ggml.c 675 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. // note: do not use these inside ggml.c
  271. // these are meant to be used via the ggml.h API
  272. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  273. return GGML_FP16_TO_FP32(x);
  274. }
  275. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  276. return GGML_FP32_TO_FP16(x);
  277. }
  278. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  279. for (int i = 0; i < n; i++) {
  280. y[i] = GGML_FP16_TO_FP32(x[i]);
  281. }
  282. }
  283. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  284. int i = 0;
  285. #if defined(__F16C__)
  286. for (; i + 7 < n; i += 8) {
  287. __m256 x_vec = _mm256_loadu_ps(x + i);
  288. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  289. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  290. }
  291. for(; i + 3 < n; i += 4) {
  292. __m128 x_vec = _mm_loadu_ps(x + i);
  293. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  294. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  295. }
  296. #endif
  297. for (; i < n; i++) {
  298. y[i] = GGML_FP32_TO_FP16(x[i]);
  299. }
  300. }
  301. //
  302. // timing
  303. //
  304. #if defined(_MSC_VER) || defined(__MINGW32__)
  305. static int64_t timer_freq, timer_start;
  306. void ggml_time_init(void) {
  307. LARGE_INTEGER t;
  308. QueryPerformanceFrequency(&t);
  309. timer_freq = t.QuadPart;
  310. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  311. // and the uptime is high enough.
  312. // We subtract the program start time to reduce the likelihood of that happening.
  313. QueryPerformanceCounter(&t);
  314. timer_start = t.QuadPart;
  315. }
  316. int64_t ggml_time_ms(void) {
  317. LARGE_INTEGER t;
  318. QueryPerformanceCounter(&t);
  319. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  320. }
  321. int64_t ggml_time_us(void) {
  322. LARGE_INTEGER t;
  323. QueryPerformanceCounter(&t);
  324. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  325. }
  326. #else
  327. void ggml_time_init(void) {}
  328. int64_t ggml_time_ms(void) {
  329. struct timespec ts;
  330. clock_gettime(CLOCK_MONOTONIC, &ts);
  331. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  332. }
  333. int64_t ggml_time_us(void) {
  334. struct timespec ts;
  335. clock_gettime(CLOCK_MONOTONIC, &ts);
  336. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  337. }
  338. #endif
  339. int64_t ggml_cycles(void) {
  340. return clock();
  341. }
  342. int64_t ggml_cycles_per_ms(void) {
  343. return CLOCKS_PER_SEC/1000;
  344. }
  345. #ifdef GGML_PERF
  346. #define ggml_perf_time_ms() ggml_time_ms()
  347. #define ggml_perf_time_us() ggml_time_us()
  348. #define ggml_perf_cycles() ggml_cycles()
  349. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  350. #else
  351. #define ggml_perf_time_ms() 0
  352. #define ggml_perf_time_us() 0
  353. #define ggml_perf_cycles() 0
  354. #define ggml_perf_cycles_per_ms() 0
  355. #endif
  356. //
  357. // cache line
  358. //
  359. #if defined(__cpp_lib_hardware_interference_size)
  360. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  361. #else
  362. #if defined(__POWER9_VECTOR__)
  363. #define CACHE_LINE_SIZE 128
  364. #else
  365. #define CACHE_LINE_SIZE 64
  366. #endif
  367. #endif
  368. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  369. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  370. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  371. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  372. [GGML_TYPE_I8] = {
  373. .type_name = "i8",
  374. .blck_size = 1,
  375. .type_size = sizeof(int8_t),
  376. .is_quantized = false,
  377. },
  378. [GGML_TYPE_I16] = {
  379. .type_name = "i16",
  380. .blck_size = 1,
  381. .type_size = sizeof(int16_t),
  382. .is_quantized = false,
  383. },
  384. [GGML_TYPE_I32] = {
  385. .type_name = "i32",
  386. .blck_size = 1,
  387. .type_size = sizeof(int32_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_F32] = {
  391. .type_name = "f32",
  392. .blck_size = 1,
  393. .type_size = sizeof(float),
  394. .is_quantized = false,
  395. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  396. .vec_dot_type = GGML_TYPE_F32,
  397. .nrows = 1,
  398. },
  399. [GGML_TYPE_F16] = {
  400. .type_name = "f16",
  401. .blck_size = 1,
  402. .type_size = sizeof(ggml_fp16_t),
  403. .is_quantized = false,
  404. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  405. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  406. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  407. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  408. .vec_dot_type = GGML_TYPE_F16,
  409. .nrows = 1,
  410. },
  411. [GGML_TYPE_Q4_0] = {
  412. .type_name = "q4_0",
  413. .blck_size = QK4_0,
  414. .type_size = sizeof(block_q4_0),
  415. .is_quantized = true,
  416. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  417. .from_float = quantize_row_q4_0,
  418. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  419. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  420. .vec_dot_type = GGML_TYPE_Q8_0,
  421. #if defined (__ARM_FEATURE_MATMUL_INT8)
  422. .nrows = 2,
  423. #else
  424. .nrows = 1,
  425. #endif
  426. },
  427. [GGML_TYPE_Q4_1] = {
  428. .type_name = "q4_1",
  429. .blck_size = QK4_1,
  430. .type_size = sizeof(block_q4_1),
  431. .is_quantized = true,
  432. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  433. .from_float = quantize_row_q4_1,
  434. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  435. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  436. .vec_dot_type = GGML_TYPE_Q8_1,
  437. #if defined (__ARM_FEATURE_MATMUL_INT8)
  438. .nrows = 2,
  439. #else
  440. .nrows = 1,
  441. #endif
  442. },
  443. [4] = { // GGML_TYPE_Q4_2
  444. .type_name = "DEPRECATED",
  445. .blck_size = 0,
  446. .type_size = 0,
  447. .is_quantized = false,
  448. .to_float = NULL,
  449. .from_float = NULL,
  450. .from_float_reference = NULL,
  451. .vec_dot = NULL,
  452. .vec_dot_type = GGML_TYPE_COUNT,
  453. .nrows = 1,
  454. },
  455. [5] = { // GGML_TYPE_Q4_3
  456. .type_name = "DEPRECATED",
  457. .blck_size = 0,
  458. .type_size = 0,
  459. .is_quantized = false,
  460. .to_float = NULL,
  461. .from_float = NULL,
  462. .from_float_reference = NULL,
  463. .vec_dot = NULL,
  464. .vec_dot_type = GGML_TYPE_COUNT,
  465. .nrows = 1,
  466. },
  467. [GGML_TYPE_Q5_0] = {
  468. .type_name = "q5_0",
  469. .blck_size = QK5_0,
  470. .type_size = sizeof(block_q5_0),
  471. .is_quantized = true,
  472. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  473. .from_float = quantize_row_q5_0,
  474. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  475. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  476. .vec_dot_type = GGML_TYPE_Q8_0,
  477. .nrows = 1,
  478. },
  479. [GGML_TYPE_Q5_1] = {
  480. .type_name = "q5_1",
  481. .blck_size = QK5_1,
  482. .type_size = sizeof(block_q5_1),
  483. .is_quantized = true,
  484. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  485. .from_float = quantize_row_q5_1,
  486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  487. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  488. .vec_dot_type = GGML_TYPE_Q8_1,
  489. .nrows = 1,
  490. },
  491. [GGML_TYPE_Q8_0] = {
  492. .type_name = "q8_0",
  493. .blck_size = QK8_0,
  494. .type_size = sizeof(block_q8_0),
  495. .is_quantized = true,
  496. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  497. .from_float = quantize_row_q8_0,
  498. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  499. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  500. .vec_dot_type = GGML_TYPE_Q8_0,
  501. #if defined (__ARM_FEATURE_MATMUL_INT8)
  502. .nrows = 2,
  503. #else
  504. .nrows = 1,
  505. #endif
  506. },
  507. [GGML_TYPE_Q8_1] = {
  508. .type_name = "q8_1",
  509. .blck_size = QK8_1,
  510. .type_size = sizeof(block_q8_1),
  511. .is_quantized = true,
  512. .from_float = quantize_row_q8_1,
  513. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  514. .vec_dot_type = GGML_TYPE_Q8_1,
  515. .nrows = 1,
  516. },
  517. [GGML_TYPE_Q2_K] = {
  518. .type_name = "q2_K",
  519. .blck_size = QK_K,
  520. .type_size = sizeof(block_q2_K),
  521. .is_quantized = true,
  522. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  523. .from_float = quantize_row_q2_K,
  524. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  525. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  526. .vec_dot_type = GGML_TYPE_Q8_K,
  527. .nrows = 1,
  528. },
  529. [GGML_TYPE_Q3_K] = {
  530. .type_name = "q3_K",
  531. .blck_size = QK_K,
  532. .type_size = sizeof(block_q3_K),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  535. .from_float = quantize_row_q3_K,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  537. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  538. .vec_dot_type = GGML_TYPE_Q8_K,
  539. .nrows = 1,
  540. },
  541. [GGML_TYPE_Q4_K] = {
  542. .type_name = "q4_K",
  543. .blck_size = QK_K,
  544. .type_size = sizeof(block_q4_K),
  545. .is_quantized = true,
  546. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  547. .from_float = quantize_row_q4_K,
  548. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  549. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  550. .vec_dot_type = GGML_TYPE_Q8_K,
  551. .nrows = 1,
  552. },
  553. [GGML_TYPE_Q5_K] = {
  554. .type_name = "q5_K",
  555. .blck_size = QK_K,
  556. .type_size = sizeof(block_q5_K),
  557. .is_quantized = true,
  558. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  559. .from_float = quantize_row_q5_K,
  560. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  561. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  562. .vec_dot_type = GGML_TYPE_Q8_K,
  563. .nrows = 1,
  564. },
  565. [GGML_TYPE_Q6_K] = {
  566. .type_name = "q6_K",
  567. .blck_size = QK_K,
  568. .type_size = sizeof(block_q6_K),
  569. .is_quantized = true,
  570. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  571. .from_float = quantize_row_q6_K,
  572. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  573. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  574. .vec_dot_type = GGML_TYPE_Q8_K,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_IQ2_XXS] = {
  578. .type_name = "iq2_xxs",
  579. .blck_size = QK_K,
  580. .type_size = sizeof(block_iq2_xxs),
  581. .is_quantized = true,
  582. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  583. .from_float = NULL,
  584. .from_float_reference = NULL,
  585. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  586. .vec_dot_type = GGML_TYPE_Q8_K,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_IQ2_XS] = {
  590. .type_name = "iq2_xs",
  591. .blck_size = QK_K,
  592. .type_size = sizeof(block_iq2_xs),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  595. .from_float = NULL,
  596. .from_float_reference = NULL,
  597. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  598. .vec_dot_type = GGML_TYPE_Q8_K,
  599. .nrows = 1,
  600. },
  601. [GGML_TYPE_IQ3_XXS] = {
  602. .type_name = "iq3_xxs",
  603. .blck_size = QK_K,
  604. .type_size = sizeof(block_iq3_xxs),
  605. .is_quantized = true,
  606. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  607. .from_float = quantize_row_iq3_xxs,
  608. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  609. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  610. .vec_dot_type = GGML_TYPE_Q8_K,
  611. .nrows = 1,
  612. },
  613. [GGML_TYPE_IQ3_S] = {
  614. .type_name = "iq3_s",
  615. .blck_size = QK_K,
  616. .type_size = sizeof(block_iq3_s),
  617. .is_quantized = true,
  618. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  619. .from_float = quantize_row_iq3_s,
  620. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  621. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  622. .vec_dot_type = GGML_TYPE_Q8_K,
  623. .nrows = 1,
  624. },
  625. [GGML_TYPE_IQ2_S] = {
  626. .type_name = "iq2_s",
  627. .blck_size = QK_K,
  628. .type_size = sizeof(block_iq2_s),
  629. .is_quantized = true,
  630. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  631. .from_float = quantize_row_iq2_s,
  632. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  633. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  634. .vec_dot_type = GGML_TYPE_Q8_K,
  635. .nrows = 1,
  636. },
  637. [GGML_TYPE_IQ1_S] = {
  638. .type_name = "iq1_s",
  639. .blck_size = QK_K,
  640. .type_size = sizeof(block_iq1_s),
  641. .is_quantized = true,
  642. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  643. .from_float = NULL,
  644. .from_float_reference = NULL,
  645. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  646. .vec_dot_type = GGML_TYPE_Q8_K,
  647. .nrows = 1,
  648. },
  649. [GGML_TYPE_IQ4_NL] = {
  650. .type_name = "iq4_nl",
  651. .blck_size = QK4_NL,
  652. .type_size = sizeof(block_iq4_nl),
  653. .is_quantized = true,
  654. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  655. .from_float = quantize_row_iq4_nl,
  656. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  657. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  658. .vec_dot_type = GGML_TYPE_Q8_0,
  659. .nrows = 1,
  660. },
  661. [GGML_TYPE_Q8_K] = {
  662. .type_name = "q8_K",
  663. .blck_size = QK_K,
  664. .type_size = sizeof(block_q8_K),
  665. .is_quantized = true,
  666. .from_float = quantize_row_q8_K,
  667. }
  668. };
  669. // For internal test use
  670. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  671. GGML_ASSERT(type < GGML_TYPE_COUNT);
  672. return type_traits[type];
  673. }
  674. //
  675. // simd mappings
  676. //
  677. #if defined(__ARM_NEON)
  678. #if !defined(__aarch64__)
  679. // 64-bit compatibility
  680. inline static float vaddvq_f32(float32x4_t v) {
  681. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  682. }
  683. #endif
  684. #endif
  685. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  686. // we then implement the fundamental computation operations below using only these macros
  687. // adding support for new architectures requires to define the corresponding SIMD macros
  688. //
  689. // GGML_F32_STEP / GGML_F16_STEP
  690. // number of elements to process in a single step
  691. //
  692. // GGML_F32_EPR / GGML_F16_EPR
  693. // number of elements to fit in a single register
  694. //
  695. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  696. #define GGML_SIMD
  697. // F32 NEON
  698. #define GGML_F32_STEP 16
  699. #define GGML_F32_EPR 4
  700. #define GGML_F32x4 float32x4_t
  701. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  702. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  703. #define GGML_F32x4_LOAD vld1q_f32
  704. #define GGML_F32x4_STORE vst1q_f32
  705. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  706. #define GGML_F32x4_ADD vaddq_f32
  707. #define GGML_F32x4_MUL vmulq_f32
  708. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  709. #define GGML_F32x4_REDUCE(res, x) \
  710. { \
  711. int offset = GGML_F32_ARR >> 1; \
  712. for (int i = 0; i < offset; ++i) { \
  713. x[i] = vaddq_f32(x[i], x[offset+i]); \
  714. } \
  715. offset >>= 1; \
  716. for (int i = 0; i < offset; ++i) { \
  717. x[i] = vaddq_f32(x[i], x[offset+i]); \
  718. } \
  719. offset >>= 1; \
  720. for (int i = 0; i < offset; ++i) { \
  721. x[i] = vaddq_f32(x[i], x[offset+i]); \
  722. } \
  723. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  724. }
  725. #define GGML_F32_VEC GGML_F32x4
  726. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  727. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  728. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  729. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  730. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  731. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  732. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  733. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  734. // F16 NEON
  735. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  736. #define GGML_F16_STEP 32
  737. #define GGML_F16_EPR 8
  738. #define GGML_F16x8 float16x8_t
  739. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  740. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  741. #define GGML_F16x8_LOAD(x) vld1q_f16((const __fp16 *)(x))
  742. #define GGML_F16x8_STORE vst1q_f16
  743. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  744. #define GGML_F16x8_ADD vaddq_f16
  745. #define GGML_F16x8_MUL vmulq_f16
  746. #define GGML_F16x8_REDUCE(res, x) \
  747. do { \
  748. int offset = GGML_F16_ARR >> 1; \
  749. for (int i = 0; i < offset; ++i) { \
  750. x[i] = vaddq_f16(x[i], x[offset+i]); \
  751. } \
  752. offset >>= 1; \
  753. for (int i = 0; i < offset; ++i) { \
  754. x[i] = vaddq_f16(x[i], x[offset+i]); \
  755. } \
  756. offset >>= 1; \
  757. for (int i = 0; i < offset; ++i) { \
  758. x[i] = vaddq_f16(x[i], x[offset+i]); \
  759. } \
  760. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  761. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  762. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  763. } while (0)
  764. #define GGML_F16_VEC GGML_F16x8
  765. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  766. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  767. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  768. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  769. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  770. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  771. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  772. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  773. #else
  774. // if FP16 vector arithmetic is not supported, we use FP32 instead
  775. // and take advantage of the vcvt_ functions to convert to/from FP16
  776. #define GGML_F16_STEP 16
  777. #define GGML_F16_EPR 4
  778. #define GGML_F32Cx4 float32x4_t
  779. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  780. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  781. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const __fp16 *)(x)))
  782. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  783. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  784. #define GGML_F32Cx4_ADD vaddq_f32
  785. #define GGML_F32Cx4_MUL vmulq_f32
  786. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  787. #define GGML_F16_VEC GGML_F32Cx4
  788. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  789. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  790. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  791. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  792. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  793. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  794. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  795. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  796. #endif
  797. #elif defined(__AVX__)
  798. #define GGML_SIMD
  799. // F32 AVX
  800. #define GGML_F32_STEP 32
  801. #define GGML_F32_EPR 8
  802. #define GGML_F32x8 __m256
  803. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  804. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  805. #define GGML_F32x8_LOAD _mm256_loadu_ps
  806. #define GGML_F32x8_STORE _mm256_storeu_ps
  807. #if defined(__FMA__)
  808. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  809. #else
  810. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  811. #endif
  812. #define GGML_F32x8_ADD _mm256_add_ps
  813. #define GGML_F32x8_MUL _mm256_mul_ps
  814. #define GGML_F32x8_REDUCE(res, x) \
  815. do { \
  816. int offset = GGML_F32_ARR >> 1; \
  817. for (int i = 0; i < offset; ++i) { \
  818. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  819. } \
  820. offset >>= 1; \
  821. for (int i = 0; i < offset; ++i) { \
  822. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  823. } \
  824. offset >>= 1; \
  825. for (int i = 0; i < offset; ++i) { \
  826. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  827. } \
  828. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  829. _mm256_extractf128_ps(x[0], 1)); \
  830. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  831. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  832. } while (0)
  833. // TODO: is this optimal ?
  834. #define GGML_F32_VEC GGML_F32x8
  835. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  836. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  837. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  838. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  839. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  840. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  841. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  842. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  843. // F16 AVX
  844. #define GGML_F16_STEP 32
  845. #define GGML_F16_EPR 8
  846. // F16 arithmetic is not supported by AVX, so we use F32 instead
  847. #define GGML_F32Cx8 __m256
  848. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  849. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  850. #if defined(__F16C__)
  851. // the _mm256_cvt intrinsics require F16C
  852. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  853. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  854. #else
  855. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  856. float tmp[8];
  857. for (int i = 0; i < 8; i++) {
  858. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  859. }
  860. return _mm256_loadu_ps(tmp);
  861. }
  862. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  863. float arr[8];
  864. _mm256_storeu_ps(arr, y);
  865. for (int i = 0; i < 8; i++)
  866. x[i] = GGML_FP32_TO_FP16(arr[i]);
  867. }
  868. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  869. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  870. #endif
  871. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  872. #define GGML_F32Cx8_ADD _mm256_add_ps
  873. #define GGML_F32Cx8_MUL _mm256_mul_ps
  874. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  875. #define GGML_F16_VEC GGML_F32Cx8
  876. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  877. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  878. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  879. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  880. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  881. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  882. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  883. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  884. #elif defined(__POWER9_VECTOR__)
  885. #define GGML_SIMD
  886. // F32 POWER9
  887. #define GGML_F32_STEP 32
  888. #define GGML_F32_EPR 4
  889. #define GGML_F32x4 vector float
  890. #define GGML_F32x4_ZERO 0.0f
  891. #define GGML_F32x4_SET1 vec_splats
  892. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  893. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  894. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  895. #define GGML_F32x4_ADD vec_add
  896. #define GGML_F32x4_MUL vec_mul
  897. #define GGML_F32x4_REDUCE(res, x) \
  898. { \
  899. int offset = GGML_F32_ARR >> 1; \
  900. for (int i = 0; i < offset; ++i) { \
  901. x[i] = vec_add(x[i], x[offset+i]); \
  902. } \
  903. offset >>= 1; \
  904. for (int i = 0; i < offset; ++i) { \
  905. x[i] = vec_add(x[i], x[offset+i]); \
  906. } \
  907. offset >>= 1; \
  908. for (int i = 0; i < offset; ++i) { \
  909. x[i] = vec_add(x[i], x[offset+i]); \
  910. } \
  911. res = vec_extract(x[0], 0) + \
  912. vec_extract(x[0], 1) + \
  913. vec_extract(x[0], 2) + \
  914. vec_extract(x[0], 3); \
  915. }
  916. #define GGML_F32_VEC GGML_F32x4
  917. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  918. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  919. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  920. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  921. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  922. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  923. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  924. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  925. // F16 POWER9
  926. #define GGML_F16_STEP GGML_F32_STEP
  927. #define GGML_F16_EPR GGML_F32_EPR
  928. #define GGML_F16_VEC GGML_F32x4
  929. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  930. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  931. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  932. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  933. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  934. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  935. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  936. vec_extract_fp32_from_shortl(vec_xl(0, p))
  937. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  938. #define GGML_F16_VEC_STORE(p, r, i) \
  939. if (i & 0x1) \
  940. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  941. r[i - GGML_ENDIAN_BYTE(0)]), \
  942. 0, p - GGML_F16_EPR)
  943. #elif defined(__wasm_simd128__)
  944. #define GGML_SIMD
  945. // F32 WASM
  946. #define GGML_F32_STEP 16
  947. #define GGML_F32_EPR 4
  948. #define GGML_F32x4 v128_t
  949. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  950. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  951. #define GGML_F32x4_LOAD wasm_v128_load
  952. #define GGML_F32x4_STORE wasm_v128_store
  953. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  954. #define GGML_F32x4_ADD wasm_f32x4_add
  955. #define GGML_F32x4_MUL wasm_f32x4_mul
  956. #define GGML_F32x4_REDUCE(res, x) \
  957. { \
  958. int offset = GGML_F32_ARR >> 1; \
  959. for (int i = 0; i < offset; ++i) { \
  960. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  961. } \
  962. offset >>= 1; \
  963. for (int i = 0; i < offset; ++i) { \
  964. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  965. } \
  966. offset >>= 1; \
  967. for (int i = 0; i < offset; ++i) { \
  968. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  969. } \
  970. res = wasm_f32x4_extract_lane(x[0], 0) + \
  971. wasm_f32x4_extract_lane(x[0], 1) + \
  972. wasm_f32x4_extract_lane(x[0], 2) + \
  973. wasm_f32x4_extract_lane(x[0], 3); \
  974. }
  975. #define GGML_F32_VEC GGML_F32x4
  976. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  977. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  978. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  979. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  980. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  981. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  982. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  983. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  984. // F16 WASM
  985. #define GGML_F16_STEP 16
  986. #define GGML_F16_EPR 4
  987. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  988. float tmp[4];
  989. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  990. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  991. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  992. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  993. return wasm_v128_load(tmp);
  994. }
  995. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  996. float tmp[4];
  997. wasm_v128_store(tmp, x);
  998. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  999. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1000. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1001. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1002. }
  1003. #define GGML_F16x4 v128_t
  1004. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1005. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1006. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1007. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1008. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1009. #define GGML_F16x4_ADD wasm_f32x4_add
  1010. #define GGML_F16x4_MUL wasm_f32x4_mul
  1011. #define GGML_F16x4_REDUCE(res, x) \
  1012. { \
  1013. int offset = GGML_F16_ARR >> 1; \
  1014. for (int i = 0; i < offset; ++i) { \
  1015. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1016. } \
  1017. offset >>= 1; \
  1018. for (int i = 0; i < offset; ++i) { \
  1019. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1020. } \
  1021. offset >>= 1; \
  1022. for (int i = 0; i < offset; ++i) { \
  1023. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1024. } \
  1025. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1026. wasm_f32x4_extract_lane(x[0], 1) + \
  1027. wasm_f32x4_extract_lane(x[0], 2) + \
  1028. wasm_f32x4_extract_lane(x[0], 3); \
  1029. }
  1030. #define GGML_F16_VEC GGML_F16x4
  1031. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1032. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1033. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1034. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1035. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1036. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1037. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1038. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1039. #elif defined(__SSE3__)
  1040. #define GGML_SIMD
  1041. // F32 SSE
  1042. #define GGML_F32_STEP 32
  1043. #define GGML_F32_EPR 4
  1044. #define GGML_F32x4 __m128
  1045. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1046. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1047. #define GGML_F32x4_LOAD _mm_loadu_ps
  1048. #define GGML_F32x4_STORE _mm_storeu_ps
  1049. #if defined(__FMA__)
  1050. // TODO: Does this work?
  1051. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1052. #else
  1053. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1054. #endif
  1055. #define GGML_F32x4_ADD _mm_add_ps
  1056. #define GGML_F32x4_MUL _mm_mul_ps
  1057. #define GGML_F32x4_REDUCE(res, x) \
  1058. { \
  1059. int offset = GGML_F32_ARR >> 1; \
  1060. for (int i = 0; i < offset; ++i) { \
  1061. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1062. } \
  1063. offset >>= 1; \
  1064. for (int i = 0; i < offset; ++i) { \
  1065. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1066. } \
  1067. offset >>= 1; \
  1068. for (int i = 0; i < offset; ++i) { \
  1069. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1070. } \
  1071. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1072. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1073. }
  1074. // TODO: is this optimal ?
  1075. #define GGML_F32_VEC GGML_F32x4
  1076. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1077. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1078. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1079. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1080. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1081. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1082. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1083. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1084. // F16 SSE
  1085. #define GGML_F16_STEP 32
  1086. #define GGML_F16_EPR 4
  1087. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1088. float tmp[4];
  1089. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1090. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1091. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1092. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1093. return _mm_loadu_ps(tmp);
  1094. }
  1095. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1096. float arr[4];
  1097. _mm_storeu_ps(arr, y);
  1098. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1099. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1100. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1101. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1102. }
  1103. #define GGML_F32Cx4 __m128
  1104. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1105. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1106. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1107. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1108. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1109. #define GGML_F32Cx4_ADD _mm_add_ps
  1110. #define GGML_F32Cx4_MUL _mm_mul_ps
  1111. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1112. #define GGML_F16_VEC GGML_F32Cx4
  1113. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1114. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1115. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1116. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1117. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1118. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1119. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1120. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1121. #endif
  1122. // GGML_F32_ARR / GGML_F16_ARR
  1123. // number of registers to use per step
  1124. #ifdef GGML_SIMD
  1125. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1126. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1127. #endif
  1128. //
  1129. // fundamental operations
  1130. //
  1131. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1132. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1133. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1134. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1135. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1136. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1137. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1138. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1139. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1140. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1141. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1142. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1143. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1144. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1145. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1146. assert(nrc == 1);
  1147. UNUSED(nrc);
  1148. UNUSED(bx);
  1149. UNUSED(by);
  1150. UNUSED(bs);
  1151. #ifdef GGML_SIMD
  1152. float sumf = 0.0f;
  1153. const int np = (n & ~(GGML_F32_STEP - 1));
  1154. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1155. GGML_F32_VEC ax[GGML_F32_ARR];
  1156. GGML_F32_VEC ay[GGML_F32_ARR];
  1157. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1158. for (int j = 0; j < GGML_F32_ARR; j++) {
  1159. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1160. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1161. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1162. }
  1163. }
  1164. // reduce sum0..sum3 to sum0
  1165. GGML_F32_VEC_REDUCE(sumf, sum);
  1166. // leftovers
  1167. for (int i = np; i < n; ++i) {
  1168. sumf += x[i]*y[i];
  1169. }
  1170. #else
  1171. // scalar
  1172. ggml_float sumf = 0.0;
  1173. for (int i = 0; i < n; ++i) {
  1174. sumf += (ggml_float)(x[i]*y[i]);
  1175. }
  1176. #endif
  1177. *s = sumf;
  1178. }
  1179. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1180. assert(nrc == 1);
  1181. UNUSED(nrc);
  1182. UNUSED(bx);
  1183. UNUSED(by);
  1184. UNUSED(bs);
  1185. ggml_float sumf = 0.0;
  1186. #if defined(GGML_SIMD)
  1187. const int np = (n & ~(GGML_F16_STEP - 1));
  1188. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1189. GGML_F16_VEC ax[GGML_F16_ARR];
  1190. GGML_F16_VEC ay[GGML_F16_ARR];
  1191. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1192. for (int j = 0; j < GGML_F16_ARR; j++) {
  1193. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1194. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1195. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1196. }
  1197. }
  1198. // reduce sum0..sum3 to sum0
  1199. GGML_F16_VEC_REDUCE(sumf, sum);
  1200. // leftovers
  1201. for (int i = np; i < n; ++i) {
  1202. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1203. }
  1204. #else
  1205. for (int i = 0; i < n; ++i) {
  1206. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1207. }
  1208. #endif
  1209. *s = sumf;
  1210. }
  1211. // compute GGML_VEC_DOT_UNROLL dot products at once
  1212. // xs - x row stride in bytes
  1213. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1214. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1215. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1216. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1217. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1218. }
  1219. #if defined(GGML_SIMD)
  1220. const int np = (n & ~(GGML_F16_STEP - 1));
  1221. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1222. GGML_F16_VEC ax[GGML_F16_ARR];
  1223. GGML_F16_VEC ay[GGML_F16_ARR];
  1224. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1225. for (int j = 0; j < GGML_F16_ARR; j++) {
  1226. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1227. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1228. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1229. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1230. }
  1231. }
  1232. }
  1233. // reduce sum0..sum3 to sum0
  1234. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1235. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1236. }
  1237. // leftovers
  1238. for (int i = np; i < n; ++i) {
  1239. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1240. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1241. }
  1242. }
  1243. #else
  1244. for (int i = 0; i < n; ++i) {
  1245. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1246. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1247. }
  1248. }
  1249. #endif
  1250. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1251. s[i] = sumf[i];
  1252. }
  1253. }
  1254. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1255. #if defined(GGML_SIMD)
  1256. const int np = (n & ~(GGML_F32_STEP - 1));
  1257. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1258. GGML_F32_VEC ax[GGML_F32_ARR];
  1259. GGML_F32_VEC ay[GGML_F32_ARR];
  1260. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1261. for (int j = 0; j < GGML_F32_ARR; j++) {
  1262. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1263. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1264. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1265. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1266. }
  1267. }
  1268. // leftovers
  1269. for (int i = np; i < n; ++i) {
  1270. y[i] += x[i]*v;
  1271. }
  1272. #else
  1273. // scalar
  1274. for (int i = 0; i < n; ++i) {
  1275. y[i] += x[i]*v;
  1276. }
  1277. #endif
  1278. }
  1279. // xs and vs are byte strides of x and v
  1280. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1281. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1282. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1283. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1284. x[i] = (const float *) ((const char *) xv + i*xs);
  1285. v[i] = (const float *) ((const char *) vv + i*vs);
  1286. }
  1287. #if defined(GGML_SIMD)
  1288. const int np = (n & ~(GGML_F32_STEP - 1));
  1289. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1290. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1291. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1292. }
  1293. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1294. GGML_F32_VEC ay[GGML_F32_ARR];
  1295. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1296. for (int j = 0; j < GGML_F32_ARR; j++) {
  1297. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1298. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1299. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1300. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1301. }
  1302. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1303. }
  1304. }
  1305. // leftovers
  1306. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1307. for (int i = np; i < n; ++i) {
  1308. y[i] += x[k][i]*v[k][0];
  1309. }
  1310. }
  1311. #else
  1312. // scalar
  1313. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1314. for (int i = 0; i < n; ++i) {
  1315. y[i] += x[k][i]*v[k][0];
  1316. }
  1317. }
  1318. #endif
  1319. }
  1320. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1321. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1322. #if defined(GGML_USE_ACCELERATE)
  1323. vDSP_vsmul(y, 1, &v, y, 1, n);
  1324. #elif defined(GGML_SIMD)
  1325. const int np = (n & ~(GGML_F32_STEP - 1));
  1326. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1327. GGML_F32_VEC ay[GGML_F32_ARR];
  1328. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1329. for (int j = 0; j < GGML_F32_ARR; j++) {
  1330. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1331. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1332. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1333. }
  1334. }
  1335. // leftovers
  1336. for (int i = np; i < n; ++i) {
  1337. y[i] *= v;
  1338. }
  1339. #else
  1340. // scalar
  1341. for (int i = 0; i < n; ++i) {
  1342. y[i] *= v;
  1343. }
  1344. #endif
  1345. }
  1346. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1347. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1348. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1349. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1350. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1351. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1352. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1353. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1354. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1355. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1356. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1357. // TODO: optimize performance
  1358. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1359. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1360. static const float GELU_COEF_A = 0.044715f;
  1361. static const float GELU_QUICK_COEF = -1.702f;
  1362. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1363. inline static float ggml_gelu_f32(float x) {
  1364. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1365. }
  1366. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1367. const uint16_t * i16 = (const uint16_t *) x;
  1368. for (int i = 0; i < n; ++i) {
  1369. y[i] = ggml_table_gelu_f16[i16[i]];
  1370. }
  1371. }
  1372. #ifdef GGML_GELU_FP16
  1373. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1374. uint16_t t;
  1375. for (int i = 0; i < n; ++i) {
  1376. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1377. memcpy(&t, &fp16, sizeof(uint16_t));
  1378. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1379. }
  1380. }
  1381. #else
  1382. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1383. for (int i = 0; i < n; ++i) {
  1384. y[i] = ggml_gelu_f32(x[i]);
  1385. }
  1386. }
  1387. #endif
  1388. inline static float ggml_gelu_quick_f32(float x) {
  1389. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1390. }
  1391. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1392. // const uint16_t * i16 = (const uint16_t *) x;
  1393. // for (int i = 0; i < n; ++i) {
  1394. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1395. // }
  1396. //}
  1397. #ifdef GGML_GELU_QUICK_FP16
  1398. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1399. uint16_t t;
  1400. for (int i = 0; i < n; ++i) {
  1401. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1402. memcpy(&t, &fp16, sizeof(uint16_t));
  1403. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1404. }
  1405. }
  1406. #else
  1407. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1408. for (int i = 0; i < n; ++i) {
  1409. y[i] = ggml_gelu_quick_f32(x[i]);
  1410. }
  1411. }
  1412. #endif
  1413. // Sigmoid Linear Unit (SiLU) function
  1414. inline static float ggml_silu_f32(float x) {
  1415. return x/(1.0f + expf(-x));
  1416. }
  1417. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1418. // const uint16_t * i16 = (const uint16_t *) x;
  1419. // for (int i = 0; i < n; ++i) {
  1420. // y[i] = ggml_table_silu_f16[i16[i]];
  1421. // }
  1422. //}
  1423. #ifdef GGML_SILU_FP16
  1424. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1425. uint16_t t;
  1426. for (int i = 0; i < n; ++i) {
  1427. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1428. memcpy(&t, &fp16, sizeof(uint16_t));
  1429. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1430. }
  1431. }
  1432. #else
  1433. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1434. for (int i = 0; i < n; ++i) {
  1435. y[i] = ggml_silu_f32(x[i]);
  1436. }
  1437. }
  1438. #endif
  1439. inline static float ggml_silu_backward_f32(float x, float dy) {
  1440. const float s = 1.0f/(1.0f + expf(-x));
  1441. return dy*s*(1.0f + x*(1.0f - s));
  1442. }
  1443. #ifdef GGML_SILU_FP16
  1444. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1445. for (int i = 0; i < n; ++i) {
  1446. // we did not use x[i] to compute forward silu but its f16 equivalent
  1447. // take derivative at f16 of x[i]:
  1448. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1449. float usedx = GGML_FP16_TO_FP32(fp16);
  1450. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1451. }
  1452. }
  1453. #else
  1454. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1455. for (int i = 0; i < n; ++i) {
  1456. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1457. }
  1458. }
  1459. #endif
  1460. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1461. #ifndef GGML_USE_ACCELERATE
  1462. ggml_float sum = 0.0;
  1463. for (int i = 0; i < n; ++i) {
  1464. sum += (ggml_float)x[i];
  1465. }
  1466. *s = sum;
  1467. #else
  1468. vDSP_sve(x, 1, s, n);
  1469. #endif
  1470. }
  1471. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1472. ggml_float sum = 0.0;
  1473. for (int i = 0; i < n; ++i) {
  1474. sum += (ggml_float)x[i];
  1475. }
  1476. *s = sum;
  1477. }
  1478. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1479. float sum = 0.0f;
  1480. for (int i = 0; i < n; ++i) {
  1481. sum += GGML_FP16_TO_FP32(x[i]);
  1482. }
  1483. *s = sum;
  1484. }
  1485. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1486. #ifndef GGML_USE_ACCELERATE
  1487. float max = -INFINITY;
  1488. for (int i = 0; i < n; ++i) {
  1489. max = MAX(max, x[i]);
  1490. }
  1491. *s = max;
  1492. #else
  1493. vDSP_maxv(x, 1, s, n);
  1494. #endif
  1495. }
  1496. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1497. ggml_vec_norm_f32(n, s, x);
  1498. *s = 1.f/(*s);
  1499. }
  1500. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1501. float max = -INFINITY;
  1502. int idx = 0;
  1503. for (int i = 0; i < n; ++i) {
  1504. max = MAX(max, x[i]);
  1505. if (max == x[i]) { idx = i; }
  1506. }
  1507. *s = idx;
  1508. }
  1509. //
  1510. // data types
  1511. //
  1512. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1513. "NONE",
  1514. "DUP",
  1515. "ADD",
  1516. "ADD1",
  1517. "ACC",
  1518. "SUB",
  1519. "MUL",
  1520. "DIV",
  1521. "SQR",
  1522. "SQRT",
  1523. "LOG",
  1524. "SUM",
  1525. "SUM_ROWS",
  1526. "MEAN",
  1527. "ARGMAX",
  1528. "REPEAT",
  1529. "REPEAT_BACK",
  1530. "CONCAT",
  1531. "SILU_BACK",
  1532. "NORM",
  1533. "RMS_NORM",
  1534. "RMS_NORM_BACK",
  1535. "GROUP_NORM",
  1536. "MUL_MAT",
  1537. "MUL_MAT_ID",
  1538. "OUT_PROD",
  1539. "SCALE",
  1540. "SET",
  1541. "CPY",
  1542. "CONT",
  1543. "RESHAPE",
  1544. "VIEW",
  1545. "PERMUTE",
  1546. "TRANSPOSE",
  1547. "GET_ROWS",
  1548. "GET_ROWS_BACK",
  1549. "DIAG",
  1550. "DIAG_MASK_INF",
  1551. "DIAG_MASK_ZERO",
  1552. "SOFT_MAX",
  1553. "SOFT_MAX_BACK",
  1554. "ROPE",
  1555. "ROPE_BACK",
  1556. "ALIBI",
  1557. "CLAMP",
  1558. "CONV_TRANSPOSE_1D",
  1559. "IM2COL",
  1560. "CONV_TRANSPOSE_2D",
  1561. "POOL_1D",
  1562. "POOL_2D",
  1563. "UPSCALE",
  1564. "PAD",
  1565. "ARGSORT",
  1566. "LEAKY_RELU",
  1567. "FLASH_ATTN",
  1568. "FLASH_FF",
  1569. "FLASH_ATTN_BACK",
  1570. "WIN_PART",
  1571. "WIN_UNPART",
  1572. "GET_REL_POS",
  1573. "ADD_REL_POS",
  1574. "UNARY",
  1575. "MAP_UNARY",
  1576. "MAP_BINARY",
  1577. "MAP_CUSTOM1_F32",
  1578. "MAP_CUSTOM2_F32",
  1579. "MAP_CUSTOM3_F32",
  1580. "MAP_CUSTOM1",
  1581. "MAP_CUSTOM2",
  1582. "MAP_CUSTOM3",
  1583. "CROSS_ENTROPY_LOSS",
  1584. "CROSS_ENTROPY_LOSS_BACK",
  1585. };
  1586. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1587. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1588. "none",
  1589. "x",
  1590. "x+y",
  1591. "x+y",
  1592. "view(x,nb,offset)+=y->x",
  1593. "x-y",
  1594. "x*y",
  1595. "x/y",
  1596. "x^2",
  1597. "√x",
  1598. "log(x)",
  1599. "Σx",
  1600. "Σx_k",
  1601. "Σx/n",
  1602. "argmax(x)",
  1603. "repeat(x)",
  1604. "repeat_back(x)",
  1605. "concat(x, y)",
  1606. "silu_back(x)",
  1607. "norm(x)",
  1608. "rms_norm(x)",
  1609. "rms_norm_back(x)",
  1610. "group_norm(x)",
  1611. "X*Y",
  1612. "X[i]*Y",
  1613. "X*Y",
  1614. "x*v",
  1615. "y-\\>view(x)",
  1616. "x-\\>y",
  1617. "cont(x)",
  1618. "reshape(x)",
  1619. "view(x)",
  1620. "permute(x)",
  1621. "transpose(x)",
  1622. "get_rows(x)",
  1623. "get_rows_back(x)",
  1624. "diag(x)",
  1625. "diag_mask_inf(x)",
  1626. "diag_mask_zero(x)",
  1627. "soft_max(x)",
  1628. "soft_max_back(x)",
  1629. "rope(x)",
  1630. "rope_back(x)",
  1631. "alibi(x)",
  1632. "clamp(x)",
  1633. "conv_transpose_1d(x)",
  1634. "im2col(x)",
  1635. "conv_transpose_2d(x)",
  1636. "pool_1d(x)",
  1637. "pool_2d(x)",
  1638. "upscale(x)",
  1639. "pad(x)",
  1640. "argsort(x)",
  1641. "leaky_relu(x)",
  1642. "flash_attn(x)",
  1643. "flash_ff(x)",
  1644. "flash_attn_back(x)",
  1645. "win_part(x)",
  1646. "win_unpart(x)",
  1647. "get_rel_pos(x)",
  1648. "add_rel_pos(x)",
  1649. "unary(x)",
  1650. "f(x)",
  1651. "f(x,y)",
  1652. "custom_f32(x)",
  1653. "custom_f32(x,y)",
  1654. "custom_f32(x,y,z)",
  1655. "custom(x)",
  1656. "custom(x,y)",
  1657. "custom(x,y,z)",
  1658. "cross_entropy_loss(x,y)",
  1659. "cross_entropy_loss_back(x,y)",
  1660. };
  1661. static_assert(GGML_OP_COUNT == 72, "GGML_OP_COUNT != 72");
  1662. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1663. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1664. "ABS",
  1665. "SGN",
  1666. "NEG",
  1667. "STEP",
  1668. "TANH",
  1669. "ELU",
  1670. "RELU",
  1671. "GELU",
  1672. "GELU_QUICK",
  1673. "SILU",
  1674. "HARDSWISH",
  1675. "HARDSIGMOID",
  1676. };
  1677. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1678. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1679. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1680. // WARN:
  1681. // Mis-configuration can lead to problem that's hard to reason about:
  1682. // * At best it crash or talks nosense.
  1683. // * At worst it talks slightly difference but hard to perceive.
  1684. //
  1685. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1686. // Take care about compile options (e.g., GGML_USE_xxx).
  1687. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1688. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1689. static void ggml_setup_op_has_task_pass(void) {
  1690. { // INIT
  1691. bool * p = GGML_OP_HAS_INIT;
  1692. p[GGML_OP_ACC ] = true;
  1693. p[GGML_OP_MUL_MAT ] = true;
  1694. p[GGML_OP_MUL_MAT_ID ] = true;
  1695. p[GGML_OP_OUT_PROD ] = true;
  1696. p[GGML_OP_SET ] = true;
  1697. p[GGML_OP_GET_ROWS_BACK ] = true;
  1698. p[GGML_OP_DIAG_MASK_INF ] = true;
  1699. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1700. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1701. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1702. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1703. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1704. p[GGML_OP_ADD_REL_POS ] = true;
  1705. }
  1706. { // FINALIZE
  1707. bool * p = GGML_OP_HAS_FINALIZE;
  1708. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1709. }
  1710. }
  1711. //
  1712. // ggml context
  1713. //
  1714. struct ggml_context {
  1715. size_t mem_size;
  1716. void * mem_buffer;
  1717. bool mem_buffer_owned;
  1718. bool no_alloc;
  1719. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1720. int n_objects;
  1721. struct ggml_object * objects_begin;
  1722. struct ggml_object * objects_end;
  1723. struct ggml_scratch scratch;
  1724. struct ggml_scratch scratch_save;
  1725. };
  1726. struct ggml_context_container {
  1727. bool used;
  1728. struct ggml_context context;
  1729. };
  1730. //
  1731. // NUMA support
  1732. //
  1733. #define GGML_NUMA_MAX_NODES 8
  1734. #define GGML_NUMA_MAX_CPUS 512
  1735. struct ggml_numa_node {
  1736. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1737. uint32_t n_cpus;
  1738. };
  1739. struct ggml_numa_nodes {
  1740. enum ggml_numa_strategy numa_strategy;
  1741. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1742. uint32_t n_nodes;
  1743. uint32_t total_cpus; // hardware threads on system
  1744. uint32_t current_node; // node on which main process is execting
  1745. #if defined(__gnu_linux__)
  1746. cpu_set_t cpuset; // cpuset from numactl
  1747. #else
  1748. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1749. #endif
  1750. };
  1751. //
  1752. // ggml state
  1753. //
  1754. struct ggml_state {
  1755. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1756. struct ggml_numa_nodes numa;
  1757. };
  1758. // global state
  1759. static struct ggml_state g_state;
  1760. static atomic_int g_state_barrier = 0;
  1761. // barrier via spin lock
  1762. inline static void ggml_critical_section_start(void) {
  1763. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1764. while (processing > 0) {
  1765. // wait for other threads to finish
  1766. atomic_fetch_sub(&g_state_barrier, 1);
  1767. sched_yield(); // TODO: reconsider this
  1768. processing = atomic_fetch_add(&g_state_barrier, 1);
  1769. }
  1770. }
  1771. // TODO: make this somehow automatically executed
  1772. // some sort of "sentry" mechanism
  1773. inline static void ggml_critical_section_end(void) {
  1774. atomic_fetch_sub(&g_state_barrier, 1);
  1775. }
  1776. #if defined(__gnu_linux__)
  1777. static cpu_set_t ggml_get_numa_affinity(void) {
  1778. cpu_set_t cpuset;
  1779. pthread_t thread;
  1780. thread = pthread_self();
  1781. CPU_ZERO(&cpuset);
  1782. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1783. return cpuset;
  1784. }
  1785. #else
  1786. static uint32_t ggml_get_numa_affinity(void) {
  1787. return 0; // no NUMA support
  1788. }
  1789. #endif
  1790. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1791. if (g_state.numa.n_nodes > 0) {
  1792. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1793. return;
  1794. }
  1795. #if defined(__gnu_linux__)
  1796. struct stat st;
  1797. char path[256];
  1798. int rv;
  1799. // set numa scheme
  1800. g_state.numa.numa_strategy = numa_flag;
  1801. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1802. g_state.numa.cpuset = ggml_get_numa_affinity();
  1803. // enumerate nodes
  1804. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1805. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1806. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1807. if (stat(path, &st) != 0) { break; }
  1808. ++g_state.numa.n_nodes;
  1809. }
  1810. // enumerate CPUs
  1811. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1812. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1813. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1814. if (stat(path, &st) != 0) { break; }
  1815. ++g_state.numa.total_cpus;
  1816. }
  1817. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1818. // figure out which node we're on
  1819. uint current_cpu;
  1820. int getcpu_ret = 0;
  1821. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1822. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1823. #else
  1824. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1825. getcpu_ret = syscall(SYS_getcpu,&current_cpu,&g_state.numa.current_node);
  1826. #endif
  1827. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1828. g_state.numa.n_nodes = 0;
  1829. return;
  1830. }
  1831. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1832. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1833. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1834. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1835. node->n_cpus = 0;
  1836. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1837. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1838. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1839. if (stat(path, &st) == 0) {
  1840. node->cpus[node->n_cpus++] = c;
  1841. GGML_PRINT_DEBUG(" %u", c);
  1842. }
  1843. }
  1844. GGML_PRINT_DEBUG("\n");
  1845. }
  1846. if (ggml_is_numa()) {
  1847. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1848. if (fptr != NULL) {
  1849. char buf[42];
  1850. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1851. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1852. }
  1853. fclose(fptr);
  1854. }
  1855. }
  1856. #else
  1857. GGML_UNUSED(numa_flag);
  1858. // TODO
  1859. #endif
  1860. }
  1861. bool ggml_is_numa(void) {
  1862. return g_state.numa.n_nodes > 1;
  1863. }
  1864. ////////////////////////////////////////////////////////////////////////////////
  1865. void ggml_print_object(const struct ggml_object * obj) {
  1866. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  1867. obj->type, obj->offs, obj->size, (const void *) obj->next);
  1868. }
  1869. void ggml_print_objects(const struct ggml_context * ctx) {
  1870. struct ggml_object * obj = ctx->objects_begin;
  1871. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1872. while (obj != NULL) {
  1873. ggml_print_object(obj);
  1874. obj = obj->next;
  1875. }
  1876. GGML_PRINT("%s: --- end ---\n", __func__);
  1877. }
  1878. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  1879. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1880. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1881. }
  1882. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  1883. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1884. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1885. }
  1886. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1887. size_t nbytes;
  1888. size_t blck_size = ggml_blck_size(tensor->type);
  1889. if (blck_size == 1) {
  1890. nbytes = ggml_type_size(tensor->type);
  1891. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  1892. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1893. }
  1894. }
  1895. else {
  1896. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  1897. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  1898. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  1899. }
  1900. }
  1901. return nbytes;
  1902. }
  1903. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  1904. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  1905. }
  1906. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  1907. return type_traits[type].blck_size;
  1908. }
  1909. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  1910. return type_traits[type].type_size;
  1911. }
  1912. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  1913. assert(ne % ggml_blck_size(type) == 0);
  1914. return ggml_type_size(type)*ne/ggml_blck_size(type);
  1915. }
  1916. double ggml_type_sizef(enum ggml_type type) {
  1917. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  1918. }
  1919. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  1920. return type_traits[type].type_name;
  1921. }
  1922. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  1923. return type_traits[type].is_quantized;
  1924. }
  1925. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  1926. return GGML_OP_NAME[op];
  1927. }
  1928. const char * ggml_op_symbol(enum ggml_op op) {
  1929. return GGML_OP_SYMBOL[op];
  1930. }
  1931. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  1932. return GGML_UNARY_OP_NAME[op];
  1933. }
  1934. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  1935. if (t->op == GGML_OP_UNARY) {
  1936. enum ggml_unary_op uop = ggml_get_unary_op(t);
  1937. return ggml_unary_op_name(uop);
  1938. }
  1939. else {
  1940. return ggml_op_name(t->op);
  1941. }
  1942. }
  1943. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1944. return ggml_type_size(tensor->type);
  1945. }
  1946. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1947. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1948. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1949. }
  1950. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1951. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1952. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1953. }
  1954. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1955. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1956. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1957. }
  1958. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  1959. return tensor->ne[3] == 1;
  1960. }
  1961. int ggml_n_dims(const struct ggml_tensor * tensor) {
  1962. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  1963. if (tensor->ne[i] > 1) {
  1964. return i + 1;
  1965. }
  1966. }
  1967. return 1;
  1968. }
  1969. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1970. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1971. return (t0->ne[0] == t1->ne[0]) &&
  1972. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1973. (t1->ne[3]%t0->ne[3] == 0);
  1974. }
  1975. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1976. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1977. return (t0->ne[1] == t1->ne[1]) &&
  1978. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  1979. (t1->ne[3]%t0->ne[3] == 0);
  1980. }
  1981. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  1982. enum ggml_type wtype = GGML_TYPE_COUNT;
  1983. switch (ftype) {
  1984. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  1985. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  1986. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  1987. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  1988. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  1989. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  1990. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  1991. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  1992. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  1993. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  1994. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  1995. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  1996. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  1997. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  1998. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  1999. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2000. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2001. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2002. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2003. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2004. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2005. }
  2006. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2007. return wtype;
  2008. }
  2009. size_t ggml_tensor_overhead(void) {
  2010. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2011. }
  2012. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2013. return tensor->nb[0] > tensor->nb[1];
  2014. }
  2015. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2016. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2017. return
  2018. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2019. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2020. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2021. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2022. }
  2023. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2024. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2025. return
  2026. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2027. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2028. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2029. }
  2030. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2031. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2032. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2033. }
  2034. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2035. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2036. return
  2037. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2038. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2039. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2040. }
  2041. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2042. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2043. return
  2044. (t0->ne[0] == t1->ne[0] ) &&
  2045. (t0->ne[1] == t1->ne[1] ) &&
  2046. (t0->ne[2] == t1->ne[2] ) &&
  2047. (t0->ne[3] == t1->ne[3] );
  2048. }
  2049. // check if t1 can be represented as a repeatition of t0
  2050. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2051. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2052. return
  2053. (t1->ne[0]%t0->ne[0] == 0) &&
  2054. (t1->ne[1]%t0->ne[1] == 0) &&
  2055. (t1->ne[2]%t0->ne[2] == 0) &&
  2056. (t1->ne[3]%t0->ne[3] == 0);
  2057. }
  2058. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2059. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2060. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2061. }
  2062. static inline int ggml_up32(int n) {
  2063. return (n + 31) & ~31;
  2064. }
  2065. //static inline int ggml_up64(int n) {
  2066. // return (n + 63) & ~63;
  2067. //}
  2068. static inline int ggml_up(int n, int m) {
  2069. // assert m is a power of 2
  2070. GGML_ASSERT((m & (m - 1)) == 0);
  2071. return (n + m - 1) & ~(m - 1);
  2072. }
  2073. // assert that pointer is aligned to GGML_MEM_ALIGN
  2074. #define ggml_assert_aligned(ptr) \
  2075. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2076. ////////////////////////////////////////////////////////////////////////////////
  2077. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2078. // make this function thread safe
  2079. ggml_critical_section_start();
  2080. static bool is_first_call = true;
  2081. if (is_first_call) {
  2082. // initialize time system (required on Windows)
  2083. ggml_time_init();
  2084. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2085. {
  2086. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2087. ggml_fp16_t ii;
  2088. for (int i = 0; i < (1 << 16); ++i) {
  2089. uint16_t ui = i;
  2090. memcpy(&ii, &ui, sizeof(ii));
  2091. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2092. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2093. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2094. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2095. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2096. }
  2097. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2098. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2099. }
  2100. // initialize g_state
  2101. {
  2102. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2103. g_state = (struct ggml_state) {
  2104. /*.contexts =*/ { { 0 } },
  2105. /*.numa =*/ {
  2106. .n_nodes = 0,
  2107. .total_cpus = 0,
  2108. },
  2109. };
  2110. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2111. g_state.contexts[i].used = false;
  2112. }
  2113. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2114. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2115. }
  2116. #if defined(GGML_USE_CUBLAS)
  2117. ggml_init_cublas();
  2118. #elif defined(GGML_USE_CLBLAST)
  2119. ggml_cl_init();
  2120. #elif defined(GGML_USE_VULKAN)
  2121. ggml_vk_init_cpu_assist();
  2122. #elif defined(GGML_USE_SYCL)
  2123. ggml_init_sycl();
  2124. #endif
  2125. ggml_setup_op_has_task_pass();
  2126. is_first_call = false;
  2127. }
  2128. // find non-used context in g_state
  2129. struct ggml_context * ctx = NULL;
  2130. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2131. if (!g_state.contexts[i].used) {
  2132. g_state.contexts[i].used = true;
  2133. ctx = &g_state.contexts[i].context;
  2134. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2135. break;
  2136. }
  2137. }
  2138. if (ctx == NULL) {
  2139. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2140. ggml_critical_section_end();
  2141. return NULL;
  2142. }
  2143. // allow to call ggml_init with 0 size
  2144. if (params.mem_size == 0) {
  2145. params.mem_size = GGML_MEM_ALIGN;
  2146. }
  2147. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2148. *ctx = (struct ggml_context) {
  2149. /*.mem_size =*/ mem_size,
  2150. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2151. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2152. /*.no_alloc =*/ params.no_alloc,
  2153. /*.no_alloc_save =*/ params.no_alloc,
  2154. /*.n_objects =*/ 0,
  2155. /*.objects_begin =*/ NULL,
  2156. /*.objects_end =*/ NULL,
  2157. /*.scratch =*/ { 0, 0, NULL, },
  2158. /*.scratch_save =*/ { 0, 0, NULL, },
  2159. };
  2160. GGML_ASSERT(ctx->mem_buffer != NULL);
  2161. ggml_assert_aligned(ctx->mem_buffer);
  2162. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2163. ggml_critical_section_end();
  2164. return ctx;
  2165. }
  2166. void ggml_free(struct ggml_context * ctx) {
  2167. if (ctx == NULL) {
  2168. return;
  2169. }
  2170. // make this function thread safe
  2171. ggml_critical_section_start();
  2172. bool found = false;
  2173. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2174. if (&g_state.contexts[i].context == ctx) {
  2175. g_state.contexts[i].used = false;
  2176. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2177. __func__, i, ggml_used_mem(ctx));
  2178. if (ctx->mem_buffer_owned) {
  2179. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2180. }
  2181. found = true;
  2182. break;
  2183. }
  2184. }
  2185. if (!found) {
  2186. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2187. }
  2188. ggml_critical_section_end();
  2189. }
  2190. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2191. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2192. }
  2193. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2194. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2195. ctx->scratch = scratch;
  2196. return result;
  2197. }
  2198. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2199. return ctx->no_alloc;
  2200. }
  2201. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2202. ctx->no_alloc = no_alloc;
  2203. }
  2204. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2205. return ctx->mem_buffer;
  2206. }
  2207. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2208. return ctx->mem_size;
  2209. }
  2210. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2211. size_t max_size = 0;
  2212. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2213. size_t bytes = ggml_nbytes(tensor);
  2214. max_size = MAX(max_size, bytes);
  2215. }
  2216. return max_size;
  2217. }
  2218. // IMPORTANT:
  2219. // when creating "opt" tensors, always save and load the scratch buffer
  2220. // this is an error prone process, but it is necessary to support inplace
  2221. // operators when using scratch buffers
  2222. // TODO: implement a better way
  2223. static void ggml_scratch_save(struct ggml_context * ctx) {
  2224. // this is needed to allow opt tensors to store their data
  2225. // TODO: again, need to find a better way
  2226. ctx->no_alloc_save = ctx->no_alloc;
  2227. ctx->no_alloc = false;
  2228. ctx->scratch_save = ctx->scratch;
  2229. ctx->scratch.data = NULL;
  2230. }
  2231. static void ggml_scratch_load(struct ggml_context * ctx) {
  2232. ctx->no_alloc = ctx->no_alloc_save;
  2233. ctx->scratch = ctx->scratch_save;
  2234. }
  2235. ////////////////////////////////////////////////////////////////////////////////
  2236. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2237. // always insert objects at the end of the context's memory pool
  2238. struct ggml_object * obj_cur = ctx->objects_end;
  2239. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2240. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2241. const size_t cur_end = cur_offs + cur_size;
  2242. // align to GGML_MEM_ALIGN
  2243. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2244. char * const mem_buffer = ctx->mem_buffer;
  2245. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2246. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2247. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2248. __func__, cur_end + size_needed, ctx->mem_size);
  2249. assert(false);
  2250. return NULL;
  2251. }
  2252. *obj_new = (struct ggml_object) {
  2253. .offs = cur_end + GGML_OBJECT_SIZE,
  2254. .size = size_needed,
  2255. .next = NULL,
  2256. .type = type,
  2257. };
  2258. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2259. if (obj_cur != NULL) {
  2260. obj_cur->next = obj_new;
  2261. } else {
  2262. // this is the first object in this context
  2263. ctx->objects_begin = obj_new;
  2264. }
  2265. ctx->objects_end = obj_new;
  2266. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2267. return obj_new;
  2268. }
  2269. static struct ggml_tensor * ggml_new_tensor_impl(
  2270. struct ggml_context * ctx,
  2271. enum ggml_type type,
  2272. int n_dims,
  2273. const int64_t * ne,
  2274. struct ggml_tensor * view_src,
  2275. size_t view_offs) {
  2276. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2277. // find the base tensor and absolute offset
  2278. if (view_src != NULL && view_src->view_src != NULL) {
  2279. view_offs += view_src->view_offs;
  2280. view_src = view_src->view_src;
  2281. }
  2282. size_t data_size = ggml_row_size(type, ne[0]);
  2283. for (int i = 1; i < n_dims; i++) {
  2284. data_size *= ne[i];
  2285. }
  2286. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2287. void * data = view_src != NULL ? view_src->data : NULL;
  2288. if (data != NULL) {
  2289. data = (char *) data + view_offs;
  2290. }
  2291. size_t obj_alloc_size = 0;
  2292. if (view_src == NULL && !ctx->no_alloc) {
  2293. if (ctx->scratch.data != NULL) {
  2294. // allocate tensor data in the scratch buffer
  2295. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2296. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2297. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2298. assert(false);
  2299. return NULL;
  2300. }
  2301. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2302. ctx->scratch.offs += data_size;
  2303. } else {
  2304. // allocate tensor data in the context's memory pool
  2305. obj_alloc_size = data_size;
  2306. }
  2307. }
  2308. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2309. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2310. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2311. *result = (struct ggml_tensor) {
  2312. /*.type =*/ type,
  2313. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2314. /*.buffer =*/ NULL,
  2315. /*.ne =*/ { 1, 1, 1, 1 },
  2316. /*.nb =*/ { 0, 0, 0, 0 },
  2317. /*.op =*/ GGML_OP_NONE,
  2318. /*.op_params =*/ { 0 },
  2319. /*.flags =*/ 0,
  2320. /*.grad =*/ NULL,
  2321. /*.src =*/ { NULL },
  2322. /*.perf_runs =*/ 0,
  2323. /*.perf_cycles =*/ 0,
  2324. /*.perf_time_us =*/ 0,
  2325. /*.view_src =*/ view_src,
  2326. /*.view_offs =*/ view_offs,
  2327. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2328. /*.name =*/ { 0 },
  2329. /*.extra =*/ NULL,
  2330. /*.padding =*/ { 0 },
  2331. };
  2332. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2333. //ggml_assert_aligned(result->data);
  2334. for (int i = 0; i < n_dims; i++) {
  2335. result->ne[i] = ne[i];
  2336. }
  2337. result->nb[0] = ggml_type_size(type);
  2338. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2339. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2340. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2341. }
  2342. ctx->n_objects++;
  2343. return result;
  2344. }
  2345. struct ggml_tensor * ggml_new_tensor(
  2346. struct ggml_context * ctx,
  2347. enum ggml_type type,
  2348. int n_dims,
  2349. const int64_t * ne) {
  2350. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2351. }
  2352. struct ggml_tensor * ggml_new_tensor_1d(
  2353. struct ggml_context * ctx,
  2354. enum ggml_type type,
  2355. int64_t ne0) {
  2356. return ggml_new_tensor(ctx, type, 1, &ne0);
  2357. }
  2358. struct ggml_tensor * ggml_new_tensor_2d(
  2359. struct ggml_context * ctx,
  2360. enum ggml_type type,
  2361. int64_t ne0,
  2362. int64_t ne1) {
  2363. const int64_t ne[2] = { ne0, ne1 };
  2364. return ggml_new_tensor(ctx, type, 2, ne);
  2365. }
  2366. struct ggml_tensor * ggml_new_tensor_3d(
  2367. struct ggml_context * ctx,
  2368. enum ggml_type type,
  2369. int64_t ne0,
  2370. int64_t ne1,
  2371. int64_t ne2) {
  2372. const int64_t ne[3] = { ne0, ne1, ne2 };
  2373. return ggml_new_tensor(ctx, type, 3, ne);
  2374. }
  2375. struct ggml_tensor * ggml_new_tensor_4d(
  2376. struct ggml_context * ctx,
  2377. enum ggml_type type,
  2378. int64_t ne0,
  2379. int64_t ne1,
  2380. int64_t ne2,
  2381. int64_t ne3) {
  2382. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2383. return ggml_new_tensor(ctx, type, 4, ne);
  2384. }
  2385. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2386. ggml_scratch_save(ctx);
  2387. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2388. ggml_scratch_load(ctx);
  2389. ggml_set_i32(result, value);
  2390. return result;
  2391. }
  2392. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2393. ggml_scratch_save(ctx);
  2394. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2395. ggml_scratch_load(ctx);
  2396. ggml_set_f32(result, value);
  2397. return result;
  2398. }
  2399. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2400. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2401. }
  2402. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2403. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2404. assert(params_size <= GGML_MAX_OP_PARAMS);
  2405. memcpy(tensor->op_params, params, params_size);
  2406. }
  2407. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2408. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2409. return ((const int32_t *)(tensor->op_params))[i];
  2410. }
  2411. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2412. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2413. ((int32_t *)(tensor->op_params))[i] = value;
  2414. }
  2415. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2416. memset(tensor->data, 0, ggml_nbytes(tensor));
  2417. return tensor;
  2418. }
  2419. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2420. const int n = ggml_nrows(tensor);
  2421. const int nc = tensor->ne[0];
  2422. const size_t n1 = tensor->nb[1];
  2423. char * const data = tensor->data;
  2424. switch (tensor->type) {
  2425. case GGML_TYPE_I8:
  2426. {
  2427. assert(tensor->nb[0] == sizeof(int8_t));
  2428. for (int i = 0; i < n; i++) {
  2429. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2430. }
  2431. } break;
  2432. case GGML_TYPE_I16:
  2433. {
  2434. assert(tensor->nb[0] == sizeof(int16_t));
  2435. for (int i = 0; i < n; i++) {
  2436. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2437. }
  2438. } break;
  2439. case GGML_TYPE_I32:
  2440. {
  2441. assert(tensor->nb[0] == sizeof(int32_t));
  2442. for (int i = 0; i < n; i++) {
  2443. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2444. }
  2445. } break;
  2446. case GGML_TYPE_F16:
  2447. {
  2448. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2449. for (int i = 0; i < n; i++) {
  2450. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2451. }
  2452. } break;
  2453. case GGML_TYPE_F32:
  2454. {
  2455. assert(tensor->nb[0] == sizeof(float));
  2456. for (int i = 0; i < n; i++) {
  2457. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2458. }
  2459. } break;
  2460. default:
  2461. {
  2462. GGML_ASSERT(false);
  2463. } break;
  2464. }
  2465. return tensor;
  2466. }
  2467. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2468. const int n = ggml_nrows(tensor);
  2469. const int nc = tensor->ne[0];
  2470. const size_t n1 = tensor->nb[1];
  2471. char * const data = tensor->data;
  2472. switch (tensor->type) {
  2473. case GGML_TYPE_I8:
  2474. {
