llama.cpp 517 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_CUBLAS
  8. # include "ggml-cuda.h"
  9. #elif defined(GGML_USE_CLBLAST)
  10. # include "ggml-opencl.h"
  11. #elif defined(GGML_USE_VULKAN)
  12. # include "ggml-vulkan.h"
  13. #elif defined(GGML_USE_SYCL)
  14. # include "ggml-sycl.h"
  15. #elif defined(GGML_USE_KOMPUTE)
  16. # include "ggml-kompute.h"
  17. #endif
  18. #ifdef GGML_USE_METAL
  19. # include "ggml-metal.h"
  20. #endif
  21. #ifdef GGML_USE_MPI
  22. # include "ggml-mpi.h"
  23. #endif
  24. #ifndef QK_K
  25. # ifdef GGML_QKK_64
  26. # define QK_K 64
  27. # else
  28. # define QK_K 256
  29. # endif
  30. #endif
  31. #ifdef __has_include
  32. #if __has_include(<unistd.h>)
  33. #include <unistd.h>
  34. #if defined(_POSIX_MAPPED_FILES)
  35. #include <sys/mman.h>
  36. #include <fcntl.h>
  37. #endif
  38. #if defined(_POSIX_MEMLOCK_RANGE)
  39. #include <sys/resource.h>
  40. #endif
  41. #endif
  42. #endif
  43. #if defined(_WIN32)
  44. #define WIN32_LEAN_AND_MEAN
  45. #ifndef NOMINMAX
  46. #define NOMINMAX
  47. #endif
  48. #include <windows.h>
  49. #include <io.h>
  50. #endif
  51. #include <algorithm>
  52. #include <array>
  53. #include <cassert>
  54. #include <cfloat>
  55. #include <cinttypes>
  56. #include <climits>
  57. #include <cmath>
  58. #include <cstdarg>
  59. #include <cstddef>
  60. #include <cstdint>
  61. #include <cstdio>
  62. #include <cstring>
  63. #include <ctime>
  64. #include <forward_list>
  65. #include <fstream>
  66. #include <functional>
  67. #include <initializer_list>
  68. #include <map>
  69. #include <memory>
  70. #include <mutex>
  71. #include <numeric>
  72. #include <queue>
  73. #include <random>
  74. #include <regex>
  75. #include <set>
  76. #include <sstream>
  77. #include <thread>
  78. #include <type_traits>
  79. #include <unordered_map>
  80. #if defined(_MSC_VER)
  81. #pragma warning(disable: 4244 4267) // possible loss of data
  82. #endif
  83. #ifdef __GNUC__
  84. #ifdef __MINGW32__
  85. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  86. #else
  87. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  88. #endif
  89. #else
  90. #define LLAMA_ATTRIBUTE_FORMAT(...)
  91. #endif
  92. #define LLAMA_MAX_NODES 8192
  93. #define LLAMA_MAX_EXPERTS 8
  94. //
  95. // logging
  96. //
  97. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  98. static void llama_log_internal (ggml_log_level level, const char* format, ...);
  99. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  100. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  101. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  102. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  103. //
  104. // helpers
  105. //
  106. static size_t utf8_len(char src) {
  107. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  108. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  109. return lookup[highbits];
  110. }
  111. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  112. std::string result;
  113. for (size_t pos = 0; ; pos += search.length()) {
  114. auto new_pos = s.find(search, pos);
  115. if (new_pos == std::string::npos) {
  116. result += s.substr(pos, s.size() - pos);
  117. break;
  118. }
  119. result += s.substr(pos, new_pos - pos) + replace;
  120. pos = new_pos;
  121. }
  122. s = std::move(result);
  123. }
  124. static bool is_float_close(float a, float b, float abs_tol) {
  125. // Check for non-negative tolerance
  126. if (abs_tol < 0.0) {
  127. throw std::invalid_argument("Tolerance must be non-negative");
  128. }
  129. // Exact equality check
  130. if (a == b) {
  131. return true;
  132. }
  133. // Check for infinities
  134. if (std::isinf(a) || std::isinf(b)) {
  135. return false;
  136. }
  137. // Regular comparison using the provided absolute tolerance
  138. return std::fabs(b - a) <= abs_tol;
  139. }
  140. static void zeros(std::ofstream & file, size_t n) {
  141. char zero = 0;
  142. for (size_t i = 0; i < n; ++i) {
  143. file.write(&zero, 1);
  144. }
  145. }
  146. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  147. static std::string format(const char * fmt, ...) {
  148. va_list ap;
  149. va_list ap2;
  150. va_start(ap, fmt);
  151. va_copy(ap2, ap);
  152. int size = vsnprintf(NULL, 0, fmt, ap);
  153. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  154. std::vector<char> buf(size + 1);
  155. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  156. GGML_ASSERT(size2 == size);
  157. va_end(ap2);
  158. va_end(ap);
  159. return std::string(buf.data(), size);
  160. }
  161. //
  162. // gguf constants (sync with gguf.py)
  163. //
  164. enum llm_arch {
  165. LLM_ARCH_LLAMA,
  166. LLM_ARCH_FALCON,
  167. LLM_ARCH_BAICHUAN,
  168. LLM_ARCH_GPT2,
  169. LLM_ARCH_GPTJ,
  170. LLM_ARCH_GPTNEOX,
  171. LLM_ARCH_MPT,
  172. LLM_ARCH_STARCODER,
  173. LLM_ARCH_PERSIMMON,
  174. LLM_ARCH_REFACT,
  175. LLM_ARCH_BERT,
  176. LLM_ARCH_NOMIC_BERT,
  177. LLM_ARCH_BLOOM,
  178. LLM_ARCH_STABLELM,
  179. LLM_ARCH_QWEN,
  180. LLM_ARCH_QWEN2,
  181. LLM_ARCH_PHI2,
  182. LLM_ARCH_PLAMO,
  183. LLM_ARCH_CODESHELL,
  184. LLM_ARCH_ORION,
  185. LLM_ARCH_INTERNLM2,
  186. LLM_ARCH_MINICPM,
  187. LLM_ARCH_GEMMA,
  188. LLM_ARCH_UNKNOWN,
  189. };
  190. static std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  191. { LLM_ARCH_LLAMA, "llama" },
  192. { LLM_ARCH_FALCON, "falcon" },
  193. { LLM_ARCH_GPT2, "gpt2" },
  194. { LLM_ARCH_GPTJ, "gptj" },
  195. { LLM_ARCH_GPTNEOX, "gptneox" },
  196. { LLM_ARCH_MPT, "mpt" },
  197. { LLM_ARCH_BAICHUAN, "baichuan" },
  198. { LLM_ARCH_STARCODER, "starcoder" },
  199. { LLM_ARCH_PERSIMMON, "persimmon" },
  200. { LLM_ARCH_REFACT, "refact" },
  201. { LLM_ARCH_BERT, "bert" },
  202. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  203. { LLM_ARCH_BLOOM, "bloom" },
  204. { LLM_ARCH_STABLELM, "stablelm" },
  205. { LLM_ARCH_QWEN, "qwen" },
  206. { LLM_ARCH_QWEN2, "qwen2" },
  207. { LLM_ARCH_PHI2, "phi2" },
  208. { LLM_ARCH_PLAMO, "plamo" },
  209. { LLM_ARCH_CODESHELL, "codeshell" },
  210. { LLM_ARCH_ORION, "orion" },
  211. { LLM_ARCH_INTERNLM2, "internlm2" },
  212. { LLM_ARCH_MINICPM, "minicpm" },
  213. { LLM_ARCH_GEMMA, "gemma" },
  214. };
  215. enum llm_kv {
  216. LLM_KV_GENERAL_ARCHITECTURE,
  217. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  218. LLM_KV_GENERAL_ALIGNMENT,
  219. LLM_KV_GENERAL_NAME,
  220. LLM_KV_GENERAL_AUTHOR,
  221. LLM_KV_GENERAL_URL,
  222. LLM_KV_GENERAL_DESCRIPTION,
  223. LLM_KV_GENERAL_LICENSE,
  224. LLM_KV_GENERAL_SOURCE_URL,
  225. LLM_KV_GENERAL_SOURCE_HF_REPO,
  226. LLM_KV_CONTEXT_LENGTH,
  227. LLM_KV_EMBEDDING_LENGTH,
  228. LLM_KV_BLOCK_COUNT,
  229. LLM_KV_FEED_FORWARD_LENGTH,
  230. LLM_KV_USE_PARALLEL_RESIDUAL,
  231. LLM_KV_TENSOR_DATA_LAYOUT,
  232. LLM_KV_EXPERT_COUNT,
  233. LLM_KV_EXPERT_USED_COUNT,
  234. LLM_KV_POOLING_TYPE,
  235. LLM_KV_ATTENTION_HEAD_COUNT,
  236. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  237. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  238. LLM_KV_ATTENTION_CLAMP_KQV,
  239. LLM_KV_ATTENTION_KEY_LENGTH,
  240. LLM_KV_ATTENTION_VALUE_LENGTH,
  241. LLM_KV_ATTENTION_LAYERNORM_EPS,
  242. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  243. LLM_KV_ATTENTION_CAUSAL,
  244. LLM_KV_ROPE_DIMENSION_COUNT,
  245. LLM_KV_ROPE_FREQ_BASE,
  246. LLM_KV_ROPE_SCALE_LINEAR,
  247. LLM_KV_ROPE_SCALING_TYPE,
  248. LLM_KV_ROPE_SCALING_FACTOR,
  249. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  250. LLM_KV_ROPE_SCALING_FINETUNED,
  251. LLM_KV_TOKENIZER_MODEL,
  252. LLM_KV_TOKENIZER_LIST,
  253. LLM_KV_TOKENIZER_TOKEN_TYPE,
  254. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  255. LLM_KV_TOKENIZER_SCORES,
  256. LLM_KV_TOKENIZER_MERGES,
  257. LLM_KV_TOKENIZER_BOS_ID,
  258. LLM_KV_TOKENIZER_EOS_ID,
  259. LLM_KV_TOKENIZER_UNK_ID,
  260. LLM_KV_TOKENIZER_SEP_ID,
  261. LLM_KV_TOKENIZER_PAD_ID,
  262. LLM_KV_TOKENIZER_ADD_BOS,
  263. LLM_KV_TOKENIZER_ADD_EOS,
  264. LLM_KV_TOKENIZER_ADD_PREFIX,
  265. LLM_KV_TOKENIZER_HF_JSON,
  266. LLM_KV_TOKENIZER_RWKV,
  267. };
  268. static std::map<llm_kv, const char *> LLM_KV_NAMES = {
  269. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  270. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  271. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  272. { LLM_KV_GENERAL_NAME, "general.name" },
  273. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  274. { LLM_KV_GENERAL_URL, "general.url" },
  275. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  276. { LLM_KV_GENERAL_LICENSE, "general.license" },
  277. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  278. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  279. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  280. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  281. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  282. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  283. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  284. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  285. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  286. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  287. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  288. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  289. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  290. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  291. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  292. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  293. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  294. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  295. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  296. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  297. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  298. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  299. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  300. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  301. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  302. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  303. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  304. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  305. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  306. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  307. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  308. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  309. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  310. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  311. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  312. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  313. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  314. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  315. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  316. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  317. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  318. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  319. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  320. };
  321. struct LLM_KV {
  322. LLM_KV(llm_arch arch) : arch(arch) {}
  323. llm_arch arch;
  324. std::string operator()(llm_kv kv) const {
  325. return ::format(LLM_KV_NAMES[kv], LLM_ARCH_NAMES[arch]);
  326. }
  327. };
  328. enum llm_tensor {
  329. LLM_TENSOR_TOKEN_EMBD,
  330. LLM_TENSOR_TOKEN_EMBD_NORM,
  331. LLM_TENSOR_TOKEN_TYPES,
  332. LLM_TENSOR_POS_EMBD,
  333. LLM_TENSOR_OUTPUT,
  334. LLM_TENSOR_OUTPUT_NORM,
  335. LLM_TENSOR_ROPE_FREQS,
  336. LLM_TENSOR_ATTN_Q,
  337. LLM_TENSOR_ATTN_K,
  338. LLM_TENSOR_ATTN_V,
  339. LLM_TENSOR_ATTN_QKV,
  340. LLM_TENSOR_ATTN_OUT,
  341. LLM_TENSOR_ATTN_NORM,
  342. LLM_TENSOR_ATTN_NORM_2,
  343. LLM_TENSOR_ATTN_OUT_NORM,
  344. LLM_TENSOR_ATTN_ROT_EMBD,
  345. LLM_TENSOR_FFN_GATE_INP,
  346. LLM_TENSOR_FFN_NORM,
  347. LLM_TENSOR_FFN_GATE,
  348. LLM_TENSOR_FFN_DOWN,
  349. LLM_TENSOR_FFN_UP,
  350. LLM_TENSOR_FFN_ACT,
  351. LLM_TENSOR_FFN_DOWN_EXP,
  352. LLM_TENSOR_FFN_GATE_EXP,
  353. LLM_TENSOR_FFN_UP_EXP,
  354. LLM_TENSOR_ATTN_Q_NORM,
  355. LLM_TENSOR_ATTN_K_NORM,
  356. LLM_TENSOR_LAYER_OUT_NORM,
  357. };
  358. static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  359. {
  360. LLM_ARCH_LLAMA,
  361. {
  362. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  363. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  364. { LLM_TENSOR_OUTPUT, "output" },
  365. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  366. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  367. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  368. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  369. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  370. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  371. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  372. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  373. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  374. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  375. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  376. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  377. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  378. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  379. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  380. },
  381. },
  382. {
  383. LLM_ARCH_BAICHUAN,
  384. {
  385. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  386. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  387. { LLM_TENSOR_OUTPUT, "output" },
  388. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  389. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  390. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  391. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  392. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  393. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  394. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  395. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  396. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  397. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  398. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  399. },
  400. },
  401. {
  402. LLM_ARCH_FALCON,
  403. {
  404. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  405. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  406. { LLM_TENSOR_OUTPUT, "output" },
  407. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  408. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  409. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  410. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  411. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  412. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  413. },
  414. },
  415. {
  416. LLM_ARCH_GPT2,
  417. {
  418. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  419. { LLM_TENSOR_POS_EMBD, "position_embd" },
  420. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  421. { LLM_TENSOR_OUTPUT, "output" },
  422. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  423. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  424. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  425. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  426. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  427. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  428. },
  429. },
  430. {
  431. LLM_ARCH_GPTJ,
  432. {
  433. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  434. },
  435. },
  436. {
  437. LLM_ARCH_GPTNEOX,
  438. {
  439. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  440. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  441. { LLM_TENSOR_OUTPUT, "output" },
  442. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  443. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  444. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  445. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  446. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  447. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  448. },
  449. },
  450. {
  451. LLM_ARCH_PERSIMMON,
  452. {
  453. { LLM_TENSOR_TOKEN_EMBD, "token_embd"},
  454. { LLM_TENSOR_OUTPUT_NORM, "output_norm"},
  455. { LLM_TENSOR_OUTPUT, "output"},
  456. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm"},
  457. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv"},
  458. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output"},
  459. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  460. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  461. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm"},
  462. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down"},
  463. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up"},
  464. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd"},
  465. },
  466. },
  467. {
  468. LLM_ARCH_MPT,
  469. {
  470. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  471. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  472. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  473. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  474. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  475. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  476. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  477. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  478. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  479. },
  480. },
  481. {
  482. LLM_ARCH_STARCODER,
  483. {
  484. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  485. { LLM_TENSOR_POS_EMBD, "position_embd" },
  486. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  487. { LLM_TENSOR_OUTPUT, "output" },
  488. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  489. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  490. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  491. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  492. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  493. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  494. },
  495. },
  496. {
  497. LLM_ARCH_REFACT,
  498. {
  499. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  500. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  501. { LLM_TENSOR_OUTPUT, "output" },
  502. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  503. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  504. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  505. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  506. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  507. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  508. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  509. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  510. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  511. },
  512. },
  513. {
  514. LLM_ARCH_BERT,
  515. {
  516. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  517. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  518. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  519. { LLM_TENSOR_POS_EMBD, "position_embd" },
  520. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  521. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  522. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  523. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  524. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  525. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  526. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  527. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  528. },
  529. },
  530. {
  531. LLM_ARCH_NOMIC_BERT,
  532. {
  533. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  534. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  535. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  536. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  537. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  538. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  539. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  540. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  541. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  542. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  543. },
  544. },
  545. {
  546. LLM_ARCH_BLOOM,
  547. {
  548. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  549. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  550. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  551. { LLM_TENSOR_OUTPUT, "output" },
  552. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  553. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  554. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  555. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  556. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  557. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  558. },
  559. },
  560. {
  561. LLM_ARCH_STABLELM,
  562. {
  563. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  564. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  565. { LLM_TENSOR_OUTPUT, "output" },
  566. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  567. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  568. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  569. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  570. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  571. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  572. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  573. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  574. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  575. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  576. },
  577. },
  578. {
  579. LLM_ARCH_QWEN,
  580. {
  581. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  582. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  583. { LLM_TENSOR_OUTPUT, "output" },
  584. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  585. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  586. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  587. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  588. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  589. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  590. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  591. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  592. },
  593. },
  594. {
  595. LLM_ARCH_QWEN2,
  596. {
  597. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  598. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  599. { LLM_TENSOR_OUTPUT, "output" },
  600. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  601. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  602. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  603. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  604. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  605. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  606. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  607. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  608. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  609. },
  610. },
  611. {
  612. LLM_ARCH_PHI2,
  613. {
  614. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  615. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  616. { LLM_TENSOR_OUTPUT, "output" },
  617. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  618. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  619. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  620. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  621. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  622. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  623. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  624. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  625. },
  626. },
  627. {
  628. LLM_ARCH_PLAMO,
  629. {
  630. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  631. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  632. { LLM_TENSOR_OUTPUT, "output" },
  633. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  634. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  635. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  636. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  637. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  638. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  639. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  640. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  641. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  642. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  643. },
  644. },
  645. {
  646. LLM_ARCH_CODESHELL,
  647. {
  648. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  649. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  650. { LLM_TENSOR_OUTPUT, "output" },
  651. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  652. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  653. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  654. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  655. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  656. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  657. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  658. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  659. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  660. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  661. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  662. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  663. },
  664. },
  665. {
  666. LLM_ARCH_ORION,
  667. {
  668. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  669. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  670. { LLM_TENSOR_OUTPUT, "output" },
  671. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  672. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  673. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  674. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  675. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  676. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  677. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  678. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  679. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  680. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  681. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  682. },
  683. },
  684. {
  685. LLM_ARCH_INTERNLM2,
  686. {
  687. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  688. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  689. { LLM_TENSOR_OUTPUT, "output" },
  690. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  691. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  692. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  693. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  694. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  695. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  696. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  697. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  698. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  699. },
  700. },
  701. {
  702. LLM_ARCH_MINICPM,
  703. {
  704. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  705. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  706. { LLM_TENSOR_OUTPUT, "output" },
  707. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  708. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  709. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  710. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  711. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  712. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  713. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  714. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  715. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  716. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  717. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  718. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  719. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  720. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  721. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  722. },
  723. },
  724. {
  725. LLM_ARCH_GEMMA,
  726. {
  727. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  728. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  729. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  730. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  731. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  732. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  733. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  734. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  735. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  736. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  737. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  738. },
  739. },
  740. {
  741. LLM_ARCH_UNKNOWN,
  742. {
  743. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  744. },
  745. },
  746. };
  747. static llm_arch llm_arch_from_string(const std::string & name) {
  748. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  749. if (kv.second == name) {
  750. return kv.first;
  751. }
  752. }
  753. return LLM_ARCH_UNKNOWN;
  754. }
  755. // helper to handle gguf constants
  756. // usage:
  757. //
  758. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  759. //
  760. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  761. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  762. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  763. //
  764. struct LLM_TN {
  765. LLM_TN(llm_arch arch) : arch(arch) {}
  766. llm_arch arch;
  767. std::string operator()(llm_tensor tensor) const {
  768. if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
  769. return "__missing__";
  770. }
  771. return LLM_TENSOR_NAMES[arch].at(tensor);
  772. }
  773. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  774. if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
  775. return "__missing__";
  776. }
  777. return LLM_TENSOR_NAMES[arch].at(tensor) + "." + suffix;
  778. }
  779. std::string operator()(llm_tensor tensor, int bid) const {
  780. if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
  781. return "__missing__";
  782. }
  783. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid);
  784. }
  785. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  786. if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
  787. return "__missing__";
  788. }
  789. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid) + "." + suffix;
  790. }
  791. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  792. if (LLM_TENSOR_NAMES[arch].find(tensor) == LLM_TENSOR_NAMES[arch].end()) {
  793. return "__missing__";
  794. }
  795. return ::format(LLM_TENSOR_NAMES[arch].at(tensor).c_str(), bid, xid) + "." + suffix;
  796. }
  797. };
  798. //
  799. // gguf helpers
  800. //
  801. static std::map<int32_t, const char *> LLAMA_ROPE_SCALING_TYPES = {
  802. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  803. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  804. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  805. };
  806. static int32_t llama_rope_scaling_type_from_string(const std::string & name) {
  807. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  808. if (kv.second == name) {
  809. return kv.first;
  810. }
  811. }
  812. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  813. }
  814. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  815. switch (type) {
  816. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  817. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  818. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  819. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  820. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  821. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  822. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  823. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  824. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  825. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  826. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  827. default: return format("unknown type %d", type);
  828. }
  829. }
  830. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  831. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  832. switch (type) {
  833. case GGUF_TYPE_STRING:
  834. return gguf_get_val_str(ctx_gguf, i);
  835. case GGUF_TYPE_ARRAY:
  836. {
  837. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  838. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  839. const void * data = gguf_get_arr_data(ctx_gguf, i);
  840. std::stringstream ss;
  841. ss << "[";
  842. for (int j = 0; j < arr_n; j++) {
  843. if (arr_type == GGUF_TYPE_STRING) {
  844. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  845. // escape quotes
  846. replace_all(val, "\\", "\\\\");
  847. replace_all(val, "\"", "\\\"");
  848. ss << '"' << val << '"';
  849. } else if (arr_type == GGUF_TYPE_ARRAY) {
  850. ss << "???";
  851. } else {
  852. ss << gguf_data_to_str(arr_type, data, j);
  853. }
  854. if (j < arr_n - 1) {
  855. ss << ", ";
  856. }
  857. }
  858. ss << "]";
  859. return ss.str();
  860. }
  861. default:
  862. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  863. }
  864. }
  865. //
  866. // ggml helpers
  867. //
  868. static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph * graph, int n_threads) {
  869. struct ggml_cplan plan = ggml_graph_plan(graph, n_threads);
  870. if (plan.work_size > 0) {
  871. buf.resize(plan.work_size);
  872. plan.work_data = buf.data();
  873. }
  874. ggml_graph_compute(graph, &plan);
  875. }
  876. //
  877. // llama helpers
  878. //
  879. #if defined(_WIN32)
  880. static std::string llama_format_win_err(DWORD err) {
  881. LPSTR buf;
  882. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  883. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  884. if (!size) {
  885. return "FormatMessageA failed";
  886. }
  887. std::string ret(buf, size);
  888. LocalFree(buf);
  889. return ret;
  890. }
  891. #endif
  892. template <typename T>
  893. struct no_init {
  894. T value;
  895. no_init() { /* do nothing */ }
  896. };
  897. struct llama_file {
  898. // use FILE * so we don't have to re-open the file to mmap
  899. FILE * fp;
  900. size_t size;
  901. llama_file(const char * fname, const char * mode) {
  902. fp = std::fopen(fname, mode);
  903. if (fp == NULL) {
  904. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  905. }
  906. seek(0, SEEK_END);
  907. size = tell();
  908. seek(0, SEEK_SET);
  909. }
  910. size_t tell() const {
  911. #ifdef _WIN32
  912. __int64 ret = _ftelli64(fp);
  913. #else
  914. long ret = std::ftell(fp);
  915. #endif
  916. GGML_ASSERT(ret != -1); // this really shouldn't fail
  917. return (size_t) ret;
  918. }
  919. void seek(size_t offset, int whence) const {
  920. #ifdef _WIN32
  921. int ret = _fseeki64(fp, (__int64) offset, whence);
  922. #else
  923. int ret = std::fseek(fp, (long) offset, whence);
  924. #endif
  925. GGML_ASSERT(ret == 0); // same
  926. }
  927. void read_raw(void * ptr, size_t len) const {
  928. if (len == 0) {
  929. return;
  930. }
  931. errno = 0;
  932. std::size_t ret = std::fread(ptr, len, 1, fp);
  933. if (ferror(fp)) {
  934. throw std::runtime_error(format("read error: %s", strerror(errno)));
  935. }
  936. if (ret != 1) {
  937. throw std::runtime_error("unexpectedly reached end of file");
  938. }
  939. }
  940. uint32_t read_u32() const {
  941. uint32_t ret;
  942. read_raw(&ret, sizeof(ret));
  943. return ret;
  944. }
  945. void write_raw(const void * ptr, size_t len) const {
  946. if (len == 0) {
  947. return;
  948. }
  949. errno = 0;
  950. size_t ret = std::fwrite(ptr, len, 1, fp);
  951. if (ret != 1) {
  952. throw std::runtime_error(format("write error: %s", strerror(errno)));
  953. }
  954. }
  955. void write_u32(std::uint32_t val) const {
  956. write_raw(&val, sizeof(val));
  957. }
  958. ~llama_file() {
  959. if (fp) {
  960. std::fclose(fp);
  961. }
  962. }
  963. };
  964. struct llama_mmap {
  965. void * addr;
  966. size_t size;
  967. llama_mmap(const llama_mmap &) = delete;
  968. #ifdef _POSIX_MAPPED_FILES
  969. static constexpr bool SUPPORTED = true;
  970. // list of mapped fragments (first_offset, last_offset)
  971. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  972. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  973. size = file->size;
  974. int fd = fileno(file->fp);
  975. int flags = MAP_SHARED;
  976. // prefetch/readahead impairs performance on NUMA systems
  977. if (numa) { prefetch = 0; }
  978. #ifdef __linux__
  979. // advise the kernel to read the file sequentially (increases readahead)
  980. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  981. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  982. strerror(errno));
  983. }
  984. if (prefetch) { flags |= MAP_POPULATE; }
  985. #endif
  986. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  987. if (addr == MAP_FAILED) { // NOLINT
  988. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  989. }
  990. if (prefetch > 0) {
  991. // advise the kernel to preload the mapped memory
  992. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  993. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  994. strerror(errno));
  995. }
  996. }
  997. if (numa) {
  998. // advise the kernel not to use readahead
  999. // (because the next page might not belong on the same node)
  1000. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1001. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1002. strerror(errno));
  1003. }
  1004. }
  1005. // initialize list of mapped_fragments
  1006. mapped_fragments.emplace_back(0, file->size);
  1007. }
  1008. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1009. // align first to the next page
  1010. size_t offset_in_page = *first & (page_size - 1);
  1011. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1012. *first += offset_to_page;
  1013. // align last to the previous page
  1014. *last = *last & ~(page_size - 1);
  1015. if (*last <= *first) {
  1016. *last = *first;
  1017. }
  1018. }
  1019. // partially unmap the file in the range [first, last)
  1020. void unmap_fragment(size_t first, size_t last) {
  1021. // note: this function must not be called multiple times with overlapping ranges
  1022. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1023. int page_size = sysconf(_SC_PAGESIZE);
  1024. align_range(&first, &last, page_size);
  1025. size_t len = last - first;
  1026. if (len == 0) {
  1027. return;
  1028. }
  1029. GGML_ASSERT(first % page_size == 0);
  1030. GGML_ASSERT(last % page_size == 0);
  1031. GGML_ASSERT(last > first);
  1032. void * next_page_start = (uint8_t *) addr + first;
  1033. // unmap the range
  1034. if (munmap(next_page_start, len)) {
  1035. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1036. }
  1037. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1038. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1039. for (const auto & frag : mapped_fragments) {
  1040. if (frag.first < first && frag.second > last) {
  1041. // the range is in the middle of the fragment, split it
  1042. new_mapped_fragments.emplace_back(frag.first, first);
  1043. new_mapped_fragments.emplace_back(last, frag.second);
  1044. } else if (frag.first < first && frag.second > first) {
  1045. // the range starts in the middle of the fragment
  1046. new_mapped_fragments.emplace_back(frag.first, first);
  1047. } else if (frag.first < last && frag.second > last) {
  1048. // the range ends in the middle of the fragment
  1049. new_mapped_fragments.emplace_back(last, frag.second);
  1050. } else if (frag.first >= first && frag.second <= last) {
  1051. // the range covers the entire fragment
  1052. } else {
  1053. // the range is outside the fragment
  1054. new_mapped_fragments.push_back(frag);
  1055. }
  1056. }
  1057. mapped_fragments = std::move(new_mapped_fragments);
  1058. }
  1059. ~llama_mmap() {
  1060. for (const auto & frag : mapped_fragments) {
  1061. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1062. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1063. }
  1064. }
  1065. }
  1066. #elif defined(_WIN32)
  1067. static constexpr bool SUPPORTED = true;
  1068. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1069. GGML_UNUSED(numa);
  1070. size = file->size;
  1071. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1072. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1073. if (hMapping == NULL) {
  1074. DWORD error = GetLastError();
  1075. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1076. }
  1077. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1078. DWORD error = GetLastError();
  1079. CloseHandle(hMapping);
  1080. if (addr == NULL) {
  1081. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1082. }
  1083. if (prefetch > 0) {
  1084. #if _WIN32_WINNT >= 0x602
  1085. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1086. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1087. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1088. // may fail on pre-Windows 8 systems
  1089. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1090. if (pPrefetchVirtualMemory) {
  1091. // advise the kernel to preload the mapped memory
  1092. WIN32_MEMORY_RANGE_ENTRY range;
  1093. range.VirtualAddress = addr;
  1094. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1095. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1096. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1097. llama_format_win_err(GetLastError()).c_str());
  1098. }
  1099. }
  1100. #else
  1101. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1102. #endif
  1103. }
  1104. }
  1105. void unmap_fragment(size_t first, size_t last) {
  1106. // not supported
  1107. GGML_UNUSED(first);
  1108. GGML_UNUSED(last);
  1109. }
  1110. ~llama_mmap() {
  1111. if (!UnmapViewOfFile(addr)) {
  1112. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1113. llama_format_win_err(GetLastError()).c_str());
  1114. }
  1115. }
  1116. #else
  1117. static constexpr bool SUPPORTED = false;
  1118. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1119. GGML_UNUSED(file);
  1120. GGML_UNUSED(prefetch);
  1121. GGML_UNUSED(numa);
  1122. throw std::runtime_error("mmap not supported");
  1123. }
  1124. void unmap_fragment(size_t first, size_t last) {
  1125. GGML_UNUSED(first);
  1126. GGML_UNUSED(last);
  1127. throw std::runtime_error("mmap not supported");
  1128. }
  1129. #endif
  1130. };
  1131. // Represents some region of memory being locked using mlock or VirtualLock;
  1132. // will automatically unlock on destruction.
  1133. struct llama_mlock {
  1134. void * addr = NULL;
  1135. size_t size = 0;
  1136. bool failed_already = false;
  1137. llama_mlock() {}
  1138. llama_mlock(const llama_mlock &) = delete;
  1139. ~llama_mlock() {
  1140. if (size) {
  1141. raw_unlock(addr, size);
  1142. }
  1143. }
  1144. void init(void * ptr) {
  1145. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1146. addr = ptr;
  1147. }
  1148. void grow_to(size_t target_size) {
  1149. GGML_ASSERT(addr);
  1150. if (failed_already) {
  1151. return;
  1152. }
  1153. size_t granularity = lock_granularity();
  1154. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1155. if (target_size > size) {
  1156. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1157. size = target_size;
  1158. } else {
  1159. failed_already = true;
  1160. }
  1161. }
  1162. }
  1163. #ifdef _POSIX_MEMLOCK_RANGE
  1164. static constexpr bool SUPPORTED = true;
  1165. static size_t lock_granularity() {
  1166. return (size_t) sysconf(_SC_PAGESIZE);
  1167. }
  1168. #ifdef __APPLE__
  1169. #define MLOCK_SUGGESTION \
  1170. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1171. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1172. #else
  1173. #define MLOCK_SUGGESTION \
  1174. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1175. #endif
  1176. bool raw_lock(const void * addr, size_t size) const {
  1177. if (!mlock(addr, size)) {
  1178. return true;
  1179. }
  1180. char* errmsg = std::strerror(errno);
  1181. bool suggest = (errno == ENOMEM);
  1182. // Check if the resource limit is fine after all
  1183. struct rlimit lock_limit;
  1184. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1185. suggest = false;
  1186. }
  1187. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1188. suggest = false;
  1189. }
  1190. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1191. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1192. return false;
  1193. }
  1194. #undef MLOCK_SUGGESTION
  1195. static void raw_unlock(void * addr, size_t size) {
  1196. if (munlock(addr, size)) {
  1197. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1198. }
  1199. }
  1200. #elif defined(_WIN32)
  1201. static constexpr bool SUPPORTED = true;
  1202. static size_t lock_granularity() {
  1203. SYSTEM_INFO si;
  1204. GetSystemInfo(&si);
  1205. return (size_t) si.dwPageSize;
  1206. }
  1207. bool raw_lock(void * ptr, size_t len) const {
  1208. for (int tries = 1; ; tries++) {
  1209. if (VirtualLock(ptr, len)) {
  1210. return true;
  1211. }
  1212. if (tries == 2) {
  1213. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1214. len, size, llama_format_win_err(GetLastError()).c_str());
  1215. return false;
  1216. }
  1217. // It failed but this was only the first try; increase the working
  1218. // set size and try again.
  1219. SIZE_T min_ws_size, max_ws_size;
  1220. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1221. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1222. llama_format_win_err(GetLastError()).c_str());
  1223. return false;
  1224. }
  1225. // Per MSDN: "The maximum number of pages that a process can lock
  1226. // is equal to the number of pages in its minimum working set minus
  1227. // a small overhead."
  1228. // Hopefully a megabyte is enough overhead:
  1229. size_t increment = len + 1048576;
  1230. // The minimum must be <= the maximum, so we need to increase both:
  1231. min_ws_size += increment;
  1232. max_ws_size += increment;
  1233. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1234. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1235. llama_format_win_err(GetLastError()).c_str());
  1236. return false;
  1237. }
  1238. }
  1239. }
  1240. static void raw_unlock(void * ptr, size_t len) {
  1241. if (!VirtualUnlock(ptr, len)) {
  1242. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1243. llama_format_win_err(GetLastError()).c_str());
  1244. }
  1245. }
  1246. #else
  1247. static constexpr bool SUPPORTED = false;
  1248. static size_t lock_granularity() {
  1249. return (size_t) 65536;
  1250. }
  1251. bool raw_lock(const void * addr, size_t len) const {
  1252. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1253. return false;
  1254. }
  1255. static void raw_unlock(const void * addr, size_t len) {}
  1256. #endif
  1257. };
  1258. static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  1259. std::vector<char> result(8, 0);
  1260. const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1261. if (n_tokens < 0) {
  1262. result.resize(-n_tokens);
  1263. int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size());
  1264. GGML_ASSERT(check == -n_tokens);
  1265. }
  1266. else {
  1267. result.resize(n_tokens);
  1268. }
  1269. return std::string(result.data(), result.size());
  1270. }
  1271. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1272. ggml_backend_buffer_type_t buft = nullptr;
  1273. #if defined(GGML_USE_CUBLAS)
  1274. // host buffers should only be used when data is expected to be copied to/from the GPU
  1275. if (host_buffer) {
  1276. buft = ggml_backend_cuda_host_buffer_type();
  1277. }
  1278. #elif defined(GGML_USE_SYCL)
  1279. buft = ggml_backend_sycl_host_buffer_type();
  1280. #elif defined(GGML_USE_CPU_HBM)
  1281. buft = ggml_backend_cpu_hbm_buffer_type();
  1282. #elif defined(GGML_USE_VULKAN)
  1283. if (host_buffer) {
  1284. buft = ggml_backend_vk_host_buffer_type();
  1285. }
  1286. #endif
  1287. if (buft == nullptr) {
  1288. buft = ggml_backend_cpu_buffer_type();
  1289. }
  1290. return buft;
  1291. GGML_UNUSED(host_buffer);
  1292. }
  1293. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(int gpu) {
  1294. ggml_backend_buffer_type_t buft = nullptr;
  1295. #ifdef GGML_USE_METAL
  1296. buft = ggml_backend_metal_buffer_type();
  1297. #elif defined(GGML_USE_CUBLAS)
  1298. buft = ggml_backend_cuda_buffer_type(gpu);
  1299. #elif defined(GGML_USE_VULKAN)
  1300. buft = ggml_backend_vk_buffer_type(gpu);
  1301. #elif defined(GGML_USE_SYCL)
  1302. buft = ggml_backend_sycl_buffer_type(gpu);
  1303. #elif defined(GGML_USE_CLBLAST)
  1304. buft = ggml_backend_opencl_buffer_type();
  1305. #elif defined(GGML_USE_KOMPUTE)
  1306. buft = ggml_backend_kompute_buffer_type(gpu);
  1307. if (buft == nullptr) {
  1308. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  1309. }
  1310. #endif
  1311. if (buft == nullptr) {
  1312. buft = llama_default_buffer_type_cpu(true);
  1313. }
  1314. return buft;
  1315. GGML_UNUSED(gpu);
  1316. }
  1317. static ggml_backend_buffer_type_t llama_default_buffer_type_split(int fallback_gpu, const float * tensor_split) {
  1318. ggml_backend_buffer_type_t buft = nullptr;
  1319. #ifdef GGML_USE_CUBLAS
  1320. if (ggml_backend_cuda_get_device_count() > 1) {
  1321. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  1322. }
  1323. #endif
  1324. if (buft == nullptr) {
  1325. buft = llama_default_buffer_type_offload(fallback_gpu);
  1326. }
  1327. return buft;
  1328. GGML_UNUSED(tensor_split);
  1329. }
  1330. static size_t llama_get_device_count() {
  1331. #if defined(GGML_USE_CUBLAS)
  1332. return ggml_backend_cuda_get_device_count();
  1333. #elif defined(GGML_USE_VULKAN)
  1334. return ggml_backend_vk_get_device_count();
  1335. #else
  1336. return 1;
  1337. #endif
  1338. }
  1339. static size_t llama_get_device_memory(int device) {
  1340. #if defined(GGML_USE_CUBLAS)
  1341. size_t total;
  1342. size_t free;
  1343. ggml_backend_cuda_get_device_memory(device, &total, &free);
  1344. return free;
  1345. #elif defined(GGML_USE_VULKAN)
  1346. size_t total;
  1347. size_t free;
  1348. ggml_backend_vk_get_device_memory(device, &total, &free);
  1349. return free;
  1350. #else
  1351. return 1;
  1352. GGML_UNUSED(device);
  1353. #endif
  1354. }
  1355. //
  1356. // globals
  1357. //
  1358. struct llama_state {
  1359. llama_state() {
  1360. #ifdef GGML_USE_METAL
  1361. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1362. #endif
  1363. }
  1364. // We save the log callback globally
  1365. ggml_log_callback log_callback = llama_log_callback_default;
  1366. void * log_callback_user_data = nullptr;
  1367. };
  1368. static llama_state g_state;
  1369. // available llama models
  1370. enum e_model {
  1371. MODEL_UNKNOWN,
  1372. MODEL_17M,
  1373. MODEL_22M,
  1374. MODEL_33M,
  1375. MODEL_109M,
  1376. MODEL_137M,
  1377. MODEL_335M,
  1378. MODEL_0_5B,
  1379. MODEL_1B,
  1380. MODEL_2B,
  1381. MODEL_3B,
  1382. MODEL_4B,
  1383. MODEL_7B,
  1384. MODEL_8B,
  1385. MODEL_13B,
  1386. MODEL_14B,
  1387. MODEL_15B,
  1388. MODEL_20B,
  1389. MODEL_30B,
  1390. MODEL_34B,
  1391. MODEL_40B,
  1392. MODEL_65B,
  1393. MODEL_70B,
  1394. MODEL_SMALL,
  1395. MODEL_MEDIUM,
  1396. MODEL_LARGE,
  1397. MODEL_XL,
  1398. };
  1399. static const size_t kiB = 1024;
  1400. static const size_t MiB = 1024*kiB;
  1401. static const size_t GiB = 1024*MiB;
  1402. struct llama_hparams {
  1403. bool vocab_only;
  1404. bool rope_finetuned;
  1405. uint32_t n_vocab;
  1406. uint32_t n_ctx_train; // context size the model was trained on
  1407. uint32_t n_embd;
  1408. uint32_t n_head;
  1409. uint32_t n_head_kv;
  1410. uint32_t n_layer;
  1411. uint32_t n_rot;
  1412. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1413. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1414. uint32_t n_ff;
  1415. uint32_t n_expert = 0;
  1416. uint32_t n_expert_used = 0;
  1417. uint32_t n_vocab_type = 0; // for BERT-style token types
  1418. float f_norm_eps;
  1419. float f_norm_rms_eps;
  1420. float rope_freq_base_train;
  1421. float rope_freq_scale_train;
  1422. uint32_t n_yarn_orig_ctx;
  1423. int32_t rope_scaling_type_train;
  1424. float f_clamp_kqv = 0.0f;
  1425. float f_max_alibi_bias = 0.0f;
  1426. bool causal_attn = true;
  1427. bool need_kq_pos = false;
  1428. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1429. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1430. bool operator!=(const llama_hparams & other) const {
  1431. if (this->vocab_only != other.vocab_only) return true;
  1432. if (this->n_vocab != other.n_vocab) return true;
  1433. if (this->n_ctx_train != other.n_ctx_train) return true;
  1434. if (this->n_embd != other.n_embd) return true;
  1435. if (this->n_head != other.n_head) return true;
  1436. if (this->n_head_kv != other.n_head_kv) return true;
  1437. if (this->n_layer != other.n_layer) return true;
  1438. if (this->n_rot != other.n_rot) return true;
  1439. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1440. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1441. if (this->n_ff != other.n_ff) return true;
  1442. if (this->n_expert != other.n_expert) return true;
  1443. if (this->n_expert_used != other.n_expert_used) return true;
  1444. if (this->rope_finetuned != other.rope_finetuned) return true;
  1445. if (this->n_yarn_orig_ctx != other.n_yarn_orig_ctx) return true;
  1446. const float EPSILON = 1e-9f;
  1447. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1448. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1449. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1450. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1451. return false;
  1452. }
  1453. uint32_t n_gqa() const {
  1454. return n_head/n_head_kv;
  1455. }
  1456. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1457. return n_embd_head_k * n_head_kv;
  1458. }
  1459. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1460. return n_embd_head_v * n_head_kv;
  1461. }
  1462. };
  1463. struct llama_cparams {
  1464. uint32_t n_ctx; // context size used during inference
  1465. uint32_t n_batch;
  1466. uint32_t n_threads; // number of threads to use for generation
  1467. uint32_t n_threads_batch; // number of threads to use for batch processing
  1468. float rope_freq_base;
  1469. float rope_freq_scale;
  1470. uint32_t n_yarn_orig_ctx;
  1471. // These hyperparameters are not exposed in GGUF, because all
  1472. // existing YaRN models use the same values for them.
  1473. float yarn_ext_factor;
  1474. float yarn_attn_factor;
  1475. float yarn_beta_fast;
  1476. float yarn_beta_slow;
  1477. bool mul_mat_q;
  1478. bool offload_kqv;
  1479. bool do_pooling;
  1480. ggml_backend_sched_eval_callback cb_eval;
  1481. void * cb_eval_user_data;
  1482. };
  1483. struct llama_layer {
  1484. // normalization
  1485. struct ggml_tensor * attn_norm;
  1486. struct ggml_tensor * attn_norm_b;
  1487. struct ggml_tensor * attn_norm_2;
  1488. struct ggml_tensor * attn_norm_2_b;
  1489. struct ggml_tensor * attn_q_norm;
  1490. struct ggml_tensor * attn_q_norm_b;
  1491. struct ggml_tensor * attn_k_norm;
  1492. struct ggml_tensor * attn_k_norm_b;
  1493. struct ggml_tensor * attn_out_norm;
  1494. struct ggml_tensor * attn_out_norm_b;
  1495. // attention
  1496. struct ggml_tensor * wq;
  1497. struct ggml_tensor * wk;
  1498. struct ggml_tensor * wv;
  1499. struct ggml_tensor * wo;
  1500. struct ggml_tensor * wqkv;
  1501. // attention bias
  1502. struct ggml_tensor * bq;
  1503. struct ggml_tensor * bk;
  1504. struct ggml_tensor * bv;
  1505. struct ggml_tensor * bo;
  1506. struct ggml_tensor * bqkv;
  1507. // normalization
  1508. struct ggml_tensor * ffn_norm;
  1509. struct ggml_tensor * ffn_norm_b;
  1510. struct ggml_tensor * layer_out_norm;
  1511. struct ggml_tensor * layer_out_norm_b;
  1512. // ff
  1513. struct ggml_tensor * ffn_gate; // w1
  1514. struct ggml_tensor * ffn_down; // w2
  1515. struct ggml_tensor * ffn_up; // w3
  1516. // ff MoE
  1517. struct ggml_tensor * ffn_gate_inp;
  1518. struct ggml_tensor * ffn_gate_exp[LLAMA_MAX_EXPERTS];
  1519. struct ggml_tensor * ffn_down_exp[LLAMA_MAX_EXPERTS];
  1520. struct ggml_tensor * ffn_up_exp [LLAMA_MAX_EXPERTS];
  1521. // ff bias
  1522. struct ggml_tensor * ffn_down_b; // b2
  1523. struct ggml_tensor * ffn_up_b; // b3
  1524. struct ggml_tensor * ffn_act;
  1525. };
  1526. struct llama_kv_cell {
  1527. llama_pos pos = -1;
  1528. llama_pos delta = 0;
  1529. std::set<llama_seq_id> seq_id;
  1530. bool has_seq_id(const llama_seq_id & id) const {
  1531. return seq_id.find(id) != seq_id.end();
  1532. }
  1533. bool is_empty() const {
  1534. return seq_id.empty();
  1535. }
  1536. bool is_same_seq(const llama_kv_cell & other) const {
  1537. return seq_id == other.seq_id;
  1538. }
  1539. };
  1540. // ring-buffer of cached KV data
  1541. struct llama_kv_cache {
  1542. bool has_shift = false;
  1543. bool do_defrag = false;
  1544. // Note: The value of head isn't only used to optimize searching
  1545. // for a free KV slot. llama_decode_internal also uses it, so it
  1546. // cannot be freely changed after a slot has been allocated.
