llama.h 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #include <stddef.h>
  6. #include <stdint.h>
  7. #include <stdio.h>
  8. #include <stdbool.h>
  9. #ifdef LLAMA_SHARED
  10. # if defined(_WIN32) && !defined(__MINGW32__)
  11. # ifdef LLAMA_BUILD
  12. # define LLAMA_API __declspec(dllexport)
  13. # else
  14. # define LLAMA_API __declspec(dllimport)
  15. # endif
  16. # else
  17. # define LLAMA_API __attribute__ ((visibility ("default")))
  18. # endif
  19. #else
  20. # define LLAMA_API
  21. #endif
  22. #ifdef __GNUC__
  23. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  24. #elif defined(_MSC_VER)
  25. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  26. #else
  27. # define DEPRECATED(func, hint) func
  28. #endif
  29. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  30. #define LLAMA_MAX_RNG_STATE (64*1024)
  31. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  32. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  33. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  34. #define LLAMA_SESSION_VERSION 4
  35. #ifdef __cplusplus
  36. extern "C" {
  37. #endif
  38. //
  39. // C interface
  40. //
  41. // TODO: show sample usage
  42. //
  43. struct llama_model;
  44. struct llama_context;
  45. typedef int32_t llama_pos;
  46. typedef int32_t llama_token;
  47. typedef int32_t llama_seq_id;
  48. enum llama_vocab_type {
  49. LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
  50. LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
  51. LLAMA_VOCAB_TYPE_WPM = 2, // WordPiece
  52. };
  53. enum llama_token_type {
  54. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  55. LLAMA_TOKEN_TYPE_NORMAL = 1,
  56. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  57. LLAMA_TOKEN_TYPE_CONTROL = 3,
  58. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  59. LLAMA_TOKEN_TYPE_UNUSED = 5,
  60. LLAMA_TOKEN_TYPE_BYTE = 6,
  61. };
  62. // model file types
  63. enum llama_ftype {
  64. LLAMA_FTYPE_ALL_F32 = 0,
  65. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  66. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  67. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  68. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  69. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  70. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  71. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  72. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  73. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  74. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  75. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  76. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  77. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  78. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  79. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  80. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  81. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  82. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  83. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_IQ3_XXS = 23, // except 1d tensors
  88. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  89. };
  90. enum llama_rope_scaling_type {
  91. LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
  92. LLAMA_ROPE_SCALING_NONE = 0,
  93. LLAMA_ROPE_SCALING_LINEAR = 1,
  94. LLAMA_ROPE_SCALING_YARN = 2,
  95. LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
  96. };
  97. enum llama_split_mode {
  98. LLAMA_SPLIT_NONE = 0, // single GPU
  99. LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
  100. LLAMA_SPLIT_ROW = 2, // split rows across GPUs
  101. };
  102. typedef struct llama_token_data {
  103. llama_token id; // token id
  104. float logit; // log-odds of the token
  105. float p; // probability of the token
  106. } llama_token_data;
  107. typedef struct llama_token_data_array {
  108. llama_token_data * data;
  109. size_t size;
  110. bool sorted;
  111. } llama_token_data_array;
  112. typedef bool (*llama_progress_callback)(float progress, void *ctx);
  113. // Input data for llama_decode
  114. // A llama_batch object can contain input about one or many sequences
  115. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  116. //
  117. // - token : the token ids of the input (used when embd is NULL)
  118. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  119. // - pos : the positions of the respective token in the sequence
  120. // - seq_id : the sequence to which the respective token belongs
  121. // - logits : if zero, the logits for the respective token will not be output
  122. //
  123. typedef struct llama_batch {
  124. int32_t n_tokens;
  125. llama_token * token;
  126. float * embd;
  127. llama_pos * pos;
  128. int32_t * n_seq_id;
  129. llama_seq_id ** seq_id;
  130. int8_t * logits;
  131. // NOTE: helpers for smooth API transition - can be deprecated in the future
  132. // for future-proof code, use the above fields instead and ignore everything below
  133. //
  134. // pos[i] = all_pos_0 + i*all_pos_1
  135. //
  136. llama_pos all_pos_0; // used if pos == NULL
  137. llama_pos all_pos_1; // used if pos == NULL
  138. llama_seq_id all_seq_id; // used if seq_id == NULL
  139. } llama_batch;
  140. enum llama_model_kv_override_type {
  141. LLAMA_KV_OVERRIDE_INT,
  142. LLAMA_KV_OVERRIDE_FLOAT,
  143. LLAMA_KV_OVERRIDE_BOOL,
  144. };
  145. struct llama_model_kv_override {
  146. char key[128];
  147. enum llama_model_kv_override_type tag;
  148. union {
  149. int64_t int_value;
  150. double float_value;
  151. bool bool_value;
  152. };
  153. };
  154. struct llama_model_params {
  155. int32_t n_gpu_layers; // number of layers to store in VRAM
  156. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  157. // main_gpu interpretation depends on split_mode:
  158. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  159. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  160. // LLAMA_SPLIT_LAYER: ignored
  161. int32_t main_gpu;
  162. // proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
  163. const float * tensor_split;
  164. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  165. // If the provided progress_callback returns true, model loading continues.
