arg.cpp 162 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784
  1. #include "arg.h"
  2. #include "chat.h"
  3. #include "common.h"
  4. #include "gguf.h" // for reading GGUF splits
  5. #include "json-schema-to-grammar.h"
  6. #include "log.h"
  7. #include "sampling.h"
  8. // fix problem with std::min and std::max
  9. #if defined(_WIN32)
  10. #define WIN32_LEAN_AND_MEAN
  11. #ifndef NOMINMAX
  12. # define NOMINMAX
  13. #endif
  14. #include <windows.h>
  15. #endif
  16. #define JSON_ASSERT GGML_ASSERT
  17. #include <nlohmann/json.hpp>
  18. #include <algorithm>
  19. #include <climits>
  20. #include <cstdarg>
  21. #include <filesystem>
  22. #include <fstream>
  23. #include <list>
  24. #include <regex>
  25. #include <set>
  26. #include <string>
  27. #include <thread>
  28. #include <vector>
  29. //#define LLAMA_USE_CURL
  30. #if defined(LLAMA_USE_CURL)
  31. #include <curl/curl.h>
  32. #include <curl/easy.h>
  33. #include <future>
  34. #endif
  35. using json = nlohmann::ordered_json;
  36. std::initializer_list<enum llama_example> mmproj_examples = {
  37. LLAMA_EXAMPLE_MTMD,
  38. LLAMA_EXAMPLE_SERVER,
  39. };
  40. static std::string read_file(const std::string & fname) {
  41. std::ifstream file(fname);
  42. if (!file) {
  43. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  44. }
  45. std::string content((std::istreambuf_iterator<char>(file)), std::istreambuf_iterator<char>());
  46. file.close();
  47. return content;
  48. }
  49. static void write_file(const std::string & fname, const std::string & content) {
  50. std::ofstream file(fname);
  51. if (!file) {
  52. throw std::runtime_error(string_format("error: failed to open file '%s'\n", fname.c_str()));
  53. }
  54. file << content;
  55. file.close();
  56. }
  57. common_arg & common_arg::set_examples(std::initializer_list<enum llama_example> examples) {
  58. this->examples = std::move(examples);
  59. return *this;
  60. }
  61. common_arg & common_arg::set_excludes(std::initializer_list<enum llama_example> excludes) {
  62. this->excludes = std::move(excludes);
  63. return *this;
  64. }
  65. common_arg & common_arg::set_env(const char * env) {
  66. help = help + "\n(env: " + env + ")";
  67. this->env = env;
  68. return *this;
  69. }
  70. common_arg & common_arg::set_sparam() {
  71. is_sparam = true;
  72. return *this;
  73. }
  74. bool common_arg::in_example(enum llama_example ex) {
  75. return examples.find(ex) != examples.end();
  76. }
  77. bool common_arg::is_exclude(enum llama_example ex) {
  78. return excludes.find(ex) != excludes.end();
  79. }
  80. bool common_arg::get_value_from_env(std::string & output) {
  81. if (env == nullptr) return false;
  82. char * value = std::getenv(env);
  83. if (value) {
  84. output = value;
  85. return true;
  86. }
  87. return false;
  88. }
  89. bool common_arg::has_value_from_env() {
  90. return env != nullptr && std::getenv(env);
  91. }
  92. static std::vector<std::string> break_str_into_lines(std::string input, size_t max_char_per_line) {
  93. std::vector<std::string> result;
  94. std::istringstream iss(input);
  95. std::string line;
  96. auto add_line = [&](const std::string& l) {
  97. if (l.length() <= max_char_per_line) {
  98. result.push_back(l);
  99. } else {
  100. std::istringstream line_stream(l);
  101. std::string word, current_line;
  102. while (line_stream >> word) {
  103. if (current_line.length() + !current_line.empty() + word.length() > max_char_per_line) {
  104. if (!current_line.empty()) result.push_back(current_line);
  105. current_line = word;
  106. } else {
  107. current_line += (!current_line.empty() ? " " : "") + word;
  108. }
  109. }
  110. if (!current_line.empty()) result.push_back(current_line);
  111. }
  112. };
  113. while (std::getline(iss, line)) {
  114. add_line(line);
  115. }
  116. return result;
  117. }
  118. std::string common_arg::to_string() {
  119. // params for printing to console
  120. const static int n_leading_spaces = 40;
  121. const static int n_char_per_line_help = 70; // TODO: detect this based on current console
  122. std::string leading_spaces(n_leading_spaces, ' ');
  123. std::ostringstream ss;
  124. for (const auto arg : args) {
  125. if (arg == args.front()) {
  126. if (args.size() == 1) {
  127. ss << arg;
  128. } else {
  129. // first arg is usually abbreviation, we need padding to make it more beautiful
  130. auto tmp = std::string(arg) + ", ";
  131. auto spaces = std::string(std::max(0, 7 - (int)tmp.size()), ' ');
  132. ss << tmp << spaces;
  133. }
  134. } else {
  135. ss << arg << (arg != args.back() ? ", " : "");
  136. }
  137. }
  138. if (value_hint) ss << " " << value_hint;
  139. if (value_hint_2) ss << " " << value_hint_2;
  140. if (ss.tellp() > n_leading_spaces - 3) {
  141. // current line is too long, add new line
  142. ss << "\n" << leading_spaces;
  143. } else {
  144. // padding between arg and help, same line
  145. ss << std::string(leading_spaces.size() - ss.tellp(), ' ');
  146. }
  147. const auto help_lines = break_str_into_lines(help, n_char_per_line_help);
  148. for (const auto & line : help_lines) {
  149. ss << (&line == &help_lines.front() ? "" : leading_spaces) << line << "\n";
  150. }
  151. return ss.str();
  152. }
  153. //
  154. // downloader
  155. //
  156. struct common_hf_file_res {
  157. std::string repo; // repo name with ":tag" removed
  158. std::string ggufFile;
  159. std::string mmprojFile;
  160. };
  161. #ifdef LLAMA_USE_CURL
  162. bool common_has_curl() {
  163. return true;
  164. }
  165. #ifdef __linux__
  166. #include <linux/limits.h>
  167. #elif defined(_WIN32)
  168. # if !defined(PATH_MAX)
  169. # define PATH_MAX MAX_PATH
  170. # endif
  171. #elif defined(_AIX)
  172. #include <sys/limits.h>
  173. #else
  174. #include <sys/syslimits.h>
  175. #endif
  176. #define LLAMA_CURL_MAX_URL_LENGTH 2084 // Maximum URL Length in Chrome: 2083
  177. //
  178. // CURL utils
  179. //
  180. using curl_ptr = std::unique_ptr<CURL, decltype(&curl_easy_cleanup)>;
  181. // cannot use unique_ptr for curl_slist, because we cannot update without destroying the old one
  182. struct curl_slist_ptr {
  183. struct curl_slist * ptr = nullptr;
  184. ~curl_slist_ptr() {
  185. if (ptr) {
  186. curl_slist_free_all(ptr);
  187. }
  188. }
  189. };
  190. #define CURL_MAX_RETRY 3
  191. #define CURL_RETRY_DELAY_SECONDS 2
  192. static bool curl_perform_with_retry(const std::string & url, CURL * curl, int max_attempts, int retry_delay_seconds, const char * method_name) {
  193. int remaining_attempts = max_attempts;
  194. while (remaining_attempts > 0) {
  195. LOG_INF("%s: %s %s (attempt %d of %d)...\n", __func__ , method_name, url.c_str(), max_attempts - remaining_attempts + 1, max_attempts);
  196. CURLcode res = curl_easy_perform(curl);
  197. if (res == CURLE_OK) {
  198. return true;
  199. }
  200. int exponential_backoff_delay = std::pow(retry_delay_seconds, max_attempts - remaining_attempts) * 1000;
  201. LOG_WRN("%s: curl_easy_perform() failed: %s, retrying after %d milliseconds...\n", __func__, curl_easy_strerror(res), exponential_backoff_delay);
  202. remaining_attempts--;
  203. if (remaining_attempts == 0) break;
  204. std::this_thread::sleep_for(std::chrono::milliseconds(exponential_backoff_delay));
  205. }
  206. LOG_ERR("%s: curl_easy_perform() failed after %d attempts\n", __func__, max_attempts);
  207. return false;
  208. }
  209. // download one single file from remote URL to local path
  210. static bool common_download_file_single(const std::string & url, const std::string & path, const std::string & bearer_token, bool offline) {
  211. // Check if the file already exists locally
  212. auto file_exists = std::filesystem::exists(path);
  213. // If the file exists, check its JSON metadata companion file.
  214. std::string metadata_path = path + ".json";
  215. nlohmann::json metadata; // TODO @ngxson : get rid of this json, use regex instead
  216. std::string etag;
  217. std::string last_modified;
  218. if (file_exists) {
  219. if (offline) {
  220. LOG_INF("%s: using cached file (offline mode): %s\n", __func__, path.c_str());
  221. return true; // skip verification/downloading
  222. }
  223. // Try and read the JSON metadata file (note: stream autoclosed upon exiting this block).
  224. std::ifstream metadata_in(metadata_path);
  225. if (metadata_in.good()) {
  226. try {
  227. metadata_in >> metadata;
  228. LOG_DBG("%s: previous metadata file found %s: %s\n", __func__, metadata_path.c_str(), metadata.dump().c_str());
  229. if (metadata.contains("etag") && metadata.at("etag").is_string()) {
  230. etag = metadata.at("etag");
  231. }
  232. if (metadata.contains("lastModified") && metadata.at("lastModified").is_string()) {
  233. last_modified = metadata.at("lastModified");
  234. }
  235. } catch (const nlohmann::json::exception & e) {
  236. LOG_ERR("%s: error reading metadata file %s: %s\n", __func__, metadata_path.c_str(), e.what());
  237. }
  238. }
  239. // if we cannot open the metadata file, we assume that the downloaded file is not valid (etag and last-modified are left empty, so we will download it again)
  240. } else {
  241. if (offline) {
  242. LOG_ERR("%s: required file is not available in cache (offline mode): %s\n", __func__, path.c_str());
  243. return false;
  244. }
  245. LOG_INF("%s: no previous model file found %s\n", __func__, path.c_str());
  246. }
  247. // Send a HEAD request to retrieve the etag and last-modified headers
  248. struct common_load_model_from_url_headers {
  249. std::string etag;
  250. std::string last_modified;
  251. };
  252. common_load_model_from_url_headers headers;
  253. bool head_request_ok = false;
  254. bool should_download = !file_exists; // by default, we should download if the file does not exist
  255. // Initialize libcurl
  256. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  257. curl_slist_ptr http_headers;
  258. if (!curl) {
  259. LOG_ERR("%s: error initializing libcurl\n", __func__);
  260. return false;
  261. }
  262. // Set the URL, allow to follow http redirection
  263. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  264. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  265. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  266. // Check if hf-token or bearer-token was specified
  267. if (!bearer_token.empty()) {
  268. std::string auth_header = "Authorization: Bearer " + bearer_token;
  269. http_headers.ptr = curl_slist_append(http_headers.ptr, auth_header.c_str());
  270. }
  271. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  272. #if defined(_WIN32)
  273. // CURLSSLOPT_NATIVE_CA tells libcurl to use standard certificate store of
  274. // operating system. Currently implemented under MS-Windows.
  275. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  276. #endif
  277. typedef size_t(*CURLOPT_HEADERFUNCTION_PTR)(char *, size_t, size_t, void *);
  278. auto header_callback = [](char * buffer, size_t /*size*/, size_t n_items, void * userdata) -> size_t {
  279. common_load_model_from_url_headers * headers = (common_load_model_from_url_headers *) userdata;
  280. static std::regex header_regex("([^:]+): (.*)\r\n");
  281. static std::regex etag_regex("ETag", std::regex_constants::icase);
  282. static std::regex last_modified_regex("Last-Modified", std::regex_constants::icase);
  283. std::string header(buffer, n_items);
  284. std::smatch match;
  285. if (std::regex_match(header, match, header_regex)) {
  286. const std::string & key = match[1];
  287. const std::string & value = match[2];
  288. if (std::regex_match(key, match, etag_regex)) {
  289. headers->etag = value;
  290. } else if (std::regex_match(key, match, last_modified_regex)) {
  291. headers->last_modified = value;
  292. }
  293. }
  294. return n_items;
  295. };
  296. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 1L); // will trigger the HEAD verb
  297. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L); // hide head request progress
  298. curl_easy_setopt(curl.get(), CURLOPT_HEADERFUNCTION, static_cast<CURLOPT_HEADERFUNCTION_PTR>(header_callback));
  299. curl_easy_setopt(curl.get(), CURLOPT_HEADERDATA, &headers);
  300. // we only allow retrying once for HEAD requests
  301. // this is for the use case of using running offline (no internet), retrying can be annoying
  302. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), 1, 0, "HEAD");
  303. if (!was_perform_successful) {
  304. head_request_ok = false;
  305. }
  306. long http_code = 0;
  307. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  308. if (http_code == 200) {
  309. head_request_ok = true;
  310. } else {
  311. LOG_WRN("%s: HEAD invalid http status code received: %ld\n", __func__, http_code);
  312. head_request_ok = false;
  313. }
  314. // if head_request_ok is false, we don't have the etag or last-modified headers
  315. // we leave should_download as-is, which is true if the file does not exist
  316. if (head_request_ok) {
  317. // check if ETag or Last-Modified headers are different
  318. // if it is, we need to download the file again
  319. if (!etag.empty() && etag != headers.etag) {
  320. LOG_WRN("%s: ETag header is different (%s != %s): triggering a new download\n", __func__, etag.c_str(), headers.etag.c_str());
  321. should_download = true;
  322. } else if (!last_modified.empty() && last_modified != headers.last_modified) {
  323. LOG_WRN("%s: Last-Modified header is different (%s != %s): triggering a new download\n", __func__, last_modified.c_str(), headers.last_modified.c_str());
  324. should_download = true;
  325. }
  326. }
  327. if (should_download) {
  328. std::string path_temporary = path + ".downloadInProgress";
  329. if (file_exists) {
  330. LOG_WRN("%s: deleting previous downloaded file: %s\n", __func__, path.c_str());
  331. if (remove(path.c_str()) != 0) {
  332. LOG_ERR("%s: unable to delete file: %s\n", __func__, path.c_str());
  333. return false;
  334. }
  335. }
  336. // Set the output file
  337. struct FILE_deleter {
  338. void operator()(FILE * f) const {
  339. fclose(f);
  340. }
  341. };
  342. std::unique_ptr<FILE, FILE_deleter> outfile(fopen(path_temporary.c_str(), "wb"));
  343. if (!outfile) {
  344. LOG_ERR("%s: error opening local file for writing: %s\n", __func__, path.c_str());
  345. return false;
  346. }
  347. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * data, size_t size, size_t nmemb, void * fd);
  348. auto write_callback = [](void * data, size_t size, size_t nmemb, void * fd) -> size_t {
  349. return fwrite(data, size, nmemb, (FILE *)fd);
  350. };
  351. curl_easy_setopt(curl.get(), CURLOPT_NOBODY, 0L);
  352. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  353. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, outfile.get());
  354. // display download progress
  355. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 0L);
  356. // helper function to hide password in URL
  357. auto llama_download_hide_password_in_url = [](const std::string & url) -> std::string {
  358. std::size_t protocol_pos = url.find("://");
  359. if (protocol_pos == std::string::npos) {
  360. return url; // Malformed URL
  361. }
  362. std::size_t at_pos = url.find('@', protocol_pos + 3);
  363. if (at_pos == std::string::npos) {
  364. return url; // No password in URL
  365. }
  366. return url.substr(0, protocol_pos + 3) + "********" + url.substr(at_pos);
  367. };
  368. // start the download
  369. LOG_INF("%s: trying to download model from %s to %s (server_etag:%s, server_last_modified:%s)...\n", __func__,
  370. llama_download_hide_password_in_url(url).c_str(), path.c_str(), headers.etag.c_str(), headers.last_modified.c_str());
  371. bool was_perform_successful = curl_perform_with_retry(url, curl.get(), CURL_MAX_RETRY, CURL_RETRY_DELAY_SECONDS, "GET");
  372. if (!was_perform_successful) {
  373. return false;
  374. }
  375. long http_code = 0;
  376. curl_easy_getinfo (curl.get(), CURLINFO_RESPONSE_CODE, &http_code);
  377. if (http_code < 200 || http_code >= 400) {
  378. LOG_ERR("%s: invalid http status code received: %ld\n", __func__, http_code);
  379. return false;
  380. }
  381. // Causes file to be closed explicitly here before we rename it.