  2475. assert(tensor->nb[0] == sizeof(int8_t));
  2476. for (int i = 0; i < n; i++) {
  2477. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2478. }
  2479. } break;
  2480. case GGML_TYPE_I16:
  2481. {
  2482. assert(tensor->nb[0] == sizeof(int16_t));
  2483. for (int i = 0; i < n; i++) {
  2484. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2485. }
  2486. } break;
  2487. case GGML_TYPE_I32:
  2488. {
  2489. assert(tensor->nb[0] == sizeof(int32_t));
  2490. for (int i = 0; i < n; i++) {
  2491. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2492. }
  2493. } break;
  2494. case GGML_TYPE_F16:
  2495. {
  2496. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2497. for (int i = 0; i < n; i++) {
  2498. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2499. }
  2500. } break;
  2501. case GGML_TYPE_F32:
  2502. {
  2503. assert(tensor->nb[0] == sizeof(float));
  2504. for (int i = 0; i < n; i++) {
  2505. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2506. }
  2507. } break;
  2508. default:
  2509. {
  2510. GGML_ASSERT(false);
  2511. } break;
  2512. }
  2513. return tensor;
  2514. }
  2515. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2516. const int64_t ne2 = tensor->ne[2];
  2517. const int64_t ne1 = tensor->ne[1];
  2518. const int64_t ne0 = tensor->ne[0];
  2519. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2520. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2521. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2522. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2523. if (i0) {
  2524. * i0 = i0_;
  2525. }
  2526. if (i1) {
  2527. * i1 = i1_;
  2528. }
  2529. if (i2) {
  2530. * i2 = i2_;
  2531. }
  2532. if (i3) {
  2533. * i3 = i3_;
  2534. }
  2535. }
  2536. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2537. if (!ggml_is_contiguous(tensor)) {
  2538. int64_t id[4] = { 0, 0, 0, 0 };
  2539. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2540. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2541. }
  2542. switch (tensor->type) {
  2543. case GGML_TYPE_I8:
  2544. {
  2545. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2546. return ((int8_t *)(tensor->data))[i];
  2547. }
  2548. case GGML_TYPE_I16:
  2549. {
  2550. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2551. return ((int16_t *)(tensor->data))[i];
  2552. }
  2553. case GGML_TYPE_I32:
  2554. {
  2555. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2556. return ((int32_t *)(tensor->data))[i];
  2557. }
  2558. case GGML_TYPE_F16:
  2559. {
  2560. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2561. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2562. }
  2563. case GGML_TYPE_F32:
  2564. {
  2565. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2566. return ((float *)(tensor->data))[i];
  2567. }
  2568. default:
  2569. {
  2570. GGML_ASSERT(false);
  2571. }
  2572. }
  2573. return 0.0f;
  2574. }
  2575. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2576. if (!ggml_is_contiguous(tensor)) {
  2577. int64_t id[4] = { 0, 0, 0, 0 };
  2578. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2579. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2580. return;
  2581. }
  2582. switch (tensor->type) {
  2583. case GGML_TYPE_I8:
  2584. {
  2585. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2586. ((int8_t *)(tensor->data))[i] = value;
  2587. } break;
  2588. case GGML_TYPE_I16:
  2589. {
  2590. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2591. ((int16_t *)(tensor->data))[i] = value;
  2592. } break;
  2593. case GGML_TYPE_I32:
  2594. {
  2595. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2596. ((int32_t *)(tensor->data))[i] = value;
  2597. } break;
  2598. case GGML_TYPE_F16:
  2599. {
  2600. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2601. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2602. } break;
  2603. case GGML_TYPE_F32:
  2604. {
  2605. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2606. ((float *)(tensor->data))[i] = value;
  2607. } break;
  2608. default:
  2609. {
  2610. GGML_ASSERT(false);
  2611. } break;
  2612. }
  2613. }
  2614. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2615. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2616. switch (tensor->type) {
  2617. case GGML_TYPE_I8:
  2618. return ((int8_t *) data)[0];
  2619. case GGML_TYPE_I16:
  2620. return ((int16_t *) data)[0];
  2621. case GGML_TYPE_I32:
  2622. return ((int32_t *) data)[0];
  2623. case GGML_TYPE_F16:
  2624. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2625. case GGML_TYPE_F32:
  2626. return ((float *) data)[0];
  2627. default:
  2628. GGML_ASSERT(false);
  2629. }
  2630. return 0.0f;
  2631. }
  2632. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2633. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2634. switch (tensor->type) {
  2635. case GGML_TYPE_I8:
  2636. {
  2637. ((int8_t *)(data))[0] = value;
  2638. } break;
  2639. case GGML_TYPE_I16:
  2640. {
  2641. ((int16_t *)(data))[0] = value;
  2642. } break;
  2643. case GGML_TYPE_I32:
  2644. {
  2645. ((int32_t *)(data))[0] = value;
  2646. } break;
  2647. case GGML_TYPE_F16:
  2648. {
  2649. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2650. } break;
  2651. case GGML_TYPE_F32:
  2652. {
  2653. ((float *)(data))[0] = value;
  2654. } break;
  2655. default:
  2656. {
  2657. GGML_ASSERT(false);
  2658. } break;
  2659. }
  2660. }
  2661. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2662. if (!ggml_is_contiguous(tensor)) {
  2663. int64_t id[4] = { 0, 0, 0, 0 };
  2664. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2665. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2666. }
  2667. switch (tensor->type) {
  2668. case GGML_TYPE_I8:
  2669. {
  2670. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2671. return ((int8_t *)(tensor->data))[i];
  2672. }
  2673. case GGML_TYPE_I16:
  2674. {
  2675. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2676. return ((int16_t *)(tensor->data))[i];
  2677. }
  2678. case GGML_TYPE_I32:
  2679. {
  2680. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2681. return ((int32_t *)(tensor->data))[i];
  2682. }
  2683. case GGML_TYPE_F16:
  2684. {
  2685. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2686. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2687. }
  2688. case GGML_TYPE_F32:
  2689. {
  2690. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2691. return ((float *)(tensor->data))[i];
  2692. }
  2693. default:
  2694. {
  2695. GGML_ASSERT(false);
  2696. }
  2697. }
  2698. return 0.0f;
  2699. }
  2700. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2701. if (!ggml_is_contiguous(tensor)) {
  2702. int64_t id[4] = { 0, 0, 0, 0 };
  2703. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2704. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2705. return;
  2706. }
  2707. switch (tensor->type) {
  2708. case GGML_TYPE_I8:
  2709. {
  2710. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2711. ((int8_t *)(tensor->data))[i] = value;
  2712. } break;
  2713. case GGML_TYPE_I16:
  2714. {
  2715. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2716. ((int16_t *)(tensor->data))[i] = value;
  2717. } break;
  2718. case GGML_TYPE_I32:
  2719. {
  2720. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2721. ((int32_t *)(tensor->data))[i] = value;
  2722. } break;
  2723. case GGML_TYPE_F16:
  2724. {
  2725. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2726. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2727. } break;
  2728. case GGML_TYPE_F32:
  2729. {
  2730. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2731. ((float *)(tensor->data))[i] = value;
  2732. } break;
  2733. default:
  2734. {
  2735. GGML_ASSERT(false);
  2736. } break;
  2737. }
  2738. }
  2739. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2740. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2741. switch (tensor->type) {
  2742. case GGML_TYPE_I8:
  2743. return ((int8_t *) data)[0];
  2744. case GGML_TYPE_I16:
  2745. return ((int16_t *) data)[0];
  2746. case GGML_TYPE_I32:
  2747. return ((int32_t *) data)[0];
  2748. case GGML_TYPE_F16:
  2749. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2750. case GGML_TYPE_F32:
  2751. return ((float *) data)[0];
  2752. default:
  2753. GGML_ASSERT(false);
  2754. }
  2755. return 0.0f;
  2756. }
  2757. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2758. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2759. switch (tensor->type) {
  2760. case GGML_TYPE_I8:
  2761. {
  2762. ((int8_t *)(data))[0] = value;
  2763. } break;
  2764. case GGML_TYPE_I16:
  2765. {
  2766. ((int16_t *)(data))[0] = value;
  2767. } break;
  2768. case GGML_TYPE_I32:
  2769. {
  2770. ((int32_t *)(data))[0] = value;
  2771. } break;
  2772. case GGML_TYPE_F16:
  2773. {
  2774. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2775. } break;
  2776. case GGML_TYPE_F32:
  2777. {
  2778. ((float *)(data))[0] = value;
  2779. } break;
  2780. default:
  2781. {
  2782. GGML_ASSERT(false);
  2783. } break;
  2784. }
  2785. }
  2786. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2787. return tensor->data;
  2788. }
  2789. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2790. assert(tensor->type == GGML_TYPE_F32);
  2791. return (float *)(tensor->data);
  2792. }
  2793. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2794. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2795. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2796. }
  2797. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2798. return tensor->name;
  2799. }
  2800. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2801. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2802. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2803. return tensor;
  2804. }
  2805. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2806. va_list args;
  2807. va_start(args, fmt);
  2808. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2809. va_end(args);
  2810. return tensor;
  2811. }
  2812. struct ggml_tensor * ggml_view_tensor(
  2813. struct ggml_context * ctx,
  2814. struct ggml_tensor * src) {
  2815. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2816. ggml_format_name(result, "%s (view)", src->name);
  2817. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2818. result->nb[i] = src->nb[i];
  2819. }
  2820. return result;
  2821. }
  2822. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2823. struct ggml_object * obj = ctx->objects_begin;
  2824. char * const mem_buffer = ctx->mem_buffer;
  2825. while (obj != NULL) {
  2826. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2827. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2828. }
  2829. obj = obj->next;
  2830. }
  2831. return NULL;
  2832. }
  2833. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2834. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2835. obj = obj->next;
  2836. char * const mem_buffer = ctx->mem_buffer;
  2837. while (obj != NULL) {
  2838. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2839. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2840. }
  2841. obj = obj->next;
  2842. }
  2843. return NULL;
  2844. }
  2845. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2846. struct ggml_object * obj = ctx->objects_begin;
  2847. char * const mem_buffer = ctx->mem_buffer;
  2848. while (obj != NULL) {
  2849. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2850. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  2851. if (strcmp(cur->name, name) == 0) {
  2852. return cur;
  2853. }
  2854. }
  2855. obj = obj->next;
  2856. }
  2857. return NULL;
  2858. }
  2859. ////////////////////////////////////////////////////////////////////////////////
  2860. // ggml_dup
  2861. static struct ggml_tensor * ggml_dup_impl(
  2862. struct ggml_context * ctx,
  2863. struct ggml_tensor * a,
  2864. bool inplace) {
  2865. bool is_node = false;
  2866. if (!inplace && (a->grad)) {
  2867. is_node = true;
  2868. }
  2869. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2870. result->op = GGML_OP_DUP;
  2871. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2872. result->src[0] = a;
  2873. return result;
  2874. }
  2875. struct ggml_tensor * ggml_dup(
  2876. struct ggml_context * ctx,
  2877. struct ggml_tensor * a) {
  2878. return ggml_dup_impl(ctx, a, false);
  2879. }
  2880. struct ggml_tensor * ggml_dup_inplace(
  2881. struct ggml_context * ctx,
  2882. struct ggml_tensor * a) {
  2883. return ggml_dup_impl(ctx, a, true);
  2884. }
  2885. // ggml_add
  2886. static struct ggml_tensor * ggml_add_impl(
  2887. struct ggml_context * ctx,
  2888. struct ggml_tensor * a,
  2889. struct ggml_tensor * b,
  2890. bool inplace) {
  2891. GGML_ASSERT(ggml_can_repeat(b, a));
  2892. bool is_node = false;
  2893. if (!inplace && (a->grad || b->grad)) {
  2894. // TODO: support backward pass for broadcasting
  2895. GGML_ASSERT(ggml_are_same_shape(a, b));
  2896. is_node = true;
  2897. }
  2898. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2899. result->op = GGML_OP_ADD;
  2900. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2901. result->src[0] = a;
  2902. result->src[1] = b;
  2903. return result;
  2904. }
  2905. struct ggml_tensor * ggml_add(
  2906. struct ggml_context * ctx,
  2907. struct ggml_tensor * a,
  2908. struct ggml_tensor * b) {
  2909. return ggml_add_impl(ctx, a, b, false);
  2910. }
  2911. struct ggml_tensor * ggml_add_inplace(
  2912. struct ggml_context * ctx,
  2913. struct ggml_tensor * a,
  2914. struct ggml_tensor * b) {
  2915. return ggml_add_impl(ctx, a, b, true);
  2916. }
  2917. // ggml_add_cast
  2918. static struct ggml_tensor * ggml_add_cast_impl(
  2919. struct ggml_context * ctx,
  2920. struct ggml_tensor * a,
  2921. struct ggml_tensor * b,
  2922. enum ggml_type type) {
  2923. // TODO: support less-strict constraint
  2924. // GGML_ASSERT(ggml_can_repeat(b, a));
  2925. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  2926. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  2927. bool is_node = false;
  2928. if (a->grad || b->grad) {
  2929. // TODO: support backward pass for broadcasting
  2930. GGML_ASSERT(ggml_are_same_shape(a, b));
  2931. is_node = true;
  2932. }
  2933. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  2934. result->op = GGML_OP_ADD;
  2935. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  2936. result->src[0] = a;
  2937. result->src[1] = b;
  2938. return result;
  2939. }
  2940. struct ggml_tensor * ggml_add_cast(
  2941. struct ggml_context * ctx,
  2942. struct ggml_tensor * a,
  2943. struct ggml_tensor * b,
  2944. enum ggml_type type) {
  2945. return ggml_add_cast_impl(ctx, a, b, type);
  2946. }
  2947. // ggml_add1
  2948. static struct ggml_tensor * ggml_add1_impl(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a,
  2951. struct ggml_tensor * b,
  2952. bool inplace) {
  2953. GGML_ASSERT(ggml_is_scalar(b));
  2954. GGML_ASSERT(ggml_is_padded_1d(a));
  2955. bool is_node = false;
  2956. if (a->grad || b->grad) {
  2957. is_node = true;
  2958. }
  2959. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2960. result->op = GGML_OP_ADD1;
  2961. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2962. result->src[0] = a;
  2963. result->src[1] = b;
  2964. return result;
  2965. }
  2966. struct ggml_tensor * ggml_add1(
  2967. struct ggml_context * ctx,
  2968. struct ggml_tensor * a,
  2969. struct ggml_tensor * b) {
  2970. return ggml_add1_impl(ctx, a, b, false);
  2971. }
  2972. struct ggml_tensor * ggml_add1_inplace(
  2973. struct ggml_context * ctx,
  2974. struct ggml_tensor * a,
  2975. struct ggml_tensor * b) {
  2976. return ggml_add1_impl(ctx, a, b, true);
  2977. }
  2978. // ggml_acc
  2979. static struct ggml_tensor * ggml_acc_impl(
  2980. struct ggml_context * ctx,
  2981. struct ggml_tensor * a,
  2982. struct ggml_tensor * b,
  2983. size_t nb1,
  2984. size_t nb2,
  2985. size_t nb3,
  2986. size_t offset,
  2987. bool inplace) {
  2988. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  2989. GGML_ASSERT(ggml_is_contiguous(a));
  2990. GGML_ASSERT(a->type == GGML_TYPE_F32);
  2991. GGML_ASSERT(b->type == GGML_TYPE_F32);
  2992. bool is_node = false;
  2993. if (!inplace && (a->grad || b->grad)) {
  2994. is_node = true;
  2995. }
  2996. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2997. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  2998. ggml_set_op_params(result, params, sizeof(params));
  2999. result->op = GGML_OP_ACC;
  3000. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3001. result->src[0] = a;
  3002. result->src[1] = b;
  3003. return result;
  3004. }
  3005. struct ggml_tensor * ggml_acc(
  3006. struct ggml_context * ctx,
  3007. struct ggml_tensor * a,
  3008. struct ggml_tensor * b,
  3009. size_t nb1,
  3010. size_t nb2,
  3011. size_t nb3,
  3012. size_t offset) {
  3013. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3014. }
  3015. struct ggml_tensor * ggml_acc_inplace(
  3016. struct ggml_context * ctx,
  3017. struct ggml_tensor * a,
  3018. struct ggml_tensor * b,
  3019. size_t nb1,
  3020. size_t nb2,
  3021. size_t nb3,
  3022. size_t offset) {
  3023. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3024. }
  3025. // ggml_sub
  3026. static struct ggml_tensor * ggml_sub_impl(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a,
  3029. struct ggml_tensor * b,
  3030. bool inplace) {
  3031. GGML_ASSERT(ggml_are_same_shape(a, b));
  3032. bool is_node = false;
  3033. if (!inplace && (a->grad || b->grad)) {
  3034. is_node = true;
  3035. }
  3036. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3037. result->op = GGML_OP_SUB;
  3038. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3039. result->src[0] = a;
  3040. result->src[1] = b;
  3041. return result;
  3042. }
  3043. struct ggml_tensor * ggml_sub(
  3044. struct ggml_context * ctx,
  3045. struct ggml_tensor * a,
  3046. struct ggml_tensor * b) {
  3047. return ggml_sub_impl(ctx, a, b, false);
  3048. }
  3049. struct ggml_tensor * ggml_sub_inplace(
  3050. struct ggml_context * ctx,
  3051. struct ggml_tensor * a,
  3052. struct ggml_tensor * b) {
  3053. return ggml_sub_impl(ctx, a, b, true);
  3054. }
  3055. // ggml_mul
  3056. static struct ggml_tensor * ggml_mul_impl(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a,
  3059. struct ggml_tensor * b,
  3060. bool inplace) {
  3061. GGML_ASSERT(ggml_can_repeat(b, a));
  3062. bool is_node = false;
  3063. if (!inplace && (a->grad || b->grad)) {
  3064. // TODO: support backward pass for broadcasting
  3065. GGML_ASSERT(ggml_are_same_shape(a, b));
  3066. is_node = true;
  3067. }
  3068. if (inplace) {
  3069. GGML_ASSERT(!is_node);
  3070. }
  3071. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3072. result->op = GGML_OP_MUL;
  3073. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3074. result->src[0] = a;
  3075. result->src[1] = b;
  3076. return result;
  3077. }
  3078. struct ggml_tensor * ggml_mul(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a,
  3081. struct ggml_tensor * b) {
  3082. return ggml_mul_impl(ctx, a, b, false);
  3083. }
  3084. struct ggml_tensor * ggml_mul_inplace(
  3085. struct ggml_context * ctx,
  3086. struct ggml_tensor * a,
  3087. struct ggml_tensor * b) {
  3088. return ggml_mul_impl(ctx, a, b, true);
  3089. }
  3090. // ggml_div
  3091. static struct ggml_tensor * ggml_div_impl(
  3092. struct ggml_context * ctx,
  3093. struct ggml_tensor * a,
  3094. struct ggml_tensor * b,
  3095. bool inplace) {
  3096. GGML_ASSERT(ggml_can_repeat(b, a));
  3097. bool is_node = false;
  3098. if (!inplace && (a->grad || b->grad)) {
  3099. is_node = true;
  3100. }
  3101. if (inplace) {
  3102. GGML_ASSERT(!is_node);
  3103. }
  3104. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3105. result->op = GGML_OP_DIV;
  3106. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3107. result->src[0] = a;
  3108. result->src[1] = b;
  3109. return result;
  3110. }
  3111. struct ggml_tensor * ggml_div(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a,
  3114. struct ggml_tensor * b) {
  3115. return ggml_div_impl(ctx, a, b, false);
  3116. }
  3117. struct ggml_tensor * ggml_div_inplace(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a,
  3120. struct ggml_tensor * b) {
  3121. return ggml_div_impl(ctx, a, b, true);
  3122. }
  3123. // ggml_sqr
  3124. static struct ggml_tensor * ggml_sqr_impl(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a,
  3127. bool inplace) {
  3128. bool is_node = false;
  3129. if (!inplace && (a->grad)) {
  3130. is_node = true;
  3131. }
  3132. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3133. result->op = GGML_OP_SQR;
  3134. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3135. result->src[0] = a;
  3136. return result;
  3137. }
  3138. struct ggml_tensor * ggml_sqr(
  3139. struct ggml_context * ctx,
  3140. struct ggml_tensor * a) {
  3141. return ggml_sqr_impl(ctx, a, false);
  3142. }
  3143. struct ggml_tensor * ggml_sqr_inplace(
  3144. struct ggml_context * ctx,
  3145. struct ggml_tensor * a) {
  3146. return ggml_sqr_impl(ctx, a, true);
  3147. }
  3148. // ggml_sqrt
  3149. static struct ggml_tensor * ggml_sqrt_impl(
  3150. struct ggml_context * ctx,
  3151. struct ggml_tensor * a,
  3152. bool inplace) {
  3153. bool is_node = false;
  3154. if (!inplace && (a->grad)) {
  3155. is_node = true;
  3156. }
  3157. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3158. result->op = GGML_OP_SQRT;
  3159. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3160. result->src[0] = a;
  3161. return result;
  3162. }
  3163. struct ggml_tensor * ggml_sqrt(
  3164. struct ggml_context * ctx,
  3165. struct ggml_tensor * a) {
  3166. return ggml_sqrt_impl(ctx, a, false);
  3167. }
  3168. struct ggml_tensor * ggml_sqrt_inplace(
  3169. struct ggml_context * ctx,
  3170. struct ggml_tensor * a) {
  3171. return ggml_sqrt_impl(ctx, a, true);
  3172. }
  3173. // ggml_log
  3174. static struct ggml_tensor * ggml_log_impl(
  3175. struct ggml_context * ctx,
  3176. struct ggml_tensor * a,
  3177. bool inplace) {
  3178. bool is_node = false;
  3179. if (!inplace && (a->grad)) {
  3180. is_node = true;
  3181. }
  3182. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3183. result->op = GGML_OP_LOG;
  3184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3185. result->src[0] = a;
  3186. return result;
  3187. }
  3188. struct ggml_tensor * ggml_log(
  3189. struct ggml_context * ctx,
  3190. struct ggml_tensor * a) {
  3191. return ggml_log_impl(ctx, a, false);
  3192. }
  3193. struct ggml_tensor * ggml_log_inplace(
  3194. struct ggml_context * ctx,
  3195. struct ggml_tensor * a) {
  3196. return ggml_log_impl(ctx, a, true);
  3197. }
  3198. // ggml_sum
  3199. struct ggml_tensor * ggml_sum(
  3200. struct ggml_context * ctx,
  3201. struct ggml_tensor * a) {
  3202. bool is_node = false;
  3203. if (a->grad) {
  3204. is_node = true;
  3205. }
  3206. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3207. result->op = GGML_OP_SUM;
  3208. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3209. result->src[0] = a;
  3210. return result;
  3211. }
  3212. // ggml_sum_rows
  3213. struct ggml_tensor * ggml_sum_rows(
  3214. struct ggml_context * ctx,
  3215. struct ggml_tensor * a) {
  3216. bool is_node = false;
  3217. if (a->grad) {
  3218. is_node = true;
  3219. }
  3220. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3221. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3222. ne[i] = a->ne[i];
  3223. }
  3224. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3225. result->op = GGML_OP_SUM_ROWS;
  3226. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3227. result->src[0] = a;
  3228. return result;
  3229. }
  3230. // ggml_mean
  3231. struct ggml_tensor * ggml_mean(
  3232. struct ggml_context * ctx,
  3233. struct ggml_tensor * a) {
  3234. bool is_node = false;
  3235. if (a->grad) {
  3236. GGML_ASSERT(false); // TODO: implement
  3237. is_node = true;
  3238. }
  3239. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3240. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3241. result->op = GGML_OP_MEAN;
  3242. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3243. result->src[0] = a;
  3244. return result;
  3245. }
  3246. // ggml_argmax
  3247. struct ggml_tensor * ggml_argmax(
  3248. struct ggml_context * ctx,
  3249. struct ggml_tensor * a) {
  3250. GGML_ASSERT(ggml_is_matrix(a));
  3251. bool is_node = false;
  3252. if (a->grad) {
  3253. GGML_ASSERT(false);
  3254. is_node = true;
  3255. }
  3256. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3257. result->op = GGML_OP_ARGMAX;
  3258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3259. result->src[0] = a;
  3260. return result;
  3261. }
  3262. // ggml_repeat
  3263. struct ggml_tensor * ggml_repeat(
  3264. struct ggml_context * ctx,
  3265. struct ggml_tensor * a,
  3266. struct ggml_tensor * b) {
  3267. GGML_ASSERT(ggml_can_repeat(a, b));
  3268. bool is_node = false;
  3269. if (a->grad) {
  3270. is_node = true;
  3271. }
  3272. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3273. result->op = GGML_OP_REPEAT;
  3274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3275. result->src[0] = a;
  3276. return result;
  3277. }
  3278. // ggml_repeat_back
  3279. struct ggml_tensor * ggml_repeat_back(
  3280. struct ggml_context * ctx,
  3281. struct ggml_tensor * a,
  3282. struct ggml_tensor * b) {
  3283. GGML_ASSERT(ggml_can_repeat(b, a));
  3284. bool is_node = false;
  3285. if (a->grad) {
  3286. is_node = true;
  3287. }
  3288. if (ggml_are_same_shape(a, b) && !is_node) {
  3289. return a;
  3290. }
  3291. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3292. result->op = GGML_OP_REPEAT_BACK;
  3293. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3294. result->src[0] = a;
  3295. return result;
  3296. }
  3297. // ggml_concat
  3298. struct ggml_tensor * ggml_concat(
  3299. struct ggml_context* ctx,
  3300. struct ggml_tensor* a,
  3301. struct ggml_tensor* b) {
  3302. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3303. bool is_node = false;
  3304. if (a->grad || b->grad) {
  3305. is_node = true;
  3306. }
  3307. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3308. result->op = GGML_OP_CONCAT;
  3309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3310. result->src[0] = a;
  3311. result->src[1] = b;
  3312. return result;
  3313. }
  3314. // ggml_abs
  3315. struct ggml_tensor * ggml_abs(
  3316. struct ggml_context * ctx,
  3317. struct ggml_tensor * a) {
  3318. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3319. }
  3320. struct ggml_tensor * ggml_abs_inplace(
  3321. struct ggml_context * ctx,
  3322. struct ggml_tensor * a) {
  3323. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3324. }
  3325. // ggml_sgn
  3326. struct ggml_tensor * ggml_sgn(
  3327. struct ggml_context * ctx,
  3328. struct ggml_tensor * a) {
  3329. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3330. }
  3331. struct ggml_tensor * ggml_sgn_inplace(
  3332. struct ggml_context * ctx,
  3333. struct ggml_tensor * a) {
  3334. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3335. }
  3336. // ggml_neg
  3337. struct ggml_tensor * ggml_neg(
  3338. struct ggml_context * ctx,
  3339. struct ggml_tensor * a) {
  3340. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3341. }
  3342. struct ggml_tensor * ggml_neg_inplace(
  3343. struct ggml_context * ctx,
  3344. struct ggml_tensor * a) {
  3345. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3346. }
  3347. // ggml_step
  3348. struct ggml_tensor * ggml_step(
  3349. struct ggml_context * ctx,
  3350. struct ggml_tensor * a) {
  3351. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3352. }
  3353. struct ggml_tensor * ggml_step_inplace(
  3354. struct ggml_context * ctx,
  3355. struct ggml_tensor * a) {
  3356. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3357. }
  3358. // ggml_tanh
  3359. struct ggml_tensor * ggml_tanh(
  3360. struct ggml_context * ctx,
  3361. struct ggml_tensor * a) {
  3362. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3363. }
  3364. struct ggml_tensor * ggml_tanh_inplace(
  3365. struct ggml_context * ctx,
  3366. struct ggml_tensor * a) {
  3367. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3368. }
  3369. // ggml_elu
  3370. struct ggml_tensor * ggml_elu(
  3371. struct ggml_context * ctx,
  3372. struct ggml_tensor * a) {
  3373. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3374. }
  3375. struct ggml_tensor * ggml_elu_inplace(
  3376. struct ggml_context * ctx,
  3377. struct ggml_tensor * a) {
  3378. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3379. }
  3380. // ggml_relu
  3381. struct ggml_tensor * ggml_relu(
  3382. struct ggml_context * ctx,
  3383. struct ggml_tensor * a) {
  3384. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3385. }
  3386. struct ggml_tensor * ggml_relu_inplace(
  3387. struct ggml_context * ctx,
  3388. struct ggml_tensor * a) {
  3389. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3390. }
  3391. // ggml_leaky_relu
  3392. struct ggml_tensor * ggml_leaky_relu(
  3393. struct ggml_context * ctx,
  3394. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3395. bool is_node = false;
  3396. if (!inplace && (a->grad)) {
  3397. is_node = true;
  3398. }
  3399. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3400. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3401. result->op = GGML_OP_LEAKY_RELU;
  3402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3403. result->src[0] = a;
  3404. return result;
  3405. }
  3406. // ggml_gelu
  3407. struct ggml_tensor * ggml_gelu(
  3408. struct ggml_context * ctx,
  3409. struct ggml_tensor * a) {
  3410. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3411. }
  3412. struct ggml_tensor * ggml_gelu_inplace(
  3413. struct ggml_context * ctx,
  3414. struct ggml_tensor * a) {
  3415. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3416. }
  3417. // ggml_gelu_quick
  3418. struct ggml_tensor * ggml_gelu_quick(
  3419. struct ggml_context * ctx,
  3420. struct ggml_tensor * a) {
  3421. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3422. }
  3423. struct ggml_tensor * ggml_gelu_quick_inplace(
  3424. struct ggml_context * ctx,
  3425. struct ggml_tensor * a) {
  3426. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3427. }
  3428. // ggml_silu
  3429. struct ggml_tensor * ggml_silu(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a) {
  3432. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3433. }
  3434. struct ggml_tensor * ggml_silu_inplace(
  3435. struct ggml_context * ctx,
  3436. struct ggml_tensor * a) {
  3437. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3438. }
  3439. // ggml_silu_back
  3440. struct ggml_tensor * ggml_silu_back(
  3441. struct ggml_context * ctx,
  3442. struct ggml_tensor * a,
  3443. struct ggml_tensor * b) {
  3444. bool is_node = false;
  3445. if (a->grad || b->grad) {
  3446. // TODO: implement backward
  3447. is_node = true;
  3448. }
  3449. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3450. result->op = GGML_OP_SILU_BACK;
  3451. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3452. result->src[0] = a;
  3453. result->src[1] = b;
  3454. return result;
  3455. }
  3456. // ggml hardswish
  3457. struct ggml_tensor * ggml_hardswish(
  3458. struct ggml_context * ctx,
  3459. struct ggml_tensor * a) {
  3460. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3461. }
  3462. // ggml hardsigmoid
  3463. struct ggml_tensor * ggml_hardsigmoid(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a) {
  3466. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3467. }
  3468. // ggml_norm
  3469. static struct ggml_tensor * ggml_norm_impl(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a,
  3472. float eps,
  3473. bool inplace) {
  3474. bool is_node = false;
  3475. if (!inplace && (a->grad)) {
  3476. GGML_ASSERT(false); // TODO: implement backward
  3477. is_node = true;
  3478. }
  3479. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3480. ggml_set_op_params(result, &eps, sizeof(eps));
  3481. result->op = GGML_OP_NORM;
  3482. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3483. result->src[0] = a;
  3484. return result;
  3485. }
  3486. struct ggml_tensor * ggml_norm(
  3487. struct ggml_context * ctx,
  3488. struct ggml_tensor * a,
  3489. float eps) {
  3490. return ggml_norm_impl(ctx, a, eps, false);
  3491. }
  3492. struct ggml_tensor * ggml_norm_inplace(
  3493. struct ggml_context * ctx,
  3494. struct ggml_tensor * a,
  3495. float eps) {
  3496. return ggml_norm_impl(ctx, a, eps, true);
  3497. }
  3498. // ggml_rms_norm
  3499. static struct ggml_tensor * ggml_rms_norm_impl(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a,
  3502. float eps,
  3503. bool inplace) {
  3504. bool is_node = false;
  3505. if (!inplace && (a->grad)) {
  3506. is_node = true;
  3507. }
  3508. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3509. ggml_set_op_params(result, &eps, sizeof(eps));
  3510. result->op = GGML_OP_RMS_NORM;
  3511. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3512. result->src[0] = a;
  3513. return result;
  3514. }
  3515. struct ggml_tensor * ggml_rms_norm(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a,
  3518. float eps) {
  3519. return ggml_rms_norm_impl(ctx, a, eps, false);
  3520. }
  3521. struct ggml_tensor * ggml_rms_norm_inplace(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a,
  3524. float eps) {
  3525. return ggml_rms_norm_impl(ctx, a, eps, true);
  3526. }
  3527. // ggml_rms_norm_back
  3528. struct ggml_tensor * ggml_rms_norm_back(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. struct ggml_tensor * b,
  3532. float eps) {
  3533. bool is_node = false;
  3534. if (a->grad) {
  3535. // TODO: implement backward
  3536. is_node = true;
  3537. }
  3538. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3539. ggml_set_op_params(result, &eps, sizeof(eps));
  3540. result->op = GGML_OP_RMS_NORM_BACK;
  3541. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3542. result->src[0] = a;
  3543. result->src[1] = b;
  3544. return result;
  3545. }
  3546. // ggml_group_norm
  3547. static struct ggml_tensor * ggml_group_norm_impl(
  3548. struct ggml_context * ctx,
  3549. struct ggml_tensor * a,
  3550. int n_groups,
  3551. bool inplace) {
  3552. bool is_node = false;
  3553. if (!inplace && (a->grad)) {
  3554. GGML_ASSERT(false); // TODO: implement backward
  3555. is_node = true;
  3556. }
  3557. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3558. result->op_params[0] = n_groups;
  3559. result->op = GGML_OP_GROUP_NORM;
  3560. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3561. result->src[0] = a;
  3562. return result;
  3563. }
  3564. struct ggml_tensor * ggml_group_norm(
  3565. struct ggml_context * ctx,
  3566. struct ggml_tensor * a,
  3567. int n_groups) {
  3568. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3569. }
  3570. struct ggml_tensor * ggml_group_norm_inplace(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. int n_groups) {
  3574. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3575. }
  3576. // ggml_mul_mat
  3577. struct ggml_tensor * ggml_mul_mat(
  3578. struct ggml_context * ctx,
  3579. struct ggml_tensor * a,
  3580. struct ggml_tensor * b) {
  3581. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3582. GGML_ASSERT(!ggml_is_transposed(a));
  3583. bool is_node = false;
  3584. if (a->grad || b->grad) {
  3585. is_node = true;
  3586. }
  3587. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3588. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3589. result->op = GGML_OP_MUL_MAT;
  3590. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3591. result->src[0] = a;
  3592. result->src[1] = b;
  3593. return result;
  3594. }
  3595. void ggml_mul_mat_set_prec(
  3596. struct ggml_tensor * a,
  3597. enum ggml_prec prec) {
  3598. const int32_t prec_i32 = (int32_t) prec;
  3599. ggml_set_op_params_i32(a, 0, prec_i32);
  3600. }
  3601. // ggml_mul_mat_id
  3602. struct ggml_tensor * ggml_mul_mat_id(
  3603. struct ggml_context * ctx,
  3604. struct ggml_tensor * const as[],
  3605. int n_as,
  3606. struct ggml_tensor * ids,
  3607. int id,
  3608. struct ggml_tensor * b) {
  3609. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3610. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3611. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3612. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3613. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3614. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3615. bool is_node = false;
  3616. if (as[0]->grad || b->grad) {
  3617. is_node = true;
  3618. }
  3619. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3620. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3621. ggml_set_op_params_i32(result, 0, id);
  3622. ggml_set_op_params_i32(result, 1, n_as);
  3623. result->op = GGML_OP_MUL_MAT_ID;
  3624. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3625. result->src[0] = ids;
  3626. result->src[1] = b;
  3627. for (int i = 0; i < n_as; i++) {
  3628. struct ggml_tensor * a = as[i];
  3629. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3630. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3631. GGML_ASSERT(!ggml_is_transposed(a));
  3632. result->src[i + 2] = a;
  3633. }
  3634. return result;
  3635. }
  3636. // ggml_out_prod
  3637. struct ggml_tensor * ggml_out_prod(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a,
  3640. struct ggml_tensor * b) {
  3641. GGML_ASSERT(ggml_can_out_prod(a, b));
  3642. GGML_ASSERT(!ggml_is_transposed(a));
  3643. bool is_node = false;
  3644. if (a->grad || b->grad) {
  3645. is_node = true;
  3646. }
  3647. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3648. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3649. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3650. result->op = GGML_OP_OUT_PROD;
  3651. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3652. result->src[0] = a;
  3653. result->src[1] = b;
  3654. return result;
  3655. }
  3656. // ggml_scale
  3657. static struct ggml_tensor * ggml_scale_impl(
  3658. struct ggml_context * ctx,
  3659. struct ggml_tensor * a,
  3660. float s,
  3661. bool inplace) {
  3662. GGML_ASSERT(ggml_is_padded_1d(a));
  3663. bool is_node = false;
  3664. if (a->grad) {
  3665. is_node = true;
  3666. }
  3667. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3668. ggml_set_op_params(result, &s, sizeof(s));
  3669. result->op = GGML_OP_SCALE;
  3670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3671. result->src[0] = a;
  3672. return result;
  3673. }
  3674. struct ggml_tensor * ggml_scale(
  3675. struct ggml_context * ctx,
  3676. struct ggml_tensor * a,
  3677. float s) {
  3678. return ggml_scale_impl(ctx, a, s, false);
  3679. }
  3680. struct ggml_tensor * ggml_scale_inplace(
  3681. struct ggml_context * ctx,
  3682. struct ggml_tensor * a,
  3683. float s) {
  3684. return ggml_scale_impl(ctx, a, s, true);
  3685. }
  3686. // ggml_set
  3687. static struct ggml_tensor * ggml_set_impl(
  3688. struct ggml_context * ctx,
  3689. struct ggml_tensor * a,
  3690. struct ggml_tensor * b,
  3691. size_t nb1,
  3692. size_t nb2,
  3693. size_t nb3,
  3694. size_t offset,
  3695. bool inplace) {
  3696. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3697. bool is_node = false;
  3698. if (a->grad || b->grad) {
  3699. is_node = true;
  3700. }
  3701. // make a view of the destination
  3702. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3703. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3704. ggml_set_op_params(result, params, sizeof(params));
  3705. result->op = GGML_OP_SET;
  3706. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3707. result->src[0] = a;
  3708. result->src[1] = b;
  3709. return result;
  3710. }
  3711. struct ggml_tensor * ggml_set(
  3712. struct ggml_context * ctx,
  3713. struct ggml_tensor * a,
  3714. struct ggml_tensor * b,
  3715. size_t nb1,
  3716. size_t nb2,
  3717. size_t nb3,
  3718. size_t offset) {
  3719. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3720. }
  3721. struct ggml_tensor * ggml_set_inplace(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. struct ggml_tensor * b,
  3725. size_t nb1,
  3726. size_t nb2,
  3727. size_t nb3,
  3728. size_t offset) {
  3729. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3730. }
  3731. struct ggml_tensor * ggml_set_1d(
  3732. struct ggml_context * ctx,
  3733. struct ggml_tensor * a,
  3734. struct ggml_tensor * b,
  3735. size_t offset) {
  3736. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3737. }
  3738. struct ggml_tensor * ggml_set_1d_inplace(
  3739. struct ggml_context * ctx,
  3740. struct ggml_tensor * a,
  3741. struct ggml_tensor * b,
  3742. size_t offset) {
  3743. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3744. }
  3745. struct ggml_tensor * ggml_set_2d(
  3746. struct ggml_context * ctx,
  3747. struct ggml_tensor * a,
  3748. struct ggml_tensor * b,
  3749. size_t nb1,
  3750. size_t offset) {
  3751. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3752. }
  3753. struct ggml_tensor * ggml_set_2d_inplace(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * a,
  3756. struct ggml_tensor * b,
  3757. size_t nb1,
  3758. size_t offset) {
  3759. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3760. }
  3761. // ggml_cpy
  3762. static struct ggml_tensor * ggml_cpy_impl(
  3763. struct ggml_context * ctx,
  3764. struct ggml_tensor * a,
  3765. struct ggml_tensor * b) {
  3766. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3767. bool is_node = false;
  3768. if (a->grad || b->grad) {
  3769. // inplace is false and either one have a grad
  3770. is_node = true;
  3771. }
  3772. // make a view of the destination
  3773. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3774. if (strlen(b->name) > 0) {
  3775. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3776. } else {
  3777. ggml_format_name(result, "%s (copy)", a->name);
  3778. }
  3779. result->op = GGML_OP_CPY;
  3780. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3781. result->src[0] = a;
  3782. result->src[1] = b;
  3783. return result;
  3784. }
  3785. struct ggml_tensor * ggml_cpy(
  3786. struct ggml_context * ctx,
  3787. struct ggml_tensor * a,
  3788. struct ggml_tensor * b) {
  3789. return ggml_cpy_impl(ctx, a, b);
  3790. }
  3791. struct ggml_tensor * ggml_cast(
  3792. struct ggml_context * ctx,
  3793. struct ggml_tensor * a,
  3794. enum ggml_type type) {
  3795. bool is_node = false;
  3796. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3797. ggml_format_name(result, "%s (copy)", a->name);
  3798. result->op = GGML_OP_CPY;
  3799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3800. result->src[0] = a;
  3801. result->src[1] = result;
  3802. return result;
  3803. }
  3804. // ggml_cont
  3805. static struct ggml_tensor * ggml_cont_impl(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a) {
  3808. bool is_node = false;
  3809. if (a->grad) {
  3810. is_node = true;
  3811. }
  3812. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3813. ggml_format_name(result, "%s (cont)", a->name);
  3814. result->op = GGML_OP_CONT;
  3815. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3816. result->src[0] = a;
  3817. return result;
  3818. }
  3819. struct ggml_tensor * ggml_cont(
  3820. struct ggml_context * ctx,
  3821. struct ggml_tensor * a) {
  3822. return ggml_cont_impl(ctx, a);
  3823. }
  3824. // make contiguous, with new shape
  3825. GGML_API struct ggml_tensor * ggml_cont_1d(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. int64_t ne0) {
  3829. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3830. }
  3831. GGML_API struct ggml_tensor * ggml_cont_2d(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. int64_t ne0,
  3835. int64_t ne1) {
  3836. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3837. }
  3838. GGML_API struct ggml_tensor * ggml_cont_3d(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. int64_t ne0,
  3842. int64_t ne1,
  3843. int64_t ne2) {
  3844. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3845. }
  3846. struct ggml_tensor * ggml_cont_4d(
  3847. struct ggml_context * ctx,
  3848. struct ggml_tensor * a,
  3849. int64_t ne0,
  3850. int64_t ne1,
  3851. int64_t ne2,
  3852. int64_t ne3) {
  3853. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  3854. bool is_node = false;
  3855. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  3856. ggml_format_name(result, "%s (cont)", a->name);
  3857. result->op = GGML_OP_CONT;
  3858. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3859. result->src[0] = a;
  3860. return result;
  3861. }
  3862. // ggml_reshape
  3863. struct ggml_tensor * ggml_reshape(
  3864. struct ggml_context * ctx,
  3865. struct ggml_tensor * a,
  3866. struct ggml_tensor * b) {
  3867. GGML_ASSERT(ggml_is_contiguous(a));
  3868. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  3869. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3870. bool is_node = false;
  3871. if (a->grad) {
  3872. is_node = true;
  3873. }
  3874. if (b->grad) {
  3875. // gradient propagation is not supported
  3876. //GGML_ASSERT(false);
  3877. }
  3878. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  3879. ggml_format_name(result, "%s (reshaped)", a->name);
  3880. result->op = GGML_OP_RESHAPE;
  3881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3882. result->src[0] = a;
  3883. return result;
  3884. }
  3885. struct ggml_tensor * ggml_reshape_1d(
  3886. struct ggml_context * ctx,
  3887. struct ggml_tensor * a,
  3888. int64_t ne0) {
  3889. GGML_ASSERT(ggml_is_contiguous(a));
  3890. GGML_ASSERT(ggml_nelements(a) == ne0);
  3891. bool is_node = false;
  3892. if (a->grad) {
  3893. is_node = true;
  3894. }
  3895. const int64_t ne[1] = { ne0 };
  3896. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  3897. ggml_format_name(result, "%s (reshaped)", a->name);
  3898. result->op = GGML_OP_RESHAPE;
  3899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3900. result->src[0] = a;
  3901. return result;
  3902. }
  3903. struct ggml_tensor * ggml_reshape_2d(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. int64_t ne0,
  3907. int64_t ne1) {
  3908. GGML_ASSERT(ggml_is_contiguous(a));
  3909. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3910. bool is_node = false;
  3911. if (a->grad) {
  3912. is_node = true;
  3913. }
  3914. const int64_t ne[2] = { ne0, ne1 };
  3915. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  3916. ggml_format_name(result, "%s (reshaped)", a->name);
  3917. result->op = GGML_OP_RESHAPE;
  3918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3919. result->src[0] = a;
  3920. return result;
  3921. }
  3922. struct ggml_tensor * ggml_reshape_3d(
  3923. struct ggml_context * ctx,
  3924. struct ggml_tensor * a,
  3925. int64_t ne0,
  3926. int64_t ne1,
  3927. int64_t ne2) {
  3928. GGML_ASSERT(ggml_is_contiguous(a));
  3929. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3930. bool is_node = false;
  3931. if (a->grad) {
  3932. is_node = true;
  3933. }
  3934. const int64_t ne[3] = { ne0, ne1, ne2 };
  3935. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  3936. ggml_format_name(result, "%s (reshaped)", a->name);
  3937. result->op = GGML_OP_RESHAPE;
  3938. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3939. result->src[0] = a;
  3940. return result;
  3941. }
  3942. struct ggml_tensor * ggml_reshape_4d(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. int64_t ne0,
  3946. int64_t ne1,
  3947. int64_t ne2,
  3948. int64_t ne3) {
  3949. GGML_ASSERT(ggml_is_contiguous(a));
  3950. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  3951. bool is_node = false;
  3952. if (a->grad) {
  3953. is_node = true;
  3954. }
  3955. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3956. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  3957. ggml_format_name(result, "%s (reshaped)", a->name);
  3958. result->op = GGML_OP_RESHAPE;
  3959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3960. result->src[0] = a;
  3961. return result;
  3962. }
  3963. static struct ggml_tensor * ggml_view_impl(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. int n_dims,
  3967. const int64_t * ne,
  3968. size_t offset) {
  3969. bool is_node = false;
  3970. if (a->grad) {
  3971. is_node = true;
  3972. }
  3973. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  3974. ggml_format_name(result, "%s (view)", a->name);
  3975. ggml_set_op_params(result, &offset, sizeof(offset));
  3976. result->op = GGML_OP_VIEW;
  3977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3978. result->src[0] = a;
  3979. return result;
  3980. }
  3981. // ggml_view_1d
  3982. struct ggml_tensor * ggml_view_1d(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. int64_t ne0,
  3986. size_t offset) {
  3987. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  3988. return result;
  3989. }
  3990. // ggml_view_2d
  3991. struct ggml_tensor * ggml_view_2d(
  3992. struct ggml_context * ctx,
  3993. struct ggml_tensor * a,
  3994. int64_t ne0,
  3995. int64_t ne1,
  3996. size_t nb1,
  3997. size_t offset) {
  3998. const int64_t ne[2] = { ne0, ne1 };
  3999. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4000. result->nb[1] = nb1;
  4001. result->nb[2] = result->nb[1]*ne1;
  4002. result->nb[3] = result->nb[2];
  4003. return result;
  4004. }
  4005. // ggml_view_3d
  4006. struct ggml_tensor * ggml_view_3d(
  4007. struct ggml_context * ctx,
  4008. struct ggml_tensor * a,
  4009. int64_t ne0,
  4010. int64_t ne1,
  4011. int64_t ne2,
  4012. size_t nb1,
  4013. size_t nb2,
  4014. size_t offset) {
  4015. const int64_t ne[3] = { ne0, ne1, ne2 };
  4016. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4017. result->nb[1] = nb1;
  4018. result->nb[2] = nb2;
  4019. result->nb[3] = result->nb[2]*ne2;
  4020. return result;
  4021. }
  4022. // ggml_view_4d
  4023. struct ggml_tensor * ggml_view_4d(
  4024. struct ggml_context * ctx,
  4025. struct ggml_tensor * a,
  4026. int64_t ne0,
  4027. int64_t ne1,
  4028. int64_t ne2,
  4029. int64_t ne3,
  4030. size_t nb1,
  4031. size_t nb2,
  4032. size_t nb3,
  4033. size_t offset) {
  4034. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4035. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4036. result->nb[1] = nb1;
  4037. result->nb[2] = nb2;
  4038. result->nb[3] = nb3;
  4039. return result;
  4040. }
  4041. // ggml_permute
  4042. struct ggml_tensor * ggml_permute(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. int axis0,
  4046. int axis1,
  4047. int axis2,
  4048. int axis3) {
  4049. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4050. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4051. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4052. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4053. GGML_ASSERT(axis0 != axis1);
  4054. GGML_ASSERT(axis0 != axis2);
  4055. GGML_ASSERT(axis0 != axis3);
  4056. GGML_ASSERT(axis1 != axis2);
  4057. GGML_ASSERT(axis1 != axis3);
  4058. GGML_ASSERT(axis2 != axis3);
  4059. bool is_node = false;
  4060. if (a->grad) {
  4061. is_node = true;
  4062. }
  4063. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4064. ggml_format_name(result, "%s (permuted)", a->name);
  4065. int ne[GGML_MAX_DIMS];
  4066. int nb[GGML_MAX_DIMS];
  4067. ne[axis0] = a->ne[0];
  4068. ne[axis1] = a->ne[1];
  4069. ne[axis2] = a->ne[2];
  4070. ne[axis3] = a->ne[3];
  4071. nb[axis0] = a->nb[0];
  4072. nb[axis1] = a->nb[1];
  4073. nb[axis2] = a->nb[2];
  4074. nb[axis3] = a->nb[3];
  4075. result->ne[0] = ne[0];
  4076. result->ne[1] = ne[1];
  4077. result->ne[2] = ne[2];
  4078. result->ne[3] = ne[3];
  4079. result->nb[0] = nb[0];
  4080. result->nb[1] = nb[1];
  4081. result->nb[2] = nb[2];
  4082. result->nb[3] = nb[3];
  4083. result->op = GGML_OP_PERMUTE;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src[0] = a;
  4086. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4087. ggml_set_op_params(result, params, sizeof(params));
  4088. return result;
  4089. }
  4090. // ggml_transpose
  4091. struct ggml_tensor * ggml_transpose(
  4092. struct ggml_context * ctx,
  4093. struct ggml_tensor * a) {
  4094. bool is_node = false;
  4095. if (a->grad) {
  4096. is_node = true;
  4097. }
  4098. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4099. ggml_format_name(result, "%s (transposed)", a->name);
  4100. result->ne[0] = a->ne[1];
  4101. result->ne[1] = a->ne[0];
  4102. result->nb[0] = a->nb[1];
  4103. result->nb[1] = a->nb[0];
  4104. result->op = GGML_OP_TRANSPOSE;
  4105. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4106. result->src[0] = a;
  4107. return result;
  4108. }
  4109. // ggml_get_rows
  4110. struct ggml_tensor * ggml_get_rows(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a,
  4113. struct ggml_tensor * b) {
  4114. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4115. GGML_ASSERT(b->ne[3] == 1);
  4116. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4117. bool is_node = false;
  4118. if (a->grad || b->grad) {
  4119. is_node = true;
  4120. }
  4121. // TODO: implement non F32 return
  4122. enum ggml_type type = GGML_TYPE_F32;
  4123. if (a->type == GGML_TYPE_I32) {
  4124. type = a->type;
  4125. }
  4126. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4127. result->op = GGML_OP_GET_ROWS;
  4128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4129. result->src[0] = a;
  4130. result->src[1] = b;
  4131. return result;
  4132. }
  4133. // ggml_get_rows_back
  4134. struct ggml_tensor * ggml_get_rows_back(
  4135. struct ggml_context * ctx,
  4136. struct ggml_tensor * a,
  4137. struct ggml_tensor * b,
  4138. struct ggml_tensor * c) {
  4139. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4140. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4141. bool is_node = false;
  4142. if (a->grad || b->grad) {
  4143. is_node = true;
  4144. }
  4145. // TODO: implement non F32 return
  4146. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4147. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4148. result->op = GGML_OP_GET_ROWS_BACK;
  4149. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4150. result->src[0] = a;
  4151. result->src[1] = b;
  4152. return result;
  4153. }
  4154. // ggml_diag
  4155. struct ggml_tensor * ggml_diag(
  4156. struct ggml_context * ctx,
  4157. struct ggml_tensor * a) {
  4158. GGML_ASSERT(a->ne[1] == 1);
  4159. bool is_node = false;
  4160. if (a->grad) {
  4161. is_node = true;
  4162. }
  4163. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4164. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4165. result->op = GGML_OP_DIAG;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src[0] = a;
  4168. return result;
  4169. }
  4170. // ggml_diag_mask_inf
  4171. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a,
  4174. int n_past,
  4175. bool inplace) {
  4176. bool is_node = false;
  4177. if (a->grad) {
  4178. is_node = true;
  4179. }
  4180. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4181. int32_t params[] = { n_past };
  4182. ggml_set_op_params(result, params, sizeof(params));
  4183. result->op = GGML_OP_DIAG_MASK_INF;
  4184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4185. result->src[0] = a;
  4186. return result;
  4187. }
  4188. struct ggml_tensor * ggml_diag_mask_inf(
  4189. struct ggml_context * ctx,
  4190. struct ggml_tensor * a,
  4191. int n_past) {
  4192. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4193. }
  4194. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4195. struct ggml_context * ctx,
  4196. struct ggml_tensor * a,
  4197. int n_past) {
  4198. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4199. }
  4200. // ggml_diag_mask_zero
  4201. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a,
  4204. int n_past,
  4205. bool inplace) {
  4206. bool is_node = false;
  4207. if (a->grad) {
  4208. is_node = true;
  4209. }
  4210. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4211. int32_t params[] = { n_past };
  4212. ggml_set_op_params(result, params, sizeof(params));
  4213. result->op = GGML_OP_DIAG_MASK_ZERO;
  4214. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4215. result->src[0] = a;
  4216. return result;
  4217. }
  4218. struct ggml_tensor * ggml_diag_mask_zero(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. int n_past) {
  4222. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4223. }
  4224. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4225. struct ggml_context * ctx,
  4226. struct ggml_tensor * a,
  4227. int n_past) {
  4228. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4229. }
  4230. // ggml_soft_max
  4231. static struct ggml_tensor * ggml_soft_max_impl(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a,
  4234. struct ggml_tensor * mask,
  4235. struct ggml_tensor * pos,
  4236. float scale,
  4237. float max_bias,
  4238. bool inplace) {
  4239. GGML_ASSERT(ggml_is_contiguous(a));
  4240. if (mask) {
  4241. GGML_ASSERT(ggml_is_contiguous(mask));
  4242. GGML_ASSERT(ggml_is_matrix(mask));
  4243. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4244. }
  4245. if (pos) {
  4246. GGML_ASSERT(ggml_is_vector(pos));
  4247. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4248. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4249. }
  4250. if (max_bias > 0.0f) {
  4251. GGML_ASSERT(pos);
  4252. }
  4253. bool is_node = false;
  4254. if (a->grad) {
  4255. is_node = true;
  4256. }
  4257. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4258. float params[] = { scale, max_bias };
  4259. ggml_set_op_params(result, params, sizeof(params));
  4260. result->op = GGML_OP_SOFT_MAX;
  4261. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4262. result->src[0] = a;
  4263. result->src[1] = mask;
  4264. result->src[2] = pos;
  4265. return result;
  4266. }
  4267. struct ggml_tensor * ggml_soft_max(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a) {
  4270. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4271. }
  4272. struct ggml_tensor * ggml_soft_max_inplace(
  4273. struct ggml_context * ctx,
  4274. struct ggml_tensor * a) {
  4275. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4276. }
  4277. struct ggml_tensor * ggml_soft_max_ext(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a,
  4280. struct ggml_tensor * mask,
  4281. struct ggml_tensor * pos,
  4282. float scale,
  4283. float max_bias) {
  4284. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4285. }
  4286. // ggml_soft_max_back
  4287. static struct ggml_tensor * ggml_soft_max_back_impl(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a,
  4290. struct ggml_tensor * b,
  4291. bool inplace) {
  4292. bool is_node = false;
  4293. if (a->grad || b->grad) {
  4294. is_node = true; // TODO : implement backward pass
  4295. }
  4296. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4297. result->op = GGML_OP_SOFT_MAX_BACK;
  4298. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4299. result->src[0] = a;
  4300. result->src[1] = b;
  4301. return result;
  4302. }
  4303. struct ggml_tensor * ggml_soft_max_back(
  4304. struct ggml_context * ctx,
  4305. struct ggml_tensor * a,
  4306. struct ggml_tensor * b) {
  4307. return ggml_soft_max_back_impl(ctx, a, b, false);
  4308. }
  4309. struct ggml_tensor * ggml_soft_max_back_inplace(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a,
  4312. struct ggml_tensor * b) {
  4313. return ggml_soft_max_back_impl(ctx, a, b, true);
  4314. }
  4315. // ggml_rope
  4316. static struct ggml_tensor * ggml_rope_impl(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b,
  4320. int n_dims,
  4321. int mode,
  4322. int n_ctx,
  4323. int n_orig_ctx,
  4324. float freq_base,
  4325. float freq_scale,
  4326. float ext_factor,
  4327. float attn_factor,
  4328. float beta_fast,
  4329. float beta_slow,
  4330. float xpos_base,
  4331. bool xpos_down,
  4332. bool inplace) {
  4333. GGML_ASSERT(ggml_is_vector(b));
  4334. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4335. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4336. bool is_node = false;
  4337. if (a->grad) {
  4338. is_node = true;
  4339. }
  4340. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4341. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4342. memcpy(params + 5, &freq_base, sizeof(float));
  4343. memcpy(params + 6, &freq_scale, sizeof(float));
  4344. memcpy(params + 7, &ext_factor, sizeof(float));
  4345. memcpy(params + 8, &attn_factor, sizeof(float));
  4346. memcpy(params + 9, &beta_fast, sizeof(float));
  4347. memcpy(params + 10, &beta_slow, sizeof(float));
  4348. memcpy(params + 11, &xpos_base, sizeof(float));
  4349. memcpy(params + 12, &xpos_down, sizeof(bool));
  4350. ggml_set_op_params(result, params, sizeof(params));
  4351. result->op = GGML_OP_ROPE;
  4352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4353. result->src[0] = a;
  4354. result->src[1] = b;
  4355. return result;
  4356. }
  4357. struct ggml_tensor * ggml_rope(
  4358. struct ggml_context * ctx,
  4359. struct ggml_tensor * a,
  4360. struct ggml_tensor * b,
  4361. int n_dims,
  4362. int mode,
  4363. int n_ctx) {
  4364. return ggml_rope_impl(
  4365. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4366. );
  4367. }
  4368. struct ggml_tensor * ggml_rope_inplace(
  4369. struct ggml_context * ctx,
  4370. struct ggml_tensor * a,
  4371. struct ggml_tensor * b,
  4372. int n_dims,
  4373. int mode,
  4374. int n_ctx) {
  4375. return ggml_rope_impl(
  4376. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4377. );
  4378. }
  4379. struct ggml_tensor * ggml_rope_custom(
  4380. struct ggml_context * ctx,
  4381. struct ggml_tensor * a,
  4382. struct ggml_tensor * b,
  4383. int n_dims,
  4384. int mode,
  4385. int n_ctx,
  4386. int n_orig_ctx,
  4387. float freq_base,
  4388. float freq_scale,
  4389. float ext_factor,
  4390. float attn_factor,
  4391. float beta_fast,
  4392. float beta_slow) {
  4393. return ggml_rope_impl(
  4394. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4395. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4396. );
  4397. }
  4398. struct ggml_tensor * ggml_rope_custom_inplace(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a,
  4401. struct ggml_tensor * b,
  4402. int n_dims,
  4403. int mode,
  4404. int n_ctx,
  4405. int n_orig_ctx,
  4406. float freq_base,
  4407. float freq_scale,
  4408. float ext_factor,
  4409. float attn_factor,
  4410. float beta_fast,
  4411. float beta_slow) {
  4412. return ggml_rope_impl(
  4413. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4414. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4415. );
  4416. }
  4417. struct ggml_tensor * ggml_rope_xpos_inplace(
  4418. struct ggml_context * ctx,
  4419. struct ggml_tensor * a,
  4420. struct ggml_tensor * b,
  4421. int n_dims,
  4422. float base,
  4423. bool down) {
  4424. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4425. }
  4426. // ggml_rope_back
  4427. struct ggml_tensor * ggml_rope_back(
  4428. struct ggml_context * ctx,
  4429. struct ggml_tensor * a,
  4430. struct ggml_tensor * b,
  4431. int n_dims,
  4432. int mode,
  4433. int n_ctx,
  4434. int n_orig_ctx,
  4435. float freq_base,
  4436. float freq_scale,
  4437. float ext_factor,
  4438. float attn_factor,
  4439. float beta_fast,
  4440. float beta_slow,
  4441. float xpos_base,
  4442. bool xpos_down) {
  4443. GGML_ASSERT(ggml_is_vector(b));
  4444. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4445. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4446. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4447. bool is_node = false;
  4448. if (a->grad) {
  4449. is_node = false; // TODO: implement backward
  4450. }
  4451. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4452. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4453. memcpy(params + 5, &freq_base, sizeof(float));
  4454. memcpy(params + 6, &freq_scale, sizeof(float));
  4455. memcpy(params + 7, &ext_factor, sizeof(float));
  4456. memcpy(params + 8, &attn_factor, sizeof(float));
  4457. memcpy(params + 9, &beta_fast, sizeof(float));
  4458. memcpy(params + 10, &beta_slow, sizeof(float));
  4459. memcpy(params + 11, &xpos_base, sizeof(float));
  4460. memcpy(params + 12, &xpos_down, sizeof(bool));
  4461. ggml_set_op_params(result, params, sizeof(params));
  4462. result->op = GGML_OP_ROPE_BACK;
  4463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4464. result->src[0] = a;
  4465. result->src[1] = b;
  4466. return result;
  4467. }
  4468. // ggml_alibi
  4469. struct ggml_tensor * ggml_alibi(
  4470. struct ggml_context * ctx,
  4471. struct ggml_tensor * a,
  4472. int n_past,
  4473. int n_head,
  4474. float bias_max) {
  4475. GGML_ASSERT(n_past >= 0);
  4476. bool is_node = false;
  4477. if (a->grad) {
  4478. GGML_ASSERT(false); // TODO: implement backward
  4479. is_node = true;
  4480. }
  4481. // TODO: when implement backward, fix this:
  4482. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4483. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4484. int32_t op_params[3] = { n_past, n_head };
  4485. memcpy(op_params + 2, &bias_max, sizeof(float));
  4486. ggml_set_op_params(result, op_params, sizeof(op_params));
  4487. result->op = GGML_OP_ALIBI;
  4488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4489. result->src[0] = a;
  4490. return result;
  4491. }
  4492. // ggml_clamp
  4493. struct ggml_tensor * ggml_clamp(
  4494. struct ggml_context * ctx,
  4495. struct ggml_tensor * a,
  4496. float min,
  4497. float max) {
  4498. bool is_node = false;
  4499. if (a->grad) {
  4500. GGML_ASSERT(false); // TODO: implement backward
  4501. is_node = true;
  4502. }
  4503. // TODO: when implement backward, fix this:
  4504. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4505. float params[] = { min, max };
  4506. ggml_set_op_params(result, params, sizeof(params));
  4507. result->op = GGML_OP_CLAMP;
  4508. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4509. result->src[0] = a;
  4510. return result;
  4511. }
  4512. // ggml_conv_1d
  4513. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4514. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4515. }
  4516. GGML_API struct ggml_tensor * ggml_conv_1d(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. struct ggml_tensor * b,
  4520. int s0,
  4521. int p0,
  4522. int d0) {
  4523. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4524. struct ggml_tensor * result =
  4525. ggml_mul_mat(ctx,
  4526. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4527. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4528. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4529. return result;
  4530. }
  4531. // ggml_conv_1d_ph
  4532. struct ggml_tensor* ggml_conv_1d_ph(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a,
  4535. struct ggml_tensor * b,
  4536. int s,
  4537. int d) {
  4538. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4539. }
  4540. // ggml_conv_transpose_1d
  4541. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4542. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4543. }
  4544. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4545. struct ggml_context * ctx,
  4546. struct ggml_tensor * a,
  4547. struct ggml_tensor * b,
  4548. int s0,
  4549. int p0,
  4550. int d0) {
  4551. GGML_ASSERT(ggml_is_matrix(b));
  4552. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4553. GGML_ASSERT(a->ne[3] == 1);
  4554. GGML_ASSERT(p0 == 0);
  4555. GGML_ASSERT(d0 == 1);
  4556. bool is_node = false;
  4557. if (a->grad || b->grad) {
  4558. GGML_ASSERT(false); // TODO: implement backward
  4559. is_node = true;
  4560. }
  4561. const int64_t ne[4] = {
  4562. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4563. a->ne[1], b->ne[2], 1,
  4564. };
  4565. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4566. int32_t params[] = { s0, p0, d0 };
  4567. ggml_set_op_params(result, params, sizeof(params));
  4568. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4569. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4570. result->src[0] = a;
  4571. result->src[1] = b;
  4572. return result;
  4573. }
  4574. // ggml_conv_depthwise
  4575. struct ggml_tensor * ggml_conv_depthwise_2d(
  4576. struct ggml_context * ctx,
  4577. struct ggml_tensor * a,
  4578. struct ggml_tensor * b,
  4579. int s0,
  4580. int s1,
  4581. int p0,
  4582. int p1,
  4583. int d0,
  4584. int d1) {
  4585. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4586. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4587. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4588. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4589. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4590. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4591. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4592. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4593. return result;
  4594. }
  4595. // ggml_conv_2d
  4596. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4597. // a: [OC,IC, KH, KW]
  4598. // b: [N, IC, IH, IW]
  4599. // result: [N, OH, OW, IC*KH*KW]
  4600. struct ggml_tensor * ggml_im2col(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. struct ggml_tensor * b,
  4604. int s0,
  4605. int s1,
  4606. int p0,
  4607. int p1,
  4608. int d0,
  4609. int d1,
  4610. bool is_2D,
  4611. enum ggml_type dst_type) {
  4612. if(is_2D) {
  4613. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4614. } else {
  4615. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4616. }
  4617. bool is_node = false;
  4618. if (a->grad || b->grad) {
  4619. GGML_ASSERT(false); // TODO: implement backward
  4620. is_node = true;
  4621. }
  4622. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4623. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4624. const int64_t ne[4] = {
  4625. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4626. OW,
  4627. is_2D ? OH : b->ne[2],
  4628. is_2D ? b->ne[3] : 1,
  4629. };
  4630. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4631. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4632. ggml_set_op_params(result, params, sizeof(params));
  4633. result->op = GGML_OP_IM2COL;
  4634. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4635. result->src[0] = a;
  4636. result->src[1] = b;
  4637. return result;
  4638. }
  4639. // a: [OC,IC, KH, KW]
  4640. // b: [N, IC, IH, IW]
  4641. // result: [N, OC, OH, OW]
  4642. struct ggml_tensor * ggml_conv_2d(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. struct ggml_tensor * b,
  4646. int s0,
  4647. int s1,
  4648. int p0,
  4649. int p1,
  4650. int d0,
  4651. int d1) {
  4652. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4653. struct ggml_tensor * result =
  4654. ggml_mul_mat(ctx,
  4655. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4656. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4657. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4658. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4659. return result;
  4660. }
  4661. // ggml_conv_2d_sk_p0
  4662. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a,
  4665. struct ggml_tensor * b) {
  4666. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4667. }
  4668. // ggml_conv_2d_s1_ph
  4669. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a,
  4672. struct ggml_tensor * b) {
  4673. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4674. }
  4675. // ggml_conv_transpose_2d_p0
  4676. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4677. return (ins - 1) * s - 2 * p + ks;
  4678. }
  4679. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4680. struct ggml_context * ctx,
  4681. struct ggml_tensor * a,
  4682. struct ggml_tensor * b,
  4683. int stride) {
  4684. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4685. bool is_node = false;
  4686. if (a->grad || b->grad) {
  4687. GGML_ASSERT(false); // TODO: implement backward
  4688. is_node = true;
  4689. }
  4690. const int64_t ne[4] = {
  4691. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4692. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4693. a->ne[2], b->ne[3],
  4694. };
  4695. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4696. ggml_set_op_params_i32(result, 0, stride);
  4697. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4698. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4699. result->src[0] = a;
  4700. result->src[1] = b;
  4701. return result;
  4702. }
  4703. // ggml_pool_*
  4704. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4705. return (ins + 2 * p - ks) / s + 1;
  4706. }
  4707. // ggml_pool_1d
  4708. struct ggml_tensor * ggml_pool_1d(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. enum ggml_op_pool op,
  4712. int k0,
  4713. int s0,
  4714. int p0) {
  4715. bool is_node = false;
  4716. if (a->grad) {
  4717. GGML_ASSERT(false); // TODO: implement backward
  4718. is_node = true;
  4719. }
  4720. const int64_t ne[2] = {
  4721. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4722. a->ne[1],
  4723. };
  4724. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4725. int32_t params[] = { op, k0, s0, p0 };
  4726. ggml_set_op_params(result, params, sizeof(params));
  4727. result->op = GGML_OP_POOL_1D;
  4728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4729. result->src[0] = a;
  4730. return result;
  4731. }
  4732. // ggml_pool_2d
  4733. struct ggml_tensor * ggml_pool_2d(
  4734. struct ggml_context * ctx,
  4735. struct ggml_tensor * a,
  4736. enum ggml_op_pool op,
  4737. int k0,
  4738. int k1,
  4739. int s0,
  4740. int s1,
  4741. float p0,
  4742. float p1) {
  4743. bool is_node = false;
  4744. if (a->grad) {
  4745. GGML_ASSERT(false); // TODO: implement backward
  4746. is_node = true;
  4747. }
  4748. struct ggml_tensor * result;
  4749. const int64_t ne[3] = {
  4750. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4751. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4752. a->ne[2],
  4753. };
  4754. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4755. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4756. ggml_set_op_params(result, params, sizeof(params));
  4757. result->op = GGML_OP_POOL_2D;
  4758. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4759. result->src[0] = a;
  4760. return result;
  4761. }
  4762. // ggml_upscale
  4763. static struct ggml_tensor * ggml_upscale_impl(
  4764. struct ggml_context * ctx,
  4765. struct ggml_tensor * a,
  4766. int scale_factor) {
  4767. bool is_node = false;
  4768. if (a->grad) {
  4769. GGML_ASSERT(false); // TODO: implement backward
  4770. is_node = true;
  4771. }
  4772. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4773. a->ne[0] * scale_factor,
  4774. a->ne[1] * scale_factor,
  4775. a->ne[2], a->ne[3]);
  4776. result->op = GGML_OP_UPSCALE;
  4777. result->op_params[0] = scale_factor;
  4778. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4779. result->src[0] = a;
  4780. return result;
  4781. }
  4782. struct ggml_tensor * ggml_pad(
  4783. struct ggml_context * ctx,
  4784. struct ggml_tensor * a,
  4785. int p0, int p1, int p2, int p3) {
  4786. bool is_node = false;
  4787. if (a->grad) {
  4788. GGML_ASSERT(false); // TODO: implement backward
  4789. is_node = true;
  4790. }
  4791. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4792. a->ne[0] + p0,
  4793. a->ne[1] + p1,
  4794. a->ne[2] + p2,
  4795. a->ne[3] + p3);
  4796. result->op = GGML_OP_PAD;
  4797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4798. result->src[0] = a;
  4799. return result;
  4800. }
  4801. struct ggml_tensor * ggml_upscale(
  4802. struct ggml_context * ctx,
  4803. struct ggml_tensor * a,
  4804. int scale_factor) {
  4805. return ggml_upscale_impl(ctx, a, scale_factor);
  4806. }
  4807. // ggml_argsort
  4808. struct ggml_tensor * ggml_argsort(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. enum ggml_sort_order order) {
  4812. bool is_node = false;
  4813. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  4814. ggml_set_op_params_i32(result, 0, (int32_t) order);
  4815. result->op = GGML_OP_ARGSORT;
  4816. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4817. result->src[0] = a;
  4818. return result;
  4819. }
  4820. // ggml_top_k
  4821. struct ggml_tensor * ggml_top_k(
  4822. struct ggml_context * ctx,
  4823. struct ggml_tensor * a,
  4824. int k) {
  4825. GGML_ASSERT(a->ne[0] >= k);
  4826. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  4827. result = ggml_view_4d(ctx, result,
  4828. k, result->ne[1], result->ne[2], result->ne[3],
  4829. result->nb[1], result->nb[2], result->nb[3],
  4830. 0);
  4831. return result;
  4832. }
  4833. // ggml_flash_attn
  4834. struct ggml_tensor * ggml_flash_attn(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * q,
  4837. struct ggml_tensor * k,
  4838. struct ggml_tensor * v,
  4839. bool masked) {
  4840. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4841. // TODO: check if vT can be multiplied by (k*qT)
  4842. bool is_node = false;
  4843. if (q->grad || k->grad || v->grad) {
  4844. is_node = true;
  4845. }
  4846. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4847. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  4848. int32_t t = masked ? 1 : 0;
  4849. ggml_set_op_params(result, &t, sizeof(t));
  4850. result->op = GGML_OP_FLASH_ATTN;
  4851. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4852. result->src[0] = q;
  4853. result->src[1] = k;
  4854. result->src[2] = v;
  4855. return result;
  4856. }
  4857. // ggml_flash_ff
  4858. struct ggml_tensor * ggml_flash_ff(
  4859. struct ggml_context * ctx,
  4860. struct ggml_tensor * a,
  4861. struct ggml_tensor * b0,
  4862. struct ggml_tensor * b1,
  4863. struct ggml_tensor * c0,
  4864. struct ggml_tensor * c1) {
  4865. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4866. // TODO: more checks
  4867. bool is_node = false;
  4868. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4869. is_node = true;
  4870. }
  4871. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4872. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  4873. result->op = GGML_OP_FLASH_FF;
  4874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4875. result->src[0] = a;
  4876. result->src[1] = b0;
  4877. result->src[2] = b1;
  4878. result->src[3] = c0;
  4879. result->src[4] = c1;
  4880. return result;
  4881. }
  4882. // ggml_flash_attn_back
  4883. struct ggml_tensor * ggml_flash_attn_back(
  4884. struct ggml_context * ctx,
  4885. struct ggml_tensor * q,
  4886. struct ggml_tensor * k,
  4887. struct ggml_tensor * v,
  4888. struct ggml_tensor * d,
  4889. bool masked) {
  4890. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4891. // TODO: check if vT can be multiplied by (k*qT)
  4892. // d shape [D,N,ne2,ne3]
  4893. // q shape [D,N,ne2,ne3]
  4894. // k shape [D,M,kvne2,ne3]
  4895. // v shape [M,D,kvne2,ne3]
  4896. const int64_t D = q->ne[0];
  4897. const int64_t N = q->ne[1];
  4898. const int64_t M = k->ne[1];
  4899. const int64_t ne2 = q->ne[2];
  4900. const int64_t ne3 = q->ne[3];
  4901. const int64_t kvne2 = k->ne[2];
  4902. GGML_ASSERT(k->ne[0] == D);
  4903. GGML_ASSERT(v->ne[0] == M);
  4904. GGML_ASSERT(v->ne[1] == D);
  4905. GGML_ASSERT(d->ne[0] == D);
  4906. GGML_ASSERT(d->ne[1] == N);
  4907. GGML_ASSERT(k->ne[2] == kvne2);
  4908. GGML_ASSERT(k->ne[3] == ne3);
  4909. GGML_ASSERT(v->ne[2] == kvne2);
  4910. GGML_ASSERT(v->ne[3] == ne3);
  4911. GGML_ASSERT(d->ne[2] == ne2);
  4912. GGML_ASSERT(d->ne[3] == ne3);
  4913. GGML_ASSERT(ne2 % kvne2 == 0);
  4914. bool is_node = false;
  4915. if (q->grad || k->grad || v->grad) {
  4916. // when using this operation (in backwards pass) these grads are set.
