ggml-backend.c 65 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  13. return buft->iface.get_name(buft);
  14. }
  15. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  16. return buft->iface.alloc_buffer(buft, size);
  17. }
  18. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  19. return buft->iface.get_alignment(buft);
  20. }
  21. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  22. // get_max_size is optional, defaults to SIZE_MAX
  23. if (buft->iface.get_max_size) {
  24. return buft->iface.get_max_size(buft);
  25. }
  26. return SIZE_MAX;
  27. }
  28. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  29. // get_alloc_size is optional, defaults to ggml_nbytes
  30. if (buft->iface.get_alloc_size) {
  31. size_t size = buft->iface.get_alloc_size(buft, tensor);
  32. assert(size >= ggml_nbytes(tensor));
  33. return size;
  34. }
  35. return ggml_nbytes(tensor);
  36. }
  37. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  38. return buft->iface.supports_backend(buft, backend);
  39. }
  40. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  41. if (buft->iface.is_host) {
  42. return buft->iface.is_host(buft);
  43. }
  44. return false;
  45. }
  46. // backend buffer
  47. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  48. ggml_backend_buffer_type_t buft,
  49. struct ggml_backend_buffer_i iface,
  50. ggml_backend_buffer_context_t context,
  51. size_t size) {
  52. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  53. (*buffer) = (struct ggml_backend_buffer) {
  54. /* .interface = */ iface,
  55. /* .buft = */ buft,
  56. /* .context = */ context,
  57. /* .size = */ size,
  58. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  59. };
  60. return buffer;
  61. }
  62. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  63. return buffer->iface.get_name(buffer);
  64. }
  65. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  66. if (buffer == NULL) {
  67. return;
  68. }
  69. if (buffer->iface.free_buffer != NULL) {
  70. buffer->iface.free_buffer(buffer);
  71. }
  72. free(buffer);
  73. }
  74. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  75. return buffer->size;
  76. }
  77. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  78. void * base = buffer->iface.get_base(buffer);
  79. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  80. return base;
  81. }
  82. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  83. // init_tensor is optional
  84. if (buffer->iface.init_tensor) {
  85. buffer->iface.init_tensor(buffer, tensor);
  86. }
  87. }
  88. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  89. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  90. }
  91. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  92. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  93. }
  94. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  95. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  96. }
  97. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  98. buffer->iface.clear(buffer, value);
  99. }
  100. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  101. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  102. }
  103. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  104. buffer->usage = usage;
  105. // FIXME: add a generic callback to the buffer interface
  106. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  107. ggml_backend_multi_buffer_set_usage(buffer, usage);
  108. }
  109. }
  110. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  111. return buffer->buft;
  112. }
  113. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  114. if (buffer->iface.reset) {
  115. buffer->iface.reset(buffer);
  116. }
  117. }
  118. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  119. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  120. if (dst_buf->iface.cpy_tensor) {
  121. return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
  122. }
  123. return false;
  124. }
  125. // backend
  126. const char * ggml_backend_name(ggml_backend_t backend) {
  127. if (backend == NULL) {
  128. return "NULL";
  129. }
  130. return backend->iface.get_name(backend);
  131. }
  132. void ggml_backend_free(ggml_backend_t backend) {
  133. if (backend == NULL) {
  134. return;
  135. }
  136. backend->iface.free(backend);
  137. }
  138. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  139. return backend->iface.get_default_buffer_type(backend);
  140. }
  141. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  142. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  143. }
  144. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  145. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  146. }
  147. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  148. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  149. }
  150. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  151. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  152. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  153. if (backend->iface.set_tensor_async == NULL) {
  154. ggml_backend_tensor_set(tensor, data, offset, size);
  155. } else {
  156. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  157. }
  158. }
  159. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  160. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  161. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  162. if (backend->iface.get_tensor_async == NULL) {
  163. ggml_backend_tensor_get(tensor, data, offset, size);
  164. } else {
  165. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  166. }
  167. }
  168. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  169. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  170. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  171. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  172. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  173. if (!size) {
  174. return;
  175. }
  176. tensor->buffer->iface.set_tensor(buf, tensor, data, offset, size);
  177. }
  178. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  179. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  180. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  181. GGML_ASSERT(tensor->buffer != NULL && "tensor buffer not set");
  182. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  183. if (!size) {
  184. return;
  185. }
  186. tensor->buffer->iface.get_tensor(buf, tensor, data, offset, size);
  187. }
  188. void ggml_backend_synchronize(ggml_backend_t backend) {
  189. if (backend->iface.synchronize == NULL) {
  190. return;
  191. }
  192. backend->iface.synchronize(backend);
  193. }
  194. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  195. return backend->iface.graph_plan_create(backend, cgraph);
  196. }
  197. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  198. backend->iface.graph_plan_free(backend, plan);
  199. }
  200. void ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  201. backend->iface.graph_plan_compute(backend, plan);
  202. }
  203. bool ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  204. return backend->iface.graph_compute(backend, cgraph);
  205. }
  206. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  207. return backend->iface.supports_op(backend, op);