  382. outfile.reset();
  383. // Write the updated JSON metadata file.
  384. metadata.update({
  385. {"url", url},
  386. {"etag", headers.etag},
  387. {"lastModified", headers.last_modified}
  388. });
  389. write_file(metadata_path, metadata.dump(4));
  390. LOG_DBG("%s: file metadata saved: %s\n", __func__, metadata_path.c_str());
  391. if (rename(path_temporary.c_str(), path.c_str()) != 0) {
  392. LOG_ERR("%s: unable to rename file: %s to %s\n", __func__, path_temporary.c_str(), path.c_str());
  393. return false;
  394. }
  395. } else {
  396. LOG_INF("%s: using cached file: %s\n", __func__, path.c_str());
  397. }
  398. return true;
  399. }
  400. // download multiple files from remote URLs to local paths
  401. // the input is a vector of pairs <url, path>
  402. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> & urls, const std::string & bearer_token, bool offline) {
  403. // Prepare download in parallel
  404. std::vector<std::future<bool>> futures_download;
  405. for (auto const & item : urls) {
  406. futures_download.push_back(std::async(std::launch::async, [bearer_token, offline](const std::pair<std::string, std::string> & it) -> bool {
  407. return common_download_file_single(it.first, it.second, bearer_token, offline);
  408. }, item));
  409. }
  410. // Wait for all downloads to complete
  411. for (auto & f : futures_download) {
  412. if (!f.get()) {
  413. return false;
  414. }
  415. }
  416. return true;
  417. }
  418. static bool common_download_model(
  419. const common_params_model & model,
  420. const std::string & bearer_token,
  421. bool offline) {
  422. // Basic validation of the model.url
  423. if (model.url.empty()) {
  424. LOG_ERR("%s: invalid model url\n", __func__);
  425. return false;
  426. }
  427. if (!common_download_file_single(model.url, model.path, bearer_token, offline)) {
  428. return false;
  429. }
  430. // check for additional GGUFs split to download
  431. int n_split = 0;
  432. {
  433. struct gguf_init_params gguf_params = {
  434. /*.no_alloc = */ true,
  435. /*.ctx = */ NULL,
  436. };
  437. auto * ctx_gguf = gguf_init_from_file(model.path.c_str(), gguf_params);
  438. if (!ctx_gguf) {
  439. LOG_ERR("\n%s: failed to load input GGUF from %s\n", __func__, model.path.c_str());
  440. return false;
  441. }
  442. auto key_n_split = gguf_find_key(ctx_gguf, LLM_KV_SPLIT_COUNT);
  443. if (key_n_split >= 0) {
  444. n_split = gguf_get_val_u16(ctx_gguf, key_n_split);
  445. }
  446. gguf_free(ctx_gguf);
  447. }
  448. if (n_split > 1) {
  449. char split_prefix[PATH_MAX] = {0};
  450. char split_url_prefix[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  451. // Verify the first split file format
  452. // and extract split URL and PATH prefixes
  453. {
  454. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), model.path.c_str(), 0, n_split)) {
  455. LOG_ERR("\n%s: unexpected model file name: %s n_split=%d\n", __func__, model.path.c_str(), n_split);
  456. return false;
  457. }
  458. if (!llama_split_prefix(split_url_prefix, sizeof(split_url_prefix), model.url.c_str(), 0, n_split)) {
  459. LOG_ERR("\n%s: unexpected model url: %s n_split=%d\n", __func__, model.url.c_str(), n_split);
  460. return false;
  461. }
  462. }
  463. std::vector<std::pair<std::string, std::string>> urls;
  464. for (int idx = 1; idx < n_split; idx++) {
  465. char split_path[PATH_MAX] = {0};
  466. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  467. char split_url[LLAMA_CURL_MAX_URL_LENGTH] = {0};
  468. llama_split_path(split_url, sizeof(split_url), split_url_prefix, idx, n_split);
  469. if (std::string(split_path) == model.path) {
  470. continue; // skip the already downloaded file
  471. }
  472. urls.push_back({split_url, split_path});
  473. }
  474. // Download in parallel
  475. common_download_file_multiple(urls, bearer_token, offline);
  476. }
  477. return true;
  478. }
  479. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params & params) {
  480. curl_ptr curl(curl_easy_init(), &curl_easy_cleanup);
  481. curl_slist_ptr http_headers;
  482. std::vector<char> res_buffer;
  483. curl_easy_setopt(curl.get(), CURLOPT_URL, url.c_str());
  484. curl_easy_setopt(curl.get(), CURLOPT_NOPROGRESS, 1L);
  485. curl_easy_setopt(curl.get(), CURLOPT_FOLLOWLOCATION, 1L);
  486. typedef size_t(*CURLOPT_WRITEFUNCTION_PTR)(void * ptr, size_t size, size_t nmemb, void * data);
  487. auto write_callback = [](void * ptr, size_t size, size_t nmemb, void * data) -> size_t {
  488. auto data_vec = static_cast<std::vector<char> *>(data);
  489. data_vec->insert(data_vec->end(), (char *)ptr, (char *)ptr + size * nmemb);
  490. return size * nmemb;
  491. };
  492. curl_easy_setopt(curl.get(), CURLOPT_WRITEFUNCTION, static_cast<CURLOPT_WRITEFUNCTION_PTR>(write_callback));
  493. curl_easy_setopt(curl.get(), CURLOPT_WRITEDATA, &res_buffer);
  494. #if defined(_WIN32)
  495. curl_easy_setopt(curl.get(), CURLOPT_SSL_OPTIONS, CURLSSLOPT_NATIVE_CA);
  496. #endif
  497. if (params.timeout > 0) {
  498. curl_easy_setopt(curl.get(), CURLOPT_TIMEOUT, params.timeout);
  499. }
  500. if (params.max_size > 0) {
  501. curl_easy_setopt(curl.get(), CURLOPT_MAXFILESIZE, params.max_size);
  502. }
  503. http_headers.ptr = curl_slist_append(http_headers.ptr, "User-Agent: llama-cpp");
  504. for (const auto & header : params.headers) {
  505. http_headers.ptr = curl_slist_append(http_headers.ptr, header.c_str());
  506. }
  507. curl_easy_setopt(curl.get(), CURLOPT_HTTPHEADER, http_headers.ptr);
  508. CURLcode res = curl_easy_perform(curl.get());
  509. if (res != CURLE_OK) {
  510. std::string error_msg = curl_easy_strerror(res);
  511. throw std::runtime_error("error: cannot make GET request: " + error_msg);
  512. }
  513. long res_code;
  514. curl_easy_getinfo(curl.get(), CURLINFO_RESPONSE_CODE, &res_code);
  515. return { res_code, std::move(res_buffer) };
  516. }
  517. /**
  518. * Allow getting the HF file from the HF repo with tag (like ollama), for example:
  519. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q4
  520. * - bartowski/Llama-3.2-3B-Instruct-GGUF:Q4_K_M
  521. * - bartowski/Llama-3.2-3B-Instruct-GGUF:q5_k_s
  522. * Tag is optional, default to "latest" (meaning it checks for Q4_K_M first, then Q4, then if not found, return the first GGUF file in repo)
  523. *
  524. * Return pair of <repo, file> (with "repo" already having tag removed)
  525. *
  526. * Note: we use the Ollama-compatible HF API, but not using the blobId. Instead, we use the special "ggufFile" field which returns the value for "hf_file". This is done to be backward-compatible with existing cache files.
  527. */
  528. static struct common_hf_file_res common_get_hf_file(const std::string & hf_repo_with_tag, const std::string & bearer_token, bool offline) {
  529. auto parts = string_split<std::string>(hf_repo_with_tag, ':');
  530. std::string tag = parts.size() > 1 ? parts.back() : "latest";
  531. std::string hf_repo = parts[0];
  532. if (string_split<std::string>(hf_repo, '/').size() != 2) {
  533. throw std::invalid_argument("error: invalid HF repo format, expected <user>/<model>[:quant]\n");
  534. }
  535. std::string url = get_model_endpoint() + "v2/" + hf_repo + "/manifests/" + tag;
  536. // headers
  537. std::vector<std::string> headers;
  538. headers.push_back("Accept: application/json");
  539. if (!bearer_token.empty()) {
  540. headers.push_back("Authorization: Bearer " + bearer_token);
  541. }
  542. // Important: the User-Agent must be "llama-cpp" to get the "ggufFile" field in the response
  543. // User-Agent header is already set in common_remote_get_content, no need to set it here
  544. // we use "=" to avoid clashing with other component, while still being allowed on windows
  545. std::string cached_response_fname = "manifest=" + hf_repo + "=" + tag + ".json";
  546. string_replace_all(cached_response_fname, "/", "_");
  547. std::string cached_response_path = fs_get_cache_file(cached_response_fname);
  548. // make the request
  549. common_remote_params params;
  550. params.headers = headers;
  551. long res_code = 0;
  552. std::string res_str;
  553. bool use_cache = false;
  554. if (!offline) {
  555. try {
  556. auto res = common_remote_get_content(url, params);
  557. res_code = res.first;
  558. res_str = std::string(res.second.data(), res.second.size());
  559. } catch (const std::exception & e) {
  560. LOG_WRN("error: failed to get manifest at %s: %s\n", url.c_str(), e.what());
  561. }
  562. }
  563. if (res_code == 0) {
  564. if (std::filesystem::exists(cached_response_path)) {
  565. LOG_WRN("trying to read manifest from cache: %s\n", cached_response_path.c_str());
  566. res_str = read_file(cached_response_path);
  567. res_code = 200;
  568. use_cache = true;
  569. } else {
  570. throw std::runtime_error(
  571. offline ? "error: failed to get manifest (offline mode)"
  572. : "error: failed to get manifest (check your internet connection)");
  573. }
  574. }
  575. std::string ggufFile;
  576. std::string mmprojFile;
  577. if (res_code == 200 || res_code == 304) {
  578. // extract ggufFile.rfilename in json, using regex
  579. {
  580. std::regex pattern("\"ggufFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  581. std::smatch match;
  582. if (std::regex_search(res_str, match, pattern)) {
  583. ggufFile = match[1].str();
  584. }
  585. }
  586. // extract mmprojFile.rfilename in json, using regex
  587. {
  588. std::regex pattern("\"mmprojFile\"[\\s\\S]*?\"rfilename\"\\s*:\\s*\"([^\"]+)\"");
  589. std::smatch match;
  590. if (std::regex_search(res_str, match, pattern)) {
  591. mmprojFile = match[1].str();
  592. }
  593. }
  594. if (!use_cache) {
  595. // if not using cached response, update the cache file
  596. write_file(cached_response_path, res_str);
  597. }
  598. } else if (res_code == 401) {
  599. throw std::runtime_error("error: model is private or does not exist; if you are accessing a gated model, please provide a valid HF token");
  600. } else {
  601. throw std::runtime_error(string_format("error from HF API, response code: %ld, data: %s", res_code, res_str.c_str()));
  602. }
  603. // check response
  604. if (ggufFile.empty()) {
  605. throw std::runtime_error("error: model does not have ggufFile");
  606. }
  607. return { hf_repo, ggufFile, mmprojFile };
  608. }
  609. #else
  610. bool common_has_curl() {
  611. return false;
  612. }
  613. static bool common_download_file_single(const std::string &, const std::string &, const std::string &, bool) {
  614. LOG_ERR("error: built without CURL, cannot download model from internet\n");
  615. return false;
  616. }
  617. static bool common_download_file_multiple(const std::vector<std::pair<std::string, std::string>> &, const std::string &, bool) {
  618. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  619. return false;
  620. }
  621. static bool common_download_model(
  622. const common_params_model &,
  623. const std::string &,
  624. bool) {
  625. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  626. return false;
  627. }
  628. static struct common_hf_file_res common_get_hf_file(const std::string &, const std::string &, bool) {
  629. LOG_ERR("error: built without CURL, cannot download model from the internet\n");
  630. return {};
  631. }
  632. std::pair<long, std::vector<char>> common_remote_get_content(const std::string & url, const common_remote_params &) {
  633. if (!url.empty()) {
  634. throw std::runtime_error("error: built without CURL, cannot download model from the internet");
  635. }
  636. return {};
  637. }
  638. #endif // LLAMA_USE_CURL
  639. //
  640. // Docker registry functions
  641. //
  642. static std::string common_docker_get_token(const std::string & repo) {
  643. std::string url = "https://auth.docker.io/token?service=registry.docker.io&scope=repository:" + repo + ":pull";
  644. common_remote_params params;
  645. auto res = common_remote_get_content(url, params);
  646. if (res.first != 200) {
  647. throw std::runtime_error("Failed to get Docker registry token, HTTP code: " + std::to_string(res.first));
  648. }
  649. std::string response_str(res.second.begin(), res.second.end());
  650. nlohmann::ordered_json response = nlohmann::ordered_json::parse(response_str);
  651. if (!response.contains("token")) {
  652. throw std::runtime_error("Docker registry token response missing 'token' field");
  653. }
  654. return response["token"].get<std::string>();
  655. }
  656. static std::string common_docker_resolve_model(const std::string & docker) {
  657. // Parse ai/smollm2:135M-Q4_K_M
  658. size_t colon_pos = docker.find(':');
  659. std::string repo, tag;
  660. if (colon_pos != std::string::npos) {
  661. repo = docker.substr(0, colon_pos);
  662. tag = docker.substr(colon_pos + 1);
  663. } else {
  664. repo = docker;
  665. tag = "latest";
  666. }
  667. // ai/ is the default
  668. size_t slash_pos = docker.find('/');
  669. if (slash_pos == std::string::npos) {
  670. repo.insert(0, "ai/");
  671. }
  672. LOG_INF("%s: Downloading Docker Model: %s:%s\n", __func__, repo.c_str(), tag.c_str());
  673. try {
  674. // --- helper: digest validation ---
  675. auto validate_oci_digest = [](const std::string & digest) -> std::string {
  676. // Expected: algo:hex ; start with sha256 (64 hex chars)
  677. // You can extend this map if supporting other algorithms in future.