  1547. uint32_t head = 0;
  1548. uint32_t size = 0;
  1549. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1550. // computed before each graph build
  1551. uint32_t n = 0;
  1552. ggml_type type_k = GGML_TYPE_F16;
  1553. ggml_type type_v = GGML_TYPE_F16;
  1554. std::vector<llama_kv_cell> cells;
  1555. std::vector<struct ggml_tensor *> k_l; // per layer
  1556. std::vector<struct ggml_tensor *> v_l;
  1557. std::vector<struct ggml_context *> ctxs;
  1558. std::vector<ggml_backend_buffer_t> bufs;
  1559. size_t total_size() const {
  1560. size_t size = 0;
  1561. for (ggml_backend_buffer_t buf : bufs) {
  1562. size += ggml_backend_buffer_get_size(buf);
  1563. }
  1564. return size;
  1565. }
  1566. ~llama_kv_cache() {
  1567. for (struct ggml_context * ctx : ctxs) {
  1568. ggml_free(ctx);
  1569. }
  1570. for (ggml_backend_buffer_t buf : bufs) {
  1571. ggml_backend_buffer_free(buf);
  1572. }
  1573. }
  1574. };
  1575. struct llama_vocab {
  1576. using id = int32_t;
  1577. using token = std::string;
  1578. using ttype = llama_token_type;
  1579. struct token_data {
  1580. token text;
  1581. float score;
  1582. ttype type;
  1583. };
  1584. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1585. std::unordered_map<token, id> token_to_id;
  1586. std::vector<token_data> id_to_token;
  1587. std::unordered_map<token, id> special_tokens_cache;
  1588. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1589. // default LLaMA special tokens
  1590. id special_bos_id = 1;
  1591. id special_eos_id = 2;
  1592. id special_unk_id = 0;
  1593. id special_sep_id = -1;
  1594. id special_pad_id = -1;
  1595. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1596. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1597. id linefeed_id = 13;
  1598. id special_prefix_id = 32007;
  1599. id special_middle_id = 32009;
  1600. id special_suffix_id = 32008;
  1601. id special_eot_id = 32010;
  1602. bool add_space_prefix = true;
  1603. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1604. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1605. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1606. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1607. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1608. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1609. if (it == bpe_ranks.end()) {
  1610. return -1;
  1611. }
  1612. return it->second;
  1613. }
  1614. };
  1615. struct llama_model {
  1616. e_model type = MODEL_UNKNOWN;
  1617. llm_arch arch = LLM_ARCH_UNKNOWN;
  1618. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1619. std::string name = "n/a";
  1620. llama_hparams hparams = {};
  1621. llama_vocab vocab;
  1622. struct ggml_tensor * tok_embd;
  1623. struct ggml_tensor * type_embd;
  1624. struct ggml_tensor * pos_embd;
  1625. struct ggml_tensor * tok_norm;
  1626. struct ggml_tensor * tok_norm_b;
  1627. struct ggml_tensor * output_norm;
  1628. struct ggml_tensor * output_norm_b;
  1629. struct ggml_tensor * output;
  1630. struct ggml_tensor * output_b;
  1631. std::vector<llama_layer> layers;
  1632. llama_split_mode split_mode;
  1633. int main_gpu;
  1634. int n_gpu_layers;
  1635. // gguf metadata
  1636. std::unordered_map<std::string, std::string> gguf_kv;
  1637. // layer -> buffer type mapping
  1638. struct layer_buft {
  1639. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  1640. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  1641. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  1642. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  1643. ggml_backend_buffer_type_t buft; // everything else
  1644. };
  1645. layer_buft buft_input;
  1646. layer_buft buft_output;
  1647. std::vector<layer_buft> buft_layer;
  1648. // contexts where the model tensors metadata is stored
  1649. std::vector<struct ggml_context *> ctxs;
  1650. // the model memory buffers for the tensor data
  1651. std::vector<ggml_backend_buffer_t> bufs;
  1652. // model memory mapped file
  1653. std::unique_ptr<llama_mmap> mapping;
  1654. // objects representing data potentially being locked in memory
  1655. std::vector<std::unique_ptr<llama_mlock>> mlock_bufs;
  1656. llama_mlock mlock_mmap;
  1657. // for quantize-stats only
  1658. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  1659. int64_t t_load_us = 0;
  1660. int64_t t_start_us = 0;
  1661. ~llama_model() {
  1662. for (struct ggml_context * ctx : ctxs) {
  1663. ggml_free(ctx);
  1664. }
  1665. for (ggml_backend_buffer_t buf : bufs) {
  1666. ggml_backend_buffer_free(buf);
  1667. }
  1668. }
  1669. };
  1670. struct llama_context {
  1671. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  1672. ~llama_context() {
  1673. ggml_backend_sched_free(sched);
  1674. for (ggml_backend_t backend : backends) {
  1675. ggml_backend_free(backend);
  1676. }
  1677. #ifdef GGML_USE_VULKAN
  1678. ggml_vk_free_cpu_assist();
  1679. #endif
  1680. ggml_backend_buffer_free(buf_input);
  1681. ggml_free(ctx_input);
  1682. }
  1683. llama_cparams cparams;
  1684. std::vector<ggml_backend_t> backends;
  1685. #ifdef GGML_USE_METAL
  1686. ggml_backend_t backend_metal = nullptr;
  1687. #endif
  1688. ggml_backend_t backend_cpu = nullptr;
  1689. const llama_model & model;
  1690. // key + value cache for the self attention
  1691. struct llama_kv_cache kv_self;
  1692. std::mt19937 rng;
  1693. bool has_evaluated_once = false;
  1694. int64_t t_start_us;
  1695. int64_t t_load_us;
  1696. int64_t t_sample_us = 0;
  1697. int64_t t_p_eval_us = 0;
  1698. int64_t t_eval_us = 0;
  1699. int32_t n_sample = 0; // number of tokens sampled
  1700. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  1701. int32_t n_eval = 0; // number of eval calls
  1702. // decode output (2-dimensional array: [n_tokens][n_vocab])
  1703. std::vector<float> logits;
  1704. #ifndef NDEBUG
  1705. // guard against access to unset logits
  1706. std::vector<bool> logits_valid;
  1707. #endif
  1708. bool logits_all = false;
  1709. // input embedding (1-dimensional array: [n_embd])
  1710. std::vector<float> embedding;
  1711. // memory buffers used to evaluate the model
  1712. std::vector<uint8_t> buf_compute_meta;
  1713. ggml_backend_sched_t sched = nullptr;
  1714. // input tensors
  1715. ggml_backend_buffer_t buf_input = nullptr;
  1716. ggml_context * ctx_input = nullptr;
  1717. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  1718. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  1719. struct ggml_tensor * inp_pos; // I32 [n_batch]
  1720. struct ggml_tensor * inp_KQ_mask; // F32 [n_ctx, n_batch]
  1721. struct ggml_tensor * inp_KQ_pos; // F32 [n_ctx]
  1722. struct ggml_tensor * inp_K_shift; // I32 [n_ctx]
  1723. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  1724. struct ggml_tensor * inp_cls; // I32 [n_batch]
  1725. #ifdef GGML_USE_MPI
  1726. ggml_mpi_context * ctx_mpi = NULL;
  1727. #endif
  1728. };
  1729. //
  1730. // kv cache helpers
  1731. //
  1732. static bool llama_kv_cache_init(
  1733. struct llama_kv_cache & cache,
  1734. const llama_model & model,
  1735. ggml_type type_k,
  1736. ggml_type type_v,
  1737. uint32_t n_ctx,
  1738. bool offload) {
  1739. const struct llama_hparams & hparams = model.hparams;
  1740. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  1741. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  1742. const int64_t n_layer = hparams.n_layer;
  1743. cache.has_shift = false;
  1744. cache.head = 0;
  1745. cache.size = n_ctx;
  1746. cache.used = 0;
  1747. cache.type_k = type_k;
  1748. cache.type_v = type_v;
  1749. cache.cells.clear();
  1750. cache.cells.resize(n_ctx);
  1751. #ifdef GGML_USE_CLBLAST
  1752. offload = false;
  1753. #endif
  1754. // count used buffer types
  1755. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  1756. if (offload) {
  1757. for (int64_t i = 0; i < n_layer; ++i) {
  1758. buft_layer_count[model.buft_layer[i].buft]++;
  1759. }
  1760. } else {
  1761. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  1762. }
  1763. // create a context for each buffer type
  1764. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  1765. for (auto & it : buft_layer_count) {
  1766. int n_layers = it.second;
  1767. struct ggml_init_params params = {
  1768. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  1769. /*.mem_buffer =*/ NULL,
  1770. /*.no_alloc =*/ true,
  1771. };
  1772. ggml_context * ctx = ggml_init(params);
  1773. if (!ctx) {
  1774. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  1775. return false;
  1776. }
  1777. ctx_map[it.first] = ctx;
  1778. cache.ctxs.push_back(ctx);
  1779. }
  1780. cache.k_l.reserve(n_layer);
  1781. cache.v_l.reserve(n_layer);
  1782. for (int i = 0; i < (int) n_layer; i++) {
  1783. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  1784. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*n_ctx);
  1785. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*n_ctx);
  1786. ggml_format_name(k, "cache_k_l%d", i);
  1787. ggml_format_name(v, "cache_v_l%d", i);
  1788. cache.k_l.push_back(k);
  1789. cache.v_l.push_back(v);
  1790. }
  1791. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  1792. for (auto it : ctx_map) {
  1793. ggml_backend_buffer_type_t buft = it.first;
  1794. ggml_context * ctx = it.second;
  1795. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  1796. if (!buf) {
  1797. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  1798. return false;
  1799. }
  1800. ggml_backend_buffer_clear(buf, 0);
  1801. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  1802. cache.bufs.push_back(buf);
  1803. }
  1804. return true;
  1805. }
  1806. // find an empty slot of size "n_tokens" in the cache
  1807. // updates the cache head
  1808. // Note: On success, it's important that cache.head points
  1809. // to the first cell of the slot.
  1810. static bool llama_kv_cache_find_slot(
  1811. struct llama_kv_cache & cache,
  1812. const struct llama_batch & batch) {
  1813. const uint32_t n_ctx = cache.size;
  1814. const uint32_t n_tokens = batch.n_tokens;
  1815. if (n_tokens > n_ctx) {
  1816. LLAMA_LOG_ERROR("%s: n_tokens=%d > n_ctx=%d\n", __func__, n_tokens, n_ctx);
  1817. return false;
  1818. }
  1819. uint32_t n_tested = 0;
  1820. while (true) {
  1821. if (cache.head + n_tokens > n_ctx) {
  1822. n_tested += n_ctx - cache.head;
  1823. cache.head = 0;
  1824. continue;
  1825. }
  1826. bool found = true;
  1827. for (uint32_t i = 0; i < n_tokens; i++) {
  1828. if (cache.cells[cache.head + i].pos >= 0) {
  1829. found = false;
  1830. cache.head += i + 1;
  1831. n_tested += i + 1;
  1832. break;
  1833. }
  1834. }
  1835. if (found) {
  1836. break;
  1837. }
  1838. if (n_tested >= n_ctx) {
  1839. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  1840. return false;
  1841. }
  1842. }
  1843. for (uint32_t i = 0; i < n_tokens; i++) {
  1844. cache.cells[cache.head + i].pos = batch.pos[i];
  1845. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  1846. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  1847. }
  1848. }
  1849. cache.used += n_tokens;
  1850. return true;
  1851. }
  1852. // find how many cells are currently in use
  1853. static int32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  1854. for (uint32_t i = cache.size - 1; i > 0; --i) {
  1855. if (cache.cells[i].pos >= 0 && !cache.cells[i].is_empty()) {
  1856. return i + 1;
  1857. }
  1858. }
  1859. return 0;
  1860. }
  1861. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  1862. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  1863. cache.cells[i].pos = -1;
  1864. cache.cells[i].seq_id.clear();
  1865. }
  1866. cache.head = 0;
  1867. cache.used = 0;
  1868. }
  1869. static void llama_kv_cache_seq_rm(
  1870. struct llama_kv_cache & cache,
  1871. llama_seq_id seq_id,
  1872. llama_pos p0,
  1873. llama_pos p1) {
  1874. uint32_t new_head = cache.size;
  1875. if (p0 < 0) p0 = 0;
  1876. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1877. for (uint32_t i = 0; i < cache.size; ++i) {
  1878. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1879. if (seq_id < 0) {
  1880. cache.cells[i].seq_id.clear();
  1881. } else if (cache.cells[i].has_seq_id(seq_id)) {
  1882. cache.cells[i].seq_id.erase(seq_id);
  1883. } else {
  1884. continue;
  1885. }
  1886. if (cache.cells[i].is_empty()) {
  1887. // keep count of the number of used cells
  1888. if (cache.cells[i].pos >= 0) cache.used--;
  1889. cache.cells[i].pos = -1;
  1890. if (new_head == cache.size) new_head = i;
  1891. }
  1892. }
  1893. }
  1894. // If we freed up a slot, set head to it so searching can start there.
  1895. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  1896. }
  1897. static void llama_kv_cache_seq_cp(
  1898. struct llama_kv_cache & cache,
  1899. llama_seq_id seq_id_src,
  1900. llama_seq_id seq_id_dst,
  1901. llama_pos p0,
  1902. llama_pos p1) {
  1903. if (p0 < 0) p0 = 0;
  1904. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1905. cache.head = 0;
  1906. for (uint32_t i = 0; i < cache.size; ++i) {
  1907. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1908. cache.cells[i].seq_id.insert(seq_id_dst);
  1909. }
  1910. }
  1911. }
  1912. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  1913. uint32_t new_head = cache.size;
  1914. for (uint32_t i = 0; i < cache.size; ++i) {
  1915. if (!cache.cells[i].has_seq_id(seq_id)) {
  1916. if (cache.cells[i].pos >= 0) cache.used--;
  1917. cache.cells[i].pos = -1;
  1918. cache.cells[i].seq_id.clear();
  1919. if (new_head == cache.size) new_head = i;
  1920. } else {
  1921. cache.cells[i].seq_id.clear();
  1922. cache.cells[i].seq_id.insert(seq_id);
  1923. }
  1924. }
  1925. // If we freed up a slot, set head to it so searching can start there.
  1926. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  1927. }
  1928. static void llama_kv_cache_seq_add(
  1929. struct llama_kv_cache & cache,
  1930. llama_seq_id seq_id,
  1931. llama_pos p0,
  1932. llama_pos p1,
  1933. llama_pos delta) {
  1934. uint32_t new_head = cache.size;
  1935. if (p0 < 0) p0 = 0;
  1936. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1937. for (uint32_t i = 0; i < cache.size; ++i) {
  1938. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1939. cache.has_shift = true;
  1940. cache.cells[i].pos += delta;
  1941. cache.cells[i].delta += delta;
  1942. if (cache.cells[i].pos < 0) {
  1943. if (!cache.cells[i].is_empty()) {
  1944. cache.used--;
  1945. }
  1946. cache.cells[i].pos = -1;
  1947. cache.cells[i].seq_id.clear();
  1948. if (new_head == cache.size) {
  1949. new_head = i;
  1950. }
  1951. }
  1952. }
  1953. }
  1954. // If we freed up a slot, set head to it so searching can start there.
  1955. // Otherwise we just start the next search from the beginning.
  1956. cache.head = new_head != cache.size ? new_head : 0;
  1957. }
  1958. static void llama_kv_cache_seq_div(
  1959. struct llama_kv_cache & cache,
  1960. llama_seq_id seq_id,
  1961. llama_pos p0,
  1962. llama_pos p1,
  1963. int d) {
  1964. if (p0 < 0) p0 = 0;
  1965. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  1966. for (uint32_t i = 0; i < cache.size; ++i) {
  1967. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  1968. cache.has_shift = true;
  1969. {
  1970. llama_pos p_old = cache.cells[i].pos;
  1971. cache.cells[i].pos /= d;
  1972. cache.cells[i].delta += cache.cells[i].pos - p_old;
  1973. }
  1974. }
  1975. }
  1976. }
  1977. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  1978. llama_pos result = 0;
  1979. for (uint32_t i = 0; i < cache.size; ++i) {
  1980. if (cache.cells[i].has_seq_id(seq_id)) {
  1981. result = std::max(result, cache.cells[i].pos);
  1982. }
  1983. }
  1984. return result;
  1985. }
  1986. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  1987. cache.do_defrag = true;
  1988. }
  1989. //
  1990. // model loading and saving
  1991. //
  1992. enum llama_fver {
  1993. GGUF_FILE_VERSION_V1 = 1,
  1994. GGUF_FILE_VERSION_V2 = 2,
  1995. GGUF_FILE_VERSION_V3 = 3,
  1996. };
  1997. static const char * llama_file_version_name(llama_fver version) {
  1998. switch (version) {
  1999. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2000. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2001. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2002. }
  2003. return "unknown";
  2004. }
  2005. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2006. char buf[256];
  2007. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2008. for (size_t i = 1; i < ne.size(); i++) {
  2009. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2010. }
  2011. return buf;
  2012. }
  2013. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2014. char buf[256];
  2015. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2016. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2017. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2018. }
  2019. return buf;
  2020. }
  2021. namespace GGUFMeta {
  2022. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2023. struct GKV_Base_Type {
  2024. static constexpr gguf_type gt = gt_;
  2025. static T getter(const gguf_context * ctx, const int kid) {
  2026. return gfun(ctx, kid);
  2027. }
  2028. };
  2029. template<typename T> struct GKV_Base;
  2030. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2031. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2032. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2033. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2034. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2035. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2036. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2037. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2038. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2039. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2040. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2041. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2042. template<> struct GKV_Base<std::string> {
  2043. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2044. static std::string getter(const gguf_context * ctx, const int kid) {
  2045. return gguf_get_val_str(ctx, kid);
  2046. }
  2047. };
  2048. struct ArrayInfo {
  2049. const gguf_type gt;
  2050. const size_t length;
  2051. const void * data;
  2052. };
  2053. template<> struct GKV_Base<ArrayInfo> {
  2054. public:
  2055. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2056. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2057. return ArrayInfo {
  2058. gguf_get_arr_type(ctx, k),
  2059. size_t(gguf_get_arr_n(ctx, k)),
  2060. gguf_get_arr_data(ctx, k),
  2061. };
  2062. }
  2063. };
  2064. template<typename T>
  2065. class GKV : public GKV_Base<T> {
  2066. GKV() = delete;
  2067. public:
  2068. static T get_kv(const gguf_context * ctx, const int k) {
  2069. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2070. if (kt != GKV::gt) {
  2071. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2072. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2073. }
  2074. return GKV::getter(ctx, k);
  2075. }
  2076. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2077. switch (ty) {
  2078. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2079. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2080. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2081. }
  2082. return "unknown";
  2083. }
  2084. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2085. if (!ovrd) { return false; }
  2086. if (ovrd->tag == expected_type) {
  2087. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2088. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2089. switch (ovrd->tag) {
  2090. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2091. LLAMA_LOG_INFO("%s\n", ovrd->bool_value ? "true" : "false");
  2092. } break;
  2093. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2094. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->int_value);
  2095. } break;
  2096. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2097. LLAMA_LOG_INFO("%.6f\n", ovrd->float_value);
  2098. } break;
  2099. default:
  2100. // Shouldn't be possible to end up here, but just in case...
  2101. throw std::runtime_error(
  2102. format("Unsupported attempt to override %s type for metadata key %s\n",
  2103. override_type_to_str(ovrd->tag), ovrd->key));
  2104. }
  2105. return true;
  2106. }
  2107. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2108. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2109. return false;
  2110. }
  2111. template<typename OT>
  2112. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2113. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2114. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2115. target = ovrd->bool_value;
  2116. return true;
  2117. }
  2118. return false;
  2119. }
  2120. template<typename OT>
  2121. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2122. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2123. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2124. target = ovrd->int_value;
  2125. return true;
  2126. }
  2127. return false;
  2128. }
  2129. template<typename OT>
  2130. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2131. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2132. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2133. target = ovrd->float_value;
  2134. return true;
  2135. }
  2136. return false;
  2137. }
  2138. template<typename OT>
  2139. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2140. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2141. (void)target;
  2142. (void)ovrd;
  2143. if (!ovrd) { return false; }
  2144. // Currently, we should never end up here so it would be a bug if we do.
  2145. throw std::runtime_error(format("Unsupported attempt to override string type for metadata key %s\n",
  2146. ovrd ? ovrd->key : "NULL"));
  2147. }
  2148. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2149. if (try_override<T>(target, ovrd)) {
  2150. return true;
  2151. }
  2152. if (k < 0) { return false; }
  2153. target = get_kv(ctx, k);
  2154. return true;
  2155. }
  2156. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2157. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2158. }
  2159. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2160. return set(ctx, key.c_str(), target, ovrd);
  2161. }
  2162. };
  2163. }
  2164. struct llama_model_loader {
  2165. int n_kv = 0;
  2166. int n_tensors = 0;
  2167. int n_created = 0;
  2168. int64_t n_elements = 0;
  2169. size_t n_bytes = 0;
  2170. bool use_mmap = false;
  2171. llama_file file;
  2172. llama_ftype ftype;
  2173. llama_fver fver;
  2174. std::unique_ptr<llama_mmap> mapping;
  2175. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2176. struct gguf_context * ctx_gguf = NULL;
  2177. struct ggml_context * ctx_meta = NULL;
  2178. std::string arch_name;
  2179. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2180. llama_model_loader(const std::string & fname, bool use_mmap, const struct llama_model_kv_override * param_overrides_p) : file(fname.c_str(), "rb") {
  2181. int trace = 0;
  2182. if (getenv("LLAMA_TRACE")) {
  2183. trace = atoi(getenv("LLAMA_TRACE"));
  2184. }
  2185. struct gguf_init_params params = {
  2186. /*.no_alloc = */ true,
  2187. /*.ctx = */ &ctx_meta,
  2188. };
  2189. if (param_overrides_p != nullptr) {
  2190. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2191. kv_overrides.insert({std::string(p->key), *p});
  2192. }
  2193. }
  2194. ctx_gguf = gguf_init_from_file(fname.c_str(), params);
  2195. if (!ctx_gguf) {
  2196. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2197. }
  2198. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2199. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2200. n_kv = gguf_get_n_kv(ctx_gguf);
  2201. n_tensors = gguf_get_n_tensors(ctx_gguf);
  2202. fver = (enum llama_fver ) gguf_get_version(ctx_gguf);
  2203. for (int i = 0; i < n_tensors; i++) {
  2204. const char * name = gguf_get_tensor_name(ctx_gguf, i);
  2205. struct ggml_tensor * t = ggml_get_tensor(ctx_meta, name);
  2206. n_elements += ggml_nelements(t);
  2207. n_bytes += ggml_nbytes(t);
  2208. }
  2209. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2210. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2211. // determine file type based on the number of tensors for each quantization and print meta data
  2212. // TODO: make optional
  2213. {
  2214. std::map<enum ggml_type, uint32_t> n_type;
  2215. uint32_t n_type_max = 0;
  2216. enum ggml_type type_max = GGML_TYPE_F32;
  2217. for (int i = 0; i < n_tensors; i++) {
  2218. enum ggml_type type = gguf_get_tensor_type(ctx_gguf, i);
  2219. n_type[type]++;
  2220. if (n_type_max < n_type[type]) {
  2221. n_type_max = n_type[type];
  2222. type_max = type;
  2223. }
  2224. if (trace > 0) {
  2225. struct ggml_tensor * meta = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
  2226. LLAMA_LOG_INFO("%s: - tensor %4d: %32s %-8s [ %s ]\n", __func__, i, ggml_get_name(meta), ggml_type_name(type), llama_format_tensor_shape(meta).c_str());
  2227. }
  2228. }
  2229. switch (type_max) {
  2230. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2231. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2232. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2233. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2234. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2235. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2236. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2237. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2238. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2239. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2240. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2241. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2242. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2243. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2244. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2245. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2246. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2247. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2248. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2249. default:
  2250. {
  2251. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2252. ftype = LLAMA_FTYPE_ALL_F32;
  2253. } break;
  2254. }
  2255. // this is a way to mark that we have "guessed" the file type
  2256. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2257. {
  2258. const int kid = gguf_find_key(ctx_gguf, "general.file_type");
  2259. if (kid >= 0) {
  2260. ftype = (llama_ftype) gguf_get_val_u32(ctx_gguf, kid);
  2261. }
  2262. }
  2263. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2264. for (int i = 0; i < n_kv; i++) {
  2265. const char * name = gguf_get_key(ctx_gguf, i);
  2266. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  2267. const std::string type_name =
  2268. type == GGUF_TYPE_ARRAY
  2269. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx_gguf, i)), gguf_get_arr_n(ctx_gguf, i))
  2270. : gguf_type_name(type);
  2271. std::string value = gguf_kv_to_str(ctx_gguf, i);
  2272. const size_t MAX_VALUE_LEN = 40;
  2273. if (value.size() > MAX_VALUE_LEN) {
  2274. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2275. }
  2276. replace_all(value, "\n", "\\n");
  2277. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2278. }
  2279. // print type counts
  2280. for (auto & kv : n_type) {
  2281. if (kv.second == 0) {
  2282. continue;
  2283. }
  2284. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2285. }
  2286. }
  2287. if (!llama_mmap::SUPPORTED) {
  2288. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2289. use_mmap = false;
  2290. }
  2291. this->use_mmap = use_mmap;
  2292. }
  2293. ~llama_model_loader() {
  2294. if (ctx_gguf) {
  2295. gguf_free(ctx_gguf);
  2296. }
  2297. if (ctx_meta) {
  2298. ggml_free(ctx_meta);
  2299. }
  2300. }
  2301. template<typename T>
  2302. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2303. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2304. const int kid = gguf_find_key(ctx_gguf, key.c_str());
  2305. if (kid < 0) {
  2306. if (required) {
  2307. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2308. }
  2309. return false;
  2310. }
  2311. struct GGUFMeta::ArrayInfo arr_info =
  2312. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx_gguf, kid);
  2313. result = arr_info.length;
  2314. return true;
  2315. }
  2316. template<typename T>
  2317. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2318. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  2319. return get_arr_n(llm_kv(kid), result, required);
  2320. }
  2321. template<typename T>
  2322. bool get_key(const std::string & key, T & result, const bool required = true) {
  2323. auto it = kv_overrides.find(key);
  2324. const struct llama_model_kv_override * override =
  2325. it != kv_overrides.end() ? &it->second : nullptr;
  2326. const bool found = GGUFMeta::GKV<T>::set(ctx_gguf, key, result, override);
  2327. if (required && !found) {
  2328. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  2329. }
  2330. return found;
  2331. }
  2332. template<typename T>
  2333. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  2334. return get_key(llm_kv(kid), result, required);
  2335. }
  2336. std::string get_arch_name() const {
  2337. return arch_name;
  2338. }
  2339. enum llm_arch get_arch() const {
  2340. return llm_kv.arch;
  2341. }
  2342. const char * get_tensor_name(int i) const {
  2343. return gguf_get_tensor_name(ctx_gguf, i);
  2344. }
  2345. struct ggml_tensor * get_tensor_meta(const char * name) const {
  2346. return ggml_get_tensor(ctx_meta, name);
  2347. }
  2348. struct ggml_tensor * get_tensor_meta(int i) const {
  2349. return get_tensor_meta(get_tensor_name(i));
  2350. }
  2351. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, struct ggml_tensor * meta) {
  2352. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, meta);
  2353. ggml_set_name(tensor, ggml_get_name(meta));
  2354. n_created++;
  2355. return tensor;
  2356. }
  2357. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, bool required = true) {
  2358. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, name.c_str());
  2359. if (cur == NULL) {
  2360. if (!required) {
  2361. return NULL;
  2362. }
  2363. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  2364. }
  2365. {
  2366. bool is_ok = true;
  2367. for (size_t i = 0; i < ne.size(); ++i) {
  2368. if (ne[i] != cur->ne[i]) {
  2369. is_ok = false;
  2370. break;
  2371. }
  2372. }
  2373. if (!is_ok) {
  2374. throw std::runtime_error(
  2375. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  2376. __func__, name.c_str(),
  2377. llama_format_tensor_shape(ne).c_str(),
  2378. llama_format_tensor_shape(cur).c_str()));
  2379. }
  2380. }
  2381. return create_tensor_for(ctx, cur);
  2382. }
  2383. void done_getting_tensors() const {
  2384. if (n_created != n_tensors) {
  2385. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  2386. }
  2387. }
  2388. size_t file_offset(const char * name) const {
  2389. const int idx = gguf_find_tensor(ctx_gguf, name);
  2390. if (idx < 0) {
  2391. throw std::runtime_error(format("%s: tensor '%s' not found in the file", __func__, name));
  2392. }
  2393. return gguf_get_data_offset(ctx_gguf) + gguf_get_tensor_offset(ctx_gguf, idx);
  2394. }
  2395. void init_mapping(bool prefetch = true, llama_mlock * lmlock = nullptr) {
  2396. // prefetch the whole file - all the data is needed anyway
  2397. if (use_mmap) {
  2398. mapping.reset(new llama_mmap(&file, prefetch ? -1 : 0, ggml_is_numa()));
  2399. }
  2400. // compute the total size of all tensors for progress reporting
  2401. for (int i = 0; i < gguf_get_n_tensors(ctx_gguf); i++) {
  2402. struct ggml_tensor * cur = ggml_get_tensor(ctx_meta, gguf_get_tensor_name(ctx_gguf, i));
  2403. size_data += ggml_nbytes(cur);
  2404. }
  2405. if (use_mmap && mapping) {
  2406. if (lmlock) {
  2407. lmlock->init(mapping->addr);
  2408. }
  2409. mmap_used_first = mapping->size;
  2410. }
  2411. }
  2412. void get_mapping_range(size_t * first, size_t * last, ggml_context * ctx) const {
  2413. GGML_ASSERT(mapping);
  2414. *first = mapping->size;
  2415. *last = 0;
  2416. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2417. const size_t offs = file_offset(ggml_get_name(tensor));
  2418. *first = std::min(*first, offs);
  2419. *last = std::max(*last, offs + ggml_nbytes(tensor));
  2420. }
  2421. }
  2422. // for backwards compatibility, does not support ggml-backend
  2423. void load_data_for(struct ggml_tensor * cur) const {
  2424. const size_t offs = file_offset(ggml_get_name(cur));
  2425. if (use_mmap && mapping) {
  2426. if (cur->data == nullptr) {
  2427. cur->data = (uint8_t *)mapping->addr + offs;
  2428. } else {
  2429. memcpy(cur->data, (uint8_t *)mapping->addr + offs, ggml_nbytes(cur));
  2430. }
  2431. } else {
  2432. GGML_ASSERT(cur->data != nullptr);
  2433. file.seek(offs, SEEK_SET);
  2434. file.read_raw(cur->data, ggml_nbytes(cur));
  2435. }
  2436. }
  2437. size_t size_done = 0;
  2438. size_t size_data = 0;
  2439. size_t mmap_used_first = -1;
  2440. size_t mmap_used_last = 0;
  2441. // Returns false if cancelled by progress_callback
  2442. bool load_all_data(struct ggml_context * ctx, llama_progress_callback progress_callback, void * progress_callback_user_data, ggml_backend_buffer_t buf_mmap, llama_mlock * lmlock) {
  2443. GGML_ASSERT(size_data != 0 && "call init_mapping() first");
  2444. std::vector<no_init<uint8_t>> read_buf;
  2445. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  2446. if (progress_callback) {
  2447. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  2448. return false;
  2449. }
  2450. }
  2451. const size_t offs = file_offset(ggml_get_name(cur));
  2452. if (use_mmap && mapping) {
  2453. if (buf_mmap && cur->data == nullptr) {
  2454. ggml_backend_tensor_alloc(buf_mmap, cur, (uint8_t *) mapping->addr + offs);
  2455. if (lmlock) {
  2456. lmlock->grow_to(offs + ggml_nbytes(cur));
  2457. }
  2458. mmap_used_first = std::min(mmap_used_first, offs);
  2459. mmap_used_last = std::max(mmap_used_last, offs + ggml_nbytes(cur));
  2460. } else {
  2461. ggml_backend_tensor_set(cur, (uint8_t *) mapping->addr + offs, 0, ggml_nbytes(cur));
  2462. }
  2463. } else {
  2464. if (ggml_backend_buffer_is_host(cur->buffer)) {
  2465. file.seek(offs, SEEK_SET);
  2466. file.read_raw(cur->data, ggml_nbytes(cur));
  2467. } else {
  2468. read_buf.resize(ggml_nbytes(cur));
  2469. file.seek(offs, SEEK_SET);
  2470. file.read_raw(read_buf.data(), ggml_nbytes(cur));
  2471. ggml_backend_tensor_set(cur, read_buf.data(), 0, ggml_nbytes(cur));
  2472. }
  2473. }
  2474. size_done += ggml_nbytes(cur);
  2475. }
  2476. // check if this is the last call and do final cleanup
  2477. if (size_done >= size_data) {
  2478. // unmap offloaded tensors and metadata
  2479. if (use_mmap && mapping) {
  2480. mapping->unmap_fragment(0, mmap_used_first);
  2481. if (mmap_used_last != 0) {
  2482. mapping->unmap_fragment(mmap_used_last, mapping->size);
  2483. }
  2484. }
  2485. if (progress_callback) {
  2486. // Even though the model is done loading, we still honor
  2487. // cancellation since we need to free allocations.
  2488. return progress_callback(1.0f, progress_callback_user_data);
  2489. }
  2490. }
  2491. return true;
  2492. }
  2493. };
  2494. template<>
  2495. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  2496. uint32_t tmp;
  2497. const bool found = get_key(kid, tmp, required);
  2498. result = (enum llama_pooling_type) tmp;
  2499. return found;
  2500. }
  2501. //
  2502. // load LLaMA models
  2503. //
  2504. static const char * llama_model_arch_name(llm_arch arch) {
  2505. auto it = LLM_ARCH_NAMES.find(arch);
  2506. if (it == LLM_ARCH_NAMES.end()) {
  2507. return "unknown";
  2508. }
  2509. return it->second;
  2510. }
  2511. static std::string llama_model_ftype_name(llama_ftype ftype) {
  2512. if (ftype & LLAMA_FTYPE_GUESSED) {
  2513. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  2514. }
  2515. switch (ftype) {
  2516. case LLAMA_FTYPE_ALL_F32: return "all F32";
  2517. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  2518. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  2519. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  2520. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  2521. return "Q4_1, some F16";
  2522. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  2523. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  2524. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  2525. // K-quants
  2526. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  2527. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  2528. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  2529. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  2530. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  2531. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  2532. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  2533. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  2534. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  2535. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  2536. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  2537. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  2538. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  2539. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  2540. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  2541. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  2542. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  2543. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  2544. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  2545. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  2546. default: return "unknown, may not work";
  2547. }
  2548. }
  2549. static const char * llama_model_type_name(e_model type) {
  2550. switch (type) {
  2551. case MODEL_22M: return "22M";
  2552. case MODEL_33M: return "33M";
  2553. case MODEL_109M: return "109M";
  2554. case MODEL_137M: return "137M";
  2555. case MODEL_0_5B: return "0.5B";
  2556. case MODEL_1B: return "1B";
  2557. case MODEL_2B: return "2B";
  2558. case MODEL_3B: return "3B";
  2559. case MODEL_7B: return "7B";
  2560. case MODEL_8B: return "8B";
  2561. case MODEL_13B: return "13B";
  2562. case MODEL_14B: return "14B";
  2563. case MODEL_15B: return "15B";
  2564. case MODEL_20B: return "20B";
  2565. case MODEL_30B: return "30B";
  2566. case MODEL_34B: return "34B";
  2567. case MODEL_40B: return "40B";
  2568. case MODEL_65B: return "65B";
  2569. case MODEL_70B: return "70B";
  2570. case MODEL_SMALL: return "0.1B";
  2571. case MODEL_MEDIUM: return "0.4B";
  2572. case MODEL_LARGE: return "0.8B";
  2573. case MODEL_XL: return "1.5B";
  2574. default: return "?B";
  2575. }
  2576. }
  2577. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  2578. switch (type) {
  2579. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  2580. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  2581. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  2582. default: return "unknown";
  2583. }
  2584. }
  2585. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  2586. model.arch = ml.get_arch();
  2587. if (model.arch == LLM_ARCH_UNKNOWN) {
  2588. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  2589. }
  2590. }
  2591. static void llm_load_hparams(
  2592. llama_model_loader & ml,
  2593. llama_model & model) {
  2594. auto & hparams = model.hparams;
  2595. const gguf_context * ctx = ml.ctx_gguf;
  2596. // get metadata as string
  2597. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  2598. enum gguf_type type = gguf_get_kv_type(ctx, i);
  2599. if (type == GGUF_TYPE_ARRAY) {
  2600. continue;
  2601. }
  2602. const char * name = gguf_get_key(ctx, i);
  2603. const std::string value = gguf_kv_to_str(ctx, i);
  2604. model.gguf_kv.emplace(name, value);
  2605. }
  2606. // get general kv
  2607. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  2608. // get hparams kv
  2609. ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  2610. ml.get_key (LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  2611. ml.get_key (LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  2612. ml.get_key (LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  2613. ml.get_key (LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  2614. ml.get_key (LLM_KV_BLOCK_COUNT, hparams.n_layer);
  2615. ml.get_key (LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  2616. ml.get_key (LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  2617. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  2618. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  2619. if (hparams.n_expert > 0) {
  2620. GGML_ASSERT(hparams.n_expert_used > 0);
  2621. } else {
  2622. GGML_ASSERT(hparams.n_expert_used == 0);
  2623. }
  2624. // n_head_kv is optional, default to n_head
  2625. hparams.n_head_kv = hparams.n_head;
  2626. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  2627. bool rope_finetuned = false;
  2628. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  2629. hparams.rope_finetuned = rope_finetuned;
  2630. hparams.n_yarn_orig_ctx = hparams.n_ctx_train;
  2631. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_yarn_orig_ctx, false);
  2632. // rope_freq_base (optional)
  2633. hparams.rope_freq_base_train = 10000.0f;
  2634. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  2635. std::string rope_scaling("linear");
  2636. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  2637. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  2638. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  2639. // rope_freq_scale (inverse of the kv) is optional
  2640. float ropescale = 0.0f;
  2641. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  2642. // try the old key name
  2643. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  2644. }
  2645. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  2646. // sanity check for n_rot (optional)
  2647. {
  2648. hparams.n_rot = hparams.n_embd / hparams.n_head;
  2649. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  2650. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  2651. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  2652. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  2653. }
  2654. }
  2655. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  2656. // gpt-j n_rot = rotary_dim
  2657. }
  2658. hparams.n_embd_head_k = hparams.n_embd / hparams.n_head;
  2659. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  2660. hparams.n_embd_head_v = hparams.n_embd / hparams.n_head;
  2661. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  2662. // arch-specific KVs
  2663. switch (model.arch) {
  2664. case LLM_ARCH_LLAMA:
  2665. {
  2666. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2667. switch (hparams.n_layer) {
  2668. case 22: model.type = e_model::MODEL_1B; break;
  2669. case 26: model.type = e_model::MODEL_3B; break;
  2670. case 32: model.type = e_model::MODEL_7B; break;
  2671. case 40: model.type = e_model::MODEL_13B; break;
  2672. case 48: model.type = e_model::MODEL_34B; break;
  2673. case 60: model.type = e_model::MODEL_30B; break;
  2674. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  2675. default: model.type = e_model::MODEL_UNKNOWN;
  2676. }
  2677. } break;
  2678. case LLM_ARCH_MINICPM:
  2679. {
  2680. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2681. switch (hparams.n_layer) {
  2682. case 40: model.type = e_model::MODEL_2B; break;
  2683. default: model.type = e_model::MODEL_UNKNOWN;
  2684. }
  2685. } break;
  2686. case LLM_ARCH_FALCON:
  2687. {
  2688. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2689. switch (hparams.n_layer) {
  2690. case 32: model.type = e_model::MODEL_7B; break;
  2691. case 60: model.type = e_model::MODEL_40B; break;
  2692. default: model.type = e_model::MODEL_UNKNOWN;
  2693. }
  2694. } break;
  2695. case LLM_ARCH_BAICHUAN:
  2696. {
  2697. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2698. switch (hparams.n_layer) {
  2699. case 32: model.type = e_model::MODEL_7B; break;
  2700. case 40: model.type = e_model::MODEL_13B; break;
  2701. default: model.type = e_model::MODEL_UNKNOWN;
  2702. }
  2703. if (model.type == e_model::MODEL_13B) {
  2704. // TODO: become GGUF KV parameter
  2705. hparams.f_max_alibi_bias = 8.0f;
  2706. }
  2707. } break;
  2708. case LLM_ARCH_STARCODER:
  2709. {
  2710. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2711. switch (hparams.n_layer) {
  2712. case 24: model.type = e_model::MODEL_1B; break;
  2713. case 36: model.type = e_model::MODEL_3B; break;
  2714. case 42: model.type = e_model::MODEL_7B; break;
  2715. case 40: model.type = e_model::MODEL_15B; break;
  2716. default: model.type = e_model::MODEL_UNKNOWN;
  2717. }
  2718. } break;
  2719. case LLM_ARCH_PERSIMMON:
  2720. {
  2721. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2722. switch (hparams.n_layer) {
  2723. case 36: model.type = e_model::MODEL_8B; break;
  2724. default: model.type = e_model::MODEL_UNKNOWN;
  2725. }
  2726. } break;
  2727. case LLM_ARCH_REFACT:
  2728. {
  2729. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2730. switch (hparams.n_layer) {
  2731. case 32: model.type = e_model::MODEL_1B; break;
  2732. default: model.type = e_model::MODEL_UNKNOWN;
  2733. }
  2734. // TODO: become GGUF KV parameter
  2735. hparams.f_max_alibi_bias = 8.0f;
  2736. } break;
  2737. case LLM_ARCH_BERT:
  2738. {
  2739. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2740. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  2741. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  2742. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  2743. switch (hparams.n_layer) {
  2744. case 3:
  2745. model.type = e_model::MODEL_17M; break; // bge-micro
  2746. case 6:
  2747. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  2748. case 12:
  2749. switch (hparams.n_embd) {
  2750. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  2751. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  2752. } break;
  2753. case 24:
  2754. model.type = e_model::MODEL_335M; break; // bge-large
  2755. }
  2756. } break;
  2757. case LLM_ARCH_NOMIC_BERT:
  2758. {
  2759. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2760. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  2761. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  2762. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  2763. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  2764. model.type = e_model::MODEL_137M;
  2765. }
  2766. } break;
  2767. case LLM_ARCH_BLOOM:
  2768. {
  2769. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2770. switch (hparams.n_layer) {
  2771. case 24: model.type = e_model::MODEL_1B; break;
  2772. case 30:
  2773. switch (hparams.n_embd) {
  2774. case 2560: model.type = e_model::MODEL_3B; break;
  2775. case 4096: model.type = e_model::MODEL_7B; break;
  2776. } break;
  2777. }
  2778. // TODO: become GGUF KV parameter
  2779. hparams.f_max_alibi_bias = 8.0f;
  2780. } break;
  2781. case LLM_ARCH_MPT:
  2782. {
  2783. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2784. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  2785. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  2786. switch (hparams.n_layer) {
  2787. case 32: model.type = e_model::MODEL_7B; break;
  2788. case 48: model.type = e_model::MODEL_30B; break;
  2789. default: model.type = e_model::MODEL_UNKNOWN;
  2790. }
  2791. } break;
  2792. case LLM_ARCH_STABLELM:
  2793. {
  2794. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2795. switch (hparams.n_layer) {
  2796. case 24: model.type = e_model::MODEL_1B; break;
  2797. case 32: model.type = e_model::MODEL_3B; break;
  2798. default: model.type = e_model::MODEL_UNKNOWN;
  2799. }
  2800. } break;
  2801. case LLM_ARCH_QWEN:
  2802. {
  2803. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2804. switch (hparams.n_layer) {
  2805. case 32: model.type = e_model::MODEL_7B; break;
  2806. case 40: model.type = e_model::MODEL_13B; break;
  2807. default: model.type = e_model::MODEL_UNKNOWN;
  2808. }
  2809. } break;
  2810. case LLM_ARCH_QWEN2:
  2811. {
  2812. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2813. switch (hparams.n_layer) {
  2814. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  2815. case 32: model.type = e_model::MODEL_7B; break;
  2816. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  2817. case 80: model.type = e_model::MODEL_70B; break;
  2818. default: model.type = e_model::MODEL_UNKNOWN;
  2819. }
  2820. } break;
  2821. case LLM_ARCH_PHI2:
  2822. {
  2823. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2824. switch (hparams.n_layer) {
  2825. case 24: model.type = e_model::MODEL_1B; break;
  2826. case 32: model.type = e_model::MODEL_3B; break;
  2827. default: model.type = e_model::MODEL_UNKNOWN;
  2828. }
  2829. } break;
  2830. case LLM_ARCH_PLAMO:
  2831. {
  2832. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2833. switch (hparams.n_layer) {
  2834. case 40: model.type = e_model::MODEL_13B; break;
  2835. default: model.type = e_model::MODEL_UNKNOWN;
  2836. }
  2837. } break;
  2838. case LLM_ARCH_GPT2:
  2839. {
  2840. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2841. switch (hparams.n_layer) {
  2842. case 12: model.type = e_model::MODEL_SMALL; break;
  2843. case 24: model.type = e_model::MODEL_MEDIUM; break;
  2844. case 36: model.type = e_model::MODEL_LARGE; break;
  2845. case 48: model.type = e_model::MODEL_XL; break;
  2846. default: model.type = e_model::MODEL_UNKNOWN;
  2847. }
  2848. } break;
  2849. case LLM_ARCH_CODESHELL:
  2850. {
  2851. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2852. switch (hparams.n_layer) {
  2853. case 42: model.type = e_model::MODEL_SMALL; break;
  2854. default: model.type = e_model::MODEL_UNKNOWN;
  2855. }
  2856. } break;
  2857. case LLM_ARCH_ORION:
  2858. {
  2859. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  2860. switch (hparams.n_layer) {
  2861. case 40: model.type = e_model::MODEL_14B; break;
  2862. default: model.type = e_model::MODEL_UNKNOWN;
  2863. }
  2864. } break;
  2865. case LLM_ARCH_INTERNLM2:
  2866. {
  2867. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2868. switch (hparams.n_layer) {
  2869. case 32: model.type = e_model::MODEL_7B; break;
  2870. case 48: model.type = e_model::MODEL_20B; break;
  2871. default: model.type = e_model::MODEL_UNKNOWN;
  2872. }
  2873. } break;
  2874. case LLM_ARCH_GEMMA:
  2875. {
  2876. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  2877. switch (hparams.n_layer) {
  2878. case 18: model.type = e_model::MODEL_2B; break;
  2879. case 28: model.type = e_model::MODEL_7B; break;
  2880. default: model.type = e_model::MODEL_UNKNOWN;
  2881. }
  2882. } break;
  2883. default: (void)0;
  2884. }
  2885. model.ftype = ml.ftype;
  2886. if (hparams.f_max_alibi_bias > 0.0f) {
  2887. hparams.need_kq_pos = true;
  2888. }
  2889. hparams.rope_type = llama_rope_type(&model);
  2890. }
  2891. // TODO: This should probably be in llama.h
  2892. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special = false);
  2893. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  2894. static void llm_load_vocab(
  2895. llama_model_loader & ml,
  2896. llama_model & model) {
  2897. auto & vocab = model.vocab;
  2898. struct gguf_context * ctx = ml.ctx_gguf;
  2899. const auto kv = LLM_KV(model.arch);
  2900. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  2901. if (token_idx == -1) {
  2902. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  2903. }
  2904. const float * scores = nullptr;
  2905. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  2906. if (score_idx != -1) {
  2907. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  2908. }
  2909. const int * toktypes = nullptr;
  2910. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  2911. if (toktype_idx != -1) {
  2912. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  2913. }
  2914. // determine vocab type
  2915. {
  2916. std::string tokenizer_name;
  2917. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_name);
  2918. if (tokenizer_name == "llama") {
  2919. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  2920. // default special tokens
  2921. vocab.special_bos_id = 1;
  2922. vocab.special_eos_id = 2;
  2923. vocab.special_unk_id = 0;
  2924. vocab.special_sep_id = -1;
  2925. vocab.special_pad_id = -1;
  2926. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  2927. if (add_space_prefix_keyidx != -1) {
  2928. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  2929. } // The default value of add_space_prefix is true.
  2930. } else if (tokenizer_name == "gpt2") {
  2931. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  2932. // read bpe merges and populate bpe ranks
  2933. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  2934. if (merges_keyidx == -1) {
  2935. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  2936. }
  2937. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  2938. for (int i = 0; i < n_merges; i++) {
  2939. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  2940. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  2941. std::string first;
  2942. std::string second;
  2943. const size_t pos = word.find(' ', 1);
  2944. if (pos != std::string::npos) {
  2945. first = word.substr(0, pos);
  2946. second = word.substr(pos + 1);
  2947. }
  2948. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  2949. }
  2950. // default special tokens
  2951. vocab.special_bos_id = 11;
  2952. vocab.special_eos_id = 11;
  2953. vocab.special_unk_id = -1;
  2954. vocab.special_sep_id = -1;
  2955. vocab.special_pad_id = -1;
  2956. } else if (tokenizer_name == "bert") {
  2957. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  2958. // default special tokens
  2959. vocab.special_bos_id = 101;
  2960. vocab.special_eos_id = 102;
  2961. vocab.special_unk_id = 100;
  2962. vocab.special_sep_id = -1;
  2963. vocab.special_pad_id = -1;
  2964. vocab.add_space_prefix = false;
  2965. } else {
  2966. LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_name.c_str());
  2967. LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
  2968. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  2969. }
  2970. }
  2971. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  2972. vocab.id_to_token.resize(n_vocab);
  2973. for (uint32_t i = 0; i < n_vocab; i++) {
  2974. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  2975. GGML_ASSERT(codepoints_from_utf8(word).size() > 0);
  2976. vocab.token_to_id[word] = i;
  2977. auto & token_data = vocab.id_to_token[i];
  2978. token_data.text = std::move(word);
  2979. token_data.score = scores ? scores[i] : 0.0f;
  2980. token_data.type = toktypes ? (llama_token_type) toktypes[i] : LLAMA_TOKEN_TYPE_NORMAL;
  2981. }
  2982. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  2983. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  2984. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  2985. try {
  2986. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  2987. } catch (const std::exception & e) {
  2988. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  2989. vocab.linefeed_id = vocab.special_pad_id;
  2990. }
  2991. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  2992. vocab.linefeed_id = vocab.special_pad_id;
  2993. } else {
  2994. const std::vector<int> ids = llama_tokenize_internal(vocab, "\u010A", false);
  2995. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  2996. vocab.linefeed_id = ids[0];
  2997. }
  2998. // special tokens
  2999. {
  3000. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  3001. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  3002. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  3003. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  3004. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  3005. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  3006. };
  3007. for (const auto & it : special_token_types) {
  3008. const std::string & key = kv(std::get<0>(it));
  3009. int32_t & id = std::get<1>(it);
  3010. uint32_t new_id;
  3011. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  3012. continue;
  3013. }
  3014. if (new_id >= vocab.id_to_token.size()) {
  3015. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  3016. __func__, key.c_str(), new_id, id);
  3017. } else {
  3018. id = new_id;
  3019. }
  3020. }
  3021. // Handle add_bos_token and add_eos_token
  3022. {
  3023. bool temp = true;
  3024. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  3025. vocab.special_add_bos = int(temp);
  3026. }
  3027. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  3028. vocab.special_add_eos = int(temp);
  3029. }
  3030. }
  3031. }
  3032. // build special tokens cache
  3033. {
  3034. // TODO: It is unclear (to me) at this point, whether special tokes are guaranteed to be of a deterministic type,
  3035. // and will always be correctly labeled in 'added_tokens.json' etc.
  3036. // The assumption is, since special tokens aren't meant to be exposed to end user, they are designed
  3037. // to be unmatchable by the tokenizer, therefore tokens from the vocab, which are unmatchable by the tokenizer
  3038. // are special tokens.