  208. }
  209. // backend copy
  210. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  211. if (a->type != b->type) {
  212. return false;
  213. }
  214. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  215. if (a->ne[i] != b->ne[i]) {
  216. return false;
  217. }
  218. if (a->nb[i] != b->nb[i]) {
  219. return false;
  220. }
  221. }
  222. return true;
  223. }
  224. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  225. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  226. if (src == dst) {
  227. return;
  228. }
  229. if (ggml_backend_buffer_is_host(src->buffer)) {
  230. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  231. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  232. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  233. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  234. #ifndef NDEBUG
  235. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  236. #endif
  237. size_t nbytes = ggml_nbytes(src);
  238. void * data = malloc(nbytes);
  239. ggml_backend_tensor_get(src, data, 0, nbytes);
  240. ggml_backend_tensor_set(dst, data, 0, nbytes);
  241. free(data);
  242. }
  243. }
  244. void ggml_backend_tensor_copy_async(ggml_backend_t backend, struct ggml_tensor * src, struct ggml_tensor * dst) {
  245. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  246. if (src == dst) {
  247. return;
  248. }
  249. if (ggml_backend_buft_supports_backend(src->buffer->buft, backend) && ggml_backend_buft_supports_backend(dst->buffer->buft, backend)) {
  250. if (backend->iface.cpy_tensor_async != NULL) {
  251. if (backend->iface.cpy_tensor_async(backend, src, dst)) {
  252. return;
  253. }
  254. }
  255. }
  256. size_t nbytes = ggml_nbytes(src);
  257. if (ggml_backend_buffer_is_host(src->buffer)) {
  258. ggml_backend_tensor_set_async(backend, dst, src->data, 0, nbytes);
  259. }
  260. else {
  261. ggml_backend_tensor_copy(src, dst);
  262. }
  263. }
  264. // backend registry
  265. #define GGML_MAX_BACKENDS_REG 16
  266. struct ggml_backend_reg {
  267. char name[128];
  268. ggml_backend_init_fn init_fn;
  269. ggml_backend_buffer_type_t default_buffer_type;
  270. void * user_data;
  271. };
  272. static struct ggml_backend_reg ggml_backend_registry[GGML_MAX_BACKENDS_REG];
  273. static size_t ggml_backend_registry_count = 0;
  274. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  275. GGML_CALL static void ggml_backend_registry_init(void) {
  276. static bool initialized = false;
  277. if (initialized) {
  278. return;
  279. }
  280. initialized = true;
  281. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  282. // add forward decls here to avoid including the backend headers
  283. #ifdef GGML_USE_CUBLAS
  284. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  285. ggml_backend_cuda_reg_devices();
  286. #endif
  287. #ifdef GGML_USE_SYCL
  288. extern void ggml_backend_sycl_reg_devices(void);
  289. ggml_backend_sycl_reg_devices();
  290. #endif
  291. #ifdef GGML_USE_METAL
  292. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  293. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  294. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  295. #endif
  296. #ifdef GGML_USE_VULKAN
  297. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  298. ggml_backend_vk_reg_devices();
  299. #endif
  300. #ifdef GGML_USE_KOMPUTE
  301. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  302. ggml_backend_kompute_reg_devices();
  303. #endif
  304. }
  305. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  306. GGML_ASSERT(ggml_backend_registry_count < GGML_MAX_BACKENDS_REG);
  307. size_t id = ggml_backend_registry_count;
  308. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  309. /* .name = */ {0},
  310. /* .fn = */ init_fn,
  311. /* .default_buffer_type = */ default_buffer_type,
  312. /* .user_data = */ user_data,
  313. };
  314. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  315. #ifndef NDEBUG
  316. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  317. #endif
  318. ggml_backend_registry_count++;
  319. }
  320. size_t ggml_backend_reg_get_count(void) {
  321. ggml_backend_registry_init();
  322. return ggml_backend_registry_count;
  323. }
  324. size_t ggml_backend_reg_find_by_name(const char * name) {
  325. ggml_backend_registry_init();
  326. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  327. // TODO: case insensitive in a portable way
  328. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  329. return i;
  330. }
  331. }
  332. // not found
  333. return SIZE_MAX;
  334. }
  335. // init from backend:params string
  336. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  337. ggml_backend_registry_init();
  338. const char * params = strchr(backend_str, ':');
  339. char backend_name[128];
  340. if (params == NULL) {
  341. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  342. params = "";
  343. } else {
  344. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  345. params++;
  346. }
  347. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  348. if (backend_i == SIZE_MAX) {
  349. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  350. return NULL;
  351. }
  352. return ggml_backend_reg_init_backend(backend_i, params);
  353. }
  354. const char * ggml_backend_reg_get_name(size_t i) {
  355. ggml_backend_registry_init();
  356. GGML_ASSERT(i < ggml_backend_registry_count);
  357. return ggml_backend_registry[i].name;
  358. }
  359. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  360. ggml_backend_registry_init();
  361. GGML_ASSERT(i < ggml_backend_registry_count);
  362. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  363. }
  364. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  365. ggml_backend_registry_init();
  366. GGML_ASSERT(i < ggml_backend_registry_count);
  367. return ggml_backend_registry[i].default_buffer_type;
  368. }
  369. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  370. ggml_backend_registry_init();
  371. GGML_ASSERT(i < ggml_backend_registry_count);
  372. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  373. }
  374. // backend CPU
  375. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  376. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  377. return "CPU";
  378. GGML_UNUSED(buffer);
  379. }
  380. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  381. uintptr_t data = (uintptr_t)buffer->context;
  382. // align the buffer
  383. if (data % TENSOR_ALIGNMENT != 0) {
  384. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  385. }
  386. return (void *)data;
  387. }
  388. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  389. free(buffer->context);
  390. }
  391. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  392. memcpy((char *)tensor->data + offset, data, size);
  393. GGML_UNUSED(buffer);
  394. }
  395. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  396. memcpy(data, (const char *)tensor->data + offset, size);
  397. GGML_UNUSED(buffer);
  398. }
  399. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  400. if (ggml_backend_buffer_is_host(src->buffer)) {
  401. memcpy(dst->data, src->data, ggml_nbytes(src));
  402. return true;
  403. }