  678. static const std::regex re("^sha256:([a-fA-F0-9]{64})$");
  679. std::smatch m;
  680. if (!std::regex_match(digest, m, re)) {
  681. throw std::runtime_error("Invalid OCI digest format received in manifest: " + digest);
  682. }
  683. // normalize hex to lowercase
  684. std::string normalized = digest;
  685. std::transform(normalized.begin()+7, normalized.end(), normalized.begin()+7, [](unsigned char c){
  686. return std::tolower(c);
  687. });
  688. return normalized;
  689. };
  690. std::string token = common_docker_get_token(repo); // Get authentication token
  691. // Get manifest
  692. const std::string url_prefix = "https://registry-1.docker.io/v2/" + repo;
  693. std::string manifest_url = url_prefix + "/manifests/" + tag;
  694. common_remote_params manifest_params;
  695. manifest_params.headers.push_back("Authorization: Bearer " + token);
  696. manifest_params.headers.push_back(
  697. "Accept: application/vnd.docker.distribution.manifest.v2+json,application/vnd.oci.image.manifest.v1+json");
  698. auto manifest_res = common_remote_get_content(manifest_url, manifest_params);
  699. if (manifest_res.first != 200) {
  700. throw std::runtime_error("Failed to get Docker manifest, HTTP code: " + std::to_string(manifest_res.first));
  701. }
  702. std::string manifest_str(manifest_res.second.begin(), manifest_res.second.end());
  703. nlohmann::ordered_json manifest = nlohmann::ordered_json::parse(manifest_str);
  704. std::string gguf_digest; // Find the GGUF layer
  705. if (manifest.contains("layers")) {
  706. for (const auto & layer : manifest["layers"]) {
  707. if (layer.contains("mediaType")) {
  708. std::string media_type = layer["mediaType"].get<std::string>();
  709. if (media_type == "application/vnd.docker.ai.gguf.v3" ||
  710. media_type.find("gguf") != std::string::npos) {
  711. gguf_digest = layer["digest"].get<std::string>();
  712. break;
  713. }
  714. }
  715. }
  716. }
  717. if (gguf_digest.empty()) {
  718. throw std::runtime_error("No GGUF layer found in Docker manifest");
  719. }
  720. // Validate & normalize digest
  721. gguf_digest = validate_oci_digest(gguf_digest);
  722. LOG_DBG("%s: Using validated digest: %s\n", __func__, gguf_digest.c_str());
  723. // Prepare local filename
  724. std::string model_filename = repo;
  725. std::replace(model_filename.begin(), model_filename.end(), '/', '_');
  726. model_filename += "_" + tag + ".gguf";
  727. std::string local_path = fs_get_cache_file(model_filename);
  728. const std::string blob_url = url_prefix + "/blobs/" + gguf_digest;
  729. if (!common_download_file_single(blob_url, local_path, token, false)) {
  730. throw std::runtime_error("Failed to download Docker Model");
  731. }
  732. LOG_INF("%s: Downloaded Docker Model to: %s\n", __func__, local_path.c_str());
  733. return local_path;
  734. } catch (const std::exception & e) {
  735. LOG_ERR("%s: Docker Model download failed: %s\n", __func__, e.what());
  736. throw;
  737. }
  738. }
  739. //
  740. // utils
  741. //
  742. // Helper function to parse tensor buffer override strings
  743. static void parse_tensor_buffer_overrides(const std::string & value, std::vector<llama_model_tensor_buft_override> & overrides) {
  744. std::map<std::string, ggml_backend_buffer_type_t> buft_list;
  745. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  746. auto * dev = ggml_backend_dev_get(i);
  747. auto * buft = ggml_backend_dev_buffer_type(dev);
  748. if (buft) {
  749. buft_list[ggml_backend_buft_name(buft)] = buft;
  750. }
  751. }
  752. for (const auto & override : string_split<std::string>(value, ',')) {
  753. std::string::size_type pos = override.find('=');
  754. if (pos == std::string::npos) {
  755. throw std::invalid_argument("invalid value");
  756. }
  757. std::string tensor_name = override.substr(0, pos);
  758. std::string buffer_type = override.substr(pos + 1);
  759. if (buft_list.find(buffer_type) == buft_list.end()) {
  760. printf("Available buffer types:\n");
  761. for (const auto & it : buft_list) {
  762. printf(" %s\n", ggml_backend_buft_name(it.second));
  763. }
  764. throw std::invalid_argument("unknown buffer type");
  765. }
  766. // keep strings alive and avoid leaking memory by storing them in a static vector
  767. static std::list<std::string> buft_overrides;
  768. buft_overrides.push_back(tensor_name);
  769. overrides.push_back({buft_overrides.back().c_str(), buft_list.at(buffer_type)});
  770. }
  771. }
  772. struct handle_model_result {
  773. bool found_mmproj = false;
  774. common_params_model mmproj;
  775. };
  776. static handle_model_result common_params_handle_model(
  777. struct common_params_model & model,
  778. const std::string & bearer_token,
  779. const std::string & model_path_default,
  780. bool offline) {
  781. handle_model_result result;
  782. // handle pre-fill default model path and url based on hf_repo and hf_file
  783. {
  784. if (!model.docker_repo.empty()) { // Handle Docker URLs by resolving them to local paths
  785. model.path = common_docker_resolve_model(model.docker_repo);
  786. } else if (!model.hf_repo.empty()) {
  787. // short-hand to avoid specifying --hf-file -> default it to --model
  788. if (model.hf_file.empty()) {
  789. if (model.path.empty()) {
  790. auto auto_detected = common_get_hf_file(model.hf_repo, bearer_token, offline);
  791. if (auto_detected.repo.empty() || auto_detected.ggufFile.empty()) {
  792. exit(1); // built without CURL, error message already printed
  793. }
  794. model.hf_repo = auto_detected.repo;
  795. model.hf_file = auto_detected.ggufFile;
  796. if (!auto_detected.mmprojFile.empty()) {
  797. result.found_mmproj = true;
  798. result.mmproj.hf_repo = model.hf_repo;
  799. result.mmproj.hf_file = auto_detected.mmprojFile;
  800. }
  801. } else {
  802. model.hf_file = model.path;
  803. }
  804. }
  805. std::string model_endpoint = get_model_endpoint();
  806. model.url = model_endpoint + model.hf_repo + "/resolve/main/" + model.hf_file;
  807. // make sure model path is present (for caching purposes)
  808. if (model.path.empty()) {
  809. // this is to avoid different repo having same file name, or same file name in different subdirs
  810. std::string filename = model.hf_repo + "_" + model.hf_file;
  811. // to make sure we don't have any slashes in the filename
  812. string_replace_all(filename, "/", "_");
  813. model.path = fs_get_cache_file(filename);
  814. }
  815. } else if (!model.url.empty()) {
  816. if (model.path.empty()) {
  817. auto f = string_split<std::string>(model.url, '#').front();
  818. f = string_split<std::string>(f, '?').front();
  819. model.path = fs_get_cache_file(string_split<std::string>(f, '/').back());
  820. }
  821. } else if (model.path.empty()) {
  822. model.path = model_path_default;
  823. }
  824. }
  825. // then, download it if needed
  826. if (!model.url.empty()) {
  827. bool ok = common_download_model(model, bearer_token, offline);
  828. if (!ok) {
  829. LOG_ERR("error: failed to download model from %s\n", model.url.c_str());
  830. exit(1);
  831. }
  832. }
  833. return result;
  834. }
  835. const std::vector<ggml_type> kv_cache_types = {
  836. GGML_TYPE_F32,
  837. GGML_TYPE_F16,
  838. GGML_TYPE_BF16,
  839. GGML_TYPE_Q8_0,
  840. GGML_TYPE_Q4_0,
  841. GGML_TYPE_Q4_1,
  842. GGML_TYPE_IQ4_NL,
  843. GGML_TYPE_Q5_0,
  844. GGML_TYPE_Q5_1,
  845. };
  846. static ggml_type kv_cache_type_from_str(const std::string & s) {
  847. for (const auto & type : kv_cache_types) {
  848. if (ggml_type_name(type) == s) {
  849. return type;
  850. }
  851. }
  852. throw std::runtime_error("Unsupported cache type: " + s);
  853. }
  854. static std::string get_all_kv_cache_types() {
  855. std::ostringstream msg;
  856. for (const auto & type : kv_cache_types) {
  857. msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
  858. }
  859. return msg.str();
  860. }
  861. //
  862. // CLI argument parsing functions
  863. //
  864. static bool common_params_parse_ex(int argc, char ** argv, common_params_context & ctx_arg) {
  865. std::string arg;
  866. const std::string arg_prefix = "--";
  867. common_params & params = ctx_arg.params;
  868. std::unordered_map<std::string, common_arg *> arg_to_options;
  869. for (auto & opt : ctx_arg.options) {
  870. for (const auto & arg : opt.args) {
  871. arg_to_options[arg] = &opt;
  872. }
  873. }
  874. // handle environment variables
  875. for (auto & opt : ctx_arg.options) {
  876. std::string value;
  877. if (opt.get_value_from_env(value)) {
  878. try {
  879. if (opt.handler_void && (value == "1" || value == "true")) {
  880. opt.handler_void(params);
  881. }
  882. if (opt.handler_int) {
  883. opt.handler_int(params, std::stoi(value));
  884. }
  885. if (opt.handler_string) {
  886. opt.handler_string(params, value);
  887. continue;
  888. }
  889. } catch (std::exception & e) {
  890. throw std::invalid_argument(string_format(
  891. "error while handling environment variable \"%s\": %s\n\n", opt.env, e.what()));
  892. }
  893. }
  894. }
  895. // handle command line arguments
  896. auto check_arg = [&](int i) {
  897. if (i+1 >= argc) {
  898. throw std::invalid_argument("expected value for argument");
  899. }
  900. };
  901. for (int i = 1; i < argc; i++) {
  902. const std::string arg_prefix = "--";
  903. std::string arg = argv[i];
  904. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  905. std::replace(arg.begin(), arg.end(), '_', '-');
  906. }
  907. if (arg_to_options.find(arg) == arg_to_options.end()) {
  908. throw std::invalid_argument(string_format("error: invalid argument: %s", arg.c_str()));
  909. }
  910. auto opt = *arg_to_options[arg];
  911. if (opt.has_value_from_env()) {
  912. fprintf(stderr, "warn: %s environment variable is set, but will be overwritten by command line argument %s\n", opt.env, arg.c_str());
  913. }
  914. try {
  915. if (opt.handler_void) {
  916. opt.handler_void(params);
  917. continue;
  918. }
  919. // arg with single value
  920. check_arg(i);
  921. std::string val = argv[++i];
  922. if (opt.handler_int) {
  923. opt.handler_int(params, std::stoi(val));
  924. continue;
  925. }
  926. if (opt.handler_string) {
  927. opt.handler_string(params, val);
  928. continue;
  929. }
  930. // arg with 2 values
  931. check_arg(i);
  932. std::string val2 = argv[++i];
  933. if (opt.handler_str_str) {
  934. opt.handler_str_str(params, val, val2);
  935. continue;
  936. }
  937. } catch (std::exception & e) {
  938. throw std::invalid_argument(string_format(
  939. "error while handling argument \"%s\": %s\n\n"
  940. "usage:\n%s\n\nto show complete usage, run with -h",
  941. arg.c_str(), e.what(), arg_to_options[arg]->to_string().c_str()));
  942. }
  943. }
  944. postprocess_cpu_params(params.cpuparams, nullptr);
  945. postprocess_cpu_params(params.cpuparams_batch, &params.cpuparams);
  946. postprocess_cpu_params(params.speculative.cpuparams, &params.cpuparams);
  947. postprocess_cpu_params(params.speculative.cpuparams_batch, &params.cpuparams_batch);
  948. if (params.prompt_cache_all && (params.interactive || params.interactive_first)) {
  949. throw std::invalid_argument("error: --prompt-cache-all not supported in interactive mode yet\n");
  950. }
  951. // handle model and download
  952. {
  953. auto res = common_params_handle_model(params.model, params.hf_token, DEFAULT_MODEL_PATH, params.offline);
  954. if (params.no_mmproj) {
  955. params.mmproj = {};
  956. } else if (res.found_mmproj && params.mmproj.path.empty() && params.mmproj.url.empty()) {
  957. // optionally, handle mmproj model when -hf is specified
  958. params.mmproj = res.mmproj;
  959. }
  960. // only download mmproj if the current example is using it
  961. for (auto & ex : mmproj_examples) {
  962. if (ctx_arg.ex == ex) {
  963. common_params_handle_model(params.mmproj, params.hf_token, "", params.offline);
  964. break;
  965. }
  966. }
  967. common_params_handle_model(params.speculative.model, params.hf_token, "", params.offline);
  968. common_params_handle_model(params.vocoder.model, params.hf_token, "", params.offline);
  969. }
  970. if (params.escape) {
  971. string_process_escapes(params.prompt);
  972. string_process_escapes(params.input_prefix);
  973. string_process_escapes(params.input_suffix);
  974. for (auto & antiprompt : params.antiprompt) {
  975. string_process_escapes(antiprompt);
  976. }
  977. for (auto & seq_breaker : params.sampling.dry_sequence_breakers) {
  978. string_process_escapes(seq_breaker);
  979. }
  980. for (auto & pair : params.speculative.replacements) {
  981. string_process_escapes(pair.first);
  982. string_process_escapes(pair.second);
  983. }
  984. }
  985. if (!params.kv_overrides.empty()) {
  986. params.kv_overrides.emplace_back();
  987. params.kv_overrides.back().key[0] = 0;
  988. }
  989. if (!params.tensor_buft_overrides.empty()) {
  990. params.tensor_buft_overrides.push_back({nullptr, nullptr});
  991. }
  992. if (!params.speculative.tensor_buft_overrides.empty()) {
  993. params.speculative.tensor_buft_overrides.push_back({nullptr, nullptr});
  994. }
  995. if (!params.chat_template.empty() && !common_chat_verify_template(params.chat_template, params.use_jinja)) {
  996. throw std::runtime_error(string_format(
  997. "error: the supplied chat template is not supported: %s%s\n",
  998. params.chat_template.c_str(),
  999. params.use_jinja ? "" : "\nnote: llama.cpp was started without --jinja, we only support commonly used templates"
  1000. ));
  1001. }
  1002. return true;
  1003. }
  1004. static void common_params_print_usage(common_params_context & ctx_arg) {
  1005. auto print_options = [](std::vector<common_arg *> & options) {
  1006. for (common_arg * opt : options) {
  1007. printf("%s", opt->to_string().c_str());
  1008. }
  1009. };
  1010. std::vector<common_arg *> common_options;
  1011. std::vector<common_arg *> sparam_options;
  1012. std::vector<common_arg *> specific_options;
  1013. for (auto & opt : ctx_arg.options) {
  1014. // in case multiple LLAMA_EXAMPLE_* are set, we prioritize the LLAMA_EXAMPLE_* matching current example
  1015. if (opt.is_sparam) {
  1016. sparam_options.push_back(&opt);
  1017. } else if (opt.in_example(ctx_arg.ex)) {
  1018. specific_options.push_back(&opt);
  1019. } else {
  1020. common_options.push_back(&opt);
  1021. }
  1022. }
  1023. printf("----- common params -----\n\n");
  1024. print_options(common_options);
  1025. printf("\n\n----- sampling params -----\n\n");
  1026. print_options(sparam_options);
  1027. // TODO: maybe convert enum llama_example to string
  1028. printf("\n\n----- example-specific params -----\n\n");