  3039. // From testing, this appears to correlate 1:1 with special tokens.
  3040. //
  3041. // Counting special tokens and verifying in only one direction
  3042. // is sufficient to detect difference in those two sets.
  3043. //
  3044. uint32_t special_tokens_count_by_type = 0;
  3045. uint32_t special_tokens_count_from_verification = 0;
  3046. bool special_tokens_definition_mismatch = false;
  3047. for (const auto & t : vocab.token_to_id) {
  3048. const auto & token = t.first;
  3049. const auto & id = t.second;
  3050. // Count all non-normal tokens in the vocab while iterating
  3051. if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
  3052. special_tokens_count_by_type++;
  3053. }
  3054. // Skip single character tokens
  3055. if (token.length() > 1) {
  3056. bool is_tokenizable = false;
  3057. // Split token string representation in two, in all possible ways
  3058. // and check if both halves can be matched to a valid token
  3059. for (unsigned i = 1; i < token.length();) {
  3060. const auto left = token.substr(0, i);
  3061. const auto right = token.substr(i);
  3062. // check if we didnt partition in the middle of a utf sequence
  3063. auto utf = utf8_len(left.at(left.length() - 1));
  3064. if (utf == 1) {
  3065. if (vocab.token_to_id.find(left) != vocab.token_to_id.end() &&
  3066. vocab.token_to_id.find(right) != vocab.token_to_id.end() ) {
  3067. is_tokenizable = true;
  3068. break;
  3069. }
  3070. i++;
  3071. } else {
  3072. // skip over the rest of multibyte utf sequence
  3073. i += utf - 1;
  3074. }
  3075. }
  3076. if (!is_tokenizable) {
  3077. // Some tokens are multibyte, but they are utf sequences with equivalent text length of 1
  3078. // it's faster to re-filter them here, since there are way less candidates now
  3079. // Calculate a total "utf" length of a token string representation
  3080. size_t utf8_str_len = 0;
  3081. for (unsigned i = 0; i < token.length();) {
  3082. utf8_str_len++;
  3083. i += utf8_len(token.at(i));
  3084. }
  3085. // And skip the ones which are one character
  3086. if (utf8_str_len > 1) {
  3087. // At this point what we have left are special tokens only
  3088. vocab.special_tokens_cache[token] = id;
  3089. // Count manually found special tokens
  3090. special_tokens_count_from_verification++;
  3091. // If this manually found special token is not marked as such, flag a mismatch
  3092. if (vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL) {
  3093. special_tokens_definition_mismatch = true;
  3094. }
  3095. }
  3096. }
  3097. }
  3098. }
  3099. if (special_tokens_definition_mismatch || special_tokens_count_from_verification != special_tokens_count_by_type) {
  3100. LLAMA_LOG_WARN("%s: mismatch in special tokens definition ( %u/%zu vs %u/%zu ).\n",
  3101. __func__,
  3102. special_tokens_count_from_verification, vocab.id_to_token.size(),
  3103. special_tokens_count_by_type, vocab.id_to_token.size()
  3104. );
  3105. } else {
  3106. LLAMA_LOG_INFO("%s: special tokens definition check successful ( %u/%zu ).\n",
  3107. __func__,
  3108. special_tokens_count_from_verification, vocab.id_to_token.size()
  3109. );
  3110. }
  3111. }
  3112. }
  3113. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  3114. const auto & hparams = model.hparams;
  3115. const auto & vocab = model.vocab;
  3116. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  3117. // hparams
  3118. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  3119. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  3120. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  3121. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  3122. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  3123. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  3124. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  3125. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  3126. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  3127. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  3128. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  3129. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  3130. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  3131. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  3132. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  3133. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  3134. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  3135. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  3136. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  3137. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  3138. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  3139. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  3140. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  3141. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  3142. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  3143. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  3144. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  3145. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  3146. LLAMA_LOG_INFO("%s: n_yarn_orig_ctx = %u\n", __func__, hparams.n_yarn_orig_ctx);
  3147. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  3148. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  3149. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  3150. if (ml.n_elements >= 1e12) {
  3151. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  3152. } else if (ml.n_elements >= 1e9) {
  3153. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  3154. } else if (ml.n_elements >= 1e6) {
  3155. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  3156. } else {
  3157. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  3158. }
  3159. if (ml.n_bytes < GiB) {
  3160. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3161. } else {
  3162. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  3163. }
  3164. // general kv
  3165. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  3166. // special tokens
  3167. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  3168. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  3169. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  3170. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  3171. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  3172. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  3173. }
  3174. // Returns false if cancelled by progress_callback
  3175. static bool llm_load_tensors(
  3176. llama_model_loader & ml,
  3177. llama_model & model,
  3178. int n_gpu_layers,
  3179. enum llama_split_mode split_mode,
  3180. int main_gpu,
  3181. const float * tensor_split,
  3182. bool use_mlock,
  3183. llama_progress_callback progress_callback,
  3184. void * progress_callback_user_data) {
  3185. model.t_start_us = ggml_time_us();
  3186. auto & hparams = model.hparams;
  3187. model.split_mode = split_mode;
  3188. model.main_gpu = main_gpu;
  3189. model.n_gpu_layers = n_gpu_layers;
  3190. const int64_t n_layer = hparams.n_layer;
  3191. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  3192. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  3193. model.buft_input = llama_default_buffer_type_cpu(true);
  3194. model.buft_layer.resize(n_layer);
  3195. // assign cpu layers
  3196. for (int64_t i = 0; i < i_gpu_start; ++i) {
  3197. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  3198. }
  3199. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  3200. // calculate the split points
  3201. int device_count = llama_get_device_count();
  3202. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  3203. std::vector<float> splits(device_count);
  3204. if (all_zero) {
  3205. // default split, by free memory
  3206. for (int i = 0; i < device_count; ++i) {
  3207. splits[i] = llama_get_device_memory(i);
  3208. }
  3209. } else {
  3210. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  3211. }
  3212. // sum and normalize the splits to get the split points
  3213. float split_sum = 0.0f;
  3214. for (int i = 0; i < device_count; ++i) {
  3215. split_sum += splits[i];
  3216. splits[i] = split_sum;
  3217. }
  3218. for (int i = 0; i < device_count; ++i) {
  3219. splits[i] /= split_sum;
  3220. }
  3221. // assign the repeating layers to the devices according to the splits
  3222. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  3223. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3224. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  3225. model.buft_layer[i] = llama_default_buffer_type_offload(layer_gpu);
  3226. }
  3227. // assign the output layer
  3228. if (n_gpu_layers > n_layer) {
  3229. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  3230. model.buft_output = llama_default_buffer_type_offload(layer_gpu);
  3231. } else {
  3232. model.buft_output = llama_default_buffer_type_cpu(true);
  3233. }
  3234. } else {
  3235. ggml_backend_buffer_type_t split_buft;
  3236. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  3237. split_buft = llama_default_buffer_type_split(main_gpu, tensor_split);
  3238. } else {
  3239. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  3240. split_buft = llama_default_buffer_type_offload(main_gpu);
  3241. }
  3242. // assign the repeating layers
  3243. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  3244. model.buft_layer[i] = {
  3245. split_buft,
  3246. llama_default_buffer_type_offload(main_gpu)
  3247. };
  3248. }
  3249. // assign the output layer
  3250. if (n_gpu_layers > n_layer) {
  3251. model.buft_output = {
  3252. split_buft,
  3253. llama_default_buffer_type_offload(main_gpu)
  3254. };
  3255. } else {
  3256. model.buft_output = llama_default_buffer_type_cpu(true);
  3257. }
  3258. }
  3259. // count used buffer types
  3260. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  3261. buft_layer_count[model.buft_input.buft]++;
  3262. buft_layer_count[model.buft_input.buft_matrix]++;
  3263. buft_layer_count[model.buft_output.buft]++;
  3264. buft_layer_count[model.buft_output.buft_matrix]++;
  3265. for (int64_t i = 0; i < n_layer; ++i) {
  3266. buft_layer_count[model.buft_layer[i].buft]++;
  3267. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  3268. }
  3269. // create one context per buffer type
  3270. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  3271. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  3272. for (auto & it : buft_layer_count) {
  3273. struct ggml_init_params params = {
  3274. /*.mem_size =*/ ctx_size,
  3275. /*.mem_buffer =*/ NULL,
  3276. /*.no_alloc =*/ true,
  3277. };
  3278. ggml_context * ctx = ggml_init(params);
  3279. if (!ctx) {
  3280. throw std::runtime_error(format("failed to create context"));
  3281. }
  3282. ctx_map[it.first] = ctx;
  3283. model.ctxs.push_back(ctx);
  3284. }
  3285. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  3286. // create tensors for the weights
  3287. {
  3288. const int64_t n_embd = hparams.n_embd;
  3289. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  3290. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  3291. const int64_t n_embd_gqa = n_embd_v_gqa;
  3292. const int64_t n_vocab = hparams.n_vocab;
  3293. const int64_t n_vocab_type = hparams.n_vocab_type;
  3294. const int64_t n_ff = hparams.n_ff;
  3295. GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
  3296. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  3297. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  3298. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  3299. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  3300. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  3301. model.layers.resize(n_layer);
  3302. const auto tn = LLM_TN(model.arch);
  3303. switch (model.arch) {
  3304. case LLM_ARCH_LLAMA:
  3305. case LLM_ARCH_REFACT:
  3306. case LLM_ARCH_MINICPM:
  3307. {
  3308. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3309. // output
  3310. {
  3311. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3312. if (model.arch != LLM_ARCH_MINICPM){
  3313. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3314. }
  3315. }
  3316. for (int i = 0; i < n_layer; ++i) {
  3317. ggml_context * ctx_layer = ctx_for_layer(i);
  3318. ggml_context * ctx_split = ctx_for_layer_split(i);
  3319. auto & layer = model.layers[i];
  3320. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3321. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3322. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3323. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3324. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3325. // optional bias tensors
  3326. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  3327. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  3328. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  3329. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  3330. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3331. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd}, false);
  3332. if (layer.ffn_gate_inp == nullptr) {
  3333. GGML_ASSERT(hparams.n_expert == 0);
  3334. GGML_ASSERT(hparams.n_expert_used == 0);
  3335. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3336. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3337. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3338. } else {
  3339. GGML_ASSERT(hparams.n_expert > 0);
  3340. GGML_ASSERT(hparams.n_expert_used > 0);
  3341. // MoE branch
  3342. for (uint32_t x = 0; x < hparams.n_expert; ++x) {
  3343. layer.ffn_gate_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), {n_embd, n_ff});
  3344. layer.ffn_down_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd});
  3345. layer.ffn_up_exp[x] = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), {n_embd, n_ff});
  3346. }
  3347. }
  3348. }
  3349. } break;
  3350. case LLM_ARCH_BAICHUAN:
  3351. {
  3352. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3353. {
  3354. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3355. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3356. }
  3357. for (int i = 0; i < n_layer; ++i) {
  3358. ggml_context * ctx_layer = ctx_for_layer(i);
  3359. ggml_context * ctx_split = ctx_for_layer_split(i);
  3360. auto & layer = model.layers[i];
  3361. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3362. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3363. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3364. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3365. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3366. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3367. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3368. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3369. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3370. }
  3371. } break;
  3372. case LLM_ARCH_FALCON:
  3373. {
  3374. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3375. // output
  3376. {
  3377. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3378. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3379. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_OUTPUT, "weight").c_str()) >= 0) {
  3380. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3381. } else {
  3382. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // needs to be on GPU
  3383. ml.n_created--; // artificial tensor
  3384. ml.size_data += ggml_nbytes(model.output);
  3385. }
  3386. }
  3387. for (int i = 0; i < n_layer; ++i) {
  3388. ggml_context * ctx_layer = ctx_for_layer(i);
  3389. ggml_context * ctx_split = ctx_for_layer_split(i);
  3390. auto & layer = model.layers[i];
  3391. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3392. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3393. if (gguf_find_tensor(ml.ctx_gguf, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i).c_str()) >= 0) {
  3394. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
  3395. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
  3396. }
  3397. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3398. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3399. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3400. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3401. }
  3402. } break;
  3403. case LLM_ARCH_STARCODER:
  3404. {
  3405. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3406. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  3407. // output
  3408. {
  3409. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3410. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3411. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3412. }
  3413. for (int i = 0; i < n_layer; ++i) {
  3414. ggml_context * ctx_layer = ctx_for_layer(i);
  3415. ggml_context * ctx_split = ctx_for_layer_split(i);
  3416. auto & layer = model.layers[i];
  3417. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3418. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3419. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3420. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  3421. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3422. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3423. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3424. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3425. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3426. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3427. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3428. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3429. }
  3430. } break;
  3431. case LLM_ARCH_PERSIMMON:
  3432. {
  3433. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3434. {
  3435. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3436. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3437. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3438. }
  3439. for (int i = 0; i < n_layer; ++i) {
  3440. ggml_context * ctx_layer = ctx_for_layer(i);
  3441. ggml_context * ctx_split = ctx_for_layer_split(i);
  3442. auto & layer = model.layers[i];
  3443. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3444. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3445. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3446. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  3447. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3448. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3449. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3450. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3451. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3452. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3453. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3454. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3455. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {64});
  3456. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {64});
  3457. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {64});
  3458. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {64});
  3459. }
  3460. } break;
  3461. case LLM_ARCH_BERT:
  3462. case LLM_ARCH_NOMIC_BERT:
  3463. {
  3464. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3465. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  3466. if (model.arch == LLM_ARCH_BERT) {
  3467. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  3468. }
  3469. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  3470. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  3471. for (int i = 0; i < n_layer; ++i) {
  3472. ggml_context * ctx_layer = ctx_for_layer(i);
  3473. ggml_context * ctx_split = ctx_for_layer_split(i);
  3474. auto & layer = model.layers[i];
  3475. if (model.arch == LLM_ARCH_BERT) {
  3476. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3477. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  3478. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3479. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  3480. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3481. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  3482. } else {
  3483. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3484. }
  3485. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3486. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  3487. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  3488. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3489. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3490. if (model.arch == LLM_ARCH_BERT) {
  3491. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3492. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3493. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3494. } else {
  3495. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3496. }
  3497. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  3498. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  3499. }
  3500. } break;
  3501. case LLM_ARCH_BLOOM:
  3502. {
  3503. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3504. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  3505. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  3506. // output
  3507. {
  3508. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3509. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3510. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3511. }
  3512. for (int i = 0; i < n_layer; ++i) {
  3513. ggml_context * ctx_layer = ctx_for_layer(i);
  3514. ggml_context * ctx_split = ctx_for_layer_split(i);
  3515. auto & layer = model.layers[i];
  3516. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3517. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3518. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3519. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  3520. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3521. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3522. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3523. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3524. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3525. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3526. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3527. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3528. }
  3529. } break;
  3530. case LLM_ARCH_MPT:
  3531. {
  3532. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3533. // output
  3534. {
  3535. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3536. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false);
  3537. // same as tok_embd, duplicated to allow offloading
  3538. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3539. ml.n_created--; // artificial tensor
  3540. ml.size_data += ggml_nbytes(model.output);
  3541. }
  3542. for (int i = 0; i < n_layer; ++i) {
  3543. ggml_context * ctx_layer = ctx_for_layer(i);
  3544. ggml_context * ctx_split = ctx_for_layer_split(i);
  3545. auto & layer = model.layers[i];
  3546. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3547. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, false);
  3548. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3549. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  3550. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3551. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, false);
  3552. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3553. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, false);
  3554. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3555. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, false);
  3556. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3557. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, false);
  3558. // AWQ ScaleActivation layer
  3559. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, false);
  3560. }
  3561. } break;
  3562. case LLM_ARCH_STABLELM:
  3563. {
  3564. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3565. // output
  3566. {
  3567. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3568. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3569. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3570. }
  3571. for (int i = 0; i < n_layer; ++i) {
  3572. ggml_context * ctx_layer = ctx_for_layer(i);
  3573. ggml_context * ctx_split = ctx_for_layer_split(i);
  3574. auto & layer = model.layers[i];
  3575. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3576. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3577. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3578. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3579. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3580. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3581. // optional bias tensors, present in Stable LM 2 1.6B
  3582. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false);
  3583. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false);
  3584. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false);
  3585. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3586. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3587. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3588. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3589. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3590. }
  3591. } break;
  3592. case LLM_ARCH_QWEN:
  3593. {
  3594. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3595. // output
  3596. {
  3597. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3598. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3599. }
  3600. for (int i = 0; i < n_layer; ++i) {
  3601. ggml_context * ctx_layer = ctx_for_layer(i);
  3602. ggml_context * ctx_split = ctx_for_layer_split(i);
  3603. auto & layer = model.layers[i];
  3604. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3605. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  3606. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  3607. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3608. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3609. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  3610. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  3611. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  3612. }
  3613. } break;
  3614. case LLM_ARCH_QWEN2:
  3615. {
  3616. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3617. // output
  3618. {
  3619. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3620. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3621. }
  3622. for (int i = 0; i < n_layer; ++i) {
  3623. ggml_context * ctx_layer = ctx_for_layer(i);
  3624. ggml_context * ctx_split = ctx_for_layer_split(i);
  3625. auto & layer = model.layers[i];
  3626. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3627. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3628. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3629. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3630. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3631. // optional bias tensors
  3632. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  3633. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  3634. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  3635. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3636. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3637. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3638. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3639. }
  3640. } break;
  3641. case LLM_ARCH_PHI2:
  3642. {
  3643. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3644. // output
  3645. {
  3646. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3647. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3648. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3649. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  3650. }
  3651. for (int i = 0; i < n_layer; ++i) {
  3652. ggml_context * ctx_layer = ctx_for_layer(i);
  3653. ggml_context * ctx_split = ctx_for_layer_split(i);
  3654. auto & layer = model.layers[i];
  3655. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3656. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3657. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, false);
  3658. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, false);
  3659. if (layer.wqkv == nullptr) {
  3660. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3661. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  3662. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3663. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  3664. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3665. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  3666. }
  3667. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3668. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3669. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3670. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3671. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3672. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3673. }
  3674. } break;
  3675. case LLM_ARCH_PLAMO:
  3676. {
  3677. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3678. // output
  3679. {
  3680. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3681. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3682. }
  3683. for (int i = 0; i < n_layer; ++i) {
  3684. ggml_context * ctx_layer = ctx_for_layer(i);
  3685. ggml_context * ctx_split = ctx_for_layer_split(i);
  3686. auto & layer = model.layers[i];
  3687. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3688. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3689. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3690. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3691. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3692. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3693. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3694. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3695. }
  3696. } break;
  3697. case LLM_ARCH_GPT2:
  3698. {
  3699. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3700. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  3701. // output
  3702. {
  3703. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3704. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3705. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3706. }
  3707. for (int i = 0; i < n_layer; ++i) {
  3708. ggml_context * ctx_layer = ctx_for_layer(i);
  3709. ggml_context * ctx_split = ctx_for_layer_split(i);
  3710. auto & layer = model.layers[i];
  3711. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3712. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3713. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3714. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  3715. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3716. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3717. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3718. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3719. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3720. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3721. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3722. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3723. }
  3724. } break;
  3725. case LLM_ARCH_CODESHELL:
  3726. {
  3727. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3728. // output
  3729. {
  3730. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3731. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3732. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3733. }
  3734. for (int i = 0; i < n_layer; ++i) {
  3735. ggml_context * ctx_layer = ctx_for_layer(i);
  3736. ggml_context * ctx_split = ctx_for_layer_split(i);
  3737. auto & layer = model.layers[i];
  3738. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3739. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3740. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3741. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  3742. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3743. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  3744. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3745. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3746. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  3747. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  3748. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3749. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  3750. }
  3751. } break;
  3752. case LLM_ARCH_ORION:
  3753. {
  3754. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3755. {
  3756. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3757. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  3758. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3759. }
  3760. for (int i = 0; i < n_layer; ++i) {
  3761. ggml_context * ctx_layer = ctx_for_layer(i);
  3762. ggml_context * ctx_split = ctx_for_layer_split(i);
  3763. auto & layer = model.layers[i];
  3764. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3765. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  3766. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3767. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3768. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3769. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3770. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3771. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  3772. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3773. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3774. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3775. }
  3776. } break;
  3777. case LLM_ARCH_INTERNLM2:
  3778. {
  3779. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3780. // output
  3781. {
  3782. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3783. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  3784. }
  3785. for (int i = 0; i < n_layer; ++i) {
  3786. ggml_context * ctx_layer = ctx_for_layer(i);
  3787. ggml_context * ctx_split = ctx_for_layer_split(i);
  3788. auto & layer = model.layers[i];
  3789. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3790. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  3791. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  3792. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  3793. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  3794. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  3795. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3796. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3797. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3798. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3799. }
  3800. } break;
  3801. case LLM_ARCH_GEMMA:
  3802. {
  3803. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  3804. // output
  3805. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  3806. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // same as tok_embd, duplicated to allow offloading
  3807. ml.n_created--; // artificial tensor
  3808. ml.size_data += ggml_nbytes(model.output);
  3809. const int64_t n_ff = hparams.n_ff;
  3810. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  3811. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  3812. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  3813. for (uint32_t i = 0; i < n_layer; ++i) {
  3814. ggml_context * ctx_layer = ctx_for_layer(i);
  3815. ggml_context * ctx_split = ctx_for_layer_split(i);
  3816. auto & layer = model.layers[i];
  3817. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  3818. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  3819. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  3820. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  3821. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  3822. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  3823. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  3824. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  3825. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  3826. }
  3827. } break;
  3828. default:
  3829. throw std::runtime_error("unknown architecture");
  3830. }
  3831. }
  3832. ml.done_getting_tensors();
  3833. ml.init_mapping(true, use_mlock ? &model.mlock_mmap : nullptr);
  3834. // create the backend buffers
  3835. std::vector<std::pair<ggml_context *, ggml_backend_buffer_t>> ctx_bufs;
  3836. for (auto & it : ctx_map) {
  3837. ggml_backend_buffer_type_t buft = it.first;
  3838. ggml_context * ctx = it.second;
  3839. ggml_backend_buffer_t buf = nullptr;
  3840. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  3841. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  3842. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  3843. if (ml.use_mmap && buft == llama_default_buffer_type_cpu(true)) {
  3844. size_t first, last;
  3845. ml.get_mapping_range(&first, &last, ctx);
  3846. buf = ggml_backend_cpu_buffer_from_ptr((char *) ml.mapping->addr + first, last - first);
  3847. }
  3848. #ifdef GGML_USE_METAL
  3849. else if (ml.use_mmap && buft == ggml_backend_metal_buffer_type()) {
  3850. const size_t max_size = ggml_get_max_tensor_size(ctx);
  3851. size_t first, last;
  3852. ml.get_mapping_range(&first, &last, ctx);
  3853. buf = ggml_backend_metal_buffer_from_ptr((char *) ml.mapping->addr + first, last - first, max_size);
  3854. }
  3855. #endif
  3856. else {
  3857. buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  3858. if (buf != nullptr && use_mlock && ggml_backend_buffer_is_host(buf)) {
  3859. model.mlock_bufs.emplace_back(new llama_mlock);
  3860. auto & mlock_buf = model.mlock_bufs.back();
  3861. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  3862. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  3863. }
  3864. }
  3865. if (buf == nullptr) {
  3866. throw std::runtime_error("failed to allocate buffer");
  3867. }
  3868. // indicate that this buffer contains weights
  3869. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  3870. ggml_backend_buffer_set_usage(buf, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  3871. model.bufs.push_back(buf);
  3872. ctx_bufs.emplace_back(ctx, buf);
  3873. }
  3874. if (llama_supports_gpu_offload()) {
  3875. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  3876. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  3877. if (n_gpu_layers > (int) hparams.n_layer) {
  3878. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  3879. }
  3880. const int max_backend_supported_layers = hparams.n_layer + 1;
  3881. const int max_offloadable_layers = hparams.n_layer + 1;
  3882. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  3883. }
  3884. // print memory requirements
  3885. for (ggml_backend_buffer_t buf : model.bufs) {
  3886. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  3887. }
  3888. // populate tensors_by_name
  3889. for (ggml_context * ctx : model.ctxs) {
  3890. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3891. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  3892. }
  3893. }
  3894. // load tensor data
  3895. for (auto & it : ctx_bufs) {
  3896. ggml_context * ctx = it.first;
  3897. ggml_backend_buffer_t buf = it.second;
  3898. if (!ml.load_all_data(ctx, progress_callback, progress_callback_user_data, buf, use_mlock ? &model.mlock_mmap : NULL)) {
  3899. return false;
  3900. }
  3901. }
  3902. model.mapping = std::move(ml.mapping);
  3903. // loading time will be recalculate after the first eval, so
  3904. // we take page faults deferred by mmap() into consideration
  3905. model.t_load_us = ggml_time_us() - model.t_start_us;
  3906. return true;
  3907. }
  3908. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  3909. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  3910. try {
  3911. llama_model_loader ml(fname, params.use_mmap, params.kv_overrides);
  3912. model.hparams.vocab_only = params.vocab_only;
  3913. try {
  3914. llm_load_arch(ml, model);
  3915. } catch(const std::exception & e) {
  3916. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  3917. }
  3918. try {
  3919. llm_load_hparams(ml, model);
  3920. } catch(const std::exception & e) {
  3921. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  3922. }
  3923. try {
  3924. llm_load_vocab(ml, model);
  3925. } catch(const std::exception & e) {
  3926. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  3927. }
  3928. llm_load_print_meta(ml, model);
  3929. if (model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  3930. throw std::runtime_error("vocab size mismatch");
  3931. }
  3932. if (params.vocab_only) {
  3933. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  3934. return 0;
  3935. }
  3936. #ifdef GGML_USE_KOMPUTE
  3937. if (params.n_gpu_layers > 0 && (
  3938. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  3939. || !(
  3940. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  3941. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  3942. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  3943. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  3944. )
  3945. )) {
  3946. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  3947. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  3948. params.n_gpu_layers = 0;
  3949. }
  3950. #endif
  3951. if (!llm_load_tensors(
  3952. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  3953. params.progress_callback, params.progress_callback_user_data
  3954. )) {
  3955. return -2;
  3956. }
  3957. } catch (const std::exception & err) {
  3958. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  3959. return -1;
  3960. }
  3961. return 0;
  3962. }
  3963. //
  3964. // llm_build
  3965. //
  3966. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  3967. enum llm_ffn_op_type {
  3968. LLM_FFN_SILU,
  3969. LLM_FFN_GELU,
  3970. LLM_FFN_RELU,
  3971. LLM_FFN_RELU_SQR,
  3972. };
  3973. enum llm_ffn_gate_type {
  3974. LLM_FFN_SEQ,
  3975. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  3976. };
  3977. enum llm_norm_type {
  3978. LLM_NORM,
  3979. LLM_NORM_RMS,
  3980. };
  3981. static struct ggml_tensor * llm_build_inp_embd(
  3982. struct ggml_context * ctx,
  3983. const llama_hparams & hparams,
  3984. const llama_batch & batch,
  3985. struct ggml_tensor * tok_embd,
  3986. struct ggml_tensor * inp_tokens,
  3987. struct ggml_tensor * inp_embd,
  3988. const llm_build_cb & cb) {
  3989. const int64_t n_embd = hparams.n_embd;
  3990. struct ggml_tensor * inpL;
  3991. if (batch.token) {
  3992. struct ggml_tensor * inp_tokens_v = ggml_view_1d(ctx, inp_tokens, batch.n_tokens, 0);
  3993. cb(inp_tokens, "inp_tokens", -1);
  3994. inpL = ggml_get_rows(ctx, tok_embd, inp_tokens_v);
  3995. } else {
  3996. #ifdef GGML_USE_MPI
  3997. GGML_ASSERT(false && "not implemented");
  3998. #endif
  3999. inpL = ggml_view_2d(ctx, inp_embd, n_embd, batch.n_tokens, inp_embd->nb[1], 0);
  4000. }
  4001. return inpL;
  4002. }
  4003. static void llm_build_kv_store(
  4004. struct ggml_context * ctx,
  4005. const llama_hparams & hparams,
  4006. const llama_kv_cache & kv,
  4007. struct ggml_cgraph * graph,
  4008. struct ggml_tensor * k_cur,
  4009. struct ggml_tensor * v_cur,
  4010. int64_t n_ctx,
  4011. int32_t n_tokens,
  4012. int32_t kv_head,
  4013. const llm_build_cb & cb,
  4014. int64_t il) {
  4015. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4016. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4017. // compute the transposed [n_tokens, n_embd] V matrix
  4018. struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
  4019. //struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
  4020. cb(v_cur_t, "v_cur_t", il);
  4021. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  4022. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  4023. cb(k_cache_view, "k_cache_view", il);
  4024. struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  4025. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  4026. (kv_head)*ggml_element_size(kv.v_l[il]));
  4027. cb(v_cache_view, "v_cache_view", il);
  4028. // important: storing RoPE-ed version of K in the KV cache!
  4029. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  4030. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur_t, v_cache_view));
  4031. }
  4032. static struct ggml_tensor * llm_build_norm(
  4033. struct ggml_context * ctx,
  4034. struct ggml_tensor * cur,
  4035. const llama_hparams & hparams,
  4036. struct ggml_tensor * mw,
  4037. struct ggml_tensor * mb,
  4038. llm_norm_type type,
  4039. const llm_build_cb & cb,
  4040. int il) {
  4041. switch (type) {
  4042. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  4043. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  4044. }
  4045. if (mw || mb) {
  4046. cb(cur, "norm", il);
  4047. }
  4048. if (mw) {
  4049. cur = ggml_mul(ctx, cur, mw);
  4050. if (mb) {
  4051. cb(cur, "norm_w", il);
  4052. }
  4053. }
  4054. if (mb) {
  4055. cur = ggml_add(ctx, cur, mb);
  4056. }
  4057. return cur;
  4058. }
  4059. static struct ggml_tensor * llm_build_ffn(
  4060. struct ggml_context * ctx,
  4061. struct ggml_tensor * cur,
  4062. struct ggml_tensor * up,
  4063. struct ggml_tensor * up_b,
  4064. struct ggml_tensor * gate,
  4065. struct ggml_tensor * gate_b,
  4066. struct ggml_tensor * down,
  4067. struct ggml_tensor * down_b,
  4068. struct ggml_tensor * act_scales,
  4069. llm_ffn_op_type type_op,
  4070. llm_ffn_gate_type type_gate,
  4071. const llm_build_cb & cb,
  4072. int il) {
  4073. struct ggml_tensor * tmp = ggml_mul_mat(ctx, up, cur);
  4074. cb(tmp, "ffn_up", il);
  4075. if (up_b) {
  4076. tmp = ggml_add(ctx, tmp, up_b);
  4077. cb(tmp, "ffn_up_b", il);
  4078. }
  4079. if (gate) {
  4080. switch (type_gate) {
  4081. case LLM_FFN_SEQ:
  4082. {
  4083. cur = ggml_mul_mat(ctx, gate, tmp);
  4084. cb(cur, "ffn_gate", il);
  4085. } break;
  4086. case LLM_FFN_PAR:
  4087. {
  4088. cur = ggml_mul_mat(ctx, gate, cur);
  4089. cb(cur, "ffn_gate", il);
  4090. } break;
  4091. }
  4092. if (gate_b) {
  4093. cur = ggml_add(ctx, cur, gate_b);
  4094. cb(cur, "ffn_gate_b", il);
  4095. }
  4096. } else {
  4097. cur = tmp;
  4098. }
  4099. switch (type_op) {
  4100. case LLM_FFN_SILU:
  4101. {
  4102. cur = ggml_silu(ctx, cur);
  4103. cb(cur, "ffn_silu", il);
  4104. } break;
  4105. case LLM_FFN_GELU:
  4106. {
  4107. cur = ggml_gelu(ctx, cur);
  4108. cb(cur, "ffn_gelu", il);
  4109. if (act_scales != NULL) {
  4110. cur = ggml_div(ctx, cur, act_scales);
  4111. cb(cur, "ffn_act", il);
  4112. }
  4113. } break;
  4114. case LLM_FFN_RELU:
  4115. {
  4116. cur = ggml_relu(ctx, cur);
  4117. cb(cur, "ffn_relu", il);
  4118. } break;
  4119. case LLM_FFN_RELU_SQR:
  4120. {
  4121. cur = ggml_relu(ctx, cur);
  4122. cb(cur, "ffn_relu", il);
  4123. cur = ggml_sqr(ctx, cur);
  4124. cb(cur, "ffn_sqr(relu)", il);
  4125. } break;
  4126. }
  4127. if (type_gate == LLM_FFN_PAR) {
  4128. cur = ggml_mul(ctx, cur, tmp);
  4129. cb(cur, "ffn_gate_par", il);
  4130. }
  4131. cur = ggml_mul_mat(ctx, down, cur);
  4132. if (down_b) {
  4133. cb(cur, "ffn_down", il);
  4134. }
  4135. if (down_b) {
  4136. cur = ggml_add(ctx, cur, down_b);
  4137. }
  4138. return cur;
  4139. }
  4140. // if max_alibi_bias > 0 then apply ALiBi
  4141. static struct ggml_tensor * llm_build_kqv(
  4142. struct ggml_context * ctx,
  4143. const llama_model & model,
  4144. const llama_hparams & hparams,
  4145. const llama_kv_cache & kv,
  4146. struct ggml_cgraph * graph,
  4147. struct ggml_tensor * wo,
  4148. struct ggml_tensor * wo_b,
  4149. struct ggml_tensor * q_cur,
  4150. struct ggml_tensor * kq_mask,
  4151. struct ggml_tensor * kq_pos,
  4152. int64_t n_ctx,
  4153. int32_t n_tokens,
  4154. int32_t n_kv,
  4155. float kq_scale,
  4156. const llm_build_cb & cb,
  4157. int il) {
  4158. const int64_t n_head = hparams.n_head;
  4159. const int64_t n_head_kv = hparams.n_head_kv;
  4160. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  4161. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4162. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  4163. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  4164. cb(q, "q", il);
  4165. struct ggml_tensor * k =
  4166. ggml_view_3d(ctx, kv.k_l[il],
  4167. n_embd_head_k, n_kv, n_head_kv,
  4168. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  4169. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  4170. 0);
  4171. cb(k, "k", il);
  4172. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  4173. cb(kq, "kq", il);
  4174. if (model.arch == LLM_ARCH_PHI2) {
  4175. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  4176. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  4177. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  4178. }
  4179. #if defined(GGML_USE_VULKAN) || defined(GGML_USE_KOMPUTE)
  4180. #pragma message("TODO: ALiBi support in ggml_soft_max_ext is not implemented for Vulkan, and Kompute")
  4181. #pragma message(" Falling back to ggml_alibi(). Will become an error in Mar 2024")
  4182. #pragma message("ref: https://github.com/ggerganov/llama.cpp/pull/5488")
  4183. if (hparams.f_max_alibi_bias > 0.0f) {
  4184. kq = ggml_scale(ctx, kq, kq_scale);
  4185. cb(kq, "kq_scaled", il);
  4186. kq = ggml_alibi(ctx, kq, /*n_past*/ 0, n_head, hparams.f_max_alibi_bias);
  4187. cb(kq, "kq_scaled_alibi", il);
  4188. kq = ggml_add(ctx, kq, kq_mask);
  4189. cb(kq, "kq_masked", il);
  4190. kq = ggml_soft_max(ctx, kq);
  4191. cb(kq, "kq_soft_max", il);
  4192. } else
  4193. #endif
  4194. {
  4195. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_pos, kq_scale, hparams.f_max_alibi_bias);
  4196. cb(kq, "kq_soft_max_ext", il);
  4197. }
  4198. // split cached v into n_head heads
  4199. struct ggml_tensor * v =
  4200. ggml_view_3d(ctx, kv.v_l[il],
  4201. n_kv, n_embd_head_v, n_head_kv,
  4202. ggml_element_size(kv.v_l[il])*n_ctx,
  4203. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  4204. 0);
  4205. cb(v, "v", il);
  4206. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  4207. cb(kqv, "kqv", il);
  4208. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  4209. cb(kqv_merged, "kqv_merged", il);
  4210. struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens);
  4211. cb(cur, "kqv_merged_cont", il);
  4212. ggml_build_forward_expand(graph, cur);
  4213. cur = ggml_mul_mat(ctx, wo, cur);
  4214. if (wo_b) {
  4215. cb(cur, "kqv_wo", il);
  4216. }
  4217. if (wo_b) {
  4218. cur = ggml_add(ctx, cur, wo_b);
  4219. }
  4220. return cur;
  4221. }
  4222. static struct ggml_tensor * llm_build_kv(
  4223. struct ggml_context * ctx,
  4224. const llama_model & model,
  4225. const llama_hparams & hparams,
  4226. const llama_kv_cache & kv,
  4227. struct ggml_cgraph * graph,
  4228. struct ggml_tensor * wo,
  4229. struct ggml_tensor * wo_b,
  4230. struct ggml_tensor * k_cur,
  4231. struct ggml_tensor * v_cur,
  4232. struct ggml_tensor * q_cur,
  4233. struct ggml_tensor * kq_mask,
  4234. struct ggml_tensor * kq_pos,
  4235. int64_t n_ctx,
  4236. int32_t n_tokens,
  4237. int32_t kv_head,
  4238. int32_t n_kv,
  4239. float kq_scale,
  4240. const llm_build_cb & cb,
  4241. int il) {
  4242. // these nodes are added to the graph together so that they are not reordered
  4243. // by doing so, the number of splits in the graph is reduced
  4244. ggml_build_forward_expand(graph, q_cur);
  4245. ggml_build_forward_expand(graph, k_cur);
  4246. ggml_build_forward_expand(graph, v_cur);
  4247. llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il);
  4248. struct ggml_tensor * cur;
  4249. cur = llm_build_kqv(ctx, model, hparams, kv, graph, wo, wo_b,
  4250. q_cur, kq_mask, kq_pos, n_ctx, n_tokens, n_kv, kq_scale, cb, il);
  4251. cb(cur, "kqv_out", il);
  4252. return cur;
  4253. }
  4254. struct llm_build_context {
  4255. const llama_model & model;
  4256. const llama_context & lctx;
  4257. const llama_hparams & hparams;
  4258. const llama_cparams & cparams;
  4259. const llama_batch & batch;
  4260. const llama_kv_cache & kv_self;
  4261. const int64_t n_embd;
  4262. const int64_t n_layer;
  4263. const int64_t n_rot;
  4264. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  4265. const int64_t n_head;
  4266. const int64_t n_head_kv;
  4267. const int64_t n_embd_head_k;
  4268. const int64_t n_embd_k_gqa;
  4269. const int64_t n_embd_head_v;
  4270. const int64_t n_embd_v_gqa;
  4271. const int64_t n_expert;
  4272. const int64_t n_expert_used;
  4273. const float freq_base;
  4274. const float freq_scale;
  4275. const float ext_factor;
  4276. const float attn_factor;
  4277. const float beta_fast;
  4278. const float beta_slow;
  4279. const float norm_eps;
  4280. const float norm_rms_eps;
  4281. const int32_t n_tokens;
  4282. const int32_t n_kv; // size of KV cache to consider (n_kv <= n_ctx)
  4283. const int32_t kv_head; // index of where we store new KV data in the cache
  4284. const int32_t n_orig_ctx;
  4285. const enum llama_pooling_type pooling_type;
  4286. const enum llama_rope_type rope_type;
  4287. const llm_build_cb & cb;
  4288. std::vector<uint8_t> & buf_compute_meta;
  4289. struct ggml_context * ctx0 = nullptr;
  4290. // TODO: consider making the entire interface noexcept
  4291. llm_build_context(
  4292. llama_context & lctx,
  4293. const llama_batch & batch,
  4294. const llm_build_cb & cb,
  4295. bool worst_case) :
  4296. model (lctx.model),
  4297. lctx (lctx),
  4298. hparams (model.hparams),
  4299. cparams (lctx.cparams),
  4300. batch (batch),
  4301. kv_self (lctx.kv_self),
  4302. n_embd (hparams.n_embd),
  4303. n_layer (hparams.n_layer),
  4304. n_rot (hparams.n_rot),
  4305. n_ctx (cparams.n_ctx),
  4306. n_head (hparams.n_head),
  4307. n_head_kv (hparams.n_head_kv),
  4308. n_embd_head_k (hparams.n_embd_head_k),
  4309. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  4310. n_embd_head_v (hparams.n_embd_head_v),
  4311. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  4312. n_expert (hparams.n_expert),
  4313. n_expert_used (hparams.n_expert_used),
  4314. freq_base (cparams.rope_freq_base),
  4315. freq_scale (cparams.rope_freq_scale),
  4316. ext_factor (cparams.yarn_ext_factor),
  4317. attn_factor (cparams.yarn_attn_factor),
  4318. beta_fast (cparams.yarn_beta_fast),
  4319. beta_slow (cparams.yarn_beta_slow),
  4320. norm_eps (hparams.f_norm_eps),
  4321. norm_rms_eps (hparams.f_norm_rms_eps),
  4322. n_tokens (batch.n_tokens),
  4323. n_kv (worst_case ? n_ctx : kv_self.n),
  4324. kv_head (worst_case ? n_ctx - n_tokens : kv_self.head),
  4325. n_orig_ctx (cparams.n_yarn_orig_ctx),
  4326. pooling_type (cparams.do_pooling ? hparams.pooling_type : LLAMA_POOLING_TYPE_NONE),
  4327. rope_type (hparams.rope_type),
  4328. cb (cb),
  4329. buf_compute_meta (lctx.buf_compute_meta) {
  4330. // all initializations should be done in init()
  4331. }
  4332. void init() {
  4333. struct ggml_init_params params = {
  4334. /*.mem_size =*/ buf_compute_meta.size(),
  4335. /*.mem_buffer =*/ buf_compute_meta.data(),
  4336. /*.no_alloc =*/ true,
  4337. };
  4338. ctx0 = ggml_init(params);
  4339. }
  4340. void free() {
  4341. if (ctx0) {
  4342. ggml_free(ctx0);
  4343. ctx0 = nullptr;
  4344. }
  4345. }
  4346. struct ggml_cgraph * build_k_shift() {
  4347. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4348. for (int il = 0; il < n_layer; ++il) {
  4349. struct ggml_tensor * tmp =
  4350. // we rotate only the first n_rot dimensions
  4351. ggml_rope_custom_inplace(ctx0,
  4352. ggml_view_3d(ctx0, kv_self.k_l[il],
  4353. n_embd_head_k, n_head_kv, n_ctx,
  4354. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  4355. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  4356. 0),
  4357. lctx.inp_K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4358. ext_factor, attn_factor, beta_fast, beta_slow);
  4359. cb(tmp, "K_shifted", il);
  4360. ggml_build_forward_expand(gf, tmp);
  4361. }
  4362. return gf;
  4363. }
  4364. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  4365. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4366. for (int i = 0; i < n_kv; ++i) {
  4367. const int id = ids[i];
  4368. if (i == id || id == n_kv) {
  4369. continue;
  4370. }
  4371. int nm = 1;
  4372. while (i + nm < n_kv && (int) ids[i + nm] == id + nm) {
  4373. nm++;
  4374. }
  4375. for (int il = 0; il < n_layer; ++il) {
  4376. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  4377. n_embd_k_gqa, nm,
  4378. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  4379. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  4380. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  4381. n_embd_k_gqa, nm,
  4382. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  4383. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  4384. ggml_tensor * view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  4385. nm, n_embd_v_gqa,
  4386. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  4387. ggml_row_size(kv_self.v_l[il]->type, i));
  4388. ggml_tensor * view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  4389. nm, n_embd_v_gqa,
  4390. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  4391. ggml_row_size(kv_self.v_l[il]->type, id));
  4392. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  4393. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  4394. }
  4395. i += nm - 1;
  4396. }
  4397. return gf;
  4398. }
  4399. struct ggml_cgraph * build_llama() {
  4400. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4401. const int64_t n_embd_head = hparams.n_embd_head_v;
  4402. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4403. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4404. struct ggml_tensor * cur;
  4405. struct ggml_tensor * inpL;
  4406. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  4407. cb(inpL, "inp_embd", -1);
  4408. // inp_pos - contains the positions
  4409. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  4410. cb(inp_pos, "inp_pos", -1);
  4411. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4412. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  4413. cb(KQ_mask, "KQ_mask", -1);
  4414. for (int il = 0; il < n_layer; ++il) {
  4415. struct ggml_tensor * inpSA = inpL;
  4416. // norm
  4417. cur = llm_build_norm(ctx0, inpL, hparams,
  4418. model.layers[il].attn_norm, NULL,
  4419. LLM_NORM_RMS, cb, il);
  4420. cb(cur, "attn_norm", il);
  4421. // self-attention
  4422. {
  4423. // compute Q and K and RoPE them
  4424. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  4425. cb(Qcur, "Qcur", il);
  4426. if (model.layers[il].bq) {
  4427. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  4428. cb(Qcur, "Qcur", il);
  4429. }
  4430. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  4431. cb(Kcur, "Kcur", il);
  4432. if (model.layers[il].bk) {
  4433. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  4434. cb(Kcur, "Kcur", il);
  4435. }
  4436. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  4437. cb(Vcur, "Vcur", il);
  4438. if (model.layers[il].bv) {
  4439. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  4440. cb(Vcur, "Vcur", il);
  4441. }
  4442. Qcur = ggml_rope_custom(
  4443. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  4444. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4445. ext_factor, attn_factor, beta_fast, beta_slow
  4446. );
  4447. cb(Qcur, "Qcur", il);
  4448. Kcur = ggml_rope_custom(
  4449. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  4450. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4451. ext_factor, attn_factor, beta_fast, beta_slow
  4452. );
  4453. cb(Kcur, "Kcur", il);
  4454. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  4455. model.layers[il].wo, model.layers[il].bo,
  4456. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  4457. cb(cur, "kqv_out", il);
  4458. }
  4459. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4460. cb(ffn_inp, "ffn_inp", il);
  4461. // feed-forward network
  4462. if (model.layers[il].ffn_gate_inp == nullptr) {
  4463. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4464. model.layers[il].ffn_norm, NULL,
  4465. LLM_NORM_RMS, cb, il);
  4466. cb(cur, "ffn_norm", il);
  4467. cur = llm_build_ffn(ctx0, cur,
  4468. model.layers[il].ffn_up, NULL,
  4469. model.layers[il].ffn_gate, NULL,
  4470. model.layers[il].ffn_down, NULL,
  4471. NULL,
  4472. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  4473. cb(cur, "ffn_out", il);
  4474. } else {
  4475. // MoE branch
  4476. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4477. model.layers[il].ffn_norm, NULL,
  4478. LLM_NORM_RMS, cb, il);
  4479. cb(cur, "ffn_norm", il);
  4480. ggml_tensor * logits = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp, cur); // [n_tokens, num_experts]
  4481. cb(logits, "ffn_moe_logits", il);
  4482. ggml_tensor * probs = ggml_soft_max(ctx0, logits); // [n_tokens, num_experts]
  4483. cb(probs, "ffn_moe_probs", il);
  4484. // select experts
  4485. ggml_tensor * selected_experts = ggml_top_k(ctx0, probs, n_expert_used); // [n_tokens, num_experts_per_tok]
  4486. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  4487. ggml_tensor * weights = ggml_get_rows(ctx0,
  4488. ggml_reshape_3d(ctx0, probs, 1, n_expert, n_tokens), selected_experts);
  4489. cb(weights, "ffn_moe_weights", il);
  4490. weights = ggml_reshape_2d(ctx0, weights, n_expert_used, n_tokens); // [n_tokens, num_experts_per_tok]
  4491. ggml_tensor * weights_sum = ggml_sum_rows(ctx0, weights);
  4492. cb(weights_sum, "ffn_moe_weights_sum", il);
  4493. weights = ggml_div(ctx0, weights, weights_sum); // [n_tokens, num_experts_per_tok]
  4494. cb(weights, "ffn_moe_weights_norm", il);
  4495. // compute expert outputs
  4496. ggml_tensor * moe_out = nullptr;
  4497. for (int i = 0; i < n_expert_used; ++i) {
  4498. ggml_tensor * cur_expert;
  4499. ggml_tensor * cur_up = ggml_mul_mat_id(ctx0, model.layers[il].ffn_up_exp, n_expert, selected_experts, i, cur);
  4500. cb(cur_up, "ffn_moe_up", il);
  4501. ggml_tensor * cur_gate = ggml_mul_mat_id(ctx0, model.layers[il].ffn_gate_exp, n_expert, selected_experts, i, cur);
  4502. cb(cur_gate, "ffn_moe_gate", il);
  4503. cur_gate = ggml_silu(ctx0, cur_gate);
  4504. cb(cur_gate, "ffn_moe_silu", il);
  4505. cur_expert = ggml_mul(ctx0, cur_up, cur_gate); // [n_tokens, n_embd]
  4506. cb(cur_expert, "ffn_moe_gate_par", il);
  4507. cur_expert = ggml_mul_mat_id(ctx0, model.layers[il].ffn_down_exp, n_expert, selected_experts, i, cur_expert); // [n_tokens, n_embd]
  4508. cb(cur_expert, "ffn_moe_down", il);
  4509. cur_expert = ggml_mul(ctx0, cur_expert,
  4510. ggml_view_2d(ctx0, weights, 1, n_tokens, weights->nb[1], i*weights->nb[0]));
  4511. cb(cur_expert, "ffn_moe_weighted", il);
  4512. if (i == 0) {
  4513. moe_out = cur_expert;
  4514. } else {
  4515. moe_out = ggml_add(ctx0, moe_out, cur_expert);
  4516. cb(moe_out, "ffn_moe_out", il);
  4517. }
  4518. }
  4519. cur = moe_out;
  4520. }
  4521. cur = ggml_add(ctx0, cur, ffn_inp);
  4522. cb(cur, "l_out", il);
  4523. // input for next layer
  4524. inpL = cur;
  4525. }
  4526. cur = inpL;
  4527. cur = llm_build_norm(ctx0, cur, hparams,
  4528. model.output_norm, NULL,
  4529. LLM_NORM_RMS, cb, -1);
  4530. cb(cur, "result_norm", -1);
  4531. // lm_head
  4532. cur = ggml_mul_mat(ctx0, model.output, cur);
  4533. cb(cur, "result_output", -1);
  4534. ggml_build_forward_expand(gf, cur);
  4535. return gf;
  4536. }
  4537. struct ggml_cgraph * build_baichuan() {
  4538. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4539. const int64_t n_embd_head = hparams.n_embd_head_v;
  4540. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4541. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4542. struct ggml_tensor * cur;
  4543. struct ggml_tensor * inpL;
  4544. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  4545. cb(inpL, "inp_embd", -1);
  4546. // inp_pos - contains the positions
  4547. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  4548. cb(inp_pos, "inp_pos", -1);
  4549. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4550. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  4551. cb(KQ_mask, "KQ_mask", -1);
  4552. // positions of the tokens in the KV cache
  4553. struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
  4554. cb(KQ_pos, "KQ_pos", -1);
  4555. for (int il = 0; il < n_layer; ++il) {
  4556. struct ggml_tensor * inpSA = inpL;
  4557. cur = llm_build_norm(ctx0, inpL, hparams,
  4558. model.layers[il].attn_norm, NULL,
  4559. LLM_NORM_RMS, cb, il);
  4560. cb(cur, "attn_norm", il);
  4561. // self-attention
  4562. {
  4563. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  4564. cb(Qcur, "Qcur", il);
  4565. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  4566. cb(Kcur, "Kcur", il);
  4567. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  4568. cb(Vcur, "Vcur", il);
  4569. switch (model.type) {
  4570. case MODEL_7B:
  4571. Qcur = ggml_rope_custom(
  4572. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  4573. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4574. ext_factor, attn_factor, beta_fast, beta_slow
  4575. );
  4576. Kcur = ggml_rope_custom(
  4577. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  4578. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  4579. ext_factor, attn_factor, beta_fast, beta_slow
  4580. );
  4581. break;
  4582. case MODEL_13B:
  4583. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  4584. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  4585. break;
  4586. default:
  4587. GGML_ASSERT(false);
  4588. }
  4589. cb(Qcur, "Qcur", il);
  4590. cb(Kcur, "Kcur", il);
  4591. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  4592. model.layers[il].wo, NULL,
  4593. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  4594. cb(cur, "kqv_out", il);
  4595. }
  4596. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4597. cb(ffn_inp, "ffn_inp", il);
  4598. // feed-forward network
  4599. {
  4600. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4601. model.layers[il].ffn_norm, NULL,
  4602. LLM_NORM_RMS, cb, il);
  4603. cb(cur, "ffn_norm", il);
  4604. cur = llm_build_ffn(ctx0, cur,
  4605. model.layers[il].ffn_up, NULL,
  4606. model.layers[il].ffn_gate, NULL,
  4607. model.layers[il].ffn_down, NULL,
  4608. NULL,
  4609. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  4610. cb(cur, "ffn_out", il);
  4611. }
  4612. cur = ggml_add(ctx0, cur, ffn_inp);
  4613. cb(cur, "l_out", il);
  4614. // input for next layer
  4615. inpL = cur;
  4616. }
  4617. cur = inpL;
  4618. cur = llm_build_norm(ctx0, cur, hparams,
  4619. model.output_norm, NULL,
  4620. LLM_NORM_RMS, cb, -1);
  4621. cb(cur, "result_norm", -1);
  4622. // lm_head
  4623. cur = ggml_mul_mat(ctx0, model.output, cur);
  4624. cb(cur, "result_output", -1);
  4625. ggml_build_forward_expand(gf, cur);
  4626. return gf;
  4627. }
  4628. struct ggml_cgraph * build_falcon() {
  4629. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4630. const int64_t n_embd_head = hparams.n_embd_head_v;
  4631. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4632. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4633. GGML_ASSERT(n_embd_head == hparams.n_rot);
  4634. struct ggml_tensor * cur;
  4635. struct ggml_tensor * inpL;
  4636. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  4637. cb(inpL, "inp_embd", -1);
  4638. // inp_pos - contains the positions
  4639. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  4640. cb(inp_pos, "inp_pos", -1);
  4641. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4642. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  4643. cb(KQ_mask, "KQ_mask", -1);
  4644. for (int il = 0; il < n_layer; ++il) {
  4645. struct ggml_tensor * attn_norm;
  4646. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  4647. model.layers[il].attn_norm,
  4648. model.layers[il].attn_norm_b,
  4649. LLM_NORM, cb, il);
  4650. cb(attn_norm, "attn_norm", il);
  4651. // self-attention
  4652. {
  4653. if (model.layers[il].attn_norm_2) {
  4654. // Falcon-40B
  4655. cur = llm_build_norm(ctx0, inpL, hparams,
  4656. model.layers[il].attn_norm_2,
  4657. model.layers[il].attn_norm_2_b,
  4658. LLM_NORM, cb, il);
  4659. cb(cur, "attn_norm_2", il);
  4660. } else {
  4661. cur = attn_norm;
  4662. }
  4663. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4664. cb(cur, "wqkv", il);
  4665. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4666. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4667. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4668. cb(Qcur, "Qcur", il);
  4669. cb(Kcur, "Kcur", il);
  4670. cb(Vcur, "Vcur", il);
  4671. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4672. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4673. // using mode = 2 for neox mode
  4674. Qcur = ggml_rope_custom(
  4675. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  4676. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4677. );
  4678. cb(Qcur, "Qcur", il);
  4679. Kcur = ggml_rope_custom(
  4680. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  4681. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4682. );
  4683. cb(Kcur, "Kcur", il);
  4684. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  4685. model.layers[il].wo, NULL,
  4686. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  4687. cb(cur, "kqv_out", il);
  4688. }
  4689. struct ggml_tensor * ffn_inp = cur;
  4690. // feed forward
  4691. {
  4692. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  4693. model.layers[il].ffn_up, NULL,
  4694. NULL, NULL,
  4695. model.layers[il].ffn_down, NULL,
  4696. NULL,
  4697. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  4698. cb(cur, "ffn_out", il);
  4699. }
  4700. cur = ggml_add(ctx0, cur, ffn_inp);
  4701. cb(cur, "l_out", il);
  4702. cur = ggml_add(ctx0, cur, inpL);
  4703. cb(cur, "l_out", il);
  4704. // input for next layer
  4705. inpL = cur;
  4706. }
  4707. cur = inpL;
  4708. // norm
  4709. cur = llm_build_norm(ctx0, cur, hparams,
  4710. model.output_norm,
  4711. model.output_norm_b,
  4712. LLM_NORM, cb, -1);
  4713. cb(cur, "result_norm", -1);
  4714. cur = ggml_mul_mat(ctx0, model.output, cur);
  4715. cb(cur, "result_output", -1);
  4716. ggml_build_forward_expand(gf, cur);
  4717. return gf;
  4718. }
  4719. struct ggml_cgraph * build_starcoder() {
  4720. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4721. const int64_t n_embd_head = hparams.n_embd_head_v;
  4722. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  4723. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4724. struct ggml_tensor * cur;
  4725. struct ggml_tensor * pos;
  4726. struct ggml_tensor * inpL;
  4727. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  4728. cb(inpL, "inp_embd", -1);
  4729. // inp_pos - contains the positions
  4730. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  4731. cb(inp_pos, "inp_pos", -1);
  4732. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4733. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  4734. cb(KQ_mask, "KQ_mask", -1);
  4735. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  4736. cb(pos, "pos_embd", -1);
  4737. inpL = ggml_add(ctx0, inpL, pos);
  4738. cb(inpL, "inpL", -1);
  4739. for (int il = 0; il < n_layer; ++il) {
  4740. cur = llm_build_norm(ctx0, inpL, hparams,
  4741. model.layers[il].attn_norm,
  4742. model.layers[il].attn_norm_b,
  4743. LLM_NORM, cb, il);
  4744. cb(cur, "attn_norm", il);
  4745. // self-attention
  4746. {
  4747. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4748. cb(cur, "wqkv", il);
  4749. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4750. cb(cur, "bqkv", il);
  4751. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  4752. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  4753. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  4754. cb(Qcur, "Qcur", il);
  4755. cb(Kcur, "Kcur", il);
  4756. cb(Vcur, "Vcur", il);
  4757. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4758. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  4759. model.layers[il].wo, model.layers[il].bo,
  4760. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  4761. cb(cur, "kqv_out", il);
  4762. }
  4763. // add the input
  4764. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  4765. cb(ffn_inp, "ffn_inp", il);
  4766. // FF
  4767. {
  4768. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4769. model.layers[il].ffn_norm,
  4770. model.layers[il].ffn_norm_b,
  4771. LLM_NORM, cb, il);
  4772. cb(cur, "ffn_norm", il);
  4773. cur = llm_build_ffn(ctx0, cur,
  4774. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  4775. NULL, NULL,
  4776. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  4777. NULL,
  4778. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  4779. cb(cur, "ffn_out", il);
  4780. }
  4781. inpL = ggml_add(ctx0, cur, ffn_inp);
  4782. cb(inpL, "l_out", il);
  4783. }
  4784. cur = llm_build_norm(ctx0, inpL, hparams,
  4785. model.output_norm,
  4786. model.output_norm_b,
  4787. LLM_NORM, cb, -1);
  4788. cb(cur, "result_norm", -1);
  4789. cur = ggml_mul_mat(ctx0, model.output, cur);
  4790. cb(cur, "result_output", -1);
  4791. ggml_build_forward_expand(gf, cur);
  4792. return gf;
  4793. }
  4794. struct ggml_cgraph * build_persimmon() {
  4795. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4796. const int64_t n_embd_head = hparams.n_embd_head_v;
  4797. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4798. GGML_ASSERT(n_embd_head/2 == hparams.n_rot);
  4799. struct ggml_tensor * cur;
  4800. struct ggml_tensor * inpL;
  4801. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  4802. cb(inpL, "inp_embd", -1);
  4803. // inp_pos - contains the positions
  4804. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  4805. cb(inp_pos, "inp_pos", -1);
  4806. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4807. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  4808. cb(KQ_mask, "KQ_mask", -1);
  4809. for (int il = 0; il < n_layer; ++il) {
  4810. struct ggml_tensor * residual = inpL;
  4811. cur = llm_build_norm(ctx0, inpL, hparams,
  4812. model.layers[il].attn_norm,
  4813. model.layers[il].attn_norm_b,
  4814. LLM_NORM, cb, il);
  4815. cb(cur, "attn_norm", il);
  4816. // self attention
  4817. {
  4818. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  4819. cb(cur, "wqkv", il);
  4820. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  4821. cb(cur, "bqkv", il);
  4822. // split qkv
  4823. GGML_ASSERT(n_head_kv == n_head);
  4824. struct ggml_tensor * tmpqkv = ggml_reshape_4d(ctx0, cur, n_embd_head, 3, n_head, n_tokens);
  4825. cb(tmpqkv, "tmpqkv", il);
  4826. struct ggml_tensor * tmpqkv_perm = ggml_cont(ctx0, ggml_permute(ctx0, tmpqkv, 0, 3, 1, 2));
  4827. cb(tmpqkv_perm, "tmpqkv", il);
  4828. struct ggml_tensor * tmpq = ggml_view_3d(
  4829. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4830. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4831. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4832. 0
  4833. );
  4834. cb(tmpq, "tmpq", il);
  4835. struct ggml_tensor * tmpk = ggml_view_3d(
  4836. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4837. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4838. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4839. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens
  4840. );
  4841. cb(tmpk, "tmpk", il);
  4842. // Q/K Layernorm
  4843. tmpq = llm_build_norm(ctx0, tmpq, hparams,
  4844. model.layers[il].attn_q_norm,
  4845. model.layers[il].attn_q_norm_b,
  4846. LLM_NORM, cb, il);
  4847. cb(tmpq, "tmpq", il);
  4848. tmpk = llm_build_norm(ctx0, tmpk, hparams,
  4849. model.layers[il].attn_k_norm,
  4850. model.layers[il].attn_k_norm_b,
  4851. LLM_NORM, cb, il);
  4852. cb(tmpk, "tmpk", il);
  4853. // RoPE the first n_rot of q/k, pass the other half, and concat.