  404. return false;
  405. GGML_UNUSED(buffer);
  406. }
  407. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  408. memset(buffer->context, value, buffer->size);
  409. }
  410. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  411. /* .get_name = */ ggml_backend_cpu_buffer_name,
  412. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  413. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  414. /* .init_tensor = */ NULL, // no initialization required
  415. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  416. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  417. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  418. /* .clear = */ ggml_backend_cpu_buffer_clear,
  419. /* .reset = */ NULL,
  420. };
  421. // for buffers from ptr, free is not called
  422. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  423. /* .get_name = */ ggml_backend_cpu_buffer_name,
  424. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  425. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  426. /* .init_tensor = */ NULL, // no initialization required
  427. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  428. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  429. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  430. /* .clear = */ ggml_backend_cpu_buffer_clear,
  431. /* .reset = */ NULL,
  432. };
  433. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  434. return "CPU";
  435. GGML_UNUSED(buft);
  436. }
  437. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  438. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  439. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  440. if (data == NULL) {
  441. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  442. return NULL;
  443. }
  444. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  445. }
  446. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  447. return TENSOR_ALIGNMENT;
  448. GGML_UNUSED(buft);
  449. }
  450. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  451. return ggml_backend_is_cpu(backend);
  452. GGML_UNUSED(buft);
  453. }
  454. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  455. return true;
  456. GGML_UNUSED(buft);
  457. }
  458. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  459. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  460. /* .iface = */ {
  461. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  462. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  463. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  464. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  465. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  466. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  467. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  468. },
  469. /* .context = */ NULL,
  470. };
  471. return &ggml_backend_cpu_buffer_type;
  472. }
  473. #ifdef GGML_USE_CPU_HBM
  474. // buffer type HBM
  475. #include <hbwmalloc.h>
  476. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  477. return "CPU_HBM";
  478. GGML_UNUSED(buft);
  479. }
  480. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  481. return "CPU_HBM";
  482. GGML_UNUSED(buf);
  483. }
  484. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  485. hbw_free(buffer->context);
  486. }
  487. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  488. //void * ptr = hbw_malloc(size);
  489. void * ptr;
  490. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  491. if (result != 0) {
  492. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  493. return NULL;
  494. }
  495. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  496. buffer->buft = buft;
  497. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  498. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  499. return buffer;
  500. }
  501. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  502. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  503. /* .iface = */ {
  504. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  505. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  506. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  507. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  508. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  509. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  510. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  511. },
  512. /* .context = */ NULL,
  513. };
  514. return &ggml_backend_cpu_buffer_type_hbm;
  515. }
  516. #endif
  517. struct ggml_backend_cpu_context {
  518. int n_threads;
  519. void * work_data;
  520. size_t work_size;
  521. ggml_abort_callback abort_callback;
  522. void * abort_callback_data;
  523. };
  524. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  525. return "CPU";
  526. GGML_UNUSED(backend);
  527. }
  528. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  529. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  530. free(cpu_ctx->work_data);
  531. free(cpu_ctx);
  532. free(backend);
  533. }
  534. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  535. return ggml_backend_cpu_buffer_type();
  536. GGML_UNUSED(backend);
  537. }
  538. struct ggml_backend_plan_cpu {
  539. struct ggml_cplan cplan;
  540. struct ggml_cgraph cgraph;
  541. };
  542. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  543. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  544. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  545. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  546. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  547. if (cpu_plan->cplan.work_size > 0) {
  548. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  549. }
  550. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  551. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  552. return cpu_plan;
  553. }
  554. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  555. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  556. free(cpu_plan->cplan.work_data);
  557. free(cpu_plan);
  558. GGML_UNUSED(backend);
  559. }
  560. GGML_CALL static void ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  561. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  562. ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  563. GGML_UNUSED(backend);
  564. }
  565. GGML_CALL static bool ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  566. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  567. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  568. if (cpu_ctx->work_size < cplan.work_size) {
  569. // TODO: may be faster to free and use malloc to avoid the copy
  570. cpu_ctx->work_data = realloc(cpu_ctx->work_data, cplan.work_size);
  571. cpu_ctx->work_size = cplan.work_size;
  572. }
  573. cplan.work_data = cpu_ctx->work_data;
  574. cplan.abort_callback = cpu_ctx->abort_callback;
  575. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  576. ggml_graph_compute(cgraph, &cplan);
  577. return true;
  578. }
  579. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  580. switch (op->op) {
  581. case GGML_OP_CPY:
  582. return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS; // missing type_traits.from_float
  583. case GGML_OP_MUL_MAT:
  584. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  585. default:
  586. return true;
  587. }
  588. GGML_UNUSED(backend);
  589. }
  590. static struct ggml_backend_i cpu_backend_i = {
  591. /* .get_name = */ ggml_backend_cpu_name,
  592. /* .free = */ ggml_backend_cpu_free,
  593. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  594. /* .set_tensor_async = */ NULL,
  595. /* .get_tensor_async = */ NULL,
  596. /* .cpy_tensor_async = */ NULL,
  597. /* .synchronize = */ NULL,
  598. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  599. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  600. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  601. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  602. /* .supports_op = */ ggml_backend_cpu_supports_op,
  603. };
  604. ggml_backend_t ggml_backend_cpu_init(void) {
  605. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  606. if (ctx == NULL) {
  607. return NULL;
  608. }
  609. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  610. ctx->work_data = NULL;
  611. ctx->work_size = 0;
  612. ctx->abort_callback = NULL;
  613. ctx->abort_callback_data = NULL;
  614. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  615. if (cpu_backend == NULL) {
  616. free(ctx);
  617. return NULL;
  618. }
  619. *cpu_backend = (struct ggml_backend) {
  620. /* .interface = */ cpu_backend_i,
  621. /* .context = */ ctx
  622. };
  623. return cpu_backend;
  624. }
  625. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  626. return backend && backend->iface.get_name == ggml_backend_cpu_name;
  627. }
  628. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  629. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  630. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  631. ctx->n_threads = n_threads;
  632. }
  633. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  634. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  635. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  636. ctx->abort_callback = abort_callback;
  637. ctx->abort_callback_data = abort_callback_data;
  638. }
  639. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  640. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  641. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  642. }
  643. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  644. return ggml_backend_cpu_init();
  645. GGML_UNUSED(params);
  646. GGML_UNUSED(user_data);
  647. }
  648. // multi-buffer buffer
  649. struct ggml_backend_multi_buffer_context {
  650. ggml_backend_buffer_t * buffers;
  651. size_t n_buffers;
  652. };
  653. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  654. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  655. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  656. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  657. }
  658. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  659. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  660. for (size_t i = 0; i < ctx->n_buffers; i++) {
  661. ggml_backend_buffer_free(ctx->buffers[i]);
  662. }
  663. free(ctx->buffers);
  664. free(ctx);
  665. }
  666. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  667. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  668. for (size_t i = 0; i < ctx->n_buffers; i++) {
  669. ggml_backend_buffer_clear(ctx->buffers[i], value);
  670. }
  671. }
  672. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  673. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  674. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  675. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  676. /* .get_base = */ NULL,
  677. /* .init_tensor = */ NULL,
  678. /* .set_tensor = */ NULL,
  679. /* .get_tensor = */ NULL,
  680. /* .cpy_tensor = */ NULL,
  681. /* .clear = */ ggml_backend_multi_buffer_clear,
  682. /* .reset = */ NULL,
  683. };
  684. return multi_backend_buffer_i;
  685. }
  686. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  687. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  688. ctx->n_buffers = n_buffers;
  689. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  690. GGML_ASSERT(ctx->buffers != NULL);
  691. size_t total_size = 0;
  692. for (size_t i = 0; i < n_buffers; i++) {
  693. ctx->buffers[i] = buffers[i];
  694. total_size += ggml_backend_buffer_get_size(buffers[i]);
  695. }
  696. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  697. }
  698. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  699. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  700. }
  701. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  702. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  703. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  704. for (size_t i = 0; i < ctx->n_buffers; i++) {
  705. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  706. }
  707. }
  708. // creates a copy of the tensor with the same memory layout
  709. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  710. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  711. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  712. dup->nb[i] = tensor->nb[i];
  713. }
  714. return dup;
  715. }
  716. static bool ggml_is_view_op(enum ggml_op op) {
  717. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  718. }
  719. // scheduler
  720. #define GGML_MAX_BACKENDS 16
  721. #define GGML_MAX_SPLITS 256
  722. #define GGML_MAX_SPLIT_INPUTS 16
  723. struct ggml_backend_sched_split {
  724. int backend_id;
  725. int i_start;
  726. int i_end;
  727. struct ggml_tensor * inputs[GGML_MAX_SPLIT_INPUTS];
  728. int n_inputs;
  729. // graph view of this split
  730. struct ggml_cgraph graph;
  731. };
  732. struct ggml_backend_sched {
  733. bool is_reset; // true if the scheduler has been reset since the last graph split
  734. int n_backends;
  735. ggml_backend_t backends[GGML_MAX_BACKENDS];
  736. ggml_backend_buffer_type_t bufts[GGML_MAX_BACKENDS];
  737. ggml_gallocr_t galloc;
  738. // hash keys of the nodes in the graph
  739. struct ggml_hash_set hash_set;
  740. // hash values
  741. int * tensor_backend_id;
  742. struct ggml_tensor * (* tensor_copies)[GGML_MAX_BACKENDS];
  743. int * node_backend_ids; // [n_nodes]
  744. int n_nodes;
  745. // copy of the graph with modified inputs
  746. struct ggml_cgraph * graph;
  747. struct ggml_backend_sched_split splits[GGML_MAX_SPLITS];
  748. int n_splits;
  749. struct ggml_context * ctx;
  750. ggml_backend_sched_eval_callback callback_eval;
  751. void * callback_eval_user_data;
  752. // align context_buffer to GGML_MEM_ALIGN
  753. #ifdef _MSC_VER
  754. __declspec(align(GGML_MEM_ALIGN))
  755. #else
  756. __attribute__((aligned(GGML_MEM_ALIGN)))
  757. #endif
  758. char context_buffer[GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  759. };
  760. #define hash_id(node) ggml_hash_find_or_insert(sched->hash_set, node)
  761. #define tensor_backend_id(node) sched->tensor_backend_id[hash_id(node)]
  762. #define tensor_backend(node) (tensor_backend_id(node) == -1 ? NULL : sched->backends[tensor_backend_id(node)])
  763. // returns the priority of the backend, lower id is higher priority
  764. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  765. for (int i = 0; i < sched->n_backends; i++) {
  766. if (sched->backends[i] == backend) {