  4917. // we don't want to create (big) grad of our result, so is_node is false.
  4918. is_node = false;
  4919. }
  4920. // store gradients of q, k and v as continuous tensors concatenated in result.
  4921. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  4922. const int64_t elem_q = ggml_nelements(q);
  4923. const int64_t elem_k = ggml_nelements(k);
  4924. const int64_t elem_v = ggml_nelements(v);
  4925. enum ggml_type result_type = GGML_TYPE_F32;
  4926. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  4927. const size_t tsize = ggml_type_size(result_type);
  4928. const size_t offs_q = 0;
  4929. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  4930. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  4931. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  4932. const size_t nelements = (end + tsize - 1)/tsize;
  4933. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  4934. int32_t masked_i = masked ? 1 : 0;
  4935. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  4936. result->op = GGML_OP_FLASH_ATTN_BACK;
  4937. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4938. result->src[0] = q;
  4939. result->src[1] = k;
  4940. result->src[2] = v;
  4941. result->src[3] = d;
  4942. return result;
  4943. }
  4944. // ggml_win_part
  4945. struct ggml_tensor * ggml_win_part(
  4946. struct ggml_context * ctx,
  4947. struct ggml_tensor * a,
  4948. int w) {
  4949. GGML_ASSERT(a->ne[3] == 1);
  4950. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4951. bool is_node = false;
  4952. if (a->grad) {
  4953. GGML_ASSERT(false); // TODO: implement backward
  4954. is_node = true;
  4955. }
  4956. // padding
  4957. const int px = (w - a->ne[1]%w)%w;
  4958. const int py = (w - a->ne[2]%w)%w;
  4959. const int npx = (px + a->ne[1])/w;
  4960. const int npy = (py + a->ne[2])/w;
  4961. const int np = npx*npy;
  4962. const int64_t ne[4] = { a->ne[0], w, w, np, };
  4963. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4964. int32_t params[] = { npx, npy, w };
  4965. ggml_set_op_params(result, params, sizeof(params));
  4966. result->op = GGML_OP_WIN_PART;
  4967. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4968. result->src[0] = a;
  4969. return result;
  4970. }
  4971. // ggml_win_unpart
  4972. struct ggml_tensor * ggml_win_unpart(
  4973. struct ggml_context * ctx,
  4974. struct ggml_tensor * a,
  4975. int w0,
  4976. int h0,
  4977. int w) {
  4978. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4979. bool is_node = false;
  4980. if (a->grad) {
  4981. GGML_ASSERT(false); // TODO: implement backward
  4982. is_node = true;
  4983. }
  4984. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  4985. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4986. int32_t params[] = { w };
  4987. ggml_set_op_params(result, params, sizeof(params));
  4988. result->op = GGML_OP_WIN_UNPART;
  4989. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4990. result->src[0] = a;
  4991. return result;
  4992. }
  4993. // ggml_get_rel_pos
  4994. struct ggml_tensor * ggml_get_rel_pos(
  4995. struct ggml_context * ctx,
  4996. struct ggml_tensor * a,
  4997. int qh,
  4998. int kh) {
  4999. GGML_ASSERT(qh == kh);
  5000. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5001. bool is_node = false;
  5002. if (a->grad) {
  5003. GGML_ASSERT(false); // TODO: implement backward
  5004. is_node = true;
  5005. }
  5006. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5007. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5008. result->op = GGML_OP_GET_REL_POS;
  5009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5010. result->src[0] = a;
  5011. return result;
  5012. }
  5013. // ggml_add_rel_pos
  5014. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a,
  5017. struct ggml_tensor * pw,
  5018. struct ggml_tensor * ph,
  5019. bool inplace) {
  5020. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5021. GGML_ASSERT(ggml_is_contiguous(a));
  5022. GGML_ASSERT(ggml_is_contiguous(pw));
  5023. GGML_ASSERT(ggml_is_contiguous(ph));
  5024. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5025. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5026. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5027. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5028. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5029. bool is_node = false;
  5030. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5031. is_node = true;
  5032. }
  5033. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5034. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5035. result->op = GGML_OP_ADD_REL_POS;
  5036. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5037. result->src[0] = a;
  5038. result->src[1] = pw;
  5039. result->src[2] = ph;
  5040. return result;
  5041. }
  5042. struct ggml_tensor * ggml_add_rel_pos(
  5043. struct ggml_context * ctx,
  5044. struct ggml_tensor * a,
  5045. struct ggml_tensor * pw,
  5046. struct ggml_tensor * ph) {
  5047. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5048. }
  5049. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5050. struct ggml_context * ctx,
  5051. struct ggml_tensor * a,
  5052. struct ggml_tensor * pw,
  5053. struct ggml_tensor * ph) {
  5054. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5055. }
  5056. // gmml_unary
  5057. static struct ggml_tensor * ggml_unary_impl(
  5058. struct ggml_context * ctx,
  5059. struct ggml_tensor * a,
  5060. enum ggml_unary_op op,
  5061. bool inplace) {
  5062. bool is_node = false;
  5063. if (!inplace && (a->grad)) {
  5064. is_node = true;
  5065. }
  5066. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5067. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5068. result->op = GGML_OP_UNARY;
  5069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5070. result->src[0] = a;
  5071. return result;
  5072. }
  5073. struct ggml_tensor * ggml_unary(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. enum ggml_unary_op op) {
  5077. return ggml_unary_impl(ctx, a, op, false);
  5078. }
  5079. struct ggml_tensor * ggml_unary_inplace(
  5080. struct ggml_context * ctx,
  5081. struct ggml_tensor * a,
  5082. enum ggml_unary_op op) {
  5083. return ggml_unary_impl(ctx, a, op, true);
  5084. }
  5085. // ggml_map_unary
  5086. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5087. struct ggml_context * ctx,
  5088. struct ggml_tensor * a,
  5089. const ggml_unary_op_f32_t fun,
  5090. bool inplace) {
  5091. bool is_node = false;
  5092. if (!inplace && a->grad) {
  5093. is_node = true;
  5094. }
  5095. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5096. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5097. result->op = GGML_OP_MAP_UNARY;
  5098. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5099. result->src[0] = a;
  5100. return result;
  5101. }
  5102. struct ggml_tensor * ggml_map_unary_f32(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. const ggml_unary_op_f32_t fun) {
  5106. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5107. }
  5108. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5109. struct ggml_context * ctx,
  5110. struct ggml_tensor * a,
  5111. const ggml_unary_op_f32_t fun) {
  5112. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5113. }
  5114. // ggml_map_binary
  5115. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5116. struct ggml_context * ctx,
  5117. struct ggml_tensor * a,
  5118. struct ggml_tensor * b,
  5119. const ggml_binary_op_f32_t fun,
  5120. bool inplace) {
  5121. GGML_ASSERT(ggml_are_same_shape(a, b));
  5122. bool is_node = false;
  5123. if (!inplace && (a->grad || b->grad)) {
  5124. is_node = true;
  5125. }
  5126. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5127. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5128. result->op = GGML_OP_MAP_BINARY;
  5129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5130. result->src[0] = a;
  5131. result->src[1] = b;
  5132. return result;
  5133. }
  5134. struct ggml_tensor * ggml_map_binary_f32(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * a,
  5137. struct ggml_tensor * b,
  5138. const ggml_binary_op_f32_t fun) {
  5139. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5140. }
  5141. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * a,
  5144. struct ggml_tensor * b,
  5145. const ggml_binary_op_f32_t fun) {
  5146. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5147. }
  5148. // ggml_map_custom1_f32
  5149. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5150. struct ggml_context * ctx,
  5151. struct ggml_tensor * a,
  5152. const ggml_custom1_op_f32_t fun,
  5153. bool inplace) {
  5154. bool is_node = false;
  5155. if (!inplace && a->grad) {
  5156. is_node = true;
  5157. }
  5158. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5159. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5160. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5162. result->src[0] = a;
  5163. return result;
  5164. }
  5165. struct ggml_tensor * ggml_map_custom1_f32(
  5166. struct ggml_context * ctx,
  5167. struct ggml_tensor * a,
  5168. const ggml_custom1_op_f32_t fun) {
  5169. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5170. }
  5171. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5172. struct ggml_context * ctx,
  5173. struct ggml_tensor * a,
  5174. const ggml_custom1_op_f32_t fun) {
  5175. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5176. }
  5177. // ggml_map_custom2_f32
  5178. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5179. struct ggml_context * ctx,
  5180. struct ggml_tensor * a,
  5181. struct ggml_tensor * b,
  5182. const ggml_custom2_op_f32_t fun,
  5183. bool inplace) {
  5184. bool is_node = false;
  5185. if (!inplace && (a->grad || b->grad)) {
  5186. is_node = true;
  5187. }
  5188. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5189. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5190. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5191. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5192. result->src[0] = a;
  5193. result->src[1] = b;
  5194. return result;
  5195. }
  5196. struct ggml_tensor * ggml_map_custom2_f32(
  5197. struct ggml_context * ctx,
  5198. struct ggml_tensor * a,
  5199. struct ggml_tensor * b,
  5200. const ggml_custom2_op_f32_t fun) {
  5201. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5202. }
  5203. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5204. struct ggml_context * ctx,
  5205. struct ggml_tensor * a,
  5206. struct ggml_tensor * b,
  5207. const ggml_custom2_op_f32_t fun) {
  5208. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5209. }
  5210. // ggml_map_custom3_f32
  5211. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5212. struct ggml_context * ctx,
  5213. struct ggml_tensor * a,
  5214. struct ggml_tensor * b,
  5215. struct ggml_tensor * c,
  5216. const ggml_custom3_op_f32_t fun,
  5217. bool inplace) {
  5218. bool is_node = false;
  5219. if (!inplace && (a->grad || b->grad || c->grad)) {
  5220. is_node = true;
  5221. }
  5222. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5223. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5224. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5226. result->src[0] = a;
  5227. result->src[1] = b;
  5228. result->src[2] = c;
  5229. return result;
  5230. }
  5231. struct ggml_tensor * ggml_map_custom3_f32(
  5232. struct ggml_context * ctx,
  5233. struct ggml_tensor * a,
  5234. struct ggml_tensor * b,
  5235. struct ggml_tensor * c,
  5236. const ggml_custom3_op_f32_t fun) {
  5237. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5238. }
  5239. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5240. struct ggml_context * ctx,
  5241. struct ggml_tensor * a,
  5242. struct ggml_tensor * b,
  5243. struct ggml_tensor * c,
  5244. const ggml_custom3_op_f32_t fun) {
  5245. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5246. }
  5247. // ggml_map_custom1
  5248. struct ggml_map_custom1_op_params {
  5249. ggml_custom1_op_t fun;
  5250. int n_tasks;
  5251. void * userdata;
  5252. };
  5253. static struct ggml_tensor * ggml_map_custom1_impl(
  5254. struct ggml_context * ctx,
  5255. struct ggml_tensor * a,
  5256. const ggml_custom1_op_t fun,
  5257. int n_tasks,
  5258. void * userdata,
  5259. bool inplace) {
  5260. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5261. bool is_node = false;
  5262. if (!inplace && a->grad) {
  5263. is_node = true;
  5264. }
  5265. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5266. struct ggml_map_custom1_op_params params = {
  5267. /*.fun =*/ fun,
  5268. /*.n_tasks =*/ n_tasks,
  5269. /*.userdata =*/ userdata
  5270. };
  5271. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5272. result->op = GGML_OP_MAP_CUSTOM1;
  5273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5274. result->src[0] = a;
  5275. return result;
  5276. }
  5277. struct ggml_tensor * ggml_map_custom1(
  5278. struct ggml_context * ctx,
  5279. struct ggml_tensor * a,
  5280. const ggml_custom1_op_t fun,
  5281. int n_tasks,
  5282. void * userdata) {
  5283. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5284. }
  5285. struct ggml_tensor * ggml_map_custom1_inplace(
  5286. struct ggml_context * ctx,
  5287. struct ggml_tensor * a,
  5288. const ggml_custom1_op_t fun,
  5289. int n_tasks,
  5290. void * userdata) {
  5291. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5292. }
  5293. // ggml_map_custom2
  5294. struct ggml_map_custom2_op_params {
  5295. ggml_custom2_op_t fun;
  5296. int n_tasks;
  5297. void * userdata;
  5298. };
  5299. static struct ggml_tensor * ggml_map_custom2_impl(
  5300. struct ggml_context * ctx,
  5301. struct ggml_tensor * a,
  5302. struct ggml_tensor * b,
  5303. const ggml_custom2_op_t fun,
  5304. int n_tasks,
  5305. void * userdata,
  5306. bool inplace) {
  5307. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5308. bool is_node = false;
  5309. if (!inplace && (a->grad || b->grad)) {
  5310. is_node = true;
  5311. }
  5312. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5313. struct ggml_map_custom2_op_params params = {
  5314. /*.fun =*/ fun,
  5315. /*.n_tasks =*/ n_tasks,
  5316. /*.userdata =*/ userdata
  5317. };
  5318. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5319. result->op = GGML_OP_MAP_CUSTOM2;
  5320. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5321. result->src[0] = a;
  5322. result->src[1] = b;
  5323. return result;
  5324. }
  5325. struct ggml_tensor * ggml_map_custom2(
  5326. struct ggml_context * ctx,
  5327. struct ggml_tensor * a,
  5328. struct ggml_tensor * b,
  5329. const ggml_custom2_op_t fun,
  5330. int n_tasks,
  5331. void * userdata) {
  5332. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5333. }
  5334. struct ggml_tensor * ggml_map_custom2_inplace(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * a,
  5337. struct ggml_tensor * b,
  5338. const ggml_custom2_op_t fun,
  5339. int n_tasks,
  5340. void * userdata) {
  5341. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5342. }
  5343. // ggml_map_custom3
  5344. struct ggml_map_custom3_op_params {
  5345. ggml_custom3_op_t fun;
  5346. int n_tasks;
  5347. void * userdata;
  5348. };
  5349. static struct ggml_tensor * ggml_map_custom3_impl(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * a,
  5352. struct ggml_tensor * b,
  5353. struct ggml_tensor * c,
  5354. const ggml_custom3_op_t fun,
  5355. int n_tasks,
  5356. void * userdata,
  5357. bool inplace) {
  5358. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5359. bool is_node = false;
  5360. if (!inplace && (a->grad || b->grad || c->grad)) {
  5361. is_node = true;
  5362. }
  5363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5364. struct ggml_map_custom3_op_params params = {
  5365. /*.fun =*/ fun,
  5366. /*.n_tasks =*/ n_tasks,
  5367. /*.userdata =*/ userdata
  5368. };
  5369. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5370. result->op = GGML_OP_MAP_CUSTOM3;
  5371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5372. result->src[0] = a;
  5373. result->src[1] = b;
  5374. result->src[2] = c;
  5375. return result;
  5376. }
  5377. struct ggml_tensor * ggml_map_custom3(
  5378. struct ggml_context * ctx,
  5379. struct ggml_tensor * a,
  5380. struct ggml_tensor * b,
  5381. struct ggml_tensor * c,
  5382. const ggml_custom3_op_t fun,
  5383. int n_tasks,
  5384. void * userdata) {
  5385. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5386. }
  5387. struct ggml_tensor * ggml_map_custom3_inplace(
  5388. struct ggml_context * ctx,
  5389. struct ggml_tensor * a,
  5390. struct ggml_tensor * b,
  5391. struct ggml_tensor * c,
  5392. const ggml_custom3_op_t fun,
  5393. int n_tasks,
  5394. void * userdata) {
  5395. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5396. }
  5397. // ggml_cross_entropy_loss
  5398. struct ggml_tensor * ggml_cross_entropy_loss(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. struct ggml_tensor * b) {
  5402. GGML_ASSERT(ggml_are_same_shape(a, b));
  5403. bool is_node = false;
  5404. if (a->grad || b->grad) {
  5405. is_node = true;
  5406. }
  5407. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5408. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5410. result->src[0] = a;
  5411. result->src[1] = b;
  5412. return result;
  5413. }
  5414. // ggml_cross_entropy_loss_back
  5415. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5416. struct ggml_context * ctx,
  5417. struct ggml_tensor * a,
  5418. struct ggml_tensor * b,
  5419. struct ggml_tensor * c) {
  5420. GGML_ASSERT(ggml_are_same_shape(a, b));
  5421. GGML_ASSERT(ggml_is_scalar(c));
  5422. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5423. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5424. result->grad = NULL;
  5425. result->src[0] = a;
  5426. result->src[1] = b;
  5427. result->src[2] = c;
  5428. return result;
  5429. }
  5430. ////////////////////////////////////////////////////////////////////////////////
  5431. void ggml_set_param(
  5432. struct ggml_context * ctx,
  5433. struct ggml_tensor * tensor) {
  5434. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5435. GGML_ASSERT(tensor->grad == NULL);
  5436. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5437. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5438. }
  5439. // ggml_compute_forward_dup
  5440. static void ggml_compute_forward_dup_same_cont(
  5441. const struct ggml_compute_params * params,
  5442. struct ggml_tensor * dst) {
  5443. const struct ggml_tensor * src0 = dst->src[0];
  5444. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5445. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5446. GGML_ASSERT(src0->type == dst->type);
  5447. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5448. return;
  5449. }
  5450. const size_t nb00 = src0->nb[0];
  5451. const size_t nb0 = dst->nb[0];
  5452. const int ith = params->ith; // thread index
  5453. const int nth = params->nth; // number of threads
  5454. // parallelize by elements
  5455. const int ne = ggml_nelements(dst);
  5456. const int dr = (ne + nth - 1) / nth;
  5457. const int ie0 = dr * ith;
  5458. const int ie1 = MIN(ie0 + dr, ne);
  5459. if (ie0 < ie1) {
  5460. memcpy(
  5461. ((char *) dst->data + ie0*nb0),
  5462. ((char *) src0->data + ie0*nb00),
  5463. (ie1 - ie0) * ggml_type_size(src0->type));
  5464. }
  5465. }
  5466. static void ggml_compute_forward_dup_f16(
  5467. const struct ggml_compute_params * params,
  5468. struct ggml_tensor * dst) {
  5469. const struct ggml_tensor * src0 = dst->src[0];
  5470. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5471. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5472. return;
  5473. }
  5474. GGML_TENSOR_UNARY_OP_LOCALS
  5475. const int ith = params->ith; // thread index
  5476. const int nth = params->nth; // number of threads
  5477. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5478. ggml_compute_forward_dup_same_cont(params, dst);
  5479. return;
  5480. }
  5481. // parallelize by rows
  5482. const int nr = ne01;
  5483. // number of rows per thread
  5484. const int dr = (nr + nth - 1) / nth;
  5485. // row range for this thread
  5486. const int ir0 = dr * ith;
  5487. const int ir1 = MIN(ir0 + dr, nr);
  5488. if (src0->type == dst->type &&
  5489. ne00 == ne0 &&
  5490. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5491. // copy by rows
  5492. const size_t rs = ne00*nb00;
  5493. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5494. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5495. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5496. memcpy(
  5497. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5498. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5499. rs);
  5500. }
  5501. }
  5502. }
  5503. return;
  5504. }
  5505. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5506. if (ggml_is_contiguous(dst)) {
  5507. if (nb00 == sizeof(ggml_fp16_t)) {
  5508. if (dst->type == GGML_TYPE_F16) {
  5509. size_t id = 0;
  5510. const size_t rs = ne00 * nb00;
  5511. char * dst_ptr = (char *) dst->data;
  5512. for (int i03 = 0; i03 < ne03; i03++) {
  5513. for (int i02 = 0; i02 < ne02; i02++) {
  5514. id += rs * ir0;
  5515. for (int i01 = ir0; i01 < ir1; i01++) {
  5516. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5517. memcpy(dst_ptr + id, src0_ptr, rs);
  5518. id += rs;
  5519. }
  5520. id += rs * (ne01 - ir1);
  5521. }
  5522. }
  5523. } else if (dst->type == GGML_TYPE_F32) {
  5524. size_t id = 0;
  5525. float * dst_ptr = (float *) dst->data;
  5526. for (int i03 = 0; i03 < ne03; i03++) {
  5527. for (int i02 = 0; i02 < ne02; i02++) {
  5528. id += ne00 * ir0;
  5529. for (int i01 = ir0; i01 < ir1; i01++) {
  5530. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5531. for (int i00 = 0; i00 < ne00; i00++) {
  5532. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5533. id++;
  5534. }
  5535. }
  5536. id += ne00 * (ne01 - ir1);
  5537. }
  5538. }
  5539. } else if (type_traits[dst->type].from_float) {
  5540. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5541. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5542. size_t id = 0;
  5543. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5544. char * dst_ptr = (char *) dst->data;
  5545. for (int i03 = 0; i03 < ne03; i03++) {
  5546. for (int i02 = 0; i02 < ne02; i02++) {
  5547. id += rs * ir0;
  5548. for (int i01 = ir0; i01 < ir1; i01++) {
  5549. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5550. for (int i00 = 0; i00 < ne00; i00++) {
  5551. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5552. }
  5553. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5554. id += rs;
  5555. }
  5556. id += rs * (ne01 - ir1);
  5557. }
  5558. }
  5559. } else {
  5560. GGML_ASSERT(false); // TODO: implement
  5561. }
  5562. } else {
  5563. //printf("%s: this is not optimal - fix me\n", __func__);
  5564. if (dst->type == GGML_TYPE_F32) {
  5565. size_t id = 0;
  5566. float * dst_ptr = (float *) dst->data;
  5567. for (int i03 = 0; i03 < ne03; i03++) {
  5568. for (int i02 = 0; i02 < ne02; i02++) {
  5569. id += ne00 * ir0;
  5570. for (int i01 = ir0; i01 < ir1; i01++) {
  5571. for (int i00 = 0; i00 < ne00; i00++) {
  5572. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5573. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5574. id++;
  5575. }
  5576. }
  5577. id += ne00 * (ne01 - ir1);
  5578. }
  5579. }
  5580. } else if (dst->type == GGML_TYPE_F16) {
  5581. size_t id = 0;
  5582. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5583. for (int i03 = 0; i03 < ne03; i03++) {
  5584. for (int i02 = 0; i02 < ne02; i02++) {
  5585. id += ne00 * ir0;
  5586. for (int i01 = ir0; i01 < ir1; i01++) {
  5587. for (int i00 = 0; i00 < ne00; i00++) {
  5588. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5589. dst_ptr[id] = *src0_ptr;
  5590. id++;
  5591. }
  5592. }
  5593. id += ne00 * (ne01 - ir1);
  5594. }
  5595. }
  5596. } else {
  5597. GGML_ASSERT(false); // TODO: implement
  5598. }
  5599. }
  5600. return;
  5601. }
  5602. // dst counters
  5603. int64_t i10 = 0;
  5604. int64_t i11 = 0;
  5605. int64_t i12 = 0;
  5606. int64_t i13 = 0;
  5607. if (dst->type == GGML_TYPE_F16) {
  5608. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5609. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5610. i10 += ne00 * ir0;
  5611. while (i10 >= ne0) {
  5612. i10 -= ne0;
  5613. if (++i11 == ne1) {
  5614. i11 = 0;
  5615. if (++i12 == ne2) {
  5616. i12 = 0;
  5617. if (++i13 == ne3) {
  5618. i13 = 0;
  5619. }
  5620. }
  5621. }
  5622. }
  5623. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5624. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5625. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5626. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5627. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5628. if (++i10 == ne00) {
  5629. i10 = 0;
  5630. if (++i11 == ne01) {
  5631. i11 = 0;
  5632. if (++i12 == ne02) {
  5633. i12 = 0;
  5634. if (++i13 == ne03) {
  5635. i13 = 0;
  5636. }
  5637. }
  5638. }
  5639. }
  5640. }
  5641. }
  5642. i10 += ne00 * (ne01 - ir1);
  5643. while (i10 >= ne0) {
  5644. i10 -= ne0;
  5645. if (++i11 == ne1) {
  5646. i11 = 0;
  5647. if (++i12 == ne2) {
  5648. i12 = 0;
  5649. if (++i13 == ne3) {
  5650. i13 = 0;
  5651. }
  5652. }
  5653. }
  5654. }
  5655. }
  5656. }
  5657. } else if (dst->type == GGML_TYPE_F32) {
  5658. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5659. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5660. i10 += ne00 * ir0;
  5661. while (i10 >= ne0) {
  5662. i10 -= ne0;
  5663. if (++i11 == ne1) {
  5664. i11 = 0;
  5665. if (++i12 == ne2) {
  5666. i12 = 0;
  5667. if (++i13 == ne3) {
  5668. i13 = 0;
  5669. }
  5670. }
  5671. }
  5672. }
  5673. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5674. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5675. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5676. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5677. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5678. if (++i10 == ne0) {
  5679. i10 = 0;
  5680. if (++i11 == ne1) {
  5681. i11 = 0;
  5682. if (++i12 == ne2) {
  5683. i12 = 0;
  5684. if (++i13 == ne3) {
  5685. i13 = 0;
  5686. }
  5687. }
  5688. }
  5689. }
  5690. }
  5691. }
  5692. i10 += ne00 * (ne01 - ir1);
  5693. while (i10 >= ne0) {
  5694. i10 -= ne0;
  5695. if (++i11 == ne1) {
  5696. i11 = 0;
  5697. if (++i12 == ne2) {
  5698. i12 = 0;
  5699. if (++i13 == ne3) {
  5700. i13 = 0;
  5701. }
  5702. }
  5703. }
  5704. }
  5705. }
  5706. }
  5707. } else {
  5708. GGML_ASSERT(false); // TODO: implement
  5709. }
  5710. }
  5711. static void ggml_compute_forward_dup_f32(
  5712. const struct ggml_compute_params * params,
  5713. struct ggml_tensor * dst) {
  5714. const struct ggml_tensor * src0 = dst->src[0];
  5715. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5716. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5717. return;
  5718. }
  5719. GGML_TENSOR_UNARY_OP_LOCALS
  5720. const int ith = params->ith; // thread index
  5721. const int nth = params->nth; // number of threads
  5722. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5723. ggml_compute_forward_dup_same_cont(params, dst);
  5724. return;
  5725. }
  5726. // parallelize by rows
  5727. const int nr = ne01;
  5728. // number of rows per thread
  5729. const int dr = (nr + nth - 1) / nth;
  5730. // row range for this thread
  5731. const int ir0 = dr * ith;
  5732. const int ir1 = MIN(ir0 + dr, nr);
  5733. if (src0->type == dst->type &&
  5734. ne00 == ne0 &&
  5735. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5736. // copy by rows
  5737. const size_t rs = ne00*nb00;
  5738. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5739. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5740. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5741. memcpy(
  5742. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5743. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5744. rs);
  5745. }
  5746. }
  5747. }
  5748. return;
  5749. }
  5750. if (ggml_is_contiguous(dst)) {
  5751. // TODO: simplify
  5752. if (nb00 == sizeof(float)) {
  5753. if (dst->type == GGML_TYPE_F32) {
  5754. size_t id = 0;
  5755. const size_t rs = ne00 * nb00;
  5756. char * dst_ptr = (char *) dst->data;
  5757. for (int i03 = 0; i03 < ne03; i03++) {
  5758. for (int i02 = 0; i02 < ne02; i02++) {
  5759. id += rs * ir0;
  5760. for (int i01 = ir0; i01 < ir1; i01++) {
  5761. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5762. memcpy(dst_ptr + id, src0_ptr, rs);
  5763. id += rs;
  5764. }
  5765. id += rs * (ne01 - ir1);
  5766. }
  5767. }
  5768. } else if (type_traits[dst->type].from_float) {
  5769. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5770. size_t id = 0;
  5771. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5772. char * dst_ptr = (char *) dst->data;
  5773. for (int i03 = 0; i03 < ne03; i03++) {
  5774. for (int i02 = 0; i02 < ne02; i02++) {
  5775. id += rs * ir0;
  5776. for (int i01 = ir0; i01 < ir1; i01++) {
  5777. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5778. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5779. id += rs;
  5780. }
  5781. id += rs * (ne01 - ir1);
  5782. }
  5783. }
  5784. } else {
  5785. GGML_ASSERT(false); // TODO: implement
  5786. }
  5787. } else {
  5788. //printf("%s: this is not optimal - fix me\n", __func__);
  5789. if (dst->type == GGML_TYPE_F32) {
  5790. size_t id = 0;
  5791. float * dst_ptr = (float *) dst->data;
  5792. for (int i03 = 0; i03 < ne03; i03++) {
  5793. for (int i02 = 0; i02 < ne02; i02++) {
  5794. id += ne00 * ir0;
  5795. for (int i01 = ir0; i01 < ir1; i01++) {
  5796. for (int i00 = 0; i00 < ne00; i00++) {
  5797. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5798. dst_ptr[id] = *src0_ptr;
  5799. id++;
  5800. }
  5801. }
  5802. id += ne00 * (ne01 - ir1);
  5803. }
  5804. }
  5805. } else if (dst->type == GGML_TYPE_F16) {
  5806. size_t id = 0;
  5807. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5808. for (int i03 = 0; i03 < ne03; i03++) {
  5809. for (int i02 = 0; i02 < ne02; i02++) {
  5810. id += ne00 * ir0;
  5811. for (int i01 = ir0; i01 < ir1; i01++) {
  5812. for (int i00 = 0; i00 < ne00; i00++) {
  5813. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5814. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5815. id++;
  5816. }
  5817. }
  5818. id += ne00 * (ne01 - ir1);
  5819. }
  5820. }
  5821. } else {
  5822. GGML_ASSERT(false); // TODO: implement
  5823. }
  5824. }
  5825. return;
  5826. }
  5827. // dst counters
  5828. int64_t i10 = 0;
  5829. int64_t i11 = 0;
  5830. int64_t i12 = 0;
  5831. int64_t i13 = 0;
  5832. if (dst->type == GGML_TYPE_F32) {
  5833. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5834. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5835. i10 += ne00 * ir0;
  5836. while (i10 >= ne0) {
  5837. i10 -= ne0;
  5838. if (++i11 == ne1) {
  5839. i11 = 0;
  5840. if (++i12 == ne2) {
  5841. i12 = 0;
  5842. if (++i13 == ne3) {
  5843. i13 = 0;
  5844. }
  5845. }
  5846. }
  5847. }
  5848. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5849. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5850. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5851. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5852. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5853. if (++i10 == ne0) {
  5854. i10 = 0;
  5855. if (++i11 == ne1) {
  5856. i11 = 0;
  5857. if (++i12 == ne2) {
  5858. i12 = 0;
  5859. if (++i13 == ne3) {
  5860. i13 = 0;
  5861. }
  5862. }
  5863. }
  5864. }
  5865. }
  5866. }
  5867. i10 += ne00 * (ne01 - ir1);
  5868. while (i10 >= ne0) {
  5869. i10 -= ne0;
  5870. if (++i11 == ne1) {
  5871. i11 = 0;
  5872. if (++i12 == ne2) {
  5873. i12 = 0;
  5874. if (++i13 == ne3) {
  5875. i13 = 0;
  5876. }
  5877. }
  5878. }
  5879. }
  5880. }
  5881. }
  5882. } else if (dst->type == GGML_TYPE_F16) {
  5883. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5884. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5885. i10 += ne00 * ir0;
  5886. while (i10 >= ne0) {
  5887. i10 -= ne0;
  5888. if (++i11 == ne1) {
  5889. i11 = 0;
  5890. if (++i12 == ne2) {
  5891. i12 = 0;
  5892. if (++i13 == ne3) {
  5893. i13 = 0;
  5894. }
  5895. }
  5896. }
  5897. }
  5898. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5899. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5900. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5901. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5902. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5903. if (++i10 == ne0) {
  5904. i10 = 0;
  5905. if (++i11 == ne1) {
  5906. i11 = 0;
  5907. if (++i12 == ne2) {
  5908. i12 = 0;
  5909. if (++i13 == ne3) {
  5910. i13 = 0;
  5911. }
  5912. }
  5913. }
  5914. }
  5915. }
  5916. }
  5917. i10 += ne00 * (ne01 - ir1);
  5918. while (i10 >= ne0) {
  5919. i10 -= ne0;
  5920. if (++i11 == ne1) {
  5921. i11 = 0;
  5922. if (++i12 == ne2) {
  5923. i12 = 0;
  5924. if (++i13 == ne3) {
  5925. i13 = 0;
  5926. }
  5927. }
  5928. }
  5929. }
  5930. }
  5931. }
  5932. } else {
  5933. GGML_ASSERT(false); // TODO: implement
  5934. }
  5935. }
  5936. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  5937. static void ggml_compute_forward_dup_bytes(
  5938. const struct ggml_compute_params * params,
  5939. struct ggml_tensor * dst) {
  5940. const struct ggml_tensor * src0 = dst->src[0];
  5941. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5942. GGML_ASSERT(src0->type == dst->type);
  5943. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5944. return;
  5945. }
  5946. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  5947. ggml_compute_forward_dup_same_cont(params, dst);
  5948. return;
  5949. }
  5950. GGML_TENSOR_UNARY_OP_LOCALS;
  5951. const size_t type_size = ggml_type_size(src0->type);
  5952. const int ith = params->ith; // thread index
  5953. const int nth = params->nth; // number of threads
  5954. // parallelize by rows
  5955. const int nr = ne01;
  5956. // number of rows per thread
  5957. const int dr = (nr + nth - 1) / nth;
  5958. // row range for this thread
  5959. const int ir0 = dr * ith;
  5960. const int ir1 = MIN(ir0 + dr, nr);
  5961. if (src0->type == dst->type &&
  5962. ne00 == ne0 &&
  5963. nb00 == type_size && nb0 == type_size) {
  5964. // copy by rows
  5965. const size_t rs = ne00 * type_size;
  5966. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5967. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5968. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5969. memcpy(
  5970. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5971. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5972. rs);
  5973. }
  5974. }
  5975. }
  5976. return;
  5977. }
  5978. if (ggml_is_contiguous(dst)) {
  5979. size_t id = 0;
  5980. char * dst_ptr = (char *) dst->data;
  5981. const size_t rs = ne00 * type_size;
  5982. if (nb00 == type_size) {
  5983. // src0 is contigous on first dimension, copy by rows
  5984. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5985. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5986. id += rs * ir0;
  5987. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5988. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5989. memcpy(dst_ptr + id, src0_ptr, rs);
  5990. id += rs;
  5991. }
  5992. id += rs * (ne01 - ir1);
  5993. }
  5994. }
  5995. } else {
  5996. //printf("%s: this is not optimal - fix me\n", __func__);
  5997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5998. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5999. id += rs * ir0;
  6000. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6001. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6002. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6003. memcpy(dst_ptr + id, src0_ptr, type_size);
  6004. id += type_size;
  6005. }
  6006. }
  6007. id += rs * (ne01 - ir1);
  6008. }
  6009. }
  6010. }
  6011. return;
  6012. }
  6013. // dst counters
  6014. int64_t i10 = 0;
  6015. int64_t i11 = 0;
  6016. int64_t i12 = 0;
  6017. int64_t i13 = 0;
  6018. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6020. i10 += ne00 * ir0;
  6021. while (i10 >= ne0) {
  6022. i10 -= ne0;
  6023. if (++i11 == ne1) {
  6024. i11 = 0;
  6025. if (++i12 == ne2) {
  6026. i12 = 0;
  6027. if (++i13 == ne3) {
  6028. i13 = 0;
  6029. }
  6030. }
  6031. }
  6032. }
  6033. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6034. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6035. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6036. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6037. memcpy(dst_ptr, src0_ptr, type_size);
  6038. if (++i10 == ne0) {
  6039. i10 = 0;
  6040. if (++i11 == ne1) {
  6041. i11 = 0;
  6042. if (++i12 == ne2) {
  6043. i12 = 0;
  6044. if (++i13 == ne3) {
  6045. i13 = 0;
  6046. }
  6047. }
  6048. }
  6049. }
  6050. }
  6051. }
  6052. i10 += ne00 * (ne01 - ir1);
  6053. while (i10 >= ne0) {
  6054. i10 -= ne0;
  6055. if (++i11 == ne1) {
  6056. i11 = 0;
  6057. if (++i12 == ne2) {
  6058. i12 = 0;
  6059. if (++i13 == ne3) {
  6060. i13 = 0;
  6061. }
  6062. }
  6063. }
  6064. }
  6065. }
  6066. }
  6067. }
  6068. static void ggml_compute_forward_dup(
  6069. const struct ggml_compute_params * params,
  6070. struct ggml_tensor * dst) {
  6071. const struct ggml_tensor * src0 = dst->src[0];
  6072. if (src0->type == dst->type) {
  6073. ggml_compute_forward_dup_bytes(params, dst);
  6074. return;
  6075. }
  6076. switch (src0->type) {
  6077. case GGML_TYPE_F16:
  6078. {
  6079. ggml_compute_forward_dup_f16(params, dst);
  6080. } break;
  6081. case GGML_TYPE_F32:
  6082. {
  6083. ggml_compute_forward_dup_f32(params, dst);
  6084. } break;
  6085. default:
  6086. {
  6087. GGML_ASSERT(false);
  6088. } break;
  6089. }
  6090. }
  6091. // ggml_compute_forward_add
  6092. static void ggml_compute_forward_add_f32(
  6093. const struct ggml_compute_params * params,
  6094. struct ggml_tensor * dst) {
  6095. const struct ggml_tensor * src0 = dst->src[0];
  6096. const struct ggml_tensor * src1 = dst->src[1];
  6097. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6098. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6099. return;
  6100. }
  6101. const int ith = params->ith;
  6102. const int nth = params->nth;
  6103. #ifdef GGML_USE_CLBLAST
  6104. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6105. // TODO: OpenCL kernel support full broadcast
  6106. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6107. if (ith == 0) {
  6108. ggml_cl_add(src0, src1, dst);
  6109. }
  6110. return;
  6111. }
  6112. #endif
  6113. const int nr = ggml_nrows(src0);
  6114. GGML_TENSOR_BINARY_OP_LOCALS
  6115. GGML_ASSERT( nb0 == sizeof(float));
  6116. GGML_ASSERT(nb00 == sizeof(float));
  6117. // rows per thread
  6118. const int dr = (nr + nth - 1)/nth;
  6119. // row range for this thread
  6120. const int ir0 = dr*ith;
  6121. const int ir1 = MIN(ir0 + dr, nr);
  6122. if (nb10 == sizeof(float)) {
  6123. for (int ir = ir0; ir < ir1; ++ir) {
  6124. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6125. const int64_t i03 = ir/(ne02*ne01);
  6126. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6127. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6128. const int64_t i13 = i03 % ne13;
  6129. const int64_t i12 = i02 % ne12;
  6130. const int64_t i11 = i01 % ne11;
  6131. const int64_t nr0 = ne00 / ne10;
  6132. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6133. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6134. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6135. for (int64_t r = 0; r < nr0; ++r) {
  6136. #ifdef GGML_USE_ACCELERATE
  6137. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6138. #else
  6139. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6140. #endif
  6141. }
  6142. }
  6143. } else {
  6144. // src1 is not contiguous
  6145. for (int ir = ir0; ir < ir1; ++ir) {
  6146. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6147. const int64_t i03 = ir/(ne02*ne01);
  6148. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6149. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6150. const int64_t i13 = i03 % ne13;
  6151. const int64_t i12 = i02 % ne12;
  6152. const int64_t i11 = i01 % ne11;
  6153. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6154. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6155. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6156. const int64_t i10 = i0 % ne10;
  6157. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6158. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6159. }
  6160. }
  6161. }
  6162. }
  6163. static void ggml_compute_forward_add_f16_f32(
  6164. const struct ggml_compute_params * params,
  6165. struct ggml_tensor * dst) {
  6166. const struct ggml_tensor * src0 = dst->src[0];
  6167. const struct ggml_tensor * src1 = dst->src[1];
  6168. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6169. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6170. return;
  6171. }
  6172. const int ith = params->ith;
  6173. const int nth = params->nth;
  6174. const int nr = ggml_nrows(src0);
  6175. GGML_TENSOR_BINARY_OP_LOCALS
  6176. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6177. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6178. if (dst->type == GGML_TYPE_F32) {
  6179. GGML_ASSERT( nb0 == sizeof(float));
  6180. }
  6181. else {
  6182. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6183. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6184. }
  6185. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6186. // rows per thread
  6187. const int dr = (nr + nth - 1)/nth;
  6188. // row range for this thread
  6189. const int ir0 = dr*ith;
  6190. const int ir1 = MIN(ir0 + dr, nr);
  6191. if (nb10 == sizeof(float)) {
  6192. if (dst->type == GGML_TYPE_F16) {
  6193. for (int ir = ir0; ir < ir1; ++ir) {
  6194. // src0, src1 and dst are same shape => same indices
  6195. const int i3 = ir/(ne2*ne1);
  6196. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6197. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6198. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6199. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6200. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6201. for (int i = 0; i < ne0; i++) {
  6202. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6203. }
  6204. }
  6205. } else {
  6206. for (int ir = ir0; ir < ir1; ++ir) {
  6207. // src0, src1 and dst are same shape => same indices
  6208. const int i3 = ir/(ne2*ne1);
  6209. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6210. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6211. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6212. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6213. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6214. for (int i = 0; i < ne0; i++) {
  6215. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6216. }
  6217. }
  6218. }
  6219. }
  6220. else {
  6221. // src1 is not contiguous
  6222. GGML_ASSERT(false);
  6223. }
  6224. }
  6225. static void ggml_compute_forward_add_f16_f16(
  6226. const struct ggml_compute_params * params,
  6227. struct ggml_tensor * dst) {
  6228. const struct ggml_tensor * src0 = dst->src[0];
  6229. const struct ggml_tensor * src1 = dst->src[1];
  6230. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6231. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6232. return;
  6233. }
  6234. const int ith = params->ith;
  6235. const int nth = params->nth;
  6236. const int nr = ggml_nrows(src0);
  6237. GGML_TENSOR_BINARY_OP_LOCALS
  6238. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6239. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6240. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6241. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6242. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6243. // rows per thread
  6244. const int dr = (nr + nth - 1)/nth;
  6245. // row range for this thread
  6246. const int ir0 = dr*ith;
  6247. const int ir1 = MIN(ir0 + dr, nr);
  6248. if (nb10 == sizeof(ggml_fp16_t)) {
  6249. for (int ir = ir0; ir < ir1; ++ir) {
  6250. // src0, src1 and dst are same shape => same indices
  6251. const int i3 = ir/(ne2*ne1);
  6252. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6253. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6254. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6255. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6256. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6257. for (int i = 0; i < ne0; i++) {
  6258. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6259. }
  6260. }
  6261. }
  6262. else {
  6263. // src1 is not contiguous
  6264. GGML_ASSERT(false);
  6265. }
  6266. }
  6267. static void ggml_compute_forward_add_q_f32(
  6268. const struct ggml_compute_params * params,
  6269. struct ggml_tensor * dst) {
  6270. const struct ggml_tensor * src0 = dst->src[0];
  6271. const struct ggml_tensor * src1 = dst->src[1];
  6272. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6273. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6274. return;
  6275. }
  6276. const int nr = ggml_nrows(src0);
  6277. GGML_TENSOR_BINARY_OP_LOCALS
  6278. const int ith = params->ith;
  6279. const int nth = params->nth;
  6280. const enum ggml_type type = src0->type;
  6281. const enum ggml_type dtype = dst->type;
  6282. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6283. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6284. // we don't support permuted src0 or src1
  6285. GGML_ASSERT(nb00 == ggml_type_size(type));
  6286. GGML_ASSERT(nb10 == sizeof(float));
  6287. // dst cannot be transposed or permuted
  6288. GGML_ASSERT(nb0 <= nb1);
  6289. GGML_ASSERT(nb1 <= nb2);
  6290. GGML_ASSERT(nb2 <= nb3);
  6291. GGML_ASSERT(ggml_is_quantized(src0->type));
  6292. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6293. // rows per thread
  6294. const int dr = (nr + nth - 1)/nth;
  6295. // row range for this thread
  6296. const int ir0 = dr*ith;
  6297. const int ir1 = MIN(ir0 + dr, nr);
  6298. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6299. for (int ir = ir0; ir < ir1; ++ir) {
  6300. // src0 indices
  6301. const int i03 = ir/(ne02*ne01);
  6302. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6303. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6304. // src1 and dst are same shape as src0 => same indices
  6305. const int i13 = i03;
  6306. const int i12 = i02;
  6307. const int i11 = i01;
  6308. const int i3 = i03;
  6309. const int i2 = i02;
  6310. const int i1 = i01;
  6311. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6312. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6313. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6314. assert(ne00 % 32 == 0);
  6315. // unquantize row from src0 to temp buffer
  6316. dequantize_row_q(src0_row, wdata, ne00);
  6317. // add src1
  6318. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6319. // quantize row to dst
  6320. if (quantize_row_q != NULL) {
  6321. quantize_row_q(wdata, dst_row, ne00);
  6322. } else {
  6323. memcpy(dst_row, wdata, ne0*nb0);
  6324. }
  6325. }
  6326. }
  6327. static void ggml_compute_forward_add(
  6328. const struct ggml_compute_params * params,
  6329. struct ggml_tensor * dst) {
  6330. const struct ggml_tensor * src0 = dst->src[0];
  6331. const struct ggml_tensor * src1 = dst->src[1];
  6332. switch (src0->type) {
  6333. case GGML_TYPE_F32:
  6334. {
  6335. if (src1->type == GGML_TYPE_F32) {
  6336. ggml_compute_forward_add_f32(params, dst);
  6337. }
  6338. else {
  6339. GGML_ASSERT(false);
  6340. }
  6341. } break;
  6342. case GGML_TYPE_F16:
  6343. {
  6344. if (src1->type == GGML_TYPE_F16) {
  6345. ggml_compute_forward_add_f16_f16(params, dst);
  6346. }
  6347. else if (src1->type == GGML_TYPE_F32) {
  6348. ggml_compute_forward_add_f16_f32(params, dst);
  6349. }
  6350. else {
  6351. GGML_ASSERT(false);
  6352. }
  6353. } break;
  6354. case GGML_TYPE_Q4_0:
  6355. case GGML_TYPE_Q4_1:
  6356. case GGML_TYPE_Q5_0:
  6357. case GGML_TYPE_Q5_1:
  6358. case GGML_TYPE_Q8_0:
  6359. case GGML_TYPE_Q2_K:
  6360. case GGML_TYPE_Q3_K:
  6361. case GGML_TYPE_Q4_K:
  6362. case GGML_TYPE_Q5_K:
  6363. case GGML_TYPE_Q6_K:
  6364. case GGML_TYPE_IQ2_XXS:
  6365. case GGML_TYPE_IQ2_XS:
  6366. case GGML_TYPE_IQ3_XXS:
  6367. case GGML_TYPE_IQ1_S:
  6368. case GGML_TYPE_IQ4_NL:
  6369. case GGML_TYPE_IQ3_S:
  6370. case GGML_TYPE_IQ2_S:
  6371. {
  6372. ggml_compute_forward_add_q_f32(params, dst);
  6373. } break;
  6374. default:
  6375. {
  6376. GGML_ASSERT(false);
  6377. } break;
  6378. }
  6379. }
  6380. // ggml_compute_forward_add1
  6381. static void ggml_compute_forward_add1_f32(
  6382. const struct ggml_compute_params * params,
  6383. struct ggml_tensor * dst) {
  6384. const struct ggml_tensor * src0 = dst->src[0];
  6385. const struct ggml_tensor * src1 = dst->src[1];
  6386. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6387. GGML_ASSERT(ggml_is_scalar(src1));
  6388. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6389. return;
  6390. }
  6391. const int ith = params->ith;
  6392. const int nth = params->nth;
  6393. const int nr = ggml_nrows(src0);
  6394. GGML_TENSOR_UNARY_OP_LOCALS
  6395. GGML_ASSERT( nb0 == sizeof(float));
  6396. GGML_ASSERT(nb00 == sizeof(float));
  6397. // rows per thread
  6398. const int dr = (nr + nth - 1)/nth;
  6399. // row range for this thread
  6400. const int ir0 = dr*ith;
  6401. const int ir1 = MIN(ir0 + dr, nr);
  6402. for (int ir = ir0; ir < ir1; ++ir) {
  6403. // src0 and dst are same shape => same indices
  6404. const int i3 = ir/(ne2*ne1);
  6405. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6406. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6407. #ifdef GGML_USE_ACCELERATE
  6408. UNUSED(ggml_vec_add1_f32);
  6409. vDSP_vadd(
  6410. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6411. (float *) ((char *) src1->data), 0,
  6412. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6413. ne0);
  6414. #else
  6415. ggml_vec_add1_f32(ne0,
  6416. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6417. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6418. *(float *) src1->data);
  6419. #endif
  6420. }
  6421. }
  6422. static void ggml_compute_forward_add1_f16_f32(
  6423. const struct ggml_compute_params * params,
  6424. struct ggml_tensor * dst) {
  6425. const struct ggml_tensor * src0 = dst->src[0];
  6426. const struct ggml_tensor * src1 = dst->src[1];
  6427. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6428. GGML_ASSERT(ggml_is_scalar(src1));
  6429. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6430. return;
  6431. }
  6432. // scalar to add
  6433. const float v = *(float *) src1->data;
  6434. const int ith = params->ith;
  6435. const int nth = params->nth;
  6436. const int nr = ggml_nrows(src0);
  6437. GGML_TENSOR_UNARY_OP_LOCALS
  6438. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6439. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6440. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6441. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6442. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6443. // rows per thread
  6444. const int dr = (nr + nth - 1)/nth;
  6445. // row range for this thread
  6446. const int ir0 = dr*ith;
  6447. const int ir1 = MIN(ir0 + dr, nr);
  6448. for (int ir = ir0; ir < ir1; ++ir) {
  6449. // src0 and dst are same shape => same indices
  6450. const int i3 = ir/(ne2*ne1);
  6451. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6452. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6453. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6454. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6455. for (int i = 0; i < ne0; i++) {
  6456. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6457. }
  6458. }
  6459. }
  6460. static void ggml_compute_forward_add1_f16_f16(
  6461. const struct ggml_compute_params * params,
  6462. struct ggml_tensor * dst) {
  6463. const struct ggml_tensor * src0 = dst->src[0];
  6464. const struct ggml_tensor * src1 = dst->src[1];
  6465. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6466. GGML_ASSERT(ggml_is_scalar(src1));
  6467. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6468. return;
  6469. }
  6470. // scalar to add
  6471. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6472. const int ith = params->ith;
  6473. const int nth = params->nth;
  6474. const int nr = ggml_nrows(src0);
  6475. GGML_TENSOR_UNARY_OP_LOCALS
  6476. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6477. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6478. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6479. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6480. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6481. // rows per thread
  6482. const int dr = (nr + nth - 1)/nth;
  6483. // row range for this thread
  6484. const int ir0 = dr*ith;
  6485. const int ir1 = MIN(ir0 + dr, nr);
  6486. for (int ir = ir0; ir < ir1; ++ir) {
  6487. // src0 and dst are same shape => same indices
  6488. const int i3 = ir/(ne2*ne1);
  6489. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6490. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6491. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6492. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6493. for (int i = 0; i < ne0; i++) {
  6494. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6495. }
  6496. }
  6497. }
  6498. static void ggml_compute_forward_add1_q_f32(
  6499. const struct ggml_compute_params * params,
  6500. struct ggml_tensor * dst) {
  6501. const struct ggml_tensor * src0 = dst->src[0];
  6502. const struct ggml_tensor * src1 = dst->src[1];
  6503. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6504. GGML_ASSERT(ggml_is_scalar(src1));
  6505. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6506. return;
  6507. }
  6508. // scalar to add
  6509. const float v = *(float *) src1->data;
  6510. const int ith = params->ith;
  6511. const int nth = params->nth;
  6512. const int nr = ggml_nrows(src0);
  6513. GGML_TENSOR_UNARY_OP_LOCALS
  6514. const enum ggml_type type = src0->type;
  6515. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6516. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6517. // we don't support permuted src0
  6518. GGML_ASSERT(nb00 == ggml_type_size(type));
  6519. // dst cannot be transposed or permuted
  6520. GGML_ASSERT(nb0 <= nb1);
  6521. GGML_ASSERT(nb1 <= nb2);
  6522. GGML_ASSERT(nb2 <= nb3);
  6523. GGML_ASSERT(ggml_is_quantized(src0->type));
  6524. GGML_ASSERT(dst->type == src0->type);
  6525. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6526. // rows per thread
  6527. const int dr = (nr + nth - 1)/nth;
  6528. // row range for this thread
  6529. const int ir0 = dr*ith;
  6530. const int ir1 = MIN(ir0 + dr, nr);
  6531. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6532. for (int ir = ir0; ir < ir1; ++ir) {
  6533. // src0 and dst are same shape => same indices
  6534. const int i3 = ir/(ne2*ne1);
  6535. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6536. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6537. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6538. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6539. assert(ne0 % 32 == 0);
  6540. // unquantize row from src0 to temp buffer
  6541. dequantize_row_q(src0_row, wdata, ne0);
  6542. // add src1
  6543. ggml_vec_acc1_f32(ne0, wdata, v);
  6544. // quantize row to dst
  6545. quantize_row_q(wdata, dst_row, ne0);
  6546. }
  6547. }
  6548. static void ggml_compute_forward_add1(
  6549. const struct ggml_compute_params * params,
  6550. struct ggml_tensor * dst) {
  6551. const struct ggml_tensor * src0 = dst->src[0];
  6552. const struct ggml_tensor * src1 = dst->src[1];
  6553. switch (src0->type) {
  6554. case GGML_TYPE_F32:
  6555. {
  6556. ggml_compute_forward_add1_f32(params, dst);
  6557. } break;
  6558. case GGML_TYPE_F16:
  6559. {
  6560. if (src1->type == GGML_TYPE_F16) {
  6561. ggml_compute_forward_add1_f16_f16(params, dst);
  6562. }
  6563. else if (src1->type == GGML_TYPE_F32) {
  6564. ggml_compute_forward_add1_f16_f32(params, dst);
  6565. }
  6566. else {
  6567. GGML_ASSERT(false);
  6568. }
  6569. } break;
  6570. case GGML_TYPE_Q4_0:
  6571. case GGML_TYPE_Q4_1:
  6572. case GGML_TYPE_Q5_0:
  6573. case GGML_TYPE_Q5_1:
  6574. case GGML_TYPE_Q8_0:
  6575. case GGML_TYPE_Q8_1:
  6576. case GGML_TYPE_Q2_K:
  6577. case GGML_TYPE_Q3_K:
  6578. case GGML_TYPE_Q4_K:
  6579. case GGML_TYPE_Q5_K:
  6580. case GGML_TYPE_Q6_K:
  6581. case GGML_TYPE_IQ2_XXS:
  6582. case GGML_TYPE_IQ2_XS:
  6583. case GGML_TYPE_IQ3_XXS:
  6584. case GGML_TYPE_IQ1_S:
  6585. case GGML_TYPE_IQ4_NL:
  6586. case GGML_TYPE_IQ3_S:
  6587. case GGML_TYPE_IQ2_S:
  6588. {
  6589. ggml_compute_forward_add1_q_f32(params, dst);
  6590. } break;
  6591. default:
  6592. {
  6593. GGML_ASSERT(false);
  6594. } break;
  6595. }
  6596. }
  6597. // ggml_compute_forward_acc
  6598. static void ggml_compute_forward_acc_f32(
  6599. const struct ggml_compute_params * params,
  6600. struct ggml_tensor * dst) {
  6601. const struct ggml_tensor * src0 = dst->src[0];
  6602. const struct ggml_tensor * src1 = dst->src[1];
  6603. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6604. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6605. // view src0 and dst with these strides and data offset inbytes during acc
  6606. // nb0 is implicitly element_size because src0 and dst are contiguous
  6607. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6608. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6609. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6610. size_t offset = ((int32_t *) dst->op_params)[3];
  6611. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6612. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6613. if (params->ith != 0) {
  6614. return;
  6615. }
  6616. // memcpy needs to be synchronized across threads to avoid race conditions.