  4854. struct ggml_tensor * qrot = ggml_view_3d(
  4855. ctx0, tmpq, n_rot, n_head, n_tokens,
  4856. ggml_element_size(tmpq) * n_embd_head,
  4857. ggml_element_size(tmpq) * n_embd_head * n_head,
  4858. 0
  4859. );
  4860. cb(qrot, "qrot", il);
  4861. struct ggml_tensor * krot = ggml_view_3d(
  4862. ctx0, tmpk, n_rot, n_head, n_tokens,
  4863. ggml_element_size(tmpk) * n_embd_head,
  4864. ggml_element_size(tmpk) * n_embd_head * n_head,
  4865. 0
  4866. );
  4867. cb(krot, "krot", il);
  4868. // get the second half of tmpq, e.g tmpq[n_rot:, :, :]
  4869. struct ggml_tensor * qpass = ggml_view_3d(
  4870. ctx0, tmpq, n_rot, n_head, n_tokens,
  4871. ggml_element_size(tmpq) * n_embd_head,
  4872. ggml_element_size(tmpq) * n_embd_head * n_head,
  4873. ggml_element_size(tmpq) * n_rot
  4874. );
  4875. cb(qpass, "qpass", il);
  4876. struct ggml_tensor * kpass = ggml_view_3d(
  4877. ctx0, tmpk, n_rot, n_head, n_tokens,
  4878. ggml_element_size(tmpk) * n_embd_head,
  4879. ggml_element_size(tmpk) * n_embd_head * n_head,
  4880. ggml_element_size(tmpk) * n_rot
  4881. );
  4882. cb(kpass, "kpass", il);
  4883. struct ggml_tensor * qrotated = ggml_rope_custom(
  4884. ctx0, qrot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  4885. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4886. );
  4887. cb(qrotated, "qrotated", il);
  4888. struct ggml_tensor * krotated = ggml_rope_custom(
  4889. ctx0, krot, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  4890. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  4891. );
  4892. cb(krotated, "krotated", il);
  4893. // ggml currently only supports concatenation on dim=2
  4894. // so we need to permute qrot, qpass, concat, then permute back.
  4895. qrotated = ggml_cont(ctx0, ggml_permute(ctx0, qrotated, 2, 1, 0, 3));
  4896. cb(qrotated, "qrotated", il);
  4897. krotated = ggml_cont(ctx0, ggml_permute(ctx0, krotated, 2, 1, 0, 3));
  4898. cb(krotated, "krotated", il);
  4899. qpass = ggml_cont(ctx0, ggml_permute(ctx0, qpass, 2, 1, 0, 3));
  4900. cb(qpass, "qpass", il);
  4901. kpass = ggml_cont(ctx0, ggml_permute(ctx0, kpass, 2, 1, 0, 3));
  4902. cb(kpass, "kpass", il);
  4903. struct ggml_tensor * Qcur = ggml_concat(ctx0, qrotated, qpass);
  4904. cb(Qcur, "Qcur", il);
  4905. struct ggml_tensor * Kcur = ggml_concat(ctx0, krotated, kpass);
  4906. cb(Kcur, "Kcur", il);
  4907. struct ggml_tensor * Q = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 2, 1, 0, 3));
  4908. cb(Q, "Q", il);
  4909. Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 2, 1, 0, 3));
  4910. cb(Kcur, "Kcur", il);
  4911. struct ggml_tensor * Vcur = ggml_view_3d(
  4912. ctx0, tmpqkv_perm, n_embd_head, n_head, n_tokens,
  4913. ggml_element_size(tmpqkv_perm) * n_embd_head,
  4914. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head,
  4915. ggml_element_size(tmpqkv_perm) * n_embd_head * n_head * n_tokens * 2
  4916. );
  4917. cb(Vcur, "Vcur", il);
  4918. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  4919. model.layers[il].wo, model.layers[il].bo,
  4920. Kcur, Vcur, Q, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  4921. cb(cur, "kqv_out", il);
  4922. }
  4923. struct ggml_tensor * ffn_inp = ggml_add(ctx0, residual, cur);
  4924. cb(ffn_inp, "ffn_inp", il);
  4925. // feed-forward network
  4926. {
  4927. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4928. model.layers[il].ffn_norm,
  4929. model.layers[il].ffn_norm_b,
  4930. LLM_NORM, cb, il);
  4931. cb(cur, "ffn_norm", il);
  4932. cur = llm_build_ffn(ctx0, cur,
  4933. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  4934. NULL, NULL,
  4935. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  4936. NULL,
  4937. LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
  4938. cb(cur, "ffn_out", il);
  4939. }
  4940. cur = ggml_add(ctx0, cur, ffn_inp);
  4941. cb(cur, "l_out", il);
  4942. inpL = cur;
  4943. }
  4944. cur = inpL;
  4945. cur = llm_build_norm(ctx0, cur, hparams,
  4946. model.output_norm,
  4947. model.output_norm_b,
  4948. LLM_NORM, cb, -1);
  4949. cb(cur, "result_norm", -1);
  4950. cur = ggml_mul_mat(ctx0, model.output, cur);
  4951. cb(cur, "result_output", -1);
  4952. ggml_build_forward_expand(gf, cur);
  4953. return gf;
  4954. }
  4955. struct ggml_cgraph * build_refact() {
  4956. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  4957. const int64_t n_embd_head = hparams.n_embd_head_v;
  4958. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  4959. struct ggml_tensor * cur;
  4960. struct ggml_tensor * inpL;
  4961. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  4962. cb(inpL, "inp_embd", -1);
  4963. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  4964. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  4965. cb(KQ_mask, "KQ_mask", -1);
  4966. // positions of the tokens in the KV cache
  4967. struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
  4968. cb(KQ_pos, "KQ_pos", -1);
  4969. for (int il = 0; il < n_layer; ++il) {
  4970. struct ggml_tensor * inpSA = inpL;
  4971. cur = llm_build_norm(ctx0, inpL, hparams,
  4972. model.layers[il].attn_norm, NULL,
  4973. LLM_NORM_RMS, cb, il);
  4974. cb(cur, "attn_norm", il);
  4975. // self-attention
  4976. {
  4977. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  4978. cb(Qcur, "Qcur", il);
  4979. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  4980. cb(Kcur, "Kcur", il);
  4981. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  4982. cb(Vcur, "Vcur", il);
  4983. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  4984. cb(Kcur, "Kcur", il);
  4985. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  4986. cb(Qcur, "Qcur", il);
  4987. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  4988. model.layers[il].wo, NULL,
  4989. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  4990. cb(cur, "kqv_out", il);
  4991. }
  4992. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  4993. cb(ffn_inp, "ffn_inp", il);
  4994. // feed-forward network
  4995. {
  4996. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  4997. model.layers[il].ffn_norm, NULL,
  4998. LLM_NORM_RMS, cb, il);
  4999. cb(cur, "ffn_norm", il);
  5000. cur = llm_build_ffn(ctx0, cur,
  5001. model.layers[il].ffn_up, NULL,
  5002. model.layers[il].ffn_gate, NULL,
  5003. model.layers[il].ffn_down, NULL,
  5004. NULL,
  5005. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5006. cb(cur, "ffn_out", il);
  5007. }
  5008. cur = ggml_add(ctx0, cur, ffn_inp);
  5009. cb(cur, "l_out", il);
  5010. // input for next layer
  5011. inpL = cur;
  5012. }
  5013. cur = inpL;
  5014. cur = llm_build_norm(ctx0, cur, hparams,
  5015. model.output_norm, NULL,
  5016. LLM_NORM_RMS, cb, -1);
  5017. cb(cur, "result_norm", -1);
  5018. // lm_head
  5019. cur = ggml_mul_mat(ctx0, model.output, cur);
  5020. cb(cur, "result_output", -1);
  5021. ggml_build_forward_expand(gf, cur);
  5022. return gf;
  5023. }
  5024. struct ggml_cgraph * build_bert() {
  5025. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5026. const int64_t n_embd_head = hparams.n_embd_head_v;
  5027. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5028. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5029. struct ggml_tensor * cur;
  5030. struct ggml_tensor * inpL;
  5031. // get input vectors with right size
  5032. const size_t stride1 = n_tokens * ggml_type_size(lctx.inp_tokens->type);
  5033. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5034. struct ggml_tensor * inp_mean = ggml_view_2d(ctx0, lctx.inp_mean, n_tokens, n_tokens, stride1, 0);
  5035. struct ggml_tensor * inp_cls = ggml_view_1d(ctx0, lctx.inp_cls, n_tokens, 0);
  5036. // construct input embeddings (token, type, position)
  5037. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5038. // token types are hardcoded to zero ("Sentence A")
  5039. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  5040. inpL = ggml_add(ctx0, inpL, type_row0);
  5041. if (model.arch == LLM_ARCH_BERT) {
  5042. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  5043. }
  5044. cb(inpL, "inp_embd", -1);
  5045. // embed layer norm
  5046. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  5047. cb(inpL, "inp_norm", -1);
  5048. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5049. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5050. cb(KQ_mask, "KQ_mask", -1); // [n_kv, n_tokens]
  5051. // iterate layers
  5052. for (int il = 0; il < n_layer; ++il) {
  5053. struct ggml_tensor * cur = inpL;
  5054. // self-attention
  5055. if (model.arch == LLM_ARCH_BERT) {
  5056. struct ggml_tensor * Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  5057. cb(Qcur, "Qcur", il);
  5058. struct ggml_tensor * Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  5059. cb(Kcur, "Kcur", il);
  5060. struct ggml_tensor * Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  5061. cb(Vcur, "Vcur", il);
  5062. // seems like we just need to do this for Q?
  5063. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5064. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5065. model.layers[il].wo, model.layers[il].bo,
  5066. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5067. cb(cur, "kqv_out", il);
  5068. } else {
  5069. // compute Q and K and RoPE them
  5070. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5071. cb(cur, "wqkv", il);
  5072. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5073. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5074. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5075. cb(Qcur, "Qcur", il);
  5076. cb(Kcur, "Kcur", il);
  5077. cb(Vcur, "Vcur", il);
  5078. Qcur = ggml_rope_custom(
  5079. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5080. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5081. ext_factor, attn_factor, beta_fast, beta_slow
  5082. );
  5083. cb(Qcur, "Qcur", il);
  5084. Kcur = ggml_rope_custom(
  5085. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5086. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5087. ext_factor, attn_factor, beta_fast, beta_slow
  5088. );
  5089. cb(Kcur, "Kcur", il);
  5090. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5091. model.layers[il].wo, model.layers[il].bo,
  5092. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5093. cb(cur, "kqv_out", il);
  5094. }
  5095. // re-add the layer input
  5096. cur = ggml_add(ctx0, cur, inpL);
  5097. // attention layer norm
  5098. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  5099. struct ggml_tensor * ffn_inp = cur;
  5100. cb(ffn_inp, "ffn_inp", il);
  5101. // feed-forward network
  5102. if (model.arch == LLM_ARCH_BERT) {
  5103. cur = llm_build_ffn(ctx0, cur,
  5104. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5105. NULL, NULL,
  5106. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5107. NULL,
  5108. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5109. } else {
  5110. cur = llm_build_ffn(ctx0, cur,
  5111. model.layers[il].ffn_up, NULL,
  5112. model.layers[il].ffn_gate, NULL,
  5113. model.layers[il].ffn_down, NULL,
  5114. NULL,
  5115. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5116. }
  5117. cb(cur, "ffn_out", il);
  5118. // attentions bypass the intermediate layer
  5119. cur = ggml_add(ctx0, cur, ffn_inp);
  5120. // output layer norm
  5121. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  5122. // input for next layer
  5123. inpL = cur;
  5124. }
  5125. // final output
  5126. cur = inpL;
  5127. // pooling layer
  5128. if (pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  5129. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  5130. } else if (pooling_type == LLAMA_POOLING_TYPE_CLS) {
  5131. cur = ggml_get_rows(ctx0, cur, inp_cls);
  5132. } else {
  5133. GGML_ASSERT(pooling_type == LLAMA_POOLING_TYPE_NONE && "Invalid pooling type");
  5134. }
  5135. cb(cur, "result_embd", -1);
  5136. ggml_build_forward_expand(gf, cur);
  5137. return gf;
  5138. }
  5139. struct ggml_cgraph * build_bloom() {
  5140. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5141. const int64_t n_embd_head = hparams.n_embd_head_v;
  5142. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5143. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5144. struct ggml_tensor * cur;
  5145. struct ggml_tensor * inpL;
  5146. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5147. cb(inpL, "inp_embd", -1);
  5148. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5149. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5150. cb(KQ_mask, "KQ_mask", -1);
  5151. // positions of the tokens in the KV cache
  5152. struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
  5153. cb(KQ_pos, "KQ_pos", -1);
  5154. inpL = llm_build_norm(ctx0, inpL, hparams,
  5155. model.tok_norm,
  5156. model.tok_norm_b,
  5157. LLM_NORM, cb, -1);
  5158. cb(inpL, "inp_norm", -1);
  5159. for (int il = 0; il < n_layer; ++il) {
  5160. cur = llm_build_norm(ctx0, inpL, hparams,
  5161. model.layers[il].attn_norm,
  5162. model.layers[il].attn_norm_b,
  5163. LLM_NORM, cb, il);
  5164. cb(cur, "attn_norm", il);
  5165. // self-attention
  5166. {
  5167. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5168. cb(cur, "wqkv", il);
  5169. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5170. cb(cur, "bqkv", il);
  5171. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5172. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5173. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5174. cb(Qcur, "Qcur", il);
  5175. cb(Kcur, "Kcur", il);
  5176. cb(Vcur, "Vcur", il);
  5177. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5178. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5179. model.layers[il].wo, model.layers[il].bo,
  5180. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5181. cb(cur, "kqv_out", il);
  5182. }
  5183. // Add the input
  5184. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5185. cb(ffn_inp, "ffn_inp", il);
  5186. // FF
  5187. {
  5188. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5189. model.layers[il].ffn_norm,
  5190. model.layers[il].ffn_norm_b,
  5191. LLM_NORM, cb, il);
  5192. cb(cur, "ffn_norm", il);
  5193. cur = llm_build_ffn(ctx0, cur,
  5194. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5195. NULL, NULL,
  5196. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5197. NULL,
  5198. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5199. cb(cur, "ffn_out", il);
  5200. }
  5201. inpL = ggml_add(ctx0, cur, ffn_inp);
  5202. cb(inpL, "l_out", il);
  5203. }
  5204. cur = llm_build_norm(ctx0, inpL, hparams,
  5205. model.output_norm,
  5206. model.output_norm_b,
  5207. LLM_NORM, cb, -1);
  5208. cb(cur, "result_norm", -1);
  5209. cur = ggml_mul_mat(ctx0, model.output, cur);
  5210. cb(cur, "result_output", -1);
  5211. ggml_build_forward_expand(gf, cur);
  5212. return gf;
  5213. }
  5214. struct ggml_cgraph * build_mpt() {
  5215. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5216. const int64_t n_embd_head = hparams.n_embd_head_v;
  5217. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5218. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5219. struct ggml_tensor * cur;
  5220. struct ggml_tensor * inpL;
  5221. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5222. cb(inpL, "inp_embd", -1);
  5223. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5224. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5225. cb(KQ_mask, "KQ_mask", -1);
  5226. // positions of the tokens in the KV cache
  5227. struct ggml_tensor * KQ_pos = ggml_view_1d(ctx0, lctx.inp_KQ_pos, n_kv, 0);
  5228. cb(KQ_pos, "KQ_pos", -1);
  5229. for (int il = 0; il < n_layer; ++il) {
  5230. struct ggml_tensor * attn_norm;
  5231. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  5232. model.layers[il].attn_norm,
  5233. model.layers[il].attn_norm_b,
  5234. LLM_NORM, cb, il);
  5235. cb(attn_norm, "attn_norm", il);
  5236. // self-attention
  5237. {
  5238. cur = attn_norm;
  5239. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5240. cb(cur, "wqkv", il);
  5241. if (model.layers[il].bqkv){
  5242. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5243. cb(cur, "bqkv", il);
  5244. }
  5245. if (hparams.f_clamp_kqv > 0.0f) {
  5246. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  5247. cb(cur, "wqkv_clamped", il);
  5248. }
  5249. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5250. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5251. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5252. cb(Qcur, "Qcur", il);
  5253. cb(Kcur, "Kcur", il);
  5254. cb(Vcur, "Vcur", il);
  5255. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5256. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5257. model.layers[il].wo, model.layers[il].bo,
  5258. Kcur, Vcur, Qcur, KQ_mask, KQ_pos, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5259. cb(cur, "kqv_out", il);
  5260. }
  5261. // Add the input
  5262. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5263. cb(ffn_inp, "ffn_inp", il);
  5264. // feed forward
  5265. {
  5266. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5267. model.layers[il].ffn_norm,
  5268. model.layers[il].ffn_norm_b,
  5269. LLM_NORM, cb, il);
  5270. cb(cur, "ffn_norm", il);
  5271. cur = llm_build_ffn(ctx0, cur,
  5272. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5273. NULL, NULL,
  5274. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5275. model.layers[il].ffn_act,
  5276. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5277. cb(cur, "ffn_out", il);
  5278. }
  5279. cur = ggml_add(ctx0, cur, ffn_inp);
  5280. cb(cur, "l_out", il);
  5281. // input for next layer
  5282. inpL = cur;
  5283. }
  5284. cur = inpL;
  5285. cur = llm_build_norm(ctx0, cur, hparams,
  5286. model.output_norm,
  5287. model.output_norm_b,
  5288. LLM_NORM, cb, -1);
  5289. cb(cur, "result_norm", -1);
  5290. cur = ggml_mul_mat(ctx0, model.output, cur);
  5291. cb(cur, "result_output", -1);
  5292. ggml_build_forward_expand(gf, cur);
  5293. return gf;
  5294. }
  5295. struct ggml_cgraph * build_stablelm() {
  5296. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  5297. const int64_t n_embd_head = hparams.n_embd_head_v;
  5298. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5299. struct ggml_tensor * cur;
  5300. struct ggml_tensor * inpL;
  5301. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5302. cb(inpL, "inp_embd", -1);
  5303. // inp_pos - contains the positions
  5304. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5305. cb(inp_pos, "inp_pos", -1);
  5306. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5307. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5308. cb(KQ_mask, "KQ_mask", -1);
  5309. for (int il = 0; il < n_layer; ++il) {
  5310. struct ggml_tensor * inpSA = inpL;
  5311. // norm
  5312. cur = llm_build_norm(ctx0, inpL, hparams,
  5313. model.layers[il].attn_norm,
  5314. model.layers[il].attn_norm_b,
  5315. LLM_NORM, cb, il);
  5316. cb(cur, "attn_norm", il);
  5317. // self-attention
  5318. {
  5319. // compute Q and K and RoPE them
  5320. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5321. cb(Qcur, "Qcur", il);
  5322. if (model.layers[il].bq) {
  5323. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5324. cb(Qcur, "Qcur", il);
  5325. }
  5326. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5327. cb(Kcur, "Kcur", il);
  5328. if (model.layers[il].bk) {
  5329. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5330. cb(Kcur, "Kcur", il);
  5331. }
  5332. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5333. cb(Vcur, "Vcur", il);
  5334. if (model.layers[il].bv) {
  5335. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5336. cb(Vcur, "Vcur", il);
  5337. }
  5338. Qcur = ggml_rope_custom(
  5339. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5340. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5341. ext_factor, attn_factor, beta_fast, beta_slow
  5342. );
  5343. cb(Qcur, "Qcur", il);
  5344. Kcur = ggml_rope_custom(
  5345. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5346. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5347. ext_factor, attn_factor, beta_fast, beta_slow
  5348. );
  5349. cb(Kcur, "Kcur", il);
  5350. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5351. model.layers[il].wo, NULL,
  5352. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5353. cb(cur, "kqv_out", il);
  5354. }
  5355. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5356. cb(ffn_inp, "ffn_inp", il);
  5357. // feed-forward network
  5358. {
  5359. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5360. model.layers[il].ffn_norm,
  5361. model.layers[il].ffn_norm_b,
  5362. LLM_NORM, cb, il);
  5363. cb(cur, "ffn_norm", il);
  5364. cur = llm_build_ffn(ctx0, cur,
  5365. model.layers[il].ffn_up, NULL,
  5366. model.layers[il].ffn_gate, NULL,
  5367. model.layers[il].ffn_down, NULL,
  5368. NULL,
  5369. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5370. cb(cur, "ffn_out", il);
  5371. }
  5372. cur = ggml_add(ctx0, cur, ffn_inp);
  5373. cb(cur, "l_out", il);
  5374. // input for next layer
  5375. inpL = cur;
  5376. }
  5377. cur = inpL;
  5378. cur = llm_build_norm(ctx0, cur, hparams,
  5379. model.output_norm,
  5380. model.output_norm_b,
  5381. LLM_NORM, cb, -1);
  5382. cb(cur, "result_norm", -1);
  5383. // lm_head
  5384. cur = ggml_mul_mat(ctx0, model.output, cur);
  5385. cb(cur, "result_output", -1);
  5386. ggml_build_forward_expand(gf, cur);
  5387. return gf;
  5388. }
  5389. struct ggml_cgraph * build_qwen() {
  5390. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5391. const int64_t n_embd_head = hparams.n_embd_head_v;
  5392. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5393. struct ggml_tensor * cur;
  5394. struct ggml_tensor * inpL;
  5395. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5396. cb(inpL, "inp_embd", -1);
  5397. // inp_pos - contains the positions
  5398. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5399. cb(inp_pos, "inp_pos", -1);
  5400. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5401. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5402. cb(KQ_mask, "KQ_mask", -1);
  5403. for (int il = 0; il < n_layer; ++il) {
  5404. struct ggml_tensor * inpSA = inpL;
  5405. cur = llm_build_norm(ctx0, inpL, hparams,
  5406. model.layers[il].attn_norm, NULL,
  5407. LLM_NORM_RMS, cb, il);
  5408. cb(cur, "attn_norm", il);
  5409. // self-attention
  5410. {
  5411. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5412. cb(cur, "wqkv", il);
  5413. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5414. cb(cur, "bqkv", il);
  5415. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5416. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5417. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  5418. cb(Qcur, "Qcur", il);
  5419. cb(Kcur, "Kcur", il);
  5420. cb(Vcur, "Vcur", il);
  5421. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5422. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5423. // using mode = 2 for neox mode
  5424. Qcur = ggml_rope_custom(
  5425. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5426. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5427. );
  5428. cb(Qcur, "Qcur", il);
  5429. Kcur = ggml_rope_custom(
  5430. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5431. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5432. );
  5433. cb(Kcur, "Kcur", il);
  5434. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5435. model.layers[il].wo, NULL,
  5436. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5437. cb(cur, "kqv_out", il);
  5438. }
  5439. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5440. cb(ffn_inp, "ffn_inp", il);
  5441. // feed-forward forward
  5442. {
  5443. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5444. model.layers[il].ffn_norm, NULL,
  5445. LLM_NORM_RMS, cb, il);
  5446. cb(cur, "ffn_norm", il);
  5447. cur = llm_build_ffn(ctx0, cur,
  5448. model.layers[il].ffn_up, NULL,
  5449. model.layers[il].ffn_gate, NULL,
  5450. model.layers[il].ffn_down, NULL,
  5451. NULL,
  5452. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5453. cb(cur, "ffn_out", il);
  5454. }
  5455. cur = ggml_add(ctx0, cur, ffn_inp);
  5456. cb(cur, "l_out", il);
  5457. // input for next layer
  5458. inpL = cur;
  5459. }
  5460. cur = inpL;
  5461. cur = llm_build_norm(ctx0, cur, hparams,
  5462. model.output_norm, NULL,
  5463. LLM_NORM_RMS, cb, -1);
  5464. cb(cur, "result_norm", -1);
  5465. // lm_head
  5466. cur = ggml_mul_mat(ctx0, model.output, cur);
  5467. cb(cur, "result_output", -1);
  5468. ggml_build_forward_expand(gf, cur);
  5469. return gf;
  5470. }
  5471. struct ggml_cgraph * build_qwen2() {
  5472. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5473. const int64_t n_embd_head = hparams.n_embd_head_v;
  5474. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5475. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5476. struct ggml_tensor * cur;
  5477. struct ggml_tensor * inpL;
  5478. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5479. cb(inpL, "inp_embd", -1);
  5480. // inp_pos - contains the positions
  5481. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5482. cb(inp_pos, "inp_pos", -1);
  5483. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5484. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5485. cb(KQ_mask, "KQ_mask", -1);
  5486. for (int il = 0; il < n_layer; ++il) {
  5487. struct ggml_tensor * inpSA = inpL;
  5488. // norm
  5489. cur = llm_build_norm(ctx0, inpL, hparams,
  5490. model.layers[il].attn_norm, NULL,
  5491. LLM_NORM_RMS, cb, il);
  5492. cb(cur, "attn_norm", il);
  5493. // self-attention
  5494. {
  5495. // compute Q and K and RoPE them
  5496. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5497. cb(Qcur, "Qcur", il);
  5498. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5499. cb(Qcur, "Qcur", il);
  5500. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5501. cb(Kcur, "Kcur", il);
  5502. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5503. cb(Kcur, "Kcur", il);
  5504. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5505. cb(Vcur, "Vcur", il);
  5506. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5507. cb(Vcur, "Vcur", il);
  5508. // these nodes are added to the graph together so that they are not reordered
  5509. // by doing so, the number of splits in the graph is reduced
  5510. ggml_build_forward_expand(gf, Qcur);
  5511. ggml_build_forward_expand(gf, Kcur);
  5512. ggml_build_forward_expand(gf, Vcur);
  5513. Qcur = ggml_rope_custom(
  5514. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5515. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5516. ext_factor, attn_factor, beta_fast, beta_slow
  5517. );
  5518. cb(Qcur, "Qcur", il);
  5519. Kcur = ggml_rope_custom(
  5520. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5521. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5522. ext_factor, attn_factor, beta_fast, beta_slow
  5523. );
  5524. cb(Kcur, "Kcur", il);
  5525. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5526. model.layers[il].wo, model.layers[il].bo,
  5527. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5528. cb(cur, "kqv_out", il);
  5529. }
  5530. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5531. cb(ffn_inp, "ffn_inp", il);
  5532. // feed-forward network
  5533. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5534. model.layers[il].ffn_norm, NULL,
  5535. LLM_NORM_RMS, cb, il);
  5536. cb(cur, "ffn_norm", il);
  5537. cur = llm_build_ffn(ctx0, cur,
  5538. model.layers[il].ffn_up, NULL,
  5539. model.layers[il].ffn_gate, NULL,
  5540. model.layers[il].ffn_down, NULL,
  5541. NULL,
  5542. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5543. cb(cur, "ffn_out", il);
  5544. cur = ggml_add(ctx0, cur, ffn_inp);
  5545. cb(cur, "l_out", il);
  5546. // input for next layer
  5547. inpL = cur;
  5548. }
  5549. cur = inpL;
  5550. cur = llm_build_norm(ctx0, cur, hparams,
  5551. model.output_norm, NULL,
  5552. LLM_NORM_RMS, cb, -1);
  5553. cb(cur, "result_norm", -1);
  5554. // lm_head
  5555. cur = ggml_mul_mat(ctx0, model.output, cur);
  5556. cb(cur, "result_output", -1);
  5557. ggml_build_forward_expand(gf, cur);
  5558. return gf;
  5559. }
  5560. struct ggml_cgraph * build_phi2() {
  5561. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5562. const int64_t n_embd_head = hparams.n_embd_head_v;
  5563. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5564. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5565. struct ggml_tensor * cur;
  5566. struct ggml_tensor * attn_norm_output;
  5567. struct ggml_tensor * ffn_output;
  5568. struct ggml_tensor * inpL;
  5569. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5570. cb(inpL, "inp_embd", -1);
  5571. // inp_pos - contains the positions
  5572. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5573. cb(inp_pos, "inp_pos", -1);
  5574. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5575. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5576. cb(KQ_mask, "KQ_mask", -1);
  5577. for (int il = 0; il < n_layer; ++il) {
  5578. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  5579. model.layers[il].attn_norm,
  5580. model.layers[il].attn_norm_b,
  5581. LLM_NORM, cb, il);
  5582. cb(attn_norm_output, "attn_norm", il);
  5583. // self-attention
  5584. {
  5585. struct ggml_tensor * Qcur = nullptr;
  5586. struct ggml_tensor * Kcur = nullptr;
  5587. struct ggml_tensor * Vcur = nullptr;
  5588. if (model.layers[il].wqkv) {
  5589. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  5590. cb(cur, "wqkv", il);
  5591. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5592. cb(cur, "bqkv", il);
  5593. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5594. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5595. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5596. } else {
  5597. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  5598. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  5599. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  5600. }
  5601. cb(Qcur, "Qcur", il);
  5602. cb(Kcur, "Kcur", il);
  5603. cb(Vcur, "Vcur", il);
  5604. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5605. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  5606. Qcur = ggml_rope_custom(
  5607. ctx0, Qcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5608. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5609. );
  5610. cb(Qcur, "Qcur", il);
  5611. // with phi2, we scale the Q to avoid precision issues
  5612. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  5613. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  5614. cb(Qcur, "Qcur", il);
  5615. Kcur = ggml_rope_custom(
  5616. ctx0, Kcur, inp_pos, n_rot, rope_type, 0, n_orig_ctx,
  5617. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  5618. );
  5619. cb(Kcur, "Kcur", il);
  5620. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5621. model.layers[il].wo, model.layers[il].bo,
  5622. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  5623. cb(cur, "kqv_out", il);
  5624. }
  5625. // FF
  5626. {
  5627. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  5628. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5629. NULL, NULL,
  5630. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5631. NULL,
  5632. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5633. cb(ffn_output, "ffn_out", il);
  5634. }
  5635. cur = ggml_add(ctx0, cur, ffn_output);
  5636. cb(cur, "l_out", il);
  5637. cur = ggml_add(ctx0, cur, inpL);
  5638. cb(cur, "l_out", il);
  5639. inpL = cur;
  5640. }
  5641. cur = llm_build_norm(ctx0, inpL, hparams,
  5642. model.output_norm,
  5643. model.output_norm_b,
  5644. LLM_NORM, cb, -1);
  5645. cb(cur, "result_norm", -1);
  5646. cur = ggml_mul_mat(ctx0, model.output, cur);
  5647. cb(cur, "result_output_no_bias", -1);
  5648. cur = ggml_add(ctx0, cur, model.output_b);
  5649. cb(cur, "result_output", -1);
  5650. ggml_build_forward_expand(gf, cur);
  5651. return gf;
  5652. }
  5653. struct ggml_cgraph * build_plamo() {
  5654. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  5655. const int64_t n_embd_head = hparams.n_embd_head_v;
  5656. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5657. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5658. struct ggml_tensor * cur;
  5659. struct ggml_tensor * inpL;
  5660. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5661. cb(inpL, "inp_embd", -1);
  5662. // inp_pos - contains the positions
  5663. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5664. cb(inp_pos, "inp_pos", -1);
  5665. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5666. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5667. cb(KQ_mask, "KQ_mask", -1);
  5668. for (int il = 0; il < n_layer; ++il) {
  5669. // norm
  5670. cur = llm_build_norm(ctx0, inpL, hparams,
  5671. model.layers[il].attn_norm, NULL,
  5672. LLM_NORM_RMS, cb, il);
  5673. cb(cur, "attn_norm", il);
  5674. struct ggml_tensor * attention_norm = cur;
  5675. // self-attention
  5676. {
  5677. // compute Q and K and RoPE them
  5678. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5679. cb(Qcur, "Qcur", il);
  5680. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5681. cb(Kcur, "Kcur", il);
  5682. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5683. cb(Vcur, "Vcur", il);
  5684. Qcur = ggml_rope_custom(
  5685. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos,
  5686. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5687. ext_factor, attn_factor, beta_fast, beta_slow);
  5688. cb(Qcur, "Qcur", il);
  5689. Kcur = ggml_rope_custom(
  5690. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos,
  5691. n_embd_head, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5692. ext_factor, attn_factor, beta_fast, beta_slow);
  5693. cb(Kcur, "Kcur", il);
  5694. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5695. model.layers[il].wo, NULL,
  5696. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5697. cb(cur, "kqv_out", il);
  5698. }
  5699. struct ggml_tensor * sa_out = cur;
  5700. cur = attention_norm;
  5701. // feed-forward network
  5702. {
  5703. cur = llm_build_ffn(ctx0, cur,
  5704. model.layers[il].ffn_up, NULL,
  5705. model.layers[il].ffn_gate, NULL,
  5706. model.layers[il].ffn_down, NULL,
  5707. NULL,
  5708. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5709. cb(cur, "ffn_out", il);
  5710. }
  5711. cur = ggml_add(ctx0, cur, sa_out);
  5712. cb(cur, "l_out", il);
  5713. cur = ggml_add(ctx0, cur, inpL);
  5714. cb(cur, "l_out", il);
  5715. // input for next layer
  5716. inpL = cur;
  5717. }
  5718. cur = inpL;
  5719. cur = llm_build_norm(ctx0, cur, hparams,
  5720. model.output_norm, NULL,
  5721. LLM_NORM_RMS, cb, -1);
  5722. cb(cur, "result_norm", -1);
  5723. // lm_head
  5724. cur = ggml_mul_mat(ctx0, model.output, cur);
  5725. cb(cur, "result_output", -1);
  5726. ggml_build_forward_expand(gf, cur);
  5727. return gf;
  5728. }
  5729. struct ggml_cgraph * build_gpt2() {
  5730. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5731. const int64_t n_embd_head = hparams.n_embd_head_v;
  5732. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5733. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5734. struct ggml_tensor * cur;
  5735. struct ggml_tensor * pos;
  5736. struct ggml_tensor * inpL;
  5737. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5738. cb(inpL, "inp_embd", -1);
  5739. // inp_pos - contains the positions
  5740. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5741. cb(inp_pos, "inp_pos", -1);
  5742. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5743. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5744. cb(KQ_mask, "KQ_mask", -1);
  5745. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  5746. cb(pos, "pos_embd", -1);
  5747. inpL = ggml_add(ctx0, inpL, pos);
  5748. cb(inpL, "inpL", -1);
  5749. for (int il = 0; il < n_layer; ++il) {
  5750. cur = llm_build_norm(ctx0, inpL, hparams,
  5751. model.layers[il].attn_norm,
  5752. model.layers[il].attn_norm_b,
  5753. LLM_NORM, cb, il);
  5754. cb(cur, "attn_norm", il);
  5755. // self-attention
  5756. {
  5757. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5758. cb(cur, "wqkv", il);
  5759. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5760. cb(cur, "bqkv", il);
  5761. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5762. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5763. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5764. cb(Qcur, "Qcur", il);
  5765. cb(Kcur, "Kcur", il);
  5766. cb(Vcur, "Vcur", il);
  5767. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  5768. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5769. model.layers[il].wo, model.layers[il].bo,
  5770. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5771. cb(cur, "kqv_out", il);
  5772. }
  5773. // add the input
  5774. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5775. cb(ffn_inp, "ffn_inp", il);
  5776. // FF
  5777. {
  5778. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5779. model.layers[il].ffn_norm,
  5780. model.layers[il].ffn_norm_b,
  5781. LLM_NORM, cb, il);
  5782. cb(cur, "ffn_norm", il);
  5783. cur = llm_build_ffn(ctx0, cur,
  5784. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5785. NULL, NULL,
  5786. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5787. NULL,
  5788. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5789. cb(cur, "ffn_out", il);
  5790. }
  5791. inpL = ggml_add(ctx0, cur, ffn_inp);
  5792. cb(inpL, "l_out", il);
  5793. }
  5794. cur = llm_build_norm(ctx0, inpL, hparams,
  5795. model.output_norm,
  5796. model.output_norm_b,
  5797. LLM_NORM, cb, -1);
  5798. cb(cur, "result_norm", -1);
  5799. cur = ggml_mul_mat(ctx0, model.output, cur);
  5800. cb(cur, "result_output", -1);
  5801. ggml_build_forward_expand(gf, cur);
  5802. return gf;
  5803. }
  5804. struct ggml_cgraph * build_codeshell() {
  5805. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5806. const int64_t n_embd_head = hparams.n_embd_head_v;
  5807. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  5808. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5809. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5810. struct ggml_tensor * cur;
  5811. struct ggml_tensor * inpL;
  5812. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5813. cb(inpL, "inp_embd", -1);
  5814. // inp_pos - contains the positions
  5815. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5816. cb(inp_pos, "inp_pos", -1);
  5817. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5818. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5819. cb(KQ_mask, "KQ_mask", -1);
  5820. for (int il = 0; il < n_layer; ++il) {
  5821. cur = llm_build_norm(ctx0, inpL, hparams,
  5822. model.layers[il].attn_norm,
  5823. model.layers[il].attn_norm_b,
  5824. LLM_NORM, cb, il);
  5825. cb(cur, "attn_norm", il);
  5826. // self-attention
  5827. {
  5828. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  5829. cb(cur, "wqkv", il);
  5830. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  5831. cb(cur, "bqkv", il);
  5832. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  5833. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  5834. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  5835. cb(tmpq, "tmpq", il);
  5836. cb(tmpk, "tmpk", il);
  5837. cb(Vcur, "Vcur", il);
  5838. struct ggml_tensor * Qcur = ggml_rope_custom(
  5839. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos,
  5840. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5841. ext_factor, attn_factor, beta_fast, beta_slow
  5842. );
  5843. cb(Qcur, "Qcur", il);
  5844. struct ggml_tensor * Kcur = ggml_rope_custom(
  5845. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5846. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5847. ext_factor, attn_factor, beta_fast, beta_slow
  5848. );
  5849. cb(Kcur, "Kcur", il);
  5850. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5851. model.layers[il].wo, model.layers[il].bo,
  5852. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5853. cb(cur, "kqv_out", il);
  5854. }
  5855. // add the input
  5856. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  5857. cb(ffn_inp, "ffn_inp", il);
  5858. // FF
  5859. {
  5860. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5861. model.layers[il].ffn_norm,
  5862. model.layers[il].ffn_norm_b,
  5863. LLM_NORM, cb, il);
  5864. cb(cur, "ffn_norm", il);
  5865. cur = llm_build_ffn(ctx0, cur,
  5866. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  5867. NULL, NULL,
  5868. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  5869. NULL,
  5870. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  5871. cb(cur, "ffn_out", il);
  5872. }
  5873. inpL = ggml_add(ctx0, cur, ffn_inp);
  5874. cb(inpL, "l_out", il);
  5875. }
  5876. cur = llm_build_norm(ctx0, inpL, hparams,
  5877. model.output_norm,
  5878. model.output_norm_b,
  5879. LLM_NORM, cb, -1);
  5880. cb(cur, "result_norm", -1);
  5881. cur = ggml_mul_mat(ctx0, model.output, cur);
  5882. cb(cur, "result_output", -1);
  5883. ggml_build_forward_expand(gf, cur);
  5884. return gf;
  5885. }
  5886. struct ggml_cgraph * build_orion() {
  5887. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5888. const int64_t n_embd_head = hparams.n_embd_head_v;
  5889. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5890. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5891. struct ggml_tensor * cur;
  5892. struct ggml_tensor * inpL;
  5893. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5894. cb(inpL, "inp_embd", -1);
  5895. // inp_pos - contains the positions
  5896. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5897. cb(inp_pos, "inp_pos", -1);
  5898. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5899. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5900. cb(KQ_mask, "KQ_mask", -1);
  5901. for (int il = 0; il < n_layer; ++il) {
  5902. struct ggml_tensor * inpSA = inpL;
  5903. // norm