  767. return i;
  768. }
  769. }
  770. return -1;
  771. }
  772. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, ggml_backend_buffer_t buffer) {
  773. if (buffer == NULL) {
  774. return -1;
  775. }
  776. // find highest prio backend that supports the buffer type
  777. for (int i = 0; i < sched->n_backends; i++) {
  778. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  779. return i;
  780. }
  781. }
  782. GGML_ASSERT(false && "tensor buffer type not supported by any backend");
  783. }
  784. #if 0
  785. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS][128]; // debug only
  786. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  787. #define GET_CAUSE(node) causes[hash_id(node)]
  788. #else
  789. #define SET_CAUSE(node, ...)
  790. #define GET_CAUSE(node) ""
  791. #endif
  792. // returns the backend that should be used for the node based on the current locations
  793. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  794. // TODO: use supports_op to check if the backend supports the op
  795. // assign pre-allocated nodes to their backend
  796. // dst
  797. int cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->buffer);
  798. if (cur_backend != -1) {
  799. SET_CAUSE(node, "1.dst");
  800. return cur_backend;
  801. }
  802. // view_src
  803. if (tensor->view_src != NULL) {
  804. cur_backend = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src->buffer);
  805. if (cur_backend != -1) {
  806. SET_CAUSE(node, "1.vsrc");
  807. return cur_backend;
  808. }
  809. }
  810. // assign nodes that use weights to the backend of the weights
  811. for (int i = 0; i < GGML_MAX_SRC; i++) {
  812. const struct ggml_tensor * src = tensor->src[i];
  813. if (src == NULL) {
  814. break;
  815. }
  816. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  817. int src_backend = ggml_backend_sched_backend_from_buffer(sched, src->buffer);
  818. // operations with weights are always run on the same backend as the weights
  819. SET_CAUSE(node, "1.wgt%d", i);
  820. return src_backend;
  821. }
  822. }
  823. return -1;
  824. }
  825. static char * fmt_size(size_t size) {
  826. static char buffer[128];
  827. if (size >= 1024*1024) {
  828. sprintf(buffer, "%zuM", size/1024/1024);
  829. } else {
  830. sprintf(buffer, "%zuK", size/1024);
  831. }
  832. return buffer;
  833. }
  834. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  835. int cur_split = 0;
  836. for (int i = 0; i < graph->n_nodes; i++) {
  837. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  838. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  839. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  840. sched->splits[cur_split].n_inputs);
  841. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  842. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  843. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  844. }
  845. fprintf(stderr, "\n");
  846. cur_split++;
  847. }
  848. struct ggml_tensor * node = graph->nodes[i];
  849. if (ggml_is_view_op(node->op)) {
  850. continue;
  851. }
  852. ggml_backend_t tensor_backend = tensor_backend(node);
  853. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  854. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  855. for (int j = 0; j < GGML_MAX_SRC; j++) {
  856. struct ggml_tensor * src = node->src[j];
  857. if (src == NULL) {
  858. break;
  859. }
  860. ggml_backend_t src_backend = tensor_backend(src);
  861. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  862. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  863. }
  864. fprintf(stderr, "\n");
  865. }
  866. }
  867. //#define DEBUG_PASS1
  868. //#define DEBUG_PASS2
  869. //#define DEBUG_PASS3
  870. //#define DEBUG_PASS4
  871. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  872. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  873. // reset splits
  874. sched->n_splits = 0;
  875. sched->is_reset = false;
  876. struct ggml_init_params params = {
  877. /* .mem_size = */ sizeof(sched->context_buffer),
  878. /* .mem_buffer = */ sched->context_buffer,
  879. /* .no_alloc = */ true
  880. };
  881. ggml_free(sched->ctx);
  882. sched->ctx = ggml_init(params);
  883. if (sched->ctx == NULL) {
  884. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  885. GGML_ASSERT(false);
  886. }
  887. // pass 1: assign backends to ops with pre-allocated inputs
  888. for (int i = 0; i < graph->n_leafs; i++) {
  889. struct ggml_tensor * leaf = graph->leafs[i];
  890. if (tensor_backend_id(leaf) != -1) {
  891. // do not overwrite user assignments
  892. continue;
  893. }
  894. tensor_backend_id(leaf) = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  895. }
  896. for (int i = 0; i < graph->n_nodes; i++) {
  897. struct ggml_tensor * node = graph->nodes[i];
  898. if (tensor_backend_id(node) != -1) {
  899. // do not overwrite user assignments
  900. continue;
  901. }
  902. tensor_backend_id(node) = ggml_backend_sched_backend_id_from_cur(sched, node);
  903. // src
  904. for (int j = 0; j < GGML_MAX_SRC; j++) {
  905. struct ggml_tensor * src = node->src[j];
  906. if (src == NULL) {
  907. break;
  908. }
  909. if (tensor_backend_id(src) == -1) {
  910. tensor_backend_id(src) = ggml_backend_sched_backend_id_from_cur(sched, src);
  911. }
  912. }
  913. }
  914. #ifdef DEBUG_PASS1
  915. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  916. #endif
  917. // pass 2: expand current backend assignments
  918. // assign the same backend to adjacent nodes
  919. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  920. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  921. // pass 2.1 expand gpu up
  922. {
  923. int cur_backend_id = -1;
  924. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  925. struct ggml_tensor * node = graph->nodes[i];
  926. if (ggml_is_view_op(node->op)) {
  927. continue;
  928. }
  929. int tensor_backend_id = tensor_backend_id(node);
  930. if (tensor_backend_id != -1) {
  931. if (tensor_backend_id == sched->n_backends - 1) {
  932. // skip cpu (lowest prio backend)
  933. cur_backend_id = -1;
  934. } else {
  935. cur_backend_id = tensor_backend_id;
  936. }
  937. } else {
  938. tensor_backend_id(node) = cur_backend_id;
  939. SET_CAUSE(node, "2.1");
  940. }
  941. }
  942. }
  943. // pass 2.2 expand gpu down
  944. {
  945. int cur_backend_id = -1;
  946. for (int i = 0; i < graph->n_nodes; i++) {
  947. struct ggml_tensor * node = graph->nodes[i];
  948. if (ggml_is_view_op(node->op)) {
  949. continue;
  950. }
  951. int tensor_backend_id = tensor_backend_id(node);
  952. if (tensor_backend_id != -1) {
  953. if (tensor_backend_id == sched->n_backends - 1) {
  954. // skip cpu (lowest prio backend)
  955. cur_backend_id = -1;
  956. } else {
  957. cur_backend_id = tensor_backend_id;
  958. }
  959. } else {
  960. tensor_backend_id(node) = cur_backend_id;
  961. SET_CAUSE(node, "2.2");
  962. }
  963. }
  964. }
  965. // pass 2.3 expand rest up
  966. {
  967. int cur_backend_id = -1;
  968. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  969. struct ggml_tensor * node = graph->nodes[i];
  970. if (ggml_is_view_op(node->op)) {
  971. continue;
  972. }
  973. int tensor_backend_id = tensor_backend_id(node);