  1029. print_options(specific_options);
  1030. }
  1031. static void common_params_print_completion(common_params_context & ctx_arg) {
  1032. std::vector<common_arg *> common_options;
  1033. std::vector<common_arg *> sparam_options;
  1034. std::vector<common_arg *> specific_options;
  1035. for (auto & opt : ctx_arg.options) {
  1036. if (opt.is_sparam) {
  1037. sparam_options.push_back(&opt);
  1038. } else if (opt.in_example(ctx_arg.ex)) {
  1039. specific_options.push_back(&opt);
  1040. } else {
  1041. common_options.push_back(&opt);
  1042. }
  1043. }
  1044. printf("_llama_completions() {\n");
  1045. printf(" local cur prev opts\n");
  1046. printf(" COMPREPLY=()\n");
  1047. printf(" cur=\"${COMP_WORDS[COMP_CWORD]}\"\n");
  1048. printf(" prev=\"${COMP_WORDS[COMP_CWORD-1]}\"\n\n");
  1049. printf(" opts=\"");
  1050. auto print_options = [](const std::vector<common_arg *> & options) {
  1051. for (const common_arg * opt : options) {
  1052. for (const char * arg : opt->args) {
  1053. printf("%s ", arg);
  1054. }
  1055. }
  1056. };
  1057. print_options(common_options);
  1058. print_options(sparam_options);
  1059. print_options(specific_options);
  1060. printf("\"\n\n");
  1061. printf(" case \"$prev\" in\n");
  1062. printf(" --model|-m)\n");
  1063. printf(" COMPREPLY=( $(compgen -f -X '!*.gguf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  1064. printf(" return 0\n");
  1065. printf(" ;;\n");
  1066. printf(" --grammar-file)\n");
  1067. printf(" COMPREPLY=( $(compgen -f -X '!*.gbnf' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  1068. printf(" return 0\n");
  1069. printf(" ;;\n");
  1070. printf(" --chat-template-file)\n");
  1071. printf(" COMPREPLY=( $(compgen -f -X '!*.jinja' -- \"$cur\") $(compgen -d -- \"$cur\") )\n");
  1072. printf(" return 0\n");
  1073. printf(" ;;\n");
  1074. printf(" *)\n");
  1075. printf(" COMPREPLY=( $(compgen -W \"${opts}\" -- \"$cur\") )\n");
  1076. printf(" return 0\n");
  1077. printf(" ;;\n");
  1078. printf(" esac\n");
  1079. printf("}\n\n");
  1080. std::set<std::string> executables = {
  1081. "llama-batched",
  1082. "llama-batched-bench",
  1083. "llama-bench",
  1084. "llama-cli",
  1085. "llama-convert-llama2c-to-ggml",
  1086. "llama-cvector-generator",
  1087. "llama-embedding",
  1088. "llama-eval-callback",
  1089. "llama-export-lora",
  1090. "llama-gen-docs",
  1091. "llama-gguf",
  1092. "llama-gguf-hash",
  1093. "llama-gguf-split",
  1094. "llama-gritlm",
  1095. "llama-imatrix",
  1096. "llama-infill",
  1097. "llama-mtmd-cli",
  1098. "llama-llava-clip-quantize-cli",
  1099. "llama-lookahead",
  1100. "llama-lookup",
  1101. "llama-lookup-create",
  1102. "llama-lookup-merge",
  1103. "llama-lookup-stats",
  1104. "llama-parallel",
  1105. "llama-passkey",
  1106. "llama-perplexity",
  1107. "llama-q8dot",
  1108. "llama-quantize",
  1109. "llama-qwen2vl-cli",
  1110. "llama-retrieval",
  1111. "llama-run",
  1112. "llama-save-load-state",
  1113. "llama-server",
  1114. "llama-simple",
  1115. "llama-simple-chat",
  1116. "llama-speculative",
  1117. "llama-speculative-simple",
  1118. "llama-tokenize",
  1119. "llama-tts",
  1120. "llama-vdot"
  1121. };
  1122. for (const auto& exe : executables) {
  1123. printf("complete -F _llama_completions %s\n", exe.c_str());
  1124. }
  1125. }
  1126. static std::vector<ggml_backend_dev_t> parse_device_list(const std::string & value) {
  1127. std::vector<ggml_backend_dev_t> devices;
  1128. auto dev_names = string_split<std::string>(value, ',');
  1129. if (dev_names.empty()) {
  1130. throw std::invalid_argument("no devices specified");
  1131. }
  1132. if (dev_names.size() == 1 && dev_names[0] == "none") {
  1133. devices.push_back(nullptr);
  1134. } else {
  1135. for (const auto & device : dev_names) {
  1136. auto * dev = ggml_backend_dev_by_name(device.c_str());
  1137. if (!dev || ggml_backend_dev_type(dev) == GGML_BACKEND_DEVICE_TYPE_CPU) {
  1138. throw std::invalid_argument(string_format("invalid device: %s", device.c_str()));
  1139. }
  1140. devices.push_back(dev);
  1141. }
  1142. devices.push_back(nullptr);
  1143. }
  1144. return devices;
  1145. }
  1146. static void add_rpc_devices(const std::string & servers) {
  1147. auto rpc_servers = string_split<std::string>(servers, ',');
  1148. if (rpc_servers.empty()) {
  1149. throw std::invalid_argument("no RPC servers specified");
  1150. }
  1151. ggml_backend_reg_t rpc_reg = ggml_backend_reg_by_name("RPC");
  1152. if (!rpc_reg) {
  1153. throw std::invalid_argument("failed to find RPC backend");
  1154. }
  1155. typedef ggml_backend_dev_t (*ggml_backend_rpc_add_device_t)(const char * endpoint);
  1156. ggml_backend_rpc_add_device_t ggml_backend_rpc_add_device_fn = (ggml_backend_rpc_add_device_t) ggml_backend_reg_get_proc_address(rpc_reg, "ggml_backend_rpc_add_device");
  1157. if (!ggml_backend_rpc_add_device_fn) {
  1158. throw std::invalid_argument("failed to find RPC device add function");
  1159. }
  1160. for (const auto & server : rpc_servers) {
  1161. ggml_backend_dev_t dev = ggml_backend_rpc_add_device_fn(server.c_str());
  1162. if (dev) {
  1163. ggml_backend_device_register(dev);
  1164. } else {
  1165. throw std::invalid_argument("failed to register RPC device");
  1166. }
  1167. }
  1168. }
  1169. bool common_params_parse(int argc, char ** argv, common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1170. auto ctx_arg = common_params_parser_init(params, ex, print_usage);
  1171. const common_params params_org = ctx_arg.params; // the example can modify the default params
  1172. try {
  1173. if (!common_params_parse_ex(argc, argv, ctx_arg)) {
  1174. ctx_arg.params = params_org;
  1175. return false;
  1176. }
  1177. if (ctx_arg.params.usage) {
  1178. common_params_print_usage(ctx_arg);
  1179. if (ctx_arg.print_usage) {
  1180. ctx_arg.print_usage(argc, argv);
  1181. }
  1182. exit(0);
  1183. }
  1184. if (ctx_arg.params.completion) {
  1185. common_params_print_completion(ctx_arg);
  1186. exit(0);
  1187. }
  1188. params.lr.init();
  1189. } catch (const std::invalid_argument & ex) {
  1190. fprintf(stderr, "%s\n", ex.what());
  1191. ctx_arg.params = params_org;
  1192. return false;
  1193. } catch (std::exception & ex) {
  1194. fprintf(stderr, "%s\n", ex.what());
  1195. exit(1); // for other exceptions, we exit with status code 1
  1196. }
  1197. return true;
  1198. }
  1199. static std::string list_builtin_chat_templates() {
  1200. std::vector<const char *> supported_tmpl;
  1201. int32_t res = llama_chat_builtin_templates(nullptr, 0);
  1202. supported_tmpl.resize(res);
  1203. res = llama_chat_builtin_templates(supported_tmpl.data(), supported_tmpl.size());
  1204. std::ostringstream msg;
  1205. for (auto & tmpl : supported_tmpl) {
  1206. msg << tmpl << (&tmpl == &supported_tmpl.back() ? "" : ", ");
  1207. }
  1208. return msg.str();
  1209. }
  1210. static bool is_truthy(const std::string & value) {
  1211. return value == "on" || value == "enabled" || value == "1";
  1212. }
  1213. static bool is_falsey(const std::string & value) {
  1214. return value == "off" || value == "disabled" || value == "0";
  1215. }
  1216. static bool is_autoy(const std::string & value) {
  1217. return value == "auto" || value == "-1";
  1218. }
  1219. common_params_context common_params_parser_init(common_params & params, llama_example ex, void(*print_usage)(int, char **)) {
  1220. // load dynamic backends
  1221. ggml_backend_load_all();
  1222. common_params_context ctx_arg(params);
  1223. ctx_arg.print_usage = print_usage;
  1224. ctx_arg.ex = ex;
  1225. std::string sampler_type_chars;
  1226. std::string sampler_type_names;
  1227. for (const auto & sampler : params.sampling.samplers) {
  1228. sampler_type_chars += common_sampler_type_to_chr(sampler);
  1229. sampler_type_names += common_sampler_type_to_str(sampler) + ";";
  1230. }
  1231. sampler_type_names.pop_back();
  1232. /**
  1233. * filter options by example
  1234. * rules:
  1235. * - all examples inherit options from LLAMA_EXAMPLE_COMMON
  1236. * - if LLAMA_EXAMPLE_* is set (other than COMMON), we only show the option in the corresponding example
  1237. * - if both {LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_*,} are set, we will prioritize the LLAMA_EXAMPLE_* matching current example
  1238. */
  1239. auto add_opt = [&](common_arg arg) {
  1240. if ((arg.in_example(ex) || arg.in_example(LLAMA_EXAMPLE_COMMON)) && !arg.is_exclude(ex)) {
  1241. ctx_arg.options.push_back(std::move(arg));
  1242. }
  1243. };
  1244. add_opt(common_arg(
  1245. {"-h", "--help", "--usage"},
  1246. "print usage and exit",
  1247. [](common_params & params) {
  1248. params.usage = true;
  1249. }
  1250. ));
  1251. add_opt(common_arg(
  1252. {"--version"},
  1253. "show version and build info",
  1254. [](common_params &) {
  1255. fprintf(stderr, "version: %d (%s)\n", LLAMA_BUILD_NUMBER, LLAMA_COMMIT);
  1256. fprintf(stderr, "built with %s for %s\n", LLAMA_COMPILER, LLAMA_BUILD_TARGET);
  1257. exit(0);
  1258. }
  1259. ));
  1260. add_opt(common_arg(
  1261. {"--completion-bash"},
  1262. "print source-able bash completion script for llama.cpp",
  1263. [](common_params & params) {
  1264. params.completion = true;
  1265. }
  1266. ));
  1267. add_opt(common_arg(
  1268. {"--verbose-prompt"},
  1269. string_format("print a verbose prompt before generation (default: %s)", params.verbose_prompt ? "true" : "false"),
  1270. [](common_params & params) {
  1271. params.verbose_prompt = true;
  1272. }
  1273. ));
  1274. add_opt(common_arg(
  1275. {"--no-display-prompt"},
  1276. string_format("don't print prompt at generation (default: %s)", !params.display_prompt ? "true" : "false"),
  1277. [](common_params & params) {
  1278. params.display_prompt = false;
  1279. }
  1280. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1281. add_opt(common_arg(
  1282. {"-co", "--color"},
  1283. string_format("colorise output to distinguish prompt and user input from generations (default: %s)", params.use_color ? "true" : "false"),
  1284. [](common_params & params) {
  1285. params.use_color = true;
  1286. }
  1287. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP}));
  1288. add_opt(common_arg(
  1289. {"-t", "--threads"}, "N",
  1290. string_format("number of threads to use during generation (default: %d)", params.cpuparams.n_threads),
  1291. [](common_params & params, int value) {
  1292. params.cpuparams.n_threads = value;
  1293. if (params.cpuparams.n_threads <= 0) {
  1294. params.cpuparams.n_threads = std::thread::hardware_concurrency();
  1295. }
  1296. }
  1297. ).set_env("LLAMA_ARG_THREADS"));
  1298. add_opt(common_arg(
  1299. {"-tb", "--threads-batch"}, "N",
  1300. "number of threads to use during batch and prompt processing (default: same as --threads)",
  1301. [](common_params & params, int value) {
  1302. params.cpuparams_batch.n_threads = value;
  1303. if (params.cpuparams_batch.n_threads <= 0) {
  1304. params.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  1305. }
  1306. }
  1307. ));
  1308. add_opt(common_arg(
  1309. {"-C", "--cpu-mask"}, "M",
  1310. "CPU affinity mask: arbitrarily long hex. Complements cpu-range (default: \"\")",
  1311. [](common_params & params, const std::string & mask) {
  1312. params.cpuparams.mask_valid = true;
  1313. if (!parse_cpu_mask(mask, params.cpuparams.cpumask)) {
  1314. throw std::invalid_argument("invalid cpumask");
  1315. }
  1316. }
  1317. ));
  1318. add_opt(common_arg(
  1319. {"-Cr", "--cpu-range"}, "lo-hi",
  1320. "range of CPUs for affinity. Complements --cpu-mask",
  1321. [](common_params & params, const std::string & range) {
  1322. params.cpuparams.mask_valid = true;
  1323. if (!parse_cpu_range(range, params.cpuparams.cpumask)) {
  1324. throw std::invalid_argument("invalid range");
  1325. }
  1326. }
  1327. ));
  1328. add_opt(common_arg(
  1329. {"--cpu-strict"}, "<0|1>",
  1330. string_format("use strict CPU placement (default: %u)\n", (unsigned) params.cpuparams.strict_cpu),
  1331. [](common_params & params, const std::string & value) {
  1332. params.cpuparams.strict_cpu = std::stoul(value);
  1333. }
  1334. ));
  1335. add_opt(common_arg(
  1336. {"--prio"}, "N",
  1337. string_format("set process/thread priority : low(-1), normal(0), medium(1), high(2), realtime(3) (default: %d)\n", params.cpuparams.priority),
  1338. [](common_params & params, int prio) {
  1339. if (prio < GGML_SCHED_PRIO_LOW || prio > GGML_SCHED_PRIO_REALTIME) {
  1340. throw std::invalid_argument("invalid value");
  1341. }
  1342. params.cpuparams.priority = (enum ggml_sched_priority) prio;
  1343. }
  1344. ));
  1345. add_opt(common_arg(
  1346. {"--poll"}, "<0...100>",
  1347. string_format("use polling level to wait for work (0 - no polling, default: %u)\n", (unsigned) params.cpuparams.poll),
  1348. [](common_params & params, const std::string & value) {
  1349. params.cpuparams.poll = std::stoul(value);
  1350. }
  1351. ));
  1352. add_opt(common_arg(
  1353. {"-Cb", "--cpu-mask-batch"}, "M",
  1354. "CPU affinity mask: arbitrarily long hex. Complements cpu-range-batch (default: same as --cpu-mask)",
  1355. [](common_params & params, const std::string & mask) {
  1356. params.cpuparams_batch.mask_valid = true;
  1357. if (!parse_cpu_mask(mask, params.cpuparams_batch.cpumask)) {
  1358. throw std::invalid_argument("invalid cpumask");
  1359. }
  1360. }
  1361. ));
  1362. add_opt(common_arg(
  1363. {"-Crb", "--cpu-range-batch"}, "lo-hi",
  1364. "ranges of CPUs for affinity. Complements --cpu-mask-batch",
  1365. [](common_params & params, const std::string & range) {
  1366. params.cpuparams_batch.mask_valid = true;
  1367. if (!parse_cpu_range(range, params.cpuparams_batch.cpumask)) {
  1368. throw std::invalid_argument("invalid range");
  1369. }
  1370. }
  1371. ));
  1372. add_opt(common_arg(
  1373. {"--cpu-strict-batch"}, "<0|1>",
  1374. "use strict CPU placement (default: same as --cpu-strict)",
  1375. [](common_params & params, int value) {
  1376. params.cpuparams_batch.strict_cpu = value;
  1377. }
  1378. ));
  1379. add_opt(common_arg(
  1380. {"--prio-batch"}, "N",
  1381. string_format("set process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.cpuparams_batch.priority),
  1382. [](common_params & params, int prio) {
  1383. if (prio < 0 || prio > 3) {
  1384. throw std::invalid_argument("invalid value");
  1385. }
  1386. params.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  1387. }
  1388. ));
  1389. add_opt(common_arg(
  1390. {"--poll-batch"}, "<0|1>",
  1391. "use polling to wait for work (default: same as --poll)",