  166. // If it returns false, model loading is immediately aborted.
  167. llama_progress_callback progress_callback;
  168. // context pointer passed to the progress callback
  169. void * progress_callback_user_data;
  170. // override key-value pairs of the model meta data
  171. const struct llama_model_kv_override * kv_overrides;
  172. // Keep the booleans together to avoid misalignment during copy-by-value.
  173. bool vocab_only; // only load the vocabulary, no weights
  174. bool use_mmap; // use mmap if possible
  175. bool use_mlock; // force system to keep model in RAM
  176. };
  177. struct llama_context_params {
  178. uint32_t seed; // RNG seed, -1 for random
  179. uint32_t n_ctx; // text context, 0 = from model
  180. uint32_t n_batch; // prompt processing maximum batch size
  181. uint32_t n_threads; // number of threads to use for generation
  182. uint32_t n_threads_batch; // number of threads to use for batch processing
  183. int32_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  184. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  185. float rope_freq_base; // RoPE base frequency, 0 = from model
  186. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  187. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  188. float yarn_attn_factor; // YaRN magnitude scaling factor
  189. float yarn_beta_fast; // YaRN low correction dim
  190. float yarn_beta_slow; // YaRN high correction dim
  191. uint32_t yarn_orig_ctx; // YaRN original context size
  192. ggml_backend_sched_eval_callback cb_eval;
  193. void * cb_eval_user_data;
  194. enum ggml_type type_k; // data type for K cache
  195. enum ggml_type type_v; // data type for V cache
  196. // Keep the booleans together to avoid misalignment during copy-by-value.
  197. bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
  198. bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  199. bool embedding; // embedding mode only
  200. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  201. bool do_pooling; // whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
  202. };
  203. // model quantization parameters
  204. typedef struct llama_model_quantize_params {
  205. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  206. enum llama_ftype ftype; // quantize to this llama_ftype
  207. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  208. bool quantize_output_tensor; // quantize output.weight
  209. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  210. bool pure; // disable k-quant mixtures and quantize all tensors to the same type
  211. void * imatrix; // pointer to importance matrix data
  212. } llama_model_quantize_params;
  213. // grammar types
  214. struct llama_grammar;
  215. // grammar element type
  216. enum llama_gretype {
  217. // end of rule definition
  218. LLAMA_GRETYPE_END = 0,
  219. // start of alternate definition for rule
  220. LLAMA_GRETYPE_ALT = 1,
  221. // non-terminal element: reference to rule
  222. LLAMA_GRETYPE_RULE_REF = 2,
  223. // terminal element: character (code point)
  224. LLAMA_GRETYPE_CHAR = 3,
  225. // inverse char(s) ([^a], [^a-b] [^abc])
  226. LLAMA_GRETYPE_CHAR_NOT = 4,
  227. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  228. // be an inclusive range ([a-z])
  229. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  230. // modifies a preceding LLAMA_GRETYPE_CHAR or
  231. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  232. LLAMA_GRETYPE_CHAR_ALT = 6,
  233. };
  234. typedef struct llama_grammar_element {
  235. enum llama_gretype type;
  236. uint32_t value; // Unicode code point or rule ID
  237. } llama_grammar_element;
  238. // performance timing information
  239. struct llama_timings {
  240. double t_start_ms;
  241. double t_end_ms;
  242. double t_load_ms;
  243. double t_sample_ms;
  244. double t_p_eval_ms;
  245. double t_eval_ms;
  246. int32_t n_sample;
  247. int32_t n_p_eval;
  248. int32_t n_eval;
  249. };
  250. // Helpers for getting default parameters
  251. LLAMA_API struct llama_model_params llama_model_default_params(void);
  252. LLAMA_API struct llama_context_params llama_context_default_params(void);
  253. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  254. // Initialize the llama + ggml backend
  255. // If numa is true, use NUMA optimizations
  256. // Call once at the start of the program
  257. LLAMA_API void llama_backend_init(bool numa);
  258. // Call once at the end of the program - currently only used for MPI
  259. LLAMA_API void llama_backend_free(void);
  260. LLAMA_API struct llama_model * llama_load_model_from_file(
  261. const char * path_model,
  262. struct llama_model_params params);
  263. LLAMA_API void llama_free_model(struct llama_model * model);