  6617. // => do it in INIT phase
  6618. memcpy(
  6619. ((char *) dst->data),
  6620. ((char *) src0->data),
  6621. ggml_nbytes(dst));
  6622. }
  6623. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6624. return;
  6625. }
  6626. const int ith = params->ith;
  6627. const int nth = params->nth;
  6628. const int nr = ggml_nrows(src1);
  6629. const int nc = src1->ne[0];
  6630. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6631. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6632. // src0 and dst as viewed during acc
  6633. const size_t nb0 = ggml_element_size(src0);
  6634. const size_t nb00 = nb0;
  6635. const size_t nb01 = nb1;
  6636. const size_t nb02 = nb2;
  6637. const size_t nb03 = nb3;
  6638. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6639. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6640. GGML_ASSERT(nb10 == sizeof(float));
  6641. // rows per thread
  6642. const int dr = (nr + nth - 1)/nth;
  6643. // row range for this thread
  6644. const int ir0 = dr*ith;
  6645. const int ir1 = MIN(ir0 + dr, nr);
  6646. for (int ir = ir0; ir < ir1; ++ir) {
  6647. // src0 and dst are viewed with shape of src1 and offset
  6648. // => same indices
  6649. const int i3 = ir/(ne12*ne11);
  6650. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6651. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6652. #ifdef GGML_USE_ACCELERATE
  6653. vDSP_vadd(
  6654. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6655. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6656. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6657. #else
  6658. ggml_vec_add_f32(nc,
  6659. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6660. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6661. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6662. #endif
  6663. }
  6664. }
  6665. static void ggml_compute_forward_acc(
  6666. const struct ggml_compute_params * params,
  6667. struct ggml_tensor * dst) {
  6668. const struct ggml_tensor * src0 = dst->src[0];
  6669. switch (src0->type) {
  6670. case GGML_TYPE_F32:
  6671. {
  6672. ggml_compute_forward_acc_f32(params, dst);
  6673. } break;
  6674. case GGML_TYPE_F16:
  6675. case GGML_TYPE_Q4_0:
  6676. case GGML_TYPE_Q4_1:
  6677. case GGML_TYPE_Q5_0:
  6678. case GGML_TYPE_Q5_1:
  6679. case GGML_TYPE_Q8_0:
  6680. case GGML_TYPE_Q8_1:
  6681. case GGML_TYPE_Q2_K:
  6682. case GGML_TYPE_Q3_K:
  6683. case GGML_TYPE_Q4_K:
  6684. case GGML_TYPE_Q5_K:
  6685. case GGML_TYPE_Q6_K:
  6686. case GGML_TYPE_IQ2_XXS:
  6687. case GGML_TYPE_IQ2_XS:
  6688. case GGML_TYPE_IQ3_XXS:
  6689. case GGML_TYPE_IQ1_S:
  6690. case GGML_TYPE_IQ4_NL:
  6691. case GGML_TYPE_IQ3_S:
  6692. case GGML_TYPE_IQ2_S:
  6693. default:
  6694. {
  6695. GGML_ASSERT(false);
  6696. } break;
  6697. }
  6698. }
  6699. // ggml_compute_forward_sub
  6700. static void ggml_compute_forward_sub_f32(
  6701. const struct ggml_compute_params * params,
  6702. struct ggml_tensor * dst) {
  6703. const struct ggml_tensor * src0 = dst->src[0];
  6704. const struct ggml_tensor * src1 = dst->src[1];
  6705. assert(params->ith == 0);
  6706. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6707. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6708. return;
  6709. }
  6710. const int nr = ggml_nrows(src0);
  6711. GGML_TENSOR_BINARY_OP_LOCALS
  6712. GGML_ASSERT( nb0 == sizeof(float));
  6713. GGML_ASSERT(nb00 == sizeof(float));
  6714. if (nb10 == sizeof(float)) {
  6715. for (int ir = 0; ir < nr; ++ir) {
  6716. // src0, src1 and dst are same shape => same indices
  6717. const int i3 = ir/(ne2*ne1);
  6718. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6719. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6720. #ifdef GGML_USE_ACCELERATE
  6721. vDSP_vsub(
  6722. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6723. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6724. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6725. ne0);
  6726. #else
  6727. ggml_vec_sub_f32(ne0,
  6728. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6729. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6730. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6731. #endif
  6732. // }
  6733. // }
  6734. }
  6735. } else {
  6736. // src1 is not contiguous
  6737. for (int ir = 0; ir < nr; ++ir) {
  6738. // src0, src1 and dst are same shape => same indices
  6739. const int i3 = ir/(ne2*ne1);
  6740. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6741. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6742. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6743. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6744. for (int i0 = 0; i0 < ne0; i0++) {
  6745. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6746. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6747. }
  6748. }
  6749. }
  6750. }
  6751. static void ggml_compute_forward_sub(
  6752. const struct ggml_compute_params * params,
  6753. struct ggml_tensor * dst) {
  6754. const struct ggml_tensor * src0 = dst->src[0];
  6755. switch (src0->type) {
  6756. case GGML_TYPE_F32:
  6757. {
  6758. ggml_compute_forward_sub_f32(params, dst);
  6759. } break;
  6760. default:
  6761. {
  6762. GGML_ASSERT(false);
  6763. } break;
  6764. }
  6765. }
  6766. // ggml_compute_forward_mul
  6767. static void ggml_compute_forward_mul_f32(
  6768. const struct ggml_compute_params * params,
  6769. struct ggml_tensor * dst) {
  6770. const struct ggml_tensor * src0 = dst->src[0];
  6771. const struct ggml_tensor * src1 = dst->src[1];
  6772. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6773. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6774. return;
  6775. }
  6776. const int ith = params->ith;
  6777. const int nth = params->nth;
  6778. #if defined(GGML_USE_CLBLAST)
  6779. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6780. // TODO: OpenCL kernel support full broadcast
  6781. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6782. if (ith == 0) {
  6783. ggml_cl_mul(src0, src1, dst);
  6784. }
  6785. return;
  6786. }
  6787. #endif
  6788. const int64_t nr = ggml_nrows(src0);
  6789. GGML_TENSOR_BINARY_OP_LOCALS
  6790. GGML_ASSERT( nb0 == sizeof(float));
  6791. GGML_ASSERT(nb00 == sizeof(float));
  6792. if (nb10 == sizeof(float)) {
  6793. for (int64_t ir = ith; ir < nr; ir += nth) {
  6794. // src0 and dst are same shape => same indices
  6795. const int64_t i03 = ir/(ne02*ne01);
  6796. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6797. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6798. const int64_t i13 = i03 % ne13;
  6799. const int64_t i12 = i02 % ne12;
  6800. const int64_t i11 = i01 % ne11;
  6801. const int64_t nr0 = ne00 / ne10;
  6802. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6803. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6804. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6805. for (int64_t r = 0 ; r < nr0; ++r) {
  6806. #ifdef GGML_USE_ACCELERATE
  6807. UNUSED(ggml_vec_mul_f32);
  6808. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6809. #else
  6810. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6811. #endif
  6812. }
  6813. }
  6814. } else {
  6815. // src1 is not contiguous
  6816. for (int64_t ir = ith; ir < nr; ir += nth) {
  6817. // src0 and dst are same shape => same indices
  6818. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6819. const int64_t i03 = ir/(ne02*ne01);
  6820. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6821. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6822. const int64_t i13 = i03 % ne13;
  6823. const int64_t i12 = i02 % ne12;
  6824. const int64_t i11 = i01 % ne11;
  6825. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6826. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6827. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6828. const int64_t i10 = i0 % ne10;
  6829. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6830. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6831. }
  6832. }
  6833. }
  6834. }
  6835. static void ggml_compute_forward_mul(
  6836. const struct ggml_compute_params * params,
  6837. struct ggml_tensor * dst) {
  6838. const struct ggml_tensor * src0 = dst->src[0];
  6839. const struct ggml_tensor * src1 = dst->src[1];
  6840. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  6841. switch (src0->type) {
  6842. case GGML_TYPE_F32:
  6843. {
  6844. ggml_compute_forward_mul_f32(params, dst);
  6845. } break;
  6846. default:
  6847. {
  6848. GGML_ASSERT(false);
  6849. } break;
  6850. }
  6851. }
  6852. // ggml_compute_forward_div
  6853. static void ggml_compute_forward_div_f32(
  6854. const struct ggml_compute_params * params,
  6855. struct ggml_tensor * dst) {
  6856. const struct ggml_tensor * src0 = dst->src[0];
  6857. const struct ggml_tensor * src1 = dst->src[1];
  6858. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6859. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6860. return;
  6861. }
  6862. const int ith = params->ith;
  6863. const int nth = params->nth;
  6864. const int64_t nr = ggml_nrows(src0);
  6865. GGML_TENSOR_BINARY_OP_LOCALS
  6866. GGML_ASSERT( nb0 == sizeof(float));
  6867. GGML_ASSERT(nb00 == sizeof(float));
  6868. if (nb10 == sizeof(float)) {
  6869. for (int64_t ir = ith; ir < nr; ir += nth) {
  6870. // src0 and dst are same shape => same indices
  6871. const int64_t i03 = ir/(ne02*ne01);
  6872. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6873. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6874. const int64_t i13 = i03 % ne13;
  6875. const int64_t i12 = i02 % ne12;
  6876. const int64_t i11 = i01 % ne11;
  6877. const int64_t nr0 = ne00 / ne10;
  6878. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6879. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6880. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6881. for (int64_t r = 0; r < nr0; ++r) {
  6882. #ifdef GGML_USE_ACCELERATE
  6883. UNUSED(ggml_vec_div_f32);
  6884. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  6885. #else
  6886. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6887. #endif
  6888. }
  6889. }
  6890. } else {
  6891. // src1 is not contiguous
  6892. for (int64_t ir = ith; ir < nr; ir += nth) {
  6893. // src0 and dst are same shape => same indices
  6894. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6895. const int64_t i03 = ir/(ne02*ne01);
  6896. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6897. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6898. const int64_t i13 = i03 % ne13;
  6899. const int64_t i12 = i02 % ne12;
  6900. const int64_t i11 = i01 % ne11;
  6901. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6902. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6903. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  6904. const int64_t i10 = i0 % ne10;
  6905. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6906. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6907. }
  6908. }
  6909. }
  6910. }
  6911. static void ggml_compute_forward_div(
  6912. const struct ggml_compute_params * params,
  6913. struct ggml_tensor * dst) {
  6914. const struct ggml_tensor * src0 = dst->src[0];
  6915. switch (src0->type) {
  6916. case GGML_TYPE_F32:
  6917. {
  6918. ggml_compute_forward_div_f32(params, dst);
  6919. } break;
  6920. default:
  6921. {
  6922. GGML_ASSERT(false);
  6923. } break;
  6924. }
  6925. }
  6926. // ggml_compute_forward_sqr
  6927. static void ggml_compute_forward_sqr_f32(
  6928. const struct ggml_compute_params * params,
  6929. struct ggml_tensor * dst) {
  6930. const struct ggml_tensor * src0 = dst->src[0];
  6931. assert(params->ith == 0);
  6932. assert(ggml_are_same_shape(src0, dst));
  6933. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6934. return;
  6935. }
  6936. const int n = ggml_nrows(src0);
  6937. const int nc = src0->ne[0];
  6938. assert( dst->nb[0] == sizeof(float));
  6939. assert(src0->nb[0] == sizeof(float));
  6940. for (int i = 0; i < n; i++) {
  6941. ggml_vec_sqr_f32(nc,
  6942. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6943. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6944. }
  6945. }
  6946. static void ggml_compute_forward_sqr(
  6947. const struct ggml_compute_params * params,
  6948. struct ggml_tensor * dst) {
  6949. const struct ggml_tensor * src0 = dst->src[0];
  6950. switch (src0->type) {
  6951. case GGML_TYPE_F32:
  6952. {
  6953. ggml_compute_forward_sqr_f32(params, dst);
  6954. } break;
  6955. default:
  6956. {
  6957. GGML_ASSERT(false);
  6958. } break;
  6959. }
  6960. }
  6961. // ggml_compute_forward_sqrt
  6962. static void ggml_compute_forward_sqrt_f32(
  6963. const struct ggml_compute_params * params,
  6964. struct ggml_tensor * dst) {
  6965. const struct ggml_tensor * src0 = dst->src[0];
  6966. assert(params->ith == 0);
  6967. assert(ggml_are_same_shape(src0, dst));
  6968. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6969. return;
  6970. }
  6971. const int n = ggml_nrows(src0);
  6972. const int nc = src0->ne[0];
  6973. assert( dst->nb[0] == sizeof(float));
  6974. assert(src0->nb[0] == sizeof(float));
  6975. for (int i = 0; i < n; i++) {
  6976. ggml_vec_sqrt_f32(nc,
  6977. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6978. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6979. }
  6980. }
  6981. static void ggml_compute_forward_sqrt(
  6982. const struct ggml_compute_params * params,
  6983. struct ggml_tensor * dst) {
  6984. const struct ggml_tensor * src0 = dst->src[0];
  6985. switch (src0->type) {
  6986. case GGML_TYPE_F32:
  6987. {
  6988. ggml_compute_forward_sqrt_f32(params, dst);
  6989. } break;
  6990. default:
  6991. {
  6992. GGML_ASSERT(false);
  6993. } break;
  6994. }
  6995. }
  6996. // ggml_compute_forward_log
  6997. static void ggml_compute_forward_log_f32(
  6998. const struct ggml_compute_params * params,
  6999. struct ggml_tensor * dst) {
  7000. const struct ggml_tensor * src0 = dst->src[0];
  7001. GGML_ASSERT(params->ith == 0);
  7002. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7003. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7004. return;
  7005. }
  7006. const int n = ggml_nrows(src0);
  7007. const int nc = src0->ne[0];
  7008. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7009. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7010. for (int i = 0; i < n; i++) {
  7011. ggml_vec_log_f32(nc,
  7012. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7013. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7014. }
  7015. }
  7016. static void ggml_compute_forward_log(
  7017. const struct ggml_compute_params * params,
  7018. struct ggml_tensor * dst) {
  7019. const struct ggml_tensor * src0 = dst->src[0];
  7020. switch (src0->type) {
  7021. case GGML_TYPE_F32:
  7022. {
  7023. ggml_compute_forward_log_f32(params, dst);
  7024. } break;
  7025. default:
  7026. {
  7027. GGML_ASSERT(false);
  7028. } break;
  7029. }
  7030. }
  7031. // ggml_compute_forward_sum
  7032. static void ggml_compute_forward_sum_f32(
  7033. const struct ggml_compute_params * params,
  7034. struct ggml_tensor * dst) {
  7035. const struct ggml_tensor * src0 = dst->src[0];
  7036. assert(params->ith == 0);
  7037. assert(ggml_is_scalar(dst));
  7038. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7039. return;
  7040. }
  7041. assert(ggml_is_scalar(dst));
  7042. assert(src0->nb[0] == sizeof(float));
  7043. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7044. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7045. ggml_float sum = 0;
  7046. ggml_float row_sum = 0;
  7047. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7048. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7049. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7050. ggml_vec_sum_f32_ggf(ne00,
  7051. &row_sum,
  7052. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7053. sum += row_sum;
  7054. }
  7055. }
  7056. }
  7057. ((float *) dst->data)[0] = sum;
  7058. }
  7059. static void ggml_compute_forward_sum_f16(
  7060. const struct ggml_compute_params * params,
  7061. struct ggml_tensor * dst) {
  7062. const struct ggml_tensor * src0 = dst->src[0];
  7063. assert(params->ith == 0);
  7064. assert(ggml_is_scalar(dst));
  7065. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7066. return;
  7067. }
  7068. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7069. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7070. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7071. float sum = 0;
  7072. float row_sum = 0;
  7073. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7074. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7075. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7076. ggml_vec_sum_f16_ggf(ne00,
  7077. &row_sum,
  7078. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7079. sum += row_sum;
  7080. }
  7081. }
  7082. }
  7083. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7084. }
  7085. static void ggml_compute_forward_sum(
  7086. const struct ggml_compute_params * params,
  7087. struct ggml_tensor * dst) {
  7088. const struct ggml_tensor * src0 = dst->src[0];
  7089. switch (src0->type) {
  7090. case GGML_TYPE_F32:
  7091. {
  7092. ggml_compute_forward_sum_f32(params, dst);
  7093. } break;
  7094. case GGML_TYPE_F16:
  7095. {
  7096. ggml_compute_forward_sum_f16(params, dst);
  7097. } break;
  7098. default:
  7099. {
  7100. GGML_ASSERT(false);
  7101. } break;
  7102. }
  7103. }
  7104. // ggml_compute_forward_sum_rows
  7105. static void ggml_compute_forward_sum_rows_f32(
  7106. const struct ggml_compute_params * params,
  7107. struct ggml_tensor * dst) {
  7108. const struct ggml_tensor * src0 = dst->src[0];
  7109. GGML_ASSERT(params->ith == 0);
  7110. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7111. return;
  7112. }
  7113. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7114. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7115. GGML_TENSOR_UNARY_OP_LOCALS
  7116. GGML_ASSERT(ne0 == 1);
  7117. GGML_ASSERT(ne1 == ne01);
  7118. GGML_ASSERT(ne2 == ne02);
  7119. GGML_ASSERT(ne3 == ne03);
  7120. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7121. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7122. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7123. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7124. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7125. float row_sum = 0;
  7126. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7127. dst_row[0] = row_sum;
  7128. }
  7129. }
  7130. }
  7131. }
  7132. static void ggml_compute_forward_sum_rows(
  7133. const struct ggml_compute_params * params,
  7134. struct ggml_tensor * dst) {
  7135. const struct ggml_tensor * src0 = dst->src[0];
  7136. switch (src0->type) {
  7137. case GGML_TYPE_F32:
  7138. {
  7139. ggml_compute_forward_sum_rows_f32(params, dst);
  7140. } break;
  7141. default:
  7142. {
  7143. GGML_ASSERT(false);
  7144. } break;
  7145. }
  7146. }
  7147. // ggml_compute_forward_mean
  7148. static void ggml_compute_forward_mean_f32(
  7149. const struct ggml_compute_params * params,
  7150. struct ggml_tensor * dst) {
  7151. const struct ggml_tensor * src0 = dst->src[0];
  7152. assert(params->ith == 0);
  7153. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7154. return;
  7155. }
  7156. assert(src0->nb[0] == sizeof(float));
  7157. GGML_TENSOR_UNARY_OP_LOCALS
  7158. assert(ne0 == 1);
  7159. assert(ne1 == ne01);
  7160. assert(ne2 == ne02);
  7161. assert(ne3 == ne03);
  7162. UNUSED(ne0);
  7163. UNUSED(ne1);
  7164. UNUSED(ne2);
  7165. UNUSED(ne3);
  7166. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7167. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7168. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7169. ggml_vec_sum_f32(ne00,
  7170. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7171. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7172. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7173. }
  7174. }
  7175. }
  7176. }
  7177. static void ggml_compute_forward_mean(
  7178. const struct ggml_compute_params * params,
  7179. struct ggml_tensor * dst) {
  7180. const struct ggml_tensor * src0 = dst->src[0];
  7181. switch (src0->type) {
  7182. case GGML_TYPE_F32:
  7183. {
  7184. ggml_compute_forward_mean_f32(params, dst);
  7185. } break;
  7186. default:
  7187. {
  7188. GGML_ASSERT(false);
  7189. } break;
  7190. }
  7191. }
  7192. // ggml_compute_forward_argmax
  7193. static void ggml_compute_forward_argmax_f32(
  7194. const struct ggml_compute_params * params,
  7195. struct ggml_tensor * dst) {
  7196. const struct ggml_tensor * src0 = dst->src[0];
  7197. assert(params->ith == 0);
  7198. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7199. return;
  7200. }
  7201. assert(src0->nb[0] == sizeof(float));
  7202. assert(dst->nb[0] == sizeof(float));
  7203. const int64_t ne00 = src0->ne[0];
  7204. const int64_t ne01 = src0->ne[1];
  7205. const size_t nb01 = src0->nb[1];
  7206. const size_t nb0 = dst->nb[0];
  7207. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7208. float * src = (float *) ((char *) src0->data + i1*nb01);
  7209. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7210. int v = 0;
  7211. ggml_vec_argmax_f32(ne00, &v, src);
  7212. dst_[0] = v;
  7213. }
  7214. }
  7215. static void ggml_compute_forward_argmax(
  7216. const struct ggml_compute_params * params,
  7217. struct ggml_tensor * dst) {
  7218. const struct ggml_tensor * src0 = dst->src[0];
  7219. switch (src0->type) {
  7220. case GGML_TYPE_F32:
  7221. {
  7222. ggml_compute_forward_argmax_f32(params, dst);
  7223. } break;
  7224. default:
  7225. {
  7226. GGML_ASSERT(false);
  7227. } break;
  7228. }
  7229. }
  7230. // ggml_compute_forward_repeat
  7231. static void ggml_compute_forward_repeat_f32(
  7232. const struct ggml_compute_params * params,
  7233. struct ggml_tensor * dst) {
  7234. const struct ggml_tensor * src0 = dst->src[0];
  7235. GGML_ASSERT(params->ith == 0);
  7236. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7237. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7238. return;
  7239. }
  7240. GGML_TENSOR_UNARY_OP_LOCALS
  7241. // guaranteed to be an integer due to the check in ggml_can_repeat
  7242. const int nr0 = (int)(ne0/ne00);
  7243. const int nr1 = (int)(ne1/ne01);
  7244. const int nr2 = (int)(ne2/ne02);
  7245. const int nr3 = (int)(ne3/ne03);
  7246. // TODO: support for transposed / permuted tensors
  7247. GGML_ASSERT(nb0 == sizeof(float));
  7248. GGML_ASSERT(nb00 == sizeof(float));
  7249. // TODO: maybe this is not optimal?
  7250. for (int i3 = 0; i3 < nr3; i3++) {
  7251. for (int k3 = 0; k3 < ne03; k3++) {
  7252. for (int i2 = 0; i2 < nr2; i2++) {
  7253. for (int k2 = 0; k2 < ne02; k2++) {
  7254. for (int i1 = 0; i1 < nr1; i1++) {
  7255. for (int k1 = 0; k1 < ne01; k1++) {
  7256. for (int i0 = 0; i0 < nr0; i0++) {
  7257. ggml_vec_cpy_f32(ne00,
  7258. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7259. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7260. }
  7261. }
  7262. }
  7263. }
  7264. }
  7265. }
  7266. }
  7267. }
  7268. static void ggml_compute_forward_repeat_f16(
  7269. const struct ggml_compute_params * params,
  7270. struct ggml_tensor * dst) {
  7271. const struct ggml_tensor * src0 = dst->src[0];
  7272. GGML_ASSERT(params->ith == 0);
  7273. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7274. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7275. return;
  7276. }
  7277. GGML_TENSOR_UNARY_OP_LOCALS
  7278. // guaranteed to be an integer due to the check in ggml_can_repeat
  7279. const int nr0 = (int)(ne0/ne00);
  7280. const int nr1 = (int)(ne1/ne01);
  7281. const int nr2 = (int)(ne2/ne02);
  7282. const int nr3 = (int)(ne3/ne03);
  7283. // TODO: support for transposed / permuted tensors
  7284. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7285. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7286. // TODO: maybe this is not optimal?
  7287. for (int i3 = 0; i3 < nr3; i3++) {
  7288. for (int k3 = 0; k3 < ne03; k3++) {
  7289. for (int i2 = 0; i2 < nr2; i2++) {
  7290. for (int k2 = 0; k2 < ne02; k2++) {
  7291. for (int i1 = 0; i1 < nr1; i1++) {
  7292. for (int k1 = 0; k1 < ne01; k1++) {
  7293. for (int i0 = 0; i0 < nr0; i0++) {
  7294. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7295. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7296. // ggml_vec_cpy_f16(ne00, y, x)
  7297. for (int i = 0; i < ne00; ++i) {
  7298. y[i] = x[i];
  7299. }
  7300. }
  7301. }
  7302. }
  7303. }
  7304. }
  7305. }
  7306. }
  7307. }
  7308. static void ggml_compute_forward_repeat(
  7309. const struct ggml_compute_params * params,
  7310. struct ggml_tensor * dst) {
  7311. const struct ggml_tensor * src0 = dst->src[0];
  7312. switch (src0->type) {
  7313. case GGML_TYPE_F16:
  7314. case GGML_TYPE_I16:
  7315. {
  7316. ggml_compute_forward_repeat_f16(params, dst);
  7317. } break;
  7318. case GGML_TYPE_F32:
  7319. case GGML_TYPE_I32:
  7320. {
  7321. ggml_compute_forward_repeat_f32(params, dst);
  7322. } break;
  7323. default:
  7324. {
  7325. GGML_ASSERT(false);
  7326. } break;
  7327. }
  7328. }
  7329. // ggml_compute_forward_repeat_back
  7330. static void ggml_compute_forward_repeat_back_f32(
  7331. const struct ggml_compute_params * params,
  7332. struct ggml_tensor * dst) {
  7333. const struct ggml_tensor * src0 = dst->src[0];
  7334. GGML_ASSERT(params->ith == 0);
  7335. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7336. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7337. return;
  7338. }
  7339. GGML_TENSOR_UNARY_OP_LOCALS
  7340. // guaranteed to be an integer due to the check in ggml_can_repeat
  7341. const int nr0 = (int)(ne00/ne0);
  7342. const int nr1 = (int)(ne01/ne1);
  7343. const int nr2 = (int)(ne02/ne2);
  7344. const int nr3 = (int)(ne03/ne3);
  7345. // TODO: support for transposed / permuted tensors
  7346. GGML_ASSERT(nb0 == sizeof(float));
  7347. GGML_ASSERT(nb00 == sizeof(float));
  7348. if (ggml_is_contiguous(dst)) {
  7349. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7350. } else {
  7351. for (int k3 = 0; k3 < ne3; k3++) {
  7352. for (int k2 = 0; k2 < ne2; k2++) {
  7353. for (int k1 = 0; k1 < ne1; k1++) {
  7354. ggml_vec_set_f32(ne0,
  7355. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7356. 0);
  7357. }
  7358. }
  7359. }
  7360. }
  7361. // TODO: maybe this is not optimal?
  7362. for (int i3 = 0; i3 < nr3; i3++) {
  7363. for (int k3 = 0; k3 < ne3; k3++) {
  7364. for (int i2 = 0; i2 < nr2; i2++) {
  7365. for (int k2 = 0; k2 < ne2; k2++) {
  7366. for (int i1 = 0; i1 < nr1; i1++) {
  7367. for (int k1 = 0; k1 < ne1; k1++) {
  7368. for (int i0 = 0; i0 < nr0; i0++) {
  7369. ggml_vec_acc_f32(ne0,
  7370. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7371. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7372. }
  7373. }
  7374. }
  7375. }
  7376. }
  7377. }
  7378. }
  7379. }
  7380. static void ggml_compute_forward_repeat_back(
  7381. const struct ggml_compute_params * params,
  7382. struct ggml_tensor * dst) {
  7383. const struct ggml_tensor * src0 = dst->src[0];
  7384. switch (src0->type) {
  7385. case GGML_TYPE_F32:
  7386. {
  7387. ggml_compute_forward_repeat_back_f32(params, dst);
  7388. } break;
  7389. default:
  7390. {
  7391. GGML_ASSERT(false);
  7392. } break;
  7393. }
  7394. }
  7395. // ggml_compute_forward_concat
  7396. static void ggml_compute_forward_concat_f32(
  7397. const struct ggml_compute_params * params,
  7398. struct ggml_tensor * dst) {
  7399. const struct ggml_tensor * src0 = dst->src[0];
  7400. const struct ggml_tensor * src1 = dst->src[1];
  7401. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7402. return;
  7403. }
  7404. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7405. const int ith = params->ith;
  7406. const int nth = params->nth;
  7407. GGML_TENSOR_BINARY_OP_LOCALS
  7408. // TODO: support for transposed / permuted tensors
  7409. GGML_ASSERT(nb0 == sizeof(float));
  7410. GGML_ASSERT(nb00 == sizeof(float));
  7411. GGML_ASSERT(nb10 == sizeof(float));
  7412. for (int i3 = 0; i3 < ne3; i3++) {
  7413. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7414. if (i2 < ne02) { // src0
  7415. for (int i1 = 0; i1 < ne1; i1++) {
  7416. for (int i0 = 0; i0 < ne0; i0++) {
  7417. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7418. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7419. *y = *x;
  7420. }
  7421. }
  7422. } // src1
  7423. else {
  7424. for (int i1 = 0; i1 < ne1; i1++) {
  7425. for (int i0 = 0; i0 < ne0; i0++) {
  7426. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7427. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7428. *y = *x;
  7429. }
  7430. }
  7431. }
  7432. }
  7433. }
  7434. }
  7435. static void ggml_compute_forward_concat(
  7436. const struct ggml_compute_params* params,
  7437. struct ggml_tensor* dst) {
  7438. const struct ggml_tensor * src0 = dst->src[0];
  7439. switch (src0->type) {
  7440. case GGML_TYPE_F32:
  7441. case GGML_TYPE_I32:
  7442. {
  7443. ggml_compute_forward_concat_f32(params, dst);
  7444. } break;
  7445. default:
  7446. {
  7447. GGML_ASSERT(false);
  7448. } break;
  7449. }
  7450. }
  7451. // ggml_compute_forward_abs
  7452. static void ggml_compute_forward_abs_f32(
  7453. const struct ggml_compute_params * params,
  7454. struct ggml_tensor * dst) {
  7455. const struct ggml_tensor * src0 = dst->src[0];
  7456. assert(params->ith == 0);
  7457. assert(ggml_are_same_shape(src0, dst));
  7458. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7459. return;
  7460. }
  7461. const int n = ggml_nrows(src0);
  7462. const int nc = src0->ne[0];
  7463. assert(dst->nb[0] == sizeof(float));
  7464. assert(src0->nb[0] == sizeof(float));
  7465. for (int i = 0; i < n; i++) {
  7466. ggml_vec_abs_f32(nc,
  7467. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7468. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7469. }
  7470. }
  7471. static void ggml_compute_forward_abs(
  7472. const struct ggml_compute_params * params,
  7473. struct ggml_tensor * dst) {
  7474. const struct ggml_tensor * src0 = dst->src[0];
  7475. switch (src0->type) {
  7476. case GGML_TYPE_F32:
  7477. {
  7478. ggml_compute_forward_abs_f32(params, dst);
  7479. } break;
  7480. default:
  7481. {
  7482. GGML_ASSERT(false);
  7483. } break;
  7484. }
  7485. }
  7486. // ggml_compute_forward_sgn
  7487. static void ggml_compute_forward_sgn_f32(
  7488. const struct ggml_compute_params * params,
  7489. struct ggml_tensor * dst) {
  7490. const struct ggml_tensor * src0 = dst->src[0];
  7491. assert(params->ith == 0);
  7492. assert(ggml_are_same_shape(src0, dst));
  7493. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7494. return;
  7495. }
  7496. const int n = ggml_nrows(src0);
  7497. const int nc = src0->ne[0];
  7498. assert(dst->nb[0] == sizeof(float));
  7499. assert(src0->nb[0] == sizeof(float));
  7500. for (int i = 0; i < n; i++) {
  7501. ggml_vec_sgn_f32(nc,
  7502. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7503. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7504. }
  7505. }
  7506. static void ggml_compute_forward_sgn(
  7507. const struct ggml_compute_params * params,
  7508. struct ggml_tensor * dst) {
  7509. const struct ggml_tensor * src0 = dst->src[0];
  7510. switch (src0->type) {
  7511. case GGML_TYPE_F32:
  7512. {
  7513. ggml_compute_forward_sgn_f32(params, dst);
  7514. } break;
  7515. default:
  7516. {
  7517. GGML_ASSERT(false);
  7518. } break;
  7519. }
  7520. }
  7521. // ggml_compute_forward_neg
  7522. static void ggml_compute_forward_neg_f32(
  7523. const struct ggml_compute_params * params,
  7524. struct ggml_tensor * dst) {
  7525. const struct ggml_tensor * src0 = dst->src[0];
  7526. assert(params->ith == 0);
  7527. assert(ggml_are_same_shape(src0, dst));
  7528. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7529. return;
  7530. }
  7531. const int n = ggml_nrows(src0);
  7532. const int nc = src0->ne[0];
  7533. assert(dst->nb[0] == sizeof(float));
  7534. assert(src0->nb[0] == sizeof(float));
  7535. for (int i = 0; i < n; i++) {
  7536. ggml_vec_neg_f32(nc,
  7537. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7538. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7539. }
  7540. }
  7541. static void ggml_compute_forward_neg(
  7542. const struct ggml_compute_params * params,
  7543. struct ggml_tensor * dst) {
  7544. const struct ggml_tensor * src0 = dst->src[0];
  7545. switch (src0->type) {
  7546. case GGML_TYPE_F32:
  7547. {
  7548. ggml_compute_forward_neg_f32(params, dst);
  7549. } break;
  7550. default:
  7551. {
  7552. GGML_ASSERT(false);
  7553. } break;
  7554. }
  7555. }
  7556. // ggml_compute_forward_step
  7557. static void ggml_compute_forward_step_f32(
  7558. const struct ggml_compute_params * params,
  7559. struct ggml_tensor * dst) {
  7560. const struct ggml_tensor * src0 = dst->src[0];
  7561. assert(params->ith == 0);
  7562. assert(ggml_are_same_shape(src0, dst));
  7563. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7564. return;
  7565. }
  7566. const int n = ggml_nrows(src0);
  7567. const int nc = src0->ne[0];
  7568. assert(dst->nb[0] == sizeof(float));
  7569. assert(src0->nb[0] == sizeof(float));
  7570. for (int i = 0; i < n; i++) {
  7571. ggml_vec_step_f32(nc,
  7572. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7573. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7574. }
  7575. }
  7576. static void ggml_compute_forward_step(
  7577. const struct ggml_compute_params * params,
  7578. struct ggml_tensor * dst) {
  7579. const struct ggml_tensor * src0 = dst->src[0];
  7580. switch (src0->type) {
  7581. case GGML_TYPE_F32:
  7582. {
  7583. ggml_compute_forward_step_f32(params, dst);
  7584. } break;
  7585. default:
  7586. {
  7587. GGML_ASSERT(false);
  7588. } break;
  7589. }
  7590. }
  7591. // ggml_compute_forward_tanh
  7592. static void ggml_compute_forward_tanh_f32(
  7593. const struct ggml_compute_params * params,
  7594. struct ggml_tensor * dst) {
  7595. const struct ggml_tensor * src0 = dst->src[0];
  7596. assert(params->ith == 0);
  7597. assert(ggml_are_same_shape(src0, dst));
  7598. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7599. return;
  7600. }
  7601. const int n = ggml_nrows(src0);
  7602. const int nc = src0->ne[0];
  7603. assert(dst->nb[0] == sizeof(float));
  7604. assert(src0->nb[0] == sizeof(float));
  7605. for (int i = 0; i < n; i++) {
  7606. ggml_vec_tanh_f32(nc,
  7607. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7608. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7609. }
  7610. }
  7611. static void ggml_compute_forward_tanh(
  7612. const struct ggml_compute_params * params,
  7613. struct ggml_tensor * dst) {
  7614. const struct ggml_tensor * src0 = dst->src[0];
  7615. switch (src0->type) {
  7616. case GGML_TYPE_F32:
  7617. {
  7618. ggml_compute_forward_tanh_f32(params, dst);
  7619. } break;
  7620. default:
  7621. {
  7622. GGML_ASSERT(false);
  7623. } break;
  7624. }
  7625. }
  7626. // ggml_compute_forward_elu
  7627. static void ggml_compute_forward_elu_f32(
  7628. const struct ggml_compute_params * params,
  7629. struct ggml_tensor * dst) {
  7630. const struct ggml_tensor * src0 = dst->src[0];
  7631. assert(params->ith == 0);
  7632. assert(ggml_are_same_shape(src0, dst));
  7633. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7634. return;
  7635. }
  7636. const int n = ggml_nrows(src0);
  7637. const int nc = src0->ne[0];
  7638. assert(dst->nb[0] == sizeof(float));
  7639. assert(src0->nb[0] == sizeof(float));
  7640. for (int i = 0; i < n; i++) {
  7641. ggml_vec_elu_f32(nc,
  7642. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7643. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7644. }
  7645. }
  7646. static void ggml_compute_forward_elu(
  7647. const struct ggml_compute_params * params,
  7648. struct ggml_tensor * dst) {
  7649. const struct ggml_tensor * src0 = dst->src[0];
  7650. switch (src0->type) {
  7651. case GGML_TYPE_F32:
  7652. {
  7653. ggml_compute_forward_elu_f32(params, dst);
  7654. } break;
  7655. default:
  7656. {
  7657. GGML_ASSERT(false);
  7658. } break;
  7659. }
  7660. }
  7661. // ggml_compute_forward_relu
  7662. static void ggml_compute_forward_relu_f32(
  7663. const struct ggml_compute_params * params,
  7664. struct ggml_tensor * dst) {
  7665. const struct ggml_tensor * src0 = dst->src[0];
  7666. assert(params->ith == 0);
  7667. assert(ggml_are_same_shape(src0, dst));
  7668. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7669. return;
  7670. }
  7671. const int n = ggml_nrows(src0);
  7672. const int nc = src0->ne[0];
  7673. assert(dst->nb[0] == sizeof(float));
  7674. assert(src0->nb[0] == sizeof(float));
  7675. for (int i = 0; i < n; i++) {
  7676. ggml_vec_relu_f32(nc,
  7677. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7678. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7679. }
  7680. }
  7681. static void ggml_compute_forward_relu(
  7682. const struct ggml_compute_params * params,
  7683. struct ggml_tensor * dst) {
  7684. const struct ggml_tensor * src0 = dst->src[0];
  7685. switch (src0->type) {
  7686. case GGML_TYPE_F32:
  7687. {
  7688. ggml_compute_forward_relu_f32(params, dst);
  7689. } break;
  7690. default:
  7691. {
  7692. GGML_ASSERT(false);
  7693. } break;
  7694. }
  7695. }
  7696. // ggml_compute_forward_gelu
  7697. static void ggml_compute_forward_gelu_f32(
  7698. const struct ggml_compute_params * params,
  7699. struct ggml_tensor * dst) {
  7700. const struct ggml_tensor * src0 = dst->src[0];
  7701. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7702. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7703. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7704. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7705. return;
  7706. }
  7707. const int ith = params->ith;
  7708. const int nth = params->nth;
  7709. const int nc = src0->ne[0];
  7710. const int nr = ggml_nrows(src0);
  7711. // rows per thread
  7712. const int dr = (nr + nth - 1)/nth;
  7713. // row range for this thread
  7714. const int ir0 = dr*ith;
  7715. const int ir1 = MIN(ir0 + dr, nr);
  7716. for (int i1 = ir0; i1 < ir1; i1++) {
  7717. ggml_vec_gelu_f32(nc,
  7718. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7719. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7720. #ifndef NDEBUG
  7721. for (int k = 0; k < nc; k++) {
  7722. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7723. UNUSED(x);
  7724. assert(!isnan(x));
  7725. assert(!isinf(x));
  7726. }
  7727. #endif
  7728. }
  7729. }
  7730. static void ggml_compute_forward_gelu(
  7731. const struct ggml_compute_params * params,
  7732. struct ggml_tensor * dst) {
  7733. const struct ggml_tensor * src0 = dst->src[0];
  7734. switch (src0->type) {
  7735. case GGML_TYPE_F32:
  7736. {
  7737. ggml_compute_forward_gelu_f32(params, dst);
  7738. } break;
  7739. default:
  7740. {
  7741. GGML_ASSERT(false);
  7742. } break;
  7743. }
  7744. }
  7745. // ggml_compute_forward_gelu_quick
  7746. static void ggml_compute_forward_gelu_quick_f32(
  7747. const struct ggml_compute_params * params,
  7748. struct ggml_tensor * dst) {
  7749. const struct ggml_tensor * src0 = dst->src[0];
  7750. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7751. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7752. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7753. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7754. return;
  7755. }
  7756. const int ith = params->ith;
  7757. const int nth = params->nth;
  7758. const int nc = src0->ne[0];
  7759. const int nr = ggml_nrows(src0);
  7760. // rows per thread
  7761. const int dr = (nr + nth - 1)/nth;
  7762. // row range for this thread
  7763. const int ir0 = dr*ith;
  7764. const int ir1 = MIN(ir0 + dr, nr);
  7765. for (int i1 = ir0; i1 < ir1; i1++) {
  7766. ggml_vec_gelu_quick_f32(nc,
  7767. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7768. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7769. #ifndef NDEBUG
  7770. for (int k = 0; k < nc; k++) {
  7771. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7772. UNUSED(x);
  7773. assert(!isnan(x));
  7774. assert(!isinf(x));
  7775. }
  7776. #endif
  7777. }
  7778. }
  7779. static void ggml_compute_forward_gelu_quick(
  7780. const struct ggml_compute_params * params,
  7781. struct ggml_tensor * dst) {
  7782. const struct ggml_tensor * src0 = dst->src[0];
  7783. switch (src0->type) {
  7784. case GGML_TYPE_F32:
  7785. {
  7786. ggml_compute_forward_gelu_quick_f32(params, dst);
  7787. } break;
  7788. default:
  7789. {
  7790. GGML_ASSERT(false);
  7791. } break;
  7792. }
  7793. }
  7794. // ggml_compute_forward_silu
  7795. static void ggml_compute_forward_silu_f32(
  7796. const struct ggml_compute_params * params,
  7797. struct ggml_tensor * dst) {
  7798. const struct ggml_tensor * src0 = dst->src[0];
  7799. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7800. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7801. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7802. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7803. return;
  7804. }
  7805. const int ith = params->ith;
  7806. const int nth = params->nth;
  7807. const int nc = src0->ne[0];
  7808. const int nr = ggml_nrows(src0);
  7809. // rows per thread
  7810. const int dr = (nr + nth - 1)/nth;
  7811. // row range for this thread
  7812. const int ir0 = dr*ith;
  7813. const int ir1 = MIN(ir0 + dr, nr);
  7814. for (int i1 = ir0; i1 < ir1; i1++) {
  7815. ggml_vec_silu_f32(nc,
  7816. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7817. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7818. #ifndef NDEBUG
  7819. for (int k = 0; k < nc; k++) {
  7820. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  7821. UNUSED(x);
  7822. assert(!isnan(x));
  7823. assert(!isinf(x));
  7824. }
  7825. #endif
  7826. }
  7827. }
  7828. static void ggml_compute_forward_silu(
  7829. const struct ggml_compute_params * params,
  7830. struct ggml_tensor * dst) {
  7831. const struct ggml_tensor * src0 = dst->src[0];
  7832. switch (src0->type) {
  7833. case GGML_TYPE_F32:
  7834. {
  7835. ggml_compute_forward_silu_f32(params, dst);
  7836. } break;
  7837. default:
  7838. {
  7839. GGML_ASSERT(false);
  7840. } break;
  7841. }
  7842. }
  7843. // ggml_compute_forward_leaky_relu
  7844. static void ggml_compute_forward_leaky_relu_f32(
  7845. const struct ggml_compute_params * params,
  7846. struct ggml_tensor * dst) {
  7847. const struct ggml_tensor * src0 = dst->src[0];
  7848. assert(params->ith == 0);
  7849. assert(ggml_are_same_shape(src0, dst));
  7850. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7851. return;
  7852. }
  7853. const int n = ggml_nrows(src0);
  7854. const int nc = src0->ne[0];
  7855. float negative_slope;
  7856. memcpy(&negative_slope, dst->op_params, sizeof(float));
  7857. assert(dst->nb[0] == sizeof(float));
  7858. assert(src0->nb[0] == sizeof(float));
  7859. for (int i = 0; i < n; i++) {
  7860. ggml_vec_leaky_relu_f32(nc,
  7861. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7862. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  7863. }
  7864. }
  7865. static void ggml_compute_forward_leaky_relu(
  7866. const struct ggml_compute_params * params,
  7867. struct ggml_tensor * dst) {
  7868. const struct ggml_tensor * src0 = dst->src[0];
  7869. switch (src0->type) {
  7870. case GGML_TYPE_F32:
  7871. {
  7872. ggml_compute_forward_leaky_relu_f32(params, dst);
  7873. } break;
  7874. default:
  7875. {
  7876. GGML_ASSERT(false);
  7877. } break;
  7878. }
  7879. }
  7880. // ggml_compute_forward_silu_back
  7881. static void ggml_compute_forward_silu_back_f32(
  7882. const struct ggml_compute_params * params,
  7883. struct ggml_tensor * dst) {
  7884. const struct ggml_tensor * src0 = dst->src[0];
  7885. const struct ggml_tensor * grad = dst->src[1];
  7886. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  7887. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7888. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7889. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7890. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7891. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7892. return;
  7893. }
  7894. const int ith = params->ith;
  7895. const int nth = params->nth;
  7896. const int nc = src0->ne[0];
  7897. const int nr = ggml_nrows(src0);
  7898. // rows per thread
  7899. const int dr = (nr + nth - 1)/nth;
  7900. // row range for this thread
  7901. const int ir0 = dr*ith;
  7902. const int ir1 = MIN(ir0 + dr, nr);
  7903. for (int i1 = ir0; i1 < ir1; i1++) {
  7904. ggml_vec_silu_backward_f32(nc,
  7905. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7906. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7907. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7908. #ifndef NDEBUG
  7909. for (int k = 0; k < nc; k++) {
  7910. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7911. UNUSED(x);
  7912. assert(!isnan(x));
  7913. assert(!isinf(x));
  7914. }
  7915. #endif
  7916. }
  7917. }
  7918. static void ggml_compute_forward_silu_back(
  7919. const struct ggml_compute_params * params,
  7920. struct ggml_tensor * dst) {
  7921. const struct ggml_tensor * src0 = dst->src[0];
  7922. switch (src0->type) {
  7923. case GGML_TYPE_F32:
  7924. {
  7925. ggml_compute_forward_silu_back_f32(params, dst);
  7926. } break;
  7927. default:
  7928. {
  7929. GGML_ASSERT(false);
  7930. } break;
  7931. }
  7932. }
  7933. static void ggml_compute_forward_hardswish_f32(
  7934. const struct ggml_compute_params * params,
  7935. struct ggml_tensor * dst) {
  7936. const struct ggml_tensor * src0 = dst->src[0];
  7937. assert(params->ith == 0);
  7938. assert(ggml_are_same_shape(src0, dst));
  7939. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7940. return;
  7941. }
  7942. const int n = ggml_nrows(src0);
  7943. const int nc = src0->ne[0];
  7944. assert(dst->nb[0] == sizeof(float));
  7945. assert(src0->nb[0] == sizeof(float));
  7946. for (int i = 0; i < n; i++) {
  7947. ggml_vec_hardswish_f32(nc,
  7948. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7949. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7950. }
  7951. }
  7952. static void ggml_compute_forward_hardswish(
  7953. const struct ggml_compute_params * params,
  7954. struct ggml_tensor * dst) {
  7955. const struct ggml_tensor * src0 = dst->src[0];
  7956. switch (src0->type) {
  7957. case GGML_TYPE_F32:
  7958. {
  7959. ggml_compute_forward_hardswish_f32(params, dst);
  7960. } break;
  7961. default:
  7962. {
  7963. GGML_ASSERT(false);
  7964. } break;
  7965. }
  7966. }
  7967. static void ggml_compute_forward_hardsigmoid_f32(
  7968. const struct ggml_compute_params * params,
  7969. struct ggml_tensor * dst) {
  7970. const struct ggml_tensor * src0 = dst->src[0];
  7971. assert(params->ith == 0);
  7972. assert(ggml_are_same_shape(src0, dst));
  7973. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7974. return;
  7975. }
  7976. const int n = ggml_nrows(src0);
  7977. const int nc = src0->ne[0];
  7978. assert(dst->nb[0] == sizeof(float));
  7979. assert(src0->nb[0] == sizeof(float));
  7980. for (int i = 0; i < n; i++) {
  7981. ggml_vec_hardsigmoid_f32(nc,
  7982. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7983. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7984. }
  7985. }
  7986. static void ggml_compute_forward_hardsigmoid(
  7987. const struct ggml_compute_params * params,
  7988. struct ggml_tensor * dst) {
  7989. const struct ggml_tensor * src0 = dst->src[0];
  7990. switch (src0->type) {
  7991. case GGML_TYPE_F32:
  7992. {
  7993. ggml_compute_forward_hardsigmoid_f32(params, dst);
  7994. } break;
  7995. default:
  7996. {
  7997. GGML_ASSERT(false);
  7998. } break;
  7999. }
  8000. }
  8001. // ggml_compute_forward_norm
  8002. static void ggml_compute_forward_norm_f32(
  8003. const struct ggml_compute_params * params,
  8004. struct ggml_tensor * dst) {
  8005. const struct ggml_tensor * src0 = dst->src[0];
  8006. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8007. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8008. return;
  8009. }
  8010. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8011. const int ith = params->ith;
  8012. const int nth = params->nth;
  8013. GGML_TENSOR_UNARY_OP_LOCALS
  8014. float eps;
  8015. memcpy(&eps, dst->op_params, sizeof(float));
  8016. GGML_ASSERT(eps > 0.0f);
  8017. // TODO: optimize
  8018. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8019. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8020. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8021. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8022. ggml_float sum = 0.0;
  8023. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8024. sum += (ggml_float)x[i00];
  8025. }
  8026. float mean = sum/ne00;
  8027. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8028. ggml_float sum2 = 0.0;
  8029. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8030. float v = x[i00] - mean;
  8031. y[i00] = v;
  8032. sum2 += (ggml_float)(v*v);
  8033. }
  8034. float variance = sum2/ne00;
  8035. const float scale = 1.0f/sqrtf(variance + eps);
  8036. ggml_vec_scale_f32(ne00, y, scale);
  8037. }
  8038. }
  8039. }
  8040. }
  8041. static void ggml_compute_forward_norm(
  8042. const struct ggml_compute_params * params,
  8043. struct ggml_tensor * dst) {
  8044. const struct ggml_tensor * src0 = dst->src[0];
  8045. switch (src0->type) {
  8046. case GGML_TYPE_F32:
  8047. {
  8048. ggml_compute_forward_norm_f32(params, dst);
  8049. } break;
  8050. default:
  8051. {
  8052. GGML_ASSERT(false);
  8053. } break;
  8054. }
  8055. }
  8056. // ggml_compute_forward_group_rms_norm
  8057. static void ggml_compute_forward_rms_norm_f32(
  8058. const struct ggml_compute_params * params,
  8059. struct ggml_tensor * dst) {
  8060. const struct ggml_tensor * src0 = dst->src[0];
  8061. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8062. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8063. return;
  8064. }
  8065. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8066. const int ith = params->ith;
  8067. const int nth = params->nth;
  8068. GGML_TENSOR_UNARY_OP_LOCALS
  8069. float eps;
  8070. memcpy(&eps, dst->op_params, sizeof(float));
  8071. GGML_ASSERT(eps > 0.0f);
  8072. // TODO: optimize
  8073. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8074. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8075. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8076. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8077. ggml_float sum = 0.0;
  8078. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8079. sum += (ggml_float)(x[i00] * x[i00]);
  8080. }
  8081. const float mean = sum/ne00;
  8082. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8083. memcpy(y, x, ne00 * sizeof(float));
  8084. // for (int i00 = 0; i00 < ne00; i00++) {
  8085. // y[i00] = x[i00];
  8086. // }
  8087. const float scale = 1.0f/sqrtf(mean + eps);
  8088. ggml_vec_scale_f32(ne00, y, scale);
  8089. }
  8090. }
  8091. }
  8092. }
  8093. static void ggml_compute_forward_rms_norm(
  8094. const struct ggml_compute_params * params,
  8095. struct ggml_tensor * dst) {
  8096. const struct ggml_tensor * src0 = dst->src[0];
  8097. switch (src0->type) {
  8098. case GGML_TYPE_F32:
  8099. {
  8100. ggml_compute_forward_rms_norm_f32(params, dst);
  8101. } break;
  8102. default:
  8103. {
  8104. GGML_ASSERT(false);
  8105. } break;
  8106. }
  8107. }
  8108. static void ggml_compute_forward_rms_norm_back_f32(
  8109. const struct ggml_compute_params * params,
  8110. struct ggml_tensor * dst) {
  8111. const struct ggml_tensor * src0 = dst->src[0];
  8112. const struct ggml_tensor * src1 = dst->src[1];
  8113. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8114. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8115. return;
  8116. }
  8117. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8118. const int ith = params->ith;
  8119. const int nth = params->nth;
  8120. GGML_TENSOR_BINARY_OP_LOCALS
  8121. float eps;
  8122. memcpy(&eps, dst->op_params, sizeof(float));
  8123. // TODO: optimize
  8124. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8125. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8126. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8127. // src1 is same shape as src0 => same indices
  8128. const int64_t i11 = i01;
  8129. const int64_t i12 = i02;
  8130. const int64_t i13 = i03;
  8131. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8132. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8133. ggml_float sum_xx = 0.0;
  8134. ggml_float sum_xdz = 0.0;
  8135. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8136. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8137. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8138. }
  8139. //const float mean = (float)(sum_xx)/ne00;
  8140. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8141. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8142. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8143. // we could cache rms from forward pass to improve performance.
  8144. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8145. //const float rms = sqrtf(mean_eps);
  8146. const float rrms = 1.0f / sqrtf(mean_eps);
  8147. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8148. {
  8149. // z = rms_norm(x)
  8150. //
  8151. // rms_norm(src0) =
  8152. // scale(
  8153. // src0,
  8154. // div(
  8155. // 1,
  8156. // sqrt(
  8157. // add(
  8158. // scale(
  8159. // sum(
  8160. // sqr(
  8161. // src0)),
  8162. // (1.0/N)),
  8163. // eps))));
  8164. // postorder:
  8165. // ## op args grad
  8166. // 00 param src0 grad[#00]
  8167. // 01 const 1
  8168. // 02 sqr (#00) grad[#02]
  8169. // 03 sum (#02) grad[#03]
  8170. // 04 const 1/N
  8171. // 05 scale (#03, #04) grad[#05]
  8172. // 06 const eps
  8173. // 07 add (#05, #06) grad[#07]
  8174. // 08 sqrt (#07) grad[#08]
  8175. // 09 div (#01,#08) grad[#09]
  8176. // 10 scale (#00,#09) grad[#10]
  8177. //
  8178. // backward pass, given grad[#10]
  8179. // #10: scale
  8180. // grad[#00] += scale(grad[#10],#09)
  8181. // grad[#09] += sum(mul(grad[#10],#00))
  8182. // #09: div
  8183. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8184. // #08: sqrt
  8185. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8186. // #07: add
  8187. // grad[#05] += grad[#07]
  8188. // #05: scale
  8189. // grad[#03] += scale(grad[#05],#04)
  8190. // #03: sum
  8191. // grad[#02] += repeat(grad[#03], #02)
  8192. // #02:
  8193. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8194. //
  8195. // substitute and simplify:
  8196. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8197. // grad[#02] = repeat(grad[#03], #02)
  8198. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8199. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8200. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8201. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8202. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8203. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8204. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8205. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8206. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8207. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8208. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8209. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8210. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8211. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8212. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8213. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8214. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8215. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8216. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8217. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8218. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8219. // a = b*c + d*e
  8220. // a = b*c*f/f + d*e*f/f
  8221. // a = (b*c*f + d*e*f)*(1/f)
  8222. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8223. // a = (b + d*e/c)*c
  8224. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8225. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8226. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8227. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8228. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8229. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8230. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8231. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8232. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8233. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8234. }
  8235. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8236. // post-order:
  8237. // dx := x
  8238. // dx := scale(dx,-mean_xdz/mean_eps)
  8239. // dx := add(dx, dz)
  8240. // dx := scale(dx, rrms)
  8241. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8242. ggml_vec_cpy_f32 (ne00, dx, x);
  8243. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8244. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8245. ggml_vec_acc_f32 (ne00, dx, dz);
  8246. ggml_vec_scale_f32(ne00, dx, rrms);
  8247. }
  8248. }
  8249. }
  8250. }
  8251. static void ggml_compute_forward_rms_norm_back(
  8252. const struct ggml_compute_params * params,
  8253. struct ggml_tensor * dst) {
  8254. const struct ggml_tensor * src0 = dst->src[0];
  8255. switch (src0->type) {
  8256. case GGML_TYPE_F32:
  8257. {
  8258. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8259. } break;
  8260. default:
  8261. {
  8262. GGML_ASSERT(false);
  8263. } break;
  8264. }
  8265. }
  8266. // ggml_compute_forward_group_norm
  8267. static void ggml_compute_forward_group_norm_f32(
  8268. const struct ggml_compute_params * params,
  8269. struct ggml_tensor * dst) {
  8270. const struct ggml_tensor * src0 = dst->src[0];
  8271. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8272. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8273. return;
  8274. }
  8275. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8276. const int ith = params->ith;
  8277. const int nth = params->nth;
  8278. GGML_TENSOR_UNARY_OP_LOCALS
  8279. const float eps = 1e-6f; // TODO: make this a parameter
  8280. // TODO: optimize
  8281. int n_channels = src0->ne[2];
  8282. int n_groups = dst->op_params[0];
  8283. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8284. for (int i = ith; i < n_groups; i+=nth) {
  8285. int start = i * n_channels_per_group;
  8286. int end = start + n_channels_per_group;
  8287. if (end > n_channels) {
  8288. end = n_channels;
  8289. }
  8290. int step = end - start;
  8291. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8292. ggml_float sum = 0.0;
  8293. for (int64_t i02 = start; i02 < end; i02++) {
  8294. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8295. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8296. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8297. sum += (ggml_float)x[i00];
  8298. }
  8299. }
  8300. }
  8301. float mean = sum / (ne00 * ne01 * step);
  8302. ggml_float sum2 = 0.0;
  8303. for (int64_t i02 = start; i02 < end; i02++) {
  8304. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8305. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8306. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8307. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8308. float v = x[i00] - mean;
  8309. y[i00] = v;
  8310. sum2 += (ggml_float)(v * v);
  8311. }
  8312. }
  8313. }
  8314. float variance = sum2 / (ne00 * ne01 * step);
  8315. const float scale = 1.0f / sqrtf(variance + eps);
  8316. for (int64_t i02 = start; i02 < end; i02++) {
  8317. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8318. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8319. ggml_vec_scale_f32(ne00, y, scale);
  8320. }
  8321. }
  8322. }
  8323. }
  8324. }
  8325. static void ggml_compute_forward_group_norm(
  8326. const struct ggml_compute_params * params,
  8327. struct ggml_tensor * dst) {
  8328. const struct ggml_tensor * src0 = dst->src[0];
  8329. switch (src0->type) {
  8330. case GGML_TYPE_F32:
  8331. {
  8332. ggml_compute_forward_group_norm_f32(params, dst);
  8333. } break;
  8334. default:
  8335. {
  8336. GGML_ASSERT(false);
  8337. } break;
  8338. }
  8339. }
  8340. // ggml_compute_forward_mul_mat
  8341. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8342. // helper function to determine if it is better to use BLAS or not
  8343. // for large matrices, BLAS is faster
  8344. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8345. const struct ggml_tensor * src0 = dst->src[0];
  8346. const struct ggml_tensor * src1 = dst->src[1];
  8347. //const int64_t ne00 = src0->ne[0];
  8348. //const int64_t ne01 = src0->ne[1];
  8349. const int64_t ne10 = src1->ne[0];
  8350. const int64_t ne0 = dst->ne[0];
  8351. const int64_t ne1 = dst->ne[1];
  8352. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8353. // all the experts for each batch element and the processing would become incredibly slow
  8354. // TODO: find the optimal values for these
  8355. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8356. ggml_is_contiguous(src0) &&
  8357. ggml_is_contiguous(src1) &&
  8358. //src0->type == GGML_TYPE_F32 &&
  8359. src1->type == GGML_TYPE_F32 &&
  8360. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8361. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8362. return true;
  8363. }
  8364. return false;
  8365. }
  8366. #endif
  8367. static void ggml_compute_forward_mul_mat(
  8368. const struct ggml_compute_params * params,
  8369. struct ggml_tensor * dst) {
  8370. const struct ggml_tensor * src0 = dst->src[0];
  8371. const struct ggml_tensor * src1 = dst->src[1];
  8372. int64_t t0 = ggml_perf_time_us();
  8373. UNUSED(t0);
  8374. GGML_TENSOR_BINARY_OP_LOCALS
  8375. const int ith = params->ith;
  8376. const int nth = params->nth;
  8377. const enum ggml_type type = src0->type;
  8378. const bool src1_cont = ggml_is_contiguous(src1);
  8379. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8380. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8381. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8382. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8383. GGML_ASSERT(ne0 == ne01);
  8384. GGML_ASSERT(ne1 == ne11);
  8385. GGML_ASSERT(ne2 == ne12);
  8386. GGML_ASSERT(ne3 == ne13);
  8387. // we don't support permuted src0 or src1
  8388. GGML_ASSERT(nb00 == ggml_type_size(type));
  8389. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8390. // dst cannot be transposed or permuted
  8391. GGML_ASSERT(nb0 == sizeof(float));
  8392. GGML_ASSERT(nb0 <= nb1);
  8393. GGML_ASSERT(nb1 <= nb2);
  8394. GGML_ASSERT(nb2 <= nb3);
  8395. // broadcast factors
  8396. const int64_t r2 = ne12/ne02;
  8397. const int64_t r3 = ne13/ne03;
  8398. // nb01 >= nb00 - src0 is not transposed
  8399. // compute by src0 rows
  8400. #if defined(GGML_USE_CLBLAST)
  8401. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8402. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8403. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8404. }
  8405. return;
  8406. }
  8407. #endif
  8408. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8409. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8410. const int64_t ne_plane = ne01*ne00;
  8411. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8412. UNUSED(desired_wsize);
  8413. if (params->type == GGML_TASK_TYPE_INIT) {
  8414. if (type != GGML_TYPE_F32) {
  8415. assert(params->wsize >= desired_wsize);
  8416. // parallelize by src0 rows
  8417. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8418. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8419. // broadcast src0 into src1 across 2nd,3rd dimension
  8420. const int64_t i03 = i13/r3;
  8421. const int64_t i02 = i12/r2;
  8422. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8423. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8424. ggml_to_float_t const to_float = type_traits[type].to_float;
  8425. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8426. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8427. }
  8428. }
  8429. }
  8430. }
  8431. return;
  8432. }
  8433. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8434. return;
  8435. }
  8436. // perform sgemm, parallelization controlled by blas lib
  8437. if (ith != 0) {
  8438. return;
  8439. }
  8440. //const int64_t tgemm0 = ggml_perf_time_us();
  8441. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8442. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8443. const int64_t i03 = i13/r3;
  8444. const int64_t i02 = i12/r2;
  8445. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8446. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8447. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8448. if (type != GGML_TYPE_F32) {
  8449. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8450. }
  8451. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8452. ne1, ne01, ne10,
  8453. 1.0f, y, ne10,
  8454. x, ne00,
  8455. 0.0f, d, ne01);
  8456. }
  8457. }
  8458. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8459. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8460. return;
  8461. }
  8462. #endif
  8463. if (params->type == GGML_TASK_TYPE_INIT) {
  8464. if (ith != 0) {
  8465. return;
  8466. }
  8467. if (src1->type != vec_dot_type) {
  8468. char * wdata = params->wdata;
  8469. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8470. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8471. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8472. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8473. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8474. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8475. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8476. wdata += row_size;
  8477. }
  8478. }
  8479. }
  8480. }
  8481. return;
  8482. }
  8483. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8484. return;
  8485. }
  8486. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8487. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8488. const int64_t nr0 = ne01; // src0 rows
  8489. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8490. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8491. // distribute the thread work across the inner or outer loop based on which one is larger
  8492. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8493. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8494. const int64_t ith0 = ith % nth0;
  8495. const int64_t ith1 = ith / nth0;
  8496. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8497. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8498. const int64_t ir010 = dr0*ith0;
  8499. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8500. const int64_t ir110 = dr1*ith1;
  8501. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8502. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8503. // threads with no work simply yield (not sure if it helps)
  8504. if (ir010 >= ir011 || ir110 >= ir111) {
  8505. sched_yield();
  8506. return;
  8507. }
  8508. assert(ne12 % ne02 == 0);
  8509. assert(ne13 % ne03 == 0);
  8510. // block-tiling attempt
  8511. const int64_t blck_0 = 16;
  8512. const int64_t blck_1 = 16;
  8513. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8514. int64_t nrc = vec_dot_num_rows;
  8515. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8516. // this check can be removed once they are extended to support odd numbered rows/cols too
  8517. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8518. nrc = 1;
  8519. }
  8520. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8521. // attempt to reduce false-sharing (does not seem to make a difference)
  8522. // 16 * 2, accounting for mmla kernels
  8523. float tmp[32];
  8524. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8525. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8526. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8527. const int64_t i13 = (ir1/(ne12*ne1));
  8528. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8529. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8530. // broadcast src0 into src1
  8531. const int64_t i03 = i13/r3;
  8532. const int64_t i02 = i12/r2;
  8533. const int64_t i1 = i11;
  8534. const int64_t i2 = i12;
  8535. const int64_t i3 = i13;
  8536. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8537. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8538. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8539. // the original src1 data pointer, so we should index using the indices directly
  8540. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8541. const char * src1_col = (const char *) wdata +
  8542. (src1_cont || src1->type != vec_dot_type
  8543. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8544. : (i11*nb11 + i12*nb12 + i13*nb13));
  8545. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8546. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8547. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8548. //}
  8549. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8550. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8551. }
  8552. for (int cn = 0; cn < nrc; ++cn) {
  8553. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8554. }
  8555. }
  8556. }
  8557. }
  8558. }
  8559. // ggml_compute_forward_mul_mat_id
  8560. static void ggml_compute_forward_mul_mat_id(
  8561. const struct ggml_compute_params * params,
  8562. struct ggml_tensor * dst) {
  8563. const struct ggml_tensor * ids = dst->src[0];
  8564. const struct ggml_tensor * src1 = dst->src[1];
  8565. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8566. GGML_TENSOR_BINARY_OP_LOCALS
  8567. const int ith = params->ith;
  8568. const int nth = params->nth;
  8569. const enum ggml_type type = src0->type;
  8570. const bool src1_cont = ggml_is_contiguous(src1);
  8571. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8572. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8573. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8574. GGML_ASSERT(ne0 == ne01);
  8575. GGML_ASSERT(ne1 == ne11);
  8576. GGML_ASSERT(ne2 == ne12);
  8577. GGML_ASSERT(ne3 == ne13);
  8578. // we don't support permuted src0 or src1
  8579. GGML_ASSERT(nb00 == ggml_type_size(type));
  8580. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8581. // dst cannot be transposed or permuted
  8582. GGML_ASSERT(nb0 == sizeof(float));
  8583. GGML_ASSERT(nb0 <= nb1);
  8584. GGML_ASSERT(nb1 <= nb2);
  8585. GGML_ASSERT(nb2 <= nb3);
  8586. // broadcast factors
  8587. const int64_t r2 = ne12/ne02;
  8588. const int64_t r3 = ne13/ne03;
  8589. // row groups
  8590. const int id = ggml_get_op_params_i32(dst, 0);
  8591. const int n_as = ggml_get_op_params_i32(dst, 1);
  8592. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8593. (char *) params->wdata :
  8594. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8595. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8596. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8597. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8598. if (params->type == GGML_TASK_TYPE_INIT) {
  8599. if (ith != 0) {
  8600. return;
  8601. }
  8602. char * wdata = params->wdata;
  8603. if (src1->type != vec_dot_type) {
  8604. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8605. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8606. assert(src1->type == GGML_TYPE_F32);
  8607. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8608. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8609. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8610. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8611. wdata += row_size;
  8612. }
  8613. }
  8614. }
  8615. }
  8616. // initialize matrix_row_counts
  8617. GGML_ASSERT(wdata == wdata_src1_end);
  8618. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8619. // group rows by src0 matrix
  8620. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8621. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8622. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8623. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8624. matrix_row_counts[row_id] += 1;
  8625. }
  8626. return;
  8627. }
  8628. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8629. return;
  8630. }
  8631. // compute each matrix multiplication in sequence
  8632. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8633. const int64_t cne1 = matrix_row_counts[cur_a];
  8634. if (cne1 == 0) {
  8635. continue;
  8636. }
  8637. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8638. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8639. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8640. const int64_t nr0 = ne01; // src0 rows
  8641. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8642. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8643. // distribute the thread work across the inner or outer loop based on which one is larger
  8644. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8645. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8646. const int64_t ith0 = ith % nth0;
  8647. const int64_t ith1 = ith / nth0;
  8648. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8649. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8650. const int64_t ir010 = dr0*ith0;
  8651. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8652. const int64_t ir110 = dr1*ith1;
  8653. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8654. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8655. // threads with no work simply yield (not sure if it helps)
  8656. if (ir010 >= ir011 || ir110 >= ir111) {
  8657. sched_yield();
  8658. continue;
  8659. }
  8660. assert(ne12 % ne02 == 0);
  8661. assert(ne13 % ne03 == 0);
  8662. // block-tiling attempt
  8663. const int64_t blck_0 = 16;
  8664. const int64_t blck_1 = 16;
  8665. // attempt to reduce false-sharing (does not seem to make a difference)
  8666. float tmp[16];
  8667. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8668. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8669. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8670. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8671. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8672. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8673. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8674. // broadcast src0 into src1
  8675. const int64_t i03 = i13/r3;
  8676. const int64_t i02 = i12/r2;
  8677. const int64_t i1 = i11;
  8678. const int64_t i2 = i12;
  8679. const int64_t i3 = i13;
  8680. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8681. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8682. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8683. // the original src1 data pointer, so we should index using the indices directly
  8684. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8685. const char * src1_col = (const char *) wdata +
  8686. (src1_cont || src1->type != vec_dot_type
  8687. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8688. : (i11*nb11 + i12*nb12 + i13*nb13));
  8689. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8690. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8691. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8692. //}
  8693. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8694. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8695. }
  8696. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8697. }
  8698. }
  8699. }
  8700. }
  8701. #undef MMID_MATRIX_ROW
  8702. }
  8703. // ggml_compute_forward_out_prod
  8704. static void ggml_compute_forward_out_prod_f32(
  8705. const struct ggml_compute_params * params,
  8706. struct ggml_tensor * dst) {
  8707. const struct ggml_tensor * src0 = dst->src[0];
  8708. const struct ggml_tensor * src1 = dst->src[1];
  8709. // int64_t t0 = ggml_perf_time_us();
  8710. // UNUSED(t0);
  8711. GGML_TENSOR_BINARY_OP_LOCALS
  8712. const int ith = params->ith;
  8713. const int nth = params->nth;
  8714. GGML_ASSERT(ne0 == ne00);
  8715. GGML_ASSERT(ne1 == ne10);
  8716. GGML_ASSERT(ne2 == ne02);
  8717. GGML_ASSERT(ne02 == ne12);
  8718. GGML_ASSERT(ne3 == ne13);
  8719. GGML_ASSERT(ne03 == ne13);
  8720. // we don't support permuted src0 or src1
  8721. GGML_ASSERT(nb00 == sizeof(float));
  8722. // dst cannot be transposed or permuted
  8723. GGML_ASSERT(nb0 == sizeof(float));
  8724. // GGML_ASSERT(nb0 <= nb1);
  8725. // GGML_ASSERT(nb1 <= nb2);
  8726. // GGML_ASSERT(nb2 <= nb3);
  8727. // nb01 >= nb00 - src0 is not transposed
  8728. // compute by src0 rows
  8729. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8730. // TODO: #if defined(GGML_USE_CLBLAST)
  8731. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8732. bool use_blas = ggml_is_matrix(src0) &&
  8733. ggml_is_matrix(src1) &&
  8734. ggml_is_contiguous(src0) &&
  8735. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  8736. #endif
  8737. if (params->type == GGML_TASK_TYPE_INIT) {
  8738. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  8739. if (use_blas) {
  8740. return;
  8741. }
  8742. #endif
  8743. if (ith != 0) {
  8744. return;
  8745. }
  8746. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8747. return;
  8748. }
  8749. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8750. return;
  8751. }
  8752. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8753. if (use_blas) {
  8754. if (params->ith != 0) { // All threads other than the first do no work.
  8755. return;
  8756. }
  8757. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  8758. // src0: (k,n)
  8759. // src1: (k,m)
  8760. // dst: (m,n)
  8761. //
  8762. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  8763. // Also expressed as (major,minor)
  8764. // a: (m,k): so src1 transposed
  8765. // b: (k,n): so src0
  8766. // c: (m,n)
  8767. //
  8768. // However, if ggml_is_transposed(src1) is true, then
  8769. // src1->data already contains a transposed version, so sgemm mustn't
  8770. // transpose it further.
  8771. int n = src0->ne[0];
  8772. int k = src0->ne[1];
  8773. int m = src1->ne[0];
  8774. int transposeA, lda;
  8775. if (!ggml_is_transposed(src1)) {
  8776. transposeA = CblasTrans;
  8777. lda = m;
  8778. } else {
  8779. transposeA = CblasNoTrans;
  8780. lda = k;
  8781. }
  8782. float * a = (float *) ((char *) src1->data);
  8783. float * b = (float *) ((char *) src0->data);
  8784. float * c = (float *) ((char *) dst->data);
  8785. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  8786. return;
  8787. }
  8788. #endif
  8789. // dst[:,:,:,:] = 0
  8790. // for i2,i3:
  8791. // for i1:
  8792. // for i01:
  8793. // for i0:
  8794. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8795. // parallelize by last three dimensions
  8796. // total rows in dst
  8797. const int64_t nr = ne1*ne2*ne3;
  8798. // rows per thread
  8799. const int64_t dr = (nr + nth - 1)/nth;
  8800. // row range for this thread
  8801. const int64_t ir0 = dr*ith;
  8802. const int64_t ir1 = MIN(ir0 + dr, nr);
  8803. // block-tiling attempt
  8804. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  8805. const int64_t blck_1 = 16;
  8806. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  8807. const int64_t bir1 = MIN(bir + blck_1, ir1);
  8808. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  8809. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  8810. for (int64_t ir = bir; ir < bir1; ++ir) {
  8811. // dst indices
  8812. const int64_t i3 = ir/(ne2*ne1);
  8813. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8814. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8815. const int64_t i02 = i2;
  8816. const int64_t i03 = i3;
  8817. //const int64_t i10 = i1;
  8818. const int64_t i12 = i2;
  8819. const int64_t i13 = i3;
  8820. #if GGML_VEC_MAD_UNROLL > 2
  8821. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  8822. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  8823. const int64_t i11 = i01;
  8824. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8825. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8826. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8827. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  8828. }
  8829. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  8830. const int64_t i11 = i01;
  8831. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8832. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8833. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8834. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8835. }
  8836. #else
  8837. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  8838. const int64_t i11 = i01;
  8839. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8840. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8841. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8842. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8843. }
  8844. #endif
  8845. }
  8846. }
  8847. }
  8848. //int64_t t1 = ggml_perf_time_us();
  8849. //static int64_t acc = 0;
  8850. //acc += t1 - t0;
  8851. //if (t1 - t0 > 10) {
  8852. // printf("\n");
  8853. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8854. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8855. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8856. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8857. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8858. //}
  8859. }
  8860. static void ggml_compute_forward_out_prod_q_f32(
  8861. const struct ggml_compute_params * params,
  8862. struct ggml_tensor * dst) {
  8863. const struct ggml_tensor * src0 = dst->src[0];
  8864. const struct ggml_tensor * src1 = dst->src[1];
  8865. // int64_t t0 = ggml_perf_time_us();
  8866. // UNUSED(t0);
  8867. GGML_TENSOR_BINARY_OP_LOCALS;
  8868. const int ith = params->ith;
  8869. const int nth = params->nth;
  8870. const enum ggml_type type = src0->type;
  8871. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8872. GGML_ASSERT(ne02 == ne12);
  8873. GGML_ASSERT(ne03 == ne13);
  8874. GGML_ASSERT(ne2 == ne12);
  8875. GGML_ASSERT(ne3 == ne13);
  8876. // we don't support permuted src0 dim0
  8877. GGML_ASSERT(nb00 == ggml_type_size(type));
  8878. // dst dim0 cannot be transposed or permuted
  8879. GGML_ASSERT(nb0 == sizeof(float));
  8880. // GGML_ASSERT(nb0 <= nb1);
  8881. // GGML_ASSERT(nb1 <= nb2);
  8882. // GGML_ASSERT(nb2 <= nb3);
  8883. GGML_ASSERT(ne0 == ne00);
  8884. GGML_ASSERT(ne1 == ne10);
  8885. GGML_ASSERT(ne2 == ne02);
  8886. GGML_ASSERT(ne3 == ne03);
  8887. // nb01 >= nb00 - src0 is not transposed
  8888. // compute by src0 rows
  8889. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8890. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8891. if (params->type == GGML_TASK_TYPE_INIT) {
  8892. if (ith != 0) {
  8893. return;
  8894. }
  8895. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8896. return;
  8897. }
  8898. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8899. return;
  8900. }
  8901. // parallelize by last three dimensions
  8902. // total rows in dst
  8903. const int64_t nr = ne1*ne2*ne3;
  8904. // rows per thread
  8905. const int64_t dr = (nr + nth - 1)/nth;
  8906. // row range for this thread
  8907. const int64_t ir0 = dr*ith;
  8908. const int64_t ir1 = MIN(ir0 + dr, nr);
  8909. // dst[:,:,:,:] = 0
  8910. // for i2,i3:
  8911. // for i1:
  8912. // for i01:
  8913. // for i0:
  8914. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8915. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8916. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8917. // dst indices
  8918. const int64_t i3 = ir/(ne2*ne1);
  8919. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8920. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8921. const int64_t i02 = i2;
  8922. const int64_t i03 = i3;
  8923. //const int64_t i10 = i1;
  8924. const int64_t i12 = i2;
  8925. const int64_t i13 = i3;
  8926. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8927. const int64_t i11 = i01;
  8928. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8929. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8930. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8931. dequantize_row_q(s0, wdata, ne0);
  8932. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  8933. }
  8934. }
  8935. //int64_t t1 = ggml_perf_time_us();
  8936. //static int64_t acc = 0;
  8937. //acc += t1 - t0;
  8938. //if (t1 - t0 > 10) {
  8939. // printf("\n");
  8940. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8941. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8942. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8943. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8944. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8945. //}
  8946. }
  8947. static void ggml_compute_forward_out_prod(
  8948. const struct ggml_compute_params * params,
  8949. struct ggml_tensor * dst) {
  8950. const struct ggml_tensor * src0 = dst->src[0];
  8951. switch (src0->type) {
  8952. case GGML_TYPE_Q4_0:
  8953. case GGML_TYPE_Q4_1:
  8954. case GGML_TYPE_Q5_0:
  8955. case GGML_TYPE_Q5_1:
  8956. case GGML_TYPE_Q8_0:
  8957. case GGML_TYPE_Q2_K:
  8958. case GGML_TYPE_Q3_K:
  8959. case GGML_TYPE_Q4_K:
  8960. case GGML_TYPE_Q5_K:
  8961. case GGML_TYPE_Q6_K:
  8962. case GGML_TYPE_IQ2_XXS:
  8963. case GGML_TYPE_IQ2_XS:
  8964. case GGML_TYPE_IQ3_XXS:
  8965. case GGML_TYPE_IQ1_S:
  8966. case GGML_TYPE_IQ4_NL:
  8967. case GGML_TYPE_IQ3_S:
  8968. case GGML_TYPE_IQ2_S:
  8969. {
  8970. ggml_compute_forward_out_prod_q_f32(params, dst);
  8971. } break;
  8972. case GGML_TYPE_F16:
  8973. {
  8974. GGML_ASSERT(false); // todo
  8975. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  8976. } break;
  8977. case GGML_TYPE_F32:
  8978. {
  8979. ggml_compute_forward_out_prod_f32(params, dst);
  8980. } break;
  8981. default:
  8982. {
  8983. GGML_ASSERT(false);
  8984. } break;
  8985. }
  8986. }
  8987. // ggml_compute_forward_scale
  8988. static void ggml_compute_forward_scale_f32(
  8989. const struct ggml_compute_params * params,
  8990. struct ggml_tensor * dst) {
  8991. const struct ggml_tensor * src0 = dst->src[0];
  8992. GGML_ASSERT(ggml_is_contiguous(src0));
  8993. GGML_ASSERT(ggml_is_contiguous(dst));
  8994. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8995. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8996. return;
  8997. }
  8998. // scale factor
  8999. float v;
  9000. memcpy(&v, dst->op_params, sizeof(float));
  9001. const int ith = params->ith;
  9002. const int nth = params->nth;
  9003. const int nc = src0->ne[0];
  9004. const int nr = ggml_nrows(src0);
  9005. // rows per thread
  9006. const int dr = (nr + nth - 1)/nth;
  9007. // row range for this thread
  9008. const int ir0 = dr*ith;
  9009. const int ir1 = MIN(ir0 + dr, nr);
  9010. const size_t nb01 = src0->nb[1];
  9011. const size_t nb1 = dst->nb[1];
  9012. for (int i1 = ir0; i1 < ir1; i1++) {
  9013. if (dst->data != src0->data) {
  9014. // src0 is same shape as dst => same indices
  9015. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9016. }
  9017. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9018. }
  9019. }
  9020. static void ggml_compute_forward_scale(
  9021. const struct ggml_compute_params * params,
  9022. struct ggml_tensor * dst) {
  9023. const struct ggml_tensor * src0 = dst->src[0];
  9024. switch (src0->type) {
  9025. case GGML_TYPE_F32:
  9026. {
  9027. ggml_compute_forward_scale_f32(params, dst);
  9028. } break;
  9029. default:
  9030. {
  9031. GGML_ASSERT(false);
  9032. } break;
  9033. }
  9034. }
  9035. // ggml_compute_forward_set
  9036. static void ggml_compute_forward_set_f32(
  9037. const struct ggml_compute_params * params,
  9038. struct ggml_tensor * dst) {
  9039. const struct ggml_tensor * src0 = dst->src[0];
  9040. const struct ggml_tensor * src1 = dst->src[1];
  9041. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9042. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9043. // view src0 and dst with these strides and data offset inbytes during set
  9044. // nb0 is implicitly element_size because src0 and dst are contiguous
  9045. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9046. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9047. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9048. size_t offset = ((int32_t *) dst->op_params)[3];
  9049. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9050. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9051. if (params->ith != 0) {
  9052. return;
  9053. }
  9054. // memcpy needs to be synchronized across threads to avoid race conditions.