  1392. [](common_params & params, int value) {
  1393. params.cpuparams_batch.poll = value;
  1394. }
  1395. ));
  1396. add_opt(common_arg(
  1397. {"-lcs", "--lookup-cache-static"}, "FNAME",
  1398. "path to static lookup cache to use for lookup decoding (not updated by generation)",
  1399. [](common_params & params, const std::string & value) {
  1400. params.lookup_cache_static = value;
  1401. }
  1402. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1403. add_opt(common_arg(
  1404. {"-lcd", "--lookup-cache-dynamic"}, "FNAME",
  1405. "path to dynamic lookup cache to use for lookup decoding (updated by generation)",
  1406. [](common_params & params, const std::string & value) {
  1407. params.lookup_cache_dynamic = value;
  1408. }
  1409. ).set_examples({LLAMA_EXAMPLE_LOOKUP}));
  1410. add_opt(common_arg(
  1411. {"-c", "--ctx-size"}, "N",
  1412. string_format("size of the prompt context (default: %d, 0 = loaded from model)", params.n_ctx),
  1413. [](common_params & params, int value) {
  1414. params.n_ctx = value;
  1415. }
  1416. ).set_env("LLAMA_ARG_CTX_SIZE"));
  1417. add_opt(common_arg(
  1418. {"-n", "--predict", "--n-predict"}, "N",
  1419. string_format(
  1420. ex == LLAMA_EXAMPLE_MAIN
  1421. ? "number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)"
  1422. : "number of tokens to predict (default: %d, -1 = infinity)",
  1423. params.n_predict),
  1424. [](common_params & params, int value) {
  1425. params.n_predict = value;
  1426. }
  1427. ).set_env("LLAMA_ARG_N_PREDICT"));
  1428. add_opt(common_arg(
  1429. {"-b", "--batch-size"}, "N",
  1430. string_format("logical maximum batch size (default: %d)", params.n_batch),
  1431. [](common_params & params, int value) {
  1432. params.n_batch = value;
  1433. }
  1434. ).set_env("LLAMA_ARG_BATCH"));
  1435. add_opt(common_arg(
  1436. {"-ub", "--ubatch-size"}, "N",
  1437. string_format("physical maximum batch size (default: %d)", params.n_ubatch),
  1438. [](common_params & params, int value) {
  1439. params.n_ubatch = value;
  1440. }
  1441. ).set_env("LLAMA_ARG_UBATCH"));
  1442. add_opt(common_arg(
  1443. {"--keep"}, "N",
  1444. string_format("number of tokens to keep from the initial prompt (default: %d, -1 = all)", params.n_keep),
  1445. [](common_params & params, int value) {
  1446. params.n_keep = value;
  1447. }
  1448. ));
  1449. add_opt(common_arg(
  1450. {"--swa-full"},
  1451. string_format("use full-size SWA cache (default: %s)\n"
  1452. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)", params.swa_full ? "true" : "false"),
  1453. [](common_params & params) {
  1454. params.swa_full = true;
  1455. }
  1456. ).set_env("LLAMA_ARG_SWA_FULL"));
  1457. add_opt(common_arg(
  1458. {"--swa-checkpoints"}, "N",
  1459. string_format("max number of SWA checkpoints per slot to create (default: %d)\n"
  1460. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/15293)", params.n_swa_checkpoints),
  1461. [](common_params & params, int value) {
  1462. params.n_swa_checkpoints = value;
  1463. }
  1464. ).set_env("LLAMA_ARG_SWA_CHECKPOINTS").set_examples({LLAMA_EXAMPLE_SERVER}));
  1465. add_opt(common_arg(
  1466. {"--kv-unified", "-kvu"},
  1467. string_format("use single unified KV buffer for the KV cache of all sequences (default: %s)\n"
  1468. "[(more info)](https://github.com/ggml-org/llama.cpp/pull/14363)", params.kv_unified ? "true" : "false"),
  1469. [](common_params & params) {
  1470. params.kv_unified = true;
  1471. }
  1472. ).set_env("LLAMA_ARG_KV_SPLIT"));
  1473. add_opt(common_arg(
  1474. {"--no-context-shift"},
  1475. string_format("disables context shift on infinite text generation (default: %s)", params.ctx_shift ? "disabled" : "enabled"),
  1476. [](common_params & params) {
  1477. params.ctx_shift = false;
  1478. }
  1479. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_NO_CONTEXT_SHIFT"));
  1480. add_opt(common_arg(
  1481. {"--context-shift"},
  1482. string_format("enables context shift on infinite text generation (default: %s)", params.ctx_shift ? "enabled" : "disabled"),
  1483. [](common_params & params) {
  1484. params.ctx_shift = true;
  1485. }
  1486. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY}).set_env("LLAMA_ARG_CONTEXT_SHIFT"));
  1487. add_opt(common_arg(
  1488. {"--chunks"}, "N",
  1489. string_format("max number of chunks to process (default: %d, -1 = all)", params.n_chunks),
  1490. [](common_params & params, int value) {
  1491. params.n_chunks = value;
  1492. }
  1493. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_PERPLEXITY, LLAMA_EXAMPLE_RETRIEVAL}));
  1494. add_opt(common_arg({ "-fa", "--flash-attn" }, "[on|off|auto]",
  1495. string_format("set Flash Attention use ('on', 'off', or 'auto', default: '%s')",
  1496. llama_flash_attn_type_name(params.flash_attn_type)),
  1497. [](common_params & params, const std::string & value) {
  1498. if (is_truthy(value)) {
  1499. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_ENABLED;
  1500. } else if (is_falsey(value)) {
  1501. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_DISABLED;
  1502. } else if (is_autoy(value)) {
  1503. params.flash_attn_type = LLAMA_FLASH_ATTN_TYPE_AUTO;
  1504. } else {
  1505. throw std::runtime_error(
  1506. string_format("error: unkown value for --flash-attn: '%s'\n", value.c_str()));
  1507. }
  1508. }).set_env("LLAMA_ARG_FLASH_ATTN"));
  1509. add_opt(common_arg(
  1510. {"-p", "--prompt"}, "PROMPT",
  1511. "prompt to start generation with; for system message, use -sys",
  1512. [](common_params & params, const std::string & value) {
  1513. params.prompt = value;
  1514. }
  1515. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1516. add_opt(common_arg(
  1517. {"-sys", "--system-prompt"}, "PROMPT",
  1518. "system prompt to use with model (if applicable, depending on chat template)",
  1519. [](common_params & params, const std::string & value) {
  1520. params.system_prompt = value;
  1521. }
  1522. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_DIFFUSION}));
  1523. add_opt(common_arg(
  1524. {"--no-perf"},
  1525. string_format("disable internal libllama performance timings (default: %s)", params.no_perf ? "true" : "false"),
  1526. [](common_params & params) {
  1527. params.no_perf = true;
  1528. params.sampling.no_perf = true;
  1529. }
  1530. ).set_env("LLAMA_ARG_NO_PERF"));
  1531. add_opt(common_arg(
  1532. {"-f", "--file"}, "FNAME",
  1533. "a file containing the prompt (default: none)",
  1534. [](common_params & params, const std::string & value) {
  1535. params.prompt = read_file(value);
  1536. // store the external file name in params
  1537. params.prompt_file = value;
  1538. if (!params.prompt.empty() && params.prompt.back() == '\n') {
  1539. params.prompt.pop_back();
  1540. }
  1541. }
  1542. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1543. add_opt(common_arg(
  1544. {"-sysf", "--system-prompt-file"}, "FNAME",
  1545. "a file containing the system prompt (default: none)",
  1546. [](common_params & params, const std::string & value) {
  1547. params.system_prompt = read_file(value);
  1548. if (!params.system_prompt.empty() && params.system_prompt.back() == '\n') {
  1549. params.system_prompt.pop_back();
  1550. }
  1551. }
  1552. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1553. add_opt(common_arg(
  1554. {"--in-file"}, "FNAME",
  1555. "an input file (repeat to specify multiple files)",
  1556. [](common_params & params, const std::string & value) {
  1557. std::ifstream file(value);
  1558. if (!file) {
  1559. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1560. }
  1561. params.in_files.push_back(value);
  1562. }
  1563. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  1564. add_opt(common_arg(
  1565. {"-bf", "--binary-file"}, "FNAME",
  1566. "binary file containing the prompt (default: none)",
  1567. [](common_params & params, const std::string & value) {
  1568. std::ifstream file(value, std::ios::binary);
  1569. if (!file) {
  1570. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1571. }
  1572. // store the external file name in params
  1573. params.prompt_file = value;
  1574. std::ostringstream ss;
  1575. ss << file.rdbuf();
  1576. params.prompt = ss.str();
  1577. fprintf(stderr, "Read %zu bytes from binary file %s\n", params.prompt.size(), value.c_str());
  1578. }
  1579. ).set_excludes({LLAMA_EXAMPLE_SERVER}));
  1580. add_opt(common_arg(
  1581. {"-e", "--escape"},
  1582. string_format("process escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\) (default: %s)", params.escape ? "true" : "false"),
  1583. [](common_params & params) {
  1584. params.escape = true;
  1585. }
  1586. ));
  1587. add_opt(common_arg(
  1588. {"--no-escape"},
  1589. "do not process escape sequences",
  1590. [](common_params & params) {
  1591. params.escape = false;
  1592. }
  1593. ));
  1594. add_opt(common_arg(
  1595. {"-ptc", "--print-token-count"}, "N",
  1596. string_format("print token count every N tokens (default: %d)", params.n_print),
  1597. [](common_params & params, int value) {
  1598. params.n_print = value;
  1599. }
  1600. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1601. add_opt(common_arg(
  1602. {"--prompt-cache"}, "FNAME",
  1603. "file to cache prompt state for faster startup (default: none)",
  1604. [](common_params & params, const std::string & value) {
  1605. params.path_prompt_cache = value;
  1606. }
  1607. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1608. add_opt(common_arg(
  1609. {"--prompt-cache-all"},
  1610. "if specified, saves user input and generations to cache as well\n",
  1611. [](common_params & params) {
  1612. params.prompt_cache_all = true;
  1613. }
  1614. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1615. add_opt(common_arg(
  1616. {"--prompt-cache-ro"},
  1617. "if specified, uses the prompt cache but does not update it",
  1618. [](common_params & params) {
  1619. params.prompt_cache_ro = true;
  1620. }
  1621. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1622. add_opt(common_arg(
  1623. {"-r", "--reverse-prompt"}, "PROMPT",
  1624. "halt generation at PROMPT, return control in interactive mode\n",
  1625. [](common_params & params, const std::string & value) {
  1626. params.antiprompt.emplace_back(value);
  1627. }
  1628. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1629. add_opt(common_arg(
  1630. {"-sp", "--special"},
  1631. string_format("special tokens output enabled (default: %s)", params.special ? "true" : "false"),
  1632. [](common_params & params) {
  1633. params.special = true;
  1634. }
  1635. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}));
  1636. add_opt(common_arg(
  1637. {"-cnv", "--conversation"},
  1638. "run in conversation mode:\n"
  1639. "- does not print special tokens and suffix/prefix\n"
  1640. "- interactive mode is also enabled\n"
  1641. "(default: auto enabled if chat template is available)",
  1642. [](common_params & params) {
  1643. params.conversation_mode = COMMON_CONVERSATION_MODE_ENABLED;
  1644. }
  1645. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1646. add_opt(common_arg(
  1647. {"-no-cnv", "--no-conversation"},
  1648. "force disable conversation mode (default: false)",
  1649. [](common_params & params) {
  1650. params.conversation_mode = COMMON_CONVERSATION_MODE_DISABLED;
  1651. }
  1652. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1653. add_opt(common_arg(
  1654. {"-st", "--single-turn"},
  1655. "run conversation for a single turn only, then exit when done\n"
  1656. "will not be interactive if first turn is predefined with --prompt\n"
  1657. "(default: false)",
  1658. [](common_params & params) {
  1659. params.single_turn = true;
  1660. }
  1661. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1662. add_opt(common_arg(
  1663. {"-i", "--interactive"},
  1664. string_format("run in interactive mode (default: %s)", params.interactive ? "true" : "false"),
  1665. [](common_params & params) {
  1666. params.interactive = true;
  1667. }
  1668. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1669. add_opt(common_arg(
  1670. {"-if", "--interactive-first"},
  1671. string_format("run in interactive mode and wait for input right away (default: %s)", params.interactive_first ? "true" : "false"),
  1672. [](common_params & params) {
  1673. params.interactive_first = true;
  1674. }
  1675. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1676. add_opt(common_arg(
  1677. {"-mli", "--multiline-input"},
  1678. "allows you to write or paste multiple lines without ending each in '\\'",
  1679. [](common_params & params) {
  1680. params.multiline_input = true;
  1681. }
  1682. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1683. add_opt(common_arg(
  1684. {"--in-prefix-bos"},
  1685. "prefix BOS to user inputs, preceding the `--in-prefix` string",
  1686. [](common_params & params) {
  1687. params.input_prefix_bos = true;
  1688. params.enable_chat_template = false;
  1689. }
  1690. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1691. add_opt(common_arg(
  1692. {"--in-prefix"}, "STRING",
  1693. "string to prefix user inputs with (default: empty)",
  1694. [](common_params & params, const std::string & value) {
  1695. params.input_prefix = value;
  1696. params.enable_chat_template = false;
  1697. }
  1698. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1699. add_opt(common_arg(
  1700. {"--in-suffix"}, "STRING",
  1701. "string to suffix after user inputs with (default: empty)",
  1702. [](common_params & params, const std::string & value) {
  1703. params.input_suffix = value;
  1704. params.enable_chat_template = false;
  1705. }
  1706. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  1707. add_opt(common_arg(
  1708. {"--no-warmup"},
  1709. "skip warming up the model with an empty run",
  1710. [](common_params & params) {
  1711. params.warmup = false;
  1712. }
  1713. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_PERPLEXITY}));
  1714. add_opt(common_arg(
  1715. {"--spm-infill"},
  1716. string_format(
  1717. "use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: %s)",
  1718. params.spm_infill ? "enabled" : "disabled"
  1719. ),
  1720. [](common_params & params) {
  1721. params.spm_infill = true;
  1722. }
  1723. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  1724. add_opt(common_arg(
  1725. {"--samplers"}, "SAMPLERS",
  1726. string_format("samplers that will be used for generation in the order, separated by \';\'\n(default: %s)", sampler_type_names.c_str()),
  1727. [](common_params & params, const std::string & value) {
  1728. const auto sampler_names = string_split<std::string>(value, ';');