  5904. cur = llm_build_norm(ctx0, inpL, hparams,
  5905. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  5906. LLM_NORM, cb, il);
  5907. cb(cur, "attn_norm", il);
  5908. // self-attention
  5909. {
  5910. // compute Q and K and RoPE them
  5911. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  5912. cb(Qcur, "Qcur", il);
  5913. // if (model.layers[il].bq) {
  5914. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  5915. // cb(Qcur, "Qcur", il);
  5916. // }
  5917. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  5918. cb(Kcur, "Kcur", il);
  5919. // if (model.layers[il].bk) {
  5920. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  5921. // cb(Kcur, "Kcur", il);
  5922. // }
  5923. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  5924. cb(Vcur, "Vcur", il);
  5925. // if (model.layers[il].bv) {
  5926. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  5927. // cb(Vcur, "Vcur", il);
  5928. // }
  5929. Qcur = ggml_rope_custom(
  5930. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  5931. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5932. ext_factor, attn_factor, beta_fast, beta_slow
  5933. );
  5934. cb(Qcur, "Qcur", il);
  5935. Kcur = ggml_rope_custom(
  5936. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  5937. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  5938. ext_factor, attn_factor, beta_fast, beta_slow
  5939. );
  5940. cb(Kcur, "Kcur", il);
  5941. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  5942. model.layers[il].wo, NULL,
  5943. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  5944. cb(cur, "kqv_out", il);
  5945. }
  5946. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  5947. cb(ffn_inp, "ffn_inp", il);
  5948. // feed-forward network
  5949. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  5950. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  5951. LLM_NORM, cb, il);
  5952. cb(cur, "ffn_norm", il);
  5953. cur = llm_build_ffn(ctx0, cur,
  5954. model.layers[il].ffn_up, NULL,
  5955. model.layers[il].ffn_gate, NULL,
  5956. model.layers[il].ffn_down, NULL,
  5957. NULL,
  5958. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  5959. cb(cur, "ffn_out", il);
  5960. cur = ggml_add(ctx0, cur, ffn_inp);
  5961. cb(cur, "l_out", il);
  5962. // input for next layer
  5963. inpL = cur;
  5964. }
  5965. cur = inpL;
  5966. cur = llm_build_norm(ctx0, cur, hparams,
  5967. model.output_norm, model.output_norm_b,
  5968. LLM_NORM, cb, -1);
  5969. cb(cur, "result_norm", -1);
  5970. // lm_head
  5971. cur = ggml_mul_mat(ctx0, model.output, cur);
  5972. cb(cur, "result_output", -1);
  5973. ggml_build_forward_expand(gf, cur);
  5974. return gf;
  5975. }
  5976. struct ggml_cgraph * build_internlm2() {
  5977. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  5978. const int64_t n_embd_head = hparams.n_embd_head_v;
  5979. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  5980. GGML_ASSERT(n_embd_head == hparams.n_rot);
  5981. struct ggml_tensor * cur;
  5982. struct ggml_tensor * inpL;
  5983. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  5984. cb(inpL, "inp_embd", -1);
  5985. // inp_pos - contains the positions
  5986. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  5987. cb(inp_pos, "inp_pos", -1);
  5988. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  5989. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  5990. cb(KQ_mask, "KQ_mask", -1);
  5991. for (int il = 0; il < n_layer; ++il) {
  5992. struct ggml_tensor * inpSA = inpL;
  5993. // norm
  5994. cur = llm_build_norm(ctx0, inpL, hparams,
  5995. model.layers[il].attn_norm, NULL,
  5996. LLM_NORM_RMS, cb, il);
  5997. cb(cur, "attn_norm", il);
  5998. // self-attention
  5999. {
  6000. // compute Q and K and RoPE them
  6001. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6002. cb(Qcur, "Qcur", il);
  6003. if (model.layers[il].bq) {
  6004. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6005. cb(Qcur, "Qcur", il);
  6006. }
  6007. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6008. cb(Kcur, "Kcur", il);
  6009. if (model.layers[il].bk) {
  6010. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6011. cb(Kcur, "Kcur", il);
  6012. }
  6013. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6014. cb(Vcur, "Vcur", il);
  6015. if (model.layers[il].bv) {
  6016. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6017. cb(Vcur, "Vcur", il);
  6018. }
  6019. Qcur = ggml_rope_custom(
  6020. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6021. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6022. ext_factor, attn_factor, beta_fast, beta_slow
  6023. );
  6024. cb(Qcur, "Qcur", il);
  6025. Kcur = ggml_rope_custom(
  6026. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6027. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6028. ext_factor, attn_factor, beta_fast, beta_slow
  6029. );
  6030. cb(Kcur, "Kcur", il);
  6031. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6032. model.layers[il].wo, model.layers[il].bo,
  6033. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6034. cb(cur, "kqv_out", il);
  6035. }
  6036. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6037. cb(ffn_inp, "ffn_inp", il);
  6038. // feed-forward network
  6039. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6040. model.layers[il].ffn_norm, NULL,
  6041. LLM_NORM_RMS, cb, il);
  6042. cb(cur, "ffn_norm", il);
  6043. cur = llm_build_ffn(ctx0, cur,
  6044. model.layers[il].ffn_up, NULL,
  6045. model.layers[il].ffn_gate, NULL,
  6046. model.layers[il].ffn_down, NULL,
  6047. NULL,
  6048. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6049. cb(cur, "ffn_out", il);
  6050. cur = ggml_add(ctx0, cur, ffn_inp);
  6051. cb(cur, "l_out", il);
  6052. // input for next layer
  6053. inpL = cur;
  6054. }
  6055. cur = inpL;
  6056. cur = llm_build_norm(ctx0, cur, hparams,
  6057. model.output_norm, NULL,
  6058. LLM_NORM_RMS, cb, -1);
  6059. cb(cur, "result_norm", -1);
  6060. // lm_head
  6061. cur = ggml_mul_mat(ctx0, model.output, cur);
  6062. cb(cur, "result_output", -1);
  6063. ggml_build_forward_expand(gf, cur);
  6064. return gf;
  6065. }
  6066. // ref: https://arxiv.org/abs/2203.03466
  6067. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  6068. // based on the original build_llama() function
  6069. struct ggml_cgraph * build_minicpm() {
  6070. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6071. const int64_t n_embd_head = hparams.n_embd_head_v;
  6072. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6073. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6074. const int64_t n_embd = hparams.n_embd;
  6075. //TODO: if the model varies, these parameters need to be read from the model
  6076. const int64_t n_embd_base = 256;
  6077. const float scale_embd = 12.0f;
  6078. const float scale_depth = 1.4f;
  6079. struct ggml_tensor * cur;
  6080. struct ggml_tensor * inpL;
  6081. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6082. cb(inpL, "inp_embd", -1);
  6083. // scale the input embeddings
  6084. inpL = ggml_scale(ctx0, inpL, scale_embd);
  6085. cb(inpL, "inp_scaled", -1);
  6086. // inp_pos - contains the positions
  6087. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6088. cb(inp_pos, "inp_pos", -1);
  6089. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6090. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6091. cb(KQ_mask, "KQ_mask", -1);
  6092. for (int il = 0; il < n_layer; ++il) {
  6093. struct ggml_tensor * inpSA = inpL;
  6094. // norm
  6095. cur = llm_build_norm(ctx0, inpL, hparams,
  6096. model.layers[il].attn_norm, NULL,
  6097. LLM_NORM_RMS, cb, il);
  6098. cb(cur, "attn_norm", il);
  6099. // self-attention
  6100. {
  6101. // compute Q and K and RoPE them
  6102. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6103. cb(Qcur, "Qcur", il);
  6104. if (model.layers[il].bq) {
  6105. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6106. cb(Qcur, "Qcur", il);
  6107. }
  6108. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6109. cb(Kcur, "Kcur", il);
  6110. if (model.layers[il].bk) {
  6111. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6112. cb(Kcur, "Kcur", il);
  6113. }
  6114. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6115. cb(Vcur, "Vcur", il);
  6116. if (model.layers[il].bv) {
  6117. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6118. cb(Vcur, "Vcur", il);
  6119. }
  6120. Qcur = ggml_rope_custom(
  6121. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
  6122. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6123. ext_factor, attn_factor, beta_fast, beta_slow
  6124. );
  6125. cb(Qcur, "Qcur", il);
  6126. Kcur = ggml_rope_custom(
  6127. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
  6128. n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6129. ext_factor, attn_factor, beta_fast, beta_slow
  6130. );
  6131. cb(Kcur, "Kcur", il);
  6132. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6133. model.layers[il].wo, model.layers[il].bo,
  6134. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6135. cb(cur, "kqv_out", il);
  6136. }
  6137. // scale_res - scale the hidden states for residual connection
  6138. const float scale_res = scale_depth/sqrtf(float(n_layer));
  6139. cur = ggml_scale(ctx0, cur, scale_res);
  6140. cb(cur, "hidden_scaled", -1);
  6141. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6142. cb(ffn_inp, "ffn_inp", il);
  6143. // feed-forward network
  6144. {
  6145. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6146. model.layers[il].ffn_norm, NULL,
  6147. LLM_NORM_RMS, cb, il);
  6148. cb(cur, "ffn_norm", il);
  6149. cur = llm_build_ffn(ctx0, cur,
  6150. model.layers[il].ffn_up, NULL,
  6151. model.layers[il].ffn_gate, NULL,
  6152. model.layers[il].ffn_down, NULL,
  6153. NULL,
  6154. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6155. cb(cur, "ffn_out", il);
  6156. }
  6157. // scale the hidden states for residual connection
  6158. cur = ggml_scale(ctx0, cur, scale_res);
  6159. cb(cur, "hidden_scaled_ffn", -1);
  6160. cur = ggml_add(ctx0, cur, ffn_inp);
  6161. cb(cur, "l_out", il);
  6162. // input for next layer
  6163. inpL = cur;
  6164. }
  6165. cur = inpL;
  6166. cur = llm_build_norm(ctx0, cur, hparams,
  6167. model.output_norm, NULL,
  6168. LLM_NORM_RMS, cb, -1);
  6169. cb(cur, "result_norm", -1);
  6170. // lm_head scaling
  6171. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  6172. cur = ggml_scale(ctx0, cur, scale_lmhead);
  6173. cb(cur, "lmhead_scaling", -1);
  6174. // lm_head
  6175. cur = ggml_mul_mat(ctx0, model.tok_embd, cur);
  6176. cb(cur, "result_output", -1);
  6177. ggml_build_forward_expand(gf, cur);
  6178. return gf;
  6179. }
  6180. struct ggml_cgraph * build_gemma() {
  6181. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6182. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  6183. struct ggml_tensor * cur;
  6184. struct ggml_tensor * inpL;
  6185. inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
  6186. cb(inpL, "inp_embd", -1);
  6187. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  6188. cb(inpL, "inp_scaled", -1);
  6189. // inp_pos - contains the positions
  6190. struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
  6191. cb(inp_pos, "inp_pos", -1);
  6192. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6193. struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
  6194. cb(KQ_mask, "KQ_mask", -1);
  6195. for (int il = 0; il < n_layer; ++il) {
  6196. // norm
  6197. cur = llm_build_norm(ctx0, inpL, hparams,
  6198. model.layers[il].attn_norm, NULL,
  6199. LLM_NORM_RMS, cb, il);
  6200. cb(cur, "attn_norm", il);
  6201. // self-attention
  6202. {
  6203. // compute Q and K and RoPE them
  6204. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6205. cb(Qcur, "Qcur", il);
  6206. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6207. cb(Kcur, "Kcur", il);
  6208. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6209. cb(Vcur, "Vcur", il);
  6210. Qcur = ggml_rope_custom(
  6211. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos,
  6212. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6213. ext_factor, attn_factor, beta_fast, beta_slow);
  6214. cb(Qcur, "Qcur", il);
  6215. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  6216. cb(Qcur, "Qcur_scaled", il);
  6217. Kcur = ggml_rope_custom(
  6218. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos,
  6219. n_embd_head_k, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
  6220. ext_factor, attn_factor, beta_fast, beta_slow);
  6221. cb(Kcur, "Kcur", il);
  6222. cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
  6223. model.layers[il].wo, NULL,
  6224. Kcur, Vcur, Qcur, KQ_mask, nullptr, n_ctx, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6225. cb(cur, "kqv_out", il);
  6226. }
  6227. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  6228. cb(sa_out, "sa_out", il);
  6229. cur = llm_build_norm(ctx0, sa_out, hparams,
  6230. model.layers[il].ffn_norm, NULL,
  6231. LLM_NORM_RMS, cb, il);
  6232. cb(cur, "ffn_norm", il);
  6233. // feed-forward network
  6234. {
  6235. cur = llm_build_ffn(ctx0, cur,
  6236. model.layers[il].ffn_up, NULL,
  6237. model.layers[il].ffn_gate, NULL,
  6238. model.layers[il].ffn_down, NULL,
  6239. NULL,
  6240. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  6241. cb(cur, "ffn_out", il);
  6242. }
  6243. cur = ggml_add(ctx0, cur, sa_out);
  6244. cb(cur, "l_out", il);
  6245. // input for next layer
  6246. inpL = cur;
  6247. }
  6248. cur = inpL;
  6249. cur = llm_build_norm(ctx0, cur, hparams,
  6250. model.output_norm, NULL,
  6251. LLM_NORM_RMS, cb, -1);
  6252. cb(cur, "result_norm", -1);
  6253. // lm_head
  6254. cur = ggml_mul_mat(ctx0, model.output, cur);
  6255. cb(cur, "result_output", -1);
  6256. ggml_build_forward_expand(gf, cur);
  6257. return gf;
  6258. }
  6259. };
  6260. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  6261. llama_batch dummy;
  6262. dummy.n_tokens = 0;
  6263. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  6264. struct llm_build_context llm(lctx, dummy, cb, false);
  6265. llm.init();
  6266. struct ggml_cgraph * result = llm.build_defrag(ids);
  6267. llm.free();
  6268. return result;
  6269. }
  6270. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  6271. llama_batch dummy;
  6272. dummy.n_tokens = 0;
  6273. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  6274. struct llm_build_context llm(lctx, dummy, cb, false);
  6275. llm.init();
  6276. struct ggml_cgraph * result = llm.build_k_shift();
  6277. llm.free();
  6278. return result;
  6279. }
  6280. static struct ggml_cgraph * llama_build_graph(
  6281. llama_context & lctx,
  6282. const llama_batch & batch,
  6283. bool worst_case) {
  6284. const auto & model = lctx.model;
  6285. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  6286. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  6287. if (il >= 0) {
  6288. ggml_format_name(cur, "%s-%d", name, il);
  6289. } else {
  6290. ggml_set_name(cur, name);
  6291. }
  6292. if (!lctx.cparams.offload_kqv) {
  6293. if (strcmp(name, "kqv_merged_cont") == 0) {
  6294. // all nodes between the KV store and the attention output are run on the CPU
  6295. ggml_backend_sched_set_node_backend(lctx.sched, cur, lctx.backend_cpu);
  6296. }
  6297. }
  6298. };
  6299. struct ggml_cgraph * result = NULL;
  6300. struct llm_build_context llm(lctx, batch, cb, worst_case);
  6301. llm.init();
  6302. switch (model.arch) {
  6303. case LLM_ARCH_LLAMA:
  6304. {
  6305. result = llm.build_llama();
  6306. } break;
  6307. case LLM_ARCH_BAICHUAN:
  6308. {
  6309. result = llm.build_baichuan();
  6310. } break;
  6311. case LLM_ARCH_FALCON:
  6312. {
  6313. result = llm.build_falcon();
  6314. } break;
  6315. case LLM_ARCH_STARCODER:
  6316. {
  6317. result = llm.build_starcoder();
  6318. } break;
  6319. case LLM_ARCH_PERSIMMON:
  6320. {
  6321. result = llm.build_persimmon();
  6322. } break;
  6323. case LLM_ARCH_REFACT:
  6324. {
  6325. result = llm.build_refact();
  6326. } break;
  6327. case LLM_ARCH_BERT:
  6328. case LLM_ARCH_NOMIC_BERT:
  6329. {
  6330. result = llm.build_bert();
  6331. } break;
  6332. case LLM_ARCH_BLOOM:
  6333. {
  6334. result = llm.build_bloom();
  6335. } break;
  6336. case LLM_ARCH_MPT:
  6337. {
  6338. result = llm.build_mpt();
  6339. } break;
  6340. case LLM_ARCH_STABLELM:
  6341. {
  6342. result = llm.build_stablelm();
  6343. } break;
  6344. case LLM_ARCH_QWEN:
  6345. {
  6346. result = llm.build_qwen();
  6347. } break;
  6348. case LLM_ARCH_QWEN2:
  6349. {
  6350. result = llm.build_qwen2();
  6351. } break;
  6352. case LLM_ARCH_PHI2:
  6353. {
  6354. result = llm.build_phi2();
  6355. } break;
  6356. case LLM_ARCH_PLAMO:
  6357. {
  6358. result = llm.build_plamo();
  6359. } break;
  6360. case LLM_ARCH_GPT2:
  6361. {
  6362. result = llm.build_gpt2();
  6363. } break;
  6364. case LLM_ARCH_CODESHELL:
  6365. {
  6366. result = llm.build_codeshell();
  6367. } break;
  6368. case LLM_ARCH_ORION:
  6369. {
  6370. result = llm.build_orion();
  6371. } break;
  6372. case LLM_ARCH_INTERNLM2:
  6373. {
  6374. result = llm.build_internlm2();
  6375. } break;
  6376. case LLM_ARCH_MINICPM:
  6377. {
  6378. result = llm.build_minicpm();
  6379. } break;
  6380. case LLM_ARCH_GEMMA:
  6381. {
  6382. result = llm.build_gemma();
  6383. } break;
  6384. default:
  6385. GGML_ASSERT(false);
  6386. }
  6387. llm.free();
  6388. return result;
  6389. }
  6390. static void llama_set_k_shift(llama_context & lctx) {
  6391. const auto & cparams = lctx.cparams;
  6392. const int64_t n_ctx = cparams.n_ctx;
  6393. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  6394. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  6395. for (int i = 0; i < n_ctx; ++i) {
  6396. data[i] = lctx.kv_self.cells[i].delta;
  6397. }
  6398. }
  6399. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  6400. //
  6401. // set input data
  6402. //
  6403. const auto & hparams = lctx.model.hparams;
  6404. const auto & cparams = lctx.cparams;
  6405. const auto & kv_self = lctx.kv_self;
  6406. if (batch.token) {
  6407. const int64_t n_tokens = batch.n_tokens;
  6408. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  6409. }
  6410. if (batch.embd) {
  6411. const int64_t n_embd = hparams.n_embd;
  6412. const int64_t n_tokens = batch.n_tokens;
  6413. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  6414. }
  6415. if (batch.pos) {
  6416. const int64_t n_tokens = batch.n_tokens;
  6417. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  6418. }
  6419. {
  6420. const int64_t n_kv = kv_self.n;
  6421. const int64_t n_tokens = batch.n_tokens;
  6422. assert(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  6423. float * data = (float *) lctx.inp_KQ_mask->data;
  6424. for (int h = 0; h < 1; ++h) {
  6425. for (int j = 0; j < n_tokens; ++j) {
  6426. const llama_pos pos = batch.pos[j];
  6427. const llama_seq_id seq_id = batch.seq_id[j][0];
  6428. for (int i = 0; i < n_kv; ++i) {
  6429. float f;
  6430. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) ||
  6431. (hparams.causal_attn && lctx.kv_self.cells[i].pos > pos)) {
  6432. f = -INFINITY;
  6433. } else {
  6434. f = 0;
  6435. }
  6436. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  6437. }
  6438. }
  6439. }
  6440. }
  6441. if (hparams.need_kq_pos) {
  6442. const int64_t n_kv = kv_self.n;
  6443. assert(ggml_backend_buffer_is_host(lctx.inp_KQ_pos->buffer));
  6444. float * data = (float *) lctx.inp_KQ_pos->data;
  6445. for (int i = 0; i < n_kv; ++i) {
  6446. data[i] = float(lctx.kv_self.cells[i].pos);
  6447. }
  6448. }
  6449. if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  6450. const int64_t n_tokens = batch.n_tokens;
  6451. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  6452. float * data = (float *) lctx.inp_mean->data;
  6453. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  6454. std::vector<uint64_t> sum(n_tokens, 0);
  6455. for (int i = 0; i < n_tokens; ++i) {
  6456. const llama_seq_id seq_id = batch.seq_id[i][0];
  6457. sum[seq_id] += 1;
  6458. }
  6459. std::vector<float> div(n_tokens, 0.0f);
  6460. for (int i = 0; i < n_tokens; ++i) {
  6461. const uint64_t s = sum[i];
  6462. if (s > 0) {
  6463. div[i] = 1.0f/float(s);
  6464. }
  6465. }
  6466. for (int i = 0; i < n_tokens; ++i) {
  6467. const llama_seq_id seq_id = batch.seq_id[i][0];
  6468. data[seq_id*n_tokens + i] = div[seq_id];
  6469. }
  6470. }
  6471. if (cparams.do_pooling && hparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  6472. const int64_t n_tokens = batch.n_tokens;
  6473. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  6474. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  6475. for (int i = 0; i < n_tokens; ++i) {
  6476. const llama_seq_id seq_id = batch.seq_id[i][0];
  6477. const llama_pos pos = batch.pos[i];
  6478. if (pos == 0) {
  6479. data[seq_id] = i;
  6480. }
  6481. }
  6482. }
  6483. }
  6484. static void llama_graph_compute(
  6485. llama_context & lctx,
  6486. ggml_cgraph * gf,
  6487. int n_threads) {
  6488. #ifdef GGML_USE_MPI
  6489. const int64_t n_layer = lctx.model.hparams.n_layer;
  6490. ggml_mpi_graph_compute_pre(lctx.ctx_mpi, gf, n_layer);
  6491. #endif
  6492. #ifdef GGML_USE_METAL
  6493. if (ggml_backend_is_metal(lctx.backend_metal)) {
  6494. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  6495. }
  6496. #endif
  6497. if (lctx.backend_cpu != nullptr) {
  6498. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  6499. }
  6500. ggml_backend_sched_graph_compute(lctx.sched, gf);
  6501. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  6502. #ifdef GGML_USE_MPI
  6503. ggml_mpi_graph_compute_post(lctx.ctx_mpi, gf, n_layer);
  6504. #endif
  6505. }
  6506. // decode a batch of tokens by evaluating the transformer
  6507. //
  6508. // - lctx: llama context
  6509. // - batch: batch to evaluate
  6510. //
  6511. // return 0 on success
  6512. // return positive int on warning
  6513. // return negative int on error
  6514. //
  6515. static int llama_decode_internal(
  6516. llama_context & lctx,
  6517. llama_batch batch) {
  6518. const uint32_t n_tokens = batch.n_tokens;
  6519. if (n_tokens == 0) {
  6520. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  6521. return -1;
  6522. }
  6523. const auto & model = lctx.model;
  6524. const auto & hparams = model.hparams;
  6525. const auto & cparams = lctx.cparams;
  6526. const auto n_batch = cparams.n_batch;
  6527. GGML_ASSERT(n_tokens <= n_batch);
  6528. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  6529. GGML_ASSERT((!batch.token && batch.embd) || (batch.token && !batch.embd)); // NOLINT
  6530. const int64_t t_start_us = ggml_time_us();
  6531. #ifdef GGML_USE_MPI
  6532. // TODO: needs fix after #3228
  6533. GGML_ASSERT(false && "not implemented");
  6534. //ggml_mpi_eval_init(lctx.ctx_mpi, &n_tokens, &n_past, &n_threads);
  6535. #endif
  6536. GGML_ASSERT(n_threads > 0);
  6537. auto & kv_self = lctx.kv_self;
  6538. const int64_t n_embd = hparams.n_embd;
  6539. const int64_t n_vocab = hparams.n_vocab;
  6540. // helpers for smoother batch API transition
  6541. // after deprecating the llama_eval calls, these will be removed
  6542. std::vector<llama_pos> pos;
  6543. std::vector<int32_t> n_seq_id;
  6544. std::vector<llama_seq_id *> seq_id_arr;
  6545. std::vector<std::vector<llama_seq_id>> seq_id;
  6546. if (batch.pos == nullptr) {
  6547. pos.resize(n_tokens);
  6548. for (uint32_t i = 0; i < n_tokens; i++) {
  6549. pos[i] = batch.all_pos_0 + i*batch.all_pos_1;
  6550. }
  6551. batch.pos = pos.data();
  6552. }
  6553. if (batch.seq_id == nullptr) {
  6554. n_seq_id.resize(n_tokens);
  6555. seq_id.resize(n_tokens);
  6556. seq_id_arr.resize(n_tokens);
  6557. for (uint32_t i = 0; i < n_tokens; i++) {
  6558. n_seq_id[i] = 1;
  6559. seq_id[i].resize(1);
  6560. seq_id[i][0] = batch.all_seq_id;
  6561. seq_id_arr[i] = seq_id[i].data();
  6562. }
  6563. batch.n_seq_id = n_seq_id.data();
  6564. batch.seq_id = seq_id_arr.data();
  6565. }
  6566. // if we have enough unused cells before the current head ->
  6567. // better to start searching from the beginning of the cache, hoping to fill it
  6568. if (kv_self.head > kv_self.used + 2*n_tokens) {
  6569. kv_self.head = 0;
  6570. }
  6571. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  6572. return 1;
  6573. }
  6574. // a heuristic, to avoid attending the full cache if it is not yet utilized
  6575. // after enough generations, the benefit from this heuristic disappears
  6576. // if we start defragmenting the cache, the benefit from this will be more important
  6577. kv_self.n = std::min((int32_t) cparams.n_ctx, std::max(32, GGML_PAD(llama_kv_cache_cell_max(kv_self), 32)));
  6578. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  6579. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  6580. llama_kv_cache_update(&lctx);
  6581. ggml_backend_sched_reset(lctx.sched);
  6582. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  6583. ggml_cgraph * gf = llama_build_graph(lctx, batch, false);
  6584. // the output is always the last tensor in the graph
  6585. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  6586. struct ggml_tensor * embeddings = gf->nodes[gf->n_nodes - 2];
  6587. if (strcmp(res->name, "result_output") == 0) {
  6588. // the embeddings could be the second to last tensor, or the third to last tensor
  6589. if (strcmp(embeddings->name, "result_norm") != 0) {
  6590. embeddings = gf->nodes[gf->n_nodes - 3];
  6591. GGML_ASSERT(strcmp(embeddings->name, "result_norm") == 0);
  6592. }
  6593. } else if (strcmp(res->name, "result_embd") == 0) {
  6594. embeddings = res;
  6595. res = nullptr;
  6596. } else {
  6597. GGML_ASSERT(false);
  6598. }
  6599. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  6600. // for big prompts, if BLAS is enabled, it is better to use only one thread
  6601. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  6602. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  6603. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  6604. // with the BLAS calls. need a better solution
  6605. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  6606. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  6607. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  6608. n_threads = std::min(4, n_threads);
  6609. }
  6610. llama_set_inputs(lctx, batch);
  6611. llama_graph_compute(lctx, gf, n_threads);
  6612. // update the kv ring buffer
  6613. {
  6614. kv_self.head += n_tokens;
  6615. // Ensure kv cache head points to a valid index.
  6616. if (kv_self.head >= kv_self.size) {
  6617. kv_self.head = 0;
  6618. }
  6619. }
  6620. #ifdef GGML_PERF
  6621. // print timing information per ggml operation (for debugging purposes)
  6622. // requires GGML_PERF to be defined
  6623. ggml_graph_print(gf);
  6624. #endif
  6625. // plot the computation graph in dot format (for debugging purposes)
  6626. //if (n_past%100 == 0) {
  6627. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  6628. //}
  6629. // extract logits
  6630. // TODO: do not compute and extract logits if only embeddings are needed
  6631. // need to update the graphs to skip "result_output"
  6632. if (res) {
  6633. auto & logits_out = lctx.logits;
  6634. #ifndef NDEBUG
  6635. auto & logits_valid = lctx.logits_valid;
  6636. logits_valid.clear();
  6637. logits_valid.resize(n_tokens);
  6638. logits_out.clear();
  6639. #endif
  6640. ggml_backend_t res_backend = ggml_backend_sched_get_node_backend(lctx.sched, res);
  6641. GGML_ASSERT(res_backend != nullptr);
  6642. if (batch.logits) {
  6643. logits_out.resize(n_vocab * n_tokens);
  6644. for (uint32_t i = 0; i < n_tokens; i++) {
  6645. if (batch.logits[i] == 0) {
  6646. continue;
  6647. }
  6648. ggml_backend_tensor_get_async(res_backend, res, logits_out.data() + (n_vocab*i), (n_vocab*i)*sizeof(float), n_vocab*sizeof(float));
  6649. #ifndef NDEBUG
  6650. logits_valid[i] = true;
  6651. #endif
  6652. }
  6653. } else if (lctx.logits_all) {
  6654. logits_out.resize(n_vocab * n_tokens);
  6655. ggml_backend_tensor_get_async(res_backend, res, logits_out.data(), 0, n_vocab*n_tokens*sizeof(float));
  6656. #ifndef NDEBUG
  6657. std::fill(logits_valid.begin(), logits_valid.end(), true);
  6658. #endif
  6659. } else {
  6660. logits_out.resize(n_vocab);
  6661. ggml_backend_tensor_get_async(res_backend, res, logits_out.data(), (n_vocab*(n_tokens - 1))*sizeof(float), n_vocab*sizeof(float));
  6662. #ifndef NDEBUG
  6663. logits_valid[0] = true;
  6664. #endif
  6665. }
  6666. ggml_backend_synchronize(res_backend);
  6667. }
  6668. // extract embeddings
  6669. if (!lctx.embedding.empty()) {
  6670. auto & embedding_out = lctx.embedding;
  6671. const int64_t embd_pos = res ? n_embd * (n_tokens-1) : 0;
  6672. const int64_t embd_size = res ? n_embd : n_embd * n_tokens;
  6673. embedding_out.resize(embd_size);
  6674. ggml_backend_t embeddings_backend = ggml_backend_sched_get_node_backend(lctx.sched, embeddings);
  6675. ggml_backend_tensor_get_async(embeddings_backend, embeddings, embedding_out.data(), embd_pos*sizeof(float), embd_size*sizeof(float));
  6676. ggml_backend_synchronize(embeddings_backend);
  6677. }
  6678. // measure the performance only for the single-token evals
  6679. if (n_tokens == 1) {
  6680. lctx.t_eval_us += ggml_time_us() - t_start_us;
  6681. lctx.n_eval++;
  6682. }
  6683. else if (n_tokens > 1) {
  6684. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  6685. lctx.n_p_eval += n_tokens;
  6686. }
  6687. // get a more accurate load time, upon first eval
  6688. // TODO: fix this
  6689. if (!lctx.has_evaluated_once) {
  6690. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  6691. lctx.has_evaluated_once = true;
  6692. }
  6693. return 0;
  6694. }
  6695. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  6696. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  6697. auto & kv_self = lctx.kv_self;
  6698. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  6699. const uint32_t n_used = kv_self.used;
  6700. assert(n_used <= n_kv);
  6701. const int64_t t_start = ggml_time_us();
  6702. // number of cells moved
  6703. uint32_t n_moves = 0;
  6704. // determine which KV cells to move where
  6705. //
  6706. // cell i moves to ids[i]
  6707. //
  6708. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  6709. //
  6710. std::vector<uint32_t> ids(n_kv, n_kv);
  6711. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  6712. const auto & cell0 = kv_self.cells[i0];
  6713. if (!cell0.is_empty()) {
  6714. ids[i0] = i0;
  6715. continue;
  6716. }
  6717. // found a hole - fill it with data from the end of the cache
  6718. // determine the size of the hole
  6719. uint32_t nh = 1;
  6720. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  6721. nh++;
  6722. }
  6723. // starting from the end, find nh non-empty cells
  6724. uint32_t nf = 0;
  6725. uint32_t is = n_kv - 1;
  6726. for (; is > i0; --is) {
  6727. const auto & cell1 = kv_self.cells[is];
  6728. if (cell1.is_empty() || ids[is] != n_kv) {
  6729. continue;
  6730. }
  6731. // non-empty cell which is not yet moved
  6732. nf++;
  6733. if (nf == nh) {
  6734. break;
  6735. }
  6736. }
  6737. // this can only happen if `n_used` is not accurate, which would be a bug
  6738. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  6739. nf = 0;
  6740. // go back and move the nf cells to the hole
  6741. for (uint32_t i1 = is; i1 < n_kv; ++i1) {
  6742. const auto & cell1 = kv_self.cells[i1];
  6743. if (cell1.is_empty() || ids[i1] != n_kv) {
  6744. continue;
  6745. }
  6746. // this cell goes to (i0 + nf)
  6747. ids[i1] = i0 + nf;
  6748. // move the cell meta data
  6749. kv_self.cells[i0 + nf] = cell1;
  6750. n_moves++;
  6751. nf++;
  6752. }
  6753. LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, n_kv, i0, i0 + nh);
  6754. i0 += nh - 1;
  6755. }
  6756. if (n_moves == 0) {
  6757. return;
  6758. }
  6759. LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  6760. kv_self.head = n_used;
  6761. kv_self.used = n_used;
  6762. // zero the rest of the cells
  6763. for (uint32_t i = n_used; i < n_kv; ++i) {
  6764. kv_self.cells[i] = llama_kv_cell();
  6765. }
  6766. #if 0
  6767. // CPU defrag
  6768. //
  6769. // TODO: optimizations are possible:
  6770. // - multiple threads
  6771. // - avoid copying to the host memory when already there
  6772. //
  6773. // likely not worth the effort, as we have ggml_graph based defrag
  6774. //
  6775. const auto & hparams = lctx.model.hparams;
  6776. const uint32_t n_layer = hparams.n_layer;
  6777. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  6778. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  6779. const uint32_t kv_size = kv_self.size;
  6780. std::vector<uint8_t> buf_k;
  6781. std::vector<uint8_t> buf_v;
  6782. for (uint32_t il = 0; il < n_layer; ++il) {
  6783. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  6784. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  6785. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  6786. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  6787. buf_k.resize(k_size);
  6788. buf_v.resize(v_size);
  6789. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  6790. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  6791. // batch move [i, i+nm) to [id, id+nm)
  6792. // note: cells can move only to a lower index
  6793. for (uint32_t i = 0; i < n_kv; ++i) {
  6794. const uint32_t id = ids[i];
  6795. if (i == id || id == n_kv) {
  6796. continue;
  6797. }
  6798. uint32_t nm = 1;
  6799. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  6800. nm++;
  6801. }
  6802. // move keys
  6803. {
  6804. const int64_t os = i*k_size_row;
  6805. const int64_t od = id*k_size_row;
  6806. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  6807. }
  6808. // move values (note: they are transposed)
  6809. {
  6810. const int64_t os = i;
  6811. const int64_t od = id;
  6812. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  6813. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  6814. }
  6815. }
  6816. i += nm - 1;
  6817. }
  6818. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  6819. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  6820. }
  6821. #else
  6822. // ggml_graph defrag
  6823. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  6824. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  6825. #endif
  6826. const int64_t t_end = ggml_time_us();
  6827. LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  6828. }
  6829. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  6830. // apply K-shift if needed
  6831. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  6832. llama_set_k_shift(lctx);
  6833. {
  6834. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  6835. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  6836. }
  6837. {
  6838. auto & kv_self = lctx.kv_self;
  6839. kv_self.has_shift = false;
  6840. for (uint32_t i = 0; i < kv_self.size; ++i) {
  6841. kv_self.cells[i].delta = 0;
  6842. }
  6843. }
  6844. }
  6845. // defragment the KV cache if needed
  6846. if (lctx.kv_self.do_defrag) {
  6847. llama_kv_cache_defrag_internal(lctx);
  6848. lctx.kv_self.do_defrag = false;
  6849. }
  6850. }
  6851. //
  6852. // tokenizer
  6853. //
  6854. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  6855. return vocab.type;
  6856. }
  6857. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  6858. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_NORMAL;
  6859. }
  6860. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  6861. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNKNOWN;
  6862. }
  6863. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  6864. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
  6865. }
  6866. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  6867. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
  6868. }
  6869. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  6870. return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
  6871. }
  6872. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  6873. GGML_ASSERT(llama_is_byte_token(vocab, id));
  6874. const auto& token_data = vocab.id_to_token.at(id);
  6875. switch (llama_vocab_get_type(vocab)) {
  6876. case LLAMA_VOCAB_TYPE_SPM: {
  6877. auto buf = token_data.text.substr(3, 2);
  6878. return strtol(buf.c_str(), NULL, 16);
  6879. }
  6880. case LLAMA_VOCAB_TYPE_BPE: {
  6881. GGML_ASSERT(false);
  6882. return unicode_to_bytes_bpe(token_data.text);
  6883. }
  6884. case LLAMA_VOCAB_TYPE_WPM: {
  6885. GGML_ASSERT(false);
  6886. }
  6887. default:
  6888. GGML_ASSERT(false);
  6889. }
  6890. }
  6891. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  6892. static const char * hex = "0123456789ABCDEF";
  6893. switch (llama_vocab_get_type(vocab)) {
  6894. case LLAMA_VOCAB_TYPE_SPM: {
  6895. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  6896. auto token = vocab.token_to_id.find(buf);
  6897. if (token != vocab.token_to_id.end()) {
  6898. return (*token).second;
  6899. }
  6900. // Try to fall back to just the byte as a string
  6901. const char buf2[2] = { (char)ch, 0 };
  6902. return vocab.token_to_id.at(buf2);
  6903. }
  6904. case LLAMA_VOCAB_TYPE_WPM:
  6905. case LLAMA_VOCAB_TYPE_BPE: {
  6906. return vocab.token_to_id.at(bytes_to_unicode_bpe(ch));
  6907. }
  6908. default:
  6909. GGML_ASSERT(false);
  6910. }
  6911. }
  6912. static void llama_escape_whitespace(std::string & text) {
  6913. replace_all(text, " ", "\xe2\x96\x81");
  6914. }
  6915. static void llama_unescape_whitespace(std::string & word) {
  6916. replace_all(word, "\xe2\x96\x81", " ");
  6917. }
  6918. struct llm_symbol {
  6919. using index = int;
  6920. index prev;
  6921. index next;
  6922. const char * text;
  6923. size_t n;
  6924. };
  6925. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  6926. // SPM tokenizer
  6927. // original implementation:
  6928. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  6929. struct llm_bigram_spm {
  6930. struct comparator {
  6931. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  6932. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  6933. }
  6934. };
  6935. using queue_storage = std::vector<llm_bigram_spm>;
  6936. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  6937. llm_symbol::index left;
  6938. llm_symbol::index right;
  6939. float score;
  6940. size_t size;
  6941. };
  6942. struct llm_tokenizer_spm {
  6943. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  6944. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  6945. // split string into utf8 chars
  6946. int index = 0;
  6947. size_t offs = 0;
  6948. while (offs < text.size()) {
  6949. llm_symbol sym;
  6950. size_t len = utf8_len(text[offs]);
  6951. sym.text = text.c_str() + offs;
  6952. sym.n = std::min(len, text.size() - offs);
  6953. offs += sym.n;
  6954. sym.prev = index - 1;
  6955. sym.next = offs == text.size() ? -1 : index + 1;
  6956. index++;
  6957. symbols.emplace_back(sym);
  6958. }
  6959. // seed the work queue with all possible 2-character tokens.
  6960. for (size_t i = 1; i < symbols.size(); ++i) {
  6961. try_add_bigram(i - 1, i);
  6962. }
  6963. // keep substituting the highest frequency pairs for as long as we can.
  6964. while (!work_queue.empty()) {
  6965. auto bigram = work_queue.top();
  6966. work_queue.pop();
  6967. auto & left_sym = symbols[bigram.left];
  6968. auto & right_sym = symbols[bigram.right];
  6969. // if one of the symbols already got merged, skip it.
  6970. if (left_sym.n == 0 || right_sym.n == 0 ||
  6971. left_sym.n + right_sym.n != bigram.size) {
  6972. continue;
  6973. }
  6974. // merge the right sym into the left one
  6975. left_sym.n += right_sym.n;
  6976. right_sym.n = 0;
  6977. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  6978. // remove the right sym from the chain
  6979. left_sym.next = right_sym.next;
  6980. if (right_sym.next >= 0) {
  6981. symbols[right_sym.next].prev = bigram.left;
  6982. }
  6983. // find more substitutions
  6984. try_add_bigram(left_sym.prev, bigram.left);
  6985. try_add_bigram(bigram.left, left_sym.next);
  6986. }
  6987. for (int i = 0; i != -1; i = symbols[i].next) {
  6988. auto & symbol = symbols[i];
  6989. resegment(symbol, output);
  6990. }
  6991. }
  6992. private:
  6993. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  6994. auto text = std::string(symbol.text, symbol.n);
  6995. auto token = vocab.token_to_id.find(text);
  6996. // Do we need to support is_unused?
  6997. if (token != vocab.token_to_id.end()) {
  6998. output.push_back((*token).second);
  6999. return;
  7000. }
  7001. const auto p = rev_merge.find(text);
  7002. if (p == rev_merge.end()) {
  7003. // output any symbols that did not form tokens as bytes.
  7004. output.reserve(output.size() + symbol.n);
  7005. for (int j = 0; j < (int)symbol.n; ++j) {
  7006. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  7007. output.push_back(token_id);
  7008. }
  7009. return;
  7010. }
  7011. resegment(symbols[p->second.first], output);
  7012. resegment(symbols[p->second.second], output);
  7013. }
  7014. void try_add_bigram(int left, int right) {
  7015. if (left == -1 || right == -1) {
  7016. return;
  7017. }
  7018. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  7019. auto token = vocab.token_to_id.find(text);
  7020. if (token == vocab.token_to_id.end()) {
  7021. return;
  7022. }
  7023. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  7024. return;
  7025. }
  7026. const auto & tok_data = vocab.id_to_token[(*token).second];
  7027. llm_bigram_spm bigram;
  7028. bigram.left = left;
  7029. bigram.right = right;
  7030. bigram.score = tok_data.score;
  7031. bigram.size = text.size();
  7032. work_queue.push(bigram);
  7033. // Do we need to support is_unused?