  9055. // => do it in INIT phase
  9056. memcpy(
  9057. ((char *) dst->data),
  9058. ((char *) src0->data),
  9059. ggml_nbytes(dst));
  9060. }
  9061. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9062. return;
  9063. }
  9064. const int ith = params->ith;
  9065. const int nth = params->nth;
  9066. const int nr = ggml_nrows(src1);
  9067. const int nc = src1->ne[0];
  9068. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9069. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9070. // src0 and dst as viewed during set
  9071. const size_t nb0 = ggml_element_size(src0);
  9072. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9073. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9074. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9075. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9076. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9077. GGML_ASSERT(nb10 == sizeof(float));
  9078. // rows per thread
  9079. const int dr = (nr + nth - 1)/nth;
  9080. // row range for this thread
  9081. const int ir0 = dr*ith;
  9082. const int ir1 = MIN(ir0 + dr, nr);
  9083. for (int ir = ir0; ir < ir1; ++ir) {
  9084. // src0 and dst are viewed with shape of src1 and offset
  9085. // => same indices
  9086. const int i3 = ir/(ne12*ne11);
  9087. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9088. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9089. ggml_vec_cpy_f32(nc,
  9090. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9091. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9092. }
  9093. }
  9094. static void ggml_compute_forward_set(
  9095. const struct ggml_compute_params * params,
  9096. struct ggml_tensor * dst) {
  9097. const struct ggml_tensor * src0 = dst->src[0];
  9098. switch (src0->type) {
  9099. case GGML_TYPE_F32:
  9100. {
  9101. ggml_compute_forward_set_f32(params, dst);
  9102. } break;
  9103. case GGML_TYPE_F16:
  9104. case GGML_TYPE_Q4_0:
  9105. case GGML_TYPE_Q4_1:
  9106. case GGML_TYPE_Q5_0:
  9107. case GGML_TYPE_Q5_1:
  9108. case GGML_TYPE_Q8_0:
  9109. case GGML_TYPE_Q8_1:
  9110. case GGML_TYPE_Q2_K:
  9111. case GGML_TYPE_Q3_K:
  9112. case GGML_TYPE_Q4_K:
  9113. case GGML_TYPE_Q5_K:
  9114. case GGML_TYPE_Q6_K:
  9115. case GGML_TYPE_IQ2_XXS:
  9116. case GGML_TYPE_IQ2_XS:
  9117. case GGML_TYPE_IQ3_XXS:
  9118. case GGML_TYPE_IQ1_S:
  9119. case GGML_TYPE_IQ4_NL:
  9120. case GGML_TYPE_IQ3_S:
  9121. case GGML_TYPE_IQ2_S:
  9122. default:
  9123. {
  9124. GGML_ASSERT(false);
  9125. } break;
  9126. }
  9127. }
  9128. // ggml_compute_forward_cpy
  9129. static void ggml_compute_forward_cpy(
  9130. const struct ggml_compute_params * params,
  9131. struct ggml_tensor * dst) {
  9132. ggml_compute_forward_dup(params, dst);
  9133. }
  9134. // ggml_compute_forward_cont
  9135. static void ggml_compute_forward_cont(
  9136. const struct ggml_compute_params * params,
  9137. struct ggml_tensor * dst) {
  9138. ggml_compute_forward_dup(params, dst);
  9139. }
  9140. // ggml_compute_forward_reshape
  9141. static void ggml_compute_forward_reshape(
  9142. const struct ggml_compute_params * params,
  9143. struct ggml_tensor * dst) {
  9144. // NOP
  9145. UNUSED(params);
  9146. UNUSED(dst);
  9147. }
  9148. // ggml_compute_forward_view
  9149. static void ggml_compute_forward_view(
  9150. const struct ggml_compute_params * params,
  9151. const struct ggml_tensor * dst) {
  9152. // NOP
  9153. UNUSED(params);
  9154. UNUSED(dst);
  9155. }
  9156. // ggml_compute_forward_permute
  9157. static void ggml_compute_forward_permute(
  9158. const struct ggml_compute_params * params,
  9159. const struct ggml_tensor * dst) {
  9160. // NOP
  9161. UNUSED(params);
  9162. UNUSED(dst);
  9163. }
  9164. // ggml_compute_forward_transpose
  9165. static void ggml_compute_forward_transpose(
  9166. const struct ggml_compute_params * params,
  9167. const struct ggml_tensor * dst) {
  9168. // NOP
  9169. UNUSED(params);
  9170. UNUSED(dst);
  9171. }
  9172. // ggml_compute_forward_get_rows
  9173. static void ggml_compute_forward_get_rows_q(
  9174. const struct ggml_compute_params * params,
  9175. struct ggml_tensor * dst) {
  9176. const struct ggml_tensor * src0 = dst->src[0];
  9177. const struct ggml_tensor * src1 = dst->src[1];
  9178. assert(params->ith == 0);
  9179. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9180. return;
  9181. }
  9182. GGML_TENSOR_BINARY_OP_LOCALS
  9183. const int64_t nc = ne00;
  9184. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9185. const enum ggml_type type = src0->type;
  9186. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9187. assert(ne0 == nc);
  9188. assert(ne02 == ne11);
  9189. assert(nb00 == ggml_type_size(type));
  9190. assert(ggml_nrows(dst) == nr);
  9191. // TODO: multi-thread
  9192. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9193. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9194. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9195. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9196. dequantize_row_q(
  9197. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9198. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9199. }
  9200. }
  9201. }
  9202. }
  9203. static void ggml_compute_forward_get_rows_f16(
  9204. const struct ggml_compute_params * params,
  9205. struct ggml_tensor * dst) {
  9206. const struct ggml_tensor * src0 = dst->src[0];
  9207. const struct ggml_tensor * src1 = dst->src[1];
  9208. assert(params->ith == 0);
  9209. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9210. return;
  9211. }
  9212. GGML_TENSOR_BINARY_OP_LOCALS
  9213. const int64_t nc = ne00;
  9214. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9215. assert(ne0 == nc);
  9216. assert(ne02 == ne11);
  9217. assert(nb00 == sizeof(ggml_fp16_t));
  9218. assert(ggml_nrows(dst) == nr);
  9219. // TODO: multi-thread
  9220. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9221. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9222. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9223. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9224. ggml_fp16_to_fp32_row(
  9225. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9226. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9227. }
  9228. }
  9229. }
  9230. }
  9231. static void ggml_compute_forward_get_rows_f32(
  9232. const struct ggml_compute_params * params,
  9233. struct ggml_tensor * dst) {
  9234. const struct ggml_tensor * src0 = dst->src[0];
  9235. const struct ggml_tensor * src1 = dst->src[1];
  9236. assert(params->ith == 0);
  9237. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9238. return;
  9239. }
  9240. GGML_TENSOR_BINARY_OP_LOCALS
  9241. const int64_t nc = ne00;
  9242. const int64_t nr = ggml_nelements(src1); GGML_UNUSED(nr);
  9243. assert(ne0 == nc);
  9244. assert(ne02 == ne11);
  9245. assert(nb00 == sizeof(float));
  9246. assert(ggml_nrows(dst) == nr);
  9247. // TODO: multi-thread
  9248. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9249. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9250. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  9251. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9252. ggml_vec_cpy_f32(nc,
  9253. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9254. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9255. }
  9256. }
  9257. }
  9258. }
  9259. static void ggml_compute_forward_get_rows(
  9260. const struct ggml_compute_params * params,
  9261. struct ggml_tensor * dst) {
  9262. const struct ggml_tensor * src0 = dst->src[0];
  9263. switch (src0->type) {
  9264. case GGML_TYPE_Q4_0:
  9265. case GGML_TYPE_Q4_1:
  9266. case GGML_TYPE_Q5_0:
  9267. case GGML_TYPE_Q5_1:
  9268. case GGML_TYPE_Q8_0:
  9269. case GGML_TYPE_Q8_1:
  9270. case GGML_TYPE_Q2_K:
  9271. case GGML_TYPE_Q3_K:
  9272. case GGML_TYPE_Q4_K:
  9273. case GGML_TYPE_Q5_K:
  9274. case GGML_TYPE_Q6_K:
  9275. case GGML_TYPE_IQ2_XXS:
  9276. case GGML_TYPE_IQ2_XS:
  9277. case GGML_TYPE_IQ3_XXS:
  9278. case GGML_TYPE_IQ1_S:
  9279. case GGML_TYPE_IQ4_NL:
  9280. case GGML_TYPE_IQ3_S:
  9281. case GGML_TYPE_IQ2_S:
  9282. {
  9283. ggml_compute_forward_get_rows_q(params, dst);
  9284. } break;
  9285. case GGML_TYPE_F16:
  9286. {
  9287. ggml_compute_forward_get_rows_f16(params, dst);
  9288. } break;
  9289. case GGML_TYPE_F32:
  9290. case GGML_TYPE_I32:
  9291. {
  9292. ggml_compute_forward_get_rows_f32(params, dst);
  9293. } break;
  9294. default:
  9295. {
  9296. GGML_ASSERT(false);
  9297. } break;
  9298. }
  9299. //static bool first = true;
  9300. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9301. //if (first) {
  9302. // first = false;
  9303. //} else {
  9304. // for (int k = 0; k < dst->ne[1]; ++k) {
  9305. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9306. // for (int i = 0; i < 16; ++i) {
  9307. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9308. // }
  9309. // printf("\n");
  9310. // }
  9311. // printf("\n");
  9312. // }
  9313. // printf("\n");
  9314. // exit(0);
  9315. //}
  9316. }
  9317. // ggml_compute_forward_get_rows_back
  9318. static void ggml_compute_forward_get_rows_back_f32_f16(
  9319. const struct ggml_compute_params * params,
  9320. struct ggml_tensor * dst) {
  9321. const struct ggml_tensor * src0 = dst->src[0];
  9322. const struct ggml_tensor * src1 = dst->src[1];
  9323. GGML_ASSERT(params->ith == 0);
  9324. GGML_ASSERT(ggml_is_contiguous(dst));
  9325. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9326. if (params->type == GGML_TASK_TYPE_INIT) {
  9327. if (params->ith != 0) {
  9328. return;
  9329. }
  9330. memset(dst->data, 0, ggml_nbytes(dst));
  9331. }
  9332. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9333. return;
  9334. }
  9335. const int nc = src0->ne[0];
  9336. const int nr = ggml_nelements(src1);
  9337. GGML_ASSERT( dst->ne[0] == nc);
  9338. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9339. for (int i = 0; i < nr; ++i) {
  9340. const int r = ((int32_t *) src1->data)[i];
  9341. for (int j = 0; j < nc; ++j) {
  9342. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9343. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9344. }
  9345. }
  9346. }
  9347. static void ggml_compute_forward_get_rows_back_f32(
  9348. const struct ggml_compute_params * params,
  9349. struct ggml_tensor * dst) {
  9350. const struct ggml_tensor * src0 = dst->src[0];
  9351. const struct ggml_tensor * src1 = dst->src[1];
  9352. GGML_ASSERT(params->ith == 0);
  9353. GGML_ASSERT(ggml_is_contiguous(dst));
  9354. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9355. if (params->type == GGML_TASK_TYPE_INIT) {
  9356. if (params->ith != 0) {
  9357. return;
  9358. }
  9359. memset(dst->data, 0, ggml_nbytes(dst));
  9360. }
  9361. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9362. return;
  9363. }
  9364. const int nc = src0->ne[0];
  9365. const int nr = ggml_nelements(src1);
  9366. GGML_ASSERT( dst->ne[0] == nc);
  9367. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9368. for (int i = 0; i < nr; ++i) {
  9369. const int r = ((int32_t *) src1->data)[i];
  9370. ggml_vec_add_f32(nc,
  9371. (float *) ((char *) dst->data + r*dst->nb[1]),
  9372. (float *) ((char *) dst->data + r*dst->nb[1]),
  9373. (float *) ((char *) src0->data + i*src0->nb[1]));
  9374. }
  9375. }
  9376. static void ggml_compute_forward_get_rows_back(
  9377. const struct ggml_compute_params * params,
  9378. struct ggml_tensor * dst) {
  9379. const struct ggml_tensor * src0 = dst->src[0];
  9380. switch (src0->type) {
  9381. case GGML_TYPE_F16:
  9382. {
  9383. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9384. } break;
  9385. case GGML_TYPE_F32:
  9386. {
  9387. ggml_compute_forward_get_rows_back_f32(params, dst);
  9388. } break;
  9389. default:
  9390. {
  9391. GGML_ASSERT(false);
  9392. } break;
  9393. }
  9394. //static bool first = true;
  9395. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9396. //if (first) {
  9397. // first = false;
  9398. //} else {
  9399. // for (int k = 0; k < dst->ne[1]; ++k) {
  9400. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9401. // for (int i = 0; i < 16; ++i) {
  9402. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9403. // }
  9404. // printf("\n");
  9405. // }
  9406. // printf("\n");
  9407. // }
  9408. // printf("\n");
  9409. // exit(0);
  9410. //}
  9411. }
  9412. // ggml_compute_forward_diag
  9413. static void ggml_compute_forward_diag_f32(
  9414. const struct ggml_compute_params * params,
  9415. struct ggml_tensor * dst) {
  9416. const struct ggml_tensor * src0 = dst->src[0];
  9417. GGML_ASSERT(params->ith == 0);
  9418. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9419. return;
  9420. }
  9421. // TODO: handle transposed/permuted matrices
  9422. GGML_TENSOR_UNARY_OP_LOCALS
  9423. GGML_ASSERT(ne00 == ne0);
  9424. GGML_ASSERT(ne00 == ne1);
  9425. GGML_ASSERT(ne01 == 1);
  9426. GGML_ASSERT(ne02 == ne2);
  9427. GGML_ASSERT(ne03 == ne3);
  9428. GGML_ASSERT(nb00 == sizeof(float));
  9429. GGML_ASSERT(nb0 == sizeof(float));
  9430. for (int i3 = 0; i3 < ne3; i3++) {
  9431. for (int i2 = 0; i2 < ne2; i2++) {
  9432. for (int i1 = 0; i1 < ne1; i1++) {
  9433. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9434. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9435. for (int i0 = 0; i0 < i1; i0++) {
  9436. d[i0] = 0;
  9437. }
  9438. d[i1] = s[i1];
  9439. for (int i0 = i1+1; i0 < ne0; i0++) {
  9440. d[i0] = 0;
  9441. }
  9442. }
  9443. }
  9444. }
  9445. }
  9446. static void ggml_compute_forward_diag(
  9447. const struct ggml_compute_params * params,
  9448. struct ggml_tensor * dst) {
  9449. const struct ggml_tensor * src0 = dst->src[0];
  9450. switch (src0->type) {
  9451. case GGML_TYPE_F32:
  9452. {
  9453. ggml_compute_forward_diag_f32(params, dst);
  9454. } break;
  9455. default:
  9456. {
  9457. GGML_ASSERT(false);
  9458. } break;
  9459. }
  9460. }
  9461. // ggml_compute_forward_diag_mask_inf
  9462. static void ggml_compute_forward_diag_mask_f32(
  9463. const struct ggml_compute_params * params,
  9464. struct ggml_tensor * dst,
  9465. const float value) {
  9466. const struct ggml_tensor * src0 = dst->src[0];
  9467. const int ith = params->ith;
  9468. const int nth = params->nth;
  9469. const int n_past = ((int32_t *) dst->op_params)[0];
  9470. const bool inplace = src0->data == dst->data;
  9471. GGML_ASSERT(n_past >= 0);
  9472. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9473. if (ith != 0) {
  9474. return;
  9475. }
  9476. // memcpy needs to be synchronized across threads to avoid race conditions.
  9477. // => do it in INIT phase
  9478. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9479. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9480. memcpy(
  9481. ((char *) dst->data),
  9482. ((char *) src0->data),
  9483. ggml_nbytes(dst));
  9484. }
  9485. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9486. return;
  9487. }
  9488. // TODO: handle transposed/permuted matrices
  9489. const int n = ggml_nrows(src0);
  9490. const int nc = src0->ne[0];
  9491. const int nr = src0->ne[1];
  9492. const int nz = n/nr;
  9493. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9494. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9495. for (int k = 0; k < nz; k++) {
  9496. for (int j = ith; j < nr; j += nth) {
  9497. for (int i = n_past; i < nc; i++) {
  9498. if (i > n_past + j) {
  9499. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9500. }
  9501. }
  9502. }
  9503. }
  9504. }
  9505. static void ggml_compute_forward_diag_mask_inf(
  9506. const struct ggml_compute_params * params,
  9507. struct ggml_tensor * dst) {
  9508. const struct ggml_tensor * src0 = dst->src[0];
  9509. switch (src0->type) {
  9510. case GGML_TYPE_F32:
  9511. {
  9512. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9513. } break;
  9514. default:
  9515. {
  9516. GGML_ASSERT(false);
  9517. } break;
  9518. }
  9519. }
  9520. static void ggml_compute_forward_diag_mask_zero(
  9521. const struct ggml_compute_params * params,
  9522. struct ggml_tensor * dst) {
  9523. const struct ggml_tensor * src0 = dst->src[0];
  9524. switch (src0->type) {
  9525. case GGML_TYPE_F32:
  9526. {
  9527. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9528. } break;
  9529. default:
  9530. {
  9531. GGML_ASSERT(false);
  9532. } break;
  9533. }
  9534. }
  9535. // ggml_compute_forward_soft_max
  9536. static void ggml_compute_forward_soft_max_f32(
  9537. const struct ggml_compute_params * params,
  9538. struct ggml_tensor * dst) {
  9539. const struct ggml_tensor * src0 = dst->src[0];
  9540. const struct ggml_tensor * src1 = dst->src[1];
  9541. const struct ggml_tensor * src2 = dst->src[2];
  9542. assert(ggml_is_contiguous(dst));
  9543. assert(ggml_are_same_shape(src0, dst));
  9544. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9545. return;
  9546. }
  9547. float scale = 1.0f;
  9548. float max_bias = 0.0f;
  9549. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9550. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9551. // TODO: handle transposed/permuted matrices
  9552. const int ith = params->ith;
  9553. const int nth = params->nth;
  9554. GGML_TENSOR_UNARY_OP_LOCALS
  9555. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9556. // TODO: is this supposed to be ceil instead of floor?
  9557. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9558. const uint32_t n_head_kv = ne02;
  9559. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9560. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9561. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9562. const int nc = src0->ne[0];
  9563. const int nr = ggml_nrows(src0);
  9564. // rows per thread
  9565. const int dr = (nr + nth - 1)/nth;
  9566. // row range for this thread
  9567. const int ir0 = dr*ith;
  9568. const int ir1 = MIN(ir0 + dr, nr);
  9569. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9570. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9571. float * pos = src2 ? (float *) src2->data : src0->data;
  9572. for (int i1 = ir0; i1 < ir1; i1++) {
  9573. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9574. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9575. // broadcast the mask across rows
  9576. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9577. ggml_vec_cpy_f32 (nc, wp, sp);
  9578. ggml_vec_scale_f32(nc, wp, scale);
  9579. if (mp) {
  9580. ggml_vec_acc_f32(nc, wp, mp);
  9581. }
  9582. // ALiBi bias
  9583. if (max_bias > 0.0f) {
  9584. const uint32_t h = (i1/ne01)%ne02; // head
  9585. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9586. for (int i = 0; i < nc; i++) {
  9587. wp[i] = wp[i] + slope*pos[i];
  9588. }
  9589. }
  9590. #ifndef NDEBUG
  9591. for (int i = 0; i < nc; ++i) {
  9592. //printf("p[%d] = %f\n", i, p[i]);
  9593. assert(!isnan(wp[i]));
  9594. }
  9595. #endif
  9596. float max = -INFINITY;
  9597. ggml_vec_max_f32(nc, &max, wp);
  9598. ggml_float sum = 0.0;
  9599. uint16_t scvt;
  9600. for (int i = 0; i < nc; i++) {
  9601. if (wp[i] == -INFINITY) {
  9602. dp[i] = 0.0f;
  9603. } else {
  9604. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9605. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9606. memcpy(&scvt, &s, sizeof(scvt));
  9607. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9608. sum += (ggml_float)val;
  9609. dp[i] = val;
  9610. }
  9611. }
  9612. assert(sum > 0.0);
  9613. sum = 1.0/sum;
  9614. ggml_vec_scale_f32(nc, dp, sum);
  9615. #ifndef NDEBUG
  9616. for (int i = 0; i < nc; ++i) {
  9617. assert(!isnan(dp[i]));
  9618. assert(!isinf(dp[i]));
  9619. }
  9620. #endif
  9621. }
  9622. }
  9623. static void ggml_compute_forward_soft_max(
  9624. const struct ggml_compute_params * params,
  9625. struct ggml_tensor * dst) {
  9626. const struct ggml_tensor * src0 = dst->src[0];
  9627. switch (src0->type) {
  9628. case GGML_TYPE_F32:
  9629. {
  9630. ggml_compute_forward_soft_max_f32(params, dst);
  9631. } break;
  9632. default:
  9633. {
  9634. GGML_ASSERT(false);
  9635. } break;
  9636. }
  9637. }
  9638. // ggml_compute_forward_soft_max_back
  9639. static void ggml_compute_forward_soft_max_back_f32(
  9640. const struct ggml_compute_params * params,
  9641. struct ggml_tensor * dst) {
  9642. const struct ggml_tensor * src0 = dst->src[0];
  9643. const struct ggml_tensor * src1 = dst->src[1];
  9644. GGML_ASSERT(ggml_is_contiguous(src0));
  9645. GGML_ASSERT(ggml_is_contiguous(src1));
  9646. GGML_ASSERT(ggml_is_contiguous(dst));
  9647. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9648. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9649. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9650. return;
  9651. }
  9652. // TODO: handle transposed/permuted matrices
  9653. const int ith = params->ith;
  9654. const int nth = params->nth;
  9655. const int nc = src0->ne[0];
  9656. const int nr = ggml_nrows(src0);
  9657. // rows per thread
  9658. const int dr = (nr + nth - 1)/nth;
  9659. // row range for this thread
  9660. const int ir0 = dr*ith;
  9661. const int ir1 = MIN(ir0 + dr, nr);
  9662. for (int i1 = ir0; i1 < ir1; i1++) {
  9663. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9664. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9665. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9666. #ifndef NDEBUG
  9667. for (int i = 0; i < nc; ++i) {
  9668. //printf("p[%d] = %f\n", i, p[i]);
  9669. assert(!isnan(dy[i]));
  9670. assert(!isnan(y[i]));
  9671. }
  9672. #endif
  9673. // Jii = yi - yi*yi
  9674. // Jij = -yi*yj
  9675. // J = diag(y)-y.T*y
  9676. // dx = J * dy
  9677. // dxk = sum_i(Jki * dyi)
  9678. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9679. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9680. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9681. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9682. // dxk = -yk * dot(y, dy) + yk*dyk
  9683. // dxk = yk * (- dot(y, dy) + dyk)
  9684. // dxk = yk * (dyk - dot(y, dy))
  9685. //
  9686. // post-order:
  9687. // dot_y_dy := dot(y, dy)
  9688. // dx := dy
  9689. // dx := dx - dot_y_dy
  9690. // dx := dx * y
  9691. // linear runtime, no additional memory
  9692. float dot_y_dy = 0;
  9693. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9694. ggml_vec_cpy_f32 (nc, dx, dy);
  9695. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9696. ggml_vec_mul_f32 (nc, dx, dx, y);
  9697. #ifndef NDEBUG
  9698. for (int i = 0; i < nc; ++i) {
  9699. assert(!isnan(dx[i]));
  9700. assert(!isinf(dx[i]));
  9701. }
  9702. #endif
  9703. }
  9704. }
  9705. static void ggml_compute_forward_soft_max_back(
  9706. const struct ggml_compute_params * params,
  9707. struct ggml_tensor * dst) {
  9708. const struct ggml_tensor * src0 = dst->src[0];
  9709. switch (src0->type) {
  9710. case GGML_TYPE_F32:
  9711. {
  9712. ggml_compute_forward_soft_max_back_f32(params, dst);
  9713. } break;
  9714. default:
  9715. {
  9716. GGML_ASSERT(false);
  9717. } break;
  9718. }
  9719. }
  9720. // ggml_compute_forward_alibi
  9721. static void ggml_compute_forward_alibi_f32(
  9722. const struct ggml_compute_params * params,
  9723. struct ggml_tensor * dst) {
  9724. const struct ggml_tensor * src0 = dst->src[0];
  9725. assert(params->ith == 0);
  9726. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9727. return;
  9728. }
  9729. //const int n_past = ((int32_t *) dst->op_params)[0];
  9730. const int n_head = ((int32_t *) dst->op_params)[1];
  9731. float max_bias;
  9732. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9733. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9734. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  9735. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  9736. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  9737. const int64_t n = ggml_nrows(src0);
  9738. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  9739. const size_t nb0 = src0->nb[0];
  9740. const size_t nb1 = src0->nb[1];
  9741. const size_t nb2 = src0->nb[2];
  9742. //const int nb3 = src0->nb[3];
  9743. GGML_ASSERT(nb0 == sizeof(float));
  9744. GGML_ASSERT(n_head == ne2);
  9745. // add alibi to src0 (KQ_scaled)
  9746. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9747. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9748. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9749. for (int64_t k = 0; k < ne2_ne3; k++) {
  9750. // TODO: k*nb2 or k*nb3
  9751. float m_k;
  9752. if (k < n_heads_log2_floor) {
  9753. m_k = powf(m0, k + 1);
  9754. } else {
  9755. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9756. }
  9757. for (int64_t i = 0; i < ne0; i++) {
  9758. for (int64_t j = 0; j < ne1; j++) {
  9759. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9760. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9761. pdst[0] = i * m_k + src[0];
  9762. }
  9763. }
  9764. }
  9765. }
  9766. static void ggml_compute_forward_alibi_f16(
  9767. const struct ggml_compute_params * params,
  9768. struct ggml_tensor * dst) {
  9769. const struct ggml_tensor * src0 = dst->src[0];
  9770. assert(params->ith == 0);
  9771. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9772. return;
  9773. }
  9774. //const int n_past = ((int32_t *) dst->op_params)[0];
  9775. const int n_head = ((int32_t *) dst->op_params)[1];
  9776. float max_bias;
  9777. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  9778. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9779. const int ne1 = src0->ne[1]; // seq_len_without_past
  9780. const int ne2 = src0->ne[2]; // n_head -> this is k
  9781. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9782. const int n = ggml_nrows(src0);
  9783. const int ne2_ne3 = n/ne1; // ne2*ne3
  9784. const int nb0 = src0->nb[0];
  9785. const int nb1 = src0->nb[1];
  9786. const int nb2 = src0->nb[2];
  9787. //const int nb3 = src0->nb[3];
  9788. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9789. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9790. GGML_ASSERT(n_head == ne2);
  9791. // add alibi to src0 (KQ_scaled)
  9792. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9793. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9794. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9795. for (int k = 0; k < ne2_ne3; k++) {
  9796. // TODO: k*nb2 or k*nb3
  9797. float m_k;
  9798. if (k < n_heads_log2_floor) {
  9799. m_k = powf(m0, k + 1);
  9800. } else {
  9801. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9802. }
  9803. for (int i = 0; i < ne0; i++) {
  9804. for (int j = 0; j < ne1; j++) {
  9805. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9806. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9807. // we return F32
  9808. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9809. }
  9810. }
  9811. }
  9812. }
  9813. static void ggml_compute_forward_alibi(
  9814. const struct ggml_compute_params * params,
  9815. struct ggml_tensor * dst) {
  9816. const struct ggml_tensor * src0 = dst->src[0];
  9817. switch (src0->type) {
  9818. case GGML_TYPE_F16:
  9819. {
  9820. ggml_compute_forward_alibi_f16(params, dst);
  9821. } break;
  9822. case GGML_TYPE_F32:
  9823. {
  9824. ggml_compute_forward_alibi_f32(params, dst);
  9825. } break;
  9826. case GGML_TYPE_Q4_0:
  9827. case GGML_TYPE_Q4_1:
  9828. case GGML_TYPE_Q5_0:
  9829. case GGML_TYPE_Q5_1:
  9830. case GGML_TYPE_Q8_0:
  9831. case GGML_TYPE_Q8_1:
  9832. case GGML_TYPE_Q2_K:
  9833. case GGML_TYPE_Q3_K:
  9834. case GGML_TYPE_Q4_K:
  9835. case GGML_TYPE_Q5_K:
  9836. case GGML_TYPE_Q6_K:
  9837. case GGML_TYPE_IQ2_XXS:
  9838. case GGML_TYPE_IQ2_XS:
  9839. case GGML_TYPE_IQ3_XXS:
  9840. case GGML_TYPE_IQ1_S:
  9841. case GGML_TYPE_IQ4_NL:
  9842. case GGML_TYPE_IQ3_S:
  9843. case GGML_TYPE_IQ2_S:
  9844. case GGML_TYPE_Q8_K:
  9845. case GGML_TYPE_I8:
  9846. case GGML_TYPE_I16:
  9847. case GGML_TYPE_I32:
  9848. case GGML_TYPE_COUNT:
  9849. {
  9850. GGML_ASSERT(false);
  9851. } break;
  9852. }
  9853. }
  9854. // ggml_compute_forward_clamp
  9855. static void ggml_compute_forward_clamp_f32(
  9856. const struct ggml_compute_params * params,
  9857. struct ggml_tensor * dst) {
  9858. const struct ggml_tensor * src0 = dst->src[0];
  9859. assert(params->ith == 0);
  9860. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9861. return;
  9862. }
  9863. float min;
  9864. float max;
  9865. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  9866. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  9867. const int ith = params->ith;
  9868. const int nth = params->nth;
  9869. const int n = ggml_nrows(src0);
  9870. const int nc = src0->ne[0];
  9871. const size_t nb00 = src0->nb[0];
  9872. const size_t nb01 = src0->nb[1];
  9873. const size_t nb0 = dst->nb[0];
  9874. const size_t nb1 = dst->nb[1];
  9875. GGML_ASSERT( nb0 == sizeof(float));
  9876. GGML_ASSERT(nb00 == sizeof(float));
  9877. for (int j = ith; j < n; j += nth) {
  9878. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9879. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9880. for (int i = 0; i < nc; i++) {
  9881. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9882. }
  9883. }
  9884. }
  9885. static void ggml_compute_forward_clamp(
  9886. const struct ggml_compute_params * params,
  9887. struct ggml_tensor * dst) {
  9888. const struct ggml_tensor * src0 = dst->src[0];
  9889. switch (src0->type) {
  9890. case GGML_TYPE_F32:
  9891. {
  9892. ggml_compute_forward_clamp_f32(params, dst);
  9893. } break;
  9894. case GGML_TYPE_F16:
  9895. case GGML_TYPE_Q4_0:
  9896. case GGML_TYPE_Q4_1:
  9897. case GGML_TYPE_Q5_0:
  9898. case GGML_TYPE_Q5_1:
  9899. case GGML_TYPE_Q8_0:
  9900. case GGML_TYPE_Q8_1:
  9901. case GGML_TYPE_Q2_K:
  9902. case GGML_TYPE_Q3_K:
  9903. case GGML_TYPE_Q4_K:
  9904. case GGML_TYPE_Q5_K:
  9905. case GGML_TYPE_Q6_K:
  9906. case GGML_TYPE_IQ2_XXS:
  9907. case GGML_TYPE_IQ2_XS:
  9908. case GGML_TYPE_IQ3_XXS:
  9909. case GGML_TYPE_IQ1_S:
  9910. case GGML_TYPE_IQ4_NL:
  9911. case GGML_TYPE_IQ3_S:
  9912. case GGML_TYPE_IQ2_S:
  9913. case GGML_TYPE_Q8_K:
  9914. case GGML_TYPE_I8:
  9915. case GGML_TYPE_I16:
  9916. case GGML_TYPE_I32:
  9917. case GGML_TYPE_COUNT:
  9918. {
  9919. GGML_ASSERT(false);
  9920. } break;
  9921. }
  9922. }
  9923. // ggml_compute_forward_rope
  9924. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  9925. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  9926. return 1 - MIN(1, MAX(0, y));
  9927. }
  9928. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  9929. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  9930. static void rope_yarn(
  9931. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  9932. float * cos_theta, float * sin_theta
  9933. ) {
  9934. // Get n-d rotational scaling corrected for extrapolation
  9935. float theta_interp = freq_scale * theta_extrap;
  9936. float theta = theta_interp;
  9937. if (ext_factor != 0.0f) {
  9938. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  9939. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  9940. // Get n-d magnitude scaling corrected for interpolation
  9941. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  9942. }
  9943. *cos_theta = cosf(theta) * mscale;
  9944. *sin_theta = sinf(theta) * mscale;
  9945. }
  9946. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  9947. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  9948. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  9949. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  9950. }
  9951. static void ggml_rope_cache_init(
  9952. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  9953. float * cache, float sin_sign, float theta_scale
  9954. ) {
  9955. float theta = theta_base;
  9956. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9957. rope_yarn(
  9958. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  9959. );
  9960. cache[i0 + 1] *= sin_sign;
  9961. theta *= theta_scale;
  9962. }
  9963. }
  9964. GGML_CALL void ggml_rope_yarn_corr_dims(
  9965. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  9966. ) {
  9967. // start and end correction dims
  9968. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  9969. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  9970. dims[0] = MAX(0, start);
  9971. dims[1] = MIN(n_dims - 1, end);
  9972. }
  9973. static void ggml_compute_forward_rope_f32(
  9974. const struct ggml_compute_params * params,
  9975. struct ggml_tensor * dst,
  9976. const bool forward) {
  9977. const struct ggml_tensor * src0 = dst->src[0];
  9978. const struct ggml_tensor * src1 = dst->src[1];
  9979. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9980. return;
  9981. }
  9982. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  9983. // these two only relevant for xPos RoPE:
  9984. float xpos_base;
  9985. bool xpos_down;
  9986. //const int n_past = ((int32_t *) dst->op_params)[0];
  9987. const int n_dims = ((int32_t *) dst->op_params)[1];
  9988. const int mode = ((int32_t *) dst->op_params)[2];
  9989. const int n_ctx = ((int32_t *) dst->op_params)[3];
  9990. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  9991. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  9992. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  9993. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  9994. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  9995. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  9996. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  9997. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  9998. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  9999. GGML_TENSOR_UNARY_OP_LOCALS
  10000. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10001. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10002. GGML_ASSERT(nb00 == sizeof(float));
  10003. const int ith = params->ith;
  10004. const int nth = params->nth;
  10005. const int nr = ggml_nrows(dst);
  10006. GGML_ASSERT(n_dims <= ne0);
  10007. GGML_ASSERT(n_dims % 2 == 0);
  10008. // rows per thread
  10009. const int dr = (nr + nth - 1)/nth;
  10010. // row range for this thread
  10011. const int ir0 = dr*ith;
  10012. const int ir1 = MIN(ir0 + dr, nr);
  10013. // row index used to determine which thread to use
  10014. int ir = 0;
  10015. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10016. const float inv_ndims = -1.f/n_dims;
  10017. float corr_dims[2];
  10018. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10019. const bool is_neox = mode & 2;
  10020. const bool is_glm = mode & 4;
  10021. // backward process uses inverse rotation by cos and sin.
  10022. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10023. // this essentially just switches the sign of sin.
  10024. const float sin_sign = forward ? 1.0f : -1.0f;
  10025. const int32_t * pos = (const int32_t *) src1->data;
  10026. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10027. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10028. const int64_t p = pos[i2];
  10029. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10030. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10031. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10032. }
  10033. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10034. if (ir++ < ir0) continue;
  10035. if (ir > ir1) break;
  10036. float theta_base = (float)p;
  10037. if (is_glm) {
  10038. theta_base = MIN(p, n_ctx - 2);
  10039. float block_theta = MAX(p - (n_ctx - 2), 0);
  10040. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10041. const float cos_theta = cosf(theta_base);
  10042. const float sin_theta = sinf(theta_base) * sin_sign;
  10043. const float cos_block_theta = cosf(block_theta);
  10044. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10045. theta_base *= theta_scale;
  10046. block_theta *= theta_scale;
  10047. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10048. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10049. const float x0 = src[0];
  10050. const float x1 = src[n_dims/2];
  10051. const float x2 = src[n_dims];
  10052. const float x3 = src[n_dims/2*3];
  10053. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10054. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10055. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10056. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10057. }
  10058. } else if (!is_neox) {
  10059. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10060. const float cos_theta = cache[i0 + 0];
  10061. const float sin_theta = cache[i0 + 1];
  10062. // zeta scaling for xPos only:
  10063. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10064. if (xpos_down) zeta = 1.0f / zeta;
  10065. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10066. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10067. const float x0 = src[0];
  10068. const float x1 = src[1];
  10069. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10070. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10071. }
  10072. } else {
  10073. // TODO: this might be wrong for ne0 != n_dims - need double check
  10074. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10075. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10076. theta_base *= freq_scale;
  10077. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10078. if (ic < n_dims) {
  10079. const int64_t ib = 0;
  10080. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10081. float cur_rot = inv_ndims * ic - ib;
  10082. float cos_theta, sin_theta;
  10083. rope_yarn(
  10084. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10085. &cos_theta, &sin_theta
  10086. );
  10087. sin_theta *= sin_sign;
  10088. theta_base *= theta_scale;
  10089. const int64_t i0 = ib*n_dims + ic/2;
  10090. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10091. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10092. const float x0 = src[0];
  10093. const float x1 = src[n_dims/2];
  10094. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10095. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10096. } else {
  10097. const int64_t i0 = ic;
  10098. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10099. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10100. dst_data[0] = src[0];
  10101. dst_data[1] = src[1];
  10102. }
  10103. }
  10104. }
  10105. }
  10106. }
  10107. }
  10108. }
  10109. static void ggml_compute_forward_rope_f16(
  10110. const struct ggml_compute_params * params,
  10111. struct ggml_tensor * dst,
  10112. const bool forward) {
  10113. const struct ggml_tensor * src0 = dst->src[0];
  10114. const struct ggml_tensor * src1 = dst->src[1];
  10115. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10116. return;
  10117. }
  10118. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10119. //const int n_past = ((int32_t *) dst->op_params)[0];
  10120. const int n_dims = ((int32_t *) dst->op_params)[1];
  10121. const int mode = ((int32_t *) dst->op_params)[2];
  10122. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10123. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10124. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10125. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10126. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10127. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10128. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10129. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10130. GGML_TENSOR_UNARY_OP_LOCALS
  10131. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10132. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10133. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10134. const int ith = params->ith;
  10135. const int nth = params->nth;
  10136. const int nr = ggml_nrows(dst);
  10137. GGML_ASSERT(n_dims <= ne0);
  10138. GGML_ASSERT(n_dims % 2 == 0);
  10139. // rows per thread
  10140. const int dr = (nr + nth - 1)/nth;
  10141. // row range for this thread
  10142. const int ir0 = dr*ith;
  10143. const int ir1 = MIN(ir0 + dr, nr);
  10144. // row index used to determine which thread to use
  10145. int ir = 0;
  10146. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10147. const float inv_ndims = -1.f/n_dims;
  10148. float corr_dims[2];
  10149. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10150. const bool is_neox = mode & 2;
  10151. const bool is_glm = mode & 4;
  10152. // backward process uses inverse rotation by cos and sin.
  10153. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10154. // this essentially just switches the sign of sin.
  10155. const float sin_sign = forward ? 1.0f : -1.0f;
  10156. const int32_t * pos = (const int32_t *) src1->data;
  10157. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10158. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10159. const int64_t p = pos[i2];
  10160. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10161. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10162. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10163. }
  10164. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10165. if (ir++ < ir0) continue;
  10166. if (ir > ir1) break;
  10167. float theta_base = (float)p;
  10168. if (is_glm) {
  10169. theta_base = MIN(p, n_ctx - 2);
  10170. float block_theta = MAX(p - (n_ctx - 2), 0);
  10171. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10172. const float cos_theta = cosf(theta_base);
  10173. const float sin_theta = sinf(theta_base) * sin_sign;
  10174. const float cos_block_theta = cosf(block_theta);
  10175. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10176. theta_base *= theta_scale;
  10177. block_theta *= theta_scale;
  10178. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10179. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10180. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10181. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10182. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10183. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10184. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10185. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10186. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10187. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10188. }
  10189. } else if (!is_neox) {
  10190. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10191. const float cos_theta = cache[i0 + 0];
  10192. const float sin_theta = cache[i0 + 1];
  10193. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10194. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10195. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10196. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10197. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10198. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10199. }
  10200. } else {
  10201. // TODO: this might be wrong for ne0 != n_dims - need double check
  10202. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10203. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10204. theta_base *= freq_scale;
  10205. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10206. if (ic < n_dims) {
  10207. const int64_t ib = 0;
  10208. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10209. float cur_rot = inv_ndims * ic - ib;
  10210. float cos_theta, sin_theta;
  10211. rope_yarn(
  10212. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10213. &cos_theta, &sin_theta
  10214. );
  10215. sin_theta *= sin_sign;
  10216. theta_base *= theta_scale;
  10217. const int64_t i0 = ib*n_dims + ic/2;
  10218. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10219. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10220. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10221. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10222. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10223. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10224. } else {
  10225. const int64_t i0 = ic;
  10226. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10227. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10228. dst_data[0] = src[0];
  10229. dst_data[1] = src[1];
  10230. }
  10231. }
  10232. }
  10233. }
  10234. }
  10235. }
  10236. }
  10237. static void ggml_compute_forward_rope(
  10238. const struct ggml_compute_params * params,
  10239. struct ggml_tensor * dst) {
  10240. const struct ggml_tensor * src0 = dst->src[0];
  10241. switch (src0->type) {
  10242. case GGML_TYPE_F16:
  10243. {
  10244. ggml_compute_forward_rope_f16(params, dst, true);
  10245. } break;
  10246. case GGML_TYPE_F32:
  10247. {
  10248. ggml_compute_forward_rope_f32(params, dst, true);
  10249. } break;
  10250. default:
  10251. {
  10252. GGML_ASSERT(false);
  10253. } break;
  10254. }
  10255. }
  10256. // ggml_compute_forward_rope_back
  10257. static void ggml_compute_forward_rope_back(
  10258. const struct ggml_compute_params * params,
  10259. struct ggml_tensor * dst) {
  10260. const struct ggml_tensor * src0 = dst->src[0];
  10261. switch (src0->type) {
  10262. case GGML_TYPE_F16:
  10263. {
  10264. ggml_compute_forward_rope_f16(params, dst, false);
  10265. } break;
  10266. case GGML_TYPE_F32:
  10267. {
  10268. ggml_compute_forward_rope_f32(params, dst, false);
  10269. } break;
  10270. default:
  10271. {
  10272. GGML_ASSERT(false);
  10273. } break;
  10274. }
  10275. }
  10276. // ggml_compute_forward_conv_transpose_1d
  10277. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10278. const struct ggml_compute_params * params,
  10279. struct ggml_tensor * dst) {
  10280. const struct ggml_tensor * src0 = dst->src[0];
  10281. const struct ggml_tensor * src1 = dst->src[1];
  10282. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10283. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10284. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10285. int64_t t0 = ggml_perf_time_us();
  10286. UNUSED(t0);
  10287. GGML_TENSOR_BINARY_OP_LOCALS
  10288. const int ith = params->ith;
  10289. const int nth = params->nth;
  10290. const int nk = ne00*ne01*ne02;
  10291. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10292. GGML_ASSERT(nb10 == sizeof(float));
  10293. if (params->type == GGML_TASK_TYPE_INIT) {
  10294. if (ith != 0) {
  10295. return;
  10296. }
  10297. memset(params->wdata, 0, params->wsize);
  10298. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10299. {
  10300. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10301. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10302. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10303. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10304. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10305. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10306. dst_data[i00*ne02 + i02] = src[i00];
  10307. }
  10308. }
  10309. }
  10310. }
  10311. // permute source data (src1) from (L x Cin) to (Cin x L)
  10312. {
  10313. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10314. ggml_fp16_t * dst_data = wdata;
  10315. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10316. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10317. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10318. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10319. }
  10320. }
  10321. }
  10322. // need to zero dst since we are accumulating into it
  10323. memset(dst->data, 0, ggml_nbytes(dst));
  10324. return;
  10325. }
  10326. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10327. return;
  10328. }
  10329. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10330. // total rows in dst
  10331. const int nr = ne1;
  10332. // rows per thread
  10333. const int dr = (nr + nth - 1)/nth;
  10334. // row range for this thread
  10335. const int ir0 = dr*ith;
  10336. const int ir1 = MIN(ir0 + dr, nr);
  10337. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10338. ggml_fp16_t * const wdata_src = wdata + nk;
  10339. for (int i1 = ir0; i1 < ir1; i1++) {
  10340. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10341. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10342. for (int i10 = 0; i10 < ne10; i10++) {
  10343. const int i1n = i10*ne11;
  10344. for (int i00 = 0; i00 < ne00; i00++) {
  10345. float v = 0;
  10346. ggml_vec_dot_f16(ne02, &v, 0,
  10347. (ggml_fp16_t *) wdata_src + i1n, 0,
  10348. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10349. dst_data[i10*s0 + i00] += v;
  10350. }
  10351. }
  10352. }
  10353. }
  10354. static void ggml_compute_forward_conv_transpose_1d_f32(
  10355. const struct ggml_compute_params * params,
  10356. struct ggml_tensor * dst) {
  10357. const struct ggml_tensor * src0 = dst->src[0];
  10358. const struct ggml_tensor * src1 = dst->src[1];
  10359. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10360. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10361. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10362. int64_t t0 = ggml_perf_time_us();
  10363. UNUSED(t0);
  10364. GGML_TENSOR_BINARY_OP_LOCALS
  10365. const int ith = params->ith;
  10366. const int nth = params->nth;
  10367. const int nk = ne00*ne01*ne02;
  10368. GGML_ASSERT(nb00 == sizeof(float));
  10369. GGML_ASSERT(nb10 == sizeof(float));
  10370. if (params->type == GGML_TASK_TYPE_INIT) {
  10371. if (ith != 0) {
  10372. return;
  10373. }
  10374. memset(params->wdata, 0, params->wsize);
  10375. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10376. {
  10377. float * const wdata = (float *) params->wdata + 0;
  10378. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10379. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10380. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10381. float * dst_data = wdata + i01*ne00*ne02;
  10382. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10383. dst_data[i00*ne02 + i02] = src[i00];
  10384. }
  10385. }
  10386. }
  10387. }
  10388. // prepare source data (src1)
  10389. {
  10390. float * const wdata = (float *) params->wdata + nk;
  10391. float * dst_data = wdata;
  10392. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10393. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10394. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10395. dst_data[i10*ne11 + i11] = src[i10];
  10396. }
  10397. }
  10398. }
  10399. // need to zero dst since we are accumulating into it
  10400. memset(dst->data, 0, ggml_nbytes(dst));
  10401. return;
  10402. }
  10403. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10404. return;
  10405. }
  10406. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10407. // total rows in dst
  10408. const int nr = ne1;
  10409. // rows per thread
  10410. const int dr = (nr + nth - 1)/nth;
  10411. // row range for this thread
  10412. const int ir0 = dr*ith;
  10413. const int ir1 = MIN(ir0 + dr, nr);
  10414. float * const wdata = (float *) params->wdata + 0;
  10415. float * const wdata_src = wdata + nk;
  10416. for (int i1 = ir0; i1 < ir1; i1++) {
  10417. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10418. float * wdata_kernel = wdata + i1*ne02*ne00;
  10419. for (int i10 = 0; i10 < ne10; i10++) {
  10420. const int i1n = i10*ne11;
  10421. for (int i00 = 0; i00 < ne00; i00++) {
  10422. float v = 0;
  10423. ggml_vec_dot_f32(ne02, &v, 0,
  10424. wdata_src + i1n, 0,
  10425. wdata_kernel + i00*ne02, 0, 1);
  10426. dst_data[i10*s0 + i00] += v;
  10427. }
  10428. }
  10429. }
  10430. }
  10431. static void ggml_compute_forward_conv_transpose_1d(
  10432. const struct ggml_compute_params * params,
  10433. struct ggml_tensor * dst) {
  10434. const struct ggml_tensor * src0 = dst->src[0];
  10435. switch (src0->type) {
  10436. case GGML_TYPE_F16:
  10437. {
  10438. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10439. } break;
  10440. case GGML_TYPE_F32:
  10441. {
  10442. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10443. } break;
  10444. default:
  10445. {
  10446. GGML_ASSERT(false);
  10447. } break;
  10448. }
  10449. }
  10450. // src0: kernel [OC, IC, KH, KW]
  10451. // src1: image [N, IC, IH, IW]
  10452. // dst: result [N, OH, OW, IC*KH*KW]
  10453. static void ggml_compute_forward_im2col_f32(
  10454. const struct ggml_compute_params * params,
  10455. struct ggml_tensor * dst) {
  10456. const struct ggml_tensor * src0 = dst->src[0];
  10457. const struct ggml_tensor * src1 = dst->src[1];
  10458. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10459. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10460. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10461. int64_t t0 = ggml_perf_time_us();
  10462. UNUSED(t0);
  10463. GGML_TENSOR_BINARY_OP_LOCALS;
  10464. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10465. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10466. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10467. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10468. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10469. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10470. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10471. const int ith = params->ith;
  10472. const int nth = params->nth;
  10473. const int64_t N = is_2D ? ne13 : ne12;
  10474. const int64_t IC = is_2D ? ne12 : ne11;
  10475. const int64_t IH = is_2D ? ne11 : 1;
  10476. const int64_t IW = ne10;
  10477. const int64_t KH = is_2D ? ne01 : 1;
  10478. const int64_t KW = ne00;
  10479. const int64_t OH = is_2D ? ne2 : 1;
  10480. const int64_t OW = ne1;
  10481. int ofs0 = is_2D ? nb13 : nb12;
  10482. int ofs1 = is_2D ? nb12 : nb11;
  10483. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10484. GGML_ASSERT(nb10 == sizeof(float));
  10485. if (params->type == GGML_TASK_TYPE_INIT) {
  10486. return;
  10487. }
  10488. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10489. return;
  10490. }
  10491. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10492. {
  10493. float * const wdata = (float *) dst->data;
  10494. for (int64_t in = 0; in < N; in++) {
  10495. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10496. for (int64_t iow = 0; iow < OW; iow++) {
  10497. for (int64_t iic = ith; iic < IC; iic += nth) {
  10498. // micro kernel
  10499. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10500. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10501. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10502. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10503. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10504. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10505. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10506. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10507. } else {
  10508. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10509. }
  10510. }
  10511. }
  10512. }
  10513. }
  10514. }
  10515. }
  10516. }
  10517. }
  10518. // src0: kernel [OC, IC, KH, KW]
  10519. // src1: image [N, IC, IH, IW]
  10520. // dst: result [N, OH, OW, IC*KH*KW]
  10521. static void ggml_compute_forward_im2col_f16(
  10522. const struct ggml_compute_params * params,
  10523. struct ggml_tensor * dst) {
  10524. const struct ggml_tensor * src0 = dst->src[0];
  10525. const struct ggml_tensor * src1 = dst->src[1];
  10526. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10527. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10528. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10529. int64_t t0 = ggml_perf_time_us();
  10530. UNUSED(t0);
  10531. GGML_TENSOR_BINARY_OP_LOCALS;
  10532. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10533. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10534. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10535. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10536. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10537. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10538. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10539. const int ith = params->ith;
  10540. const int nth = params->nth;
  10541. const int64_t N = is_2D ? ne13 : ne12;
  10542. const int64_t IC = is_2D ? ne12 : ne11;
  10543. const int64_t IH = is_2D ? ne11 : 1;
  10544. const int64_t IW = ne10;
  10545. const int64_t KH = is_2D ? ne01 : 1;
  10546. const int64_t KW = ne00;
  10547. const int64_t OH = is_2D ? ne2 : 1;
  10548. const int64_t OW = ne1;
  10549. int ofs0 = is_2D ? nb13 : nb12;
  10550. int ofs1 = is_2D ? nb12 : nb11;
  10551. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10552. GGML_ASSERT(nb10 == sizeof(float));
  10553. if (params->type == GGML_TASK_TYPE_INIT) {
  10554. return;
  10555. }
  10556. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10557. return;
  10558. }
  10559. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10560. {
  10561. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10562. for (int64_t in = 0; in < N; in++) {
  10563. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10564. for (int64_t iow = 0; iow < OW; iow++) {
  10565. for (int64_t iic = ith; iic < IC; iic += nth) {
  10566. // micro kernel
  10567. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10568. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10569. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10570. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10571. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10572. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10573. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10574. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10575. } else {
  10576. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10577. }
  10578. }
  10579. }
  10580. }
  10581. }
  10582. }
  10583. }
  10584. }
  10585. }
  10586. static void ggml_compute_forward_im2col(
  10587. const struct ggml_compute_params * params,
  10588. struct ggml_tensor * dst) {
  10589. switch (dst->type) {
  10590. case GGML_TYPE_F16:
  10591. {
  10592. ggml_compute_forward_im2col_f16(params, dst);
  10593. } break;
  10594. case GGML_TYPE_F32:
  10595. {
  10596. ggml_compute_forward_im2col_f32(params, dst);
  10597. } break;
  10598. default:
  10599. {
  10600. GGML_ASSERT(false);
  10601. } break;
  10602. }
  10603. }
  10604. // ggml_compute_forward_conv_transpose_2d
  10605. static void ggml_compute_forward_conv_transpose_2d(
  10606. const struct ggml_compute_params * params,
  10607. struct ggml_tensor * dst) {
  10608. const struct ggml_tensor * src0 = dst->src[0];
  10609. const struct ggml_tensor * src1 = dst->src[1];
  10610. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10611. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10612. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10613. int64_t t0 = ggml_perf_time_us();
  10614. UNUSED(t0);
  10615. GGML_TENSOR_BINARY_OP_LOCALS
  10616. const int ith = params->ith;
  10617. const int nth = params->nth;
  10618. const int nk = ne00*ne01*ne02*ne03;
  10619. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10620. GGML_ASSERT(nb10 == sizeof(float));
  10621. if (params->type == GGML_TASK_TYPE_INIT) {
  10622. if (ith != 0) {
  10623. return;
  10624. }
  10625. memset(params->wdata, 0, params->wsize);
  10626. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10627. {
  10628. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10629. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10630. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10631. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10632. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10633. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10634. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10635. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10636. }
  10637. }
  10638. }
  10639. }
  10640. }
  10641. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10642. {
  10643. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10644. for (int i12 = 0; i12 < ne12; i12++) {
  10645. for (int i11 = 0; i11 < ne11; i11++) {
  10646. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10647. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10648. for (int i10 = 0; i10 < ne10; i10++) {
  10649. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10650. }
  10651. }
  10652. }
  10653. }
  10654. memset(dst->data, 0, ggml_nbytes(dst));
  10655. return;
  10656. }
  10657. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10658. return;
  10659. }
  10660. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10661. // total patches in dst
  10662. const int np = ne2;
  10663. // patches per thread
  10664. const int dp = (np + nth - 1)/nth;
  10665. // patch range for this thread
  10666. const int ip0 = dp*ith;
  10667. const int ip1 = MIN(ip0 + dp, np);
  10668. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10669. ggml_fp16_t * const wdata_src = wdata + nk;
  10670. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10671. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10672. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10673. for (int i11 = 0; i11 < ne11; i11++) {
  10674. for (int i10 = 0; i10 < ne10; i10++) {
  10675. const int i1n = i11*ne10*ne12 + i10*ne12;
  10676. for (int i01 = 0; i01 < ne01; i01++) {
  10677. for (int i00 = 0; i00 < ne00; i00++) {
  10678. float v = 0;
  10679. ggml_vec_dot_f16(ne03, &v, 0,
  10680. wdata_src + i1n, 0,
  10681. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10682. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10683. }
  10684. }
  10685. }
  10686. }
  10687. }
  10688. }
  10689. // ggml_compute_forward_pool_1d_sk_p0
  10690. static void ggml_compute_forward_pool_1d_sk_p0(
  10691. const struct ggml_compute_params * params,
  10692. const enum ggml_op_pool op,
  10693. const int k,
  10694. struct ggml_tensor * dst) {
  10695. const struct ggml_tensor * src = dst->src[0];
  10696. assert(src->type == GGML_TYPE_F32);
  10697. assert(params->ith == 0);
  10698. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10699. return;
  10700. }
  10701. const char * cdata = (const char *)src->data;
  10702. const char * const data_end = cdata + ggml_nbytes(src);
  10703. float * drow = (float *)dst->data;
  10704. const int64_t rs = dst->ne[0];
  10705. while (cdata < data_end) {
  10706. const float * const srow = (const float *)cdata;
  10707. int j = 0;
  10708. for (int64_t i = 0; i < rs; ++i) {
  10709. switch (op) {
  10710. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  10711. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  10712. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10713. }
  10714. for (int ki = 0; ki < k; ++ki) {
  10715. switch (op) {
  10716. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  10717. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  10718. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10719. }
  10720. ++j;
  10721. }
  10722. switch (op) {
  10723. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  10724. case GGML_OP_POOL_MAX: break;
  10725. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10726. }
  10727. }
  10728. cdata += src->nb[1];
  10729. drow += rs;
  10730. }
  10731. }
  10732. // ggml_compute_forward_pool_1d
  10733. static void ggml_compute_forward_pool_1d(
  10734. const struct ggml_compute_params * params,
  10735. struct ggml_tensor * dst) {
  10736. const int32_t * opts = (const int32_t *)dst->op_params;
  10737. enum ggml_op_pool op = opts[0];
  10738. const int k0 = opts[1];
  10739. const int s0 = opts[2];
  10740. const int p0 = opts[3];
  10741. GGML_ASSERT(p0 == 0); // padding not supported
  10742. GGML_ASSERT(k0 == s0); // only s = k supported
  10743. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  10744. }
  10745. // ggml_compute_forward_pool_2d
  10746. static void ggml_compute_forward_pool_2d(
  10747. const struct ggml_compute_params * params,
  10748. struct ggml_tensor * dst) {
  10749. const struct ggml_tensor * src = dst->src[0];
  10750. GGML_ASSERT(src->type == GGML_TYPE_F32);
  10751. GGML_ASSERT(params->ith == 0);
  10752. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10753. return;
  10754. }
  10755. const int32_t * opts = (const int32_t *)dst->op_params;
  10756. enum ggml_op_pool op = opts[0];
  10757. const int k0 = opts[1];
  10758. const int k1 = opts[2];
  10759. const int s0 = opts[3];
  10760. const int s1 = opts[4];
  10761. const int p0 = opts[5];
  10762. const int p1 = opts[6];
  10763. const char * cdata = (const char*)src->data;
  10764. const char * const data_end = cdata + ggml_nbytes(src);
  10765. const int64_t px = dst->ne[0];
  10766. const int64_t py = dst->ne[1];
  10767. const int64_t pa = px * py;
  10768. float * dplane = (float *)dst->data;
  10769. const int ka = k0 * k1;
  10770. const int offset0 = -p0;
  10771. const int offset1 = -p1;
  10772. while (cdata < data_end) {
  10773. for (int oy = 0; oy < py; ++oy) {
  10774. float * const drow = dplane + oy * px;
  10775. for (int ox = 0; ox < px; ++ox) {
  10776. float * const out = drow + ox;
  10777. switch (op) {
  10778. case GGML_OP_POOL_AVG: *out = 0; break;
  10779. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  10780. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10781. }
  10782. const int ix = offset0 + ox * s0;
  10783. const int iy = offset1 + oy * s1;
  10784. for (int ky = 0; ky < k1; ++ky) {
  10785. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  10786. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  10787. for (int kx = 0; kx < k0; ++kx) {
  10788. int j = ix + kx;
  10789. if (j < 0 || j >= src->ne[0]) continue;
  10790. switch (op) {
  10791. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  10792. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  10793. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10794. }
  10795. }
  10796. }
  10797. switch (op) {
  10798. case GGML_OP_POOL_AVG: *out /= ka; break;
  10799. case GGML_OP_POOL_MAX: break;
  10800. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  10801. }
  10802. }
  10803. }
  10804. cdata += src->nb[2];
  10805. dplane += pa;
  10806. }
  10807. }
  10808. // ggml_compute_forward_upscale
  10809. static void ggml_compute_forward_upscale_f32(
  10810. const struct ggml_compute_params * params,
  10811. struct ggml_tensor * dst) {
  10812. const struct ggml_tensor * src0 = dst->src[0];
  10813. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10814. return;
  10815. }
  10816. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10817. const int ith = params->ith;
  10818. const int nth = params->nth;
  10819. GGML_TENSOR_UNARY_OP_LOCALS
  10820. const int scale_factor = dst->op_params[0];
  10821. // TODO: optimize
  10822. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10823. const int64_t i03 = i3;
  10824. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  10825. const int64_t i02 = i2;
  10826. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10827. const int64_t i01 = i1 / scale_factor;
  10828. for (int64_t i0 = 0; i0 < ne0; i0++) {
  10829. const int64_t i00 = i0 / scale_factor;
  10830. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  10831. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  10832. *y = *x;
  10833. }
  10834. }
  10835. }
  10836. }
  10837. }
  10838. static void ggml_compute_forward_upscale(
  10839. const struct ggml_compute_params * params,
  10840. struct ggml_tensor * dst) {
  10841. const struct ggml_tensor * src0 = dst->src[0];
  10842. switch (src0->type) {
  10843. case GGML_TYPE_F32:
  10844. {
  10845. ggml_compute_forward_upscale_f32(params, dst);
  10846. } break;
  10847. default:
  10848. {
  10849. GGML_ASSERT(false);
  10850. } break;
  10851. }
  10852. }
  10853. // ggml_compute_forward_pad
  10854. static void ggml_compute_forward_pad_f32(
  10855. const struct ggml_compute_params * params,
  10856. struct ggml_tensor * dst) {
  10857. const struct ggml_tensor * src0 = dst->src[0];
  10858. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10859. return;
  10860. }
  10861. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10862. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10863. const int ith = params->ith;
  10864. const int nth = params->nth;
  10865. GGML_TENSOR_UNARY_OP_LOCALS
  10866. float * dst_ptr = (float *) dst->data;
  10867. // TODO: optimize
  10868. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  10869. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  10870. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  10871. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  10872. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  10873. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10874. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  10875. dst_ptr[dst_idx] = *src_ptr;
  10876. } else {
  10877. dst_ptr[dst_idx] = 0;
  10878. }
  10879. }
  10880. }
  10881. }
  10882. }
  10883. }
  10884. static void ggml_compute_forward_pad(
  10885. const struct ggml_compute_params * params,
  10886. struct ggml_tensor * dst) {
  10887. const struct ggml_tensor * src0 = dst->src[0];
  10888. switch (src0->type) {
  10889. case GGML_TYPE_F32:
  10890. {
  10891. ggml_compute_forward_pad_f32(params, dst);
  10892. } break;
  10893. default:
  10894. {
  10895. GGML_ASSERT(false);
  10896. } break;
  10897. }
  10898. }
  10899. // ggml_compute_forward_argsort
  10900. static void ggml_compute_forward_argsort_f32(
  10901. const struct ggml_compute_params * params,
  10902. struct ggml_tensor * dst) {
  10903. const struct ggml_tensor * src0 = dst->src[0];
  10904. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10905. return;
  10906. }
  10907. GGML_TENSOR_UNARY_OP_LOCALS
  10908. GGML_ASSERT(nb0 == sizeof(float));
  10909. const int ith = params->ith;
  10910. const int nth = params->nth;
  10911. const int64_t nr = ggml_nrows(src0);
  10912. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  10913. for (int64_t i = ith; i < nr; i += nth) {
  10914. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  10915. const float * src_data = (float *)((char *) src0->data + i*nb01);
  10916. for (int64_t j = 0; j < ne0; j++) {
  10917. dst_data[j] = j;
  10918. }
  10919. // C doesn't have a functional sort, so we do a bubble sort instead
  10920. for (int64_t j = 0; j < ne0; j++) {
  10921. for (int64_t k = j + 1; k < ne0; k++) {
  10922. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  10923. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  10924. int32_t tmp = dst_data[j];
  10925. dst_data[j] = dst_data[k];
  10926. dst_data[k] = tmp;
  10927. }
  10928. }
  10929. }
  10930. }
  10931. }
  10932. static void ggml_compute_forward_argsort(
  10933. const struct ggml_compute_params * params,
  10934. struct ggml_tensor * dst) {
  10935. const struct ggml_tensor * src0 = dst->src[0];
  10936. switch (src0->type) {
  10937. case GGML_TYPE_F32:
  10938. {
  10939. ggml_compute_forward_argsort_f32(params, dst);
  10940. } break;
  10941. default:
  10942. {
  10943. GGML_ASSERT(false);
  10944. } break;
  10945. }
  10946. }
  10947. // ggml_compute_forward_flash_attn
  10948. static void ggml_compute_forward_flash_attn_f32(
  10949. const struct ggml_compute_params * params,
  10950. const bool masked,
  10951. struct ggml_tensor * dst) {
  10952. const struct ggml_tensor * q = dst->src[0];
  10953. const struct ggml_tensor * k = dst->src[1];
  10954. const struct ggml_tensor * v = dst->src[2];
  10955. int64_t t0 = ggml_perf_time_us();
  10956. UNUSED(t0);
  10957. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  10958. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  10959. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  10960. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  10961. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  10962. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  10963. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  10964. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  10965. const int ith = params->ith;
  10966. const int nth = params->nth;
  10967. const int64_t D = neq0;
  10968. const int64_t N = neq1;
  10969. const int64_t P = nek1 - N;
  10970. const int64_t M = P + N;
  10971. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10972. GGML_ASSERT(ne0 == D);
  10973. GGML_ASSERT(ne1 == N);
  10974. GGML_ASSERT(P >= 0);
  10975. GGML_ASSERT(nbq0 == sizeof(float));
  10976. GGML_ASSERT(nbk0 == sizeof(float));
  10977. GGML_ASSERT(nbv0 == sizeof(float));
  10978. GGML_ASSERT(neq0 == D);
  10979. GGML_ASSERT(nek0 == D);
  10980. GGML_ASSERT(nev1 == D);
  10981. GGML_ASSERT(neq1 == N);
  10982. GGML_ASSERT(nek1 == N + P);
  10983. GGML_ASSERT(nev1 == D);
  10984. // dst cannot be transposed or permuted
  10985. GGML_ASSERT(nb0 == sizeof(float));
  10986. GGML_ASSERT(nb0 <= nb1);
  10987. GGML_ASSERT(nb1 <= nb2);
  10988. GGML_ASSERT(nb2 <= nb3);
  10989. if (params->type == GGML_TASK_TYPE_INIT) {
  10990. return;
  10991. }
  10992. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10993. return;
  10994. }
  10995. // parallelize by q rows using ggml_vec_dot_f32
  10996. // total rows in q
  10997. const int nr = neq1*neq2*neq3;
  10998. // rows per thread
  10999. const int dr = (nr + nth - 1)/nth;
  11000. // row range for this thread
  11001. const int ir0 = dr*ith;
  11002. const int ir1 = MIN(ir0 + dr, nr);
  11003. const float scale = 1.0f/sqrtf(D);
  11004. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11005. for (int ir = ir0; ir < ir1; ++ir) {
  11006. // q indices
  11007. const int iq3 = ir/(neq2*neq1);
  11008. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11009. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11010. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11011. for (int i = M; i < Mup; ++i) {
  11012. S[i] = -INFINITY;
  11013. }
  11014. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11015. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11016. // k indices
  11017. const int ik3 = iq3;
  11018. const int ik2 = iq2 % nek2;
  11019. const int ik1 = ic;
  11020. // S indices
  11021. const int i1 = ik1;
  11022. ggml_vec_dot_f32(neq0,
  11023. S + i1, 0,
  11024. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11025. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11026. }
  11027. // scale
  11028. ggml_vec_scale_f32(masked_begin, S, scale);
  11029. for (int64_t i = masked_begin; i < M; i++) {
  11030. S[i] = -INFINITY;
  11031. }
  11032. // softmax
  11033. // exclude known -INF S[..] values from max and loop
  11034. // dont forget to set their SW values to zero
  11035. {
  11036. float max = -INFINITY;
  11037. ggml_vec_max_f32(masked_begin, &max, S);
  11038. ggml_float sum = 0.0;
  11039. {
  11040. #ifdef GGML_SOFT_MAX_ACCELERATE
  11041. max = -max;
  11042. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11043. vvexpf(S, S, &Mup);
  11044. ggml_vec_sum_f32(Mup, &sum, S);
  11045. #else
  11046. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11047. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11048. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11049. if (i >= masked_begin) {
  11050. break;
  11051. }
  11052. float * SS = S + i;
  11053. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11054. if (i + j >= masked_begin) {
  11055. break;
  11056. } else if (SS[j] == -INFINITY) {
  11057. SS[j] = 0.0f;
  11058. } else {
  11059. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11060. const float val = expf(SS[j] - max);
  11061. #else
  11062. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11063. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11064. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11065. #endif
  11066. sump[j] += (ggml_float)val;
  11067. SS[j] = val;
  11068. }
  11069. }
  11070. }
  11071. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11072. sum += sump[i];
  11073. }
  11074. #endif
  11075. }
  11076. assert(sum > 0.0);
  11077. sum = 1.0/sum;
  11078. ggml_vec_scale_f32(masked_begin, S, sum);
  11079. #ifndef NDEBUG
  11080. for (int i = 0; i < masked_begin; ++i) {
  11081. assert(!isnan(S[i]));
  11082. assert(!isinf(S[i]));
  11083. }
  11084. #endif
  11085. }
  11086. for (int64_t ic = 0; ic < nev1; ++ic) {
  11087. // dst indices
  11088. const int i1 = iq1;
  11089. const int i2 = iq2;
  11090. const int i3 = iq3;
  11091. // v indices
  11092. const int iv2 = iq2 % nev2;
  11093. const int iv3 = iq3;
  11094. ggml_vec_dot_f32(masked_begin,
  11095. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11096. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11097. S, 0, 1);
  11098. }
  11099. }
  11100. }
  11101. static void ggml_compute_forward_flash_attn_f16(
  11102. const struct ggml_compute_params * params,
  11103. const bool masked,
  11104. struct ggml_tensor * dst) {
  11105. const struct ggml_tensor * q = dst->src[0];
  11106. const struct ggml_tensor * k = dst->src[1];
  11107. const struct ggml_tensor * v = dst->src[2];
  11108. int64_t t0 = ggml_perf_time_us();
  11109. UNUSED(t0);
  11110. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11111. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11112. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11113. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11114. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11115. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11116. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11117. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11118. const int ith = params->ith;
  11119. const int nth = params->nth;
  11120. const int64_t D = neq0;
  11121. const int64_t N = neq1;
  11122. const int64_t P = nek1 - N;
  11123. const int64_t M = P + N;
  11124. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11125. GGML_ASSERT(ne0 == D);
  11126. GGML_ASSERT(ne1 == N);
  11127. GGML_ASSERT(P >= 0);
  11128. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11129. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11130. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11131. GGML_ASSERT(neq0 == D);
  11132. GGML_ASSERT(nek0 == D);
  11133. GGML_ASSERT(nev1 == D);
  11134. GGML_ASSERT(neq1 == N);
  11135. GGML_ASSERT(nek1 == N + P);
  11136. GGML_ASSERT(nev1 == D);
  11137. // dst cannot be transposed or permuted
  11138. GGML_ASSERT(nb0 == sizeof(float));
  11139. GGML_ASSERT(nb0 <= nb1);
  11140. GGML_ASSERT(nb1 <= nb2);
  11141. GGML_ASSERT(nb2 <= nb3);
  11142. if (params->type == GGML_TASK_TYPE_INIT) {
  11143. return;
  11144. }
  11145. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11146. return;
  11147. }
  11148. // parallelize by q rows using ggml_vec_dot_f32
  11149. // total rows in q
  11150. const int nr = neq1*neq2*neq3;
  11151. // rows per thread
  11152. const int dr = (nr + nth - 1)/nth;
  11153. // row range for this thread
  11154. const int ir0 = dr*ith;
  11155. const int ir1 = MIN(ir0 + dr, nr);
  11156. const float scale = 1.0f/sqrtf(D);
  11157. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11158. for (int ir = ir0; ir < ir1; ++ir) {
  11159. // q indices
  11160. const int iq3 = ir/(neq2*neq1);
  11161. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11162. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11163. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11164. for (int i = M; i < Mup; ++i) {
  11165. S[i] = -INFINITY;
  11166. }
  11167. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11168. for (int64_t ic = 0; ic < nek1; ++ic) {
  11169. // k indices
  11170. const int ik3 = iq3;
  11171. const int ik2 = iq2 % nek2;
  11172. const int ik1 = ic;
  11173. // S indices
  11174. const int i1 = ik1;
  11175. ggml_vec_dot_f16(neq0,
  11176. S + i1, 0,
  11177. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11178. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11179. }
  11180. } else {
  11181. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11182. // k indices
  11183. const int ik3 = iq3;
  11184. const int ik2 = iq2 % nek2;
  11185. const int ik1 = ic;
  11186. // S indices
  11187. const int i1 = ik1;
  11188. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11189. S + i1,
  11190. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11191. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11192. }
  11193. }
  11194. // scale
  11195. ggml_vec_scale_f32(nek1, S, scale);
  11196. if (masked) {
  11197. for (int64_t i = P; i < M; i++) {
  11198. if (i > P + iq1) {
  11199. S[i] = -INFINITY;
  11200. }
  11201. }
  11202. }
  11203. // softmax
  11204. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11205. // dont forget to set their S values to zero
  11206. {
  11207. float max = -INFINITY;
  11208. ggml_vec_max_f32(M, &max, S);
  11209. ggml_float sum = 0.0;
  11210. {
  11211. #ifdef GGML_SOFT_MAX_ACCELERATE
  11212. max = -max;
  11213. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11214. vvexpf(S, S, &Mup);
  11215. ggml_vec_sum_f32(Mup, &sum, S);
  11216. #else
  11217. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11218. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11219. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11220. float * SS = S + i;
  11221. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11222. if (SS[j] == -INFINITY) {
  11223. SS[j] = 0.0f;
  11224. } else {
  11225. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11226. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11227. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11228. sump[j] += (ggml_float)val;
  11229. SS[j] = val;
  11230. }
  11231. }
  11232. }
  11233. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11234. sum += sump[i];
  11235. }
  11236. #endif
  11237. }
  11238. assert(sum > 0.0);
  11239. sum = 1.0/sum;
  11240. ggml_vec_scale_f32(M, S, sum);
  11241. #ifndef NDEBUG
  11242. for (int i = 0; i < M; ++i) {
  11243. assert(!isnan(S[i]));
  11244. assert(!isinf(S[i]));
  11245. }
  11246. #endif
  11247. }
  11248. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11249. for (int64_t i = 0; i < M; i++) {
  11250. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11251. }
  11252. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11253. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11254. for (int64_t ic = 0; ic < nev1; ++ic) {
  11255. // dst indices
  11256. const int i1 = iq1;
  11257. const int i2 = iq2;
  11258. const int i3 = iq3;
  11259. // v indices
  11260. const int iv2 = iq2 % nev2;
  11261. const int iv3 = iq3;
  11262. ggml_vec_dot_f16(nev0,
  11263. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11264. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11265. S16, 0, 1);
  11266. }
  11267. } else {
  11268. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11269. // dst indices
  11270. const int i1 = iq1;
  11271. const int i2 = iq2;
  11272. const int i3 = iq3;
  11273. // v indices
  11274. const int iv2 = iq2 % nev2;
  11275. const int iv3 = iq3;
  11276. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11277. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11278. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11279. S16);
  11280. }
  11281. }
  11282. }
  11283. }
  11284. static void ggml_compute_forward_flash_attn(
  11285. const struct ggml_compute_params * params,
  11286. const bool masked,
  11287. struct ggml_tensor * dst) {
  11288. const struct ggml_tensor * q = dst->src[0];
  11289. switch (q->type) {
  11290. case GGML_TYPE_F16:
  11291. {
  11292. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11293. } break;
  11294. case GGML_TYPE_F32:
  11295. {
  11296. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11297. } break;
  11298. default:
  11299. {
  11300. GGML_ASSERT(false);
  11301. } break;
  11302. }
  11303. }
  11304. // ggml_compute_forward_flash_ff
  11305. static void ggml_compute_forward_flash_ff_f16(
  11306. const struct ggml_compute_params * params,
  11307. struct ggml_tensor * dst) {
  11308. const struct ggml_tensor * a = dst->src[0]; // F16
  11309. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11310. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11311. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11312. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11313. int64_t t0 = ggml_perf_time_us();
  11314. UNUSED(t0);
  11315. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11316. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11317. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11318. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11319. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11320. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11321. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11322. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11323. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11324. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11325. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11326. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11327. const int ith = params->ith;
  11328. const int nth = params->nth;
  11329. const int64_t D = nea0;
  11330. //const int64_t N = nea1;
  11331. const int64_t M = neb01;
  11332. GGML_ASSERT(ne0 == nea0);
  11333. GGML_ASSERT(ne1 == nea1);
  11334. GGML_ASSERT(ne2 == nea2);
  11335. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11336. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11337. GGML_ASSERT(nbb10 == sizeof(float));
  11338. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11339. GGML_ASSERT(nbc10 == sizeof(float));
  11340. GGML_ASSERT(neb00 == D);
  11341. GGML_ASSERT(neb01 == M);
  11342. GGML_ASSERT(neb10 == M);
  11343. GGML_ASSERT(neb11 == 1);
  11344. GGML_ASSERT(nec00 == M);
  11345. GGML_ASSERT(nec01 == D);
  11346. GGML_ASSERT(nec10 == D);
  11347. GGML_ASSERT(nec11 == 1);
  11348. // dst cannot be transposed or permuted
  11349. GGML_ASSERT(nb0 == sizeof(float));
  11350. GGML_ASSERT(nb0 <= nb1);
  11351. GGML_ASSERT(nb1 <= nb2);
  11352. GGML_ASSERT(nb2 <= nb3);
  11353. if (params->type == GGML_TASK_TYPE_INIT) {
  11354. return;
  11355. }
  11356. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11357. return;
  11358. }
  11359. // parallelize by a rows using ggml_vec_dot_f32
  11360. // total rows in a
  11361. const int nr = nea1*nea2*nea3;
  11362. // rows per thread
  11363. const int dr = (nr + nth - 1)/nth;
  11364. // row range for this thread
  11365. const int ir0 = dr*ith;
  11366. const int ir1 = MIN(ir0 + dr, nr);
  11367. for (int ir = ir0; ir < ir1; ++ir) {
  11368. // a indices
  11369. const int ia3 = ir/(nea2*nea1);
  11370. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11371. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11372. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11373. for (int64_t ic = 0; ic < neb01; ++ic) {
  11374. // b0 indices
  11375. const int ib03 = ia3;
  11376. const int ib02 = ia2;
  11377. const int ib01 = ic;
  11378. // S indices
  11379. const int i1 = ib01;
  11380. ggml_vec_dot_f16(nea0,
  11381. S + i1, 0,
  11382. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11383. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11384. }
  11385. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11386. //ggml_vec_gelu_f32(neb01, S, S);
  11387. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11388. for (int64_t i = 0; i < M; i++) {
  11389. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11390. }
  11391. ggml_vec_gelu_f16(neb01, S16, S16);
  11392. {
  11393. // dst indices
  11394. const int i1 = ia1;
  11395. const int i2 = ia2;
  11396. const int i3 = ia3;
  11397. for (int64_t ic = 0; ic < nec01; ++ic) {
  11398. ggml_vec_dot_f16(neb01,
  11399. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11400. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11401. S16, 0, 1);
  11402. }
  11403. ggml_vec_add_f32(nec01,
  11404. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11405. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11406. (float *) c1->data);
  11407. }
  11408. }
  11409. }
  11410. static void ggml_compute_forward_flash_ff(
  11411. const struct ggml_compute_params * params,
  11412. struct ggml_tensor * dst) {
  11413. const struct ggml_tensor * b0 = dst->src[1];
  11414. switch (b0->type) {
  11415. case GGML_TYPE_F16:
  11416. {
  11417. ggml_compute_forward_flash_ff_f16(params, dst);
  11418. } break;
  11419. case GGML_TYPE_F32:
  11420. {
  11421. GGML_ASSERT(false); // TODO
  11422. } break;
  11423. default:
  11424. {
  11425. GGML_ASSERT(false);
  11426. } break;
  11427. }
  11428. }
  11429. // ggml_compute_forward_flash_attn_back
  11430. static void ggml_compute_forward_flash_attn_back_f32(
  11431. const struct ggml_compute_params * params,
  11432. const bool masked,
  11433. struct ggml_tensor * dst) {
  11434. const struct ggml_tensor * q = dst->src[0];
  11435. const struct ggml_tensor * k = dst->src[1];
  11436. const struct ggml_tensor * v = dst->src[2];
  11437. const struct ggml_tensor * d = dst->src[3];
  11438. int64_t t0 = ggml_perf_time_us();
  11439. UNUSED(t0);
  11440. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11441. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11442. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11443. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11444. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11445. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11446. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11447. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11448. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11449. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11450. const int ith = params->ith;
  11451. const int nth = params->nth;
  11452. const int64_t D = neq0;
  11453. const int64_t N = neq1;
  11454. const int64_t P = nek1 - N;
  11455. const int64_t M = P + N;
  11456. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11457. const int mxDM = MAX(D, Mup);
  11458. // GGML_ASSERT(ne0 == D);
  11459. // GGML_ASSERT(ne1 == N);
  11460. GGML_ASSERT(P >= 0);
  11461. GGML_ASSERT(nbq0 == sizeof(float));
  11462. GGML_ASSERT(nbk0 == sizeof(float));
  11463. GGML_ASSERT(nbv0 == sizeof(float));
  11464. GGML_ASSERT(neq0 == D);
  11465. GGML_ASSERT(nek0 == D);
  11466. GGML_ASSERT(nev1 == D);
  11467. GGML_ASSERT(ned0 == D);
  11468. GGML_ASSERT(neq1 == N);
  11469. GGML_ASSERT(nek1 == N + P);
  11470. GGML_ASSERT(nev1 == D);
  11471. GGML_ASSERT(ned1 == N);
  11472. // dst cannot be transposed or permuted
  11473. GGML_ASSERT(nb0 == sizeof(float));
  11474. GGML_ASSERT(nb0 <= nb1);
  11475. GGML_ASSERT(nb1 <= nb2);
  11476. GGML_ASSERT(nb2 <= nb3);
  11477. if (params->type == GGML_TASK_TYPE_INIT) {
  11478. if (ith == 0) {
  11479. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11480. }
  11481. return;
  11482. }
  11483. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11484. return;
  11485. }
  11486. const int64_t elem_q = ggml_nelements(q);
  11487. const int64_t elem_k = ggml_nelements(k);
  11488. enum ggml_type result_type = dst->type;
  11489. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11490. const size_t tsize = ggml_type_size(result_type);
  11491. const size_t offs_q = 0;
  11492. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11493. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11494. void * grad_q = (char *) dst->data;
  11495. void * grad_k = (char *) dst->data + offs_k;
  11496. void * grad_v = (char *) dst->data + offs_v;
  11497. const size_t nbgq1 = nb0*neq0;
  11498. const size_t nbgq2 = nb0*neq0*neq1;
  11499. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11500. const size_t nbgk1 = nb0*nek0;
  11501. const size_t nbgk2 = nb0*nek0*nek1;
  11502. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11503. const size_t nbgv1 = nb0*nev0;
  11504. const size_t nbgv2 = nb0*nev0*nev1;
  11505. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11506. // parallelize by k rows using ggml_vec_dot_f32
  11507. // total rows in k
  11508. const int nr = nek2*nek3;
  11509. // rows per thread
  11510. const int dr = (nr + nth - 1)/nth;
  11511. // row range for this thread
  11512. const int ir0 = dr*ith;
  11513. const int ir1 = MIN(ir0 + dr, nr);
  11514. const float scale = 1.0f/sqrtf(D);
  11515. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11516. // how often k2 (and v2) is repeated in q2
  11517. int nrep = neq2/nek2;
  11518. for (int ir = ir0; ir < ir1; ++ir) {
  11519. // q indices
  11520. const int ik3 = ir/(nek2);
  11521. const int ik2 = ir - ik3*nek2;
  11522. const int iq3 = ik3;
  11523. const int id3 = ik3;
  11524. const int iv3 = ik3;
  11525. const int iv2 = ik2;
  11526. for (int irep = 0; irep < nrep; ++irep) {
  11527. const int iq2 = ik2 + irep*nek2;
  11528. const int id2 = iq2;
  11529. // (ik2 + irep*nek2) % nek2 == ik2
  11530. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11531. const int id1 = iq1;
  11532. // not sure about CACHE_LINE_SIZE_F32..