  1729. params.sampling.samplers = common_sampler_types_from_names(sampler_names, true);
  1730. }
  1731. ).set_sparam());
  1732. add_opt(common_arg(
  1733. {"-s", "--seed"}, "SEED",
  1734. string_format("RNG seed (default: %d, use random seed for %d)", params.sampling.seed, LLAMA_DEFAULT_SEED),
  1735. [](common_params & params, const std::string & value) {
  1736. params.sampling.seed = std::stoul(value);
  1737. }
  1738. ).set_sparam());
  1739. add_opt(common_arg(
  1740. {"--sampling-seq", "--sampler-seq"}, "SEQUENCE",
  1741. string_format("simplified sequence for samplers that will be used (default: %s)", sampler_type_chars.c_str()),
  1742. [](common_params & params, const std::string & value) {
  1743. params.sampling.samplers = common_sampler_types_from_chars(value);
  1744. }
  1745. ).set_sparam());
  1746. add_opt(common_arg(
  1747. {"--ignore-eos"},
  1748. "ignore end of stream token and continue generating (implies --logit-bias EOS-inf)",
  1749. [](common_params & params) {
  1750. params.sampling.ignore_eos = true;
  1751. }
  1752. ).set_sparam());
  1753. add_opt(common_arg(
  1754. {"--temp"}, "N",
  1755. string_format("temperature (default: %.1f)", (double)params.sampling.temp),
  1756. [](common_params & params, const std::string & value) {
  1757. params.sampling.temp = std::stof(value);
  1758. params.sampling.temp = std::max(params.sampling.temp, 0.0f);
  1759. }
  1760. ).set_sparam());
  1761. add_opt(common_arg(
  1762. {"--top-k"}, "N",
  1763. string_format("top-k sampling (default: %d, 0 = disabled)", params.sampling.top_k),
  1764. [](common_params & params, int value) {
  1765. params.sampling.top_k = value;
  1766. }
  1767. ).set_sparam());
  1768. add_opt(common_arg(
  1769. {"--top-p"}, "N",
  1770. string_format("top-p sampling (default: %.1f, 1.0 = disabled)", (double)params.sampling.top_p),
  1771. [](common_params & params, const std::string & value) {
  1772. params.sampling.top_p = std::stof(value);
  1773. }
  1774. ).set_sparam());
  1775. add_opt(common_arg(
  1776. {"--min-p"}, "N",
  1777. string_format("min-p sampling (default: %.1f, 0.0 = disabled)", (double)params.sampling.min_p),
  1778. [](common_params & params, const std::string & value) {
  1779. params.sampling.min_p = std::stof(value);
  1780. }
  1781. ).set_sparam());
  1782. add_opt(common_arg(
  1783. {"--top-nsigma"}, "N",
  1784. string_format("top-n-sigma sampling (default: %.1f, -1.0 = disabled)", params.sampling.top_n_sigma),
  1785. [](common_params & params, const std::string & value) {
  1786. params.sampling.top_n_sigma = std::stof(value);
  1787. }
  1788. ).set_sparam());
  1789. add_opt(common_arg(
  1790. {"--xtc-probability"}, "N",
  1791. string_format("xtc probability (default: %.1f, 0.0 = disabled)", (double)params.sampling.xtc_probability),
  1792. [](common_params & params, const std::string & value) {
  1793. params.sampling.xtc_probability = std::stof(value);
  1794. }
  1795. ).set_sparam());
  1796. add_opt(common_arg(
  1797. {"--xtc-threshold"}, "N",
  1798. string_format("xtc threshold (default: %.1f, 1.0 = disabled)", (double)params.sampling.xtc_threshold),
  1799. [](common_params & params, const std::string & value) {
  1800. params.sampling.xtc_threshold = std::stof(value);
  1801. }
  1802. ).set_sparam());
  1803. add_opt(common_arg(
  1804. {"--typical"}, "N",
  1805. string_format("locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)", (double)params.sampling.typ_p),
  1806. [](common_params & params, const std::string & value) {
  1807. params.sampling.typ_p = std::stof(value);
  1808. }
  1809. ).set_sparam());
  1810. add_opt(common_arg(
  1811. {"--repeat-last-n"}, "N",
  1812. string_format("last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)", params.sampling.penalty_last_n),
  1813. [](common_params & params, int value) {
  1814. if (value < -1) {
  1815. throw std::runtime_error(string_format("error: invalid repeat-last-n = %d\n", value));
  1816. }
  1817. params.sampling.penalty_last_n = value;
  1818. params.sampling.n_prev = std::max(params.sampling.n_prev, params.sampling.penalty_last_n);
  1819. }
  1820. ).set_sparam());
  1821. add_opt(common_arg(
  1822. {"--repeat-penalty"}, "N",
  1823. string_format("penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)", (double)params.sampling.penalty_repeat),
  1824. [](common_params & params, const std::string & value) {
  1825. params.sampling.penalty_repeat = std::stof(value);
  1826. }
  1827. ).set_sparam());
  1828. add_opt(common_arg(
  1829. {"--presence-penalty"}, "N",
  1830. string_format("repeat alpha presence penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_present),
  1831. [](common_params & params, const std::string & value) {
  1832. params.sampling.penalty_present = std::stof(value);
  1833. }
  1834. ).set_sparam());
  1835. add_opt(common_arg(
  1836. {"--frequency-penalty"}, "N",
  1837. string_format("repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)", (double)params.sampling.penalty_freq),
  1838. [](common_params & params, const std::string & value) {
  1839. params.sampling.penalty_freq = std::stof(value);
  1840. }
  1841. ).set_sparam());
  1842. add_opt(common_arg(
  1843. {"--dry-multiplier"}, "N",
  1844. string_format("set DRY sampling multiplier (default: %.1f, 0.0 = disabled)", (double)params.sampling.dry_multiplier),
  1845. [](common_params & params, const std::string & value) {
  1846. params.sampling.dry_multiplier = std::stof(value);
  1847. }
  1848. ).set_sparam());
  1849. add_opt(common_arg(
  1850. {"--dry-base"}, "N",
  1851. string_format("set DRY sampling base value (default: %.2f)", (double)params.sampling.dry_base),
  1852. [](common_params & params, const std::string & value) {
  1853. float potential_base = std::stof(value);
  1854. if (potential_base >= 1.0f)
  1855. {
  1856. params.sampling.dry_base = potential_base;
  1857. }
  1858. }
  1859. ).set_sparam());
  1860. add_opt(common_arg(
  1861. {"--dry-allowed-length"}, "N",
  1862. string_format("set allowed length for DRY sampling (default: %d)", params.sampling.dry_allowed_length),
  1863. [](common_params & params, int value) {
  1864. params.sampling.dry_allowed_length = value;
  1865. }
  1866. ).set_sparam());
  1867. add_opt(common_arg(
  1868. {"--dry-penalty-last-n"}, "N",
  1869. string_format("set DRY penalty for the last n tokens (default: %d, 0 = disable, -1 = context size)", params.sampling.dry_penalty_last_n),
  1870. [](common_params & params, int value) {
  1871. if (value < -1) {
  1872. throw std::runtime_error(string_format("error: invalid dry-penalty-last-n = %d\n", value));
  1873. }
  1874. params.sampling.dry_penalty_last_n = value;
  1875. }
  1876. ).set_sparam());
  1877. add_opt(common_arg(
  1878. {"--dry-sequence-breaker"}, "STRING",
  1879. string_format("add sequence breaker for DRY sampling, clearing out default breakers (%s) in the process; use \"none\" to not use any sequence breakers\n",
  1880. params.sampling.dry_sequence_breakers.empty() ? "none" :
  1881. std::accumulate(std::next(params.sampling.dry_sequence_breakers.begin()),
  1882. params.sampling.dry_sequence_breakers.end(),
  1883. std::string("'") + (params.sampling.dry_sequence_breakers[0] == "\n" ? "\\n" : params.sampling.dry_sequence_breakers[0]) + "'",
  1884. [](const std::string& a, const std::string& b) {
  1885. std::string formatted_b = (b == "\n") ? "\\n" : b;
  1886. return a + ", '" + formatted_b + "'";
  1887. }).c_str()),
  1888. [](common_params & params, const std::string & value) {
  1889. static bool defaults_cleared = false;
  1890. if (!defaults_cleared) {
  1891. params.sampling.dry_sequence_breakers.clear();
  1892. defaults_cleared = true;
  1893. }
  1894. if (value == "none") {
  1895. params.sampling.dry_sequence_breakers.clear();
  1896. } else {
  1897. params.sampling.dry_sequence_breakers.emplace_back(value);
  1898. }
  1899. }
  1900. ).set_sparam());
  1901. add_opt(common_arg(
  1902. {"--dynatemp-range"}, "N",
  1903. string_format("dynamic temperature range (default: %.1f, 0.0 = disabled)", (double)params.sampling.dynatemp_range),
  1904. [](common_params & params, const std::string & value) {
  1905. params.sampling.dynatemp_range = std::stof(value);
  1906. }
  1907. ).set_sparam());
  1908. add_opt(common_arg(
  1909. {"--dynatemp-exp"}, "N",
  1910. string_format("dynamic temperature exponent (default: %.1f)", (double)params.sampling.dynatemp_exponent),
  1911. [](common_params & params, const std::string & value) {
  1912. params.sampling.dynatemp_exponent = std::stof(value);
  1913. }
  1914. ).set_sparam());
  1915. add_opt(common_arg(
  1916. {"--mirostat"}, "N",
  1917. string_format("use Mirostat sampling.\nTop K, Nucleus and Locally Typical samplers are ignored if used.\n"
  1918. "(default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)", params.sampling.mirostat),
  1919. [](common_params & params, int value) {
  1920. params.sampling.mirostat = value;
  1921. }
  1922. ).set_sparam());
  1923. add_opt(common_arg(
  1924. {"--mirostat-lr"}, "N",
  1925. string_format("Mirostat learning rate, parameter eta (default: %.1f)", (double)params.sampling.mirostat_eta),
  1926. [](common_params & params, const std::string & value) {
  1927. params.sampling.mirostat_eta = std::stof(value);
  1928. }
  1929. ).set_sparam());
  1930. add_opt(common_arg(
  1931. {"--mirostat-ent"}, "N",
  1932. string_format("Mirostat target entropy, parameter tau (default: %.1f)", (double)params.sampling.mirostat_tau),
  1933. [](common_params & params, const std::string & value) {
  1934. params.sampling.mirostat_tau = std::stof(value);
  1935. }
  1936. ).set_sparam());
  1937. add_opt(common_arg(
  1938. {"-l", "--logit-bias"}, "TOKEN_ID(+/-)BIAS",
  1939. "modifies the likelihood of token appearing in the completion,\n"
  1940. "i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n"
  1941. "or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'",
  1942. [](common_params & params, const std::string & value) {
  1943. std::stringstream ss(value);
  1944. llama_token key;
  1945. char sign;
  1946. std::string value_str;
  1947. try {
  1948. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  1949. const float bias = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  1950. params.sampling.logit_bias.push_back({key, bias});
  1951. } else {
  1952. throw std::invalid_argument("invalid input format");
  1953. }
  1954. } catch (const std::exception&) {
  1955. throw std::invalid_argument("invalid input format");
  1956. }
  1957. }
  1958. ).set_sparam());
  1959. add_opt(common_arg(
  1960. {"--grammar"}, "GRAMMAR",
  1961. string_format("BNF-like grammar to constrain generations (see samples in grammars/ dir) (default: '%s')", params.sampling.grammar.c_str()),
  1962. [](common_params & params, const std::string & value) {
  1963. params.sampling.grammar = value;
  1964. }
  1965. ).set_sparam());
  1966. add_opt(common_arg(
  1967. {"--grammar-file"}, "FNAME",
  1968. "file to read grammar from",
  1969. [](common_params & params, const std::string & value) {
  1970. params.sampling.grammar = read_file(value);
  1971. }
  1972. ).set_sparam());
  1973. add_opt(common_arg(
  1974. {"-j", "--json-schema"}, "SCHEMA",
  1975. "JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1976. [](common_params & params, const std::string & value) {
  1977. params.sampling.grammar = json_schema_to_grammar(json::parse(value));
  1978. }
  1979. ).set_sparam());
  1980. add_opt(common_arg(
  1981. {"-jf", "--json-schema-file"}, "FILE",
  1982. "File containing a JSON schema to constrain generations (https://json-schema.org/), e.g. `{}` for any JSON object\nFor schemas w/ external $refs, use --grammar + example/json_schema_to_grammar.py instead",
  1983. [](common_params & params, const std::string & value) {
  1984. std::ifstream file(value);
  1985. if (!file) {
  1986. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  1987. }
  1988. std::string schema;
  1989. std::copy(
  1990. std::istreambuf_iterator<char>(file),
  1991. std::istreambuf_iterator<char>(),
  1992. std::back_inserter(schema)
  1993. );
  1994. params.sampling.grammar = json_schema_to_grammar(json::parse(schema));
  1995. }
  1996. ).set_sparam());
  1997. add_opt(common_arg(
  1998. {"--pooling"}, "{none,mean,cls,last,rank}",
  1999. "pooling type for embeddings, use model default if unspecified",
  2000. [](common_params & params, const std::string & value) {
  2001. /**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
  2002. else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
  2003. else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
  2004. else if (value == "last") { params.pooling_type = LLAMA_POOLING_TYPE_LAST; }
  2005. else if (value == "rank") { params.pooling_type = LLAMA_POOLING_TYPE_RANK; }
  2006. else { throw std::invalid_argument("invalid value"); }
  2007. }
  2008. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_RETRIEVAL, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_POOLING"));
  2009. add_opt(common_arg(
  2010. {"--attention"}, "{causal,non-causal}",
  2011. "attention type for embeddings, use model default if unspecified",
  2012. [](common_params & params, const std::string & value) {
  2013. /**/ if (value == "causal") { params.attention_type = LLAMA_ATTENTION_TYPE_CAUSAL; }
  2014. else if (value == "non-causal") { params.attention_type = LLAMA_ATTENTION_TYPE_NON_CAUSAL; }
  2015. else { throw std::invalid_argument("invalid value"); }
  2016. }
  2017. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2018. add_opt(common_arg(
  2019. {"--rope-scaling"}, "{none,linear,yarn}",
  2020. "RoPE frequency scaling method, defaults to linear unless specified by the model",
  2021. [](common_params & params, const std::string & value) {
  2022. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
  2023. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
  2024. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
  2025. else { throw std::invalid_argument("invalid value"); }
  2026. }
  2027. ).set_env("LLAMA_ARG_ROPE_SCALING_TYPE"));
  2028. add_opt(common_arg(
  2029. {"--rope-scale"}, "N",
  2030. "RoPE context scaling factor, expands context by a factor of N",
  2031. [](common_params & params, const std::string & value) {
  2032. params.rope_freq_scale = 1.0f / std::stof(value);
  2033. }
  2034. ).set_env("LLAMA_ARG_ROPE_SCALE"));
  2035. add_opt(common_arg(
  2036. {"--rope-freq-base"}, "N",
  2037. "RoPE base frequency, used by NTK-aware scaling (default: loaded from model)",
  2038. [](common_params & params, const std::string & value) {