  7034. rev_merge[text] = std::make_pair(left, right);
  7035. }
  7036. const llama_vocab & vocab;
  7037. std::vector<llm_symbol> symbols;
  7038. llm_bigram_spm::queue work_queue;
  7039. std::map<std::string, std::pair<int, int>> rev_merge;
  7040. };
  7041. // BPE tokenizer
  7042. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  7043. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  7044. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  7045. struct llm_bigram_bpe {
  7046. struct comparator {
  7047. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  7048. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  7049. }
  7050. };
  7051. using queue_storage = std::vector<llm_bigram_bpe>;
  7052. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  7053. llm_symbol::index left;
  7054. llm_symbol::index right;
  7055. std::string text;
  7056. int rank;
  7057. size_t size;
  7058. };
  7059. struct llm_tokenizer_bpe {
  7060. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  7061. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  7062. int final_prev_index = -1;
  7063. auto word_collection = bpe_gpt2_preprocess(text);
  7064. symbols_final.clear();
  7065. for (auto & word : word_collection) {
  7066. work_queue = llm_bigram_bpe::queue();
  7067. symbols.clear();
  7068. int index = 0;
  7069. size_t offset = 0;
  7070. while (offset < word.size()) {
  7071. llm_symbol sym;
  7072. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  7073. sym.text = word.c_str() + offset;
  7074. sym.n = char_len;
  7075. offset += sym.n;
  7076. sym.prev = index - 1;
  7077. sym.next = offset == word.size() ? -1 : index + 1;
  7078. index++;
  7079. symbols.emplace_back(sym);
  7080. }
  7081. for (size_t i = 1; i < symbols.size(); ++i) {
  7082. add_new_bigram(i - 1, i);
  7083. }
  7084. // build token(s)
  7085. while (!work_queue.empty()) {
  7086. auto bigram = work_queue.top();
  7087. work_queue.pop();
  7088. auto & left_symbol = symbols[bigram.left];
  7089. auto & right_symbol = symbols[bigram.right];
  7090. if (left_symbol.n == 0 || right_symbol.n == 0) {
  7091. continue;
  7092. }
  7093. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  7094. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  7095. if (left_token + right_token != bigram.text) {
  7096. continue; // Skip this bigram if it's outdated
  7097. }
  7098. // merge the right sym into the left one
  7099. left_symbol.n += right_symbol.n;
  7100. right_symbol.n = 0;
  7101. // remove the right sym from the chain
  7102. left_symbol.next = right_symbol.next;
  7103. if (right_symbol.next >= 0) {
  7104. symbols[right_symbol.next].prev = bigram.left;
  7105. }
  7106. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  7107. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  7108. }
  7109. // add the fnished tokens to the final list keeping correct order for next and prev
  7110. for (auto & sym : symbols) {
  7111. if (sym.n > 0) {
  7112. sym.prev = final_prev_index;
  7113. sym.next = -1;
  7114. if (final_prev_index != -1) {
  7115. symbols_final[final_prev_index].next = symbols_final.size();
  7116. }
  7117. symbols_final.emplace_back(sym);
  7118. final_prev_index = symbols_final.size() - 1;
  7119. }
  7120. }
  7121. }
  7122. symbols = symbols_final;
  7123. if (!symbols.empty()) {
  7124. for (int i = 0; i != -1; i = symbols[i].next) {
  7125. auto & symbol = symbols[i];
  7126. if (symbol.n == 0) {
  7127. continue;
  7128. }
  7129. const std::string str = std::string(symbol.text, symbol.n);
  7130. const auto token = vocab.token_to_id.find(str);
  7131. if (token == vocab.token_to_id.end()) {
  7132. for (auto j = str.begin(); j != str.end(); ++j) {
  7133. std::string byte_str(1, *j);
  7134. auto token_multibyte = vocab.token_to_id.find(byte_str);
  7135. if (token_multibyte == vocab.token_to_id.end()) {
  7136. throw std::runtime_error("ERROR: byte not found in vocab");
  7137. }
  7138. output.push_back((*token_multibyte).second);
  7139. }
  7140. } else {
  7141. output.push_back((*token).second);
  7142. }
  7143. }
  7144. }
  7145. }
  7146. private:
  7147. void add_new_bigram(int left, int right) {
  7148. if (left == -1 || right == -1) {
  7149. return;
  7150. }
  7151. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  7152. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  7153. int rank_found = -1;
  7154. rank_found = vocab.find_bpe_rank(left_token, right_token);
  7155. if (rank_found < 0) {
  7156. return;
  7157. }
  7158. llm_bigram_bpe bigram;
  7159. bigram.left = left;
  7160. bigram.right = right;
  7161. bigram.text = left_token + right_token;
  7162. bigram.size = left_token.size() + right_token.size();
  7163. bigram.rank = rank_found;
  7164. work_queue.push(bigram);
  7165. }
  7166. std::vector<std::string> bpe_gpt2_preprocess(const std::string & text) {
  7167. std::vector<std::string> bpe_words;
  7168. std::vector<std::string> bpe_encoded_words;
  7169. std::string token = "";
  7170. // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+
  7171. bool collecting_numeric = false;
  7172. bool collecting_letter = false;
  7173. bool collecting_special = false;
  7174. bool collecting_whitespace_lookahead = false;
  7175. bool collecting = false;
  7176. std::vector<std::string> text_utf;
  7177. text_utf.reserve(text.size());
  7178. bpe_words.reserve(text.size());
  7179. bpe_encoded_words.reserve(text.size());
  7180. auto cps = codepoints_from_utf8(text);
  7181. for (size_t i = 0; i < cps.size(); ++i)
  7182. text_utf.emplace_back(codepoint_to_utf8(cps[i]));
  7183. for (int i = 0; i < (int)text_utf.size(); i++) {
  7184. const std::string & utf_char = text_utf[i];
  7185. bool split_condition = false;
  7186. int bytes_remain = text_utf.size() - i;
  7187. // forward backward lookups
  7188. const std::string & utf_char_next = (i + 1 < (int)text_utf.size()) ? text_utf[i + 1] : "";
  7189. const std::string & utf_char_next_next = (i + 2 < (int)text_utf.size()) ? text_utf[i + 2] : "";
  7190. // handling contractions
  7191. if (!split_condition && bytes_remain >= 2) {
  7192. // 's|'t|'m|'d
  7193. if (utf_char == "\'" && (utf_char_next == "s" || utf_char_next == "t" || utf_char_next == "m" || utf_char_next == "d")) {
  7194. split_condition = true;
  7195. }
  7196. if (split_condition) {
  7197. if (token.size()) {
  7198. bpe_words.emplace_back(token); // push previous content as token
  7199. }
  7200. token = utf_char + utf_char_next;
  7201. bpe_words.emplace_back(token);
  7202. token = "";
  7203. i++;
  7204. continue;
  7205. }
  7206. }
  7207. if (!split_condition && bytes_remain >= 3) {
  7208. // 're|'ve|'ll
  7209. if (utf_char == "\'" && (
  7210. (utf_char_next == "r" && utf_char_next_next == "e") ||
  7211. (utf_char_next == "v" && utf_char_next_next == "e") ||
  7212. (utf_char_next == "l" && utf_char_next_next == "l"))
  7213. ) {
  7214. split_condition = true;
  7215. }
  7216. if (split_condition) {
  7217. // current token + next token can be defined
  7218. if (token.size()) {
  7219. bpe_words.emplace_back(token); // push previous content as token
  7220. }
  7221. token = utf_char + utf_char_next + utf_char_next_next;
  7222. bpe_words.emplace_back(token); // the contraction
  7223. token = "";
  7224. i += 2;
  7225. continue;
  7226. }
  7227. }
  7228. if (!split_condition && !collecting) {
  7229. if (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER)) {
  7230. collecting_letter = true;
  7231. collecting = true;
  7232. }
  7233. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || (!token.size() && utf_char == " " && codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  7234. collecting_numeric = true;
  7235. collecting = true;
  7236. }
  7237. else if (
  7238. ((codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) && (codepoint_type(utf_char) != CODEPOINT_TYPE_WHITESPACE)) ||
  7239. (!token.size() && utf_char == " " && codepoint_type(utf_char_next) != CODEPOINT_TYPE_LETTER && codepoint_type(utf_char_next) != CODEPOINT_TYPE_DIGIT && codepoint_type(utf_char_next) != CODEPOINT_TYPE_WHITESPACE)
  7240. ) {
  7241. collecting_special = true;
  7242. collecting = true;
  7243. }
  7244. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE && codepoint_type(utf_char_next) == CODEPOINT_TYPE_WHITESPACE) {
  7245. collecting_whitespace_lookahead = true;
  7246. collecting = true;
  7247. }
  7248. else if (codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE) {
  7249. split_condition = true;
  7250. }
  7251. }
  7252. else if (!split_condition && collecting) {
  7253. if (collecting_letter && codepoint_type(utf_char) != CODEPOINT_TYPE_LETTER) {
  7254. split_condition = true;
  7255. }
  7256. else if (collecting_numeric && codepoint_type(utf_char) != CODEPOINT_TYPE_DIGIT) {
  7257. split_condition = true;
  7258. }
  7259. else if (collecting_special && (codepoint_type(utf_char) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char) == CODEPOINT_TYPE_DIGIT || codepoint_type(utf_char) == CODEPOINT_TYPE_WHITESPACE)) {
  7260. split_condition = true;
  7261. }
  7262. else if (collecting_whitespace_lookahead && (codepoint_type(utf_char_next) == CODEPOINT_TYPE_LETTER || codepoint_type(utf_char_next) == CODEPOINT_TYPE_DIGIT)) {
  7263. split_condition = true;
  7264. }
  7265. }
  7266. if (utf_char_next == "") {
  7267. split_condition = true; // final
  7268. token += utf_char;
  7269. }
  7270. if (split_condition) {
  7271. if (token.size()) {
  7272. bpe_words.emplace_back(token);
  7273. }
  7274. token = utf_char;
  7275. collecting = false;
  7276. collecting_letter = false;
  7277. collecting_numeric = false;
  7278. collecting_special = false;
  7279. collecting_whitespace_lookahead = false;
  7280. }
  7281. else {
  7282. token += utf_char;
  7283. }
  7284. }
  7285. for (std::string & word : bpe_words) {
  7286. std::string encoded_token = "";
  7287. for (char & c : word) {
  7288. encoded_token += bytes_to_unicode_bpe(c);
  7289. }
  7290. bpe_encoded_words.emplace_back(encoded_token);
  7291. }
  7292. return bpe_encoded_words;
  7293. }
  7294. const llama_vocab & vocab;
  7295. std::vector<llm_symbol> symbols;
  7296. std::vector<llm_symbol> symbols_final;
  7297. llm_bigram_bpe::queue work_queue;
  7298. };
  7299. struct llm_tokenizer_wpm {
  7300. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  7301. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  7302. auto * token_map = &vocab.token_to_id;
  7303. // normalize and split by whitespace
  7304. std::vector<std::string> words = preprocess(text);
  7305. // bos token prepended already
  7306. // find the longest tokens that form the words
  7307. for (const std::string &word : words) {
  7308. // skip empty words
  7309. if (word.size() == 0) {
  7310. continue;
  7311. }
  7312. // prepend phantom space
  7313. std::string word1 = "\xe2\x96\x81" + word;
  7314. int n = word1.size();
  7315. // we're at the start of a new word
  7316. int i = 0;
  7317. bool match_any = false;
  7318. // move through character position in word
  7319. while (i < n) {
  7320. // loop through possible match length
  7321. bool match = false;
  7322. for (int j = n; j > i; j--) {
  7323. auto it = token_map->find(word1.substr(i, j - i));
  7324. if (it != token_map->end()) {
  7325. output.push_back(it->second);
  7326. match = true;
  7327. match_any = true;
  7328. i = j;
  7329. break;
  7330. }
  7331. }
  7332. // must be an unknown character
  7333. if (!match) {
  7334. i++;
  7335. }
  7336. }
  7337. // we didn't find any matches for this word
  7338. if (!match_any) {
  7339. output.push_back(vocab.special_unk_id);
  7340. }
  7341. }
  7342. // append eos token
  7343. output.push_back(vocab.special_eos_id);
  7344. }
  7345. std::vector<std::string> preprocess(const std::string & text) {
  7346. std::string ori_str = normalize(text);
  7347. uint64_t ori_size = ori_str.size();
  7348. // single punct / single symbol / single digit
  7349. // baseline: add whitespace on the left and right of punct and chinese characters
  7350. std::vector<std::string> words;
  7351. std::string new_str = "";
  7352. uint64_t i = 0;
  7353. while (i < ori_size) {
  7354. int utf_char_len = utf8_len(ori_str[i]);
  7355. if ((utf_char_len == 1) && ispunct(ori_str[i])) {
  7356. new_str += " ";
  7357. new_str += ori_str[i];
  7358. new_str += " ";
  7359. i += 1;
  7360. }
  7361. else if ((utf_char_len == 3) && is_chinese_char(ori_str.substr(i, 3))) {
  7362. new_str += " ";
  7363. new_str += ori_str.substr(i, 3);
  7364. new_str += " ";
  7365. i += 3;
  7366. }
  7367. else {
  7368. new_str += ori_str[i];
  7369. i += 1;
  7370. }
  7371. }
  7372. // split by whitespace
  7373. uint64_t l = 0;
  7374. uint64_t r = 0;
  7375. while (r < new_str.size()) {
  7376. // if is whitespace
  7377. if (isspace(new_str[r])) {
  7378. if (r > l) words.push_back(new_str.substr(l, (r - l)));
  7379. l = r + 1;
  7380. r = l;
  7381. }
  7382. else {
  7383. r += 1;
  7384. }
  7385. }
  7386. if (r > l) {
  7387. words.push_back(new_str.substr(l, (r - l)));
  7388. }
  7389. return words;
  7390. }
  7391. std::string normalize(const std::string & text) {
  7392. // TODO: handle chinese characters? https://github.com/huggingface/tokenizers/blob/ef5f50605ddf9f8caef1598c0e4853862b9707a7/tokenizers/src/normalizers/bert.rs#L98
  7393. std::string text2 = strip_accents(text);
  7394. for (size_t i = 0; i < text2.size(); i += utf8_len(text2[i])) {
  7395. char c = text2[i];
  7396. if (c >= 'A' && c <= 'Z') {
  7397. text2[i] = c - 'A' + 'a';
  7398. }
  7399. }
  7400. return text2;
  7401. }
  7402. bool is_chinese_char(const std::string & str) {
  7403. int len = str.length();
  7404. unsigned int codepoint = 0;
  7405. int num_bytes = 0;
  7406. int i = 0;
  7407. unsigned char ch = static_cast<unsigned char>(str[i]);
  7408. if (ch <= 0x7f) {
  7409. codepoint = ch;
  7410. num_bytes = 1;
  7411. } else if ((ch >> 5) == 0x06) {
  7412. codepoint = ch & 0x1f;
  7413. num_bytes = 2;
  7414. } else if ((ch >> 4) == 0x0e) {
  7415. codepoint = ch & 0x0f;
  7416. num_bytes = 3;
  7417. } else if ((ch >> 3) == 0x1e) {
  7418. codepoint = ch & 0x07;
  7419. num_bytes = 4;
  7420. }
  7421. for (int j = 1; j < num_bytes; ++j) {
  7422. if (i + j >= len) {
  7423. return false; // incomplete UTF-8 character
  7424. }
  7425. unsigned char next_ch = static_cast<unsigned char>(str[i + j]);
  7426. if ((next_ch >> 6) != 0x02) {
  7427. return false; // invalid trailing byte
  7428. }
  7429. codepoint = (codepoint << 6) | (next_ch & 0x3f);
  7430. }
  7431. if ((codepoint >= 0x4E00 && codepoint <= 0x9FFF) ||
  7432. (codepoint >= 0x3400 && codepoint <= 0x4DBF) ||
  7433. (codepoint >= 0x20000 && codepoint <= 0x2A6DF) ||
  7434. (codepoint >= 0x2A700 && codepoint <= 0x2B73F) ||
  7435. (codepoint >= 0x2B740 && codepoint <= 0x2B81F) ||
  7436. (codepoint >= 0x2B920 && codepoint <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  7437. (codepoint >= 0xF900 && codepoint <= 0xFAFF) ||
  7438. (codepoint >= 0x2F800 && codepoint <= 0x2FA1F) ||
  7439. (codepoint >= 0x3000 && codepoint <= 0x303F) ||
  7440. (codepoint >= 0xFF00 && codepoint <= 0xFFEF)) {
  7441. return true; // NOLINT
  7442. }
  7443. return false;
  7444. }
  7445. std::string strip_accents(const std::string & input_string) {
  7446. std::string resultString;
  7447. std::map<std::string, char> accent_map = {
  7448. {"À", 'A'}, {"Á", 'A'}, {"Â", 'A'}, {"Ã", 'A'}, {"Ä", 'A'}, {"Å", 'A'},
  7449. {"à", 'a'}, {"á", 'a'}, {"â", 'a'}, {"ã", 'a'}, {"ä", 'a'}, {"å", 'a'},
  7450. {"È", 'E'}, {"É", 'E'}, {"Ê", 'E'}, {"Ë", 'E'}, {"è", 'e'}, {"é", 'e'},
  7451. {"ê", 'e'}, {"ë", 'e'}, {"Ì", 'I'}, {"Í", 'I'}, {"Î", 'I'}, {"Ï", 'I'},
  7452. {"ì", 'i'}, {"í", 'i'}, {"î", 'i'}, {"ï", 'i'}, {"Ò", 'O'}, {"Ó", 'O'},
  7453. {"Ô", 'O'}, {"Õ", 'O'}, {"Ö", 'O'}, {"ò", 'o'}, {"ó", 'o'}, {"ô", 'o'},
  7454. {"õ", 'o'}, {"ö", 'o'}, {"Ù", 'U'}, {"Ú", 'U'}, {"Û", 'U'}, {"Ü", 'U'},
  7455. {"ù", 'u'}, {"ú", 'u'}, {"û", 'u'}, {"ü", 'u'}, {"Ý", 'Y'}, {"ý", 'y'},
  7456. {"Ç", 'C'}, {"ç", 'c'}, {"Ñ", 'N'}, {"ñ", 'n'},
  7457. };
  7458. for (size_t i = 0; i < input_string.length();) {
  7459. int len = utf8_len(input_string[i]);
  7460. std::string curChar = input_string.substr(i, len);
  7461. auto iter = accent_map.find(curChar);
  7462. if (iter != accent_map.end()) {
  7463. resultString += iter->second;
  7464. } else {
  7465. resultString += curChar;
  7466. }
  7467. i += len;
  7468. }
  7469. return resultString;
  7470. }
  7471. static size_t utf8_len(char src) {
  7472. const size_t lookup[] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4};
  7473. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  7474. return lookup[highbits];
  7475. }
  7476. const llama_vocab & vocab;
  7477. };
  7478. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  7479. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  7480. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  7481. } FRAGMENT_BUFFER_VARIANT_TYPE;
  7482. struct fragment_buffer_variant {
  7483. fragment_buffer_variant(llama_vocab::id _token)
  7484. :
  7485. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  7486. token(_token),
  7487. raw_text(_dummy),
  7488. offset(0),
  7489. length(0) {}
  7490. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  7491. :
  7492. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  7493. token((llama_vocab::id) - 1),
  7494. raw_text(_raw_text),
  7495. offset(_offset),
  7496. length(_length){
  7497. GGML_ASSERT(_offset >= 0);
  7498. GGML_ASSERT(_length >= 1);
  7499. GGML_ASSERT(offset + length <= raw_text.length());
  7500. }
  7501. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  7502. const llama_vocab::id token;
  7503. const std::string _dummy;
  7504. const std::string & raw_text;
  7505. const uint64_t offset;
  7506. const uint64_t length;
  7507. };
  7508. // #define PRETOKENIZERDEBUG
  7509. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  7510. // for each special token
  7511. for (const auto & st: vocab.special_tokens_cache) {
  7512. const auto & special_token = st.first;
  7513. const auto & special_id = st.second;
  7514. // for each text fragment
  7515. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  7516. while (it != buffer.end()) {
  7517. auto & fragment = (*it);
  7518. // if a fragment is text ( not yet processed )
  7519. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  7520. auto * raw_text = &(fragment.raw_text);
  7521. auto raw_text_base_offset = fragment.offset;
  7522. auto raw_text_base_length = fragment.length;
  7523. // loop over the text
  7524. while (true) {
  7525. // find the first occurrence of a given special token in this fragment
  7526. // passing offset argument only limit the "search area" but match coordinates
  7527. // are still relative to the source full raw_text
  7528. auto match = raw_text->find(special_token, raw_text_base_offset);
  7529. // no occurrences found, stop processing this fragment for a given special token
  7530. if (match == std::string::npos) break;
  7531. // check if match is within bounds of offset <-> length
  7532. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  7533. #ifdef PRETOKENIZERDEBUG
  7534. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  7535. #endif
  7536. auto source = std::distance(buffer.begin(), it);
  7537. // if match is further than base offset
  7538. // then we have some text to the left of it
  7539. if (match > raw_text_base_offset) {
  7540. // left
  7541. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  7542. const int64_t left_reminder_length = match - raw_text_base_offset;
  7543. buffer.emplace_after(it, (*raw_text), left_reminder_offset, left_reminder_length);
  7544. #ifdef PRETOKENIZERDEBUG
  7545. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  7546. #endif
  7547. it++;
  7548. }
  7549. // special token
  7550. buffer.emplace_after(it, special_id);
  7551. it++;
  7552. // right
  7553. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  7554. const int64_t right_reminder_offset = match + special_token.length();
  7555. const int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  7556. buffer.emplace_after(it, (*raw_text), right_reminder_offset, right_reminder_length);
  7557. #ifdef PRETOKENIZERDEBUG
  7558. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  7559. #endif
  7560. it++;
  7561. if (source == 0) {
  7562. buffer.erase_after(buffer.before_begin());
  7563. } else {
  7564. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  7565. }
  7566. // repeat for the right side
  7567. raw_text_base_offset = right_reminder_offset;
  7568. raw_text_base_length = right_reminder_length;
  7569. #ifdef PRETOKENIZERDEBUG
  7570. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  7571. #endif
  7572. } else {
  7573. if (source == 0) {
  7574. buffer.erase_after(buffer.before_begin());
  7575. } else {
  7576. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  7577. }
  7578. break;
  7579. }
  7580. }
  7581. }
  7582. it++;
  7583. }
  7584. }
  7585. }
  7586. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool bos, bool special) {
  7587. std::vector<llama_vocab::id> output;
  7588. // OG tokenizer behavior:
  7589. //
  7590. // tokenizer.encode('', add_bos=True) returns [1]
  7591. // tokenizer.encode('', add_bos=False) returns []
  7592. if (bos && vocab.special_bos_id != -1) {
  7593. output.push_back(vocab.special_bos_id);
  7594. }
  7595. if (raw_text.empty()) {
  7596. return output;
  7597. }
  7598. std::forward_list<fragment_buffer_variant> fragment_buffer;
  7599. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  7600. if (special) tokenizer_st_partition(vocab, fragment_buffer);
  7601. switch (vocab.type) {
  7602. case LLAMA_VOCAB_TYPE_SPM:
  7603. {
  7604. for (const auto & fragment : fragment_buffer) {
  7605. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  7606. // without adding this leading whitespace, we do not get the same results as the original tokenizer
  7607. // TODO: It's likely possible to get rid of this string copy entirely
  7608. // by modifying llm_tokenizer_x to operate with string offsets like pre-tokenizer
  7609. // and passing 'add space prefix' as bool argument
  7610. //
  7611. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  7612. if (&fragment == &fragment_buffer.front()) {
  7613. if (vocab.add_space_prefix) {
  7614. raw_text = " " + raw_text; // prefix with space if the first token is not special
  7615. }
  7616. }
  7617. #ifdef PRETOKENIZERDEBUG
  7618. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  7619. #endif
  7620. llm_tokenizer_spm tokenizer(vocab);
  7621. llama_escape_whitespace(raw_text);
  7622. tokenizer.tokenize(raw_text, output);
  7623. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  7624. output.push_back(fragment.token);
  7625. }
  7626. }
  7627. } break;
  7628. case LLAMA_VOCAB_TYPE_BPE:
  7629. {
  7630. for (const auto & fragment : fragment_buffer) {
  7631. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  7632. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  7633. #ifdef PRETOKENIZERDEBUG
  7634. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  7635. #endif
  7636. llm_tokenizer_bpe tokenizer(vocab);
  7637. tokenizer.tokenize(raw_text, output);
  7638. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  7639. output.push_back(fragment.token);
  7640. }
  7641. }
  7642. } break;
  7643. case LLAMA_VOCAB_TYPE_WPM:
  7644. {
  7645. for (const auto & fragment : fragment_buffer) {
  7646. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  7647. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  7648. #ifdef PRETOKENIZERDEBUG
  7649. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  7650. #endif
  7651. llm_tokenizer_wpm tokenizer(vocab);
  7652. tokenizer.tokenize(raw_text, output);
  7653. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  7654. output.push_back(fragment.token);
  7655. }
  7656. }
  7657. } break;
  7658. }
  7659. return output;
  7660. }
  7661. //
  7662. // grammar - internal
  7663. //
  7664. struct llama_partial_utf8 {
  7665. uint32_t value; // bit value so far (unshifted)
  7666. int n_remain; // num bytes remaining; -1 indicates invalid sequence
  7667. };
  7668. struct llama_grammar {
  7669. const std::vector<std::vector<llama_grammar_element>> rules;
  7670. std::vector<std::vector<const llama_grammar_element *>> stacks;
  7671. // buffer for partially generated UTF-8 sequence from accepted tokens
  7672. llama_partial_utf8 partial_utf8;
  7673. };
  7674. struct llama_grammar_candidate {
  7675. size_t index;
  7676. const uint32_t * code_points;
  7677. llama_partial_utf8 partial_utf8;
  7678. };
  7679. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  7680. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  7681. static std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  7682. const std::string & src,
  7683. llama_partial_utf8 partial_start) {
  7684. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  7685. const char * pos = src.c_str();
  7686. std::vector<uint32_t> code_points;
  7687. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  7688. code_points.reserve(src.size() + 1);
  7689. uint32_t value = partial_start.value;
  7690. int n_remain = partial_start.n_remain;
  7691. // continue previous decode, if applicable
  7692. while (*pos != 0 && n_remain > 0) {
  7693. uint8_t next_byte = static_cast<uint8_t>(*pos);
  7694. if ((next_byte >> 6) != 2) {
  7695. // invalid sequence, abort
  7696. code_points.push_back(0);
  7697. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  7698. }
  7699. value = (value << 6) + (next_byte & 0x3F);
  7700. ++pos;
  7701. --n_remain;
  7702. }
  7703. if (partial_start.n_remain > 0 && n_remain == 0) {
  7704. code_points.push_back(value);
  7705. }
  7706. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  7707. while (*pos != 0) {
  7708. uint8_t first_byte = static_cast<uint8_t>(*pos);
  7709. uint8_t highbits = first_byte >> 4;
  7710. n_remain = lookup[highbits] - 1;
  7711. if (n_remain < 0) {
  7712. // invalid sequence, abort
  7713. code_points.clear();
  7714. code_points.push_back(0);
  7715. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  7716. }
  7717. uint8_t mask = (1 << (7 - n_remain)) - 1;
  7718. value = first_byte & mask;
  7719. ++pos;
  7720. while (*pos != 0 && n_remain > 0) {
  7721. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  7722. ++pos;
  7723. --n_remain;
  7724. }
  7725. if (n_remain == 0) {
  7726. code_points.push_back(value);
  7727. }
  7728. }
  7729. code_points.push_back(0);
  7730. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  7731. }
  7732. // returns true iff pos points to the end of one of the definitions of a rule
  7733. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  7734. switch (pos->type) {
  7735. case LLAMA_GRETYPE_END: return true; // NOLINT
  7736. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  7737. default: return false;
  7738. }
  7739. }
  7740. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  7741. // asserts that pos is pointing to a char range element
  7742. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  7743. const llama_grammar_element * pos,
  7744. const uint32_t chr) {
  7745. bool found = false;
  7746. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  7747. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  7748. do {
  7749. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  7750. // inclusive range, e.g. [a-z]
  7751. found = found || (pos->value <= chr && chr <= pos[1].value);
  7752. pos += 2;
  7753. } else {
  7754. // exact char match, e.g. [a] or "a"
  7755. found = found || pos->value == chr;
  7756. pos += 1;
  7757. }
  7758. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  7759. return std::make_pair(found == is_positive_char, pos);
  7760. }
  7761. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  7762. // range at pos (regular or inverse range)
  7763. // asserts that pos is pointing to a char range element
  7764. static bool llama_grammar_match_partial_char(
  7765. const llama_grammar_element * pos,
  7766. const llama_partial_utf8 partial_utf8) {
  7767. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  7768. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  7769. uint32_t partial_value = partial_utf8.value;
  7770. int n_remain = partial_utf8.n_remain;
  7771. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  7772. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  7773. return false;
  7774. }
  7775. // range of possible code points this partial UTF-8 sequence could complete to
  7776. uint32_t low = partial_value << (n_remain * 6);
  7777. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  7778. if (low == 0) {
  7779. if (n_remain == 2) {
  7780. low = 1 << 11;
  7781. } else if (n_remain == 3) {
  7782. low = 1 << 16;
  7783. }
  7784. }
  7785. do {
  7786. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  7787. // inclusive range, e.g. [a-z]
  7788. if (pos->value <= high && low <= pos[1].value) {
  7789. return is_positive_char;
  7790. }
  7791. pos += 2;
  7792. } else {
  7793. // exact char match, e.g. [a] or "a"
  7794. if (low <= pos->value && pos->value <= high) {
  7795. return is_positive_char;
  7796. }
  7797. pos += 1;
  7798. }
  7799. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  7800. return !is_positive_char;
  7801. }
  7802. // transforms a grammar pushdown stack into N possible stacks, all ending
  7803. // at a character range (terminal element)
  7804. static void llama_grammar_advance_stack(
  7805. const std::vector<std::vector<llama_grammar_element>> & rules,
  7806. const std::vector<const llama_grammar_element *> & stack,
  7807. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  7808. if (stack.empty()) {
  7809. new_stacks.emplace_back(stack);
  7810. return;
  7811. }
  7812. const llama_grammar_element * pos = stack.back();
  7813. switch (pos->type) {
  7814. case LLAMA_GRETYPE_RULE_REF: {
  7815. const size_t rule_id = static_cast<size_t>(pos->value);
  7816. const llama_grammar_element * subpos = rules[rule_id].data();
  7817. do {
  7818. // init new stack without the top (pos)
  7819. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  7820. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  7821. // if this rule ref is followed by another element, add that to stack
  7822. new_stack.push_back(pos + 1);
  7823. }
  7824. if (!llama_grammar_is_end_of_sequence(subpos)) {
  7825. // if alternate is nonempty, add to stack
  7826. new_stack.push_back(subpos);
  7827. }
  7828. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  7829. while (!llama_grammar_is_end_of_sequence(subpos)) {
  7830. // scan to end of alternate def
  7831. subpos++;
  7832. }
  7833. if (subpos->type == LLAMA_GRETYPE_ALT) {
  7834. // there's another alternate def of this rule to process
  7835. subpos++;
  7836. } else {
  7837. break;
  7838. }
  7839. } while (true);
  7840. break;
  7841. }
  7842. case LLAMA_GRETYPE_CHAR:
  7843. case LLAMA_GRETYPE_CHAR_NOT:
  7844. new_stacks.emplace_back(stack);
  7845. break;
  7846. default:
  7847. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  7848. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  7849. // those
  7850. GGML_ASSERT(false);
  7851. }
  7852. }
  7853. // takes a set of possible pushdown stacks on a grammar, which are required to
  7854. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  7855. // produces the N possible stacks if the given char is accepted at those
  7856. // positions
  7857. static std::vector<std::vector<const llama_grammar_element *>> llama_grammar_accept(
  7858. const std::vector<std::vector<llama_grammar_element>> & rules,
  7859. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  7860. const uint32_t chr) {
  7861. std::vector<std::vector<const llama_grammar_element *>> new_stacks;
  7862. for (const auto & stack : stacks) {
  7863. if (stack.empty()) {
  7864. continue;
  7865. }
  7866. auto match = llama_grammar_match_char(stack.back(), chr);
  7867. if (match.first) {
  7868. const llama_grammar_element * pos = match.second;
  7869. // update top of stack to next element, if any
  7870. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  7871. if (!llama_grammar_is_end_of_sequence(pos)) {
  7872. new_stack.push_back(pos);
  7873. }
  7874. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  7875. }
  7876. }
  7877. return new_stacks;
  7878. }
  7879. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  7880. const std::vector<std::vector<llama_grammar_element>> & rules,
  7881. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  7882. const std::vector<llama_grammar_candidate> & candidates);
  7883. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  7884. const std::vector<std::vector<llama_grammar_element>> & rules,
  7885. const std::vector<const llama_grammar_element *> & stack,
  7886. const std::vector<llama_grammar_candidate> & candidates) {
  7887. std::vector<llama_grammar_candidate> rejects;
  7888. if (stack.empty()) {
  7889. for (const auto & tok : candidates) {
  7890. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  7891. rejects.push_back(tok);
  7892. }
  7893. }
  7894. return rejects;
  7895. }
  7896. const llama_grammar_element * stack_pos = stack.back();
  7897. std::vector<llama_grammar_candidate> next_candidates;
  7898. for (const auto & tok : candidates) {
  7899. if (*tok.code_points == 0) {
  7900. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  7901. // that cannot satisfy this position in grammar
  7902. if (tok.partial_utf8.n_remain != 0 &&
  7903. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  7904. rejects.push_back(tok);
  7905. }
  7906. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  7907. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  7908. } else {
  7909. rejects.push_back(tok);
  7910. }
  7911. }
  7912. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  7913. // update top of stack to next element, if any
  7914. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  7915. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  7916. stack_after.push_back(stack_pos_after);
  7917. }
  7918. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  7919. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  7920. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  7921. for (const auto & tok : next_rejects) {
  7922. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  7923. }
  7924. return rejects;
  7925. }
  7926. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  7927. const std::vector<std::vector<llama_grammar_element>> & rules,
  7928. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  7929. const std::vector<llama_grammar_candidate> & candidates) {
  7930. GGML_ASSERT(!stacks.empty()); // REVIEW
  7931. if (candidates.empty()) {
  7932. return std::vector<llama_grammar_candidate>();
  7933. }
  7934. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  7935. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  7936. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  7937. }
  7938. return rejects;
  7939. }
  7940. //
  7941. // grammar - external
  7942. //
  7943. struct llama_grammar * llama_grammar_init(
  7944. const llama_grammar_element ** rules,
  7945. size_t n_rules,
  7946. size_t start_rule_index) {
  7947. const llama_grammar_element * pos;
  7948. // copy rule definitions into vectors
  7949. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  7950. for (size_t i = 0; i < n_rules; i++) {
  7951. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  7952. vec_rules[i].push_back(*pos);
  7953. }
  7954. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  7955. }
  7956. // loop over alternates of start rule to build initial stacks
  7957. std::vector<std::vector<const llama_grammar_element *>> stacks;
  7958. pos = rules[start_rule_index];
  7959. do {
  7960. std::vector<const llama_grammar_element *> stack;
  7961. if (!llama_grammar_is_end_of_sequence(pos)) {
  7962. // if alternate is nonempty, add to stack
  7963. stack.push_back(pos);
  7964. }
  7965. llama_grammar_advance_stack(vec_rules, stack, stacks);
  7966. while (!llama_grammar_is_end_of_sequence(pos)) {
  7967. // scan to end of alternate def
  7968. pos++;
  7969. }
  7970. if (pos->type == LLAMA_GRETYPE_ALT) {
  7971. // there's another alternate def of this rule to process
  7972. pos++;
  7973. } else {
  7974. break;
  7975. }
  7976. } while (true);
  7977. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  7978. }
  7979. void llama_grammar_free(struct llama_grammar * grammar) {
  7980. delete grammar;
  7981. }
  7982. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  7983. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  7984. // redirect elements in stacks to point to new rules
  7985. for (size_t is = 0; is < result->stacks.size(); is++) {
  7986. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  7987. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  7988. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  7989. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  7990. result->stacks[is][ie] = &result->rules[ir0][ir1];
  7991. }
  7992. }
  7993. }
  7994. }
  7995. }
  7996. return result;
  7997. }
  7998. //
  7999. // sampling
  8000. //
  8001. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  8002. if (seed == LLAMA_DEFAULT_SEED) {
  8003. seed = time(NULL);
  8004. }
  8005. ctx->rng.seed(seed);
  8006. }
  8007. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  8008. GGML_ASSERT(candidates->size > 0);
  8009. const int64_t t_start_sample_us = ggml_time_us();
  8010. // Sort the logits in descending order
  8011. if (!candidates->sorted) {
  8012. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  8013. return a.logit > b.logit;
  8014. });
  8015. candidates->sorted = true;
  8016. }
  8017. float max_l = candidates->data[0].logit;
  8018. float cum_sum = 0.0f;
  8019. for (size_t i = 0; i < candidates->size; ++i) {
  8020. float p = expf(candidates->data[i].logit - max_l);
  8021. candidates->data[i].p = p;
  8022. cum_sum += p;
  8023. }
  8024. for (size_t i = 0; i < candidates->size; ++i) {
  8025. candidates->data[i].p /= cum_sum;
  8026. }
  8027. if (ctx) {
  8028. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8029. }
  8030. }
  8031. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  8032. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  8033. // if (k >= (int32_t)candidates->size) {
  8034. // return;
  8035. // }
  8036. const int64_t t_start_sample_us = ggml_time_us();
  8037. if (k <= 0) {
  8038. k = candidates->size;
  8039. }
  8040. k = std::max(k, (int) min_keep);
  8041. k = std::min(k, (int) candidates->size);
  8042. // Sort scores in descending order
  8043. if (!candidates->sorted) {
  8044. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  8045. return a.logit > b.logit;
  8046. };
  8047. if (k <= 128) {
  8048. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  8049. } else {
  8050. constexpr int nbuckets = 128;
  8051. constexpr float bucket_low = -10.0f;
  8052. constexpr float bucket_high = 10.0f;
  8053. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  8054. constexpr float bucker_inter = -bucket_low * bucket_scale;
  8055. std::vector<int> bucket_idx(candidates->size);
  8056. std::vector<int> histo(nbuckets, 0);
  8057. for (int i = 0; i < (int)candidates->size; ++i) {
  8058. const float val = candidates->data[i].logit;
  8059. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  8060. ib = std::max(0, std::min(nbuckets-1, ib));
  8061. bucket_idx[i] = ib;
  8062. ++histo[ib];
  8063. }
  8064. int nhave = 0;
  8065. int ib = nbuckets - 1;
  8066. for ( ; ib >= 0; --ib) {
  8067. nhave += histo[ib];
  8068. if (nhave >= k) break;
  8069. }
  8070. std::vector<llama_token_data> tmp_tokens(nhave);
  8071. auto ptr = tmp_tokens.data();
  8072. std::vector<llama_token_data*> bucket_ptrs;
  8073. bucket_ptrs.reserve(nbuckets - ib);
  8074. for (int j = nbuckets - 1; j >= ib; --j) {
  8075. bucket_ptrs.push_back(ptr);
  8076. ptr += histo[j];
  8077. }
  8078. for (int i = 0; i < (int)candidates->size; ++i) {
  8079. int j = bucket_idx[i];
  8080. if (j >= ib) {
  8081. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  8082. }
  8083. }
  8084. ptr = tmp_tokens.data();
  8085. int ndone = 0;
  8086. for (int j = nbuckets-1; j > ib; --j) {
  8087. std::sort(ptr, ptr + histo[j], comp);
  8088. ptr += histo[j];
  8089. ndone += histo[j];
  8090. }
  8091. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  8092. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  8093. }
  8094. candidates->sorted = true;
  8095. }
  8096. candidates->size = k;
  8097. if (ctx) {
  8098. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8099. }
  8100. }
  8101. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  8102. if (p >= 1.0f) {
  8103. return;
  8104. }
  8105. llama_sample_softmax(ctx, candidates);
  8106. const int64_t t_start_sample_us = ggml_time_us();
  8107. // Compute the cumulative probabilities
  8108. float cum_sum = 0.0f;
  8109. size_t last_idx = candidates->size;
  8110. for (size_t i = 0; i < candidates->size; ++i) {
  8111. cum_sum += candidates->data[i].p;
  8112. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  8113. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  8114. if (cum_sum >= p && i + 1 >= min_keep) {
  8115. last_idx = i + 1;
  8116. break;
  8117. }
  8118. }
  8119. // Resize the output vector to keep only the top-p tokens
  8120. candidates->size = last_idx;
  8121. if (ctx) {
  8122. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8123. }
  8124. }
  8125. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  8126. if (p <= 0.0f || !candidates->size) {
  8127. return;
  8128. }
  8129. const int64_t t_start_sample_us = ggml_time_us();
  8130. bool min_p_applied = false;
  8131. // if the candidates aren't sorted, try the unsorted implementation first
  8132. if (!candidates->sorted) {
  8133. std::vector<llama_token_data> filtered_tokens;
  8134. float max_logit = -FLT_MAX;
  8135. for (size_t i = 0; i < candidates->size; ++i) {
  8136. max_logit = std::max(max_logit, candidates->data[i].logit);
  8137. }
  8138. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  8139. for (size_t i = 0; i < candidates->size; ++i) {
  8140. if (candidates->data[i].logit >= min_logit) {
  8141. filtered_tokens.push_back(candidates->data[i]);
  8142. }
  8143. }
  8144. // if we have enough values the operation was a success
  8145. if (filtered_tokens.size() >= min_keep) {
  8146. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  8147. candidates->size = filtered_tokens.size();
  8148. min_p_applied = true;
  8149. }
  8150. }
  8151. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  8152. if (!min_p_applied) {
  8153. // Sort the logits in descending order
  8154. if (!candidates->sorted) {
  8155. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  8156. return a.logit > b.logit;
  8157. });
  8158. candidates->sorted = true;
  8159. }
  8160. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  8161. size_t i = 1; // first token always matches
  8162. for (; i < candidates->size; ++i) {
  8163. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  8164. break; // prob too small
  8165. }
  8166. }
  8167. // Resize the output vector to keep only the matching tokens
  8168. candidates->size = i;
  8169. }
  8170. if (ctx) {
  8171. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8172. }
  8173. }
  8174. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  8175. if (z >= 1.0f || candidates->size <= 2) {
  8176. return;
  8177. }
  8178. llama_sample_softmax(nullptr, candidates);
  8179. const int64_t t_start_sample_us = ggml_time_us();
  8180. // Compute the first and second derivatives
  8181. std::vector<float> first_derivatives(candidates->size - 1);
  8182. std::vector<float> second_derivatives(candidates->size - 2);
  8183. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  8184. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  8185. }
  8186. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  8187. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  8188. }
  8189. // Calculate absolute value of second derivatives
  8190. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  8191. second_derivatives[i] = std::abs(second_derivatives[i]);
  8192. }
  8193. // Normalize the second derivatives
  8194. {
  8195. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  8196. if (second_derivatives_sum > 1e-6f) {
  8197. for (float & value : second_derivatives) {
  8198. value /= second_derivatives_sum;
  8199. }
  8200. } else {
  8201. for (float & value : second_derivatives) {
  8202. value = 1.0f / second_derivatives.size();
  8203. }
  8204. }
  8205. }
  8206. float cum_sum = 0.0f;
  8207. size_t last_idx = candidates->size;
  8208. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  8209. cum_sum += second_derivatives[i];
  8210. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  8211. if (cum_sum > z && i >= min_keep) {
  8212. last_idx = i;
  8213. break;
  8214. }
  8215. }
  8216. // Resize the output vector to keep only the tokens above the tail location
  8217. candidates->size = last_idx;
  8218. if (ctx) {
  8219. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8220. }
  8221. }
  8222. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  8223. // Reference implementation:
  8224. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  8225. if (p >= 1.0f) {
  8226. return;
  8227. }
  8228. // Compute the softmax of logits and calculate entropy
  8229. llama_sample_softmax(nullptr, candidates);
  8230. const int64_t t_start_sample_us = ggml_time_us();
  8231. float entropy = 0.0f;
  8232. for (size_t i = 0; i < candidates->size; ++i) {
  8233. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  8234. }
  8235. // Compute the absolute difference between negative log probability and entropy for each candidate
  8236. std::vector<float> shifted_scores;
  8237. for (size_t i = 0; i < candidates->size; ++i) {
  8238. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  8239. shifted_scores.push_back(shifted_score);
  8240. }
  8241. // Sort tokens based on the shifted_scores and their corresponding indices
  8242. std::vector<size_t> indices(candidates->size);
  8243. std::iota(indices.begin(), indices.end(), 0);
  8244. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  8245. return shifted_scores[a] < shifted_scores[b];
  8246. });
  8247. // Compute the cumulative probabilities
  8248. float cum_sum = 0.0f;
  8249. size_t last_idx = indices.size();
  8250. for (size_t i = 0; i < indices.size(); ++i) {
  8251. size_t idx = indices[i];
  8252. cum_sum += candidates->data[idx].p;
  8253. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  8254. if (cum_sum > p && i >= min_keep - 1) {
  8255. last_idx = i + 1;
  8256. break;
  8257. }
  8258. }
  8259. // Resize the output vector to keep only the locally typical tokens
  8260. std::vector<llama_token_data> new_candidates;
  8261. for (size_t i = 0; i < last_idx; ++i) {
  8262. size_t idx = indices[i];
  8263. new_candidates.push_back(candidates->data[idx]);
  8264. }
  8265. // Replace the data in candidates with the new_candidates data
  8266. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  8267. candidates->size = new_candidates.size();
  8268. candidates->sorted = false;
  8269. if (ctx) {
  8270. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8271. }
  8272. }
  8273. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  8274. const int64_t t_start_sample_us = ggml_time_us();
  8275. // no need to do anything if there is only one (or zero) candidates
  8276. if(candidates_p->size <= 1) {
  8277. return;
  8278. }
  8279. // Calculate maximum possible entropy
  8280. float max_entropy = -logf(1.0f / candidates_p->size);
  8281. llama_sample_softmax(nullptr, candidates_p);
  8282. // Calculate entropy of the softmax probabilities
  8283. float entropy = 0.0f;
  8284. for (size_t i = 0; i < candidates_p->size; ++i) {
  8285. float prob = candidates_p->data[i].p;
  8286. if (prob > 0.0f) { // Ensure no log(0)
  8287. entropy -= prob * logf(prob);
  8288. }
  8289. }
  8290. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  8291. float normalized_entropy = entropy / max_entropy;
  8292. // Map the normalized entropy to the desired temperature range using the power function
  8293. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  8294. #ifdef DEBUG
  8295. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  8296. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  8297. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  8298. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  8299. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  8300. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  8301. #endif
  8302. // Apply the dynamically calculated temperature scaling
  8303. for (size_t i = 0; i < candidates_p->size; ++i) {
  8304. candidates_p->data[i].logit /= dyn_temp;
  8305. }
  8306. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  8307. double max_l_double = candidates_p->data[0].logit;
  8308. double cum_sum_double = 0.0;
  8309. for (size_t i = 0; i < candidates_p->size; ++i) {
  8310. double p = exp(candidates_p->data[i].logit - max_l_double);
  8311. candidates_p->data[i].p = p; // Store the scaled probability
  8312. cum_sum_double += p;
  8313. }
  8314. for (size_t i = 0; i < candidates_p->size; ++i) {
  8315. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  8316. }
  8317. #ifdef DEBUG
  8318. // Print the updated top 25 probabilities after temperature scaling
  8319. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  8320. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  8321. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  8322. }
  8323. #endif
  8324. if (ctx) {
  8325. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8326. }
  8327. }
  8328. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  8329. const int64_t t_start_sample_us = ggml_time_us();
  8330. for (size_t i = 0; i < candidates_p->size; ++i) {
  8331. candidates_p->data[i].logit /= temp;
  8332. }
  8333. if (ctx) {
  8334. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8335. }
  8336. }
  8337. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  8338. llama_sample_temp(ctx, candidates_p, temp);
  8339. }
  8340. void llama_sample_repetition_penalties(
  8341. struct llama_context * ctx,
  8342. llama_token_data_array * candidates,
  8343. const llama_token * last_tokens,
  8344. size_t penalty_last_n,
  8345. float penalty_repeat,
  8346. float penalty_freq,
  8347. float penalty_present) {
  8348. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  8349. return;
  8350. }
  8351. const int64_t t_start_sample_us = ggml_time_us();
  8352. // Create a frequency map to count occurrences of each token in last_tokens
  8353. std::unordered_map<llama_token, int> token_count;
  8354. for (size_t i = 0; i < penalty_last_n; ++i) {
  8355. token_count[last_tokens[i]]++;
  8356. }
  8357. // Apply frequency and presence penalties to the candidates
  8358. for (size_t i = 0; i < candidates->size; ++i) {
  8359. const auto token_iter = token_count.find(candidates->data[i].id);
  8360. if (token_iter == token_count.end()) {
  8361. continue;
  8362. }
  8363. const int count = token_iter->second;
  8364. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  8365. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  8366. if (candidates->data[i].logit <= 0) {
  8367. candidates->data[i].logit *= penalty_repeat;
  8368. } else {
  8369. candidates->data[i].logit /= penalty_repeat;
  8370. }
  8371. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  8372. }
  8373. candidates->sorted = false;
  8374. if (ctx) {
  8375. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8376. }
  8377. }
  8378. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  8379. GGML_ASSERT(ctx);
  8380. const int64_t t_start_sample_us = ggml_time_us();
  8381. bool allow_eos = false;
  8382. for (const auto & stack : grammar->stacks) {
  8383. if (stack.empty()) {
  8384. allow_eos = true;
  8385. break;
  8386. }
  8387. }
  8388. const llama_token eos = llama_token_eos(&ctx->model);
  8389. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  8390. candidates_decoded.reserve(candidates->size);
  8391. std::vector<llama_grammar_candidate> candidates_grammar;
  8392. candidates_grammar.reserve(candidates->size);
  8393. for (size_t i = 0; i < candidates->size; ++i) {
  8394. const llama_token id = candidates->data[i].id;
  8395. const std::string piece = llama_token_to_piece(ctx, id);
  8396. if (id == eos) {
  8397. if (!allow_eos) {
  8398. candidates->data[i].logit = -INFINITY;
  8399. }
  8400. } else if (piece.empty() || piece[0] == 0) {
  8401. candidates->data[i].logit = -INFINITY;
  8402. } else {
  8403. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  8404. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  8405. }
  8406. }
  8407. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  8408. for (const auto & reject : rejects) {
  8409. candidates->data[reject.index].logit = -INFINITY;
  8410. }
  8411. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8412. }
  8413. static void llama_log_softmax(float * array, size_t size) {
  8414. float max_l = *std::max_element(array, array + size);
  8415. float sum = 0.f;
  8416. for (size_t i = 0; i < size; ++i) {
  8417. float p = expf(array[i] - max_l);
  8418. sum += p;
  8419. array[i] = p;
  8420. }
  8421. for (size_t i = 0; i < size; ++i) {
  8422. array[i] = logf(array[i] / sum);
  8423. }
  8424. }
  8425. void llama_sample_apply_guidance(
  8426. struct llama_context * ctx,
  8427. float * logits,
  8428. float * logits_guidance,
  8429. float scale) {
  8430. GGML_ASSERT(ctx);
  8431. const auto t_start_sample_us = ggml_time_us();
  8432. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  8433. llama_log_softmax(logits, n_vocab);
  8434. llama_log_softmax(logits_guidance, n_vocab);
  8435. for (int i = 0; i < n_vocab; ++i) {
  8436. auto & l = logits[i];
  8437. const auto & g = logits_guidance[i];
  8438. l = scale * (l - g) + g;
  8439. }
  8440. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8441. }
  8442. void llama_sample_classifier_free_guidance(
  8443. struct llama_context * ctx,
  8444. llama_token_data_array * candidates,
  8445. struct llama_context * guidance_ctx,
  8446. float scale) {
  8447. GGML_ASSERT(ctx);
  8448. int64_t t_start_sample_us;
  8449. t_start_sample_us = ggml_time_us();
  8450. const size_t n_vocab = llama_n_vocab(llama_get_model(ctx));
  8451. GGML_ASSERT(n_vocab == candidates->size);
  8452. GGML_ASSERT(!candidates->sorted);
  8453. std::vector<float> logits_base(n_vocab);
  8454. for (size_t i = 0; i < n_vocab; ++i) {
  8455. logits_base[i] = candidates->data[i].logit;
  8456. }
  8457. float * logits_guidance = llama_get_logits(guidance_ctx);
  8458. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8459. llama_sample_apply_guidance(ctx, logits_base.data(), logits_guidance, scale);
  8460. t_start_sample_us = ggml_time_us();
  8461. for (size_t i = 0; i < n_vocab; ++i) {
  8462. candidates->data[i].logit = logits_base[i];
  8463. }
  8464. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8465. }
  8466. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  8467. GGML_ASSERT(ctx);
  8468. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  8469. int64_t t_start_sample_us;
  8470. t_start_sample_us = ggml_time_us();
  8471. llama_sample_softmax(nullptr, candidates);
  8472. // Estimate s_hat using the most probable m tokens
  8473. float s_hat = 0.0;
  8474. float sum_ti_bi = 0.0;
  8475. float sum_ti_sq = 0.0;
  8476. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  8477. float t_i = logf(float(i + 2) / float(i + 1));
  8478. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  8479. sum_ti_bi += t_i * b_i;
  8480. sum_ti_sq += t_i * t_i;
  8481. }
  8482. s_hat = sum_ti_bi / sum_ti_sq;
  8483. // Compute k from the estimated s_hat and target surprise value
  8484. float epsilon_hat = s_hat - 1;
  8485. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  8486. // Sample the next word X using top-k sampling
  8487. llama_sample_top_k(nullptr, candidates, int(k), 1);
  8488. if (ctx) {
  8489. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8490. }
  8491. llama_token X = llama_sample_token(ctx, candidates);
  8492. t_start_sample_us = ggml_time_us();
  8493. // Compute error as the difference between observed surprise and target surprise value
  8494. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  8495. return candidate.id == X;
  8496. }));
  8497. float observed_surprise = -log2f(candidates->data[X_idx].p);
  8498. float e = observed_surprise - tau;
  8499. // Update mu using the learning rate and error
  8500. *mu = *mu - eta * e;
  8501. if (ctx) {
  8502. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8503. }
  8504. return X;
  8505. }
  8506. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  8507. int64_t t_start_sample_us;
  8508. t_start_sample_us = ggml_time_us();
  8509. llama_sample_softmax(ctx, candidates);
  8510. // Truncate the words with surprise values greater than mu
  8511. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  8512. return -log2f(candidate.p) > *mu;
  8513. }));
  8514. if (candidates->size == 0) {
  8515. candidates->size = 1;
  8516. }
  8517. if (ctx) {
  8518. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8519. }
  8520. // Normalize the probabilities of the remaining words
  8521. llama_sample_softmax(ctx, candidates);
  8522. // Sample the next word X from the remaining words
  8523. llama_token X = llama_sample_token(ctx, candidates);
  8524. t_start_sample_us = ggml_time_us();
  8525. // Compute error as the difference between observed surprise and target surprise value
  8526. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  8527. return candidate.id == X;
  8528. }));
  8529. float observed_surprise = -log2f(candidates->data[X_idx].p);
  8530. float e = observed_surprise - tau;
  8531. // Update mu using the learning rate and error
  8532. *mu = *mu - eta * e;
  8533. if (ctx) {
  8534. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8535. }
  8536. return X;
  8537. }
  8538. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  8539. const int64_t t_start_sample_us = ggml_time_us();
  8540. // Find max element
  8541. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  8542. return a.logit < b.logit;
  8543. });
  8544. llama_token result = max_iter->id;
  8545. if (ctx) {
  8546. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8547. ctx->n_sample++;
  8548. }
  8549. return result;
  8550. }
  8551. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  8552. GGML_ASSERT(ctx);
  8553. const int64_t t_start_sample_us = ggml_time_us();
  8554. llama_sample_softmax(nullptr, candidates);
  8555. std::vector<float> probs;
  8556. probs.reserve(candidates->size);
  8557. for (size_t i = 0; i < candidates->size; ++i) {
  8558. probs.push_back(candidates->data[i].p);
  8559. }
  8560. std::discrete_distribution<> dist(probs.begin(), probs.end());
  8561. auto & rng = ctx->rng;
  8562. int idx = dist(rng);
  8563. llama_token result = candidates->data[idx].id;
  8564. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8565. ctx->n_sample++;
  8566. return result;
  8567. }
  8568. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  8569. const int64_t t_start_sample_us = ggml_time_us();
  8570. if (token == llama_token_eos(&ctx->model)) {
  8571. for (const auto & stack : grammar->stacks) {
  8572. if (stack.empty()) {
  8573. return;
  8574. }
  8575. }
  8576. GGML_ASSERT(false);
  8577. }
  8578. const std::string piece = llama_token_to_piece(ctx, token);
  8579. // Note terminating 0 in decoded string
  8580. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  8581. const auto & code_points = decoded.first;
  8582. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  8583. grammar->stacks = llama_grammar_accept(grammar->rules, grammar->stacks, *it);
  8584. }
  8585. grammar->partial_utf8 = decoded.second;
  8586. GGML_ASSERT(!grammar->stacks.empty());
  8587. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8588. }
  8589. //
  8590. // Beam search
  8591. //
  8592. struct llama_beam {
  8593. std::vector<llama_token> tokens;
  8594. float p; // Cumulative beam probability (renormalized relative to all beams)
  8595. bool eob; // Initialize end-of-beam to false. Callback sets this to true.