  11533. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11534. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11535. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11536. for (int i = M; i < Mup; ++i) {
  11537. S[i] = -INFINITY;
  11538. }
  11539. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11540. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11541. // k indices
  11542. const int ik1 = ic;
  11543. // S indices
  11544. const int i1 = ik1;
  11545. ggml_vec_dot_f32(neq0,
  11546. S + i1, 0,
  11547. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11548. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11549. }
  11550. // scale
  11551. ggml_vec_scale_f32(masked_begin, S, scale);
  11552. for (int64_t i = masked_begin; i < M; i++) {
  11553. S[i] = -INFINITY;
  11554. }
  11555. // softmax
  11556. // exclude known -INF S[..] values from max and loop
  11557. // dont forget to set their SM values to zero
  11558. {
  11559. float max = -INFINITY;
  11560. ggml_vec_max_f32(masked_begin, &max, S);
  11561. ggml_float sum = 0.0;
  11562. {
  11563. #ifdef GGML_SOFT_MAX_ACCELERATE
  11564. max = -max;
  11565. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11566. vvexpf(SM, SM, &Mup);
  11567. ggml_vec_sum_f32(Mup, &sum, SM);
  11568. #else
  11569. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11570. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11571. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11572. if (i >= masked_begin) {
  11573. break;
  11574. }
  11575. float * SR = S + i;
  11576. float * SW = SM + i;
  11577. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11578. if (i + j >= masked_begin) {
  11579. break;
  11580. } else if (SR[j] == -INFINITY) {
  11581. SW[j] = 0.0f;
  11582. } else {
  11583. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11584. const float val = expf(SR[j] - max);
  11585. #else
  11586. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11587. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11588. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11589. #endif
  11590. sump[j] += (ggml_float)val;
  11591. SW[j] = val;
  11592. }
  11593. }
  11594. }
  11595. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11596. sum += sump[i];
  11597. }
  11598. #endif
  11599. }
  11600. assert(sum > 0.0);
  11601. sum = 1.0/sum;
  11602. ggml_vec_scale_f32(masked_begin, SM, sum);
  11603. }
  11604. // step-by-step explanation
  11605. {
  11606. // forward-process shape grads from backward process
  11607. // parallel_for ik2,ik3:
  11608. // for irep:
  11609. // iq2 = ik2 + irep*nek2
  11610. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11611. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11612. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11613. // for iq1:
  11614. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11615. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11616. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11617. // S0 = -Inf [D,1,1,1]
  11618. // ~S1[i] = dot(kcur[:D,i], qcur)
  11619. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11620. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11621. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11622. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11623. // ~S5[i] = dot(vcur[:,i], S4)
  11624. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  11625. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11626. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  11627. // dst backward-/ grad[dst] = d
  11628. //
  11629. // output gradients with their dependencies:
  11630. //
  11631. // grad[kcur] = grad[S1].T @ qcur
  11632. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11633. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11634. // grad[S4] = grad[S5] @ vcur
  11635. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11636. // grad[qcur] = grad[S1] @ kcur
  11637. // grad[vcur] = grad[S5].T @ S4
  11638. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11639. //
  11640. // in post-order:
  11641. //
  11642. // S1 = qcur @ kcur.T
  11643. // S2 = S1 * scale
  11644. // S3 = diag_mask_inf(S2, P)
  11645. // S4 = softmax(S3)
  11646. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  11647. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11648. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11649. // grad[qcur] = grad[S1] @ kcur
  11650. // grad[kcur] = grad[S1].T @ qcur
  11651. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  11652. //
  11653. // using less variables (SM=S4):
  11654. //
  11655. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11656. // SM = softmax(S)
  11657. // S = d[:D,iq1,iq2,iq3] @ vcur
  11658. // dot_SM_gradSM = dot(SM, S)
  11659. // S = SM * (S - dot(SM, S))
  11660. // S = diag_mask_zero(S, P) * scale
  11661. //
  11662. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11663. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  11664. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11665. }
  11666. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11667. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  11668. // for ic:
  11669. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  11670. // exclude known future zero S[..] values from operation
  11671. ggml_vec_set_f32(masked_begin, S, 0);
  11672. for (int64_t ic = 0; ic < D; ++ic) {
  11673. ggml_vec_mad_f32(masked_begin,
  11674. S,
  11675. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11676. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11677. }
  11678. // S = SM * (S - dot(SM, S))
  11679. float dot_SM_gradSM = 0;
  11680. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  11681. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11682. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  11683. // S = diag_mask_zero(S, P) * scale
  11684. // already done by above ggml_vec_set_f32
  11685. // exclude known zero S[..] values from operation
  11686. ggml_vec_scale_f32(masked_begin, S, scale);
  11687. // S shape [M,1]
  11688. // SM shape [M,1]
  11689. // kcur shape [D,M]
  11690. // qcur shape [D,1]
  11691. // vcur shape [M,D]
  11692. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11693. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11694. // for ic:
  11695. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  11696. // exclude known zero S[..] values from loop
  11697. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11698. ggml_vec_mad_f32(D,
  11699. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  11700. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11701. S[ic]);
  11702. }
  11703. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11704. // for ic:
  11705. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11706. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11707. // exclude known zero S[..] values from loop
  11708. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11709. ggml_vec_mad_f32(D,
  11710. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  11711. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  11712. S[ic]);
  11713. }
  11714. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  11715. // for ic:
  11716. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  11717. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  11718. // exclude known zero SM[..] values from mad
  11719. for (int64_t ic = 0; ic < D; ++ic) {
  11720. ggml_vec_mad_f32(masked_begin,
  11721. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  11722. SM,
  11723. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  11724. }
  11725. }
  11726. }
  11727. }
  11728. }
  11729. static void ggml_compute_forward_flash_attn_back(
  11730. const struct ggml_compute_params * params,
  11731. const bool masked,
  11732. struct ggml_tensor * dst) {
  11733. const struct ggml_tensor * q = dst->src[0];
  11734. switch (q->type) {
  11735. case GGML_TYPE_F32:
  11736. {
  11737. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  11738. } break;
  11739. default:
  11740. {
  11741. GGML_ASSERT(false);
  11742. } break;
  11743. }
  11744. }
  11745. // ggml_compute_forward_win_part
  11746. static void ggml_compute_forward_win_part_f32(
  11747. const struct ggml_compute_params * params,
  11748. struct ggml_tensor * dst) {
  11749. const struct ggml_tensor * src0 = dst->src[0];
  11750. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11751. return;
  11752. }
  11753. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11754. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11755. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  11756. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  11757. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  11758. assert(ne00 == ne0);
  11759. assert(ne3 == nep0*nep1);
  11760. // TODO: optimize / multi-thread
  11761. for (int py = 0; py < nep1; ++py) {
  11762. for (int px = 0; px < nep0; ++px) {
  11763. const int64_t i3 = py*nep0 + px;
  11764. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11765. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11766. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11767. const int64_t i02 = py*w + i2;
  11768. const int64_t i01 = px*w + i1;
  11769. const int64_t i00 = i0;
  11770. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11771. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11772. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11773. ((float *) dst->data)[i] = 0.0f;
  11774. } else {
  11775. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11776. }
  11777. }
  11778. }
  11779. }
  11780. }
  11781. }
  11782. }
  11783. static void ggml_compute_forward_win_part(
  11784. const struct ggml_compute_params * params,
  11785. struct ggml_tensor * dst) {
  11786. const struct ggml_tensor * src0 = dst->src[0];
  11787. switch (src0->type) {
  11788. case GGML_TYPE_F32:
  11789. {
  11790. ggml_compute_forward_win_part_f32(params, dst);
  11791. } break;
  11792. default:
  11793. {
  11794. GGML_ASSERT(false);
  11795. } break;
  11796. }
  11797. }
  11798. // ggml_compute_forward_win_unpart
  11799. static void ggml_compute_forward_win_unpart_f32(
  11800. const struct ggml_compute_params * params,
  11801. struct ggml_tensor * dst) {
  11802. const struct ggml_tensor * src0 = dst->src[0];
  11803. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11804. return;
  11805. }
  11806. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  11807. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11808. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  11809. // padding
  11810. const int px = (w - ne1%w)%w;
  11811. //const int py = (w - ne2%w)%w;
  11812. const int npx = (px + ne1)/w;
  11813. //const int npy = (py + ne2)/w;
  11814. assert(ne0 == ne00);
  11815. // TODO: optimize / multi-thread
  11816. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11817. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11818. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11819. const int ip2 = i2/w;
  11820. const int ip1 = i1/w;
  11821. const int64_t i02 = i2%w;
  11822. const int64_t i01 = i1%w;
  11823. const int64_t i00 = i0;
  11824. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11825. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11826. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11827. }
  11828. }
  11829. }
  11830. }
  11831. static void ggml_compute_forward_win_unpart(
  11832. const struct ggml_compute_params * params,
  11833. struct ggml_tensor * dst) {
  11834. const struct ggml_tensor * src0 = dst->src[0];
  11835. switch (src0->type) {
  11836. case GGML_TYPE_F32:
  11837. {
  11838. ggml_compute_forward_win_unpart_f32(params, dst);
  11839. } break;
  11840. default:
  11841. {
  11842. GGML_ASSERT(false);
  11843. } break;
  11844. }
  11845. }
  11846. //gmml_compute_forward_unary
  11847. static void ggml_compute_forward_unary(
  11848. const struct ggml_compute_params * params,
  11849. struct ggml_tensor * dst) {
  11850. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  11851. switch (op) {
  11852. case GGML_UNARY_OP_ABS:
  11853. {
  11854. ggml_compute_forward_abs(params, dst);
  11855. } break;
  11856. case GGML_UNARY_OP_SGN:
  11857. {
  11858. ggml_compute_forward_sgn(params, dst);
  11859. } break;
  11860. case GGML_UNARY_OP_NEG:
  11861. {
  11862. ggml_compute_forward_neg(params, dst);
  11863. } break;
  11864. case GGML_UNARY_OP_STEP:
  11865. {
  11866. ggml_compute_forward_step(params, dst);
  11867. } break;
  11868. case GGML_UNARY_OP_TANH:
  11869. {
  11870. ggml_compute_forward_tanh(params, dst);
  11871. } break;
  11872. case GGML_UNARY_OP_ELU:
  11873. {
  11874. ggml_compute_forward_elu(params, dst);
  11875. } break;
  11876. case GGML_UNARY_OP_RELU:
  11877. {
  11878. ggml_compute_forward_relu(params, dst);
  11879. } break;
  11880. case GGML_UNARY_OP_GELU:
  11881. {
  11882. ggml_compute_forward_gelu(params, dst);
  11883. } break;
  11884. case GGML_UNARY_OP_GELU_QUICK:
  11885. {
  11886. ggml_compute_forward_gelu_quick(params, dst);
  11887. } break;
  11888. case GGML_UNARY_OP_SILU:
  11889. {
  11890. ggml_compute_forward_silu(params, dst);
  11891. } break;
  11892. case GGML_UNARY_OP_HARDSWISH:
  11893. {
  11894. ggml_compute_forward_hardswish(params, dst);
  11895. } break;
  11896. case GGML_UNARY_OP_HARDSIGMOID:
  11897. {
  11898. ggml_compute_forward_hardsigmoid(params, dst);
  11899. } break;
  11900. default:
  11901. {
  11902. GGML_ASSERT(false);
  11903. } break;
  11904. }
  11905. }
  11906. // ggml_compute_forward_get_rel_pos
  11907. static void ggml_compute_forward_get_rel_pos_f16(
  11908. const struct ggml_compute_params * params,
  11909. struct ggml_tensor * dst) {
  11910. const struct ggml_tensor * src0 = dst->src[0];
  11911. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11912. return;
  11913. }
  11914. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  11915. GGML_TENSOR_UNARY_OP_LOCALS
  11916. const int64_t w = ne1;
  11917. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  11918. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  11919. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11920. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11921. const int64_t pos = (w - i1 - 1) + i2;
  11922. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11923. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  11924. }
  11925. }
  11926. }
  11927. }
  11928. static void ggml_compute_forward_get_rel_pos(
  11929. const struct ggml_compute_params * params,
  11930. struct ggml_tensor * dst) {
  11931. const struct ggml_tensor * src0 = dst->src[0];
  11932. switch (src0->type) {
  11933. case GGML_TYPE_F16:
  11934. {
  11935. ggml_compute_forward_get_rel_pos_f16(params, dst);
  11936. } break;
  11937. default:
  11938. {
  11939. GGML_ASSERT(false);
  11940. } break;
  11941. }
  11942. }
  11943. // ggml_compute_forward_add_rel_pos
  11944. static void ggml_compute_forward_add_rel_pos_f32(
  11945. const struct ggml_compute_params * params,
  11946. struct ggml_tensor * dst) {
  11947. const struct ggml_tensor * src0 = dst->src[0];
  11948. const struct ggml_tensor * src1 = dst->src[1];
  11949. const struct ggml_tensor * src2 = dst->src[2];
  11950. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  11951. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  11952. if (params->ith != 0) {
  11953. return;
  11954. }
  11955. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  11956. return;
  11957. }
  11958. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11959. return;
  11960. }
  11961. int64_t t0 = ggml_perf_time_us();
  11962. UNUSED(t0);
  11963. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  11964. float * src1_data = (float *) src1->data;
  11965. float * src2_data = (float *) src2->data;
  11966. float * dst_data = (float *) dst->data;
  11967. const int64_t ne10 = src1->ne[0];
  11968. const int64_t ne11 = src1->ne[1];
  11969. const int64_t ne12 = src1->ne[2];
  11970. const int64_t ne13 = src1->ne[3];
  11971. const int ith = params->ith;
  11972. const int nth = params->nth;
  11973. // total patches in dst
  11974. const int np = ne13;
  11975. // patches per thread
  11976. const int dp = (np + nth - 1)/nth;
  11977. // patch range for this thread
  11978. const int ip0 = dp*ith;
  11979. const int ip1 = MIN(ip0 + dp, np);
  11980. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  11981. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  11982. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  11983. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  11984. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  11985. const int64_t jp0 = jp1 + i10;
  11986. const float src1_e = src1_data[jp0];
  11987. const float src2_e = src2_data[jp0];
  11988. const int64_t jdh = jp0 * ne10;
  11989. const int64_t jdw = jdh - (ne10 - 1) * i10;
  11990. for (int64_t j = 0; j < ne10; ++j) {
  11991. dst_data[jdh + j ] += src2_e;
  11992. dst_data[jdw + j*ne10] += src1_e;
  11993. }
  11994. }
  11995. }
  11996. }
  11997. }
  11998. }
  11999. static void ggml_compute_forward_add_rel_pos(
  12000. const struct ggml_compute_params * params,
  12001. struct ggml_tensor * dst) {
  12002. const struct ggml_tensor * src0 = dst->src[0];
  12003. switch (src0->type) {
  12004. case GGML_TYPE_F32:
  12005. {
  12006. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12007. } break;
  12008. default:
  12009. {
  12010. GGML_ASSERT(false);
  12011. } break;
  12012. }
  12013. }
  12014. // ggml_compute_forward_map_unary
  12015. static void ggml_compute_forward_map_unary_f32(
  12016. const struct ggml_compute_params * params,
  12017. struct ggml_tensor * dst,
  12018. const ggml_unary_op_f32_t fun) {
  12019. const struct ggml_tensor * src0 = dst->src[0];
  12020. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12021. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12022. return;
  12023. }
  12024. const int n = ggml_nrows(src0);
  12025. const int nc = src0->ne[0];
  12026. assert( dst->nb[0] == sizeof(float));
  12027. assert(src0->nb[0] == sizeof(float));
  12028. for (int i = 0; i < n; i++) {
  12029. fun(nc,
  12030. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12031. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12032. }
  12033. }
  12034. static void ggml_compute_forward_map_unary(
  12035. const struct ggml_compute_params * params,
  12036. struct ggml_tensor * dst,
  12037. const ggml_unary_op_f32_t fun) {
  12038. const struct ggml_tensor * src0 = dst->src[0];
  12039. switch (src0->type) {
  12040. case GGML_TYPE_F32:
  12041. {
  12042. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12043. } break;
  12044. default:
  12045. {
  12046. GGML_ASSERT(false);
  12047. } break;
  12048. }
  12049. }
  12050. // ggml_compute_forward_map_binary
  12051. static void ggml_compute_forward_map_binary_f32(
  12052. const struct ggml_compute_params * params,
  12053. struct ggml_tensor * dst,
  12054. const ggml_binary_op_f32_t fun) {
  12055. const struct ggml_tensor * src0 = dst->src[0];
  12056. const struct ggml_tensor * src1 = dst->src[1];
  12057. assert(params->ith == 0);
  12058. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12059. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12060. return;
  12061. }
  12062. const int n = ggml_nrows(src0);
  12063. const int nc = src0->ne[0];
  12064. assert( dst->nb[0] == sizeof(float));
  12065. assert(src0->nb[0] == sizeof(float));
  12066. assert(src1->nb[0] == sizeof(float));
  12067. for (int i = 0; i < n; i++) {
  12068. fun(nc,
  12069. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12070. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12071. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12072. }
  12073. }
  12074. static void ggml_compute_forward_map_binary(
  12075. const struct ggml_compute_params * params,
  12076. struct ggml_tensor * dst,
  12077. const ggml_binary_op_f32_t fun) {
  12078. const struct ggml_tensor * src0 = dst->src[0];
  12079. switch (src0->type) {
  12080. case GGML_TYPE_F32:
  12081. {
  12082. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12083. } break;
  12084. default:
  12085. {
  12086. GGML_ASSERT(false);
  12087. } break;
  12088. }
  12089. }
  12090. // ggml_compute_forward_map_custom1
  12091. static void ggml_compute_forward_map_custom1_f32(
  12092. const struct ggml_compute_params * params,
  12093. struct ggml_tensor * dst,
  12094. const ggml_custom1_op_f32_t fun) {
  12095. const struct ggml_tensor * a = dst->src[0];
  12096. assert(params->ith == 0);
  12097. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12098. return;
  12099. }
  12100. fun(dst, a);
  12101. }
  12102. // ggml_compute_forward_map_custom2
  12103. static void ggml_compute_forward_map_custom2_f32(
  12104. const struct ggml_compute_params * params,
  12105. struct ggml_tensor * dst,
  12106. const ggml_custom2_op_f32_t fun) {
  12107. const struct ggml_tensor * a = dst->src[0];
  12108. const struct ggml_tensor * b = dst->src[1];
  12109. assert(params->ith == 0);
  12110. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12111. return;
  12112. }
  12113. fun(dst, a, b);
  12114. }
  12115. // ggml_compute_forward_map_custom3
  12116. static void ggml_compute_forward_map_custom3_f32(
  12117. const struct ggml_compute_params * params,
  12118. struct ggml_tensor * dst,
  12119. const ggml_custom3_op_f32_t fun) {
  12120. const struct ggml_tensor * a = dst->src[0];
  12121. const struct ggml_tensor * b = dst->src[1];
  12122. const struct ggml_tensor * c = dst->src[1];
  12123. assert(params->ith == 0);
  12124. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12125. return;
  12126. }
  12127. fun(dst, a, b, c);
  12128. }
  12129. // ggml_compute_forward_map_custom1
  12130. static void ggml_compute_forward_map_custom1(
  12131. const struct ggml_compute_params * params,
  12132. struct ggml_tensor * dst) {
  12133. const struct ggml_tensor * a = dst->src[0];
  12134. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12135. return;
  12136. }
  12137. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  12138. p->fun(dst, a, params->ith, params->nth, p->userdata);
  12139. }
  12140. // ggml_compute_forward_map_custom2
  12141. static void ggml_compute_forward_map_custom2(
  12142. const struct ggml_compute_params * params,
  12143. struct ggml_tensor * dst) {
  12144. const struct ggml_tensor * a = dst->src[0];
  12145. const struct ggml_tensor * b = dst->src[1];
  12146. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12147. return;
  12148. }
  12149. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  12150. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  12151. }
  12152. // ggml_compute_forward_map_custom3
  12153. static void ggml_compute_forward_map_custom3(
  12154. const struct ggml_compute_params * params,
  12155. struct ggml_tensor * dst) {
  12156. const struct ggml_tensor * a = dst->src[0];
  12157. const struct ggml_tensor * b = dst->src[1];
  12158. const struct ggml_tensor * c = dst->src[2];
  12159. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12160. return;
  12161. }
  12162. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  12163. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  12164. }
  12165. // ggml_compute_forward_cross_entropy_loss
  12166. static void ggml_compute_forward_cross_entropy_loss_f32(
  12167. const struct ggml_compute_params * params,
  12168. struct ggml_tensor * dst) {
  12169. const struct ggml_tensor * src0 = dst->src[0];
  12170. const struct ggml_tensor * src1 = dst->src[1];
  12171. GGML_ASSERT(ggml_is_contiguous(src0));
  12172. GGML_ASSERT(ggml_is_contiguous(src1));
  12173. GGML_ASSERT(ggml_is_scalar(dst));
  12174. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12175. const int ith = params->ith;
  12176. const int nth = params->nth;
  12177. float * sums = (float *) params->wdata;
  12178. // TODO: handle transposed/permuted matrices
  12179. const int nc = src0->ne[0];
  12180. const int nr = ggml_nrows(src0);
  12181. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12182. if (params->type == GGML_TASK_TYPE_INIT) {
  12183. if (ith == 0) {
  12184. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12185. }
  12186. return;
  12187. }
  12188. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12189. if (ith == 0) {
  12190. float * dp = (float *) dst->data;
  12191. ggml_vec_sum_f32(nth, dp, sums);
  12192. dp[0] *= -1.0f / (float) nr;
  12193. }
  12194. return;
  12195. }
  12196. const double eps = 1e-9;
  12197. // rows per thread
  12198. const int dr = (nr + nth - 1)/nth;
  12199. // row range for this thread
  12200. const int ir0 = dr*ith;
  12201. const int ir1 = MIN(ir0 + dr, nr);
  12202. for (int i1 = ir0; i1 < ir1; i1++) {
  12203. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12204. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12205. float * st = ((float *) params->wdata) + nth + ith*nc;
  12206. #ifndef NDEBUG
  12207. for (int i = 0; i < nc; ++i) {
  12208. //printf("p[%d] = %f\n", i, p[i]);
  12209. assert(!isnan(s0[i]));
  12210. assert(!isnan(s1[i]));
  12211. }
  12212. #endif
  12213. // soft_max
  12214. ggml_float sum = 0.0;
  12215. {
  12216. float max = -INFINITY;
  12217. ggml_vec_max_f32(nc, &max, s0);
  12218. uint16_t scvt; UNUSED(scvt);
  12219. for (int i = 0; i < nc; i++) {
  12220. if (s0[i] == -INFINITY) {
  12221. st[i] = 0.0f;
  12222. } else {
  12223. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12224. const float s = s0[i] - max;
  12225. const float val = expf(s);
  12226. #else
  12227. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12228. memcpy(&scvt, &s, sizeof(scvt));
  12229. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12230. #endif
  12231. sum += (ggml_float)val;
  12232. st[i] = val;
  12233. }
  12234. }
  12235. assert(sum > 0.0);
  12236. // sum = 1.0/sum;
  12237. }
  12238. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12239. sum = (1.0 - eps) / sum;
  12240. ggml_vec_scale_f32(nc, st, sum);
  12241. ggml_vec_add1_f32(nc, st, st, eps);
  12242. ggml_vec_log_f32(nc, st, st);
  12243. ggml_vec_mul_f32(nc, st, st, s1);
  12244. float st_sum = 0;
  12245. ggml_vec_sum_f32(nc, &st_sum, st);
  12246. sums[ith] += st_sum;
  12247. #ifndef NDEBUG
  12248. for (int i = 0; i < nc; ++i) {
  12249. assert(!isnan(st[i]));
  12250. assert(!isinf(st[i]));
  12251. }
  12252. #endif
  12253. }
  12254. }
  12255. static void ggml_compute_forward_cross_entropy_loss(
  12256. const struct ggml_compute_params * params,
  12257. struct ggml_tensor * dst) {
  12258. const struct ggml_tensor * src0 = dst->src[0];
  12259. switch (src0->type) {
  12260. case GGML_TYPE_F32:
  12261. {
  12262. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12263. } break;
  12264. default:
  12265. {
  12266. GGML_ASSERT(false);
  12267. } break;
  12268. }
  12269. }
  12270. // ggml_compute_forward_cross_entropy_loss_back
  12271. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12272. const struct ggml_compute_params * params,
  12273. struct ggml_tensor * dst) {
  12274. const struct ggml_tensor * src0 = dst->src[0];
  12275. const struct ggml_tensor * src1 = dst->src[1];
  12276. const struct ggml_tensor * opt0 = dst->src[2];
  12277. GGML_ASSERT(ggml_is_contiguous(dst));
  12278. GGML_ASSERT(ggml_is_contiguous(src0));
  12279. GGML_ASSERT(ggml_is_contiguous(src1));
  12280. GGML_ASSERT(ggml_is_contiguous(opt0));
  12281. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12282. const int64_t ith = params->ith;
  12283. const int64_t nth = params->nth;
  12284. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12285. return;
  12286. }
  12287. const double eps = 1e-9;
  12288. // TODO: handle transposed/permuted matrices
  12289. const int64_t nc = src0->ne[0];
  12290. const int64_t nr = ggml_nrows(src0);
  12291. // rows per thread
  12292. const int64_t dr = (nr + nth - 1)/nth;
  12293. // row range for this thread
  12294. const int64_t ir0 = dr*ith;
  12295. const int64_t ir1 = MIN(ir0 + dr, nr);
  12296. float * d = (float *) opt0->data;
  12297. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12298. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12299. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12300. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12301. #ifndef NDEBUG
  12302. for (int i = 0; i < nc; ++i) {
  12303. //printf("p[%d] = %f\n", i, p[i]);
  12304. assert(!isnan(s0[i]));
  12305. assert(!isnan(s1[i]));
  12306. }
  12307. #endif
  12308. // soft_max
  12309. ggml_float sum = 0.0;
  12310. {
  12311. float max = -INFINITY;
  12312. ggml_vec_max_f32(nc, &max, s0);
  12313. uint16_t scvt; UNUSED(scvt);
  12314. for (int i = 0; i < nc; i++) {
  12315. if (s0[i] == -INFINITY) {
  12316. ds0[i] = 0.0f;
  12317. } else {
  12318. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12319. const float s = s0[i] - max;
  12320. const float val = expf(s);
  12321. #else
  12322. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12323. memcpy(&scvt, &s, sizeof(scvt));
  12324. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12325. #endif
  12326. sum += (ggml_float)val;
  12327. ds0[i] = val;
  12328. }
  12329. }
  12330. assert(sum > 0.0);
  12331. sum = (1.0 - eps)/sum;
  12332. }
  12333. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12334. ggml_vec_scale_f32(nc, ds0, sum);
  12335. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12336. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12337. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12338. #ifndef NDEBUG
  12339. for (int i = 0; i < nc; ++i) {
  12340. assert(!isnan(ds0[i]));
  12341. assert(!isinf(ds0[i]));
  12342. }
  12343. #endif
  12344. }
  12345. }
  12346. static void ggml_compute_forward_cross_entropy_loss_back(
  12347. const struct ggml_compute_params * params,
  12348. struct ggml_tensor * dst) {
  12349. const struct ggml_tensor * src0 = dst->src[0];
  12350. switch (src0->type) {
  12351. case GGML_TYPE_F32:
  12352. {
  12353. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12354. } break;
  12355. default:
  12356. {
  12357. GGML_ASSERT(false);
  12358. } break;
  12359. }
  12360. }
  12361. /////////////////////////////////
  12362. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12363. GGML_ASSERT(params);
  12364. if (tensor->op == GGML_OP_NONE) {
  12365. return;
  12366. }
  12367. #ifdef GGML_USE_CUBLAS
  12368. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12369. if (skip_cpu) {
  12370. return;
  12371. }
  12372. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12373. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12374. #elif defined(GGML_USE_VULKAN)
  12375. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12376. #ifdef GGML_VULKAN_CHECK_RESULTS
  12377. if (skip_cpu) {
  12378. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12379. }
  12380. #endif
  12381. if (skip_cpu) {
  12382. return;
  12383. }
  12384. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12385. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12386. #endif // GGML_USE_CUBLAS
  12387. #ifdef GGML_USE_SYCL
  12388. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12389. if (skip_cpu) {
  12390. return;
  12391. }
  12392. #endif // GGML_USE_SYCL
  12393. switch (tensor->op) {
  12394. case GGML_OP_DUP:
  12395. {
  12396. ggml_compute_forward_dup(params, tensor);
  12397. } break;
  12398. case GGML_OP_ADD:
  12399. {
  12400. ggml_compute_forward_add(params, tensor);
  12401. } break;
  12402. case GGML_OP_ADD1:
  12403. {
  12404. ggml_compute_forward_add1(params, tensor);
  12405. } break;
  12406. case GGML_OP_ACC:
  12407. {
  12408. ggml_compute_forward_acc(params, tensor);
  12409. } break;
  12410. case GGML_OP_SUB:
  12411. {
  12412. ggml_compute_forward_sub(params, tensor);
  12413. } break;
  12414. case GGML_OP_MUL:
  12415. {
  12416. ggml_compute_forward_mul(params, tensor);
  12417. } break;
  12418. case GGML_OP_DIV:
  12419. {
  12420. ggml_compute_forward_div(params, tensor);
  12421. } break;
  12422. case GGML_OP_SQR:
  12423. {
  12424. ggml_compute_forward_sqr(params, tensor);
  12425. } break;
  12426. case GGML_OP_SQRT:
  12427. {
  12428. ggml_compute_forward_sqrt(params, tensor);
  12429. } break;
  12430. case GGML_OP_LOG:
  12431. {
  12432. ggml_compute_forward_log(params, tensor);
  12433. } break;
  12434. case GGML_OP_SUM:
  12435. {
  12436. ggml_compute_forward_sum(params, tensor);
  12437. } break;
  12438. case GGML_OP_SUM_ROWS:
  12439. {
  12440. ggml_compute_forward_sum_rows(params, tensor);
  12441. } break;
  12442. case GGML_OP_MEAN:
  12443. {
  12444. ggml_compute_forward_mean(params, tensor);
  12445. } break;
  12446. case GGML_OP_ARGMAX:
  12447. {
  12448. ggml_compute_forward_argmax(params, tensor);
  12449. } break;
  12450. case GGML_OP_REPEAT:
  12451. {
  12452. ggml_compute_forward_repeat(params, tensor);
  12453. } break;
  12454. case GGML_OP_REPEAT_BACK:
  12455. {
  12456. ggml_compute_forward_repeat_back(params, tensor);
  12457. } break;
  12458. case GGML_OP_CONCAT:
  12459. {
  12460. ggml_compute_forward_concat(params, tensor);
  12461. } break;
  12462. case GGML_OP_SILU_BACK:
  12463. {
  12464. ggml_compute_forward_silu_back(params, tensor);
  12465. } break;
  12466. case GGML_OP_NORM:
  12467. {
  12468. ggml_compute_forward_norm(params, tensor);
  12469. } break;
  12470. case GGML_OP_RMS_NORM:
  12471. {
  12472. ggml_compute_forward_rms_norm(params, tensor);
  12473. } break;
  12474. case GGML_OP_RMS_NORM_BACK:
  12475. {
  12476. ggml_compute_forward_rms_norm_back(params, tensor);
  12477. } break;
  12478. case GGML_OP_GROUP_NORM:
  12479. {
  12480. ggml_compute_forward_group_norm(params, tensor);
  12481. } break;
  12482. case GGML_OP_MUL_MAT:
  12483. {
  12484. ggml_compute_forward_mul_mat(params, tensor);
  12485. } break;
  12486. case GGML_OP_MUL_MAT_ID:
  12487. {
  12488. ggml_compute_forward_mul_mat_id(params, tensor);
  12489. } break;
  12490. case GGML_OP_OUT_PROD:
  12491. {
  12492. ggml_compute_forward_out_prod(params, tensor);
  12493. } break;
  12494. case GGML_OP_SCALE:
  12495. {
  12496. ggml_compute_forward_scale(params, tensor);
  12497. } break;
  12498. case GGML_OP_SET:
  12499. {
  12500. ggml_compute_forward_set(params, tensor);
  12501. } break;
  12502. case GGML_OP_CPY:
  12503. {
  12504. ggml_compute_forward_cpy(params, tensor);
  12505. } break;
  12506. case GGML_OP_CONT:
  12507. {
  12508. ggml_compute_forward_cont(params, tensor);
  12509. } break;
  12510. case GGML_OP_RESHAPE:
  12511. {
  12512. ggml_compute_forward_reshape(params, tensor);
  12513. } break;
  12514. case GGML_OP_VIEW:
  12515. {
  12516. ggml_compute_forward_view(params, tensor);
  12517. } break;
  12518. case GGML_OP_PERMUTE:
  12519. {
  12520. ggml_compute_forward_permute(params, tensor);
  12521. } break;
  12522. case GGML_OP_TRANSPOSE:
  12523. {
  12524. ggml_compute_forward_transpose(params, tensor);
  12525. } break;
  12526. case GGML_OP_GET_ROWS:
  12527. {
  12528. ggml_compute_forward_get_rows(params, tensor);
  12529. } break;
  12530. case GGML_OP_GET_ROWS_BACK:
  12531. {
  12532. ggml_compute_forward_get_rows_back(params, tensor);
  12533. } break;
  12534. case GGML_OP_DIAG:
  12535. {
  12536. ggml_compute_forward_diag(params, tensor);
  12537. } break;
  12538. case GGML_OP_DIAG_MASK_INF:
  12539. {
  12540. ggml_compute_forward_diag_mask_inf(params, tensor);
  12541. } break;
  12542. case GGML_OP_DIAG_MASK_ZERO:
  12543. {
  12544. ggml_compute_forward_diag_mask_zero(params, tensor);
  12545. } break;
  12546. case GGML_OP_SOFT_MAX:
  12547. {
  12548. ggml_compute_forward_soft_max(params, tensor);
  12549. } break;
  12550. case GGML_OP_SOFT_MAX_BACK:
  12551. {
  12552. ggml_compute_forward_soft_max_back(params, tensor);
  12553. } break;
  12554. case GGML_OP_ROPE:
  12555. {
  12556. ggml_compute_forward_rope(params, tensor);
  12557. } break;
  12558. case GGML_OP_ROPE_BACK:
  12559. {
  12560. ggml_compute_forward_rope_back(params, tensor);
  12561. } break;
  12562. case GGML_OP_ALIBI:
  12563. {
  12564. ggml_compute_forward_alibi(params, tensor);
  12565. } break;
  12566. case GGML_OP_CLAMP:
  12567. {
  12568. ggml_compute_forward_clamp(params, tensor);
  12569. } break;
  12570. case GGML_OP_CONV_TRANSPOSE_1D:
  12571. {
  12572. ggml_compute_forward_conv_transpose_1d(params, tensor);
  12573. } break;
  12574. case GGML_OP_IM2COL:
  12575. {
  12576. ggml_compute_forward_im2col(params, tensor);
  12577. } break;
  12578. case GGML_OP_CONV_TRANSPOSE_2D:
  12579. {
  12580. ggml_compute_forward_conv_transpose_2d(params, tensor);
  12581. } break;
  12582. case GGML_OP_POOL_1D:
  12583. {
  12584. ggml_compute_forward_pool_1d(params, tensor);
  12585. } break;
  12586. case GGML_OP_POOL_2D:
  12587. {
  12588. ggml_compute_forward_pool_2d(params, tensor);
  12589. } break;
  12590. case GGML_OP_UPSCALE:
  12591. {
  12592. ggml_compute_forward_upscale(params, tensor);
  12593. } break;
  12594. case GGML_OP_PAD:
  12595. {
  12596. ggml_compute_forward_pad(params, tensor);
  12597. } break;
  12598. case GGML_OP_ARGSORT:
  12599. {
  12600. ggml_compute_forward_argsort(params, tensor);
  12601. } break;
  12602. case GGML_OP_LEAKY_RELU:
  12603. {
  12604. ggml_compute_forward_leaky_relu(params, tensor);
  12605. } break;
  12606. case GGML_OP_FLASH_ATTN:
  12607. {
  12608. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  12609. GGML_ASSERT(t == 0 || t == 1);
  12610. const bool masked = t != 0;
  12611. ggml_compute_forward_flash_attn(params, masked, tensor);
  12612. } break;
  12613. case GGML_OP_FLASH_FF:
  12614. {
  12615. ggml_compute_forward_flash_ff(params, tensor);
  12616. } break;
  12617. case GGML_OP_FLASH_ATTN_BACK:
  12618. {
  12619. int32_t t = ggml_get_op_params_i32(tensor, 0);
  12620. GGML_ASSERT(t == 0 || t == 1);
  12621. bool masked = t != 0;
  12622. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  12623. } break;
  12624. case GGML_OP_WIN_PART:
  12625. {
  12626. ggml_compute_forward_win_part(params, tensor);
  12627. } break;
  12628. case GGML_OP_WIN_UNPART:
  12629. {
  12630. ggml_compute_forward_win_unpart(params, tensor);
  12631. } break;
  12632. case GGML_OP_UNARY:
  12633. {
  12634. ggml_compute_forward_unary(params, tensor);
  12635. } break;
  12636. case GGML_OP_GET_REL_POS:
  12637. {
  12638. ggml_compute_forward_get_rel_pos(params, tensor);
  12639. } break;
  12640. case GGML_OP_ADD_REL_POS:
  12641. {
  12642. ggml_compute_forward_add_rel_pos(params, tensor);
  12643. } break;
  12644. case GGML_OP_MAP_UNARY:
  12645. {
  12646. ggml_unary_op_f32_t fun;
  12647. memcpy(&fun, tensor->op_params, sizeof(fun));
  12648. ggml_compute_forward_map_unary(params, tensor, fun);
  12649. }
  12650. break;
  12651. case GGML_OP_MAP_BINARY:
  12652. {
  12653. ggml_binary_op_f32_t fun;
  12654. memcpy(&fun, tensor->op_params, sizeof(fun));
  12655. ggml_compute_forward_map_binary(params, tensor, fun);
  12656. }
  12657. break;
  12658. case GGML_OP_MAP_CUSTOM1_F32:
  12659. {
  12660. ggml_custom1_op_f32_t fun;
  12661. memcpy(&fun, tensor->op_params, sizeof(fun));
  12662. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  12663. }
  12664. break;
  12665. case GGML_OP_MAP_CUSTOM2_F32:
  12666. {
  12667. ggml_custom2_op_f32_t fun;
  12668. memcpy(&fun, tensor->op_params, sizeof(fun));
  12669. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  12670. }
  12671. break;
  12672. case GGML_OP_MAP_CUSTOM3_F32:
  12673. {
  12674. ggml_custom3_op_f32_t fun;
  12675. memcpy(&fun, tensor->op_params, sizeof(fun));
  12676. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  12677. }
  12678. break;
  12679. case GGML_OP_MAP_CUSTOM1:
  12680. {
  12681. ggml_compute_forward_map_custom1(params, tensor);
  12682. }
  12683. break;
  12684. case GGML_OP_MAP_CUSTOM2:
  12685. {
  12686. ggml_compute_forward_map_custom2(params, tensor);
  12687. }
  12688. break;
  12689. case GGML_OP_MAP_CUSTOM3:
  12690. {
  12691. ggml_compute_forward_map_custom3(params, tensor);
  12692. }
  12693. break;
  12694. case GGML_OP_CROSS_ENTROPY_LOSS:
  12695. {
  12696. ggml_compute_forward_cross_entropy_loss(params, tensor);
  12697. }
  12698. break;
  12699. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12700. {
  12701. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  12702. }
  12703. break;
  12704. case GGML_OP_NONE:
  12705. {
  12706. // nop
  12707. } break;
  12708. case GGML_OP_COUNT:
  12709. {
  12710. GGML_ASSERT(false);
  12711. } break;
  12712. }
  12713. }
  12714. ////////////////////////////////////////////////////////////////////////////////
  12715. static size_t ggml_hash_size(size_t min_sz) {
  12716. // next primes after powers of two
  12717. static const size_t primes[] = {
  12718. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  12719. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  12720. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  12721. 16777259, 33554467, 67108879, 134217757, 268435459,
  12722. 536870923, 1073741827, 2147483659
  12723. };
  12724. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  12725. // find the smallest prime that is larger or equal to min_sz
  12726. size_t l = 0;
  12727. size_t r = n_primes;
  12728. while (l < r) {
  12729. size_t m = (l + r)/2;
  12730. if (primes[m] < min_sz) {
  12731. l = m + 1;
  12732. } else {
  12733. r = m;
  12734. }
  12735. }
  12736. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  12737. return sz;
  12738. }
  12739. static size_t ggml_hash(const void * p) {
  12740. return (size_t)p;
  12741. }
  12742. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12743. size_t h = ggml_hash(key) % hash_set.size;
  12744. // linear probing
  12745. size_t i = h;
  12746. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  12747. i = (i + 1) % hash_set.size;
  12748. if (i == h) {
  12749. // visited all hash table entries -> not found
  12750. return GGML_HASHTABLE_FULL;
  12751. }
  12752. }
  12753. return i;
  12754. }
  12755. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12756. size_t i = ggml_hash_find(hash_set, key);
  12757. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  12758. }
  12759. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12760. size_t i = ggml_hash_find(hash_set, key);
  12761. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12762. if (hash_set.keys[i] == key) {
  12763. return GGML_HASHTABLE_ALREADY_EXISTS;
  12764. }
  12765. // insert
  12766. GGML_ASSERT(hash_set.keys[i] == NULL);
  12767. hash_set.keys[i] = key;
  12768. return i;
  12769. }
  12770. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  12771. size_t i = ggml_hash_find(hash_set, key);
  12772. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  12773. hash_set.keys[i] = key;
  12774. return i;
  12775. }
  12776. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  12777. size = ggml_hash_size(size);
  12778. struct ggml_hash_set result;
  12779. result.size = size;
  12780. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  12781. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  12782. return result;
  12783. }
  12784. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  12785. GGML_FREE(hash_set.keys);
  12786. }
  12787. struct hash_map {
  12788. struct ggml_hash_set set;
  12789. struct ggml_tensor ** vals;
  12790. };
  12791. static struct hash_map * ggml_new_hash_map(size_t size) {
  12792. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  12793. result->set = ggml_hash_set_new(size);
  12794. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  12795. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  12796. return result;
  12797. }
  12798. static void ggml_hash_map_free(struct hash_map * map) {
  12799. ggml_hash_set_free(map->set);
  12800. GGML_FREE(map->vals);
  12801. GGML_FREE(map);
  12802. }
  12803. // gradient checkpointing
  12804. static struct ggml_tensor * ggml_recompute_graph_node(
  12805. struct ggml_context * ctx,
  12806. struct ggml_cgraph * graph,
  12807. struct hash_map * replacements,
  12808. struct ggml_tensor * node) {
  12809. if (node == NULL) {
  12810. return NULL;
  12811. }
  12812. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  12813. return node;
  12814. }
  12815. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  12816. return node;
  12817. }
  12818. int count_children = 0;
  12819. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12820. if (node->src[k]) {
  12821. ++count_children;
  12822. }
  12823. }
  12824. if (count_children == 0) {
  12825. return node;
  12826. }
  12827. size_t i = ggml_hash_find(replacements->set, node);
  12828. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  12829. if (replacements->set.keys[i] == node) {
  12830. return replacements->vals[i];
  12831. }
  12832. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  12833. // insert clone into replacements
  12834. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  12835. replacements->set.keys[i] = node;
  12836. replacements->vals[i] = clone;
  12837. clone->op = node->op;
  12838. clone->grad = node->grad;
  12839. clone->flags = node->flags;
  12840. clone->extra = node->extra;
  12841. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  12842. clone->nb[k] = node->nb[k];
  12843. }
  12844. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12845. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  12846. }
  12847. if (node->view_src != NULL) {
  12848. clone->data = (node->view_src->data == NULL)
  12849. ? NULL // view_src not yet allocated
  12850. : (char *) node->view_src->data // view_src already allocated
  12851. + node->view_offs;
  12852. clone->view_src = node->view_src;
  12853. clone->view_offs = node->view_offs;
  12854. }
  12855. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  12856. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  12857. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  12858. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  12859. return clone;
  12860. }
  12861. void ggml_build_backward_gradient_checkpointing(
  12862. struct ggml_context * ctx,
  12863. struct ggml_cgraph * gf,
  12864. struct ggml_cgraph * gb,
  12865. struct ggml_cgraph * gb_tmp,
  12866. struct ggml_tensor * * checkpoints,
  12867. int n_checkpoints) {
  12868. ggml_graph_cpy(gf, gb_tmp);
  12869. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  12870. if (n_checkpoints <= 0) {
  12871. ggml_graph_cpy(gb_tmp, gb);
  12872. return;
  12873. }
  12874. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  12875. // insert checkpoints in replacements
  12876. for (int i = 0; i < n_checkpoints; ++i) {
  12877. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  12878. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  12879. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  12880. replacements->set.keys[k] = checkpoints[i];
  12881. replacements->vals[k] = checkpoints[i];
  12882. }
  12883. ggml_graph_cpy(gf, gb);
  12884. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  12885. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  12886. // by recomputing them from checkpoints
  12887. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  12888. struct ggml_tensor * node = gb_tmp->nodes[i];
  12889. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  12890. // insert new tensors recomputing src, reusing already made replacements,
  12891. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  12892. // recurse for input tensors,
  12893. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  12894. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  12895. }
  12896. // insert rewritten backward node with replacements made into resulting backward graph gb
  12897. ggml_build_forward_expand(gb, node);
  12898. }
  12899. ggml_hash_map_free(replacements);
  12900. }
  12901. // functions to change gradients considering the case that input a might be initial gradient with zero value
  12902. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12903. if (ggml_hash_contains(zero_table, a)) {
  12904. return b;
  12905. } else {
  12906. return ggml_add_impl(ctx, a, b, false);
  12907. }
  12908. }
  12909. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  12910. if (ggml_hash_contains(zero_table, a)) {
  12911. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  12912. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  12913. } else {
  12914. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  12915. }
  12916. }
  12917. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12918. if (ggml_hash_contains(zero_table, a)) {
  12919. return ggml_repeat(ctx, b, a);
  12920. } else {
  12921. return ggml_add1_impl(ctx, a, b, false);
  12922. }
  12923. }
  12924. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  12925. if (ggml_hash_contains(zero_table, a)) {
  12926. return ggml_neg(ctx, b);
  12927. } else {
  12928. return ggml_sub_impl(ctx, a, b, false);
  12929. }
  12930. }
  12931. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  12932. struct ggml_tensor * src0 = tensor->src[0];
  12933. struct ggml_tensor * src1 = tensor->src[1];
  12934. switch (tensor->op) {
  12935. case GGML_OP_DUP:
  12936. {
  12937. if (src0->grad) {
  12938. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12939. }
  12940. } break;
  12941. case GGML_OP_ADD:
  12942. {
  12943. if (src0->grad) {
  12944. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12945. }
  12946. if (src1->grad) {
  12947. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12948. }
  12949. } break;
  12950. case GGML_OP_ADD1:
  12951. {
  12952. if (src0->grad) {
  12953. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12954. }
  12955. if (src1->grad) {
  12956. src1->grad = ggml_add_or_set(ctx,
  12957. src1->grad,
  12958. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12959. zero_table);
  12960. }
  12961. } break;
  12962. case GGML_OP_ACC:
  12963. {
  12964. if (src0->grad) {
  12965. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12966. }
  12967. if (src1->grad) {
  12968. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  12969. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  12970. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  12971. const size_t offset = ((int32_t *) tensor->op_params)[3];
  12972. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12973. tensor->grad,
  12974. src1->grad->ne[0],
  12975. src1->grad->ne[1],
  12976. src1->grad->ne[2],
  12977. src1->grad->ne[3],
  12978. nb1, nb2, nb3, offset);
  12979. src1->grad =
  12980. ggml_add_or_set(ctx,
  12981. src1->grad,
  12982. ggml_reshape(ctx,
  12983. ggml_cont(ctx, tensor_grad_view),
  12984. src1->grad),
  12985. zero_table);
  12986. }
  12987. } break;
  12988. case GGML_OP_SUB:
  12989. {
  12990. if (src0->grad) {
  12991. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  12992. }
  12993. if (src1->grad) {
  12994. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  12995. }
  12996. } break;
  12997. case GGML_OP_MUL:
  12998. {
  12999. if (src0->grad) {
  13000. src0->grad =
  13001. ggml_add_or_set(ctx,
  13002. src0->grad,
  13003. ggml_mul(ctx, src1, tensor->grad),
  13004. zero_table);
  13005. }
  13006. if (src1->grad) {
  13007. src1->grad =
  13008. ggml_add_or_set(ctx,
  13009. src1->grad,
  13010. ggml_mul(ctx, src0, tensor->grad),
  13011. zero_table);
  13012. }
  13013. } break;
  13014. case GGML_OP_DIV:
  13015. {
  13016. if (src0->grad) {
  13017. src0->grad =
  13018. ggml_add_or_set(ctx,
  13019. src0->grad,
  13020. ggml_div(ctx, tensor->grad, src1),
  13021. zero_table);
  13022. }
  13023. if (src1->grad) {
  13024. src1->grad =
  13025. ggml_sub_or_set(ctx,
  13026. src1->grad,
  13027. ggml_mul(ctx,
  13028. tensor->grad,
  13029. ggml_div(ctx, tensor, src1)),
  13030. zero_table);
  13031. }
  13032. } break;
  13033. case GGML_OP_SQR:
  13034. {
  13035. if (src0->grad) {
  13036. src0->grad =
  13037. ggml_add_or_set(ctx,
  13038. src0->grad,
  13039. ggml_scale(ctx,
  13040. ggml_mul(ctx, src0, tensor->grad),
  13041. 2.0f),
  13042. zero_table);
  13043. }
  13044. } break;
  13045. case GGML_OP_SQRT:
  13046. {
  13047. if (src0->grad) {
  13048. src0->grad =
  13049. ggml_add_or_set(ctx,
  13050. src0->grad,
  13051. ggml_scale(ctx,
  13052. ggml_div(ctx,
  13053. tensor->grad,
  13054. tensor),
  13055. 0.5f),
  13056. zero_table);
  13057. }
  13058. } break;
  13059. case GGML_OP_LOG:
  13060. {
  13061. if (src0->grad) {
  13062. src0->grad =
  13063. ggml_add_or_set(ctx,
  13064. src0->grad,
  13065. ggml_div(ctx,
  13066. tensor->grad,
  13067. src0),
  13068. zero_table);
  13069. }
  13070. } break;
  13071. case GGML_OP_SUM:
  13072. {
  13073. if (src0->grad) {
  13074. src0->grad =
  13075. ggml_add1_or_set(ctx,
  13076. src0->grad,
  13077. tensor->grad,
  13078. zero_table);
  13079. }
  13080. } break;
  13081. case GGML_OP_SUM_ROWS:
  13082. {
  13083. if (src0->grad) {
  13084. src0->grad =
  13085. ggml_add_or_set(ctx,
  13086. src0->grad,
  13087. ggml_repeat(ctx,
  13088. tensor->grad,
  13089. src0->grad),
  13090. zero_table);
  13091. }
  13092. } break;
  13093. case GGML_OP_MEAN:
  13094. case GGML_OP_ARGMAX:
  13095. {
  13096. GGML_ASSERT(false); // TODO: implement
  13097. } break;
  13098. case GGML_OP_REPEAT:
  13099. {
  13100. // necessary for llama
  13101. if (src0->grad) {
  13102. src0->grad = ggml_add_or_set(ctx,
  13103. src0->grad,
  13104. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13105. zero_table);
  13106. }
  13107. } break;
  13108. case GGML_OP_REPEAT_BACK:
  13109. {
  13110. if (src0->grad) {
  13111. // TODO: test this
  13112. src0->grad = ggml_add_or_set(ctx,
  13113. src0->grad,
  13114. ggml_repeat(ctx, tensor->grad, src0->grad),
  13115. zero_table);
  13116. }
  13117. } break;
  13118. case GGML_OP_CONCAT:
  13119. {
  13120. GGML_ASSERT(false); // TODO: implement
  13121. } break;
  13122. case GGML_OP_SILU_BACK:
  13123. {
  13124. GGML_ASSERT(false); // TODO: not implemented
  13125. } break;
  13126. case GGML_OP_NORM:
  13127. {
  13128. GGML_ASSERT(false); // TODO: not implemented
  13129. } break;
  13130. case GGML_OP_RMS_NORM:
  13131. {
  13132. // necessary for llama
  13133. if (src0->grad) {
  13134. float eps;