  974. if (tensor_backend_id != -1) {
  975. cur_backend_id = tensor_backend_id;
  976. } else {
  977. tensor_backend_id(node) = cur_backend_id;
  978. SET_CAUSE(node, "2.3");
  979. }
  980. }
  981. }
  982. // pass 2.4 expand rest down
  983. {
  984. int cur_backend_id = -1;
  985. for (int i = 0; i < graph->n_nodes; i++) {
  986. struct ggml_tensor * node = graph->nodes[i];
  987. if (ggml_is_view_op(node->op)) {
  988. continue;
  989. }
  990. int tensor_backend_id = tensor_backend_id(node);
  991. if (tensor_backend_id != -1) {
  992. cur_backend_id = tensor_backend_id;
  993. } else {
  994. tensor_backend_id(node) = cur_backend_id;
  995. SET_CAUSE(node, "2.4");
  996. }
  997. }
  998. }
  999. #ifdef DEBUG_PASS2
  1000. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1001. #endif
  1002. // pass 3: assign backends to remaining src from dst and view_src
  1003. for (int i = 0; i < graph->n_nodes; i++) {
  1004. struct ggml_tensor * node = graph->nodes[i];
  1005. int cur_backend_id = tensor_backend_id(node);
  1006. if (node->view_src != NULL && cur_backend_id == -1) {
  1007. cur_backend_id = tensor_backend_id(node) = tensor_backend_id(node->view_src);
  1008. SET_CAUSE(node, "3.vsrc");
  1009. }
  1010. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1011. struct ggml_tensor * src = node->src[j];
  1012. if (src == NULL) {
  1013. break;
  1014. }
  1015. int src_backend_id = tensor_backend_id(src);
  1016. if (src_backend_id == -1) {
  1017. if (src->view_src != NULL) {
  1018. // views are always on the same backend as the source
  1019. tensor_backend_id(src) = tensor_backend_id(src->view_src);
  1020. SET_CAUSE(src, "3.vsrc");
  1021. } else {
  1022. tensor_backend_id(src) = cur_backend_id;
  1023. SET_CAUSE(src, "3.cur");
  1024. }
  1025. }
  1026. }
  1027. }
  1028. #ifdef DEBUG_PASS3
  1029. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1030. #endif
  1031. // pass 4: split graph, find tensors that need to be copied
  1032. {
  1033. int cur_split = 0;
  1034. // find the backend of the first split, skipping view ops
  1035. for (int i = 0; i < graph->n_nodes; i++) {
  1036. struct ggml_tensor * node = graph->nodes[i];
  1037. if (!ggml_is_view_op(node->op)) {
  1038. sched->splits[0].backend_id = tensor_backend_id(node);
  1039. break;
  1040. }
  1041. }
  1042. sched->splits[0].i_start = 0;
  1043. sched->splits[0].n_inputs = 0;
  1044. memset(sched->splits[0].inputs, 0, sizeof(sched->splits[0].inputs)); //HACK
  1045. int cur_backend_id = sched->splits[0].backend_id;
  1046. for (int i = 0; i < graph->n_nodes; i++) {
  1047. struct ggml_tensor * node = graph->nodes[i];
  1048. if (ggml_is_view_op(node->op)) {
  1049. continue;
  1050. }
  1051. int tensor_backend_id = tensor_backend_id(node);
  1052. GGML_ASSERT(tensor_backend_id != -1); // all nodes should be assigned by now
  1053. if (tensor_backend_id != cur_backend_id) {
  1054. sched->splits[cur_split].i_end = i;
  1055. cur_split++;
  1056. GGML_ASSERT(cur_split < GGML_MAX_SPLITS);
  1057. sched->splits[cur_split].backend_id = tensor_backend_id;
  1058. sched->splits[cur_split].i_start = i;
  1059. sched->splits[cur_split].n_inputs = 0;
  1060. cur_backend_id = tensor_backend_id;
  1061. }
  1062. // find inputs that are not on the same backend
  1063. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1064. struct ggml_tensor * src = node->src[j];
  1065. if (src == NULL) {
  1066. break;
  1067. }
  1068. int src_backend_id = tensor_backend_id(src);
  1069. assert(src_backend_id != -1); // all inputs should be assigned by now
  1070. if (src_backend_id != tensor_backend_id) {
  1071. // create a copy of the input in the split's backend
  1072. size_t id = hash_id(src);
  1073. if (sched->tensor_copies[id][cur_backend_id] == NULL) {
  1074. ggml_backend_t backend = sched->backends[cur_backend_id];
  1075. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1076. ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name);
  1077. sched->tensor_copies[id][cur_backend_id] = tensor_copy;
  1078. tensor_backend_id(tensor_copy) = cur_backend_id;
  1079. SET_CAUSE(tensor_copy, "4.cpy");
  1080. int n_inputs = sched->splits[cur_split].n_inputs++;
  1081. GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS);
  1082. sched->splits[cur_split].inputs[n_inputs] = src;
  1083. }
  1084. node->src[j] = sched->tensor_copies[id][cur_backend_id];
  1085. }
  1086. }
  1087. }
  1088. sched->splits[cur_split].i_end = graph->n_nodes;
  1089. sched->n_splits = cur_split + 1;
  1090. }
  1091. #ifdef DEBUG_PASS4
  1092. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); sched_print_assignments(sched, graph);
  1093. #endif
  1094. #ifndef NDEBUG
  1095. // sanity check: all sources should have the same backend as the node
  1096. for (int i = 0; i < graph->n_nodes; i++) {
  1097. struct ggml_tensor * node = graph->nodes[i];
  1098. ggml_backend_t tensor_backend = tensor_backend(node);
  1099. if (tensor_backend == NULL) {
  1100. fprintf(stderr, "!!!!!!! %s has no backend\n", node->name);
  1101. }
  1102. if (node->view_src != NULL && tensor_backend != tensor_backend(node->view_src)) {
  1103. fprintf(stderr, "!!!!!!! %s has backend %s, view_src %s has backend %s\n",
  1104. node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
  1105. node->view_src->name, tensor_backend(node->view_src) ? ggml_backend_name(tensor_backend(node->view_src)) : "NULL");
  1106. }
  1107. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1108. struct ggml_tensor * src = node->src[j];
  1109. if (src == NULL) {
  1110. break;
  1111. }
  1112. ggml_backend_t src_backend = tensor_backend(src);
  1113. if (src_backend != tensor_backend /* && src_backend != NULL */) {
  1114. fprintf(stderr, "!!!! %s has backend %s, src %d (%s) has backend %s\n",
  1115. node->name, tensor_backend ? ggml_backend_name(tensor_backend) : "NULL",
  1116. j, src->name, src_backend ? ggml_backend_name(src_backend) : "NULL");
  1117. }
  1118. if (src->view_src != NULL && src_backend != tensor_backend(src->view_src)) {
  1119. fprintf(stderr, "!!!!!!! [src] %s has backend %s, view_src %s has backend %s\n",
  1120. src->name, src_backend ? ggml_backend_name(src_backend) : "NULL",
  1121. src->view_src->name, tensor_backend(src->view_src) ? ggml_backend_name(tensor_backend(src->view_src)) : "NULL");
  1122. }
  1123. }
  1124. }
  1125. fflush(stderr);
  1126. #endif
  1127. // create copies of the graph for each split
  1128. // FIXME: avoid this copy, pass split inputs to ggml_gallocr_alloc_graph_n in some other way
  1129. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_MAX_SPLIT_INPUTS, false);
  1130. for (int i = 0; i < sched->n_splits; i++) {
  1131. struct ggml_backend_sched_split * split = &sched->splits[i];
  1132. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1133. for (int j = 0; j < split->n_inputs; j++) {
  1134. struct ggml_tensor * input = split->inputs[j];
  1135. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split->backend_id];
  1136. // add a dependency to the input source so that it is not freed before the copy is done
  1137. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1138. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(input);