  8596. // Sort beams by probability. In case of ties, prefer beams at eob.
  8597. bool operator<(const llama_beam & rhs) const {
  8598. return std::make_pair(p, eob) < std::make_pair(rhs.p, rhs.eob);
  8599. }
  8600. // Shift off first n tokens and discard them.
  8601. void shift_tokens(const size_t n) {
  8602. if (n) {
  8603. std::copy(tokens.begin() + n, tokens.end(), tokens.begin());
  8604. tokens.resize(tokens.size() - n);
  8605. }
  8606. }
  8607. llama_beam_view view() const { return {tokens.data(), tokens.size(), p, eob}; }
  8608. };
  8609. // A struct for calculating logit-related info.
  8610. struct llama_logit_info {
  8611. const float * const logits;
  8612. const int n_vocab;
  8613. const float max_l;
  8614. const float normalizer;
  8615. struct sum_exp {
  8616. float max_l;
  8617. float operator()(float sum, float l) const { return sum + std::exp(l - max_l); }
  8618. };
  8619. llama_logit_info(llama_context * ctx)
  8620. : logits(llama_get_logits(ctx))
  8621. , n_vocab(llama_n_vocab(llama_get_model(ctx)))
  8622. , max_l(*std::max_element(logits, logits + n_vocab))
  8623. , normalizer(1.0f / std::accumulate(logits, logits + n_vocab, 0.0f, sum_exp{max_l}))
  8624. { }
  8625. llama_token_data get_token_data(const llama_token token_id) const {
  8626. constexpr auto p = std::numeric_limits<float>::quiet_NaN(); // never used
  8627. return {token_id, logits[token_id], p};
  8628. }
  8629. // Return top k token_data by logit.
  8630. std::vector<llama_token_data> top_k(size_t k) {
  8631. std::vector<llama_token_data> min_heap; // min-heap by logit
  8632. const llama_token k_min = std::min(static_cast<llama_token>(k), n_vocab);
  8633. min_heap.reserve(k_min);
  8634. for (llama_token token_id = 0 ; token_id < k_min ; ++token_id) {
  8635. min_heap.push_back(get_token_data(token_id));
  8636. }
  8637. auto comp = [](const llama_token_data & a, const llama_token_data & b) { return a.logit > b.logit; };
  8638. std::make_heap(min_heap.begin(), min_heap.end(), comp);
  8639. for (llama_token token_id = k_min ; token_id < n_vocab ; ++token_id) {
  8640. if (min_heap.front().logit < logits[token_id]) {
  8641. std::pop_heap(min_heap.begin(), min_heap.end(), comp);
  8642. min_heap.back().id = token_id;
  8643. min_heap.back().logit = logits[token_id];
  8644. std::push_heap(min_heap.begin(), min_heap.end(), comp);
  8645. }
  8646. }
  8647. return min_heap;
  8648. }
  8649. float probability_from_logit(float logit) const {
  8650. return normalizer * std::exp(logit - max_l);
  8651. }
  8652. };
  8653. struct llama_beam_search_data {
  8654. llama_context * ctx;
  8655. size_t n_beams;
  8656. int n_past;
  8657. int n_predict;
  8658. std::vector<llama_beam> beams;
  8659. std::vector<llama_beam> next_beams;
  8660. // Re-calculated on each loop iteration
  8661. size_t common_prefix_length;
  8662. // Used to communicate to/from callback on beams state.
  8663. std::vector<llama_beam_view> beam_views;
  8664. llama_beam_search_data(llama_context * ctx, size_t n_beams, int n_past, int n_predict)
  8665. : ctx(ctx)
  8666. , n_beams(n_beams)
  8667. , n_past(n_past)
  8668. , n_predict(n_predict)
  8669. , beam_views(n_beams) {
  8670. beams.reserve(n_beams);
  8671. next_beams.reserve(n_beams);
  8672. }
  8673. // Collapse beams to a single beam given by index.
  8674. void collapse_beams(const size_t beam_idx) {
  8675. if (0u < beam_idx) {
  8676. std::swap(beams[0], beams[beam_idx]);
  8677. }
  8678. beams.resize(1);
  8679. }
  8680. // Min-heaps are used to efficiently collect the top-k elements (k=n_beams).
  8681. // The repetitive patterns below reflect the 2 stages of heaps:
  8682. // * Gather elements until the vector is full, then call std::make_heap() on it.
  8683. // * If the heap is full and a new element is found that should be included, pop the
  8684. // least element to the back(), replace it with the new, then push it into the heap.
  8685. void fill_next_beams_by_top_probabilities(llama_beam & beam) {
  8686. // Min-heaps use a greater-than comparator.
  8687. const auto comp = [](const llama_beam & a, const llama_beam & b) { return a.p > b.p; };
  8688. if (beam.eob) {
  8689. // beam is at end-of-sentence, so just copy it to next_beams if its probability is high enough.
  8690. if (next_beams.size() < n_beams) {
  8691. next_beams.push_back(std::move(beam));
  8692. if (next_beams.size() == n_beams) {
  8693. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  8694. }
  8695. } else if (next_beams.front().p < beam.p) {
  8696. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  8697. next_beams.back() = std::move(beam);
  8698. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  8699. }
  8700. } else {
  8701. // beam is not at end-of-sentence, so branch with next top_k tokens.
  8702. if (!beam.tokens.empty()) {
  8703. llama_decode(ctx, llama_batch_get_one(beam.tokens.data(), beam.tokens.size(), n_past, 0));
  8704. }
  8705. llama_logit_info logit_info(ctx);
  8706. std::vector<llama_token_data> next_tokens = logit_info.top_k(n_beams);
  8707. size_t i=0;
  8708. if (next_beams.size() < n_beams) {
  8709. for (; next_beams.size() < n_beams ; ++i) {
  8710. llama_beam next_beam = beam;
  8711. next_beam.tokens.push_back(next_tokens[i].id);
  8712. next_beam.p *= logit_info.probability_from_logit(next_tokens[i].logit);
  8713. next_beams.push_back(std::move(next_beam));
  8714. }
  8715. std::make_heap(next_beams.begin(), next_beams.end(), comp);
  8716. } else {
  8717. for (; next_beams.front().p == 0.0f ; ++i) {
  8718. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  8719. next_beams.back() = beam;
  8720. next_beams.back().tokens.push_back(next_tokens[i].id);
  8721. next_beams.back().p *= logit_info.probability_from_logit(next_tokens[i].logit);
  8722. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  8723. }
  8724. }
  8725. for (; i < n_beams ; ++i) {
  8726. const float next_p = beam.p * logit_info.probability_from_logit(next_tokens[i].logit);
  8727. if (next_beams.front().p < next_p) {
  8728. std::pop_heap(next_beams.begin(), next_beams.end(), comp);
  8729. next_beams.back() = beam;
  8730. next_beams.back().tokens.push_back(next_tokens[i].id);
  8731. next_beams.back().p = next_p;
  8732. std::push_heap(next_beams.begin(), next_beams.end(), comp);
  8733. }
  8734. }
  8735. }
  8736. }
  8737. // Find common_prefix_length based on beams.
  8738. // Requires beams is not empty.
  8739. size_t find_common_prefix_length() {
  8740. size_t common_prefix_length = beams[0].tokens.size();
  8741. for (size_t i = 1 ; i < beams.size() ; ++i) {
  8742. common_prefix_length = std::min(common_prefix_length, beams[i].tokens.size());
  8743. for (size_t j = 0 ; j < common_prefix_length ; ++j) {
  8744. if (beams[0].tokens[j] != beams[i].tokens[j]) {
  8745. common_prefix_length = j;
  8746. break;
  8747. }
  8748. }
  8749. }
  8750. return common_prefix_length;
  8751. }
  8752. // Construct beams_state to send back to caller via the callback function.
  8753. // Side effect: set common_prefix_length = find_common_prefix_length();
  8754. llama_beams_state get_beams_state(const bool last_call) {
  8755. for (size_t i = 0 ; i < beams.size() ; ++i) {
  8756. beam_views[i] = beams[i].view();
  8757. }
  8758. common_prefix_length = find_common_prefix_length();
  8759. return {beam_views.data(), beams.size(), common_prefix_length, last_call};
  8760. }
  8761. // Loop:
  8762. // * while i < n_predict, AND
  8763. // * any of the beams have not yet reached end-of-beam (eob), AND
  8764. // * the highest probability beam(s) (plural in case of ties) are not at end-of-sentence
  8765. // (since all other beam probabilities can only decrease)
  8766. void loop(const llama_beam_search_callback_fn_t callback, void * const callback_data) {
  8767. beams.push_back({{}, 1.0f, false}); // Start with one empty beam w/ probability = 1.0 and !eob.
  8768. const auto not_eob = [](const llama_beam & beam) { return !beam.eob; };
  8769. for (int i = 0 ; i < n_predict && std::any_of(beams.begin(),beams.end(),not_eob) &&
  8770. !beams[top_beam_index()].eob ; ++i) {
  8771. callback(callback_data, get_beams_state(false)); // Sets common_prefix_length
  8772. update_beams_from_beam_views(); // Update values (p,eob) that callback may have changed.
  8773. if (common_prefix_length) {
  8774. llama_decode(ctx, llama_batch_get_one(beams[0].tokens.data(), common_prefix_length, n_past, 0));
  8775. n_past += common_prefix_length;
  8776. }
  8777. // Zero-out next_beam probabilities to place them last in following min-heap.
  8778. std::for_each(next_beams.begin(), next_beams.end(), [](llama_beam & beam) { beam.p = 0.0f; });
  8779. for (llama_beam & beam : beams) {
  8780. beam.shift_tokens(common_prefix_length);
  8781. fill_next_beams_by_top_probabilities(beam);
  8782. }
  8783. // next_beams become the beams of next/final iteration. Swap them to re-use memory.
  8784. beams.swap(next_beams);
  8785. renormalize_beam_probabilities(beams);
  8786. }
  8787. collapse_beams(top_beam_index());
  8788. callback(callback_data, get_beams_state(true));
  8789. }
  8790. // As beams grow, the cumulative probabilities decrease.
  8791. // Renormalize them to avoid floating point underflow.
  8792. static void renormalize_beam_probabilities(std::vector<llama_beam> & beams) {
  8793. const auto sum_p = [](float sum, llama_beam & beam) { return sum + beam.p; };
  8794. const float inv_sum = 1.0f / std::accumulate(beams.begin(), beams.end(), 0.0f, sum_p);
  8795. std::for_each(beams.begin(), beams.end(), [=](llama_beam & beam) { beam.p *= inv_sum; });
  8796. }
  8797. // Assumes beams is non-empty. Uses llama_beam::operator<() for ordering.
  8798. size_t top_beam_index() {
  8799. return std::max_element(beams.begin(), beams.end()) - beams.begin();
  8800. }
  8801. // Copy (p,eob) for each beam which may have been changed by the callback.
  8802. void update_beams_from_beam_views() {
  8803. for (size_t i = 0 ; i < beams.size() ; ++i) {
  8804. beams[i].p = beam_views[i].p;
  8805. beams[i].eob = beam_views[i].eob;
  8806. }
  8807. }
  8808. };
  8809. void llama_beam_search(llama_context * ctx,
  8810. llama_beam_search_callback_fn_t callback, void * callback_data,
  8811. size_t n_beams, int n_past, int n_predict) {
  8812. assert(ctx);
  8813. const int64_t t_start_sample_us = ggml_time_us();
  8814. llama_beam_search_data beam_search_data(ctx, n_beams, n_past, n_predict);
  8815. beam_search_data.loop(callback, callback_data);
  8816. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  8817. ctx->n_sample++;
  8818. }
  8819. //
  8820. // quantization
  8821. //
  8822. struct quantize_state_internal {
  8823. const llama_model & model;
  8824. const llama_model_quantize_params * params;
  8825. int n_attention_wv = 0;
  8826. int n_ffn_down = 0;
  8827. int n_ffn_gate = 0;
  8828. int n_ffn_up = 0;
  8829. int i_attention_wv = 0;
  8830. int i_ffn_down = 0;
  8831. int i_ffn_gate = 0;
  8832. int i_ffn_up = 0;
  8833. int n_k_quantized = 0;
  8834. int n_fallback = 0;
  8835. bool has_imatrix = false;
  8836. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  8837. : model(model)
  8838. , params(params)
  8839. {}
  8840. };
  8841. static void llama_convert_tensor_internal(
  8842. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  8843. const size_t nelements, const int nthread
  8844. ) {
  8845. if (output.size() < nelements) {
  8846. output.resize(nelements);
  8847. }
  8848. float * f32_output = (float *) output.data();
  8849. ggml_type_traits_t qtype;
  8850. if (ggml_is_quantized(tensor->type)) {
  8851. qtype = ggml_internal_get_type_traits(tensor->type);
  8852. if (qtype.to_float == NULL) {
  8853. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  8854. }
  8855. } else if (tensor->type != GGML_TYPE_F16) {
  8856. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  8857. }
  8858. if (nthread < 2) {
  8859. if (tensor->type == GGML_TYPE_F16) {
  8860. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  8861. } else if (ggml_is_quantized(tensor->type)) {
  8862. qtype.to_float(tensor->data, f32_output, nelements);
  8863. } else {
  8864. GGML_ASSERT(false); // unreachable
  8865. }
  8866. return;
  8867. }
  8868. size_t block_size = tensor->type == GGML_TYPE_F16 ? 1 : (size_t)ggml_blck_size(tensor->type);
  8869. size_t block_size_bytes = ggml_type_size(tensor->type);
  8870. GGML_ASSERT(nelements % block_size == 0);
  8871. size_t nblocks = nelements / block_size;
  8872. size_t blocks_per_thread = nblocks / nthread;
  8873. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  8874. size_t in_buff_offs = 0;
  8875. size_t out_buff_offs = 0;
  8876. for (int tnum = 0; tnum < nthread; tnum++) {
  8877. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  8878. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  8879. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  8880. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  8881. if (typ == GGML_TYPE_F16) {
  8882. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  8883. } else {
  8884. qtype.to_float(inbuf, outbuf, nels);
  8885. }
  8886. };
  8887. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  8888. in_buff_offs += thr_block_bytes;
  8889. out_buff_offs += thr_elems;
  8890. }
  8891. for (auto & w : workers) { w.join(); }
  8892. workers.clear();
  8893. }
  8894. static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  8895. const std::string name = ggml_get_name(tensor);
  8896. // TODO: avoid hardcoded tensor names - use the TN_* constants
  8897. const llm_arch arch = qs.model.arch;
  8898. const auto tn = LLM_TN(arch);
  8899. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  8900. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  8901. };
  8902. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  8903. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  8904. if (n_expert > 1) {
  8905. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  8906. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  8907. // for getting the current layer as I initially thought, and we need to resort to parsing the
  8908. // tensor name.
  8909. n_layer /= n_expert;
  8910. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  8911. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  8912. }
  8913. if (i_layer < 0 || i_layer >= n_layer) {
  8914. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  8915. }
  8916. }
  8917. return std::make_pair(i_layer, n_layer);
  8918. };
  8919. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  8920. // with the quantization of the output tensor
  8921. if (name == tn(LLM_TENSOR_OUTPUT, "weight") ||
  8922. (LLM_TENSOR_NAMES.at(arch).find(LLM_TENSOR_OUTPUT) == LLM_TENSOR_NAMES.at(arch).end() && name == "token_embd.weight")) {
  8923. int nx = tensor->ne[0];
  8924. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  8925. new_type = GGML_TYPE_Q8_0;
  8926. }
  8927. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  8928. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  8929. new_type = GGML_TYPE_Q5_K;
  8930. }
  8931. else if (new_type != GGML_TYPE_Q8_0) {
  8932. new_type = GGML_TYPE_Q6_K;
  8933. }
  8934. } else if (name == "token_embd.weight") {
  8935. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  8936. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) {
  8937. new_type = GGML_TYPE_Q2_K;
  8938. }
  8939. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  8940. new_type = GGML_TYPE_IQ3_S;
  8941. }
  8942. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  8943. new_type = GGML_TYPE_IQ3_S;
  8944. }
  8945. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  8946. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  8947. if (name.find("attn_v.weight") != std::string::npos) {
  8948. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  8949. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  8950. ++qs.i_attention_wv;
  8951. }
  8952. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  8953. new_type = GGML_TYPE_Q4_K;
  8954. }
  8955. else if (name.find("ffn_down") != std::string::npos) {
  8956. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  8957. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  8958. }
  8959. ++qs.i_ffn_down;
  8960. }
  8961. else if (name.find("attn_output.weight") != std::string::npos) {
  8962. if (qs.model.hparams.n_expert == 8) {
  8963. new_type = GGML_TYPE_Q5_K;
  8964. } else {
  8965. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S) new_type = GGML_TYPE_IQ2_XXS;
  8966. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  8967. }
  8968. }
  8969. } else if (name.find("attn_v.weight") != std::string::npos) {
  8970. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  8971. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  8972. }
  8973. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  8974. new_type = GGML_TYPE_Q4_K;
  8975. }
  8976. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  8977. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  8978. }
  8979. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) {
  8980. new_type = GGML_TYPE_Q4_K;
  8981. }
  8982. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  8983. new_type = GGML_TYPE_Q4_K;
  8984. }
  8985. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_S && qs.model.hparams.n_gqa() >= 4) {
  8986. new_type = GGML_TYPE_Q4_K;
  8987. }
  8988. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  8989. new_type = GGML_TYPE_Q4_K;
  8990. }
  8991. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  8992. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  8993. }
  8994. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  8995. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && qs.model.hparams.n_gqa() >= 4) {
  8996. new_type = GGML_TYPE_Q5_K;
  8997. }
  8998. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  8999. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  9000. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  9001. else if (QK_K == 64 && (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S) &&
  9002. (qs.i_attention_wv < qs.n_attention_wv/8 || qs.i_attention_wv >= 7*qs.n_attention_wv/8)) new_type = GGML_TYPE_Q6_K;
  9003. if (qs.model.type == MODEL_70B) {
  9004. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  9005. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  9006. // nearly negligible increase in model size by quantizing this tensor with more bits:
  9007. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  9008. }
  9009. if (qs.model.hparams.n_expert == 8) {
  9010. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  9011. // TODO: explore better strategies
  9012. new_type = GGML_TYPE_Q8_0;
  9013. }
  9014. ++qs.i_attention_wv;
  9015. } else if (name.find("attn_k.weight") != std::string::npos) {
  9016. if (qs.model.hparams.n_expert == 8) {
  9017. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  9018. // TODO: explore better strategies
  9019. new_type = GGML_TYPE_Q8_0;
  9020. }
  9021. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  9022. new_type = GGML_TYPE_IQ3_XXS;
  9023. }
  9024. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  9025. new_type = GGML_TYPE_IQ2_S;
  9026. }
  9027. } else if (name.find("attn_q.weight") != std::string::npos) {
  9028. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  9029. new_type = GGML_TYPE_IQ3_XXS;
  9030. }
  9031. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  9032. new_type = GGML_TYPE_IQ2_S;
  9033. }
  9034. } else if (name.find("ffn_down") != std::string::npos) {
  9035. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  9036. int i_layer = info.first, n_layer = info.second;
  9037. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  9038. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  9039. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  9040. }
  9041. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  9042. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  9043. }
  9044. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  9045. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  9046. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  9047. : GGML_TYPE_Q3_K;
  9048. }
  9049. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  9050. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  9051. new_type = GGML_TYPE_Q4_K;
  9052. }
  9053. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  9054. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  9055. }
  9056. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  9057. if (arch == LLM_ARCH_FALCON) {
  9058. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  9059. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  9060. } else {
  9061. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  9062. }
  9063. }
  9064. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL && !qs.has_imatrix) {
  9065. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q5_K;
  9066. }
  9067. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  9068. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  9069. new_type = GGML_TYPE_Q5_K;
  9070. }
  9071. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  9072. && qs.has_imatrix && i_layer < n_layer/8) {
  9073. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  9074. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  9075. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  9076. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  9077. }
  9078. ++qs.i_ffn_down;
  9079. } else if (name.find("attn_output.weight") != std::string::npos) {
  9080. if (arch != LLM_ARCH_FALCON) {
  9081. if (qs.model.hparams.n_expert == 8) {
  9082. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  9083. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  9084. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  9085. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  9086. new_type = GGML_TYPE_Q5_K;
  9087. }
  9088. } else {
  9089. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  9090. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  9091. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  9092. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  9093. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  9094. }
  9095. } else {
  9096. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  9097. }
  9098. }
  9099. else if (name.find("attn_qkv.weight") != std::string::npos) {
  9100. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  9101. new_type = GGML_TYPE_Q4_K;
  9102. }
  9103. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  9104. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  9105. }
  9106. else if (name.find("ffn_gate") != std::string::npos) {
  9107. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  9108. int i_layer = info.first, n_layer = info.second;
  9109. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  9110. new_type = GGML_TYPE_IQ3_XXS;
  9111. }
  9112. ++qs.i_ffn_gate;
  9113. }
  9114. else if (name.find("ffn_up") != std::string::npos) {
  9115. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  9116. int i_layer = info.first, n_layer = info.second;
  9117. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  9118. new_type = GGML_TYPE_IQ3_XXS;
  9119. }
  9120. ++qs.i_ffn_up;
  9121. }
  9122. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  9123. //}
  9124. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  9125. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  9126. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  9127. //}
  9128. // This can be used to reduce the size of the Q5_K_S model.
  9129. // The associated PPL increase is fully in line with the size reduction
  9130. //else {
  9131. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  9132. //}
  9133. bool convert_incompatible_tensor = false;
  9134. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  9135. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K ||
  9136. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  9137. new_type == GGML_TYPE_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || new_type == GGML_TYPE_IQ3_S) {
  9138. int nx = tensor->ne[0];
  9139. int ny = tensor->ne[1];
  9140. if (nx % QK_K != 0) {
  9141. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  9142. convert_incompatible_tensor = true;
  9143. } else {
  9144. ++qs.n_k_quantized;
  9145. }
  9146. }
  9147. if (convert_incompatible_tensor) {
  9148. switch (new_type) {
  9149. case GGML_TYPE_IQ2_XXS:
  9150. case GGML_TYPE_IQ2_XS:
  9151. case GGML_TYPE_IQ2_S:
  9152. case GGML_TYPE_IQ3_XXS:
  9153. case GGML_TYPE_IQ3_S:
  9154. case GGML_TYPE_IQ1_S:
  9155. case GGML_TYPE_Q2_K:
  9156. case GGML_TYPE_Q3_K: new_type = GGML_TYPE_IQ4_NL; break;
  9157. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  9158. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  9159. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  9160. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  9161. }
  9162. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  9163. ++qs.n_fallback;
  9164. }
  9165. return new_type;
  9166. }
  9167. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  9168. ggml_type quantized_type;
  9169. llama_ftype ftype = params->ftype;
  9170. switch (params->ftype) {
  9171. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  9172. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  9173. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  9174. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  9175. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  9176. case LLAMA_FTYPE_MOSTLY_F16: quantized_type = GGML_TYPE_F16; break;
  9177. case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break;
  9178. // K-quants
  9179. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  9180. case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break;
  9181. case LLAMA_FTYPE_MOSTLY_IQ3_XS: quantized_type = GGML_TYPE_IQ3_S; break;
  9182. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  9183. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  9184. case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break;
  9185. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  9186. case LLAMA_FTYPE_MOSTLY_Q4_K_M: quantized_type = GGML_TYPE_Q4_K; break;
  9187. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  9188. case LLAMA_FTYPE_MOSTLY_Q5_K_M: quantized_type = GGML_TYPE_Q5_K; break;
  9189. case LLAMA_FTYPE_MOSTLY_Q6_K: quantized_type = GGML_TYPE_Q6_K; break;
  9190. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: quantized_type = GGML_TYPE_IQ2_XXS; break;
  9191. case LLAMA_FTYPE_MOSTLY_IQ2_XS: quantized_type = GGML_TYPE_IQ2_XS; break;
  9192. case LLAMA_FTYPE_MOSTLY_IQ2_S: quantized_type = GGML_TYPE_IQ2_XS; break;
  9193. case LLAMA_FTYPE_MOSTLY_IQ2_M: quantized_type = GGML_TYPE_IQ2_S; break;
  9194. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: quantized_type = GGML_TYPE_IQ3_XXS; break;
  9195. case LLAMA_FTYPE_MOSTLY_IQ1_S: quantized_type = GGML_TYPE_IQ1_S; break;
  9196. case LLAMA_FTYPE_MOSTLY_IQ4_NL: quantized_type = GGML_TYPE_IQ4_NL; break;
  9197. case LLAMA_FTYPE_MOSTLY_IQ3_S: quantized_type = GGML_TYPE_IQ3_S; break;
  9198. case LLAMA_FTYPE_MOSTLY_IQ3_M: quantized_type = GGML_TYPE_IQ3_S; break;
  9199. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  9200. }
  9201. int nthread = params->nthread;
  9202. if (nthread <= 0) {
  9203. nthread = std::thread::hardware_concurrency();
  9204. }
  9205. // mmap consistently increases speed Linux, and also increases speed on Windows with
  9206. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  9207. #if defined(__linux__) || defined(_WIN32)
  9208. constexpr bool use_mmap = true;
  9209. #else
  9210. constexpr bool use_mmap = false;
  9211. #endif
  9212. llama_model_loader ml(fname_inp, use_mmap, NULL);
  9213. ml.init_mapping(false); // no prefetching?
  9214. llama_model model;
  9215. llm_load_arch(ml, model);
  9216. llm_load_hparams(ml, model);
  9217. struct quantize_state_internal qs(model, params);
  9218. if (params->only_copy) {
  9219. ftype = model.ftype;
  9220. }
  9221. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  9222. if (params->imatrix) {
  9223. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  9224. if (imatrix_data) {
  9225. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  9226. qs.has_imatrix = true;
  9227. }
  9228. }
  9229. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  9230. struct gguf_context * ctx_out = gguf_init_empty();
  9231. // copy the KV pairs from the input file
  9232. gguf_set_kv (ctx_out, ml.ctx_gguf);
  9233. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  9234. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  9235. for (int i = 0; i < ml.n_tensors; ++i) {
  9236. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  9237. const std::string name = ggml_get_name(meta);
  9238. // TODO: avoid hardcoded tensor names - use the TN_* constants
  9239. if (name.find("attn_v.weight") != std::string::npos || name.find("attn_qkv.weight") != std::string::npos) {
  9240. ++qs.n_attention_wv;
  9241. }
  9242. else if (name.find("ffn_down") != std::string::npos) {
  9243. ++qs.n_ffn_down;
  9244. }
  9245. else if (name.find("ffn_gate") != std::string::npos) {
  9246. ++qs.n_ffn_gate;
  9247. }
  9248. else if (name.find("ffn_up") != std::string::npos) {
  9249. ++qs.n_ffn_up;
  9250. }
  9251. }
  9252. if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) {
  9253. LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n",
  9254. __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer);
  9255. }
  9256. size_t total_size_org = 0;
  9257. size_t total_size_new = 0;
  9258. std::vector<int64_t> hist_all(1 << 4, 0);
  9259. std::vector<std::thread> workers;
  9260. workers.reserve(nthread);
  9261. std::mutex mutex;
  9262. int idx = 0;
  9263. std::vector<no_init<uint8_t>> read_data;
  9264. std::vector<no_init<uint8_t>> work;
  9265. std::vector<no_init<float>> f32_conv_buf;
  9266. // populate the original tensors so we get an initial meta data
  9267. for (int i = 0; i < ml.n_tensors; ++i) {
  9268. struct ggml_tensor * meta = ml.get_tensor_meta(i);
  9269. gguf_add_tensor(ctx_out, meta);
  9270. }
  9271. std::ofstream fout(fname_out, std::ios::binary);
  9272. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  9273. const size_t meta_size = gguf_get_meta_size(ctx_out);
  9274. LLAMA_LOG_INFO("%s: meta size = %zu bytes\n", __func__, meta_size);
  9275. // placeholder for the meta data
  9276. ::zeros(fout, meta_size);
  9277. for (int i = 0; i < ml.n_tensors; ++i) {
  9278. struct ggml_tensor * tensor = ml.get_tensor_meta(i);
  9279. const std::string name = ggml_get_name(tensor);
  9280. if (!ml.use_mmap) {
  9281. if (read_data.size() < ggml_nbytes(tensor)) {
  9282. read_data.resize(ggml_nbytes(tensor));
  9283. }
  9284. tensor->data = read_data.data();
  9285. }
  9286. ml.load_data_for(tensor);
  9287. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  9288. ++idx, ml.n_tensors,
  9289. ggml_get_name(tensor),
  9290. llama_format_tensor_shape(tensor).c_str(),
  9291. ggml_type_name(tensor->type));
  9292. // This used to be a regex, but <regex> has an extreme cost to compile times.
  9293. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  9294. // quantize only 2D tensors
  9295. quantize &= (ggml_n_dims(tensor) == 2);
  9296. quantize &= params->quantize_output_tensor || name != "output.weight";
  9297. quantize &= !params->only_copy;
  9298. // do not quantize expert gating tensors
  9299. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_FFN_GATE_INP, "weight");
  9300. // do not quantize positional embeddings and token types (BERT)
  9301. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  9302. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  9303. enum ggml_type new_type;
  9304. void * new_data;
  9305. size_t new_size;
  9306. if (quantize) {
  9307. new_type = quantized_type;
  9308. if (!params->pure) {
  9309. new_type = get_k_quant_type(qs, new_type, tensor, ftype);
  9310. }
  9311. // If we've decided to quantize to the same type the tensor is already
  9312. // in then there's nothing to do.
  9313. quantize = tensor->type != new_type;
  9314. }
  9315. if (!quantize) {
  9316. new_type = tensor->type;
  9317. new_data = tensor->data;
  9318. new_size = ggml_nbytes(tensor);
  9319. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  9320. } else {
  9321. const size_t nelements = ggml_nelements(tensor);
  9322. const float * imatrix = nullptr;
  9323. if (imatrix_data) {
  9324. auto it = imatrix_data->find(tensor->name);
  9325. if (it == imatrix_data->end()) {
  9326. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  9327. } else {
  9328. if (it->second.size() == (size_t)tensor->ne[0]) {
  9329. imatrix = it->second.data();
  9330. } else {
  9331. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  9332. int(it->second.size()), int(tensor->ne[0]), tensor->name);
  9333. }
  9334. }
  9335. }
  9336. if ((new_type == GGML_TYPE_IQ2_XXS ||
  9337. new_type == GGML_TYPE_IQ2_XS ||
  9338. new_type == GGML_TYPE_IQ2_S ||
  9339. new_type == GGML_TYPE_IQ1_S ||
  9340. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  9341. LLAMA_LOG_ERROR("\n\n============================================================\n");
  9342. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  9343. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  9344. LLAMA_LOG_ERROR("============================================================\n\n");
  9345. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  9346. }
  9347. float * f32_data;
  9348. if (tensor->type == GGML_TYPE_F32) {
  9349. f32_data = (float *) tensor->data;
  9350. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  9351. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  9352. } else {
  9353. llama_convert_tensor_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  9354. f32_data = (float *) f32_conv_buf.data();
  9355. }
  9356. LLAMA_LOG_INFO("quantizing to %s .. ", ggml_type_name(new_type));
  9357. fflush(stdout);
  9358. if (work.size() < nelements * 4) {
  9359. work.resize(nelements * 4); // upper bound on size
  9360. }
  9361. new_data = work.data();
  9362. std::array<int64_t, 1 << 4> hist_cur = {};
  9363. const int n_per_row = tensor->ne[0];
  9364. const int nrows = nelements / n_per_row;
  9365. static const int min_chunk_size = 32 * 512;
  9366. const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  9367. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  9368. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  9369. if (nthread_use < 2) {
  9370. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur.data(), imatrix);
  9371. } else {
  9372. int counter = 0;
  9373. new_size = 0;
  9374. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
  9375. nrows, n_per_row, imatrix]() {
  9376. std::array<int64_t, 1 << 4> local_hist = {};
  9377. const int nrows_per_chunk = chunk_size / n_per_row;
  9378. size_t local_size = 0;
  9379. while (true) {
  9380. std::unique_lock<std::mutex> lock(mutex);
  9381. int first_row = counter; counter += nrows_per_chunk;
  9382. if (first_row >= nrows) {
  9383. if (local_size > 0) {
  9384. for (int j=0; j<int(local_hist.size()); ++j) {
  9385. hist_cur[j] += local_hist[j];
  9386. }
  9387. new_size += local_size;
  9388. }
  9389. break;
  9390. }
  9391. lock.unlock();
  9392. const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  9393. local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
  9394. first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
  9395. }
  9396. };
  9397. for (int it = 0; it < nthread_use - 1; ++it) {
  9398. workers.emplace_back(compute);
  9399. }
  9400. compute();
  9401. for (auto & w : workers) { w.join(); }
  9402. workers.clear();
  9403. }
  9404. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  9405. int64_t tot_count = 0;
  9406. for (size_t i = 0; i < hist_cur.size(); i++) {
  9407. hist_all[i] += hist_cur[i];
  9408. tot_count += hist_cur[i];
  9409. }
  9410. if (tot_count > 0) {
  9411. LLAMA_LOG_INFO(" | hist: ");
  9412. for (size_t i = 0; i < hist_cur.size(); i++) {
  9413. LLAMA_LOG_INFO("%5.3f ", hist_cur[i] / float(nelements));
  9414. }
  9415. }
  9416. LLAMA_LOG_INFO("\n");
  9417. }
  9418. total_size_org += ggml_nbytes(tensor);
  9419. total_size_new += new_size;
  9420. // update the gguf meta data as we go
  9421. gguf_set_tensor_type(ctx_out, name.c_str(), new_type);
  9422. gguf_set_tensor_data(ctx_out, name.c_str(), new_data, new_size);
  9423. // write tensor data + padding
  9424. fout.write((const char *) new_data, new_size);
  9425. zeros(fout, GGML_PAD(new_size, align) - new_size);
  9426. }
  9427. // go back to beginning of file and write the updated meta data
  9428. {
  9429. fout.seekp(0);
  9430. std::vector<uint8_t> data(gguf_get_meta_size(ctx_out));
  9431. gguf_get_meta_data(ctx_out, data.data());
  9432. fout.write((const char *) data.data(), data.size());
  9433. }
  9434. fout.close();
  9435. gguf_free(ctx_out);
  9436. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  9437. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  9438. // print histogram for all tensors
  9439. {
  9440. int64_t sum_all = 0;
  9441. for (size_t i = 0; i < hist_all.size(); i++) {
  9442. sum_all += hist_all[i];
  9443. }
  9444. if (sum_all > 0) {
  9445. LLAMA_LOG_INFO("%s: hist: ", __func__);
  9446. for (size_t i = 0; i < hist_all.size(); i++) {
  9447. LLAMA_LOG_INFO("%5.3f ", hist_all[i] / float(sum_all));
  9448. }
  9449. LLAMA_LOG_INFO("\n");
  9450. }
  9451. }
  9452. if (qs.n_fallback > 0) {
  9453. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) incompatible with k-quants and required fallback quantization\n",
  9454. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  9455. }
  9456. }
  9457. static int llama_apply_lora_from_file_internal(
  9458. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  9459. ) {
  9460. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  9461. const int64_t t_start_lora_us = ggml_time_us();
  9462. llama_file fin(path_lora, "rb");
  9463. // verify magic and version
  9464. {
  9465. uint32_t magic = fin.read_u32();
  9466. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  9467. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  9468. return 1;
  9469. }
  9470. uint32_t format_version = fin.read_u32();
  9471. if (format_version != 1) {
  9472. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  9473. return 1;
  9474. }
  9475. }
  9476. int32_t lora_r = fin.read_u32();
  9477. int32_t lora_alpha = fin.read_u32();
  9478. float scaling = scale * (float)lora_alpha / (float)lora_r;
  9479. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  9480. // load base model
  9481. std::unique_ptr<llama_model_loader> ml;
  9482. if (path_base_model) {
  9483. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  9484. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*kv_overrides*/ nullptr));
  9485. ml->init_mapping(/*prefetch*/ false); // no prefetching
  9486. }
  9487. struct tensor_meta {
  9488. std::string name;
  9489. ggml_type type;
  9490. int32_t ne[2];
  9491. size_t offset;
  9492. };
  9493. std::map<std::string, tensor_meta> tensor_meta_map;
  9494. // load all tensor meta
  9495. while (true) {
  9496. if (fin.tell() == fin.size) {
  9497. // eof
  9498. break;
  9499. }
  9500. int32_t n_dims;
  9501. int32_t name_len;
  9502. int32_t ftype;
  9503. fin.read_raw(&n_dims, sizeof(n_dims));
  9504. fin.read_raw(&name_len, sizeof(name_len));
  9505. fin.read_raw(&ftype, sizeof(ftype));
  9506. if (n_dims != 1 && n_dims != 2) {
  9507. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  9508. return 1;
  9509. }
  9510. int32_t ne[2] = { 1, 1 };
  9511. for (int i = 0; i < n_dims; ++i) {
  9512. fin.read_raw(&ne[i], sizeof(ne[i]));
  9513. }
  9514. std::string name;
  9515. {
  9516. GGML_ASSERT(name_len < GGML_MAX_NAME);
  9517. char buf[GGML_MAX_NAME];
  9518. fin.read_raw(buf, name_len);
  9519. name = std::string(buf, name_len);
  9520. }
  9521. // check for lora suffix
  9522. std::string lora_suffix;
  9523. if (name.length() > 6) {
  9524. lora_suffix = name.substr(name.length() - 6);
  9525. }
  9526. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  9527. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  9528. return 1;
  9529. }
  9530. // tensor type
  9531. ggml_type wtype;
  9532. switch (ftype) {
  9533. case 0: wtype = GGML_TYPE_F32; break;
  9534. case 1: wtype = GGML_TYPE_F16; break;
  9535. default:
  9536. {
  9537. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  9538. __func__, ftype);
  9539. return 1;
  9540. }
  9541. }
  9542. // data offset
  9543. size_t offset = fin.tell();
  9544. offset = (offset + 31) & -32;
  9545. // skip tensor data
  9546. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  9547. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  9548. }
  9549. bool warned = false;
  9550. int n_tensors = 0;
  9551. // apply
  9552. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  9553. if (backend_cpu == nullptr) {
  9554. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  9555. return 1;
  9556. }
  9557. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  9558. std::vector<no_init<uint8_t>> read_buf;
  9559. for (const auto & it : model.tensors_by_name) {
  9560. const std::string & base_name = it.first;
  9561. ggml_tensor * model_t = it.second;
  9562. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  9563. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  9564. continue;
  9565. }
  9566. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  9567. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  9568. ggml_init_params lora_init_params = {
  9569. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  9570. /* .mem_buffer */ nullptr,
  9571. /* .no_alloc */ true,
  9572. };
  9573. ggml_context * lora_ctx = ggml_init(lora_init_params);
  9574. if (lora_ctx == nullptr) {
  9575. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  9576. ggml_backend_free(backend_cpu);
  9577. return 1;
  9578. }
  9579. // create tensors
  9580. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  9581. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  9582. ggml_set_name(loraA, metaA.name.c_str());
  9583. ggml_set_name(loraB, metaB.name.c_str());
  9584. ggml_tensor * base_t;
  9585. if (ml) {
  9586. if (gguf_find_tensor(ml->ctx_gguf, base_name.c_str()) < 0) {
  9587. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  9588. return 1;
  9589. }
  9590. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  9591. } else {
  9592. base_t = ggml_dup_tensor(lora_ctx, model_t);
  9593. }
  9594. ggml_set_name(base_t, base_name.c_str());
  9595. // allocate in backend buffer
  9596. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  9597. if (lora_buf == nullptr) {
  9598. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  9599. return 1;
  9600. }
  9601. // load tensor data
  9602. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  9603. read_buf.resize(ggml_nbytes(tensor));
  9604. fin.seek(tensor_meta.offset, SEEK_SET);
  9605. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  9606. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  9607. };
  9608. load_tensor(metaA, loraA);
  9609. load_tensor(metaB, loraB);
  9610. // load base model tensor data
  9611. if (ml) {
  9612. ml->load_data_for(base_t);
  9613. } else {
  9614. ggml_backend_tensor_copy(model_t, base_t);
  9615. }
  9616. if (ggml_is_quantized(base_t->type) && !warned) {
  9617. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  9618. "use a f16 or f32 base model with --lora-base\n", __func__);
  9619. warned = true;
  9620. }
  9621. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  9622. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  9623. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  9624. ggml_free(lora_ctx);
  9625. ggml_backend_buffer_free(lora_buf);
  9626. ggml_backend_free(backend_cpu);
  9627. return 1;
  9628. }
  9629. auto build_lora_graph = [&]() {
  9630. // w = w + BA*s
  9631. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  9632. ggml_set_name(BA, "BA");
  9633. if (scaling != 1.0f) {
  9634. BA = ggml_scale(lora_ctx, BA, scaling);
  9635. ggml_set_name(BA, "BA_scaled");
  9636. }
  9637. ggml_tensor * r;
  9638. r = ggml_add_inplace(lora_ctx, base_t, BA);
  9639. ggml_set_name(r, "r_add");
  9640. if (base_t->type != model_t->type) {
  9641. // convert the result to the model type
  9642. r = ggml_cast(lora_ctx, r, model_t->type);
  9643. ggml_set_name(r, "r_cast");
  9644. }
  9645. return r;
  9646. };
  9647. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  9648. ggml_tensor * r = build_lora_graph();
  9649. ggml_build_forward_expand(gf, r);
  9650. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  9651. if (graph_buf == nullptr) {
  9652. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  9653. ggml_free(lora_ctx);
  9654. ggml_backend_buffer_free(lora_buf);
  9655. ggml_backend_free(backend_cpu);
  9656. return 1;
  9657. }
  9658. ggml_backend_graph_compute(backend_cpu, gf);
  9659. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  9660. #if 0
  9661. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  9662. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  9663. // sched compute
  9664. ggml_build_forward_expand(gf, build_graph());
  9665. ggml_backend_sched_init_measure(sched, gf);
  9666. // create the graph again, since the previous one was destroyed by the measure
  9667. ggml_graph_clear(gf);
  9668. ggml_build_forward_expand(gf, build_graph());
  9669. ggml_backend_sched_graph_compute(sched, gf);
  9670. ggml_backend_sched_free(sched);
  9671. #endif
  9672. ggml_backend_buffer_free(lora_buf);
  9673. ggml_backend_buffer_free(graph_buf);
  9674. ggml_free(lora_ctx);
  9675. n_tensors++;
  9676. if (n_tensors % 4 == 0) {
  9677. LLAMA_LOG_INFO(".");
  9678. }
  9679. }
  9680. ggml_backend_free(backend_cpu);
  9681. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  9682. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  9683. return 0;
  9684. }
  9685. //
  9686. // interface implementation
  9687. //
  9688. struct llama_model_params llama_model_default_params() {
  9689. struct llama_model_params result = {
  9690. /*.n_gpu_layers =*/ 0,
  9691. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  9692. /*.main_gpu =*/ 0,
  9693. /*.tensor_split =*/ nullptr,
  9694. /*.progress_callback =*/ nullptr,
  9695. /*.progress_callback_user_data =*/ nullptr,
  9696. /*.kv_overrides =*/ nullptr,
  9697. /*.vocab_only =*/ false,
  9698. /*.use_mmap =*/ true,
  9699. /*.use_mlock =*/ false,
  9700. };
  9701. #ifdef GGML_USE_METAL
  9702. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  9703. result.n_gpu_layers = 999;
  9704. #endif
  9705. return result;
  9706. }
  9707. struct llama_context_params llama_context_default_params() {
  9708. struct llama_context_params result = {
  9709. /*.seed =*/ LLAMA_DEFAULT_SEED,
  9710. /*.n_ctx =*/ 512,
  9711. /*.n_batch =*/ 512,
  9712. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  9713. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  9714. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  9715. /*.rope_freq_base =*/ 0.0f,
  9716. /*.rope_freq_scale =*/ 0.0f,
  9717. /*.yarn_ext_factor =*/ -1.0f,
  9718. /*.yarn_attn_factor =*/ 1.0f,
  9719. /*.yarn_beta_fast =*/ 32.0f,
  9720. /*.yarn_beta_slow =*/ 1.0f,
  9721. /*.yarn_orig_ctx =*/ 0,
  9722. /*.cb_eval =*/ nullptr,
  9723. /*.cb_eval_user_data =*/ nullptr,
  9724. /*.type_k =*/ GGML_TYPE_F16,
  9725. /*.type_v =*/ GGML_TYPE_F16,
  9726. /*.mul_mat_q =*/ true,
  9727. /*.logits_all =*/ false,
  9728. /*.embedding =*/ false,
  9729. /*.offload_kqv =*/ true,
  9730. /*.do_pooling =*/ true,
  9731. };
  9732. return result;
  9733. }
  9734. struct llama_model_quantize_params llama_model_quantize_default_params() {
  9735. struct llama_model_quantize_params result = {
  9736. /*.nthread =*/ 0,
  9737. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  9738. /*.allow_requantize =*/ false,
  9739. /*.quantize_output_tensor =*/ true,
  9740. /*.only_copy =*/ false,
  9741. /*.pure =*/ false,
  9742. /*.imatrix =*/ nullptr,
  9743. };
  9744. return result;
  9745. }
  9746. size_t llama_max_devices(void) {
  9747. #if defined(GGML_USE_METAL)
  9748. return 1;
  9749. #elif defined(GGML_USE_CUBLAS)
  9750. return GGML_CUDA_MAX_DEVICES;
  9751. #elif defined(GGML_USE_SYCL)
  9752. return GGML_SYCL_MAX_DEVICES;
  9753. #elif defined(GGML_USE_VULKAN)
  9754. return GGML_VK_MAX_DEVICES;
  9755. #else
  9756. return 1;
  9757. #endif
  9758. }
  9759. bool llama_supports_mmap(void) {
  9760. return llama_mmap::SUPPORTED;
  9761. }
  9762. bool llama_supports_mlock(void) {
  9763. return llama_mlock::SUPPORTED;
  9764. }
  9765. bool llama_supports_gpu_offload(void) {
  9766. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  9767. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
  9768. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  9769. return true;
  9770. #else
  9771. return false;
  9772. #endif
  9773. }
  9774. // deprecated:
  9775. bool llama_mmap_supported(void) {
  9776. return llama_supports_mmap();
  9777. }
  9778. bool llama_mlock_supported(void) {
  9779. return llama_supports_mlock();
  9780. }
  9781. void llama_backend_init(void) {
  9782. ggml_time_init();
  9783. // needed to initialize f16 tables
  9784. {
  9785. struct ggml_init_params params = { 0, NULL, false };
  9786. struct ggml_context * ctx = ggml_init(params);
  9787. ggml_free(ctx);
  9788. }
  9789. #ifdef GGML_USE_MPI
  9790. ggml_mpi_backend_init();
  9791. #endif
  9792. }
  9793. void llama_numa_init(enum ggml_numa_strategy numa) {
  9794. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  9795. ggml_numa_init(numa);
  9796. }
  9797. }
  9798. void llama_backend_free(void) {
  9799. #ifdef GGML_USE_MPI
  9800. ggml_mpi_backend_free();
  9801. #endif
  9802. ggml_quantize_free();
  9803. }
  9804. int64_t llama_time_us(void) {
  9805. return ggml_time_us();
  9806. }
  9807. struct llama_model * llama_load_model_from_file(
  9808. const char * path_model,
  9809. struct llama_model_params params) {
  9810. ggml_time_init();
  9811. llama_model * model = new llama_model;
  9812. unsigned cur_percentage = 0;
  9813. if (params.progress_callback == NULL) {
  9814. params.progress_callback_user_data = &cur_percentage;
  9815. params.progress_callback = [](float progress, void * ctx) {
  9816. unsigned * cur_percentage_p = (unsigned *) ctx;
  9817. unsigned percentage = (unsigned) (100 * progress);
  9818. while (percentage > *cur_percentage_p) {
  9819. *cur_percentage_p = percentage;
  9820. LLAMA_LOG_INFO(".");
  9821. if (percentage >= 100) {
  9822. LLAMA_LOG_INFO("\n");
  9823. }
  9824. }
  9825. return true;
  9826. };
  9827. }
  9828. int status = llama_model_load(path_model, *model, params);
  9829. GGML_ASSERT(status <= 0);
  9830. if (status < 0) {
  9831. if (status == -1) {
  9832. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  9833. } else if (status == -2) {
  9834. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  9835. }
  9836. delete model;
  9837. return nullptr;
  9838. }
  9839. return model;
  9840. }
  9841. void llama_free_model(struct llama_model * model) {
  9842. delete model;
  9843. }
  9844. struct llama_context * llama_new_context_with_model(
  9845. struct llama_model * model,
  9846. struct llama_context_params params) {
  9847. if (!model) {
  9848. return nullptr;
  9849. }
  9850. llama_context * ctx = new llama_context(*model);
  9851. const auto & hparams = model->hparams;
  9852. auto & cparams = ctx->cparams;
  9853. cparams.n_batch = params.n_batch;
  9854. cparams.n_threads = params.n_threads;
  9855. cparams.n_threads_batch = params.n_threads_batch;
  9856. cparams.yarn_ext_factor = params.yarn_ext_factor;