  264. LLAMA_API struct llama_context * llama_new_context_with_model(
  265. struct llama_model * model,
  266. struct llama_context_params params);
  267. // Frees all allocated memory
  268. LLAMA_API void llama_free(struct llama_context * ctx);
  269. LLAMA_API int64_t llama_time_us(void);
  270. LLAMA_API size_t llama_max_devices(void);
  271. LLAMA_API bool llama_supports_mmap (void);
  272. LLAMA_API bool llama_supports_mlock (void);
  273. LLAMA_API bool llama_supports_gpu_offload(void);
  274. LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
  275. LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
  276. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  277. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  278. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  279. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
  280. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  281. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  282. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  283. // Get the model's RoPE frequency scaling factor
  284. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  285. // Functions to access the model's GGUF metadata scalar values
  286. // - The functions return the length of the string on success, or -1 on failure
  287. // - The output string is always null-terminated and cleared on failure
  288. // - GGUF array values are not supported by these functions
  289. // Get metadata value as a string by key name
  290. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  291. // Get the number of metadata key/value pairs
  292. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  293. // Get metadata key name by index
  294. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  295. // Get metadata value as a string by index
  296. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  297. // Get a string describing the model type
  298. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  299. // Returns the total size of all the tensors in the model in bytes
  300. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  301. // Returns the total number of parameters in the model
  302. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  303. // Get a llama model tensor
  304. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  305. // Returns 0 on success
  306. LLAMA_API uint32_t llama_model_quantize(
  307. const char * fname_inp,
  308. const char * fname_out,
  309. const llama_model_quantize_params * params);
  310. // Apply a LoRA adapter to a loaded model
  311. // path_base_model is the path to a higher quality model to use as a base for
  312. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  313. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  314. // will be applied on top of the previous one
  315. // Returns 0 on success
  316. LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
  317. struct llama_context * ctx,
  318. const char * path_lora,
  319. float scale,
  320. const char * path_base_model,
  321. int32_t n_threads),
  322. "use llama_model_apply_lora_from_file instead");
  323. LLAMA_API int32_t llama_model_apply_lora_from_file(
  324. const struct llama_model * model,
  325. const char * path_lora,
  326. float scale,
  327. const char * path_base_model,
  328. int32_t n_threads);
  329. //
  330. // KV cache
  331. //
  332. // Information associated with an individual cell in the KV cache view.
  333. struct llama_kv_cache_view_cell {
  334. // The position for this cell. Takes KV cache shifts into account.
  335. // May be negative if the cell is not populated.
  336. llama_pos pos;
  337. };
  338. // An updateable view of the KV cache.
  339. struct llama_kv_cache_view {
  340. // Number of KV cache cells. This will be the same as the context size.
  341. int32_t n_cells;
  342. // Maximum number of sequences that can exist in a cell. It's not an error
  343. // if there are more sequences in a cell than this value, however they will
  344. // not be visible in the view cells_sequences.
  345. int32_t n_max_seq;
  346. // Number of tokens in the cache. For example, if there are two populated
  347. // cells, the first with 1 sequence id in it and the second with 2 sequence
  348. // ids then you'll have 3 tokens.
  349. int32_t token_count;
  350. // Number of populated cache cells.
  351. int32_t used_cells;
  352. // Maximum contiguous empty slots in the cache.
  353. int32_t max_contiguous;
  354. // Index to the start of the max_contiguous slot range. Can be negative
  355. // when cache is full.
  356. int32_t max_contiguous_idx;
  357. // Information for an individual cell.
  358. struct llama_kv_cache_view_cell * cells;
  359. // The sequences for each cell. There will be n_max_seq items per cell.