  13135. memcpy(&eps, tensor->op_params, sizeof(float));
  13136. src0->grad = ggml_add_or_set(ctx,
  13137. src0->grad,
  13138. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13139. zero_table);
  13140. }
  13141. } break;
  13142. case GGML_OP_RMS_NORM_BACK:
  13143. {
  13144. GGML_ASSERT(false); // TODO: not implemented
  13145. } break;
  13146. case GGML_OP_GROUP_NORM:
  13147. {
  13148. GGML_ASSERT(false); // TODO: not implemented
  13149. } break;
  13150. case GGML_OP_MUL_MAT:
  13151. {
  13152. // https://cs231n.github.io/optimization-2/#staged
  13153. // # forward pass
  13154. // s0 = np.random.randn(5, 10)
  13155. // s1 = np.random.randn(10, 3)
  13156. // t = s0.dot(s1)
  13157. // # now suppose we had the gradient on t from above in the circuit
  13158. // dt = np.random.randn(*t.shape) # same shape as t
  13159. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13160. // ds1 = t.T.dot(dt)
  13161. // tensor.shape [m,p,qq,rr]
  13162. // src0.shape [n,m,q1,r1]
  13163. // src1.shape [n,p,qq,rr]
  13164. // necessary for llama
  13165. if (src0->grad) {
  13166. struct ggml_tensor * s1_tg =
  13167. ggml_out_prod(ctx, // [n,m,qq,rr]
  13168. src1, // [n,p,qq,rr]
  13169. tensor->grad); // [m,p,qq,rr]
  13170. const int64_t qq = s1_tg->ne[2];
  13171. const int64_t rr = s1_tg->ne[3];
  13172. const int64_t q1 = src0->ne[2];
  13173. const int64_t r1 = src0->ne[3];
  13174. const bool ne2_broadcasted = qq > q1;
  13175. const bool ne3_broadcasted = rr > r1;
  13176. if (ne2_broadcasted || ne3_broadcasted) {
  13177. // sum broadcast repetitions of s1_tg into shape of src0
  13178. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13179. }
  13180. src0->grad =
  13181. ggml_add_or_set(ctx,
  13182. src0->grad, // [n,m,q1,r1]
  13183. s1_tg, // [n,m,q1,r1]
  13184. zero_table);
  13185. }
  13186. if (src1->grad) {
  13187. src1->grad =
  13188. ggml_add_or_set(ctx,
  13189. src1->grad, // [n,p,qq,rr]
  13190. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13191. // ggml_cont(ctx, // [m,n,q1,r1]
  13192. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13193. // tensor->grad), // [m,p,qq,rr]
  13194. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13195. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13196. // // and then use ggml_out_prod
  13197. ggml_out_prod(ctx, // [n,p,qq,rr]
  13198. src0, // [n,m,q1,r1]
  13199. ggml_transpose(ctx, // [p,m,qq,rr]
  13200. tensor->grad)), // [m,p,qq,rr]
  13201. zero_table);
  13202. }
  13203. } break;
  13204. case GGML_OP_MUL_MAT_ID:
  13205. {
  13206. GGML_ASSERT(false); // TODO: not implemented
  13207. } break;
  13208. case GGML_OP_OUT_PROD:
  13209. {
  13210. GGML_ASSERT(false); // TODO: not implemented
  13211. } break;
  13212. case GGML_OP_SCALE:
  13213. {
  13214. // necessary for llama
  13215. if (src0->grad) {
  13216. float s;
  13217. memcpy(&s, tensor->op_params, sizeof(float));
  13218. src0->grad =
  13219. ggml_add_or_set(ctx,
  13220. src0->grad,
  13221. ggml_scale_impl(ctx, tensor->grad, s, false),
  13222. zero_table);
  13223. }
  13224. } break;
  13225. case GGML_OP_SET:
  13226. {
  13227. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13228. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13229. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13230. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13231. struct ggml_tensor * tensor_grad_view = NULL;
  13232. if (src0->grad || src1->grad) {
  13233. GGML_ASSERT(src0->type == tensor->type);
  13234. GGML_ASSERT(tensor->grad->type == tensor->type);
  13235. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13236. tensor_grad_view = ggml_view_4d(ctx,
  13237. tensor->grad,
  13238. src1->grad->ne[0],
  13239. src1->grad->ne[1],
  13240. src1->grad->ne[2],
  13241. src1->grad->ne[3],
  13242. nb1, nb2, nb3, offset);
  13243. }
  13244. if (src0->grad) {
  13245. src0->grad = ggml_add_or_set(ctx,
  13246. src0->grad,
  13247. ggml_acc_impl(ctx,
  13248. tensor->grad,
  13249. ggml_neg(ctx, tensor_grad_view),
  13250. nb1, nb2, nb3, offset, false),
  13251. zero_table);
  13252. }
  13253. if (src1->grad) {
  13254. src1->grad =
  13255. ggml_add_or_set(ctx,
  13256. src1->grad,
  13257. ggml_reshape(ctx,
  13258. ggml_cont(ctx, tensor_grad_view),
  13259. src1->grad),
  13260. zero_table);
  13261. }
  13262. } break;
  13263. case GGML_OP_CPY:
  13264. {
  13265. // necessary for llama
  13266. // cpy overwrites value of src1 by src0 and returns view(src1)
  13267. // the overwriting is mathematically equivalent to:
  13268. // tensor = src0 * 1 + src1 * 0
  13269. if (src0->grad) {
  13270. // dsrc0 = dtensor * 1
  13271. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13272. }
  13273. if (src1->grad) {
  13274. // dsrc1 = dtensor * 0 -> noop
  13275. }
  13276. } break;
  13277. case GGML_OP_CONT:
  13278. {
  13279. // same as cpy
  13280. if (src0->grad) {
  13281. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13282. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13283. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13284. }
  13285. } break;
  13286. case GGML_OP_RESHAPE:
  13287. {
  13288. // necessary for llama
  13289. if (src0->grad) {
  13290. src0->grad =
  13291. ggml_add_or_set(ctx, src0->grad,
  13292. ggml_reshape(ctx,
  13293. ggml_is_contiguous(tensor->grad)
  13294. ? tensor->grad
  13295. : ggml_cont(ctx, tensor->grad),
  13296. src0->grad),
  13297. zero_table);
  13298. }
  13299. } break;
  13300. case GGML_OP_VIEW:
  13301. {
  13302. // necessary for llama
  13303. if (src0->grad) {
  13304. size_t offset;
  13305. memcpy(&offset, tensor->op_params, sizeof(offset));
  13306. size_t nb1 = tensor->nb[1];
  13307. size_t nb2 = tensor->nb[2];
  13308. size_t nb3 = tensor->nb[3];
  13309. if (src0->type != src0->grad->type) {
  13310. // gradient is typically F32, but src0 could be other type
  13311. size_t ng = ggml_element_size(src0->grad);
  13312. size_t n0 = ggml_element_size(src0);
  13313. GGML_ASSERT(offset % n0 == 0);
  13314. GGML_ASSERT(nb1 % n0 == 0);
  13315. GGML_ASSERT(nb2 % n0 == 0);
  13316. GGML_ASSERT(nb3 % n0 == 0);
  13317. offset = (offset / n0) * ng;
  13318. nb1 = (nb1 / n0) * ng;
  13319. nb2 = (nb2 / n0) * ng;
  13320. nb3 = (nb3 / n0) * ng;
  13321. }
  13322. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13323. }
  13324. } break;
  13325. case GGML_OP_PERMUTE:
  13326. {
  13327. // necessary for llama
  13328. if (src0->grad) {
  13329. int32_t * axes = (int32_t *) tensor->op_params;
  13330. int axis0 = axes[0] & 0x3;
  13331. int axis1 = axes[1] & 0x3;
  13332. int axis2 = axes[2] & 0x3;
  13333. int axis3 = axes[3] & 0x3;
  13334. int axes_backward[4] = {0,0,0,0};
  13335. axes_backward[axis0] = 0;
  13336. axes_backward[axis1] = 1;
  13337. axes_backward[axis2] = 2;
  13338. axes_backward[axis3] = 3;
  13339. src0->grad =
  13340. ggml_add_or_set(ctx, src0->grad,
  13341. ggml_permute(ctx,
  13342. tensor->grad,
  13343. axes_backward[0],
  13344. axes_backward[1],
  13345. axes_backward[2],
  13346. axes_backward[3]),
  13347. zero_table);
  13348. }
  13349. } break;
  13350. case GGML_OP_TRANSPOSE:
  13351. {
  13352. // necessary for llama
  13353. if (src0->grad) {
  13354. src0->grad =
  13355. ggml_add_or_set(ctx, src0->grad,
  13356. ggml_transpose(ctx, tensor->grad),
  13357. zero_table);
  13358. }
  13359. } break;
  13360. case GGML_OP_GET_ROWS:
  13361. {
  13362. // necessary for llama (only for tokenizer)
  13363. if (src0->grad) {
  13364. src0->grad =
  13365. ggml_add_or_set(ctx, src0->grad,
  13366. // last ggml_get_rows_back argument src0->grad is only
  13367. // necessary to setup correct output shape
  13368. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13369. zero_table);
  13370. }
  13371. if (src1->grad) {
  13372. // noop
  13373. }
  13374. } break;
  13375. case GGML_OP_GET_ROWS_BACK:
  13376. {
  13377. GGML_ASSERT(false); // TODO: not implemented
  13378. } break;
  13379. case GGML_OP_DIAG:
  13380. {
  13381. GGML_ASSERT(false); // TODO: not implemented
  13382. } break;
  13383. case GGML_OP_DIAG_MASK_INF:
  13384. {
  13385. // necessary for llama
  13386. if (src0->grad) {
  13387. const int n_past = ((int32_t *) tensor->op_params)[0];
  13388. src0->grad =
  13389. ggml_add_or_set(ctx, src0->grad,
  13390. /* ggml_diag_mask_inf_impl() shouldn't be here */
  13391. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  13392. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13393. zero_table);
  13394. }
  13395. } break;
  13396. case GGML_OP_DIAG_MASK_ZERO:
  13397. {
  13398. // necessary for llama
  13399. if (src0->grad) {
  13400. const int n_past = ((int32_t *) tensor->op_params)[0];
  13401. src0->grad =
  13402. ggml_add_or_set(ctx, src0->grad,
  13403. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13404. zero_table);
  13405. }
  13406. } break;
  13407. case GGML_OP_SOFT_MAX:
  13408. {
  13409. // necessary for llama
  13410. if (src0->grad) {
  13411. src0->grad =
  13412. ggml_add_or_set(ctx, src0->grad,
  13413. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13414. zero_table);
  13415. }
  13416. } break;
  13417. case GGML_OP_SOFT_MAX_BACK:
  13418. {
  13419. GGML_ASSERT(false); // TODO: not implemented
  13420. } break;
  13421. case GGML_OP_ROPE:
  13422. {
  13423. // necessary for llama
  13424. if (src0->grad) {
  13425. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13426. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13427. const int mode = ((int32_t *) tensor->op_params)[2];
  13428. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13429. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13430. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13431. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13432. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13433. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13434. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13435. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13436. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13437. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13438. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13439. src0->grad = ggml_add_or_set(ctx,
  13440. src0->grad,
  13441. ggml_rope_back(ctx,
  13442. tensor->grad,
  13443. src1,
  13444. n_dims,
  13445. mode,
  13446. n_ctx,
  13447. n_orig_ctx,
  13448. freq_base,
  13449. freq_scale,
  13450. ext_factor,
  13451. attn_factor,
  13452. beta_fast,
  13453. beta_slow,
  13454. xpos_base,
  13455. xpos_down),
  13456. zero_table);
  13457. }
  13458. } break;
  13459. case GGML_OP_ROPE_BACK:
  13460. {
  13461. if (src0->grad) {
  13462. //const int n_past = ((int32_t *) tensor->op_params)[0];
  13463. const int n_dims = ((int32_t *) tensor->op_params)[1];
  13464. const int mode = ((int32_t *) tensor->op_params)[2];
  13465. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  13466. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  13467. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  13468. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  13469. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  13470. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  13471. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  13472. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  13473. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  13474. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  13475. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  13476. src0->grad = ggml_add_or_set(ctx,
  13477. src0->grad,
  13478. ggml_rope_impl(ctx,
  13479. tensor->grad,
  13480. src1,
  13481. n_dims,
  13482. mode,
  13483. n_ctx,
  13484. n_orig_ctx,
  13485. freq_base,
  13486. freq_scale,
  13487. ext_factor,
  13488. attn_factor,
  13489. beta_fast,
  13490. beta_slow,
  13491. xpos_base,
  13492. xpos_down,
  13493. false),
  13494. zero_table);
  13495. }
  13496. } break;
  13497. case GGML_OP_ALIBI:
  13498. {
  13499. GGML_ASSERT(false); // TODO: not implemented
  13500. } break;
  13501. case GGML_OP_CLAMP:
  13502. {
  13503. GGML_ASSERT(false); // TODO: not implemented
  13504. } break;
  13505. case GGML_OP_CONV_TRANSPOSE_1D:
  13506. {
  13507. GGML_ASSERT(false); // TODO: not implemented
  13508. } break;
  13509. case GGML_OP_IM2COL:
  13510. {
  13511. GGML_ASSERT(false); // TODO: not implemented
  13512. } break;
  13513. case GGML_OP_CONV_TRANSPOSE_2D:
  13514. {
  13515. GGML_ASSERT(false); // TODO: not implemented
  13516. } break;
  13517. case GGML_OP_POOL_1D:
  13518. {
  13519. GGML_ASSERT(false); // TODO: not implemented
  13520. } break;
  13521. case GGML_OP_POOL_2D:
  13522. {
  13523. GGML_ASSERT(false); // TODO: not implemented
  13524. } break;
  13525. case GGML_OP_UPSCALE:
  13526. {
  13527. GGML_ASSERT(false); // TODO: not implemented
  13528. } break;
  13529. case GGML_OP_PAD:
  13530. {
  13531. GGML_ASSERT(false); // TODO: not implemented
  13532. } break;
  13533. case GGML_OP_ARGSORT:
  13534. {
  13535. GGML_ASSERT(false); // TODO: not implemented
  13536. } break;
  13537. case GGML_OP_LEAKY_RELU:
  13538. {
  13539. GGML_ASSERT(false); // TODO: not implemented
  13540. } break;
  13541. case GGML_OP_FLASH_ATTN:
  13542. {
  13543. struct ggml_tensor * flash_grad = NULL;
  13544. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  13545. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13546. GGML_ASSERT(t == 0 || t == 1);
  13547. bool masked = t != 0;
  13548. flash_grad =
  13549. ggml_flash_attn_back(ctx,
  13550. src0,
  13551. src1,
  13552. tensor->src[2],
  13553. tensor->grad,
  13554. masked);
  13555. }
  13556. struct ggml_tensor * src2 = tensor->src[2];
  13557. const int64_t elem_q = ggml_nelements(src0);
  13558. const int64_t elem_k = ggml_nelements(src1);
  13559. const int64_t elem_v = ggml_nelements(src2);
  13560. enum ggml_type result_type = flash_grad->type;
  13561. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  13562. const size_t tsize = ggml_type_size(result_type);
  13563. const size_t offs_q = 0;
  13564. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  13565. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  13566. if (src0->grad) {
  13567. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  13568. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  13569. src0->grad = ggml_add_or_set(ctx,
  13570. src0->grad,
  13571. grad_q,
  13572. zero_table);
  13573. }
  13574. if (src1->grad) {
  13575. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  13576. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  13577. src1->grad = ggml_add_or_set(ctx,
  13578. src1->grad,
  13579. grad_k,
  13580. zero_table);
  13581. }
  13582. if (src2->grad) {
  13583. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  13584. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  13585. src2->grad = ggml_add_or_set(ctx,
  13586. src2->grad,
  13587. grad_v,
  13588. zero_table);
  13589. }
  13590. } break;
  13591. case GGML_OP_FLASH_FF:
  13592. {
  13593. GGML_ASSERT(false); // not supported
  13594. } break;
  13595. case GGML_OP_FLASH_ATTN_BACK:
  13596. {
  13597. GGML_ASSERT(false); // not supported
  13598. } break;
  13599. case GGML_OP_WIN_PART:
  13600. case GGML_OP_WIN_UNPART:
  13601. case GGML_OP_UNARY:
  13602. {
  13603. switch (ggml_get_unary_op(tensor)) {
  13604. case GGML_UNARY_OP_ABS:
  13605. {
  13606. if (src0->grad) {
  13607. src0->grad =
  13608. ggml_add_or_set(ctx,
  13609. src0->grad,
  13610. ggml_mul(ctx,
  13611. ggml_sgn(ctx, src0),
  13612. tensor->grad),
  13613. zero_table);
  13614. }
  13615. } break;
  13616. case GGML_UNARY_OP_SGN:
  13617. {
  13618. if (src0->grad) {
  13619. // noop
  13620. }
  13621. } break;
  13622. case GGML_UNARY_OP_NEG:
  13623. {
  13624. if (src0->grad) {
  13625. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13626. }
  13627. } break;
  13628. case GGML_UNARY_OP_STEP:
  13629. {
  13630. if (src0->grad) {
  13631. // noop
  13632. }
  13633. } break;
  13634. case GGML_UNARY_OP_TANH:
  13635. {
  13636. GGML_ASSERT(false); // TODO: not implemented
  13637. } break;
  13638. case GGML_UNARY_OP_ELU:
  13639. {
  13640. GGML_ASSERT(false); // TODO: not implemented
  13641. } break;
  13642. case GGML_UNARY_OP_RELU:
  13643. {
  13644. if (src0->grad) {
  13645. src0->grad = ggml_add_or_set(ctx,
  13646. src0->grad,
  13647. ggml_mul(ctx,
  13648. ggml_step(ctx, src0),
  13649. tensor->grad),
  13650. zero_table);
  13651. }
  13652. } break;
  13653. case GGML_UNARY_OP_GELU:
  13654. {
  13655. GGML_ASSERT(false); // TODO: not implemented
  13656. } break;
  13657. case GGML_UNARY_OP_GELU_QUICK:
  13658. {
  13659. GGML_ASSERT(false); // TODO: not implemented
  13660. } break;
  13661. case GGML_UNARY_OP_SILU:
  13662. {
  13663. // necessary for llama
  13664. if (src0->grad) {
  13665. src0->grad = ggml_add_or_set(ctx,
  13666. src0->grad,
  13667. ggml_silu_back(ctx, src0, tensor->grad),
  13668. zero_table);
  13669. }
  13670. } break;
  13671. default:
  13672. GGML_ASSERT(false);
  13673. }
  13674. } break;
  13675. case GGML_OP_GET_REL_POS:
  13676. case GGML_OP_ADD_REL_POS:
  13677. case GGML_OP_MAP_UNARY:
  13678. case GGML_OP_MAP_BINARY:
  13679. case GGML_OP_MAP_CUSTOM1_F32:
  13680. case GGML_OP_MAP_CUSTOM2_F32:
  13681. case GGML_OP_MAP_CUSTOM3_F32:
  13682. case GGML_OP_MAP_CUSTOM1:
  13683. case GGML_OP_MAP_CUSTOM2:
  13684. case GGML_OP_MAP_CUSTOM3:
  13685. {
  13686. GGML_ASSERT(false); // not supported
  13687. } break;
  13688. case GGML_OP_CROSS_ENTROPY_LOSS:
  13689. {
  13690. if (src0->grad) {
  13691. src0->grad = ggml_add_or_set(ctx,
  13692. src0->grad,
  13693. ggml_cross_entropy_loss_back(ctx,
  13694. src0,
  13695. src1,
  13696. tensor->grad),
  13697. zero_table);
  13698. }
  13699. } break;
  13700. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13701. {
  13702. GGML_ASSERT(false); // not supported
  13703. } break;
  13704. case GGML_OP_NONE:
  13705. {
  13706. // nop
  13707. } break;
  13708. case GGML_OP_COUNT:
  13709. {
  13710. GGML_ASSERT(false);
  13711. } break;
  13712. }
  13713. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13714. if (tensor->src[i] && tensor->src[i]->grad) {
  13715. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  13716. }
  13717. }
  13718. }
  13719. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13720. if (node->grad == NULL) {
  13721. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13722. // it can also happen during forward pass, if the user performs computations with constants
  13723. if (node->op != GGML_OP_NONE) {
  13724. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13725. }
  13726. }
  13727. // check if already visited
  13728. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  13729. return;
  13730. }
  13731. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  13732. const int k =
  13733. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  13734. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  13735. /* unknown order, just fall back to using i*/ i;
  13736. if (node->src[k]) {
  13737. ggml_visit_parents(cgraph, node->src[k]);
  13738. }
  13739. }
  13740. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13741. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13742. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  13743. if (strlen(node->name) == 0) {
  13744. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13745. }
  13746. cgraph->leafs[cgraph->n_leafs] = node;
  13747. cgraph->n_leafs++;
  13748. } else {
  13749. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  13750. if (strlen(node->name) == 0) {
  13751. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13752. }
  13753. cgraph->nodes[cgraph->n_nodes] = node;
  13754. if (cgraph->grads) {
  13755. cgraph->grads[cgraph->n_nodes] = node->grad;
  13756. }
  13757. cgraph->n_nodes++;
  13758. }
  13759. }
  13760. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13761. if (!expand) {
  13762. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  13763. ggml_graph_clear(cgraph);
  13764. }
  13765. const int n0 = cgraph->n_nodes;
  13766. UNUSED(n0);
  13767. ggml_visit_parents(cgraph, tensor);
  13768. const int n_new = cgraph->n_nodes - n0;
  13769. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13770. if (n_new > 0) {
  13771. // the last added node should always be starting point
  13772. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13773. }
  13774. }
  13775. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13776. ggml_build_forward_impl(cgraph, tensor, true);
  13777. }
  13778. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  13779. GGML_ASSERT(gf->n_nodes > 0);
  13780. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13781. if (keep) {
  13782. for (int i = 0; i < gf->n_nodes; i++) {
  13783. struct ggml_tensor * node = gf->nodes[i];
  13784. if (node->grad) {
  13785. node->grad = ggml_dup_tensor(ctx, node);
  13786. gf->grads[i] = node->grad;
  13787. }
  13788. }
  13789. }
  13790. // remember original gradients which start with zero values
  13791. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  13792. for (int i = 0; i < gf->n_nodes; i++) {
  13793. if (gf->grads[i]) {
  13794. ggml_hash_insert(zero_table, gf->grads[i]);
  13795. }
  13796. }
  13797. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13798. struct ggml_tensor * node = gf->nodes[i];
  13799. // inplace operations to add gradients are not created by ggml_compute_backward
  13800. // use allocator to automatically make inplace operations
  13801. if (node->grad) {
  13802. ggml_compute_backward(ctx, node, zero_table);
  13803. }
  13804. }
  13805. for (int i = 0; i < gf->n_nodes; i++) {
  13806. struct ggml_tensor * node = gf->nodes[i];
  13807. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13808. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13809. ggml_build_forward_expand(gb, node->grad);
  13810. }
  13811. }
  13812. ggml_hash_set_free(zero_table);
  13813. }
  13814. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  13815. size_t nbytes = sizeof(struct ggml_cgraph);
  13816. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  13817. if (grads) {
  13818. nbytes += size * sizeof(struct ggml_tensor *); // grads
  13819. }
  13820. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  13821. return nbytes;
  13822. }
  13823. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  13824. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  13825. }
  13826. size_t ggml_graph_overhead(void) {
  13827. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  13828. }
  13829. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  13830. const size_t obj_size = ggml_graph_nbytes(size, grads);
  13831. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  13832. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  13833. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  13834. size_t hash_size = ggml_hash_size(size * 2);
  13835. struct ggml_tensor ** nodes_ptr = data_start;
  13836. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  13837. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  13838. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  13839. // check that we allocated the correct amount of memory
  13840. assert(obj_size == (size_t) (
  13841. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  13842. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  13843. *cgraph = (struct ggml_cgraph) {
  13844. /*.size =*/ size,
  13845. /*.n_nodes =*/ 0,
  13846. /*.n_leafs =*/ 0,
  13847. /*.nodes =*/ nodes_ptr,
  13848. /*.grads =*/ grads_ptr,
  13849. /*.leafs =*/ leafs_ptr,
  13850. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  13851. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  13852. /*.perf_runs =*/ 0,
  13853. /*.perf_cycles =*/ 0,
  13854. /*.perf_time_us =*/ 0,
  13855. };
  13856. return cgraph;
  13857. }
  13858. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  13859. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  13860. }
  13861. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  13862. struct ggml_cgraph cgraph = {
  13863. /*.size =*/ 0,
  13864. /*.n_nodes =*/ i1 - i0,
  13865. /*.n_leafs =*/ 0,
  13866. /*.nodes =*/ cgraph0->nodes + i0,
  13867. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  13868. /*.leafs =*/ NULL,
  13869. /*.hash_table =*/ { 0, NULL },
  13870. /*.order =*/ cgraph0->order,
  13871. /*.perf_runs =*/ 0,
  13872. /*.perf_cycles =*/ 0,
  13873. /*.perf_time_us =*/ 0,
  13874. };
  13875. return cgraph;
  13876. }
  13877. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  13878. GGML_ASSERT(dst->size >= src->n_leafs);
  13879. GGML_ASSERT(dst->size >= src->n_nodes);
  13880. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  13881. dst->n_leafs = src->n_leafs;
  13882. dst->n_nodes = src->n_nodes;
  13883. dst->order = src->order;
  13884. for (int i = 0; i < src->n_leafs; ++i) {
  13885. dst->leafs[i] = src->leafs[i];
  13886. }
  13887. for (int i = 0; i < src->n_nodes; ++i) {
  13888. dst->nodes[i] = src->nodes[i];
  13889. }
  13890. if (src->grads) {
  13891. GGML_ASSERT(dst->grads != NULL);
  13892. for (int i = 0; i < src->n_nodes; ++i) {
  13893. dst->grads[i] = src->grads[i];
  13894. }
  13895. }
  13896. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  13897. if (src->visited_hash_table.keys[i]) {
  13898. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  13899. }
  13900. }
  13901. }
  13902. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13903. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  13904. ggml_graph_cpy(cgraph, result);
  13905. return result;
  13906. }
  13907. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13908. GGML_ASSERT(cgraph->grads != NULL);
  13909. for (int i = 0; i < cgraph->n_nodes; i++) {
  13910. struct ggml_tensor * grad = cgraph->grads[i];
  13911. if (grad) {
  13912. ggml_set_zero(grad);
  13913. }
  13914. }
  13915. }
  13916. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  13917. cgraph->n_leafs = 0;
  13918. cgraph->n_nodes = 0;
  13919. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  13920. }
  13921. //
  13922. // thread data
  13923. //
  13924. // synchronization is done via busy loops
  13925. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13926. //
  13927. #ifdef __APPLE__
  13928. //#include <os/lock.h>
  13929. //
  13930. //typedef os_unfair_lock ggml_lock_t;
  13931. //
  13932. //#define ggml_lock_init(x) UNUSED(x)
  13933. //#define ggml_lock_destroy(x) UNUSED(x)
  13934. //#define ggml_lock_lock os_unfair_lock_lock
  13935. //#define ggml_lock_unlock os_unfair_lock_unlock
  13936. //
  13937. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13938. typedef int ggml_lock_t;
  13939. #define ggml_lock_init(x) UNUSED(x)
  13940. #define ggml_lock_destroy(x) UNUSED(x)
  13941. #define ggml_lock_lock(x) UNUSED(x)
  13942. #define ggml_lock_unlock(x) UNUSED(x)
  13943. #define GGML_LOCK_INITIALIZER 0
  13944. typedef pthread_t ggml_thread_t;
  13945. #define ggml_thread_create pthread_create
  13946. #define ggml_thread_join pthread_join
  13947. #else
  13948. //typedef pthread_spinlock_t ggml_lock_t;
  13949. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13950. //#define ggml_lock_destroy pthread_spin_destroy
  13951. //#define ggml_lock_lock pthread_spin_lock
  13952. //#define ggml_lock_unlock pthread_spin_unlock
  13953. typedef int ggml_lock_t;
  13954. #define ggml_lock_init(x) UNUSED(x)
  13955. #define ggml_lock_destroy(x) UNUSED(x)
  13956. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13957. #define ggml_lock_lock(x) _mm_pause()
  13958. #else
  13959. #define ggml_lock_lock(x) UNUSED(x)
  13960. #endif
  13961. #define ggml_lock_unlock(x) UNUSED(x)
  13962. #define GGML_LOCK_INITIALIZER 0
  13963. typedef pthread_t ggml_thread_t;
  13964. #define ggml_thread_create pthread_create
  13965. #define ggml_thread_join pthread_join
  13966. #endif
  13967. // Android's libc implementation "bionic" does not support setting affinity
  13968. #if defined(__gnu_linux__)
  13969. static void set_numa_thread_affinity(int thread_n) {
  13970. if (!ggml_is_numa()) {
  13971. return;
  13972. }
  13973. int node_num;
  13974. int rv;
  13975. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13976. switch(g_state.numa.numa_strategy) {
  13977. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  13978. // run thread on node_num thread_n / (threads per node)
  13979. node_num = thread_n % g_state.numa.n_nodes;
  13980. break;
  13981. case GGML_NUMA_STRATEGY_ISOLATE:
  13982. // run thread on current_node
  13983. node_num = g_state.numa.current_node;
  13984. break;
  13985. case GGML_NUMA_STRATEGY_NUMACTL:
  13986. // use the cpuset that numactl gave us
  13987. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  13988. if (rv) {
  13989. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  13990. }
  13991. return;
  13992. default:
  13993. return;
  13994. }
  13995. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13996. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13997. CPU_ZERO_S(setsize, cpus);
  13998. for (size_t i = 0; i < node->n_cpus; ++i) {
  13999. CPU_SET_S(node->cpus[i], setsize, cpus);
  14000. }
  14001. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14002. if (rv) {
  14003. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14004. }
  14005. CPU_FREE(cpus);
  14006. }
  14007. static void clear_numa_thread_affinity(void) {
  14008. if (!ggml_is_numa()) {
  14009. return;
  14010. }
  14011. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14012. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14013. CPU_ZERO_S(setsize, cpus);
  14014. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14015. CPU_SET_S(i, setsize, cpus);
  14016. }
  14017. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14018. if (rv) {
  14019. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14020. }
  14021. CPU_FREE(cpus);
  14022. }
  14023. #else
  14024. // TODO: Windows etc.
  14025. // (the linux implementation may also work on BSD, someone should test)
  14026. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14027. static void clear_numa_thread_affinity(void) {}
  14028. #endif
  14029. struct ggml_compute_state_shared {
  14030. const struct ggml_cgraph * cgraph;
  14031. const struct ggml_cplan * cplan;
  14032. int64_t perf_node_start_cycles;
  14033. int64_t perf_node_start_time_us;
  14034. const int n_threads;
  14035. // synchronization primitives
  14036. atomic_int n_active; // num active threads
  14037. atomic_int node_n; // active graph node
  14038. atomic_int node_task; // active graph node task phase
  14039. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14040. void * abort_callback_data;
  14041. };
  14042. struct ggml_compute_state {
  14043. ggml_thread_t thrd;
  14044. int ith;
  14045. struct ggml_compute_state_shared * shared;
  14046. };
  14047. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14048. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14049. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14050. node->perf_runs++;
  14051. node->perf_cycles += cycles_cur;
  14052. node->perf_time_us += time_us_cur;
  14053. }
  14054. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  14055. int n_tasks = 0;
  14056. switch (node->op) {
  14057. case GGML_OP_CPY:
  14058. case GGML_OP_DUP:
  14059. case GGML_OP_ADD:
  14060. case GGML_OP_ADD1:
  14061. case GGML_OP_ACC:
  14062. {
  14063. n_tasks = n_threads;
  14064. } break;
  14065. case GGML_OP_SUB:
  14066. case GGML_OP_SQR:
  14067. case GGML_OP_SQRT:
  14068. case GGML_OP_LOG:
  14069. case GGML_OP_SUM:
  14070. case GGML_OP_SUM_ROWS:
  14071. case GGML_OP_MEAN:
  14072. case GGML_OP_ARGMAX:
  14073. case GGML_OP_REPEAT:
  14074. case GGML_OP_REPEAT_BACK:
  14075. case GGML_OP_LEAKY_RELU:
  14076. {
  14077. n_tasks = 1;
  14078. } break;
  14079. case GGML_OP_UNARY:
  14080. switch (ggml_get_unary_op(node)) {
  14081. case GGML_UNARY_OP_ABS:
  14082. case GGML_UNARY_OP_SGN:
  14083. case GGML_UNARY_OP_NEG:
  14084. case GGML_UNARY_OP_STEP:
  14085. case GGML_UNARY_OP_TANH:
  14086. case GGML_UNARY_OP_ELU:
  14087. case GGML_UNARY_OP_RELU:
  14088. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14089. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14090. {
  14091. n_tasks = 1;
  14092. } break;
  14093. case GGML_UNARY_OP_GELU:
  14094. case GGML_UNARY_OP_GELU_QUICK:
  14095. case GGML_UNARY_OP_SILU:
  14096. {
  14097. n_tasks = n_threads;
  14098. } break;
  14099. default:
  14100. GGML_ASSERT(false);
  14101. }
  14102. break;
  14103. case GGML_OP_SILU_BACK:
  14104. case GGML_OP_MUL:
  14105. case GGML_OP_DIV:
  14106. case GGML_OP_NORM:
  14107. case GGML_OP_RMS_NORM:
  14108. case GGML_OP_RMS_NORM_BACK:
  14109. case GGML_OP_GROUP_NORM:
  14110. case GGML_OP_CONCAT:
  14111. {
  14112. n_tasks = n_threads;
  14113. } break;
  14114. case GGML_OP_MUL_MAT:
  14115. {
  14116. n_tasks = n_threads;
  14117. // TODO: use different scheduling for different matrix sizes
  14118. //const int nr0 = ggml_nrows(node->src[0]);
  14119. //const int nr1 = ggml_nrows(node->src[1]);
  14120. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14121. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14122. } break;
  14123. case GGML_OP_MUL_MAT_ID:
  14124. {
  14125. n_tasks = n_threads;
  14126. } break;
  14127. case GGML_OP_OUT_PROD:
  14128. {
  14129. n_tasks = n_threads;
  14130. } break;
  14131. case GGML_OP_SCALE:
  14132. case GGML_OP_SET:
  14133. case GGML_OP_CONT:
  14134. case GGML_OP_RESHAPE:
  14135. case GGML_OP_VIEW:
  14136. case GGML_OP_PERMUTE:
  14137. case GGML_OP_TRANSPOSE:
  14138. case GGML_OP_GET_ROWS:
  14139. case GGML_OP_GET_ROWS_BACK:
  14140. case GGML_OP_DIAG:
  14141. {
  14142. n_tasks = 1;
  14143. } break;
  14144. case GGML_OP_DIAG_MASK_ZERO:
  14145. case GGML_OP_DIAG_MASK_INF:
  14146. case GGML_OP_SOFT_MAX_BACK:
  14147. case GGML_OP_ROPE:
  14148. case GGML_OP_ROPE_BACK:
  14149. case GGML_OP_ADD_REL_POS:
  14150. {
  14151. n_tasks = n_threads;
  14152. } break;
  14153. case GGML_OP_ALIBI:
  14154. {
  14155. n_tasks = 1; //TODO
  14156. } break;
  14157. case GGML_OP_CLAMP:
  14158. {
  14159. n_tasks = 1; //TODO
  14160. } break;
  14161. case GGML_OP_SOFT_MAX:
  14162. {
  14163. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14164. } break;
  14165. case GGML_OP_CONV_TRANSPOSE_1D:
  14166. {
  14167. n_tasks = n_threads;
  14168. } break;
  14169. case GGML_OP_IM2COL:
  14170. {
  14171. n_tasks = n_threads;
  14172. } break;
  14173. case GGML_OP_CONV_TRANSPOSE_2D:
  14174. {
  14175. n_tasks = n_threads;
  14176. } break;
  14177. case GGML_OP_POOL_1D:
  14178. case GGML_OP_POOL_2D:
  14179. {
  14180. n_tasks = 1;
  14181. } break;
  14182. case GGML_OP_UPSCALE:
  14183. {
  14184. n_tasks = n_threads;
  14185. } break;
  14186. case GGML_OP_PAD:
  14187. {
  14188. n_tasks = n_threads;
  14189. } break;
  14190. case GGML_OP_ARGSORT:
  14191. {
  14192. n_tasks = n_threads;
  14193. } break;
  14194. case GGML_OP_FLASH_ATTN:
  14195. {
  14196. n_tasks = n_threads;
  14197. } break;
  14198. case GGML_OP_FLASH_FF:
  14199. {
  14200. n_tasks = n_threads;
  14201. } break;
  14202. case GGML_OP_FLASH_ATTN_BACK:
  14203. {
  14204. n_tasks = n_threads;
  14205. } break;
  14206. case GGML_OP_WIN_PART:
  14207. case GGML_OP_WIN_UNPART:
  14208. case GGML_OP_GET_REL_POS:
  14209. case GGML_OP_MAP_UNARY:
  14210. case GGML_OP_MAP_BINARY:
  14211. case GGML_OP_MAP_CUSTOM1_F32:
  14212. case GGML_OP_MAP_CUSTOM2_F32:
  14213. case GGML_OP_MAP_CUSTOM3_F32:
  14214. {
  14215. n_tasks = 1;
  14216. } break;
  14217. case GGML_OP_MAP_CUSTOM1:
  14218. {
  14219. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  14220. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14221. n_tasks = n_threads;
  14222. } else {
  14223. n_tasks = MIN(p->n_tasks, n_threads);
  14224. }
  14225. } break;
  14226. case GGML_OP_MAP_CUSTOM2:
  14227. {
  14228. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  14229. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14230. n_tasks = n_threads;
  14231. } else {
  14232. n_tasks = MIN(p->n_tasks, n_threads);
  14233. }
  14234. } break;
  14235. case GGML_OP_MAP_CUSTOM3:
  14236. {
  14237. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  14238. if (p->n_tasks == GGML_N_TASKS_MAX) {
  14239. n_tasks = n_threads;
  14240. } else {
  14241. n_tasks = MIN(p->n_tasks, n_threads);
  14242. }
  14243. } break;
  14244. case GGML_OP_CROSS_ENTROPY_LOSS:
  14245. {
  14246. n_tasks = n_threads;
  14247. } break;
  14248. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14249. {
  14250. n_tasks = n_threads;
  14251. } break;
  14252. case GGML_OP_NONE:
  14253. {
  14254. n_tasks = 1;
  14255. } break;
  14256. case GGML_OP_COUNT:
  14257. {
  14258. GGML_ASSERT(false);
  14259. } break;
  14260. default:
  14261. {
  14262. fprintf(stderr, "%s: op not implemented: ", __func__);
  14263. if (node->op < GGML_OP_COUNT) {
  14264. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14265. } else {
  14266. fprintf(stderr, "%d\n", node->op);
  14267. }
  14268. GGML_ASSERT(false);
  14269. } break;
  14270. }
  14271. assert(n_tasks > 0);
  14272. return n_tasks;
  14273. }
  14274. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14275. // wait for other threads to finish
  14276. const int last_node_n = * node_n;
  14277. while (true) {
  14278. if (do_yield) {
  14279. sched_yield();
  14280. }
  14281. * node_n = atomic_load(&state->shared->node_n);
  14282. if (* node_n != last_node_n) break;
  14283. }
  14284. }
  14285. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14286. // wait for other threads to finish
  14287. const int last_task_phase = * task_phase;
  14288. while (true) {
  14289. if (do_yield) {
  14290. sched_yield();
  14291. }
  14292. * task_phase = atomic_load(&state->shared->node_task);
  14293. if (* task_phase != last_task_phase) break;
  14294. }
  14295. }
  14296. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14297. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14298. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14299. const struct ggml_cplan * cplan = state->shared->cplan;
  14300. const int n_threads = state->shared->n_threads;
  14301. set_numa_thread_affinity(state->ith);
  14302. int node_n = -1;
  14303. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14304. while (true) {
  14305. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14306. state->shared->node_n += 1;
  14307. return (thread_ret_t) GGML_EXIT_ABORTED;
  14308. }
  14309. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14310. // all other threads are finished and spinning
  14311. // do finalize and init here so we don't have synchronize again
  14312. struct ggml_compute_params params = {
  14313. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14314. /*.ith =*/ 0,
  14315. /*.nth =*/ 0,
  14316. /*.wsize =*/ cplan->work_size,
  14317. /*.wdata =*/ cplan->work_data,
  14318. };
  14319. if (node_n != -1) {
  14320. /* FINALIZE */
  14321. struct ggml_tensor * node = cgraph->nodes[node_n];
  14322. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14323. params.nth = ggml_get_n_tasks(node, n_threads);
  14324. ggml_compute_forward(&params, node);
  14325. }
  14326. ggml_graph_compute_perf_stats_node(node, state->shared);
  14327. }
  14328. // distribute new work or execute it direct if 1T
  14329. while (++node_n < cgraph->n_nodes) {
  14330. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14331. struct ggml_tensor * node = cgraph->nodes[node_n];
  14332. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14333. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14334. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14335. params.nth = n_tasks;
  14336. if (n_tasks == 1) {
  14337. /* INIT */
  14338. if (GGML_OP_HAS_INIT[node->op]) {
  14339. params.type = GGML_TASK_TYPE_INIT;
  14340. ggml_compute_forward(&params, node);
  14341. }
  14342. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14343. // they do something more efficient than spinning (?)
  14344. params.type = GGML_TASK_TYPE_COMPUTE;
  14345. ggml_compute_forward(&params, node);
  14346. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14347. params.type = GGML_TASK_TYPE_FINALIZE;
  14348. ggml_compute_forward(&params, node);
  14349. }
  14350. ggml_graph_compute_perf_stats_node(node, state->shared);
  14351. } else {
  14352. break;
  14353. }
  14354. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14355. break;
  14356. }
  14357. }
  14358. task_phase = GGML_TASK_TYPE_INIT;
  14359. atomic_store(&state->shared->n_active, n_threads);
  14360. atomic_store(&state->shared->node_n, node_n);
  14361. atomic_store(&state->shared->node_task, task_phase);
  14362. } else {
  14363. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  14364. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14365. }
  14366. // check if we should stop
  14367. if (node_n >= cgraph->n_nodes) break;
  14368. /* INIT & COMPUTE */
  14369. struct ggml_tensor * node = cgraph->nodes[node_n];
  14370. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14371. struct ggml_compute_params params = {
  14372. /*.type =*/ GGML_TASK_TYPE_INIT,
  14373. /*.ith =*/ state->ith,
  14374. /*.nth =*/ n_tasks,
  14375. /*.wsize =*/ cplan->work_size,
  14376. /*.wdata =*/ cplan->work_data,
  14377. };
  14378. if (state->ith < n_tasks) {
  14379. if (GGML_OP_HAS_INIT[node->op]) {
  14380. ggml_compute_forward(&params, node);
  14381. }
  14382. }
  14383. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14384. task_phase = GGML_TASK_TYPE_COMPUTE;
  14385. atomic_store(&state->shared->n_active, n_threads);
  14386. atomic_store(&state->shared->node_task, task_phase);
  14387. }
  14388. else {
  14389. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  14390. // depending on the workload and the operating system.
  14391. // since it is not clear what is the best approach, it should potentially become user-configurable
  14392. // ref: https://github.com/ggerganov/ggml/issues/291
  14393. // UPD: adding the do_yield flag seems to resolve the issue universally
  14394. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  14395. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  14396. }
  14397. if (state->ith < n_tasks) {
  14398. params.type = GGML_TASK_TYPE_COMPUTE;
  14399. ggml_compute_forward(&params, node);
  14400. }
  14401. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14402. task_phase = GGML_TASK_TYPE_FINALIZE;
  14403. atomic_store(&state->shared->n_active, n_threads);
  14404. atomic_store(&state->shared->node_task, task_phase);
  14405. }
  14406. else {
  14407. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  14408. }
  14409. }
  14410. return GGML_EXIT_SUCCESS;
  14411. }
  14412. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  14413. if (n_threads <= 0) {
  14414. n_threads = GGML_DEFAULT_N_THREADS;
  14415. }
  14416. size_t work_size = 0;
  14417. struct ggml_cplan cplan;
  14418. memset(&cplan, 0, sizeof(struct ggml_cplan));
  14419. int max_tasks = 1;
  14420. // thread scheduling for the different operations + work buffer size estimation
  14421. for (int i = 0; i < cgraph->n_nodes; i++) {
  14422. struct ggml_tensor * node = cgraph->nodes[i];
  14423. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  14424. max_tasks = MAX(max_tasks, n_tasks);
  14425. size_t cur = 0;
  14426. switch (node->op) {
  14427. case GGML_OP_CPY:
  14428. case GGML_OP_DUP:
  14429. {
  14430. if (ggml_is_quantized(node->type)) {
  14431. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14432. }
  14433. } break;
  14434. case GGML_OP_ADD:
  14435. case GGML_OP_ADD1:
  14436. {
  14437. if (ggml_is_quantized(node->src[0]->type)) {
  14438. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14439. }
  14440. } break;
  14441. case GGML_OP_ACC:
  14442. {
  14443. if (ggml_is_quantized(node->src[0]->type)) {
  14444. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  14445. }
  14446. } break;
  14447. case GGML_OP_MUL_MAT:
  14448. {
  14449. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  14450. #if defined(GGML_USE_CLBLAST)
  14451. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  14452. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  14453. } else
  14454. #endif
  14455. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14456. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  14457. if (node->src[0]->type != GGML_TYPE_F32) {
  14458. // here we need memory for fully dequantized matrix from src0
  14459. // take into account that src0 can be broadcasted into src1[2,3]
  14460. cur = ggml_type_size(GGML_TYPE_F32)
  14461. * node->src[0]->ne[0]*node->src[0]->ne[1]
  14462. * node->src[1]->ne[2]*node->src[1]->ne[3];
  14463. }
  14464. } else
  14465. #endif
  14466. if (node->src[1]->type != vec_dot_type) {
  14467. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  14468. }
  14469. } break;
  14470. case GGML_OP_MUL_MAT_ID:
  14471. {
  14472. cur = 0;
  14473. const struct ggml_tensor * src0 = node->src[2];
  14474. const struct ggml_tensor * src1 = node->src[1];
  14475. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  14476. if (src1->type != vec_dot_type) {
  14477. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  14478. }
  14479. const int n_as = ggml_get_op_params_i32(node, 1);
  14480. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  14481. cur += n_as * sizeof(int64_t); // matrix_row_counts
  14482. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  14483. } break;
  14484. case GGML_OP_OUT_PROD:
  14485. {
  14486. if (ggml_is_quantized(node->src[0]->type)) {
  14487. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  14488. }
  14489. } break;
  14490. case GGML_OP_SOFT_MAX:
  14491. case GGML_OP_ROPE:
  14492. {
  14493. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  14494. } break;
  14495. case GGML_OP_CONV_TRANSPOSE_1D:
  14496. {
  14497. GGML_ASSERT(node->src[0]->ne[3] == 1);
  14498. GGML_ASSERT(node->src[1]->ne[2] == 1);
  14499. GGML_ASSERT(node->src[1]->ne[3] == 1);
  14500. const int64_t ne00 = node->src[0]->ne[0]; // K
  14501. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  14502. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  14503. const int64_t ne10 = node->src[1]->ne[0]; // L
  14504. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  14505. if (node->src[0]->type == GGML_TYPE_F16 &&
  14506. node->src[1]->type == GGML_TYPE_F32) {
  14507. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  14508. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  14509. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  14510. node->src[1]->type == GGML_TYPE_F32) {
  14511. cur += sizeof(float)*ne00*ne01*ne02;
  14512. cur += sizeof(float)*ne10*ne11;
  14513. } else {
  14514. GGML_ASSERT(false);
  14515. }
  14516. } break;
  14517. case GGML_OP_CONV_TRANSPOSE_2D:
  14518. {
  14519. const int64_t ne00 = node->src[0]->ne[0]; // W
  14520. const int64_t ne01 = node->src[0]->ne[1]; // H
  14521. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  14522. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  14523. const int64_t ne10 = node->src[1]->ne[0]; // W
  14524. const int64_t ne11 = node->src[1]->ne[1]; // H
  14525. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  14526. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  14527. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  14528. } break;
  14529. case GGML_OP_FLASH_ATTN:
  14530. {
  14531. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14532. if (node->src[1]->type == GGML_TYPE_F32) {
  14533. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14534. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14535. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14536. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  14537. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  14538. }
  14539. } break;
  14540. case GGML_OP_FLASH_FF:
  14541. {
  14542. if (node->src[1]->type == GGML_TYPE_F32) {
  14543. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14544. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14545. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14546. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  14547. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  14548. }
  14549. } break;
  14550. case GGML_OP_FLASH_ATTN_BACK:
  14551. {
  14552. const int64_t D = node->src[0]->ne[0];
  14553. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  14554. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14555. if (node->src[1]->type == GGML_TYPE_F32) {
  14556. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14557. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14558. } else if (node->src[1]->type == GGML_TYPE_F16) {
  14559. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  14560. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  14561. }
  14562. } break;
  14563. case GGML_OP_CROSS_ENTROPY_LOSS:
  14564. {
  14565. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  14566. } break;
  14567. case GGML_OP_COUNT:
  14568. {
  14569. GGML_ASSERT(false);
  14570. } break;
  14571. default:
  14572. break;
  14573. }
  14574. work_size = MAX(work_size, cur);
  14575. }
  14576. if (work_size > 0) {
  14577. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  14578. }
  14579. cplan.n_threads = MIN(max_tasks, n_threads);
  14580. cplan.work_size = work_size;
  14581. cplan.work_data = NULL;
  14582. return cplan;
  14583. }
  14584. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  14585. {
  14586. GGML_ASSERT(cplan);
  14587. GGML_ASSERT(cplan->n_threads > 0);
  14588. if (cplan->work_size > 0) {
  14589. GGML_ASSERT(cplan->work_data);
  14590. }
  14591. }
  14592. #ifdef GGML_USE_VULKAN
  14593. for (int i = 0; i < cgraph->n_nodes; i++) {
  14594. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  14595. }
  14596. ggml_vk_preallocate_buffers_cpu_assist();
  14597. for (int i = 0; i < cgraph->n_nodes; i++) {
  14598. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  14599. }
  14600. #endif
  14601. const int n_threads = cplan->n_threads;
  14602. struct ggml_compute_state_shared state_shared = {
  14603. /*.cgraph =*/ cgraph,
  14604. /*.cgraph_plan =*/ cplan,
  14605. /*.perf_node_start_cycles =*/ 0,
  14606. /*.perf_node_start_time_us =*/ 0,
  14607. /*.n_threads =*/ n_threads,
  14608. /*.n_active =*/ n_threads,
  14609. /*.node_n =*/ -1,
  14610. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  14611. /*.abort_callback =*/ NULL,
  14612. /*.abort_callback_data =*/ NULL,
  14613. };
  14614. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  14615. // create thread pool
  14616. if (n_threads > 1) {
  14617. for (int j = 1; j < n_threads; ++j) {
  14618. workers[j] = (struct ggml_compute_state) {
  14619. .thrd = 0,
  14620. .ith = j,
  14621. .shared = &state_shared,
  14622. };
  14623. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14624. GGML_ASSERT(rc == 0);
  14625. UNUSED(rc);
  14626. }
  14627. }
  14628. workers[0].ith = 0;
  14629. workers[0].shared = &state_shared;
  14630. const int64_t perf_start_cycles = ggml_perf_cycles();
  14631. const int64_t perf_start_time_us = ggml_perf_time_us();
  14632. // this is a work thread too
  14633. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  14634. // don't leave affinity set on the main thread
  14635. clear_numa_thread_affinity();
  14636. // join or kill thread pool
  14637. if (n_threads > 1) {
  14638. for (int j = 1; j < n_threads; j++) {
  14639. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14640. GGML_ASSERT(rc == 0);
  14641. }
  14642. }
  14643. #ifdef GGML_USE_VULKAN
  14644. ggml_vk_graph_cleanup_cpu_assist();
  14645. #endif
  14646. // performance stats (graph)
  14647. {
  14648. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14649. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14650. cgraph->perf_runs++;
  14651. cgraph->perf_cycles += perf_cycles_cur;
  14652. cgraph->perf_time_us += perf_time_us_cur;
  14653. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14654. __func__, cgraph->perf_runs,
  14655. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14656. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14657. (double) perf_time_us_cur / 1000.0,
  14658. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14659. }
  14660. return compute_status;
  14661. }
  14662. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  14663. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  14664. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  14665. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  14666. ggml_graph_compute(cgraph, &cplan);
  14667. }
  14668. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14669. for (int i = 0; i < cgraph->n_leafs; i++) {
  14670. struct ggml_tensor * leaf = cgraph->leafs[i];
  14671. if (strcmp(leaf->name, name) == 0) {
  14672. return leaf;
  14673. }
  14674. }
  14675. for (int i = 0; i < cgraph->n_nodes; i++) {
  14676. struct ggml_tensor * node = cgraph->nodes[i];
  14677. if (strcmp(node->name, name) == 0) {
  14678. return node;
  14679. }
  14680. }
  14681. return NULL;
  14682. }
  14683. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14684. const int64_t * ne = tensor->ne;
  14685. const size_t * nb = tensor->nb;
  14686. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14687. ggml_type_name(tensor->type),
  14688. ggml_op_name (tensor->op),
  14689. ggml_n_dims(tensor),
  14690. ne[0], ne[1], ne[2], ne[3],
  14691. nb[0], nb[1], nb[2], nb[3],
  14692. tensor->data,
  14693. tensor->name);
  14694. }
  14695. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14696. const int64_t * ne = tensor->ne;
  14697. const size_t * nb = tensor->nb;
  14698. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14699. arg,
  14700. ggml_type_name(tensor->type),
  14701. ggml_op_name (tensor->op),
  14702. ggml_n_dims(tensor),
  14703. ne[0], ne[1], ne[2], ne[3],
  14704. nb[0], nb[1], nb[2], nb[3],
  14705. tensor->data,
  14706. tensor->name);
  14707. }
  14708. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14709. uint64_t size_eval = 0;
  14710. // compute size of intermediate results
  14711. // TODO: does not take into account scratch buffers !!!!