  9857. cparams.yarn_attn_factor = params.yarn_attn_factor;
  9858. cparams.yarn_beta_fast = params.yarn_beta_fast;
  9859. cparams.yarn_beta_slow = params.yarn_beta_slow;
  9860. cparams.mul_mat_q = params.mul_mat_q;
  9861. cparams.offload_kqv = params.offload_kqv;
  9862. cparams.do_pooling = params.do_pooling;
  9863. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  9864. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  9865. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  9866. cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  9867. hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :
  9868. hparams.n_ctx_train;
  9869. cparams.cb_eval = params.cb_eval;
  9870. cparams.cb_eval_user_data = params.cb_eval_user_data;
  9871. auto rope_scaling_type = params.rope_scaling_type;
  9872. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  9873. rope_scaling_type = hparams.rope_scaling_type_train;
  9874. }
  9875. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  9876. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  9877. }
  9878. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  9879. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  9880. }
  9881. if (params.seed == LLAMA_DEFAULT_SEED) {
  9882. params.seed = time(NULL);
  9883. }
  9884. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  9885. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  9886. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  9887. ctx->rng = std::mt19937(params.seed);
  9888. ctx->logits_all = params.logits_all;
  9889. const ggml_type type_k = params.type_k;
  9890. const ggml_type type_v = params.type_v;
  9891. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  9892. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  9893. if (!hparams.vocab_only) {
  9894. // initialize backends
  9895. #ifdef GGML_USE_METAL
  9896. if (model->n_gpu_layers > 0) {
  9897. ctx->backend_metal = ggml_backend_metal_init();
  9898. if (ctx->backend_metal == nullptr) {
  9899. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  9900. llama_free(ctx);
  9901. return nullptr;
  9902. }
  9903. ctx->backends.push_back(ctx->backend_metal);
  9904. }
  9905. #elif defined(GGML_USE_CUBLAS)
  9906. if (model->n_gpu_layers > 0) {
  9907. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  9908. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  9909. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  9910. if (backend == nullptr) {
  9911. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  9912. llama_free(ctx);
  9913. return nullptr;
  9914. }
  9915. ctx->backends.push_back(backend);
  9916. } else {
  9917. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  9918. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  9919. ggml_backend_t backend = ggml_backend_cuda_init(device);
  9920. if (backend == nullptr) {
  9921. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  9922. llama_free(ctx);
  9923. return nullptr;
  9924. }
  9925. ctx->backends.push_back(backend);
  9926. }
  9927. }
  9928. }
  9929. #elif defined(GGML_USE_VULKAN)
  9930. if (model->n_gpu_layers > 0) {
  9931. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  9932. ggml_backend_t backend = ggml_backend_vk_init(device);
  9933. if (backend == nullptr) {
  9934. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  9935. llama_free(ctx);
  9936. return nullptr;
  9937. }
  9938. ctx->backends.push_back(backend);
  9939. }
  9940. }
  9941. #elif defined(GGML_USE_SYCL)
  9942. if (model->n_gpu_layers > 0) {
  9943. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  9944. if (backend == nullptr) {
  9945. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d backend\n", __func__, model->main_gpu);
  9946. llama_free(ctx);
  9947. return nullptr;
  9948. }
  9949. ctx->backends.push_back(backend);
  9950. }
  9951. #elif defined(GGML_USE_KOMPUTE)
  9952. if (model->n_gpu_layers > 0) {
  9953. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  9954. if (backend == nullptr) {
  9955. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  9956. llama_free(ctx);
  9957. return nullptr;
  9958. }
  9959. ctx->backends.push_back(backend);
  9960. }
  9961. #endif
  9962. ctx->backend_cpu = ggml_backend_cpu_init();
  9963. if (ctx->backend_cpu == nullptr) {
  9964. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  9965. llama_free(ctx);
  9966. return nullptr;
  9967. }
  9968. ctx->backends.push_back(ctx->backend_cpu);
  9969. if (!llama_kv_cache_init(ctx->kv_self, ctx->model, type_k, type_v, cparams.n_ctx, cparams.offload_kqv)) {
  9970. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  9971. llama_free(ctx);
  9972. return nullptr;
  9973. }
  9974. {
  9975. size_t memory_size_k = 0;
  9976. size_t memory_size_v = 0;
  9977. for (auto & k : ctx->kv_self.k_l) {
  9978. memory_size_k += ggml_nbytes(k);
  9979. }
  9980. for (auto & v : ctx->kv_self.v_l) {
  9981. memory_size_v += ggml_nbytes(v);
  9982. }
  9983. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  9984. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  9985. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  9986. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  9987. }
  9988. // resized during inference, reserve maximum
  9989. ctx->logits.reserve(hparams.n_vocab*cparams.n_batch);
  9990. if (params.embedding) {
  9991. ctx->embedding.resize(hparams.n_embd);
  9992. }
  9993. // graph inputs
  9994. {
  9995. ggml_init_params init_params = {
  9996. /* .mem_size */ ggml_tensor_overhead()*8,
  9997. /* .mem_buffer */ nullptr,
  9998. /* .no_alloc */ true,
  9999. };
  10000. ctx->ctx_input = ggml_init(init_params);
  10001. ctx->inp_tokens = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
  10002. ctx->inp_embd = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, hparams.n_embd, cparams.n_batch);
  10003. ctx->inp_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
  10004. ctx->inp_KQ_mask = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx, cparams.n_batch);
  10005. ctx->inp_KQ_pos = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_ctx);
  10006. ctx->inp_K_shift = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_ctx);
  10007. ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch);
  10008. ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
  10009. ggml_set_name(ctx->inp_tokens, "inp_tokens");
  10010. ggml_set_name(ctx->inp_embd, "inp_embd");
  10011. ggml_set_name(ctx->inp_pos, "inp_pos");
  10012. ggml_set_name(ctx->inp_KQ_mask, "inp_KQ_mask");
  10013. ggml_set_name(ctx->inp_KQ_pos, "inp_KQ_pos");
  10014. ggml_set_name(ctx->inp_K_shift, "inp_K_shift");
  10015. ggml_set_name(ctx->inp_mean, "inp_mean");
  10016. ggml_set_name(ctx->inp_cls, "inp_cls");
  10017. ctx->buf_input = ggml_backend_alloc_ctx_tensors_from_buft(ctx->ctx_input, llama_default_buffer_type_cpu(true));
  10018. LLAMA_LOG_INFO("%s: %10s input buffer size = %8.2f MiB\n", __func__,
  10019. ggml_backend_buffer_name(ctx->buf_input),
  10020. ggml_backend_buffer_get_size(ctx->buf_input) / 1024.0 / 1024.0);
  10021. }
  10022. // scheduler and compute buffers
  10023. {
  10024. // buffer types used for the compute buffer of each backend
  10025. std::vector<ggml_backend_buffer_type_t> backend_buft;
  10026. for (auto * backend : ctx->backends) {
  10027. if (ggml_backend_is_cpu(backend)) {
  10028. // use host buffers for the CPU backend compute buffer
  10029. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  10030. } else {
  10031. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  10032. }
  10033. }
  10034. // buffer used to store the computation graph and the tensor meta data
  10035. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead());
  10036. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES);
  10037. // build worst-case graph
  10038. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_batch);
  10039. int n_past = cparams.n_ctx - n_tokens;
  10040. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10041. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10042. // initialize scheduler with the worst-case graph
  10043. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  10044. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10045. llama_free(ctx);
  10046. return nullptr;
  10047. }
  10048. for (size_t i = 0; i < ctx->backends.size(); i++) {
  10049. ggml_backend_t backend = ctx->backends[i];
  10050. ggml_backend_buffer_type_t buft = backend_buft[i];
  10051. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  10052. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  10053. ggml_backend_buft_name(buft),
  10054. size / 1024.0 / 1024.0);
  10055. }
  10056. // note: the number of splits during measure is higher than during inference due to the kv shift
  10057. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  10058. LLAMA_LOG_INFO("%s: graph splits (measure): %d\n", __func__, n_splits);
  10059. }
  10060. }
  10061. #ifdef GGML_USE_MPI
  10062. ctx->ctx_mpi = ggml_mpi_init();
  10063. if (ggml_mpi_rank(ctx->ctx_mpi) > 0) {
  10064. // Enter a blocking eval loop with dummy input, letting rank=0 drive the process
  10065. // TODO: needs fix after #3228
  10066. GGML_ASSERT(false && "not implemented");
  10067. //const std::vector<llama_token> tmp(ctx->model.hparams.n_ctx, llama_token_bos(ctx));
  10068. //while (!llama_eval(ctx, tmp.data(), tmp.size(), 0, 0)) {};
  10069. llama_backend_free();
  10070. exit(1);
  10071. }
  10072. #endif
  10073. return ctx;
  10074. }
  10075. void llama_free(struct llama_context * ctx) {
  10076. delete ctx;
  10077. }
  10078. const llama_model * llama_get_model(const struct llama_context * ctx) {
  10079. return &ctx->model;
  10080. }
  10081. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  10082. return ctx->cparams.n_ctx;
  10083. }
  10084. uint32_t llama_n_batch(const struct llama_context * ctx) {
  10085. return ctx->cparams.n_batch;
  10086. }
  10087. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  10088. return model->vocab.type;
  10089. }
  10090. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  10091. switch (model->arch) {
  10092. // these models do not use RoPE
  10093. case LLM_ARCH_GPT2:
  10094. case LLM_ARCH_GPTJ:
  10095. case LLM_ARCH_GPTNEOX:
  10096. case LLM_ARCH_MPT:
  10097. case LLM_ARCH_REFACT:
  10098. case LLM_ARCH_BLOOM:
  10099. return LLAMA_ROPE_TYPE_NONE;
  10100. // use what we call a normal RoPE, operating on pairs of consecutive head values
  10101. case LLM_ARCH_LLAMA:
  10102. case LLM_ARCH_BAICHUAN:
  10103. case LLM_ARCH_STARCODER:
  10104. case LLM_ARCH_PLAMO:
  10105. case LLM_ARCH_CODESHELL:
  10106. case LLM_ARCH_ORION:
  10107. case LLM_ARCH_INTERNLM2:
  10108. case LLM_ARCH_MINICPM:
  10109. return LLAMA_ROPE_TYPE_NORM;
  10110. // the pairs of head values are offset by n_rot/2
  10111. case LLM_ARCH_FALCON:
  10112. case LLM_ARCH_PERSIMMON:
  10113. case LLM_ARCH_BERT:
  10114. case LLM_ARCH_NOMIC_BERT:
  10115. case LLM_ARCH_STABLELM:
  10116. case LLM_ARCH_QWEN:
  10117. case LLM_ARCH_QWEN2:
  10118. case LLM_ARCH_PHI2:
  10119. case LLM_ARCH_GEMMA:
  10120. return LLAMA_ROPE_TYPE_NEOX;
  10121. // all model arches should be listed explicitly here
  10122. case LLM_ARCH_UNKNOWN:
  10123. GGML_ASSERT(false && "unknown architecture");
  10124. break;
  10125. }
  10126. return LLAMA_ROPE_TYPE_NONE;
  10127. }
  10128. int32_t llama_n_vocab(const struct llama_model * model) {
  10129. return model->vocab.id_to_token.size();
  10130. }
  10131. int32_t llama_n_ctx_train(const struct llama_model * model) {
  10132. return model->hparams.n_ctx_train;
  10133. }
  10134. int32_t llama_n_embd(const struct llama_model * model) {
  10135. return model->hparams.n_embd;
  10136. }
  10137. float llama_rope_freq_scale_train(const struct llama_model * model) {
  10138. return model->hparams.rope_freq_scale_train;
  10139. }
  10140. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  10141. const auto & it = model->gguf_kv.find(key);
  10142. if (it == model->gguf_kv.end()) {
  10143. if (buf_size > 0) {
  10144. buf[0] = '\0';
  10145. }
  10146. return -1;
  10147. }
  10148. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10149. }
  10150. int32_t llama_model_meta_count(const struct llama_model * model) {
  10151. return (int)model->gguf_kv.size();
  10152. }
  10153. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  10154. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10155. if (buf_size > 0) {
  10156. buf[0] = '\0';
  10157. }
  10158. return -1;
  10159. }
  10160. auto it = model->gguf_kv.begin();
  10161. std::advance(it, i);
  10162. return snprintf(buf, buf_size, "%s", it->first.c_str());
  10163. }
  10164. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  10165. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  10166. if (buf_size > 0) {
  10167. buf[0] = '\0';
  10168. }
  10169. return -1;
  10170. }
  10171. auto it = model->gguf_kv.begin();
  10172. std::advance(it, i);
  10173. return snprintf(buf, buf_size, "%s", it->second.c_str());
  10174. }
  10175. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  10176. return snprintf(buf, buf_size, "%s %s %s",
  10177. llama_model_arch_name(model->arch),
  10178. llama_model_type_name(model->type),
  10179. llama_model_ftype_name(model->ftype).c_str());
  10180. }
  10181. uint64_t llama_model_size(const struct llama_model * model) {
  10182. uint64_t size = 0;
  10183. for (const auto & it : model->tensors_by_name) {
  10184. size += ggml_nbytes(it.second);
  10185. }
  10186. return size;
  10187. }
  10188. uint64_t llama_model_n_params(const struct llama_model * model) {
  10189. uint64_t nparams = 0;
  10190. for (const auto & it : model->tensors_by_name) {
  10191. nparams += ggml_nelements(it.second);
  10192. }
  10193. return nparams;
  10194. }
  10195. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  10196. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  10197. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  10198. return it.first == name;
  10199. });
  10200. if (it == model->tensors_by_name.end()) {
  10201. return nullptr;
  10202. }
  10203. return it->second;
  10204. }
  10205. uint32_t llama_model_quantize(
  10206. const char * fname_inp,
  10207. const char * fname_out,
  10208. const llama_model_quantize_params * params) {
  10209. try {
  10210. llama_model_quantize_internal(fname_inp, fname_out, params);
  10211. return 0;
  10212. } catch (const std::exception & err) {
  10213. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  10214. return 1;
  10215. }
  10216. }
  10217. int32_t llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  10218. try {
  10219. return llama_apply_lora_from_file_internal(ctx->model, path_lora, scale, path_base_model, n_threads);
  10220. } catch (const std::exception & err) {
  10221. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  10222. return 1;
  10223. }
  10224. }
  10225. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  10226. try {
  10227. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  10228. } catch (const std::exception & err) {
  10229. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  10230. return 1;
  10231. }
  10232. }
  10233. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq) {
  10234. struct llama_kv_cache_view result = {
  10235. /*.n_cells = */ 0,
  10236. /*.n_max_seq = */ n_max_seq,
  10237. /*.token_count = */ 0,
  10238. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  10239. /*.max_contiguous = */ 0,
  10240. /*.max_contiguous_idx = */ -1,
  10241. /*.cells = */ nullptr,
  10242. /*.cells_sequences = */ nullptr,
  10243. };
  10244. return result;
  10245. }
  10246. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  10247. if (view->cells != nullptr) {
  10248. free(view->cells);
  10249. view->cells = nullptr;
  10250. }
  10251. if (view->cells_sequences != nullptr) {
  10252. free(view->cells_sequences);
  10253. view->cells_sequences = nullptr;
  10254. }
  10255. }
  10256. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  10257. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  10258. view->n_cells = int32_t(ctx->kv_self.size);
  10259. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  10260. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  10261. view->cells = (struct llama_kv_cache_view_cell *)p;
  10262. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_max_seq * view->n_cells);
  10263. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  10264. view->cells_sequences = (llama_seq_id *)p;
  10265. }
  10266. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  10267. llama_kv_cache_view_cell * c_curr = view->cells;
  10268. llama_seq_id * cs_curr = view->cells_sequences;
  10269. int32_t used_cells = 0;
  10270. int32_t token_count = 0;
  10271. int32_t curr_contig_idx = -1;
  10272. uint32_t max_contig = 0;
  10273. int32_t max_contig_idx = -1;
  10274. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_max_seq) {
  10275. const size_t curr_size = kv_cells[i].seq_id.size();
  10276. token_count += curr_size;
  10277. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  10278. if (curr_size > 0) {
  10279. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  10280. max_contig = i - curr_contig_idx;
  10281. max_contig_idx = curr_contig_idx;
  10282. }
  10283. curr_contig_idx = -1;
  10284. } else if (curr_contig_idx < 0) {
  10285. curr_contig_idx = i;
  10286. }
  10287. int seq_idx = 0;
  10288. for (const llama_seq_id it : kv_cells[i].seq_id) {
  10289. if (seq_idx >= view->n_max_seq) {
  10290. break;
  10291. }
  10292. cs_curr[seq_idx] = it;
  10293. seq_idx++;
  10294. }
  10295. if (seq_idx != 0) {
  10296. used_cells++;
  10297. }
  10298. for (; seq_idx < view->n_max_seq; seq_idx++) {
  10299. cs_curr[seq_idx] = -1;
  10300. }
  10301. }
  10302. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  10303. max_contig_idx = curr_contig_idx;
  10304. max_contig = kv_cells.size() - curr_contig_idx;
  10305. }
  10306. view->max_contiguous = max_contig;
  10307. view->max_contiguous_idx = max_contig_idx;
  10308. view->token_count = token_count;
  10309. view->used_cells = used_cells;
  10310. if (uint32_t(used_cells) != ctx->kv_self.used) {
  10311. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  10312. __func__, ctx->kv_self.used, used_cells);
  10313. }
  10314. }
  10315. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  10316. int result = 0;
  10317. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  10318. result += ctx->kv_self.cells[i].seq_id.size();
  10319. }
  10320. return result;
  10321. }
  10322. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  10323. return ctx->kv_self.used;
  10324. }
  10325. void llama_kv_cache_clear(struct llama_context * ctx) {
  10326. llama_kv_cache_clear(ctx->kv_self);
  10327. }
  10328. void llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  10329. llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  10330. }
  10331. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  10332. if (seq_id_src == seq_id_dst) {
  10333. return;
  10334. }
  10335. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  10336. }
  10337. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  10338. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  10339. }
  10340. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  10341. if (delta == 0) {
  10342. return;
  10343. }
  10344. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  10345. }
  10346. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  10347. if (d == 1) {
  10348. return;
  10349. }
  10350. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  10351. }
  10352. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  10353. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  10354. }
  10355. void llama_kv_cache_defrag(struct llama_context * ctx) {
  10356. llama_kv_cache_defrag(ctx->kv_self);
  10357. }
  10358. void llama_kv_cache_update(struct llama_context * ctx) {
  10359. llama_kv_cache_update_internal(*ctx);
  10360. }
  10361. // Returns the *maximum* size of the state
  10362. size_t llama_get_state_size(const struct llama_context * ctx) {
  10363. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  10364. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  10365. const size_t s_rng_size = sizeof(size_t);
  10366. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  10367. const size_t s_logits_size = sizeof(size_t);
  10368. // assume worst case for logits although only currently set ones are serialized
  10369. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  10370. const size_t s_embedding_size = sizeof(size_t);
  10371. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  10372. const size_t s_kv_size = sizeof(size_t);
  10373. const size_t s_kv_ntok = sizeof(int);
  10374. const size_t s_kv = ctx->kv_self.total_size();
  10375. const size_t s_total = (
  10376. + s_rng_size
  10377. + s_rng
  10378. + s_logits_size
  10379. + s_logits
  10380. + s_embedding_size
  10381. + s_embedding
  10382. + s_kv_size
  10383. + s_kv_ntok
  10384. + s_kv
  10385. );
  10386. return s_total;
  10387. }
  10388. // llama_context_data
  10389. struct llama_data_context {
  10390. virtual void write(const void * src, size_t size) = 0;
  10391. virtual size_t get_size_written() = 0;
  10392. virtual ~llama_data_context() = default;
  10393. };
  10394. struct llama_data_buffer_context : llama_data_context {
  10395. uint8_t * ptr;
  10396. size_t size_written = 0;
  10397. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  10398. void write(const void * src, size_t size) override {
  10399. memcpy(ptr, src, size);
  10400. ptr += size;
  10401. size_written += size;
  10402. }
  10403. size_t get_size_written() override {
  10404. return size_written;
  10405. }
  10406. };
  10407. struct llama_data_file_context : llama_data_context {
  10408. llama_file * file;
  10409. size_t size_written = 0;
  10410. llama_data_file_context(llama_file * f) : file(f) {}
  10411. void write(const void * src, size_t size) override {
  10412. file->write_raw(src, size);
  10413. size_written += size;
  10414. }
  10415. size_t get_size_written() override {
  10416. return size_written;
  10417. }
  10418. };
  10419. /** copy state data into either a buffer or file depending on the passed in context
  10420. *
  10421. * file context:
  10422. * llama_file file("/path", "wb");
  10423. * llama_data_file_context data_ctx(&file);
  10424. * llama_copy_state_data(ctx, &data_ctx);
  10425. *
  10426. * buffer context:
  10427. * std::vector<uint8_t> buf(max_size, 0);
  10428. * llama_data_buffer_context data_ctx(&buf.data());
  10429. * llama_copy_state_data(ctx, &data_ctx);
  10430. *
  10431. */
  10432. static void llama_copy_state_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  10433. // copy rng
  10434. {
  10435. std::ostringstream rng_ss;
  10436. rng_ss << ctx->rng;
  10437. const std::string & rng_str = rng_ss.str();
  10438. const size_t rng_size = rng_str.size();
  10439. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  10440. data_ctx->write(&rng_size, sizeof(rng_size));
  10441. data_ctx->write(rng_str.data(), rng_size);
  10442. }
  10443. // copy logits
  10444. {
  10445. const size_t logits_size = ctx->logits.size();
  10446. data_ctx->write(&logits_size, sizeof(logits_size));
  10447. if (logits_size) {
  10448. data_ctx->write(ctx->logits.data(), logits_size * sizeof(float));
  10449. }
  10450. }
  10451. // copy embeddings
  10452. {
  10453. const size_t embedding_size = ctx->embedding.size();
  10454. data_ctx->write(&embedding_size, sizeof(embedding_size));
  10455. if (embedding_size) {
  10456. data_ctx->write(ctx->embedding.data(), embedding_size * sizeof(float));
  10457. }
  10458. }
  10459. // copy kv cache
  10460. {
  10461. const auto & kv_self = ctx->kv_self;
  10462. const auto & hparams = ctx->model.hparams;
  10463. const auto & cparams = ctx->cparams;
  10464. const uint32_t n_layer = hparams.n_layer;
  10465. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10466. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10467. const uint32_t n_ctx = cparams.n_ctx;
  10468. const size_t kv_buf_size = kv_self.total_size();
  10469. const uint32_t kv_head = kv_self.head;
  10470. const uint32_t kv_size = kv_self.size;
  10471. const uint32_t kv_used = kv_self.used;
  10472. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  10473. data_ctx->write(&kv_head, sizeof(kv_head));
  10474. data_ctx->write(&kv_size, sizeof(kv_size));
  10475. data_ctx->write(&kv_used, sizeof(kv_used));
  10476. if (kv_buf_size) {
  10477. std::vector<uint8_t> tmp_buf;
  10478. for (int il = 0; il < (int) n_layer; ++il) {
  10479. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  10480. tmp_buf.resize(k_size);
  10481. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  10482. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  10483. // v is not contiguous, copy row by row
  10484. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  10485. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx);
  10486. tmp_buf.resize(v_row_size);
  10487. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  10488. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  10489. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  10490. }
  10491. }
  10492. }
  10493. for (uint32_t i = 0; i < kv_size; ++i) {
  10494. const auto & cell = kv_self.cells[i];
  10495. const llama_pos pos = cell.pos;
  10496. const size_t seq_id_size = cell.seq_id.size();
  10497. data_ctx->write(&pos, sizeof(pos));
  10498. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  10499. for (auto seq_id : cell.seq_id) {
  10500. data_ctx->write(&seq_id, sizeof(seq_id));
  10501. }
  10502. }
  10503. }
  10504. }
  10505. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  10506. llama_data_buffer_context data_ctx(dst);
  10507. llama_copy_state_data_internal(ctx, &data_ctx);
  10508. return data_ctx.get_size_written();
  10509. }
  10510. // Sets the state reading from the specified source address
  10511. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  10512. uint8_t * inp = src;
  10513. // set rng
  10514. {
  10515. size_t rng_size;
  10516. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  10517. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  10518. std::string rng_str((char *)inp, rng_size); inp += rng_size;
  10519. std::istringstream rng_ss(rng_str);
  10520. rng_ss >> ctx->rng;
  10521. GGML_ASSERT(!rng_ss.fail());
  10522. }
  10523. // set logits
  10524. {
  10525. size_t logits_size;
  10526. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  10527. GGML_ASSERT(ctx->logits.capacity() >= logits_size);
  10528. if (logits_size) {
  10529. ctx->logits.resize(logits_size);
  10530. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  10531. inp += logits_size * sizeof(float);
  10532. }
  10533. }
  10534. // set embeddings
  10535. {
  10536. size_t embedding_size;
  10537. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  10538. GGML_ASSERT(ctx->embedding.capacity() == embedding_size);
  10539. if (embedding_size) {
  10540. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  10541. inp += embedding_size * sizeof(float);
  10542. }
  10543. }
  10544. // set kv cache
  10545. {
  10546. const auto & kv_self = ctx->kv_self;
  10547. const auto & hparams = ctx->model.hparams;
  10548. const auto & cparams = ctx->cparams;
  10549. const uint32_t n_layer = hparams.n_layer;
  10550. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10551. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10552. const uint32_t n_ctx = cparams.n_ctx;
  10553. size_t kv_buf_size;
  10554. uint32_t kv_head;
  10555. uint32_t kv_size;
  10556. uint32_t kv_used;
  10557. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  10558. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  10559. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  10560. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  10561. if (kv_buf_size) {
  10562. GGML_ASSERT(kv_self.total_size() == kv_buf_size);
  10563. for (int il = 0; il < (int) n_layer; ++il) {
  10564. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  10565. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  10566. inp += k_size;
  10567. // v is not contiguous, copy row by row
  10568. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  10569. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, n_ctx);
  10570. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  10571. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  10572. inp += v_row_size;
  10573. }
  10574. }
  10575. }
  10576. ctx->kv_self.head = kv_head;
  10577. ctx->kv_self.size = kv_size;
  10578. ctx->kv_self.used = kv_used;
  10579. ctx->kv_self.cells.resize(kv_size);
  10580. for (uint32_t i = 0; i < kv_size; ++i) {
  10581. llama_pos pos;
  10582. size_t seq_id_size;
  10583. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  10584. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  10585. ctx->kv_self.cells[i].pos = pos;
  10586. llama_seq_id seq_id;
  10587. for (size_t j = 0; j < seq_id_size; ++j) {
  10588. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  10589. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  10590. }
  10591. }
  10592. }
  10593. const size_t nread = inp - src;
  10594. const size_t max_size = llama_get_state_size(ctx);
  10595. GGML_ASSERT(nread <= max_size);
  10596. return nread;
  10597. }
  10598. static bool llama_load_session_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  10599. llama_file file(path_session, "rb");
  10600. // sanity checks
  10601. {
  10602. const uint32_t magic = file.read_u32();
  10603. const uint32_t version = file.read_u32();
  10604. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  10605. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  10606. return false;
  10607. }
  10608. llama_hparams session_hparams;
  10609. file.read_raw(&session_hparams, sizeof(llama_hparams));
  10610. if (session_hparams != ctx->model.hparams) {
  10611. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  10612. return false;
  10613. }
  10614. }
  10615. // load the prompt
  10616. {
  10617. const uint32_t n_token_count = file.read_u32();
  10618. if (n_token_count > n_token_capacity) {
  10619. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  10620. return false;
  10621. }
  10622. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  10623. *n_token_count_out = n_token_count;
  10624. }
  10625. // restore the context state
  10626. {
  10627. const size_t n_state_size_cur = file.size - file.tell();
  10628. const size_t n_state_size_max = llama_get_state_size(ctx);
  10629. if (n_state_size_cur > n_state_size_max) {
  10630. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  10631. return false;
  10632. }
  10633. std::vector<uint8_t> state_data(n_state_size_max);
  10634. file.read_raw(state_data.data(), n_state_size_cur);
  10635. llama_set_state_data(ctx, state_data.data());
  10636. }
  10637. return true;
  10638. }
  10639. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  10640. try {
  10641. return llama_load_session_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  10642. } catch (const std::exception & err) {
  10643. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  10644. return false;
  10645. }
  10646. }
  10647. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  10648. llama_file file(path_session, "wb");
  10649. file.write_u32(LLAMA_SESSION_MAGIC);
  10650. file.write_u32(LLAMA_SESSION_VERSION);
  10651. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  10652. // save the prompt
  10653. file.write_u32((uint32_t) n_token_count);
  10654. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  10655. // save the context state using stream saving
  10656. llama_data_file_context data_ctx(&file);
  10657. llama_copy_state_data_internal(ctx, &data_ctx);
  10658. return true;
  10659. }
  10660. int llama_eval(
  10661. struct llama_context * ctx,
  10662. llama_token * tokens,
  10663. int32_t n_tokens,
  10664. int32_t n_past) {
  10665. llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
  10666. const int ret = llama_decode_internal(*ctx, llama_batch_get_one(tokens, n_tokens, n_past, 0));
  10667. if (ret < 0) {
  10668. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  10669. }
  10670. return ret;
  10671. }
  10672. int llama_eval_embd(
  10673. struct llama_context * ctx,
  10674. float * embd,
  10675. int32_t n_tokens,
  10676. int32_t n_past) {
  10677. llama_kv_cache_seq_rm(ctx->kv_self, -1, n_past, -1);
  10678. llama_batch batch = { n_tokens, nullptr, embd, nullptr, nullptr, nullptr, nullptr, n_past, 1, 0, };
  10679. const int ret = llama_decode_internal(*ctx, batch);
  10680. if (ret < 0) {
  10681. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  10682. }
  10683. return ret;
  10684. }
  10685. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  10686. ctx->cparams.n_threads = n_threads;
  10687. ctx->cparams.n_threads_batch = n_threads_batch;
  10688. }
  10689. struct llama_batch llama_batch_get_one(
  10690. llama_token * tokens,
  10691. int32_t n_tokens,
  10692. llama_pos pos_0,
  10693. llama_seq_id seq_id) {
  10694. return {
  10695. /*n_tokens =*/ n_tokens,
  10696. /*tokens =*/ tokens,
  10697. /*embd =*/ nullptr,
  10698. /*pos =*/ nullptr,
  10699. /*n_seq_id =*/ nullptr,
  10700. /*seq_id =*/ nullptr,
  10701. /*logits =*/ nullptr,
  10702. /*all_pos_0 =*/ pos_0,
  10703. /*all_pos_1 =*/ 1,
  10704. /*all_seq_id =*/ seq_id,
  10705. };
  10706. }
  10707. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  10708. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  10709. if (embd) {
  10710. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  10711. } else {
  10712. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  10713. }
  10714. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  10715. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  10716. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  10717. for (int i = 0; i < n_tokens_alloc; ++i) {
  10718. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  10719. }
  10720. batch.seq_id[n_tokens_alloc] = nullptr;
  10721. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  10722. return batch;
  10723. }
  10724. void llama_batch_free(struct llama_batch batch) {
  10725. if (batch.token) free(batch.token);
  10726. if (batch.embd) free(batch.embd);
  10727. if (batch.pos) free(batch.pos);
  10728. if (batch.n_seq_id) free(batch.n_seq_id);
  10729. if (batch.seq_id) {
  10730. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  10731. free(batch.seq_id[i]);
  10732. }
  10733. free(batch.seq_id);
  10734. }
  10735. if (batch.logits) free(batch.logits);
  10736. }
  10737. int32_t llama_decode(
  10738. struct llama_context * ctx,
  10739. struct llama_batch batch) {
  10740. const int ret = llama_decode_internal(*ctx, batch);
  10741. if (ret < 0) {
  10742. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  10743. }
  10744. return ret;
  10745. }
  10746. float * llama_get_logits(struct llama_context * ctx) {
  10747. return ctx->logits.data();
  10748. }
  10749. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  10750. assert(ctx->logits_valid.at(i));
  10751. return ctx->logits.data() + i*ctx->model.hparams.n_vocab;
  10752. }
  10753. float * llama_get_embeddings(struct llama_context * ctx) {
  10754. return ctx->embedding.data();
  10755. }
  10756. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  10757. return ctx->embedding.data() + i*ctx->model.hparams.n_embd;
  10758. }
  10759. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  10760. return model->vocab.id_to_token[token].text.c_str();
  10761. }
  10762. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  10763. return model->vocab.id_to_token[token].score;
  10764. }
  10765. llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token) {
  10766. return model->vocab.id_to_token[token].type;
  10767. }
  10768. llama_token llama_token_bos(const struct llama_model * model) {
  10769. return model->vocab.special_bos_id;
  10770. }
  10771. llama_token llama_token_eos(const struct llama_model * model) {
  10772. return model->vocab.special_eos_id;
  10773. }
  10774. llama_token llama_token_nl(const struct llama_model * model) {
  10775. return model->vocab.linefeed_id;
  10776. }
  10777. int32_t llama_add_bos_token(const struct llama_model * model) {
  10778. return model->vocab.special_add_bos;
  10779. }
  10780. int32_t llama_add_eos_token(const struct llama_model * model) {
  10781. return model->vocab.special_add_eos;
  10782. }
  10783. llama_token llama_token_prefix(const struct llama_model * model) {
  10784. return model->vocab.special_prefix_id;
  10785. }
  10786. llama_token llama_token_middle(const struct llama_model * model) {
  10787. return model->vocab.special_middle_id;
  10788. }
  10789. llama_token llama_token_suffix(const struct llama_model * model) {
  10790. return model->vocab.special_suffix_id;
  10791. }
  10792. llama_token llama_token_eot(const struct llama_model * model) {
  10793. return model->vocab.special_eot_id;
  10794. }
  10795. int32_t llama_tokenize(
  10796. const struct llama_model * model,
  10797. const char * text,
  10798. int32_t text_len,
  10799. llama_token * tokens,
  10800. int32_t n_max_tokens,
  10801. bool add_bos,
  10802. bool special) {
  10803. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_bos, special);
  10804. if (n_max_tokens < (int) res.size()) {
  10805. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  10806. return -((int) res.size());
  10807. }
  10808. for (size_t i = 0; i < res.size(); i++) {
  10809. tokens[i] = res[i];
  10810. }
  10811. return res.size();
  10812. }
  10813. static std::string llama_decode_text(const std::string & text) {
  10814. std::string decoded_text;
  10815. auto unicode_sequences = codepoints_from_utf8(text);
  10816. for (auto& unicode_sequence : unicode_sequences) {
  10817. decoded_text += unicode_to_bytes_bpe(codepoint_to_utf8(unicode_sequence));
  10818. }
  10819. return decoded_text;
  10820. }
  10821. // does not write null-terminator to buf
  10822. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length) {
  10823. if (0 <= token && token < llama_n_vocab(model)) {
  10824. switch (llama_vocab_get_type(model->vocab)) {
  10825. case LLAMA_VOCAB_TYPE_WPM:
  10826. case LLAMA_VOCAB_TYPE_SPM: {
  10827. // NOTE: we accept all unsupported token types,
  10828. // suppressing them like CONTROL tokens.
  10829. if (llama_is_normal_token(model->vocab, token)) {
  10830. std::string result = model->vocab.id_to_token[token].text;
  10831. llama_unescape_whitespace(result);
  10832. if (length < (int) result.length()) {
  10833. return -(int) result.length();
  10834. }
  10835. memcpy(buf, result.c_str(), result.length());
  10836. return result.length();
  10837. } else if (llama_is_user_defined_token(model->vocab, token)) {
  10838. std::string result = model->vocab.id_to_token[token].text;
  10839. if (length < (int) result.length()) {
  10840. return -result.length();
  10841. }
  10842. memcpy(buf, result.c_str(), result.length());
  10843. return result.length();
  10844. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  10845. if (length < 3) {
  10846. return -3;
  10847. }
  10848. memcpy(buf, "\xe2\x96\x85", 3);
  10849. return 3;
  10850. } else if (llama_is_control_token(model->vocab, token)) {
  10851. ;
  10852. } else if (llama_is_byte_token(model->vocab, token)) {
  10853. if (length < 1) {
  10854. return -1;
  10855. }
  10856. buf[0] = llama_token_to_byte(model->vocab, token);
  10857. return 1;
  10858. }
  10859. break;
  10860. }
  10861. case LLAMA_VOCAB_TYPE_BPE: {
  10862. // NOTE: we accept all unsupported token types,
  10863. // suppressing them like CONTROL tokens.
  10864. if (llama_is_normal_token(model->vocab, token)) {
  10865. std::string result = model->vocab.id_to_token[token].text;
  10866. result = llama_decode_text(result);
  10867. if (length < (int) result.length()) {
  10868. return -(int) result.length();
  10869. }
  10870. memcpy(buf, result.c_str(), result.length());
  10871. return result.length();
  10872. } else if (llama_is_user_defined_token(model->vocab, token)) {
  10873. std::string result = model->vocab.id_to_token[token].text;
  10874. if (length < (int) result.length()) {
  10875. return -result.length();
  10876. }
  10877. memcpy(buf, result.c_str(), result.length());
  10878. return result.length();
  10879. } else if (llama_is_control_token(model->vocab, token)) {
  10880. ;
  10881. }
  10882. break;
  10883. }
  10884. default:
  10885. GGML_ASSERT(false);
  10886. }
  10887. }
  10888. return 0;
  10889. }
  10890. // trim whitespace from the beginning and end of a string
  10891. static std::string trim(const std::string & str) {
  10892. size_t start = 0;
  10893. size_t end = str.size();
  10894. while (start < end && isspace(str[start])) {
  10895. start += 1;
  10896. }
  10897. while (end > start && isspace(str[end - 1])) {
  10898. end -= 1;
  10899. }
  10900. return str.substr(start, end - start);
  10901. }
  10902. // Simple version of "llama_apply_chat_template" that only works with strings
  10903. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  10904. static int32_t llama_chat_apply_template_internal(
  10905. const std::string & tmpl,
  10906. const std::vector<const llama_chat_message *> & chat,
  10907. std::string & dest, bool add_ass) {
  10908. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  10909. std::stringstream ss;
  10910. if (tmpl.find("<|im_start|>") != std::string::npos) {
  10911. // chatml template
  10912. for (auto message : chat) {
  10913. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  10914. }
  10915. if (add_ass) {
  10916. ss << "<|im_start|>assistant\n";
  10917. }
  10918. } else if (tmpl.find("[INST]") != std::string::npos) {
  10919. // llama2 template and its variants
  10920. // [variant] support system message
  10921. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  10922. // [variant] space before + after response
  10923. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  10924. // [variant] add BOS inside history
  10925. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  10926. // [variant] trim spaces from the input message
  10927. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  10928. // construct the prompt
  10929. bool is_inside_turn = true; // skip BOS at the beginning
  10930. ss << "[INST] ";
  10931. for (auto message : chat) {
  10932. std::string content = strip_message ? trim(message->content) : message->content;
  10933. std::string role(message->role);
  10934. if (!is_inside_turn) {
  10935. is_inside_turn = true;
  10936. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  10937. }
  10938. if (role == "system") {
  10939. if (support_system_message) {
  10940. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  10941. } else {
  10942. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  10943. ss << content << "\n";
  10944. }
  10945. } else if (role == "user") {
  10946. ss << content << " [/INST]";
  10947. } else {
  10948. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  10949. is_inside_turn = false;
  10950. }
  10951. }
  10952. // llama2 templates seem to not care about "add_generation_prompt"
  10953. } else if (tmpl.find("<|user|>") != std::string::npos) {
  10954. // zephyr template
  10955. for (auto message : chat) {
  10956. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  10957. }
  10958. if (add_ass) {
  10959. ss << "<|assistant|>\n";
  10960. }
  10961. } else if (tmpl.find("bos_token + message['role']") != std::string::npos) {
  10962. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  10963. for (auto message : chat) {
  10964. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  10965. ss << bos << message->role << "\n" << message->content << "</s>\n";
  10966. }
  10967. if (add_ass) {
  10968. ss << "<s>assistant\n";
  10969. }
  10970. } else if (tmpl.find("<start_of_turn>") != std::string::npos) {
  10971. // google/gemma-7b-it
  10972. std::string system_prompt = "";
  10973. for (auto message : chat) {
  10974. std::string role(message->role);
  10975. if (role == "system") {
  10976. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  10977. system_prompt = trim(message->content);
  10978. continue;
  10979. }
  10980. // in gemma, "assistant" is "model"
  10981. role = role == "assistant" ? "model" : message->role;
  10982. ss << "<start_of_turn>" << role << "\n";
  10983. if (!system_prompt.empty() && role != "model") {
  10984. ss << system_prompt << "\n\n";
  10985. system_prompt = "";
  10986. }
  10987. ss << trim(message->content) << "<end_of_turn>\n";
  10988. }
  10989. if (add_ass) {
  10990. ss << "<start_of_turn>model\n";
  10991. }
  10992. } else {
  10993. // template not supported
  10994. return -1;
  10995. }
  10996. dest = ss.str();
  10997. return dest.size();
  10998. }
  10999. LLAMA_API int32_t llama_chat_apply_template(
  11000. const struct llama_model * model,
  11001. const char * tmpl,
  11002. const struct llama_chat_message * chat,
  11003. size_t n_msg,
  11004. bool add_ass,
  11005. char * buf,
  11006. int32_t length) {
  11007. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  11008. if (tmpl == nullptr) {
  11009. GGML_ASSERT(model != nullptr);
  11010. // load template from model
  11011. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  11012. std::string template_key = "tokenizer.chat_template";
  11013. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  11014. if (res < 0) {
  11015. // worst case: there is no information about template, we will use chatml by default
  11016. curr_tmpl = "<|im_start|>"; // see llama_chat_apply_template_internal
  11017. } else {
  11018. curr_tmpl = std::string(model_template.data(), model_template.size());
  11019. }
  11020. }
  11021. // format the chat to string
  11022. std::vector<const llama_chat_message *> chat_vec;
  11023. chat_vec.resize(n_msg);
  11024. for (size_t i = 0; i < n_msg; i++) {
  11025. chat_vec[i] = &chat[i];
  11026. }
  11027. std::string formatted_chat;
  11028. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  11029. if (res < 0) {
  11030. return res;
  11031. }
  11032. strncpy(buf, formatted_chat.c_str(), length);
  11033. return res;
  11034. }
  11035. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  11036. struct llama_timings result = {
  11037. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  11038. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  11039. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  11040. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  11041. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  11042. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  11043. /*.n_sample =*/ std::max(1, ctx->n_sample),
  11044. /*.n_p_eval =*/ std::max(1, ctx->n_p_eval),
  11045. /*.n_eval =*/ std::max(1, ctx->n_eval),
  11046. };
  11047. return result;
  11048. }
  11049. void llama_print_timings(struct llama_context * ctx) {
  11050. const llama_timings timings = llama_get_timings(ctx);
  11051. LLAMA_LOG_INFO("\n");
  11052. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  11053. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  11054. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  11055. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  11056. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  11057. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  11058. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  11059. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  11060. }
  11061. void llama_reset_timings(struct llama_context * ctx) {
  11062. ctx->t_start_us = ggml_time_us();
  11063. ctx->t_sample_us = ctx->n_sample = 0;
  11064. ctx->t_eval_us = ctx->n_eval = 0;
  11065. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  11066. }
  11067. const char * llama_print_system_info(void) {
  11068. static std::string s;
  11069. s = "";
  11070. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  11071. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  11072. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  11073. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  11074. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  11075. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  11076. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  11077. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  11078. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  11079. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  11080. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  11081. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  11082. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  11083. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  11084. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  11085. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  11086. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  11087. return s.c_str();
  11088. }
  11089. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  11090. fprintf(stream, "\n");
  11091. fprintf(stream, "###########\n");
  11092. fprintf(stream, "# Timings #\n");
  11093. fprintf(stream, "###########\n");
  11094. fprintf(stream, "\n");
  11095. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  11096. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  11097. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  11098. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  11099. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  11100. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  11101. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  11102. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  11103. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  11104. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  11105. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  11106. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  11107. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  11108. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  11109. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  11110. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  11111. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  11112. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  11113. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  11114. }
  11115. // For internal test use
  11116. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  11117. struct llama_context * ctx
  11118. ) {
  11119. return ctx->model.tensors_by_name;
  11120. }
  11121. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  11122. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  11123. g_state.log_callback_user_data = user_data;
  11124. #ifdef GGML_USE_METAL
  11125. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  11126. #endif
  11127. }
  11128. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  11129. va_list args_copy;
  11130. va_copy(args_copy, args);
  11131. char buffer[128];
  11132. int len = vsnprintf(buffer, 128, format, args);
  11133. if (len < 128) {
  11134. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  11135. } else {
  11136. char* buffer2 = new char[len+1];
  11137. vsnprintf(buffer2, len+1, format, args_copy);
  11138. buffer2[len] = 0;
  11139. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  11140. delete[] buffer2;
  11141. }
  11142. va_end(args_copy);
  11143. }
  11144. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  11145. va_list args;
  11146. va_start(args, format);
  11147. llama_log_internal_v(level, format, args);
  11148. va_end(args);
  11149. }
  11150. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  11151. (void) level;
  11152. (void) user_data;
  11153. fputs(text, stderr);
  11154. fflush(stderr);
  11155. }