  1139. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1140. // add a dependency to the input copy so that it is allocated at the start of the split
  1141. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1142. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1143. }
  1144. for (int j = split->i_start; j < split->i_end; j++) {
  1145. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1146. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1147. }
  1148. }
  1149. sched->graph = graph_copy;
  1150. }
  1151. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1152. // ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
  1153. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1154. #ifndef NDEBUG
  1155. fprintf(stderr, "ggml_backend_sched: failed to allocate graph, reserving\n");
  1156. #endif
  1157. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids);
  1158. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1159. fprintf(stderr, "ggml_backend_sched: failed to allocate graph\n");
  1160. return false;
  1161. }
  1162. }
  1163. return true;
  1164. }
  1165. static bool ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1166. uint64_t copy_us[GGML_MAX_BACKENDS] = {0};
  1167. uint64_t compute_us[GGML_MAX_BACKENDS] = {0};
  1168. struct ggml_backend_sched_split * splits = sched->splits;
  1169. for (int i = 0; i < sched->n_splits; i++) {
  1170. struct ggml_backend_sched_split * split = &splits[i];
  1171. int split_backend_id = split->backend_id;
  1172. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1173. // copy the input tensors to the split backend
  1174. uint64_t copy_start_us = ggml_time_us();
  1175. for (int j = 0; j < split->n_inputs; j++) {
  1176. struct ggml_tensor * input = split->inputs[j];
  1177. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id];
  1178. GGML_ASSERT(input->buffer != NULL);
  1179. GGML_ASSERT(input_cpy->buffer != NULL);
  1180. ggml_backend_tensor_copy_async(split_backend, input, input_cpy);
  1181. }
  1182. //ggml_backend_synchronize(split_backend); // necessary to measure copy time
  1183. int64_t copy_end_us = ggml_time_us();
  1184. copy_us[split_backend_id] += copy_end_us - copy_start_us;
  1185. #if 0
  1186. char split_filename[GGML_MAX_NAME];
  1187. snprintf(split_filename, GGML_MAX_NAME, "split_%i_%s.dot", i, ggml_backend_name(split_backend));
  1188. ggml_graph_dump_dot(split->graph, NULL, split_filename);
  1189. #endif
  1190. uint64_t compute_start_us = ggml_time_us();
  1191. if (!sched->callback_eval) {
  1192. if (!ggml_backend_graph_compute(split_backend, &split->graph)) {
  1193. return false;
  1194. }
  1195. //ggml_backend_synchronize(split_backend); // necessary to measure compute time
  1196. } else {
  1197. // similar to ggml_backend_compare_graph_backend
  1198. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1199. struct ggml_tensor * t = split->graph.nodes[j0];
  1200. // check if the user needs data from this node
  1201. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1202. int j1 = j0;
  1203. // determine the range [j0, j1] of nodes that can be computed together
  1204. while (!need && j1 < split->graph.n_nodes - 1) {
  1205. t = split->graph.nodes[++j1];
  1206. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1207. }
  1208. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1209. if (!ggml_backend_graph_compute(split_backend, &gv)) {
  1210. return false;
  1211. }
  1212. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1213. break;
  1214. }
  1215. j0 = j1;
  1216. }
  1217. }
  1218. uint64_t compute_end_us = ggml_time_us();
  1219. compute_us[split_backend_id] += compute_end_us - compute_start_us;
  1220. }
  1221. #if 0
  1222. // per-backend timings
  1223. fprintf(stderr, "sched_compute_splits times (%d splits):\n", sched->n_splits);
  1224. for (int i = 0; i < sched->n_backends; i++) {
  1225. if (copy_us[i] > 0 || compute_us[i] > 0) {
  1226. fprintf(stderr, "\t%5.5s: %lu us copy, %lu us compute\n", ggml_backend_name(sched->backends[i]), copy_us[i], compute_us[i]);
  1227. }
  1228. }
  1229. #endif
  1230. return true;
  1231. }
  1232. ggml_backend_sched_t ggml_backend_sched_new(ggml_backend_t * backends, ggml_backend_buffer_type_t * bufts, int n_backends, size_t graph_size) {
  1233. GGML_ASSERT(n_backends > 0);
  1234. GGML_ASSERT(n_backends <= GGML_MAX_BACKENDS);
  1235. struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
  1236. // initialize hash table
  1237. sched->hash_set = ggml_hash_set_new(graph_size + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  1238. sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
  1239. sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
  1240. sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), graph_size);
  1241. sched->n_backends = n_backends;
  1242. for (int i = 0; i < n_backends; i++) {
  1243. sched->backends[i] = backends[i];
  1244. sched->bufts[i] = bufts ? bufts[i] : ggml_backend_get_default_buffer_type(backends[i]);
  1245. }
  1246. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1247. ggml_backend_sched_reset(sched);
  1248. return sched;
  1249. }
  1250. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1251. if (sched == NULL) {
  1252. return;
  1253. }
  1254. ggml_gallocr_free(sched->galloc);
  1255. ggml_free(sched->ctx);
  1256. free(sched->hash_set.keys);
  1257. free(sched->tensor_backend_id);
  1258. free(sched->tensor_copies);
  1259. free(sched->node_backend_ids);
  1260. free(sched);
  1261. }
  1262. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1263. // reset state for the next run
  1264. size_t hash_size = sched->hash_set.size;
  1265. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1266. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1267. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1268. sched->is_reset = true;
  1269. }
  1270. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1271. ggml_backend_sched_split_graph(sched, measure_graph);
  1272. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids)) {
  1273. return false;
  1274. }
  1275. ggml_backend_sched_reset(sched);
  1276. return true;
  1277. }
  1278. bool ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1279. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes + GGML_MAX_SPLITS*GGML_MAX_SPLIT_INPUTS);
  1280. if (!sched->is_reset) {
  1281. ggml_backend_sched_reset(sched);
  1282. }
  1283. ggml_backend_sched_split_graph(sched, graph);
  1284. if (!ggml_backend_sched_alloc_splits(sched)) {
  1285. return false;
  1286. }
  1287. if (!ggml_backend_sched_compute_splits(sched)) {
  1288. return false;
  1289. }
  1290. return true;
  1291. }
  1292. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1293. sched->callback_eval = callback;
  1294. sched->callback_eval_user_data = user_data;
  1295. }
  1296. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1297. return sched->n_splits;
  1298. }
  1299. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1300. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1301. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1302. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1303. }