  14712. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14713. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  14714. }
  14715. // print
  14716. {
  14717. FILE * fout = stdout;
  14718. fprintf(fout, "\n");
  14719. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14720. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14721. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14722. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14723. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14724. // header
  14725. fprintf(fout, "\n");
  14726. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14727. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14728. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14729. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14730. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14731. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  14732. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  14733. }
  14734. // header
  14735. fprintf(fout, "\n");
  14736. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14737. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14738. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14739. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14740. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14741. if (cgraph->nodes[i]->src[j]) {
  14742. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  14743. }
  14744. }
  14745. fprintf(fout, "\n");
  14746. }
  14747. fprintf(fout, "\n");
  14748. }
  14749. // write binary data
  14750. {
  14751. FILE * fout = fopen(fname, "wb");
  14752. if (!fout) {
  14753. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14754. return;
  14755. }
  14756. // header
  14757. {
  14758. const uint32_t magic = GGML_FILE_MAGIC;
  14759. const uint32_t version = GGML_FILE_VERSION;
  14760. const uint32_t n_leafs = cgraph->n_leafs;
  14761. const uint32_t n_nodes = cgraph->n_nodes;
  14762. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14763. fwrite(&version, sizeof(uint32_t), 1, fout);
  14764. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14765. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  14766. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14767. }
  14768. // leafs
  14769. {
  14770. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14771. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14772. const uint32_t type = tensor->type;
  14773. const uint32_t op = tensor->op;
  14774. fwrite(&type, sizeof(uint32_t), 1, fout);
  14775. fwrite(&op, sizeof(uint32_t), 1, fout);
  14776. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14777. const uint64_t ne = tensor->ne[j];
  14778. const uint64_t nb = tensor->nb[j];
  14779. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14780. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14781. }
  14782. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14783. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14784. // dump the data
  14785. // TODO: pad this to 32 byte boundary
  14786. {
  14787. const size_t size = ggml_nbytes(tensor);
  14788. fwrite(tensor->data, sizeof(char), size, fout);
  14789. }
  14790. }
  14791. }
  14792. // nodes
  14793. {
  14794. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14795. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14796. const uint32_t type = tensor->type;
  14797. const uint32_t op = tensor->op;
  14798. fwrite(&type, sizeof(uint32_t), 1, fout);
  14799. fwrite(&op, sizeof(uint32_t), 1, fout);
  14800. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14801. const uint64_t ne = tensor->ne[j];
  14802. const uint64_t nb = tensor->nb[j];
  14803. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14804. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14805. }
  14806. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14807. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  14808. // output the op arguments
  14809. {
  14810. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14811. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14812. args[j] = tensor->src[j];
  14813. }
  14814. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14815. if (args[j]) {
  14816. int32_t idx = -1;
  14817. // check if leaf
  14818. {
  14819. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14820. if (args[j] == cgraph->leafs[k]) {
  14821. idx = k;
  14822. break;
  14823. }
  14824. }
  14825. }
  14826. // check if node
  14827. if (idx == -1) {
  14828. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14829. if (args[j] == cgraph->nodes[k]) {
  14830. idx = cgraph->n_leafs + k;
  14831. break;
  14832. }
  14833. }
  14834. }
  14835. if (idx == -1) {
  14836. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14837. fclose(fout);
  14838. return;
  14839. }
  14840. fwrite(&idx, sizeof(int32_t), 1, fout);
  14841. } else {
  14842. const int32_t nul = -1;
  14843. fwrite(&nul, sizeof(int32_t), 1, fout);
  14844. }
  14845. }
  14846. }
  14847. }
  14848. }
  14849. fclose(fout);
  14850. }
  14851. }
  14852. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14853. assert(*ctx_data == NULL);
  14854. assert(*ctx_eval == NULL);
  14855. struct ggml_cgraph * result = NULL;
  14856. struct ggml_tensor * data = NULL;
  14857. // read file into data
  14858. {
  14859. FILE * fin = fopen(fname, "rb");
  14860. if (!fin) {
  14861. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14862. return result;
  14863. }
  14864. size_t fsize = 0;
  14865. fseek(fin, 0, SEEK_END);
  14866. fsize = ftell(fin);
  14867. fseek(fin, 0, SEEK_SET);
  14868. // create the data context
  14869. {
  14870. const size_t overhead = 1*ggml_tensor_overhead();
  14871. struct ggml_init_params params = {
  14872. .mem_size = fsize + overhead,
  14873. .mem_buffer = NULL,
  14874. .no_alloc = false,
  14875. };
  14876. *ctx_data = ggml_init(params);
  14877. if (!*ctx_data) {
  14878. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14879. fclose(fin);
  14880. return result;
  14881. }
  14882. }
  14883. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14884. {
  14885. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14886. if (ret != fsize) {
  14887. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14888. fclose(fin);
  14889. return result;
  14890. }
  14891. }
  14892. fclose(fin);
  14893. }
  14894. // populate result
  14895. {
  14896. char * ptr = (char *) data->data;
  14897. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14898. if (magic != GGML_FILE_MAGIC) {
  14899. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14900. return result;
  14901. }
  14902. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14903. if (version != GGML_FILE_VERSION) {
  14904. fprintf(stderr, "%s: invalid version number\n", __func__);
  14905. return result;
  14906. }
  14907. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14908. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14909. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14910. const int graph_size = MAX(n_leafs, n_nodes);
  14911. // create the data context
  14912. {
  14913. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  14914. struct ggml_init_params params = {
  14915. .mem_size = size_eval + overhead,
  14916. .mem_buffer = NULL,
  14917. .no_alloc = true,
  14918. };
  14919. *ctx_eval = ggml_init(params);
  14920. if (!*ctx_eval) {
  14921. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14922. return result;
  14923. }
  14924. }
  14925. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  14926. result->n_leafs = n_leafs;
  14927. result->n_nodes = n_nodes;
  14928. // leafs
  14929. {
  14930. uint32_t type;
  14931. uint32_t op;
  14932. for (uint32_t i = 0; i < n_leafs; ++i) {
  14933. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14934. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14935. int64_t ne[GGML_MAX_DIMS];
  14936. size_t nb[GGML_MAX_DIMS];
  14937. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14938. uint64_t ne_cur;
  14939. uint64_t nb_cur;
  14940. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14941. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14942. ne[j] = ne_cur;
  14943. nb[j] = nb_cur;
  14944. }
  14945. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  14946. tensor->op = (enum ggml_op) op;
  14947. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14948. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  14949. tensor->data = (void *) ptr;
  14950. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14951. tensor->nb[j] = nb[j];
  14952. }
  14953. result->leafs[i] = tensor;
  14954. ptr += ggml_nbytes(tensor);
  14955. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  14956. }
  14957. }
  14958. ggml_set_no_alloc(*ctx_eval, false);
  14959. // nodes
  14960. {
  14961. uint32_t type;
  14962. uint32_t op;
  14963. for (uint32_t i = 0; i < n_nodes; ++i) {
  14964. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14965. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14966. enum ggml_op eop = (enum ggml_op) op;
  14967. int64_t ne[GGML_MAX_DIMS];
  14968. size_t nb[GGML_MAX_DIMS];
  14969. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14970. uint64_t ne_cur;
  14971. uint64_t nb_cur;
  14972. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14973. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14974. ne[j] = ne_cur;
  14975. nb[j] = nb_cur;
  14976. }
  14977. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14978. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  14979. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  14980. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  14981. // parse args
  14982. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  14983. const int32_t arg_idx = ptr_arg_idx[j];
  14984. if (arg_idx == -1) {
  14985. continue;
  14986. }
  14987. if (arg_idx < result->n_leafs) {
  14988. args[j] = result->leafs[arg_idx];
  14989. } else {
  14990. args[j] = result->nodes[arg_idx - result->n_leafs];
  14991. }
  14992. }
  14993. // create the tensor
  14994. // "view" operations are handled differently
  14995. // TODO: handle inplace ops - currently a copy is always made
  14996. struct ggml_tensor * tensor = NULL;
  14997. switch (eop) {
  14998. // TODO: implement other view ops
  14999. case GGML_OP_RESHAPE:
  15000. {
  15001. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15002. } break;
  15003. case GGML_OP_VIEW:
  15004. {
  15005. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15006. size_t offs;
  15007. memcpy(&offs, ptr_op_params, sizeof(offs));
  15008. tensor->data = ((char *) tensor->data) + offs;
  15009. } break;
  15010. case GGML_OP_TRANSPOSE:
  15011. {
  15012. tensor = ggml_transpose(*ctx_eval, args[0]);
  15013. } break;
  15014. case GGML_OP_PERMUTE:
  15015. {
  15016. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15017. } break;
  15018. default:
  15019. {
  15020. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15021. tensor->op = eop;
  15022. } break;
  15023. }
  15024. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15025. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15026. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15027. tensor->nb[j] = nb[j];
  15028. }
  15029. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15030. tensor->src[j] = args[j];
  15031. }
  15032. result->nodes[i] = tensor;
  15033. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15034. }
  15035. }
  15036. }
  15037. return result;
  15038. }
  15039. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15040. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15041. GGML_PRINT("=== GRAPH ===\n");
  15042. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15043. for (int i = 0; i < cgraph->n_nodes; i++) {
  15044. struct ggml_tensor * node = cgraph->nodes[i];
  15045. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15046. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15047. i,
  15048. node->ne[0], node->ne[1], node->ne[2],
  15049. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15050. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15051. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15052. (double) node->perf_time_us / 1000.0,
  15053. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15054. }
  15055. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15056. for (int i = 0; i < cgraph->n_leafs; i++) {
  15057. struct ggml_tensor * node = cgraph->leafs[i];
  15058. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15059. i,
  15060. node->ne[0], node->ne[1],
  15061. ggml_op_name(node->op),
  15062. ggml_get_name(node));
  15063. }
  15064. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15065. if (perf_total_per_op_us[i] == 0) {
  15066. continue;
  15067. }
  15068. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15069. }
  15070. GGML_PRINT("========================================\n");
  15071. }
  15072. // check if node is part of the graph
  15073. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15074. if (cgraph == NULL) {
  15075. return true;
  15076. }
  15077. for (int i = 0; i < cgraph->n_nodes; i++) {
  15078. if (cgraph->nodes[i] == node) {
  15079. return true;
  15080. }
  15081. }
  15082. return false;
  15083. }
  15084. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15085. for (int i = 0; i < cgraph->n_nodes; i++) {
  15086. struct ggml_tensor * parent = cgraph->nodes[i];
  15087. if (parent->grad == node) {
  15088. return parent;
  15089. }
  15090. }
  15091. return NULL;
  15092. }
  15093. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15094. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15095. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15096. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15097. gparent0 ? (void *) gparent0 : (void *) parent,
  15098. gparent0 ? "g" : "x",
  15099. gparent ? (void *) gparent : (void *) node,
  15100. gparent ? "g" : "x",
  15101. gparent ? "empty" : "vee",
  15102. gparent ? "dashed" : "solid",
  15103. label);
  15104. }
  15105. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15106. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15107. (void *) parent, "x",
  15108. (void *) node, "x",
  15109. label);
  15110. }
  15111. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15112. char color[16];
  15113. FILE * fp = fopen(filename, "w");
  15114. GGML_ASSERT(fp);
  15115. fprintf(fp, "digraph G {\n");
  15116. fprintf(fp, " newrank = true;\n");
  15117. fprintf(fp, " rankdir = LR;\n");
  15118. for (int i = 0; i < gb->n_nodes; i++) {
  15119. struct ggml_tensor * node = gb->nodes[i];
  15120. if (ggml_graph_get_parent(gb, node) != NULL) {
  15121. continue;
  15122. }
  15123. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15124. snprintf(color, sizeof(color), "yellow");
  15125. } else if (node->grad) {
  15126. if (ggml_graph_find(gf, node)) {
  15127. snprintf(color, sizeof(color), "green");
  15128. } else {
  15129. snprintf(color, sizeof(color), "lightblue");
  15130. }
  15131. } else {
  15132. snprintf(color, sizeof(color), "white");
  15133. }
  15134. fprintf(fp, " \"%p\" [ "
  15135. "style = filled; fillcolor = %s; shape = record; "
  15136. "label=\"",
  15137. (void *) node, color);
  15138. if (strlen(node->name) > 0) {
  15139. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15140. } else {
  15141. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15142. }
  15143. if (ggml_is_matrix(node)) {
  15144. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15145. } else {
  15146. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15147. }
  15148. if (node->grad) {
  15149. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15150. } else {
  15151. fprintf(fp, "\"; ]\n");
  15152. }
  15153. }
  15154. for (int i = 0; i < gb->n_leafs; i++) {
  15155. struct ggml_tensor * node = gb->leafs[i];
  15156. snprintf(color, sizeof(color), "pink");
  15157. fprintf(fp, " \"%p\" [ "
  15158. "style = filled; fillcolor = %s; shape = record; "
  15159. "label=\"<x>",
  15160. (void *) node, color);
  15161. if (strlen(node->name) > 0) {
  15162. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15163. } else {
  15164. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15165. }
  15166. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15167. if (ggml_nelements(node) < 5) {
  15168. fprintf(fp, " | (");
  15169. for (int j = 0; j < ggml_nelements(node); j++) {
  15170. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15171. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15172. }
  15173. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15174. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15175. }
  15176. else {
  15177. fprintf(fp, "#");
  15178. }
  15179. if (j < ggml_nelements(node) - 1) {
  15180. fprintf(fp, ", ");
  15181. }
  15182. }
  15183. fprintf(fp, ")");
  15184. }
  15185. fprintf(fp, "\"; ]\n");
  15186. }
  15187. for (int i = 0; i < gb->n_nodes; i++) {
  15188. struct ggml_tensor * node = gb->nodes[i];
  15189. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15190. if (node->src[j]) {
  15191. char label[16];
  15192. snprintf(label, sizeof(label), "src %d", j);
  15193. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15194. }
  15195. }
  15196. }
  15197. for (int i = 0; i < gb->n_leafs; i++) {
  15198. struct ggml_tensor * node = gb->leafs[i];
  15199. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15200. if (node->src[j]) {
  15201. char label[16];
  15202. snprintf(label, sizeof(label), "src %d", j);
  15203. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15204. }
  15205. }
  15206. }
  15207. fprintf(fp, "}\n");
  15208. fclose(fp);
  15209. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15210. }
  15211. ////////////////////////////////////////////////////////////////////////////////
  15212. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15213. int i = 0;
  15214. for (int p = 0; p < np; ++p) {
  15215. const int64_t ne = ggml_nelements(ps[p]) ;
  15216. // TODO: add function to set tensor from array
  15217. for (int64_t j = 0; j < ne; ++j) {
  15218. ggml_set_f32_1d(ps[p], j, x[i++]);
  15219. }
  15220. }
  15221. }
  15222. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15223. int i = 0;
  15224. for (int p = 0; p < np; ++p) {
  15225. const int64_t ne = ggml_nelements(ps[p]) ;
  15226. // TODO: add function to get all elements at once
  15227. for (int64_t j = 0; j < ne; ++j) {
  15228. x[i++] = ggml_get_f32_1d(ps[p], j);
  15229. }
  15230. }
  15231. }
  15232. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15233. int64_t i = 0;
  15234. for (int p = 0; p < np; ++p) {
  15235. const int64_t ne = ggml_nelements(ps[p]) ;
  15236. // TODO: add function to get all elements at once
  15237. for (int64_t j = 0; j < ne; ++j) {
  15238. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15239. }
  15240. }
  15241. }
  15242. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15243. int64_t i = 0;
  15244. for (int p = 0; p < np; ++p) {
  15245. const int64_t ne = ggml_nelements(ps[p]) ;
  15246. // TODO: add function to get all elements at once
  15247. for (int64_t j = 0; j < ne; ++j) {
  15248. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15249. }
  15250. }
  15251. }
  15252. //
  15253. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15254. //
  15255. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15256. //
  15257. static enum ggml_opt_result ggml_opt_adam(
  15258. struct ggml_context * ctx,
  15259. struct ggml_opt_context * opt,
  15260. struct ggml_opt_params params,
  15261. struct ggml_tensor * f,
  15262. struct ggml_cgraph * gf,
  15263. struct ggml_cgraph * gb,
  15264. ggml_opt_callback callback,
  15265. void * callback_data) {
  15266. GGML_ASSERT(ggml_is_scalar(f));
  15267. // these will store the parameters we want to optimize
  15268. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15269. int np = 0;
  15270. int64_t nx = 0;
  15271. for (int i = 0; i < gf->n_nodes; ++i) {
  15272. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15273. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15274. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15275. ps[np++] = gf->nodes[i];
  15276. nx += ggml_nelements(gf->nodes[i]);
  15277. }
  15278. }
  15279. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15280. int iter = opt->iter;
  15281. ggml_opt_init(opt->ctx, opt, params, nx);
  15282. opt->iter = iter;
  15283. }
  15284. // constants
  15285. float sched = params.adam.sched;
  15286. const float alpha = params.adam.alpha;
  15287. const float decay = params.adam.decay * alpha;
  15288. const float beta1 = params.adam.beta1;
  15289. const float beta2 = params.adam.beta2;
  15290. const float eps = params.adam.eps;
  15291. const float gclip = params.adam.gclip;
  15292. const int decay_min_ndim = params.adam.decay_min_ndim;
  15293. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15294. const float accum_norm = 1.0f / (float) n_accum;
  15295. float * g = opt->adam.g->data; // gradients
  15296. float * m = opt->adam.m->data; // first moment
  15297. float * v = opt->adam.v->data; // second moment
  15298. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15299. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15300. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15301. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15302. bool cancel = false;
  15303. // compute the function value
  15304. float fx = 0;
  15305. ggml_set_zero(opt->adam.g);
  15306. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15307. if (callback) {
  15308. callback(callback_data, accum_step, &sched, &cancel);
  15309. if (cancel) {
  15310. return GGML_OPT_RESULT_CANCEL;
  15311. }
  15312. }
  15313. // ggml_graph_reset (gf);
  15314. ggml_set_f32 (f->grad, 1.0f);
  15315. ggml_graph_compute(gb, &cplan);
  15316. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15317. fx += ggml_get_f32_1d(f, 0);
  15318. }
  15319. fx *= accum_norm;
  15320. opt->adam.fx_prev = fx;
  15321. opt->adam.fx_best = opt->adam.fx_prev;
  15322. if (pf) {
  15323. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15324. }
  15325. opt->loss_before = opt->adam.fx_prev;
  15326. opt->loss_after = opt->adam.fx_prev;
  15327. // initialize
  15328. if (opt->just_initialized) {
  15329. opt->adam.n_no_improvement = 0;
  15330. opt->just_initialized = false;
  15331. }
  15332. float * fx_best = &opt->adam.fx_best;
  15333. float * fx_prev = &opt->adam.fx_prev;
  15334. int * n_no_improvement = &opt->adam.n_no_improvement;
  15335. int iter0 = opt->iter;
  15336. // run the optimizer
  15337. for (int t = 0; t < params.adam.n_iter; ++t) {
  15338. opt->iter = iter0 + t + 1;
  15339. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15340. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15341. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  15342. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  15343. for (int i = 0; i < np; ++i) {
  15344. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  15345. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  15346. }
  15347. const int64_t t_start_wall = ggml_time_us();
  15348. const int64_t t_start_cpu = ggml_cycles();
  15349. UNUSED(t_start_wall);
  15350. UNUSED(t_start_cpu);
  15351. {
  15352. float gnorm = 1.0f;
  15353. if (gclip > 0.0f) {
  15354. // gradient clipping
  15355. ggml_float sum = 0.0;
  15356. for (int64_t i = 0; i < nx; ++i) {
  15357. sum += (ggml_float)(g[i]*g[i]);
  15358. }
  15359. ggml_float norm = sqrt(sum);
  15360. if (norm > (ggml_float) gclip) {
  15361. gnorm = (float) ((ggml_float) gclip / norm);
  15362. }
  15363. }
  15364. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  15365. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  15366. int64_t i = 0;
  15367. for (int p = 0; p < np; ++p) {
  15368. const int64_t ne = ggml_nelements(ps[p]);
  15369. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  15370. for (int64_t j = 0; j < ne; ++j) {
  15371. float x = ggml_get_f32_1d(ps[p], j);
  15372. float g_ = g[i]*gnorm;
  15373. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  15374. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  15375. float mh = m[i]*beta1h;
  15376. float vh = v[i]*beta2h;
  15377. vh = sqrtf(vh) + eps;
  15378. x = x*(1.0f - p_decay) - mh/vh;
  15379. ggml_set_f32_1d(ps[p], j, x);
  15380. ++i;
  15381. }
  15382. }
  15383. }
  15384. fx = 0;
  15385. ggml_set_zero(opt->adam.g);
  15386. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15387. if (callback) {
  15388. callback(callback_data, accum_step, &sched, &cancel);
  15389. if (cancel) {
  15390. return GGML_OPT_RESULT_CANCEL;;
  15391. }
  15392. }
  15393. // ggml_graph_reset (gf);
  15394. ggml_set_f32 (f->grad, 1.0f);
  15395. ggml_graph_compute(gb, &cplan);
  15396. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15397. fx += ggml_get_f32_1d(f, 0);
  15398. }
  15399. fx *= accum_norm;
  15400. opt->loss_after = fx;
  15401. // check convergence
  15402. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  15403. GGML_PRINT_DEBUG("converged\n");
  15404. return GGML_OPT_RESULT_OK;
  15405. }
  15406. // delta-based convergence test
  15407. if (pf != NULL) {
  15408. // need at least params.past iterations to start checking for convergence
  15409. if (params.past <= iter0 + t) {
  15410. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  15411. if (fabsf(rate) < params.delta) {
  15412. return GGML_OPT_RESULT_OK;
  15413. }
  15414. }
  15415. pf[(iter0 + t)%params.past] = fx;
  15416. }
  15417. // check for improvement
  15418. if (params.max_no_improvement > 0) {
  15419. if (fx_best[0] > fx) {
  15420. fx_best[0] = fx;
  15421. n_no_improvement[0] = 0;
  15422. } else {
  15423. ++n_no_improvement[0];
  15424. if (n_no_improvement[0] >= params.max_no_improvement) {
  15425. return GGML_OPT_RESULT_OK;
  15426. }
  15427. }
  15428. }
  15429. fx_prev[0] = fx;
  15430. {
  15431. const int64_t t_end_cpu = ggml_cycles();
  15432. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15433. UNUSED(t_end_cpu);
  15434. const int64_t t_end_wall = ggml_time_us();
  15435. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15436. UNUSED(t_end_wall);
  15437. }
  15438. }
  15439. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15440. }
  15441. //
  15442. // L-BFGS
  15443. //
  15444. // the L-BFGS implementation below is based on the following implementation:
  15445. //
  15446. // https://github.com/chokkan/liblbfgs
  15447. //
  15448. struct ggml_lbfgs_iteration_data {
  15449. float alpha;
  15450. float ys;
  15451. float * s;
  15452. float * y;
  15453. };
  15454. static enum ggml_opt_result linesearch_backtracking(
  15455. const struct ggml_opt_params * params,
  15456. int nx,
  15457. float * x,
  15458. float * fx,
  15459. float * g,
  15460. float * d,
  15461. float * step,
  15462. const float * xp,
  15463. struct ggml_tensor * f,
  15464. struct ggml_cgraph * gb,
  15465. struct ggml_cplan * cplan,
  15466. const int np,
  15467. struct ggml_tensor * ps[],
  15468. bool * cancel,
  15469. ggml_opt_callback callback,
  15470. void * callback_data) {
  15471. int count = 0;
  15472. float width = 0.0f;
  15473. float dg = 0.0f;
  15474. float finit = 0.0f;
  15475. float dginit = 0.0f;
  15476. float dgtest = 0.0f;
  15477. const float dec = 0.5f;
  15478. const float inc = 2.1f;
  15479. const int n_accum = MAX(1, params->n_gradient_accumulation);
  15480. const float accum_norm = 1.0f / (float) n_accum;
  15481. if (*step <= 0.f) {
  15482. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15483. }
  15484. // compute the initial gradient in the search direction
  15485. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  15486. // make sure that d points to a descent direction
  15487. if (0 < dginit) {
  15488. return GGML_LINESEARCH_FAIL;
  15489. }
  15490. // initialize local variables
  15491. finit = *fx;
  15492. dgtest = params->lbfgs.ftol*dginit;
  15493. while (true) {
  15494. ggml_vec_cpy_f32(nx, x, xp);
  15495. ggml_vec_mad_f32(nx, x, d, *step);
  15496. // evaluate the function and gradient values
  15497. {
  15498. ggml_opt_set_params(np, ps, x);
  15499. *fx = 0;
  15500. memset(g, 0, sizeof(float)*nx);
  15501. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15502. if (callback) {
  15503. // LBFG-S does not support learning rate -> ignore learning schedule
  15504. float sched = 0;
  15505. callback(callback_data, accum_step, &sched, cancel);
  15506. if (*cancel) {
  15507. return GGML_OPT_RESULT_CANCEL;
  15508. }
  15509. }
  15510. // ggml_graph_reset (gf);
  15511. ggml_set_f32 (f->grad, 1.0f);
  15512. ggml_graph_compute(gb, cplan);
  15513. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15514. *fx += ggml_get_f32_1d(f, 0);
  15515. }
  15516. *fx *= accum_norm;
  15517. }
  15518. ++count;
  15519. if (*fx > finit + (*step)*dgtest) {
  15520. width = dec;
  15521. } else {
  15522. // Armijo condition is satisfied
  15523. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15524. return count;
  15525. }
  15526. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  15527. // check the Wolfe condition
  15528. if (dg < params->lbfgs.wolfe * dginit) {
  15529. width = inc;
  15530. } else {
  15531. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15532. // regular Wolfe conditions
  15533. return count;
  15534. }
  15535. if(dg > -params->lbfgs.wolfe*dginit) {
  15536. width = dec;
  15537. } else {
  15538. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15539. return count;
  15540. }
  15541. }
  15542. }
  15543. if (*step < params->lbfgs.min_step) {
  15544. return GGML_LINESEARCH_MINIMUM_STEP;
  15545. }
  15546. if (*step > params->lbfgs.max_step) {
  15547. return GGML_LINESEARCH_MAXIMUM_STEP;
  15548. }
  15549. if (params->lbfgs.max_linesearch <= count) {
  15550. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15551. }
  15552. (*step) *= width;
  15553. }
  15554. GGML_ASSERT(false && "line search failed");
  15555. return GGML_LINESEARCH_FAIL;
  15556. }
  15557. static enum ggml_opt_result ggml_opt_lbfgs(
  15558. struct ggml_context * ctx,
  15559. struct ggml_opt_context * opt,
  15560. struct ggml_opt_params params,
  15561. struct ggml_tensor * f,
  15562. struct ggml_cgraph * gf,
  15563. struct ggml_cgraph * gb,
  15564. ggml_opt_callback callback,
  15565. void * callback_data) {
  15566. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15567. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15568. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15569. return GGML_OPT_RESULT_INVALID_WOLFE;
  15570. }
  15571. }
  15572. const int m = params.lbfgs.m;
  15573. // these will store the parameters we want to optimize
  15574. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15575. int np = 0;
  15576. int nx = 0;
  15577. for (int i = 0; i < gf->n_nodes; ++i) {
  15578. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15579. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15580. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15581. ps[np++] = gf->nodes[i];
  15582. nx += ggml_nelements(gf->nodes[i]);
  15583. }
  15584. }
  15585. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15586. int iter = opt->iter;
  15587. ggml_opt_init(ctx, opt, params, nx);
  15588. opt->iter = iter;
  15589. }
  15590. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15591. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15592. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15593. float * x = opt->lbfgs.x->data; // current parameters
  15594. float * xp = opt->lbfgs.xp->data; // previous parameters
  15595. float * g = opt->lbfgs.g->data; // current gradient
  15596. float * gp = opt->lbfgs.gp->data; // previous gradient
  15597. float * d = opt->lbfgs.d->data; // search direction
  15598. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15599. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15600. const float accum_norm = 1.0f / (float) n_accum;
  15601. float fx = 0.0f; // cost function value
  15602. float xnorm = 0.0f; // ||x||
  15603. float gnorm = 0.0f; // ||g||
  15604. // initialize x from the graph nodes
  15605. ggml_opt_get_params(np, ps, x);
  15606. // the L-BFGS memory
  15607. float * lm_alpha = opt->lbfgs.lmal->data;
  15608. float * lm_ys = opt->lbfgs.lmys->data;
  15609. float * lm_s = opt->lbfgs.lms->data;
  15610. float * lm_y = opt->lbfgs.lmy->data;
  15611. bool cancel = false;
  15612. // evaluate the function value and its gradient
  15613. {
  15614. ggml_opt_set_params(np, ps, x);
  15615. fx = 0;
  15616. memset(g, 0, sizeof(float)*nx);
  15617. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15618. if (callback) {
  15619. // LBFG-S does not support learning rate -> ignore learning schedule
  15620. float sched = 0;
  15621. callback(callback_data, accum_step, &sched, &cancel);
  15622. if (cancel) {
  15623. return GGML_OPT_RESULT_CANCEL;
  15624. }
  15625. }
  15626. // ggml_graph_reset (gf);
  15627. ggml_set_f32 (f->grad, 1.0f);
  15628. ggml_graph_compute(gb, &cplan);
  15629. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15630. fx += ggml_get_f32_1d(f, 0);
  15631. }
  15632. fx *= accum_norm;
  15633. opt->loss_before = fx;
  15634. opt->loss_after = fx;
  15635. }
  15636. // search direction = -gradient
  15637. ggml_vec_neg_f32(nx, d, g);
  15638. // ||x||, ||g||
  15639. ggml_vec_norm_f32(nx, &xnorm, x);
  15640. ggml_vec_norm_f32(nx, &gnorm, g);
  15641. if (xnorm < 1.0f) {
  15642. xnorm = 1.0f;
  15643. }
  15644. // already optimized
  15645. if (gnorm/xnorm <= params.lbfgs.eps) {
  15646. return GGML_OPT_RESULT_OK;
  15647. }
  15648. if (opt->just_initialized) {
  15649. if (pf) {
  15650. pf[0] = fx;
  15651. }
  15652. opt->lbfgs.fx_best = fx;
  15653. // initial step
  15654. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15655. opt->lbfgs.j = 0;
  15656. opt->lbfgs.k = 1;
  15657. opt->lbfgs.end = 0;
  15658. opt->lbfgs.n_no_improvement = 0;
  15659. opt->just_initialized = false;
  15660. }
  15661. float * fx_best = &opt->lbfgs.fx_best;
  15662. float * step = &opt->lbfgs.step;
  15663. int * j = &opt->lbfgs.j;
  15664. int * k = &opt->lbfgs.k;
  15665. int * end = &opt->lbfgs.end;
  15666. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15667. int ls = 0;
  15668. int bound = 0;
  15669. float ys = 0.0f;
  15670. float yy = 0.0f;
  15671. float beta = 0.0f;
  15672. int it = 0;
  15673. while (true) {
  15674. // store the current position and gradient vectors
  15675. ggml_vec_cpy_f32(nx, xp, x);
  15676. ggml_vec_cpy_f32(nx, gp, g);
  15677. // TODO: instead of passing &cancel here, use the return code of the linesearch
  15678. // to determine if the optimization should be cancelled
  15679. // this is a simple change, but not doing this atm, since I don't have a nice
  15680. // way to test and don't want to break something with so many changes lined up
  15681. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  15682. if (cancel) {
  15683. return GGML_OPT_RESULT_CANCEL;
  15684. }
  15685. if (ls < 0) {
  15686. // linesearch failed - go back to the previous point and return
  15687. ggml_vec_cpy_f32(nx, x, xp);
  15688. ggml_vec_cpy_f32(nx, g, gp);
  15689. return ls;
  15690. }
  15691. opt->loss_after = fx;
  15692. ggml_vec_norm_f32(nx, &xnorm, x);
  15693. ggml_vec_norm_f32(nx, &gnorm, g);
  15694. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15695. if (xnorm < 1.0f) {
  15696. xnorm = 1.0f;
  15697. }
  15698. if (gnorm/xnorm <= params.lbfgs.eps) {
  15699. // converged
  15700. return GGML_OPT_RESULT_OK;
  15701. }
  15702. // delta-based convergence test
  15703. if (pf != NULL) {
  15704. // need at least params.past iterations to start checking for convergence
  15705. if (params.past <= k[0]) {
  15706. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15707. if (fabsf(rate) < params.delta) {
  15708. return GGML_OPT_RESULT_OK;
  15709. }
  15710. }
  15711. pf[k[0]%params.past] = fx;
  15712. }
  15713. // check for improvement
  15714. if (params.max_no_improvement > 0) {
  15715. if (fx < fx_best[0]) {
  15716. fx_best[0] = fx;
  15717. n_no_improvement[0] = 0;
  15718. } else {
  15719. n_no_improvement[0]++;
  15720. if (n_no_improvement[0] >= params.max_no_improvement) {
  15721. return GGML_OPT_RESULT_OK;
  15722. }
  15723. }
  15724. }
  15725. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15726. // reached the maximum number of iterations
  15727. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15728. }
  15729. // update vectors s and y:
  15730. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15731. // y_{k+1} = g_{k+1} - g_{k}.
  15732. //
  15733. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15734. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15735. // compute scalars ys and yy:
  15736. // ys = y^t \cdot s -> 1 / \rho.
  15737. // yy = y^t \cdot y.
  15738. //
  15739. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  15740. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  15741. lm_ys[end[0]] = ys;
  15742. // find new search direction
  15743. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15744. bound = (m <= k[0]) ? m : k[0];
  15745. k[0]++;
  15746. it++;
  15747. end[0] = (end[0] + 1)%m;
  15748. // initialize search direction with -g
  15749. ggml_vec_neg_f32(nx, d, g);
  15750. j[0] = end[0];
  15751. for (int i = 0; i < bound; ++i) {
  15752. j[0] = (j[0] + m - 1) % m;
  15753. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15754. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  15755. lm_alpha[j[0]] /= lm_ys[j[0]];
  15756. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15757. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15758. }
  15759. ggml_vec_scale_f32(nx, d, ys/yy);
  15760. for (int i = 0; i < bound; ++i) {
  15761. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15762. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  15763. beta /= lm_ys[j[0]];
  15764. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15765. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15766. j[0] = (j[0] + 1)%m;
  15767. }
  15768. step[0] = 1.0;
  15769. }
  15770. GGML_ASSERT(false && "lbfgs failed");
  15771. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  15772. }
  15773. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15774. struct ggml_opt_params result;
  15775. switch (type) {
  15776. case GGML_OPT_TYPE_ADAM:
  15777. {
  15778. result = (struct ggml_opt_params) {
  15779. .type = GGML_OPT_TYPE_ADAM,
  15780. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15781. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  15782. .past = 0,
  15783. .delta = 1e-5f,
  15784. .max_no_improvement = 100,
  15785. .print_forward_graph = true,
  15786. .print_backward_graph = true,
  15787. .n_gradient_accumulation = 1,
  15788. .adam = {
  15789. .n_iter = 10000,
  15790. .sched = 1.000f,
  15791. .decay = 0.0f,
  15792. .decay_min_ndim = 2,
  15793. .alpha = 0.001f,
  15794. .beta1 = 0.9f,
  15795. .beta2 = 0.999f,
  15796. .eps = 1e-8f,
  15797. .eps_f = 1e-5f,
  15798. .eps_g = 1e-3f,
  15799. .gclip = 0.0f,
  15800. },
  15801. };
  15802. } break;
  15803. case GGML_OPT_TYPE_LBFGS:
  15804. {
  15805. result = (struct ggml_opt_params) {
  15806. .type = GGML_OPT_TYPE_LBFGS,
  15807. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  15808. .n_threads = 1,
  15809. .past = 0,
  15810. .delta = 1e-5f,
  15811. .max_no_improvement = 0,
  15812. .print_forward_graph = true,
  15813. .print_backward_graph = true,
  15814. .n_gradient_accumulation = 1,
  15815. .lbfgs = {
  15816. .m = 6,
  15817. .n_iter = 100,
  15818. .max_linesearch = 20,
  15819. .eps = 1e-5f,
  15820. .ftol = 1e-4f,
  15821. .wolfe = 0.9f,
  15822. .min_step = 1e-20f,
  15823. .max_step = 1e+20f,
  15824. .linesearch = GGML_LINESEARCH_DEFAULT,
  15825. },
  15826. };
  15827. } break;
  15828. }
  15829. return result;
  15830. }
  15831. GGML_API void ggml_opt_init(
  15832. struct ggml_context * ctx,
  15833. struct ggml_opt_context * opt,
  15834. struct ggml_opt_params params,
  15835. int64_t nx) {
  15836. opt->ctx = ctx;
  15837. opt->params = params;
  15838. opt->iter = 0;
  15839. opt->nx = nx;
  15840. opt->just_initialized = true;
  15841. if (opt->ctx == NULL) {
  15842. struct ggml_init_params ctx_opt_params;
  15843. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  15844. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  15845. if (opt->params.past > 0) {
  15846. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15847. }
  15848. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  15849. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  15850. if (opt->params.past > 0) {
  15851. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  15852. }
  15853. }
  15854. ctx_opt_params.mem_buffer = NULL;
  15855. ctx_opt_params.no_alloc = false;
  15856. opt->ctx = ggml_init(ctx_opt_params);
  15857. }
  15858. switch (opt->params.type) {
  15859. case GGML_OPT_TYPE_ADAM:
  15860. {
  15861. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15862. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15863. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15864. opt->adam.pf = params.past > 0
  15865. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15866. : NULL;
  15867. ggml_set_zero(opt->adam.m);
  15868. ggml_set_zero(opt->adam.v);
  15869. if (opt->adam.pf) {
  15870. ggml_set_zero(opt->adam.pf);
  15871. }
  15872. } break;
  15873. case GGML_OPT_TYPE_LBFGS:
  15874. {
  15875. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15876. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15877. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15878. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15879. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  15880. opt->lbfgs.pf = params.past > 0
  15881. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  15882. : NULL;
  15883. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15884. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  15885. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15886. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15887. ggml_set_zero(opt->lbfgs.x);
  15888. ggml_set_zero(opt->lbfgs.xp);
  15889. ggml_set_zero(opt->lbfgs.g);
  15890. ggml_set_zero(opt->lbfgs.gp);
  15891. ggml_set_zero(opt->lbfgs.d);
  15892. if (opt->lbfgs.pf) {
  15893. ggml_set_zero(opt->lbfgs.pf);
  15894. }
  15895. ggml_set_zero(opt->lbfgs.lmal);
  15896. ggml_set_zero(opt->lbfgs.lmys);
  15897. ggml_set_zero(opt->lbfgs.lms);
  15898. ggml_set_zero(opt->lbfgs.lmy);
  15899. } break;
  15900. }
  15901. }
  15902. enum ggml_opt_result ggml_opt(
  15903. struct ggml_context * ctx,
  15904. struct ggml_opt_params params,
  15905. struct ggml_tensor * f) {
  15906. bool free_ctx = false;
  15907. if (ctx == NULL) {
  15908. struct ggml_init_params params_ctx = {
  15909. .mem_size = 16*1024*1024,
  15910. .mem_buffer = NULL,
  15911. .no_alloc = false,
  15912. };
  15913. ctx = ggml_init(params_ctx);
  15914. if (ctx == NULL) {
  15915. return GGML_OPT_RESULT_NO_CONTEXT;
  15916. }
  15917. free_ctx = true;
  15918. }
  15919. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15920. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15921. ggml_opt_init(ctx, opt, params, 0);
  15922. result = ggml_opt_resume(ctx, opt, f);
  15923. if (free_ctx) {
  15924. ggml_free(ctx);
  15925. }
  15926. return result;
  15927. }
  15928. enum ggml_opt_result ggml_opt_resume(
  15929. struct ggml_context * ctx,
  15930. struct ggml_opt_context * opt,
  15931. struct ggml_tensor * f) {
  15932. // build forward + backward compute graphs
  15933. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  15934. ggml_build_forward_expand(gf, f);
  15935. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  15936. ggml_build_backward_expand(ctx, gf, gb, true);
  15937. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  15938. }
  15939. enum ggml_opt_result ggml_opt_resume_g(
  15940. struct ggml_context * ctx,
  15941. struct ggml_opt_context * opt,
  15942. struct ggml_tensor * f,
  15943. struct ggml_cgraph * gf,
  15944. struct ggml_cgraph * gb,
  15945. ggml_opt_callback callback,
  15946. void * callback_data) {
  15947. // build forward + backward compute graphs
  15948. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  15949. switch (opt->params.type) {
  15950. case GGML_OPT_TYPE_ADAM:
  15951. {
  15952. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15953. } break;
  15954. case GGML_OPT_TYPE_LBFGS:
  15955. {
  15956. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  15957. } break;
  15958. }
  15959. if (opt->params.print_forward_graph) {
  15960. ggml_graph_print (gf);
  15961. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15962. }
  15963. if (opt->params.print_backward_graph) {
  15964. ggml_graph_print (gb);
  15965. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15966. }
  15967. return result;
  15968. }
  15969. ////////////////////////////////////////////////////////////////////////////////
  15970. void ggml_set_input(struct ggml_tensor * tensor) {
  15971. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  15972. }
  15973. void ggml_set_output(struct ggml_tensor * tensor) {
  15974. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  15975. }
  15976. ////////////////////////////////////////////////////////////////////////////////
  15977. void ggml_quantize_init(enum ggml_type type) {
  15978. ggml_critical_section_start();
  15979. switch (type) {
  15980. case GGML_TYPE_IQ2_XXS:
  15981. case GGML_TYPE_IQ2_XS:
  15982. case GGML_TYPE_IQ2_S:
  15983. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  15984. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  15985. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  15986. default: // nothing
  15987. break;
  15988. }
  15989. ggml_critical_section_end();
  15990. }
  15991. void ggml_quantize_free(void) {
  15992. ggml_critical_section_start();
  15993. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  15994. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  15995. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  15996. iq3xs_free_impl(256);
  15997. ggml_critical_section_end();
  15998. }
  15999. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16000. assert(k % QK4_0 == 0);
  16001. const int nb = k / QK4_0;
  16002. for (int b = 0; b < n; b += k) {
  16003. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16004. quantize_row_q4_0_reference(src + b, y, k);
  16005. for (int i = 0; i < nb; i++) {
  16006. for (int j = 0; j < QK4_0; j += 2) {
  16007. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16008. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16009. hist[vi0]++;
  16010. hist[vi1]++;
  16011. }
  16012. }
  16013. }
  16014. return (n/QK4_0*sizeof(block_q4_0));
  16015. }
  16016. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16017. assert(k % QK4_1 == 0);
  16018. const int nb = k / QK4_1;
  16019. for (int b = 0; b < n; b += k) {
  16020. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16021. quantize_row_q4_1_reference(src + b, y, k);
  16022. for (int i = 0; i < nb; i++) {
  16023. for (int j = 0; j < QK4_1; j += 2) {
  16024. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16025. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16026. hist[vi0]++;
  16027. hist[vi1]++;
  16028. }
  16029. }
  16030. }
  16031. return (n/QK4_1*sizeof(block_q4_1));
  16032. }
  16033. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16034. assert(k % QK5_0 == 0);
  16035. const int nb = k / QK5_0;
  16036. for (int b = 0; b < n; b += k) {
  16037. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16038. quantize_row_q5_0_reference(src + b, y, k);
  16039. for (int i = 0; i < nb; i++) {
  16040. uint32_t qh;
  16041. memcpy(&qh, &y[i].qh, sizeof(qh));
  16042. for (int j = 0; j < QK5_0; j += 2) {
  16043. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16044. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16045. // cast to 16 bins
  16046. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16047. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16048. hist[vi0]++;
  16049. hist[vi1]++;
  16050. }
  16051. }
  16052. }
  16053. return (n/QK5_0*sizeof(block_q5_0));
  16054. }
  16055. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16056. assert(k % QK5_1 == 0);
  16057. const int nb = k / QK5_1;
  16058. for (int b = 0; b < n; b += k) {
  16059. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16060. quantize_row_q5_1_reference(src + b, y, k);
  16061. for (int i = 0; i < nb; i++) {
  16062. uint32_t qh;
  16063. memcpy(&qh, &y[i].qh, sizeof(qh));
  16064. for (int j = 0; j < QK5_1; j += 2) {
  16065. const uint8_t vh0 = ((qh & (1u << (j/2 + 0 ))) >> (j/2 + 0 )) << 4;
  16066. const uint8_t vh1 = ((qh & (1u << (j/2 + 16))) >> (j/2 + 12));
  16067. // cast to 16 bins
  16068. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16069. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16070. hist[vi0]++;
  16071. hist[vi1]++;
  16072. }
  16073. }
  16074. }
  16075. return (n/QK5_1*sizeof(block_q5_1));
  16076. }
  16077. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16078. assert(k % QK8_0 == 0);
  16079. const int nb = k / QK8_0;
  16080. for (int b = 0; b < n; b += k) {
  16081. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16082. quantize_row_q8_0_reference(src + b, y, k);
  16083. for (int i = 0; i < nb; i++) {
  16084. for (int j = 0; j < QK8_0; ++j) {
  16085. const int8_t vi = y[i].qs[j];
  16086. hist[vi/16 + 8]++;
  16087. }
  16088. }
  16089. }
  16090. return (n/QK8_0*sizeof(block_q8_0));
  16091. }
  16092. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16093. return
  16094. type == GGML_TYPE_IQ2_XXS ||
  16095. type == GGML_TYPE_IQ2_XS ||
  16096. type == GGML_TYPE_IQ1_S;
  16097. }
  16098. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start,
  16099. int nrows, int n_per_row, int64_t * hist, const float * imatrix) {
  16100. ggml_quantize_init(type); // this is noop if already initialized
  16101. size_t result = 0;
  16102. int n = nrows * n_per_row;
  16103. switch (type) {
  16104. case GGML_TYPE_Q4_0:
  16105. {
  16106. GGML_ASSERT(start % QK4_0 == 0);
  16107. GGML_ASSERT(start % n_per_row == 0);
  16108. size_t start_row = start / n_per_row;
  16109. size_t row_size = ggml_row_size(type, n_per_row);
  16110. result = quantize_q4_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16111. GGML_ASSERT(result == row_size * nrows);
  16112. } break;
  16113. case GGML_TYPE_Q4_1:
  16114. {
  16115. GGML_ASSERT(start % QK4_1 == 0);
  16116. GGML_ASSERT(start % n_per_row == 0);
  16117. size_t start_row = start / n_per_row;
  16118. size_t row_size = ggml_row_size(type, n_per_row);
  16119. result = quantize_q4_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16120. GGML_ASSERT(result == row_size * nrows);
  16121. } break;
  16122. case GGML_TYPE_Q5_0:
  16123. {
  16124. GGML_ASSERT(start % QK5_0 == 0);
  16125. GGML_ASSERT(start % n_per_row == 0);
  16126. size_t start_row = start / n_per_row;
  16127. size_t row_size = ggml_row_size(type, n_per_row);
  16128. result = quantize_q5_0(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16129. GGML_ASSERT(result == row_size * nrows);
  16130. } break;
  16131. case GGML_TYPE_Q5_1:
  16132. {
  16133. GGML_ASSERT(start % QK5_1 == 0);
  16134. GGML_ASSERT(start % n_per_row == 0);
  16135. size_t start_row = start / n_per_row;
  16136. size_t row_size = ggml_row_size(type, n_per_row);
  16137. result = quantize_q5_1(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16138. GGML_ASSERT(result == row_size * nrows);
  16139. } break;
  16140. case GGML_TYPE_Q8_0:
  16141. {
  16142. GGML_ASSERT(start % QK8_0 == 0);
  16143. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16144. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16145. } break;
  16146. case GGML_TYPE_Q2_K:
  16147. {
  16148. GGML_ASSERT(start % QK_K == 0);
  16149. GGML_ASSERT(start % n_per_row == 0);
  16150. size_t start_row = start / n_per_row;
  16151. size_t row_size = ggml_row_size(type, n_per_row);
  16152. result = quantize_q2_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16153. GGML_ASSERT(result == row_size * nrows);
  16154. } break;
  16155. case GGML_TYPE_Q3_K:
  16156. {
  16157. GGML_ASSERT(start % QK_K == 0);
  16158. GGML_ASSERT(start % n_per_row == 0);
  16159. size_t start_row = start / n_per_row;
  16160. size_t row_size = ggml_row_size(type, n_per_row);
  16161. result = quantize_q3_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16162. GGML_ASSERT(result == row_size * nrows);
  16163. } break;
  16164. case GGML_TYPE_Q4_K:
  16165. {
  16166. GGML_ASSERT(start % QK_K == 0);
  16167. GGML_ASSERT(start % n_per_row == 0);
  16168. size_t start_row = start / n_per_row;
  16169. size_t row_size = ggml_row_size(type, n_per_row);
  16170. result = quantize_q4_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16171. GGML_ASSERT(result == row_size * nrows);
  16172. } break;
  16173. case GGML_TYPE_Q5_K:
  16174. {
  16175. GGML_ASSERT(start % QK_K == 0);
  16176. GGML_ASSERT(start % n_per_row == 0);
  16177. size_t start_row = start / n_per_row;
  16178. size_t row_size = ggml_row_size(type, n_per_row);
  16179. result = quantize_q5_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16180. GGML_ASSERT(result == row_size * nrows);
  16181. } break;
  16182. case GGML_TYPE_Q6_K:
  16183. {
  16184. GGML_ASSERT(start % QK_K == 0);
  16185. GGML_ASSERT(start % n_per_row == 0);
  16186. size_t start_row = start / n_per_row;
  16187. size_t row_size = ggml_row_size(type, n_per_row);
  16188. result = quantize_q6_K(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16189. GGML_ASSERT(result == row_size * nrows);
  16190. } break;
  16191. case GGML_TYPE_IQ2_XXS:
  16192. {
  16193. GGML_ASSERT(start % QK_K == 0);
  16194. GGML_ASSERT(start % n_per_row == 0);
  16195. GGML_ASSERT(imatrix);
  16196. size_t start_row = start / n_per_row;
  16197. size_t row_size = ggml_row_size(type, n_per_row);
  16198. result = quantize_iq2_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16199. GGML_ASSERT(result == row_size * nrows);
  16200. } break;
  16201. case GGML_TYPE_IQ2_XS:
  16202. {
  16203. GGML_ASSERT(start % QK_K == 0);
  16204. GGML_ASSERT(start % n_per_row == 0);
  16205. GGML_ASSERT(imatrix);
  16206. size_t start_row = start / n_per_row;
  16207. size_t row_size = ggml_row_size(type, n_per_row);
  16208. result = quantize_iq2_xs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16209. GGML_ASSERT(result == row_size * nrows);
  16210. } break;
  16211. case GGML_TYPE_IQ3_XXS:
  16212. {
  16213. GGML_ASSERT(start % QK_K == 0);
  16214. GGML_ASSERT(start % n_per_row == 0);
  16215. size_t start_row = start / n_per_row;
  16216. size_t row_size = ggml_row_size(type, n_per_row);
  16217. result = quantize_iq3_xxs(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16218. GGML_ASSERT(result == row_size * nrows);
  16219. } break;
  16220. case GGML_TYPE_IQ3_S:
  16221. {
  16222. GGML_ASSERT(start % QK_K == 0);
  16223. GGML_ASSERT(start % n_per_row == 0);
  16224. size_t start_row = start / n_per_row;
  16225. size_t row_size = ggml_row_size(type, n_per_row);
  16226. result = quantize_iq3_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16227. GGML_ASSERT(result == row_size * nrows);
  16228. } break;
  16229. case GGML_TYPE_IQ2_S:
  16230. {
  16231. GGML_ASSERT(start % QK_K == 0);
  16232. GGML_ASSERT(start % n_per_row == 0);
  16233. size_t start_row = start / n_per_row;
  16234. size_t row_size = ggml_row_size(type, n_per_row);
  16235. result = quantize_iq2_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16236. GGML_ASSERT(result == row_size * nrows);
  16237. } break;
  16238. case GGML_TYPE_IQ1_S:
  16239. {
  16240. GGML_ASSERT(start % QK_K == 0);
  16241. GGML_ASSERT(start % n_per_row == 0);
  16242. size_t start_row = start / n_per_row;
  16243. size_t row_size = ggml_row_size(type, n_per_row);
  16244. result = quantize_iq1_s(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16245. GGML_ASSERT(result == row_size * nrows);
  16246. } break;
  16247. case GGML_TYPE_IQ4_NL:
  16248. {
  16249. GGML_ASSERT(start % QK4_NL == 0);
  16250. GGML_ASSERT(start % n_per_row == 0);
  16251. size_t start_row = start / n_per_row;
  16252. size_t row_size = ggml_row_size(type, n_per_row);
  16253. result = quantize_iq4_nl(src + start, (char *)dst + start_row * row_size, nrows, n_per_row, hist, imatrix);
  16254. GGML_ASSERT(result == row_size * nrows);
  16255. } break;
  16256. case GGML_TYPE_F16:
  16257. {
  16258. size_t elemsize = sizeof(ggml_fp16_t);
  16259. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16260. result = n * elemsize;
  16261. } break;
  16262. case GGML_TYPE_F32:
  16263. {
  16264. size_t elemsize = sizeof(float);
  16265. result = n * elemsize;
  16266. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16267. } break;
  16268. default:
  16269. assert(false);
  16270. }
  16271. return result;
  16272. }
  16273. ////////////////////////////////////////////////////////////////////////////////
  16274. struct gguf_str {
  16275. uint64_t n; // GGUFv2
  16276. char * data;
  16277. };
  16278. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16279. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16280. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16281. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16282. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16283. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16284. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16285. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16286. [GGUF_TYPE_BOOL] = sizeof(bool),
  16287. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16288. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16289. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16290. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16291. [GGUF_TYPE_ARRAY] = 0, // undefined
  16292. };
  16293. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16294. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16295. [GGUF_TYPE_UINT8] = "u8",
  16296. [GGUF_TYPE_INT8] = "i8",
  16297. [GGUF_TYPE_UINT16] = "u16",
  16298. [GGUF_TYPE_INT16] = "i16",
  16299. [GGUF_TYPE_UINT32] = "u32",
  16300. [GGUF_TYPE_INT32] = "i32",
  16301. [GGUF_TYPE_FLOAT32] = "f32",
  16302. [GGUF_TYPE_BOOL] = "bool",
  16303. [GGUF_TYPE_STRING] = "str",
  16304. [GGUF_TYPE_ARRAY] = "arr",
  16305. [GGUF_TYPE_UINT64] = "u64",
  16306. [GGUF_TYPE_INT64] = "i64",
  16307. [GGUF_TYPE_FLOAT64] = "f64",
  16308. };
  16309. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16310. union gguf_value {
  16311. uint8_t uint8;
  16312. int8_t int8;
  16313. uint16_t uint16;
  16314. int16_t int16;
  16315. uint32_t uint32;
  16316. int32_t int32;
  16317. float float32;
  16318. uint64_t uint64;
  16319. int64_t int64;
  16320. double float64;
  16321. bool bool_;
  16322. struct gguf_str str;
  16323. struct {
  16324. enum gguf_type type;
  16325. uint64_t n; // GGUFv2
  16326. void * data;
  16327. } arr;
  16328. };
  16329. struct gguf_kv {
  16330. struct gguf_str key;
  16331. enum gguf_type type;
  16332. union gguf_value value;
  16333. };
  16334. struct gguf_header {
  16335. char magic[4];
  16336. uint32_t version;
  16337. uint64_t n_tensors; // GGUFv2
  16338. uint64_t n_kv; // GGUFv2
  16339. };
  16340. struct gguf_tensor_info {
  16341. struct gguf_str name;
  16342. uint32_t n_dims;
  16343. uint64_t ne[GGML_MAX_DIMS];
  16344. enum ggml_type type;
  16345. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16346. // for writing API
  16347. const void * data;
  16348. size_t size;
  16349. };
  16350. struct gguf_context {
  16351. struct gguf_header header;
  16352. struct gguf_kv * kv;
  16353. struct gguf_tensor_info * infos;
  16354. size_t alignment;
  16355. size_t offset; // offset of `data` from beginning of file
  16356. size_t size; // size of `data` in bytes
  16357. //uint8_t * padding;
  16358. void * data;
  16359. };
  16360. static size_t gguf_type_size(enum gguf_type type) {
  16361. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16362. return GGUF_TYPE_SIZE[type];
  16363. }
  16364. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16365. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16366. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16367. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16368. GGML_ASSERT(info->ne[i] > 0);
  16369. }
  16370. // prevent overflow for total number of elements
  16371. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16372. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16373. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16374. }
  16375. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16376. const size_t n = fread(dst, 1, size, file);
  16377. *offset += n;
  16378. return n == size;
  16379. }
  16380. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16381. p->n = 0;
  16382. p->data = NULL;
  16383. bool ok = true;
  16384. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16385. // early exit if string length is invalid, prevents from integer overflow
  16386. if (p->n == SIZE_MAX) {
  16387. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16388. return false;
  16389. }
  16390. p->data = GGML_CALLOC(p->n + 1, 1);
  16391. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16392. return ok;
  16393. }
  16394. struct gguf_context * gguf_init_empty(void) {
  16395. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16396. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16397. ctx->header.version = GGUF_VERSION;
  16398. ctx->header.n_tensors = 0;
  16399. ctx->header.n_kv = 0;
  16400. ctx->kv = NULL;
  16401. ctx->infos = NULL;
  16402. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16403. ctx->offset = 0;
  16404. ctx->size = 0;
  16405. ctx->data = NULL;
  16406. return ctx;
  16407. }
  16408. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16409. FILE * file = fopen(fname, "rb");
  16410. if (!file) {
  16411. return NULL;
  16412. }
  16413. // offset from start of file
  16414. size_t offset = 0;
  16415. char magic[4];
  16416. // check the magic before making allocations
  16417. {
  16418. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16419. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16420. if (magic[i] != GGUF_MAGIC[i]) {
  16421. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16422. fclose(file);
  16423. return NULL;
  16424. }
  16425. }
  16426. }
  16427. bool ok = true;
  16428. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16429. // read the header
  16430. {
  16431. strncpy(ctx->header.magic, magic, 4);
  16432. ctx->kv = NULL;
  16433. ctx->infos = NULL;
  16434. ctx->data = NULL;
  16435. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16436. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16437. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16438. if (ctx->header.version == 1) {
  16439. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16440. fclose(file);
  16441. gguf_free(ctx);
  16442. return NULL;
  16443. }
  16444. // sanity-checks to prevent from integer/buffer overflows
  16445. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16446. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16447. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16448. if (!ok) {
  16449. fprintf(stderr, "%s: failed to read header\n", __func__);
  16450. fclose(file);
  16451. gguf_free(ctx);
  16452. return NULL;
  16453. }
  16454. }
  16455. // read the kv pairs
  16456. {
  16457. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16458. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16459. struct gguf_kv * kv = &ctx->kv[i];
  16460. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16461. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16462. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16463. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16464. switch (kv->type) {
  16465. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16466. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16467. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16468. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16469. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16470. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16471. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16472. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16473. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16474. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16475. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16476. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16477. case GGUF_TYPE_ARRAY:
  16478. {
  16479. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16480. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16481. switch (kv->value.arr.type) {
  16482. case GGUF_TYPE_UINT8:
  16483. case GGUF_TYPE_INT8:
  16484. case GGUF_TYPE_UINT16:
  16485. case GGUF_TYPE_INT16:
  16486. case GGUF_TYPE_UINT32:
  16487. case GGUF_TYPE_INT32:
  16488. case GGUF_TYPE_FLOAT32:
  16489. case GGUF_TYPE_UINT64:
  16490. case GGUF_TYPE_INT64:
  16491. case GGUF_TYPE_FLOAT64:
  16492. case GGUF_TYPE_BOOL:
  16493. {
  16494. // prevent from integer overflow in the malloc below
  16495. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16496. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16497. fclose(file);
  16498. gguf_free(ctx);
  16499. return NULL;
  16500. }
  16501. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16502. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16503. } break;
  16504. case GGUF_TYPE_STRING:
  16505. {
  16506. // prevent from integer overflow in the malloc below
  16507. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16508. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16509. fclose(file);
  16510. gguf_free(ctx);
  16511. return NULL;
  16512. }
  16513. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16514. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16515. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16516. }
  16517. } break;
  16518. case GGUF_TYPE_ARRAY:
  16519. default: GGML_ASSERT(false && "invalid type"); break;
  16520. }
  16521. } break;
  16522. default: GGML_ASSERT(false && "invalid type");
  16523. }
  16524. if (!ok) {
  16525. break;
  16526. }
  16527. }
  16528. if (!ok) {
  16529. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16530. fclose(file);
  16531. gguf_free(ctx);
  16532. return NULL;
  16533. }
  16534. }
  16535. // read the tensor infos
  16536. {
  16537. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16538. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16539. struct gguf_tensor_info * info = &ctx->infos[i];
  16540. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16541. info->ne[j] = 1;
  16542. }
  16543. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16544. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16545. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16546. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16547. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16548. }
  16549. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16550. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  16551. gguf_tensor_info_sanitize(info);
  16552. if (!ok) {
  16553. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  16554. fclose(file);
  16555. gguf_free(ctx);
  16556. return NULL;
  16557. }
  16558. }
  16559. }
  16560. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16561. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  16562. if (alignment_idx != -1) {
  16563. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  16564. }
  16565. // we require the data section to be aligned, so take into account any padding
  16566. {
  16567. const size_t offset_pad = offset % ctx->alignment;
  16568. if (offset_pad != 0) {
  16569. offset += ctx->alignment - offset_pad;
  16570. fseek(file, offset, SEEK_SET);
  16571. }
  16572. }
  16573. // store the current file offset - this is where the data section starts
  16574. ctx->offset = offset;
  16575. // compute the total size of the data section, taking into account the alignment
  16576. {
  16577. ctx->size = 0;
  16578. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16579. struct gguf_tensor_info * info = &ctx->infos[i];
  16580. const int64_t ne =
  16581. (int64_t) info->ne[0] *
  16582. (int64_t) info->ne[1] *
  16583. (int64_t) info->ne[2] *
  16584. (int64_t) info->ne[3];
  16585. if (ne % ggml_blck_size(info->type) != 0) {
  16586. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  16587. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  16588. fclose(file);
  16589. gguf_free(ctx);
  16590. return NULL;
  16591. }
  16592. const size_t size_cur = ggml_row_size(info->type, ne);
  16593. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  16594. }
  16595. }
  16596. // load the tensor data only if requested
  16597. if (params.ctx != NULL) {
  16598. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  16599. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  16600. // the ggml_tensor structs to the appropriate locations in the binary blob
  16601. // compute the exact size needed for the new ggml_context
  16602. const size_t mem_size =
  16603. params.no_alloc ?
  16604. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  16605. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  16606. struct ggml_init_params pdata = {
  16607. .mem_size = mem_size,
  16608. .mem_buffer = NULL,
  16609. .no_alloc = params.no_alloc,
  16610. };
  16611. *params.ctx = ggml_init(pdata);
  16612. struct ggml_context * ctx_data = *params.ctx;
  16613. struct ggml_tensor * data = NULL;
  16614. if (!params.no_alloc) {
  16615. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  16616. ok = ok && data != NULL;
  16617. // read the binary blob with the tensor data
  16618. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  16619. if (!ok) {
  16620. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  16621. fclose(file);
  16622. ggml_free(ctx_data);
  16623. gguf_free(ctx);
  16624. return NULL;
  16625. }
  16626. ctx->data = data->data;
  16627. }
  16628. ggml_set_no_alloc(ctx_data, true);
  16629. // create the tensors
  16630. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16631. const int64_t ne[GGML_MAX_DIMS] = {
  16632. ctx->infos[i].ne[0],
  16633. ctx->infos[i].ne[1],
  16634. ctx->infos[i].ne[2],
  16635. ctx->infos[i].ne[3],
  16636. };
  16637. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  16638. ok = ok && cur != NULL;
  16639. ggml_set_name(cur, ctx->infos[i].name.data);
  16640. if (!ok) {
  16641. break;
  16642. }
  16643. // point the data member to the appropriate location in the binary blob using the tensor infos
  16644. if (!params.no_alloc) {
  16645. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  16646. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  16647. }
  16648. }
  16649. if (!ok) {
  16650. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  16651. fclose(file);
  16652. ggml_free(ctx_data);
  16653. gguf_free(ctx);
  16654. return NULL;
  16655. }
  16656. ggml_set_no_alloc(ctx_data, params.no_alloc);
  16657. }
  16658. fclose(file);
  16659. return ctx;
  16660. }
  16661. void gguf_free(struct gguf_context * ctx) {
  16662. if (ctx == NULL) {
  16663. return;
  16664. }
  16665. if (ctx->kv) {
  16666. // free string memory - not great..
  16667. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16668. struct gguf_kv * kv = &ctx->kv[i];
  16669. if (kv->key.data) {
  16670. GGML_FREE(kv->key.data);
  16671. }
  16672. if (kv->type == GGUF_TYPE_STRING) {
  16673. if (kv->value.str.data) {
  16674. GGML_FREE(kv->value.str.data);
  16675. }
  16676. }
  16677. if (kv->type == GGUF_TYPE_ARRAY) {
  16678. if (kv->value.arr.data) {
  16679. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  16680. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16681. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  16682. if (str->data) {
  16683. GGML_FREE(str->data);
  16684. }
  16685. }
  16686. }
  16687. GGML_FREE(kv->value.arr.data);
  16688. }
  16689. }
  16690. }
  16691. GGML_FREE(ctx->kv);
  16692. }
  16693. if (ctx->infos) {
  16694. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16695. struct gguf_tensor_info * info = &ctx->infos[i];
  16696. if (info->name.data) {
  16697. GGML_FREE(info->name.data);
  16698. }
  16699. }
  16700. GGML_FREE(ctx->infos);
  16701. }
  16702. GGML_ALIGNED_FREE(ctx);
  16703. }
  16704. const char * gguf_type_name(enum gguf_type type) {
  16705. return GGUF_TYPE_NAME[type];
  16706. }
  16707. int gguf_get_version(const struct gguf_context * ctx) {
  16708. return ctx->header.version;
  16709. }
  16710. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  16711. return ctx->alignment;
  16712. }
  16713. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  16714. return ctx->offset;
  16715. }
  16716. void * gguf_get_data(const struct gguf_context * ctx) {
  16717. return ctx->data;
  16718. }
  16719. int gguf_get_n_kv(const struct gguf_context * ctx) {
  16720. return ctx->header.n_kv;
  16721. }
  16722. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  16723. // return -1 if key not found
  16724. int keyfound = -1;
  16725. const int n_kv = gguf_get_n_kv(ctx);
  16726. for (int i = 0; i < n_kv; ++i) {
  16727. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  16728. keyfound = i;
  16729. break;
  16730. }
  16731. }
  16732. return keyfound;
  16733. }
  16734. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  16735. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16736. return ctx->kv[key_id].key.data;
  16737. }
  16738. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  16739. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16740. return ctx->kv[key_id].type;
  16741. }
  16742. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  16743. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16744. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16745. return ctx->kv[key_id].value.arr.type;
  16746. }
  16747. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  16748. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16749. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16750. return ctx->kv[key_id].value.arr.data;
  16751. }
  16752. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  16753. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16754. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16755. struct gguf_kv * kv = &ctx->kv[key_id];
  16756. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  16757. return str->data;
  16758. }
  16759. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  16760. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16761. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  16762. return ctx->kv[key_id].value.arr.n;
  16763. }
  16764. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  16765. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16766. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  16767. return ctx->kv[key_id].value.uint8;
  16768. }
  16769. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  16770. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16771. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  16772. return ctx->kv[key_id].value.int8;
  16773. }
  16774. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  16775. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16776. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  16777. return ctx->kv[key_id].value.uint16;
  16778. }
  16779. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  16780. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16781. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  16782. return ctx->kv[key_id].value.int16;
  16783. }
  16784. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  16785. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16786. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  16787. return ctx->kv[key_id].value.uint32;
  16788. }
  16789. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  16790. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16791. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  16792. return ctx->kv[key_id].value.int32;
  16793. }
  16794. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  16795. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16796. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  16797. return ctx->kv[key_id].value.float32;
  16798. }
  16799. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  16800. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16801. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  16802. return ctx->kv[key_id].value.uint64;
  16803. }
  16804. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  16805. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16806. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  16807. return ctx->kv[key_id].value.int64;
  16808. }
  16809. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  16810. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16811. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  16812. return ctx->kv[key_id].value.float64;
  16813. }
  16814. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  16815. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16816. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  16817. return ctx->kv[key_id].value.bool_;
  16818. }
  16819. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  16820. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16821. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  16822. return ctx->kv[key_id].value.str.data;
  16823. }
  16824. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  16825. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  16826. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  16827. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  16828. return &ctx->kv[key_id].value;
  16829. }
  16830. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  16831. return ctx->header.n_tensors;
  16832. }
  16833. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  16834. // return -1 if tensor not found
  16835. int tensorfound = -1;
  16836. const int n_tensors = gguf_get_n_tensors(ctx);
  16837. for (int i = 0; i < n_tensors; ++i) {
  16838. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  16839. tensorfound = i;
  16840. break;
  16841. }
  16842. }
  16843. return tensorfound;
  16844. }
  16845. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  16846. return ctx->infos[i].offset;
  16847. }
  16848. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  16849. return ctx->infos[i].name.data;
  16850. }
  16851. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  16852. return ctx->infos[i].type;
  16853. }
  16854. // returns the index
  16855. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  16856. const int idx = gguf_find_key(ctx, key);
  16857. if (idx >= 0) {
  16858. return idx;
  16859. }
  16860. const int n_kv = gguf_get_n_kv(ctx);
  16861. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  16862. ctx->kv[n_kv].key.n = strlen(key);
  16863. ctx->kv[n_kv].key.data = strdup(key);
  16864. ctx->header.n_kv++;
  16865. return n_kv;
  16866. }
  16867. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  16868. const int idx = gguf_get_or_add_key(ctx, key);
  16869. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  16870. ctx->kv[idx].value.uint8 = val;
  16871. }
  16872. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  16873. const int idx = gguf_get_or_add_key(ctx, key);
  16874. ctx->kv[idx].type = GGUF_TYPE_INT8;
  16875. ctx->kv[idx].value.int8 = val;
  16876. }
  16877. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  16878. const int idx = gguf_get_or_add_key(ctx, key);
  16879. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  16880. ctx->kv[idx].value.uint16 = val;
  16881. }
  16882. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  16883. const int idx = gguf_get_or_add_key(ctx, key);
  16884. ctx->kv[idx].type = GGUF_TYPE_INT16;
  16885. ctx->kv[idx].value.int16 = val;
  16886. }
  16887. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  16888. const int idx = gguf_get_or_add_key(ctx, key);
  16889. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  16890. ctx->kv[idx].value.uint32 = val;
  16891. }
  16892. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  16893. const int idx = gguf_get_or_add_key(ctx, key);
  16894. ctx->kv[idx].type = GGUF_TYPE_INT32;
  16895. ctx->kv[idx].value.int32 = val;
  16896. }
  16897. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  16898. const int idx = gguf_get_or_add_key(ctx, key);
  16899. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  16900. ctx->kv[idx].value.float32 = val;
  16901. }
  16902. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  16903. const int idx = gguf_get_or_add_key(ctx, key);
  16904. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  16905. ctx->kv[idx].value.uint64 = val;
  16906. }
  16907. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  16908. const int idx = gguf_get_or_add_key(ctx, key);
  16909. ctx->kv[idx].type = GGUF_TYPE_INT64;
  16910. ctx->kv[idx].value.int64 = val;
  16911. }
  16912. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  16913. const int idx = gguf_get_or_add_key(ctx, key);
  16914. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  16915. ctx->kv[idx].value.float64 = val;
  16916. }
  16917. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  16918. const int idx = gguf_get_or_add_key(ctx, key);
  16919. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  16920. ctx->kv[idx].value.bool_ = val;
  16921. }
  16922. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  16923. const int idx = gguf_get_or_add_key(ctx, key);
  16924. ctx->kv[idx].type = GGUF_TYPE_STRING;
  16925. ctx->kv[idx].value.str.n = strlen(val);
  16926. ctx->kv[idx].value.str.data = strdup(val);
  16927. }
  16928. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  16929. const int idx = gguf_get_or_add_key(ctx, key);
  16930. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16931. ctx->kv[idx].value.arr.type = type;
  16932. ctx->kv[idx].value.arr.n = n;
  16933. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  16934. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  16935. }
  16936. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  16937. const int idx = gguf_get_or_add_key(ctx, key);
  16938. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  16939. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  16940. ctx->kv[idx].value.arr.n = n;
  16941. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  16942. for (int i = 0; i < n; i++) {
  16943. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  16944. str->n = strlen(data[i]);
  16945. str->data = strdup(data[i]);
  16946. }
  16947. }
  16948. // set or add KV pairs from another context
  16949. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  16950. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  16951. switch (src->kv[i].type) {
  16952. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  16953. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  16954. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  16955. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  16956. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  16957. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  16958. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  16959. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  16960. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  16961. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  16962. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  16963. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  16964. case GGUF_TYPE_ARRAY:
  16965. {
  16966. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  16967. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  16968. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  16969. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  16970. }
  16971. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  16972. GGML_FREE((void *)data);
  16973. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  16974. GGML_ASSERT(false && "nested arrays not supported");
  16975. } else {
  16976. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  16977. }
  16978. } break;
  16979. default: GGML_ASSERT(false && "invalid type"); break;
  16980. }
  16981. }
  16982. }
  16983. void gguf_add_tensor(
  16984. struct gguf_context * ctx,
  16985. const struct ggml_tensor * tensor) {
  16986. const int idx = ctx->header.n_tensors;
  16987. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  16988. ctx->infos[idx].name.n = strlen(tensor->name);
  16989. ctx->infos[idx].name.data = strdup(tensor->name);
  16990. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  16991. ctx->infos[idx].ne[i] = 1;
  16992. }
  16993. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  16994. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  16995. ctx->infos[idx].ne[i] = tensor->ne[i];
  16996. }
  16997. ctx->infos[idx].type = tensor->type;
  16998. ctx->infos[idx].offset = 0;
  16999. ctx->infos[idx].data = tensor->data;
  17000. ctx->infos[idx].size = ggml_nbytes(tensor);
  17001. if (ctx->header.n_tensors > 0) {
  17002. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17003. }
  17004. ctx->header.n_tensors++;
  17005. }
  17006. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17007. const int idx = gguf_find_tensor(ctx, name);
  17008. if (idx < 0) {
  17009. GGML_ASSERT(false && "tensor not found");
  17010. }
  17011. ctx->infos[idx].type = type;
  17012. }
  17013. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17014. const int idx = gguf_find_tensor(ctx, name);
  17015. if (idx < 0) {
  17016. GGML_ASSERT(false && "tensor not found");
  17017. }
  17018. ctx->infos[idx].data = data;
  17019. ctx->infos[idx].size = size;
  17020. // update offsets
  17021. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17022. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17023. }
  17024. }
  17025. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17026. // fwrite(&val->n, sizeof(val->n), 1, file);
  17027. // fwrite(val->data, sizeof(char), val->n, file);
  17028. //}
  17029. //
  17030. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17031. // fwrite(val, sizeof(char), size, file);
  17032. //}
  17033. struct gguf_buf {
  17034. void * data;
  17035. size_t size;
  17036. size_t offset;
  17037. };
  17038. static struct gguf_buf gguf_buf_init(size_t size) {
  17039. struct gguf_buf buf = {
  17040. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17041. /*buf.size =*/ size,
  17042. /*buf.offset =*/ 0,
  17043. };
  17044. return buf;
  17045. }
  17046. static void gguf_buf_free(struct gguf_buf buf) {
  17047. if (buf.data) {
  17048. GGML_FREE(buf.data);
  17049. }
  17050. }
  17051. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17052. if (buf->offset + size > buf->size) {
  17053. buf->size = 1.5*(buf->offset + size);
  17054. if (buf->data) {
  17055. buf->data = realloc(buf->data, buf->size);
  17056. }
  17057. }
  17058. }
  17059. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17060. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17061. if (buf->data) {
  17062. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17063. }
  17064. buf->offset += sizeof(val->n);
  17065. if (buf->data) {
  17066. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17067. }
  17068. buf->offset += val->n;
  17069. }
  17070. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17071. gguf_buf_grow(buf, el_size);
  17072. if (buf->data) {
  17073. memcpy((char *) buf->data + buf->offset, val, el_size);
  17074. }
  17075. buf->offset += el_size;
  17076. }
  17077. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17078. // write header
  17079. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17080. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17081. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17082. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17083. // write key-value pairs
  17084. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17085. struct gguf_kv * kv = &ctx->kv[i];
  17086. gguf_bwrite_str(buf, &kv->key);
  17087. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17088. switch (kv->type) {
  17089. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17090. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17091. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17092. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17093. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17094. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17095. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17096. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17097. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17098. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17099. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17100. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17101. case GGUF_TYPE_ARRAY:
  17102. {
  17103. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17104. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17105. switch (kv->value.arr.type) {
  17106. case GGUF_TYPE_UINT8:
  17107. case GGUF_TYPE_INT8:
  17108. case GGUF_TYPE_UINT16:
  17109. case GGUF_TYPE_INT16:
  17110. case GGUF_TYPE_UINT32:
  17111. case GGUF_TYPE_INT32:
  17112. case GGUF_TYPE_FLOAT32:
  17113. case GGUF_TYPE_UINT64:
  17114. case GGUF_TYPE_INT64:
  17115. case GGUF_TYPE_FLOAT64:
  17116. case GGUF_TYPE_BOOL:
  17117. {
  17118. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17119. } break;
  17120. case GGUF_TYPE_STRING:
  17121. {
  17122. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17123. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17124. }
  17125. } break;
  17126. case GGUF_TYPE_ARRAY:
  17127. default: GGML_ASSERT(false && "invalid type"); break;
  17128. }
  17129. } break;
  17130. default: GGML_ASSERT(false && "invalid type");
  17131. }
  17132. }
  17133. // write tensor infos
  17134. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17135. struct gguf_tensor_info * info = &ctx->infos[i];
  17136. gguf_bwrite_str(buf, &info->name);
  17137. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17138. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17139. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17140. }
  17141. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17142. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17143. }
  17144. // we require the data section to be aligned, so take into account any padding
  17145. {
  17146. const size_t offset = buf->offset;
  17147. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17148. if (offset_pad != offset) {
  17149. uint8_t pad = 0;
  17150. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17151. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17152. }
  17153. }
  17154. }
  17155. if (only_meta) {
  17156. return;
  17157. }
  17158. size_t offset = 0;
  17159. // write tensor data
  17160. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17161. struct gguf_tensor_info * info = &ctx->infos[i];
  17162. const size_t size = info->size;
  17163. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17164. gguf_bwrite_el(buf, info->data, size);
  17165. if (size_pad != size) {
  17166. uint8_t pad = 0;
  17167. for (size_t j = 0; j < size_pad - size; ++j) {
  17168. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17169. }
  17170. }
  17171. GGML_ASSERT(offset == info->offset);
  17172. offset += size_pad;
  17173. }
  17174. }
  17175. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17176. FILE * file = fopen(fname, "wb");
  17177. if (!file) {
  17178. GGML_ASSERT(false && "failed to open file for writing");
  17179. }
  17180. struct gguf_buf buf = gguf_buf_init(16*1024);
  17181. gguf_write_to_buf(ctx, &buf, only_meta);
  17182. fwrite(buf.data, 1, buf.offset, file);
  17183. gguf_buf_free(buf);
  17184. fclose(file);
  17185. }
  17186. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17187. // no allocs - only compute size
  17188. struct gguf_buf buf = gguf_buf_init(0);
  17189. gguf_write_to_buf(ctx, &buf, true);
  17190. return buf.offset;
  17191. }
  17192. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17193. struct gguf_buf buf = gguf_buf_init(16*1024);
  17194. gguf_write_to_buf(ctx, &buf, true);
  17195. memcpy(data, buf.data, buf.offset);
  17196. gguf_buf_free(buf);
  17197. }
  17198. ////////////////////////////////////////////////////////////////////////////////
  17199. int ggml_cpu_has_avx(void) {
  17200. #if defined(__AVX__)
  17201. return 1;
  17202. #else
  17203. return 0;
  17204. #endif
  17205. }
  17206. int ggml_cpu_has_avx_vnni(void) {
  17207. #if defined(__AVXVNNI__)
  17208. return 1;
  17209. #else
  17210. return 0;
  17211. #endif
  17212. }
  17213. int ggml_cpu_has_avx2(void) {
  17214. #if defined(__AVX2__)
  17215. return 1;
  17216. #else
  17217. return 0;
  17218. #endif
  17219. }
  17220. int ggml_cpu_has_avx512(void) {
  17221. #if defined(__AVX512F__)
  17222. return 1;
  17223. #else
  17224. return 0;
  17225. #endif
  17226. }
  17227. int ggml_cpu_has_avx512_vbmi(void) {
  17228. #if defined(__AVX512VBMI__)
  17229. return 1;
  17230. #else
  17231. return 0;
  17232. #endif
  17233. }
  17234. int ggml_cpu_has_avx512_vnni(void) {
  17235. #if defined(__AVX512VNNI__)
  17236. return 1;
  17237. #else
  17238. return 0;
  17239. #endif
  17240. }
  17241. int ggml_cpu_has_fma(void) {
  17242. #if defined(__FMA__)
  17243. return 1;
  17244. #else
  17245. return 0;
  17246. #endif
  17247. }
  17248. int ggml_cpu_has_neon(void) {
  17249. #if defined(__ARM_NEON)
  17250. return 1;
  17251. #else
  17252. return 0;
  17253. #endif
  17254. }
  17255. int ggml_cpu_has_arm_fma(void) {
  17256. #if defined(__ARM_FEATURE_FMA)
  17257. return 1;
  17258. #else
  17259. return 0;
  17260. #endif
  17261. }
  17262. int ggml_cpu_has_metal(void) {
  17263. #if defined(GGML_USE_METAL)
  17264. return 1;
  17265. #else
  17266. return 0;
  17267. #endif
  17268. }
  17269. int ggml_cpu_has_f16c(void) {
  17270. #if defined(__F16C__)
  17271. return 1;
  17272. #else
  17273. return 0;
  17274. #endif
  17275. }
  17276. int ggml_cpu_has_fp16_va(void) {
  17277. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17278. return 1;
  17279. #else
  17280. return 0;
  17281. #endif
  17282. }
  17283. int ggml_cpu_has_wasm_simd(void) {
  17284. #if defined(__wasm_simd128__)
  17285. return 1;
  17286. #else
  17287. return 0;
  17288. #endif
  17289. }
  17290. int ggml_cpu_has_blas(void) {
  17291. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17292. return 1;
  17293. #else
  17294. return 0;
  17295. #endif
  17296. }
  17297. int ggml_cpu_has_cublas(void) {
  17298. #if defined(GGML_USE_CUBLAS)
  17299. return 1;
  17300. #else
  17301. return 0;
  17302. #endif
  17303. }
  17304. int ggml_cpu_has_clblast(void) {
  17305. #if defined(GGML_USE_CLBLAST)
  17306. return 1;
  17307. #else
  17308. return 0;
  17309. #endif
  17310. }
  17311. int ggml_cpu_has_vulkan(void) {
  17312. #if defined(GGML_USE_VULKAN)
  17313. return 1;
  17314. #else
  17315. return 0;
  17316. #endif
  17317. }
  17318. int ggml_cpu_has_kompute(void) {
  17319. #if defined(GGML_USE_KOMPUTE)
  17320. return 1;
  17321. #else
  17322. return 0;
  17323. #endif
  17324. }
  17325. int ggml_cpu_has_sycl(void) {
  17326. #if defined(GGML_USE_SYCL)
  17327. return 1;
  17328. #else
  17329. return 0;
  17330. #endif
  17331. }
  17332. int ggml_cpu_has_gpublas(void) {
  17333. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17334. ggml_cpu_has_sycl();
  17335. }
  17336. int ggml_cpu_has_sse3(void) {
  17337. #if defined(__SSE3__)
  17338. return 1;
  17339. #else
  17340. return 0;
  17341. #endif
  17342. }
  17343. int ggml_cpu_has_ssse3(void) {
  17344. #if defined(__SSSE3__)
  17345. return 1;
  17346. #else
  17347. return 0;
  17348. #endif
  17349. }
  17350. int ggml_cpu_has_vsx(void) {
  17351. #if defined(__POWER9_VECTOR__)
  17352. return 1;
  17353. #else
  17354. return 0;
  17355. #endif
  17356. }
  17357. int ggml_cpu_has_matmul_int8(void) {
  17358. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17359. return 1;
  17360. #else
  17361. return 0;
  17362. #endif
  17363. }
  17364. ////////////////////////////////////////////////////////////////////////////////