  360. llama_seq_id * cells_sequences;
  361. };
  362. // Create an empty KV cache view. (use only for debugging purposes)
  363. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
  364. // Free a KV cache view. (use only for debugging purposes)
  365. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  366. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  367. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  368. // Returns the number of tokens in the KV cache (slow, use only for debug)
  369. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  370. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  371. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  372. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  373. // Clear the KV cache
  374. LLAMA_API void llama_kv_cache_clear(
  375. struct llama_context * ctx);
  376. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  377. // seq_id < 0 : match any sequence
  378. // p0 < 0 : [0, p1]
  379. // p1 < 0 : [p0, inf)
  380. LLAMA_API void llama_kv_cache_seq_rm(
  381. struct llama_context * ctx,
  382. llama_seq_id seq_id,
  383. llama_pos p0,
  384. llama_pos p1);
  385. // Copy all tokens that belong to the specified sequence to another sequence
  386. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  387. // p0 < 0 : [0, p1]
  388. // p1 < 0 : [p0, inf)
  389. LLAMA_API void llama_kv_cache_seq_cp(
  390. struct llama_context * ctx,
  391. llama_seq_id seq_id_src,
  392. llama_seq_id seq_id_dst,
  393. llama_pos p0,
  394. llama_pos p1);
  395. // Removes all tokens that do not belong to the specified sequence
  396. LLAMA_API void llama_kv_cache_seq_keep(
  397. struct llama_context * ctx,
  398. llama_seq_id seq_id);
  399. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  400. // If the KV cache is RoPEd, the KV data is updated accordingly
  401. // p0 < 0 : [0, p1]
  402. // p1 < 0 : [p0, inf)
  403. LLAMA_API void llama_kv_cache_seq_shift(
  404. struct llama_context * ctx,
  405. llama_seq_id seq_id,
  406. llama_pos p0,
  407. llama_pos p1,
  408. llama_pos delta);
  409. // Integer division of the positions by factor of `d > 1`
  410. // If the KV cache is RoPEd, the KV data is updated accordingly
  411. // p0 < 0 : [0, p1]
  412. // p1 < 0 : [p0, inf)
  413. LLAMA_API void llama_kv_cache_seq_div(
  414. struct llama_context * ctx,
  415. llama_seq_id seq_id,
  416. llama_pos p0,
  417. llama_pos p1,
  418. int d);
  419. //
  420. // State / sessions
  421. //
  422. // Returns the maximum size in bytes of the state (rng, logits, embedding
  423. // and kv_cache) - will often be smaller after compacting tokens
  424. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  425. // Copies the state to the specified destination address.
  426. // Destination needs to have allocated enough memory.
  427. // Returns the number of bytes copied
  428. LLAMA_API size_t llama_copy_state_data(
  429. struct llama_context * ctx,
  430. uint8_t * dst);
  431. // Set the state reading from the specified address
  432. // Returns the number of bytes read
  433. LLAMA_API size_t llama_set_state_data(
  434. struct llama_context * ctx,
  435. uint8_t * src);
  436. // Save/load session file
  437. LLAMA_API bool llama_load_session_file(
  438. struct llama_context * ctx,
  439. const char * path_session,
  440. llama_token * tokens_out,
  441. size_t n_token_capacity,
  442. size_t * n_token_count_out);
  443. LLAMA_API bool llama_save_session_file(
  444. struct llama_context * ctx,
  445. const char * path_session,
  446. const llama_token * tokens,
  447. size_t n_token_count);
  448. //
  449. // Decoding
  450. //
  451. // Run the llama inference to obtain the logits and probabilities for the next token(s).
  452. // tokens + n_tokens is the provided batch of new tokens to process
  453. // n_past is the number of tokens to use from previous eval calls
  454. // Returns 0 on success
  455. // DEPRECATED: use llama_decode() instead
  456. LLAMA_API DEPRECATED(int llama_eval(
  457. struct llama_context * ctx,
  458. llama_token * tokens,
  459. int32_t n_tokens,
  460. int32_t n_past),
  461. "use llama_decode() instead");
  462. // Same as llama_eval, but use float matrix input directly.
  463. // DEPRECATED: use llama_decode() instead
  464. LLAMA_API DEPRECATED(int llama_eval_embd(
  465. struct llama_context * ctx,
  466. float * embd,
  467. int32_t n_tokens,
  468. int32_t n_past),
  469. "use llama_decode() instead");
  470. // Return batch for single sequence of tokens starting at pos_0
  471. //
  472. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  473. //
  474. LLAMA_API struct llama_batch llama_batch_get_one(
  475. llama_token * tokens,
  476. int32_t n_tokens,
  477. llama_pos pos_0,
  478. llama_seq_id seq_id);
  479. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  480. // Each token can be assigned up to n_seq_max sequence ids
  481. // The batch has to be freed with llama_batch_free()
  482. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  483. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  484. // The rest of the llama_batch members are allocated with size n_tokens
  485. // All members are left uninitialized
  486. LLAMA_API struct llama_batch llama_batch_init(
  487. int32_t n_tokens,
  488. int32_t embd,
  489. int32_t n_seq_max);
  490. // Frees a batch of tokens allocated with llama_batch_init()
  491. LLAMA_API void llama_batch_free(struct llama_batch batch);
  492. // Positive return values does not mean a fatal error, but rather a warning.
