  17022. }
  17023. int ggml_cpu_has_gpublas(void) {
  17024. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  17025. }
  17026. int ggml_cpu_has_sse3(void) {
  17027. #if defined(__SSE3__)
  17028. return 1;
  17029. #else
  17030. return 0;
  17031. #endif
  17032. }
  17033. int ggml_cpu_has_ssse3(void) {
  17034. #if defined(__SSSE3__)
  17035. return 1;
  17036. #else
  17037. return 0;
  17038. #endif
  17039. }
  17040. int ggml_cpu_has_vsx(void) {
  17041. #if defined(__POWER9_VECTOR__)
  17042. return 1;
  17043. #else
  17044. return 0;
  17045. #endif
  17046. }
  17047. ////////////////////////////////////////////////////////////////////////////////