  2039. params.rope_freq_base = std::stof(value);
  2040. }
  2041. ).set_env("LLAMA_ARG_ROPE_FREQ_BASE"));
  2042. add_opt(common_arg(
  2043. {"--rope-freq-scale"}, "N",
  2044. "RoPE frequency scaling factor, expands context by a factor of 1/N",
  2045. [](common_params & params, const std::string & value) {
  2046. params.rope_freq_scale = std::stof(value);
  2047. }
  2048. ).set_env("LLAMA_ARG_ROPE_FREQ_SCALE"));
  2049. add_opt(common_arg(
  2050. {"--yarn-orig-ctx"}, "N",
  2051. string_format("YaRN: original context size of model (default: %d = model training context size)", params.yarn_orig_ctx),
  2052. [](common_params & params, int value) {
  2053. params.yarn_orig_ctx = value;
  2054. }
  2055. ).set_env("LLAMA_ARG_YARN_ORIG_CTX"));
  2056. add_opt(common_arg(
  2057. {"--yarn-ext-factor"}, "N",
  2058. string_format("YaRN: extrapolation mix factor (default: %.1f, 0.0 = full interpolation)", (double)params.yarn_ext_factor),
  2059. [](common_params & params, const std::string & value) {
  2060. params.yarn_ext_factor = std::stof(value);
  2061. }
  2062. ).set_env("LLAMA_ARG_YARN_EXT_FACTOR"));
  2063. add_opt(common_arg(
  2064. {"--yarn-attn-factor"}, "N",
  2065. string_format("YaRN: scale sqrt(t) or attention magnitude (default: %.1f)", (double)params.yarn_attn_factor),
  2066. [](common_params & params, const std::string & value) {
  2067. params.yarn_attn_factor = std::stof(value);
  2068. }
  2069. ).set_env("LLAMA_ARG_YARN_ATTN_FACTOR"));
  2070. add_opt(common_arg(
  2071. {"--yarn-beta-slow"}, "N",
  2072. string_format("YaRN: high correction dim or alpha (default: %.1f)", (double)params.yarn_beta_slow),
  2073. [](common_params & params, const std::string & value) {
  2074. params.yarn_beta_slow = std::stof(value);
  2075. }
  2076. ).set_env("LLAMA_ARG_YARN_BETA_SLOW"));
  2077. add_opt(common_arg(
  2078. {"--yarn-beta-fast"}, "N",
  2079. string_format("YaRN: low correction dim or beta (default: %.1f)", (double)params.yarn_beta_fast),
  2080. [](common_params & params, const std::string & value) {
  2081. params.yarn_beta_fast = std::stof(value);
  2082. }
  2083. ).set_env("LLAMA_ARG_YARN_BETA_FAST"));
  2084. add_opt(common_arg(
  2085. {"-gan", "--grp-attn-n"}, "N",
  2086. string_format("group-attention factor (default: %d)", params.grp_attn_n),
  2087. [](common_params & params, int value) {
  2088. params.grp_attn_n = value;
  2089. }
  2090. ).set_env("LLAMA_ARG_GRP_ATTN_N").set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_PASSKEY}));
  2091. add_opt(common_arg(
  2092. {"-gaw", "--grp-attn-w"}, "N",
  2093. string_format("group-attention width (default: %d)", params.grp_attn_w),
  2094. [](common_params & params, int value) {
  2095. params.grp_attn_w = value;
  2096. }
  2097. ).set_env("LLAMA_ARG_GRP_ATTN_W").set_examples({LLAMA_EXAMPLE_MAIN}));
  2098. add_opt(common_arg(
  2099. {"-nkvo", "--no-kv-offload"},
  2100. "disable KV offload",
  2101. [](common_params & params) {
  2102. params.no_kv_offload = true;
  2103. }
  2104. ).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
  2105. add_opt(common_arg(
  2106. {"-nr", "--no-repack"},
  2107. "disable weight repacking",
  2108. [](common_params & params) {
  2109. params.no_extra_bufts = true;
  2110. }
  2111. ).set_env("LLAMA_ARG_NO_REPACK"));
  2112. add_opt(common_arg(
  2113. {"-ctk", "--cache-type-k"}, "TYPE",
  2114. string_format(
  2115. "KV cache data type for K\n"
  2116. "allowed values: %s\n"
  2117. "(default: %s)",
  2118. get_all_kv_cache_types().c_str(),
  2119. ggml_type_name(params.cache_type_k)
  2120. ),
  2121. [](common_params & params, const std::string & value) {
  2122. params.cache_type_k = kv_cache_type_from_str(value);
  2123. }
  2124. ).set_env("LLAMA_ARG_CACHE_TYPE_K"));
  2125. add_opt(common_arg(
  2126. {"-ctv", "--cache-type-v"}, "TYPE",
  2127. string_format(
  2128. "KV cache data type for V\n"
  2129. "allowed values: %s\n"
  2130. "(default: %s)",
  2131. get_all_kv_cache_types().c_str(),
  2132. ggml_type_name(params.cache_type_v)
  2133. ),
  2134. [](common_params & params, const std::string & value) {
  2135. params.cache_type_v = kv_cache_type_from_str(value);
  2136. }
  2137. ).set_env("LLAMA_ARG_CACHE_TYPE_V"));
  2138. add_opt(common_arg(
  2139. {"--hellaswag"},
  2140. "compute HellaSwag score over random tasks from datafile supplied with -f",
  2141. [](common_params & params) {
  2142. params.hellaswag = true;
  2143. }
  2144. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2145. add_opt(common_arg(
  2146. {"--hellaswag-tasks"}, "N",
  2147. string_format("number of tasks to use when computing the HellaSwag score (default: %zu)", params.hellaswag_tasks),
  2148. [](common_params & params, int value) {
  2149. params.hellaswag_tasks = value;
  2150. }
  2151. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2152. add_opt(common_arg(
  2153. {"--winogrande"},
  2154. "compute Winogrande score over random tasks from datafile supplied with -f",
  2155. [](common_params & params) {
  2156. params.winogrande = true;
  2157. }
  2158. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2159. add_opt(common_arg(
  2160. {"--winogrande-tasks"}, "N",
  2161. string_format("number of tasks to use when computing the Winogrande score (default: %zu)", params.winogrande_tasks),
  2162. [](common_params & params, int value) {
  2163. params.winogrande_tasks = value;
  2164. }
  2165. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2166. add_opt(common_arg(
  2167. {"--multiple-choice"},
  2168. "compute multiple choice score over random tasks from datafile supplied with -f",
  2169. [](common_params & params) {
  2170. params.multiple_choice = true;
  2171. }
  2172. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2173. add_opt(common_arg(
  2174. {"--multiple-choice-tasks"}, "N",
  2175. string_format("number of tasks to use when computing the multiple choice score (default: %zu)", params.multiple_choice_tasks),
  2176. [](common_params & params, int value) {
  2177. params.multiple_choice_tasks = value;
  2178. }
  2179. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2180. add_opt(common_arg(
  2181. {"--kl-divergence"},
  2182. "computes KL-divergence to logits provided via --kl-divergence-base",
  2183. [](common_params & params) {
  2184. params.kl_divergence = true;
  2185. }
  2186. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2187. add_opt(common_arg(
  2188. {"--save-all-logits", "--kl-divergence-base"}, "FNAME",
  2189. "set logits file",
  2190. [](common_params & params, const std::string & value) {
  2191. params.logits_file = value;
  2192. }
  2193. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2194. add_opt(common_arg(
  2195. {"--ppl-stride"}, "N",
  2196. string_format("stride for perplexity calculation (default: %d)", params.ppl_stride),
  2197. [](common_params & params, int value) {
  2198. params.ppl_stride = value;
  2199. }
  2200. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2201. add_opt(common_arg(
  2202. {"--ppl-output-type"}, "<0|1>",
  2203. string_format("output type for perplexity calculation (default: %d)", params.ppl_output_type),
  2204. [](common_params & params, int value) {
  2205. params.ppl_output_type = value;
  2206. }
  2207. ).set_examples({LLAMA_EXAMPLE_PERPLEXITY}));
  2208. add_opt(common_arg(
  2209. {"-dt", "--defrag-thold"}, "N",
  2210. string_format("KV cache defragmentation threshold (DEPRECATED)"),
  2211. [](common_params & params, const std::string & value) {
  2212. GGML_UNUSED(params);
  2213. GGML_UNUSED(value);
  2214. LOG_WRN("DEPRECATED: --defrag-thold is deprecated and no longer necessary to specify\n");
  2215. }
  2216. ).set_env("LLAMA_ARG_DEFRAG_THOLD"));
  2217. add_opt(common_arg(
  2218. {"-np", "--parallel"}, "N",
  2219. string_format("number of parallel sequences to decode (default: %d)", params.n_parallel),
  2220. [](common_params & params, int value) {
  2221. params.n_parallel = value;
  2222. }
  2223. ).set_env("LLAMA_ARG_N_PARALLEL"));
  2224. add_opt(common_arg(
  2225. {"-ns", "--sequences"}, "N",
  2226. string_format("number of sequences to decode (default: %d)", params.n_sequences),
  2227. [](common_params & params, int value) {
  2228. params.n_sequences = value;
  2229. }
  2230. ).set_examples({LLAMA_EXAMPLE_PARALLEL}));
  2231. add_opt(common_arg(
  2232. {"-cb", "--cont-batching"},
  2233. string_format("enable continuous batching (a.k.a dynamic batching) (default: %s)", params.cont_batching ? "enabled" : "disabled"),
  2234. [](common_params & params) {
  2235. params.cont_batching = true;
  2236. }
  2237. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CONT_BATCHING"));
  2238. add_opt(common_arg(
  2239. {"-nocb", "--no-cont-batching"},
  2240. "disable continuous batching",
  2241. [](common_params & params) {
  2242. params.cont_batching = false;
  2243. }
  2244. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_CONT_BATCHING"));
  2245. add_opt(common_arg(
  2246. {"--mmproj"}, "FILE",
  2247. "path to a multimodal projector file. see tools/mtmd/README.md\n"
  2248. "note: if -hf is used, this argument can be omitted",
  2249. [](common_params & params, const std::string & value) {
  2250. params.mmproj.path = value;
  2251. }
  2252. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ"));
  2253. add_opt(common_arg(
  2254. {"--mmproj-url"}, "URL",
  2255. "URL to a multimodal projector file. see tools/mtmd/README.md",
  2256. [](common_params & params, const std::string & value) {
  2257. params.mmproj.url = value;
  2258. }
  2259. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_MMPROJ_URL"));
  2260. add_opt(common_arg(
  2261. {"--no-mmproj"},
  2262. "explicitly disable multimodal projector, useful when using -hf",
  2263. [](common_params & params) {
  2264. params.no_mmproj = true;
  2265. }
  2266. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ"));
  2267. add_opt(common_arg(
  2268. {"--no-mmproj-offload"},
  2269. "do not offload multimodal projector to GPU",
  2270. [](common_params & params) {
  2271. params.mmproj_use_gpu = false;
  2272. }
  2273. ).set_examples(mmproj_examples).set_env("LLAMA_ARG_NO_MMPROJ_OFFLOAD"));
  2274. add_opt(common_arg(
  2275. {"--image", "--audio"}, "FILE",
  2276. "path to an image or audio file. use with multimodal models, can be repeated if you have multiple files\n",
  2277. [](common_params & params, const std::string & value) {
  2278. params.image.emplace_back(value);
  2279. }
  2280. ).set_examples({LLAMA_EXAMPLE_MTMD}));
  2281. if (llama_supports_rpc()) {
  2282. add_opt(common_arg(
  2283. {"--rpc"}, "SERVERS",
  2284. "comma separated list of RPC servers",
  2285. [](common_params & params, const std::string & value) {
  2286. add_rpc_devices(value);
  2287. GGML_UNUSED(params);
  2288. }
  2289. ).set_env("LLAMA_ARG_RPC"));
  2290. }
  2291. add_opt(common_arg(
  2292. {"--mlock"},
  2293. "force system to keep model in RAM rather than swapping or compressing",
  2294. [](common_params & params) {
  2295. params.use_mlock = true;
  2296. }
  2297. ).set_env("LLAMA_ARG_MLOCK"));
  2298. add_opt(common_arg(
  2299. {"--no-mmap"},
  2300. "do not memory-map model (slower load but may reduce pageouts if not using mlock)",
  2301. [](common_params & params) {
  2302. params.use_mmap = false;
  2303. }
  2304. ).set_env("LLAMA_ARG_NO_MMAP"));
  2305. add_opt(common_arg(
  2306. {"--numa"}, "TYPE",
  2307. "attempt optimizations that help on some NUMA systems\n"
  2308. "- distribute: spread execution evenly over all nodes\n"
  2309. "- isolate: only spawn threads on CPUs on the node that execution started on\n"
  2310. "- numactl: use the CPU map provided by numactl\n"
  2311. "if run without this previously, it is recommended to drop the system page cache before using this\n"
  2312. "see https://github.com/ggml-org/llama.cpp/issues/1437",
  2313. [](common_params & params, const std::string & value) {
  2314. /**/ if (value == "distribute" || value == "") { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  2315. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  2316. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  2317. else { throw std::invalid_argument("invalid value"); }
  2318. }
  2319. ).set_env("LLAMA_ARG_NUMA"));
  2320. add_opt(common_arg(
  2321. {"-dev", "--device"}, "<dev1,dev2,..>",
  2322. "comma-separated list of devices to use for offloading (none = don't offload)\n"
  2323. "use --list-devices to see a list of available devices",
  2324. [](common_params & params, const std::string & value) {
  2325. params.devices = parse_device_list(value);
  2326. }
  2327. ).set_env("LLAMA_ARG_DEVICE"));
  2328. add_opt(common_arg(
  2329. {"--list-devices"},
  2330. "print list of available devices and exit",
  2331. [](common_params &) {
  2332. std::vector<ggml_backend_dev_t> devices;
  2333. for (size_t i = 0; i < ggml_backend_dev_count(); ++i) {
  2334. auto * dev = ggml_backend_dev_get(i);
  2335. if (ggml_backend_dev_type(dev) != GGML_BACKEND_DEVICE_TYPE_CPU) {
  2336. devices.push_back(dev);
  2337. }
  2338. }
  2339. printf("Available devices:\n");
  2340. for (auto * dev : devices) {
  2341. size_t free, total;
  2342. ggml_backend_dev_memory(dev, &free, &total);
  2343. printf(" %s: %s (%zu MiB, %zu MiB free)\n", ggml_backend_dev_name(dev), ggml_backend_dev_description(dev), total / 1024 / 1024, free / 1024 / 1024);
  2344. }
  2345. exit(0);
  2346. }
  2347. ));
  2348. add_opt(common_arg(
  2349. {"--override-tensor", "-ot"}, "<tensor name pattern>=<buffer type>,...",
  2350. "override tensor buffer type", [](common_params & params, const std::string & value) {
  2351. parse_tensor_buffer_overrides(value, params.tensor_buft_overrides);
  2352. }
  2353. ));
  2354. add_opt(common_arg(
  2355. {"--override-tensor-draft", "-otd"}, "<tensor name pattern>=<buffer type>,...",
  2356. "override tensor buffer type for draft model", [](common_params & params, const std::string & value) {
  2357. parse_tensor_buffer_overrides(value, params.speculative.tensor_buft_overrides);
  2358. }
  2359. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  2360. add_opt(common_arg(
  2361. {"--cpu-moe", "-cmoe"},
  2362. "keep all Mixture of Experts (MoE) weights in the CPU",
  2363. [](common_params & params) {
  2364. params.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
  2365. }
  2366. ).set_env("LLAMA_ARG_CPU_MOE"));
  2367. add_opt(common_arg(
  2368. {"--n-cpu-moe", "-ncmoe"}, "N",
  2369. "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU",
  2370. [](common_params & params, int value) {
  2371. if (value < 0) {
  2372. throw std::invalid_argument("invalid value");