  493. // 0 - success
  494. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  495. // < 0 - error
  496. LLAMA_API int32_t llama_decode(
  497. struct llama_context * ctx,
  498. struct llama_batch batch);
  499. // Set the number of threads used for decoding
  500. // n_threads is the number of threads used for generation (single token)
  501. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  502. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  503. // Token logits obtained from the last call to llama_eval()
  504. // The logits for the last token are stored in the last row
  505. // Logits for which llama_batch.logits[i] == 0 are undefined
  506. // Rows: n_tokens provided with llama_batch
  507. // Cols: n_vocab
  508. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  509. // Logits for the ith token. Equivalent to:
  510. // llama_get_logits(ctx) + i*n_vocab
  511. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  512. // Get the embeddings for the input
  513. // shape: [n_embd] (1-dimensional)
  514. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  515. // Get the embeddings for the ith sequence
  516. // llama_get_embeddings(ctx) + i*n_embd
  517. LLAMA_API float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i);
  518. //
  519. // Vocab
  520. //
  521. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  522. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  523. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  524. // Special tokens
  525. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  526. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  527. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  528. // Returns -1 if unknown, 1 for true or 0 for false.
  529. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  530. // Returns -1 if unknown, 1 for true or 0 for false.
  531. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  532. // codellama infill tokens
  533. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  534. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  535. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  536. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  537. //
  538. // Tokenization
  539. //
  540. /// @details Convert the provided text into tokens.
  541. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  542. /// @return Returns the number of tokens on success, no more than n_max_tokens
  543. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  544. /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
  545. /// Does not insert a leading space.
  546. LLAMA_API int32_t llama_tokenize(
  547. const struct llama_model * model,
  548. const char * text,
  549. int32_t text_len,
  550. llama_token * tokens,
  551. int32_t n_max_tokens,
  552. bool add_bos,
  553. bool special);
  554. // Token Id -> Piece.
  555. // Uses the vocabulary in the provided context.
  556. // Does not write null terminator to the buffer.
  557. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  558. LLAMA_API int32_t llama_token_to_piece(
  559. const struct llama_model * model,
  560. llama_token token,
  561. char * buf,
  562. int32_t length);
  563. //
  564. // Grammar
  565. //
  566. LLAMA_API struct llama_grammar * llama_grammar_init(
  567. const llama_grammar_element ** rules,
  568. size_t n_rules,
  569. size_t start_rule_index);
  570. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  571. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  572. //
  573. // Sampling functions
  574. //
  575. // Sets the current rng seed.
  576. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  577. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  578. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  579. LLAMA_API void llama_sample_repetition_penalties(
  580. struct llama_context * ctx,
  581. llama_token_data_array * candidates,
  582. const llama_token * last_tokens,
  583. size_t penalty_last_n,
  584. float penalty_repeat,
  585. float penalty_freq,
  586. float penalty_present);
  587. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  588. /// @param logits Logits extracted from the original generation context.