  1304. void ggml_backend_sched_set_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1305. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1306. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1307. tensor_backend_id(node) = backend_index;
  1308. }
  1309. ggml_backend_t ggml_backend_sched_get_node_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1310. int backend_index = tensor_backend_id(node);
  1311. if (backend_index == -1) {
  1312. return NULL;
  1313. }
  1314. return sched->backends[backend_index];
  1315. }
  1316. // utils
  1317. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1318. GGML_ASSERT(tensor->buffer == NULL);
  1319. GGML_ASSERT(tensor->view_src != NULL);
  1320. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1321. GGML_ASSERT(tensor->view_src->data != NULL);
  1322. tensor->buffer = buffer;
  1323. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1324. tensor->backend = tensor->view_src->backend;
  1325. ggml_backend_buffer_init_tensor(buffer, tensor);
  1326. }
  1327. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1328. GGML_ASSERT(tensor->buffer == NULL);
  1329. GGML_ASSERT(tensor->data == NULL);
  1330. GGML_ASSERT(tensor->view_src == NULL);
  1331. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1332. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1333. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1334. tensor->buffer = buffer;
  1335. tensor->data = addr;
  1336. ggml_backend_buffer_init_tensor(buffer, tensor);
  1337. }
  1338. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1339. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1340. GGML_ASSERT(src != NULL);
  1341. GGML_ASSERT(src->data && "graph must be allocated");
  1342. size_t id = ggml_hash_insert(hash_set, src);
  1343. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1344. return node_copies[ggml_hash_find(hash_set, src)];
  1345. }
  1346. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1347. if (src->view_src != NULL) {
  1348. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1349. dst->view_offs = src->view_offs;
  1350. }
  1351. dst->op = src->op;
  1352. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1353. ggml_set_name(dst, src->name);
  1354. // copy src
  1355. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1356. struct ggml_tensor * s = src->src[i];
  1357. if (s == NULL) {
  1358. break;
  1359. }
  1360. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1361. }
  1362. node_copies[id] = dst;
  1363. return dst;
  1364. }
  1365. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1366. size_t id = ggml_hash_find(hash_set, src);
  1367. if (node_init[id]) {
  1368. return;
  1369. }
  1370. node_init[id] = true;
  1371. struct ggml_tensor * dst = node_copies[id];
  1372. if (dst->view_src != NULL) {
  1373. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1374. ggml_backend_view_init(dst->view_src->buffer, dst);
  1375. }
  1376. else {
  1377. ggml_backend_tensor_copy(src, dst);
  1378. }
  1379. // init src
  1380. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1381. struct ggml_tensor * s = src->src[i];
  1382. if (s == NULL) {
  1383. break;
  1384. }
  1385. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1386. }
  1387. }
  1388. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1389. struct ggml_hash_set hash_set = {
  1390. /* .size = */ graph->visited_hash_table.size,
  1391. /* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT
  1392. };
  1393. struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT
  1394. bool * node_init = calloc(sizeof(node_init[0]), hash_set.size);
  1395. struct ggml_init_params params = {
  1396. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1397. /* .mem_buffer = */ NULL,
  1398. /* .no_alloc = */ true
  1399. };
  1400. struct ggml_context * ctx_allocated = ggml_init(params);
  1401. struct ggml_context * ctx_unallocated = ggml_init(params);
  1402. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1403. fprintf(stderr, "failed to allocate context for graph copy\n");
  1404. free(hash_set.keys);
  1405. free(node_copies);
  1406. free(node_init);
  1407. ggml_free(ctx_allocated);
  1408. ggml_free(ctx_unallocated);
  1409. return (struct ggml_backend_graph_copy) {
  1410. /* .buffer = */ NULL,
  1411. /* .ctx_allocated = */ NULL,
  1412. /* .ctx_unallocated = */ NULL,
  1413. /* .graph = */ NULL,
  1414. };
  1415. }
  1416. // dup nodes
  1417. for (int i = 0; i < graph->n_nodes; i++) {
  1418. struct ggml_tensor * node = graph->nodes[i];
  1419. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1420. }
  1421. // allocate nodes
  1422. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1423. if (buffer == NULL) {
  1424. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1425. free(hash_set.keys);
  1426. free(node_copies);
  1427. free(node_init);
  1428. ggml_free(ctx_allocated);
  1429. ggml_free(ctx_unallocated);
  1430. return (struct ggml_backend_graph_copy) {
  1431. /* .buffer = */ NULL,
  1432. /* .ctx_allocated = */ NULL,
  1433. /* .ctx_unallocated = */ NULL,
  1434. /* .graph = */ NULL,
  1435. };
  1436. }
  1437. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1438. // copy data and init views
  1439. for (int i = 0; i < graph->n_nodes; i++) {
  1440. struct ggml_tensor * node = graph->nodes[i];
  1441. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1442. }
  1443. // build graph copy
  1444. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1445. for (int i = 0; i < graph->n_nodes; i++) {
  1446. struct ggml_tensor * node = graph->nodes[i];
  1447. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1448. graph_copy->nodes[i] = node_copy;
  1449. }
  1450. graph_copy->n_nodes = graph->n_nodes;
  1451. free(hash_set.keys);
  1452. free(node_copies);
  1453. free(node_init);
  1454. return (struct ggml_backend_graph_copy) {
  1455. /* .buffer = */ buffer,
  1456. /* .ctx_allocated = */ ctx_allocated,
  1457. /* .ctx_unallocated = */ ctx_unallocated,
  1458. /* .graph = */ graph_copy,
  1459. };
  1460. }
  1461. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1462. ggml_backend_buffer_free(copy.buffer);
  1463. ggml_free(copy.ctx_allocated);
  1464. ggml_free(copy.ctx_unallocated);
  1465. }
  1466. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1467. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1468. if (copy.buffer == NULL) {
  1469. return false;
  1470. }
  1471. struct ggml_cgraph * g1 = graph;
  1472. struct ggml_cgraph * g2 = copy.graph;
  1473. assert(g1->n_nodes == g2->n_nodes);
  1474. for (int i = 0; i < g1->n_nodes; i++) {
  1475. //printf("eval %d/%d\n", i, g1->n_nodes);
  1476. struct ggml_tensor * t1 = g1->nodes[i];
  1477. struct ggml_tensor * t2 = g2->nodes[i];
  1478. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1479. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1480. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1481. ggml_backend_graph_compute(backend1, &g1v);
  1482. ggml_backend_graph_compute(backend2, &g2v);
  1483. if (ggml_is_view_op(t1->op)) {
  1484. continue;
  1485. }
  1486. // compare results, calculate rms etc
  1487. if (!callback(i, t1, t2, user_data)) {
  1488. break;
  1489. }
  1490. }
  1491. ggml_backend_graph_copy_free(copy);
  1492. return true;
  1493. }