  589. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  590. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  591. LLAMA_API void llama_sample_apply_guidance(
  592. struct llama_context * ctx,
  593. float * logits,
  594. float * logits_guidance,
  595. float scale);
  596. LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
  597. struct llama_context * ctx,
  598. llama_token_data_array * candidates,
  599. struct llama_context * guidance_ctx,
  600. float scale),
  601. "use llama_sample_apply_guidance() instead");
  602. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  603. LLAMA_API void llama_sample_softmax(
  604. struct llama_context * ctx,
  605. llama_token_data_array * candidates);
  606. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  607. LLAMA_API void llama_sample_top_k(
  608. struct llama_context * ctx,
  609. llama_token_data_array * candidates,
  610. int32_t k,
  611. size_t min_keep);
  612. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  613. LLAMA_API void llama_sample_top_p(
  614. struct llama_context * ctx,
  615. llama_token_data_array * candidates,
  616. float p,
  617. size_t min_keep);
  618. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  619. LLAMA_API void llama_sample_min_p(
  620. struct llama_context * ctx,
  621. llama_token_data_array * candidates,
  622. float p,
  623. size_t min_keep);
  624. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  625. LLAMA_API void llama_sample_tail_free(
  626. struct llama_context * ctx,
  627. llama_token_data_array * candidates,
  628. float z,
  629. size_t min_keep);
  630. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  631. LLAMA_API void llama_sample_typical(
  632. struct llama_context * ctx,
  633. llama_token_data_array * candidates,
  634. float p,
  635. size_t min_keep);
  636. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  637. LLAMA_API void llama_sample_entropy(
  638. struct llama_context * ctx,
  639. llama_token_data_array * candidates_p,
  640. float min_temp,
  641. float max_temp,
  642. float exponent_val);
  643. LLAMA_API void llama_sample_temp(
  644. struct llama_context * ctx,
  645. llama_token_data_array * candidates,
  646. float temp);
  647. LLAMA_API DEPRECATED(void llama_sample_temperature(
  648. struct llama_context * ctx,
  649. llama_token_data_array * candidates,
  650. float temp),
  651. "use llama_sample_temp instead");
  652. /// @details Apply constraints from grammar
  653. LLAMA_API void llama_sample_grammar(
  654. struct llama_context * ctx,
  655. llama_token_data_array * candidates,
  656. const struct llama_grammar * grammar);
  657. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  658. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  659. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  660. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  661. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  662. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  663. LLAMA_API llama_token llama_sample_token_mirostat(
  664. struct llama_context * ctx,
  665. llama_token_data_array * candidates,
  666. float tau,
  667. float eta,
  668. int32_t m,
  669. float * mu);
  670. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  671. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  672. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  673. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  674. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  675. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  676. struct llama_context * ctx,
  677. llama_token_data_array * candidates,
  678. float tau,
  679. float eta,
  680. float * mu);
  681. /// @details Selects the token with the highest probability.
  682. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  683. LLAMA_API llama_token llama_sample_token_greedy(
  684. struct llama_context * ctx,
  685. llama_token_data_array * candidates);
  686. /// @details Randomly selects a token from the candidates based on their probabilities.
  687. LLAMA_API llama_token llama_sample_token(
  688. struct llama_context * ctx,
  689. llama_token_data_array * candidates);
  690. /// @details Accepts the sampled token into the grammar
  691. LLAMA_API void llama_grammar_accept_token(
  692. struct llama_context * ctx,
  693. struct llama_grammar * grammar,
  694. llama_token token);
  695. //
  696. // Beam search
  697. //
  698. struct llama_beam_view {
  699. const llama_token * tokens;
  700. size_t n_tokens;
  701. float p; // Cumulative beam probability (renormalized relative to all beams)
  702. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  703. };
  704. // Passed to beam_search_callback function.
  705. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  706. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  707. // These pointers are valid only during the synchronous callback, so should not be saved.
  708. struct llama_beams_state {
  709. struct llama_beam_view * beam_views;
  710. size_t n_beams; // Number of elements in beam_views[].
  711. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  712. bool last_call; // True iff this is the last callback invocation.
  713. };
  714. // Type of pointer to the beam_search_callback function.
  715. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  716. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  717. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  718. /// @details Deterministically returns entire sentence constructed by a beam search.
  719. /// @param ctx Pointer to the llama_context.
  720. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  721. /// @param callback_data A pointer that is simply passed back to callback.
  722. /// @param n_beams Number of beams to use.
  723. /// @param n_past Number of tokens already evaluated.
  724. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  725. LLAMA_API void llama_beam_search(
  726. struct llama_context * ctx,
  727. llama_beam_search_callback_fn_t callback,
  728. void * callback_data,
  729. size_t n_beams,
  730. int32_t n_past,
  731. int32_t n_predict);
  732. // Performance information
  733. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  734. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  735. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  736. // Print system information
  737. LLAMA_API const char * llama_print_system_info(void);
  738. // Set callback for all future logging events.
  739. // If this is not called, or NULL is supplied, everything is output on stderr.
  740. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  741. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  742. #ifdef __cplusplus
  743. }
  744. #endif
  745. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  746. #ifdef LLAMA_API_INTERNAL
  747. #include <vector>
  748. #include <string>
  749. struct ggml_tensor;
  750. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  751. struct llama_context * ctx
  752. );
  753. #endif // LLAMA_API_INTERNAL
  754. #endif // LLAMA_H