  2373. }
  2374. for (int i = 0; i < value; ++i) {
  2375. // keep strings alive and avoid leaking memory by storing them in a static vector
  2376. static std::list<std::string> buft_overrides;
  2377. buft_overrides.push_back(llm_ffn_exps_block_regex(i));
  2378. params.tensor_buft_overrides.push_back({buft_overrides.back().c_str(), ggml_backend_cpu_buffer_type()});
  2379. }
  2380. }
  2381. ).set_env("LLAMA_ARG_N_CPU_MOE"));
  2382. add_opt(common_arg(
  2383. {"--cpu-moe-draft", "-cmoed"},
  2384. "keep all Mixture of Experts (MoE) weights in the CPU for the draft model",
  2385. [](common_params & params) {
  2386. params.speculative.tensor_buft_overrides.push_back(llm_ffn_exps_cpu_override());
  2387. }
  2388. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CPU_MOE_DRAFT"));
  2389. add_opt(common_arg(
  2390. {"--n-cpu-moe-draft", "-ncmoed"}, "N",
  2391. "keep the Mixture of Experts (MoE) weights of the first N layers in the CPU for the draft model",
  2392. [](common_params & params, int value) {
  2393. if (value < 0) {
  2394. throw std::invalid_argument("invalid value");
  2395. }
  2396. for (int i = 0; i < value; ++i) {
  2397. static std::list<std::string> buft_overrides_draft;
  2398. buft_overrides_draft.push_back(llm_ffn_exps_block_regex(i));
  2399. params.speculative.tensor_buft_overrides.push_back({buft_overrides_draft.back().c_str(), ggml_backend_cpu_buffer_type()});
  2400. }
  2401. }
  2402. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_CPU_MOE_DRAFT"));
  2403. add_opt(common_arg(
  2404. {"-ngl", "--gpu-layers", "--n-gpu-layers"}, "N",
  2405. string_format("max. number of layers to store in VRAM (default: %d)", params.n_gpu_layers),
  2406. [](common_params & params, int value) {
  2407. params.n_gpu_layers = value;
  2408. if (!llama_supports_gpu_offload()) {
  2409. fprintf(stderr, "warning: no usable GPU found, --gpu-layers option will be ignored\n");
  2410. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  2411. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  2412. }
  2413. }
  2414. ).set_env("LLAMA_ARG_N_GPU_LAYERS"));
  2415. add_opt(common_arg(
  2416. {"-sm", "--split-mode"}, "{none,layer,row}",
  2417. "how to split the model across multiple GPUs, one of:\n"
  2418. "- none: use one GPU only\n"
  2419. "- layer (default): split layers and KV across GPUs\n"
  2420. "- row: split rows across GPUs",
  2421. [](common_params & params, const std::string & value) {
  2422. std::string arg_next = value;
  2423. if (arg_next == "none") {
  2424. params.split_mode = LLAMA_SPLIT_MODE_NONE;
  2425. } else if (arg_next == "layer") {
  2426. params.split_mode = LLAMA_SPLIT_MODE_LAYER;
  2427. } else if (arg_next == "row") {
  2428. params.split_mode = LLAMA_SPLIT_MODE_ROW;
  2429. } else {
  2430. throw std::invalid_argument("invalid value");
  2431. }
  2432. if (!llama_supports_gpu_offload()) {
  2433. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the split mode has no effect.\n");
  2434. }
  2435. }
  2436. ).set_env("LLAMA_ARG_SPLIT_MODE"));
  2437. add_opt(common_arg(
  2438. {"-ts", "--tensor-split"}, "N0,N1,N2,...",
  2439. "fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1",
  2440. [](common_params & params, const std::string & value) {
  2441. std::string arg_next = value;
  2442. // split string by , and /
  2443. const std::regex regex{ R"([,/]+)" };
  2444. std::sregex_token_iterator it{ arg_next.begin(), arg_next.end(), regex, -1 };
  2445. std::vector<std::string> split_arg{ it, {} };
  2446. if (split_arg.size() >= llama_max_devices()) {
  2447. throw std::invalid_argument(
  2448. string_format("got %d input configs, but system only has %d devices", (int)split_arg.size(), (int)llama_max_devices())
  2449. );
  2450. }
  2451. for (size_t i = 0; i < llama_max_devices(); ++i) {
  2452. if (i < split_arg.size()) {
  2453. params.tensor_split[i] = std::stof(split_arg[i]);
  2454. } else {
  2455. params.tensor_split[i] = 0.0f;
  2456. }
  2457. }
  2458. if (!llama_supports_gpu_offload()) {
  2459. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting a tensor split has no effect.\n");
  2460. }
  2461. }
  2462. ).set_env("LLAMA_ARG_TENSOR_SPLIT"));
  2463. add_opt(common_arg(
  2464. {"-mg", "--main-gpu"}, "INDEX",
  2465. string_format("the GPU to use for the model (with split-mode = none), or for intermediate results and KV (with split-mode = row) (default: %d)", params.main_gpu),
  2466. [](common_params & params, int value) {
  2467. params.main_gpu = value;
  2468. if (!llama_supports_gpu_offload()) {
  2469. fprintf(stderr, "warning: llama.cpp was compiled without support for GPU offload. Setting the main GPU has no effect.\n");
  2470. }
  2471. }
  2472. ).set_env("LLAMA_ARG_MAIN_GPU"));
  2473. add_opt(common_arg(
  2474. {"--check-tensors"},
  2475. string_format("check model tensor data for invalid values (default: %s)", params.check_tensors ? "true" : "false"),
  2476. [](common_params & params) {
  2477. params.check_tensors = true;
  2478. }
  2479. ));
  2480. add_opt(common_arg(
  2481. {"--override-kv"}, "KEY=TYPE:VALUE",
  2482. "advanced option to override model metadata by key. may be specified multiple times.\n"
  2483. "types: int, float, bool, str. example: --override-kv tokenizer.ggml.add_bos_token=bool:false",
  2484. [](common_params & params, const std::string & value) {
  2485. if (!string_parse_kv_override(value.c_str(), params.kv_overrides)) {
  2486. throw std::runtime_error(string_format("error: Invalid type for KV override: %s\n", value.c_str()));
  2487. }
  2488. }
  2489. ));
  2490. add_opt(common_arg(
  2491. {"--no-op-offload"},
  2492. string_format("disable offloading host tensor operations to device (default: %s)", params.no_op_offload ? "true" : "false"),
  2493. [](common_params & params) {
  2494. params.no_op_offload = true;
  2495. }
  2496. ));
  2497. add_opt(common_arg(
  2498. {"--lora"}, "FNAME",
  2499. "path to LoRA adapter (can be repeated to use multiple adapters)",
  2500. [](common_params & params, const std::string & value) {
  2501. params.lora_adapters.push_back({ std::string(value), 1.0, "", "", nullptr });
  2502. }
  2503. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2504. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2505. add_opt(common_arg(
  2506. {"--lora-scaled"}, "FNAME", "SCALE",
  2507. "path to LoRA adapter with user defined scaling (can be repeated to use multiple adapters)",
  2508. [](common_params & params, const std::string & fname, const std::string & scale) {
  2509. params.lora_adapters.push_back({ fname, std::stof(scale), "", "", nullptr });
  2510. }
  2511. // we define this arg on both COMMON and EXPORT_LORA, so when showing help message of export-lora, it will be categorized as "example-specific" arg
  2512. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}));
  2513. add_opt(common_arg(
  2514. {"--control-vector"}, "FNAME",
  2515. "add a control vector\nnote: this argument can be repeated to add multiple control vectors",
  2516. [](common_params & params, const std::string & value) {
  2517. params.control_vectors.push_back({ 1.0f, value, });
  2518. }
  2519. ));
  2520. add_opt(common_arg(
  2521. {"--control-vector-scaled"}, "FNAME", "SCALE",
  2522. "add a control vector with user defined scaling SCALE\n"
  2523. "note: this argument can be repeated to add multiple scaled control vectors",
  2524. [](common_params & params, const std::string & fname, const std::string & scale) {
  2525. params.control_vectors.push_back({ std::stof(scale), fname });
  2526. }
  2527. ));
  2528. add_opt(common_arg(
  2529. {"--control-vector-layer-range"}, "START", "END",
  2530. "layer range to apply the control vector(s) to, start and end inclusive",
  2531. [](common_params & params, const std::string & start, const std::string & end) {
  2532. params.control_vector_layer_start = std::stoi(start);
  2533. params.control_vector_layer_end = std::stoi(end);
  2534. }
  2535. ));
  2536. add_opt(common_arg(
  2537. {"-a", "--alias"}, "STRING",
  2538. "set alias for model name (to be used by REST API)",
  2539. [](common_params & params, const std::string & value) {
  2540. params.model_alias = value;
  2541. }
  2542. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ALIAS"));
  2543. add_opt(common_arg(
  2544. {"-m", "--model"}, "FNAME",
  2545. ex == LLAMA_EXAMPLE_EXPORT_LORA
  2546. ? std::string("model path from which to load base model")
  2547. : string_format(
  2548. "model path (default: `models/$filename` with filename from `--hf-file` "
  2549. "or `--model-url` if set, otherwise %s)", DEFAULT_MODEL_PATH
  2550. ),
  2551. [](common_params & params, const std::string & value) {
  2552. params.model.path = value;
  2553. }
  2554. ).set_examples({LLAMA_EXAMPLE_COMMON, LLAMA_EXAMPLE_EXPORT_LORA}).set_env("LLAMA_ARG_MODEL"));
  2555. add_opt(common_arg(
  2556. {"-mu", "--model-url"}, "MODEL_URL",
  2557. "model download url (default: unused)",
  2558. [](common_params & params, const std::string & value) {
  2559. params.model.url = value;
  2560. }
  2561. ).set_env("LLAMA_ARG_MODEL_URL"));
  2562. add_opt(common_arg(
  2563. { "-dr", "--docker-repo" }, "[<repo>/]<model>[:quant]",
  2564. "Docker Hub model repository. repo is optional, default to ai/. quant is optional, default to :latest.\n"
  2565. "example: gemma3\n"
  2566. "(default: unused)",
  2567. [](common_params & params, const std::string & value) {
  2568. params.model.docker_repo = value;
  2569. }
  2570. ).set_env("LLAMA_ARG_DOCKER_REPO"));
  2571. add_opt(common_arg(
  2572. {"-hf", "-hfr", "--hf-repo"}, "<user>/<model>[:quant]",
  2573. "Hugging Face model repository; quant is optional, case-insensitive, default to Q4_K_M, or falls back to the first file in the repo if Q4_K_M doesn't exist.\n"
  2574. "mmproj is also downloaded automatically if available. to disable, add --no-mmproj\n"
  2575. "example: unsloth/phi-4-GGUF:q4_k_m\n"
  2576. "(default: unused)",
  2577. [](common_params & params, const std::string & value) {
  2578. params.model.hf_repo = value;
  2579. }
  2580. ).set_env("LLAMA_ARG_HF_REPO"));
  2581. add_opt(common_arg(
  2582. {"-hfd", "-hfrd", "--hf-repo-draft"}, "<user>/<model>[:quant]",
  2583. "Same as --hf-repo, but for the draft model (default: unused)",
  2584. [](common_params & params, const std::string & value) {
  2585. params.speculative.model.hf_repo = value;
  2586. }
  2587. ).set_env("LLAMA_ARG_HFD_REPO"));
  2588. add_opt(common_arg(
  2589. {"-hff", "--hf-file"}, "FILE",
  2590. "Hugging Face model file. If specified, it will override the quant in --hf-repo (default: unused)",
  2591. [](common_params & params, const std::string & value) {
  2592. params.model.hf_file = value;
  2593. }
  2594. ).set_env("LLAMA_ARG_HF_FILE"));
  2595. add_opt(common_arg(
  2596. {"-hfv", "-hfrv", "--hf-repo-v"}, "<user>/<model>[:quant]",
  2597. "Hugging Face model repository for the vocoder model (default: unused)",
  2598. [](common_params & params, const std::string & value) {
  2599. params.vocoder.model.hf_repo = value;
  2600. }
  2601. ).set_env("LLAMA_ARG_HF_REPO_V"));
  2602. add_opt(common_arg(
  2603. {"-hffv", "--hf-file-v"}, "FILE",
  2604. "Hugging Face model file for the vocoder model (default: unused)",
  2605. [](common_params & params, const std::string & value) {
  2606. params.vocoder.model.hf_file = value;
  2607. }
  2608. ).set_env("LLAMA_ARG_HF_FILE_V"));
  2609. add_opt(common_arg(
  2610. {"-hft", "--hf-token"}, "TOKEN",
  2611. "Hugging Face access token (default: value from HF_TOKEN environment variable)",
  2612. [](common_params & params, const std::string & value) {
  2613. params.hf_token = value;
  2614. }
  2615. ).set_env("HF_TOKEN"));
  2616. add_opt(common_arg(
  2617. {"--context-file"}, "FNAME",
  2618. "file to load context from (repeat to specify multiple files)",
  2619. [](common_params & params, const std::string & value) {
  2620. std::ifstream file(value, std::ios::binary);
  2621. if (!file) {
  2622. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2623. }
  2624. params.context_files.push_back(value);
  2625. }
  2626. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2627. add_opt(common_arg(
  2628. {"--chunk-size"}, "N",
  2629. string_format("minimum length of embedded text chunks (default: %d)", params.chunk_size),
  2630. [](common_params & params, int value) {
  2631. params.chunk_size = value;
  2632. }
  2633. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2634. add_opt(common_arg(
  2635. {"--chunk-separator"}, "STRING",
  2636. string_format("separator between chunks (default: '%s')", params.chunk_separator.c_str()),
  2637. [](common_params & params, const std::string & value) {
  2638. params.chunk_separator = value;
  2639. }
  2640. ).set_examples({LLAMA_EXAMPLE_RETRIEVAL}));
  2641. add_opt(common_arg(
  2642. {"--junk"}, "N",
  2643. string_format("number of times to repeat the junk text (default: %d)", params.n_junk),
  2644. [](common_params & params, int value) {
  2645. params.n_junk = value;
  2646. }
  2647. ).set_examples({LLAMA_EXAMPLE_PASSKEY, LLAMA_EXAMPLE_PARALLEL}));
  2648. add_opt(common_arg(
  2649. {"--pos"}, "N",
  2650. string_format("position of the passkey in the junk text (default: %d)", params.i_pos),
  2651. [](common_params & params, int value) {
  2652. params.i_pos = value;
  2653. }
  2654. ).set_examples({LLAMA_EXAMPLE_PASSKEY}));
  2655. add_opt(common_arg(
  2656. {"-o", "--output", "--output-file"}, "FNAME",
  2657. string_format("output file (default: '%s')", params.out_file.c_str()),
  2658. [](common_params & params, const std::string & value) {
  2659. params.out_file = value;
  2660. }
  2661. ).set_examples({LLAMA_EXAMPLE_IMATRIX, LLAMA_EXAMPLE_CVECTOR_GENERATOR, LLAMA_EXAMPLE_EXPORT_LORA, LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_FINETUNE}));
  2662. add_opt(common_arg(
  2663. {"-ofreq", "--output-frequency"}, "N",
  2664. string_format("output the imatrix every N iterations (default: %d)", params.n_out_freq),
  2665. [](common_params & params, int value) {
  2666. params.n_out_freq = value;
  2667. }
  2668. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2669. add_opt(common_arg(
  2670. {"--output-format"}, "{gguf,dat}",
  2671. string_format("output format for imatrix file (default: %s)", params.imat_dat > 0 ? "dat" : "gguf"),
  2672. [](common_params & params, const std::string & value) {
  2673. /**/ if (value == "gguf") { params.imat_dat = -1; }
  2674. else if (value == "dat") { params.imat_dat = 1; }
  2675. else { throw std::invalid_argument("invalid output format"); }
  2676. }
  2677. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2678. add_opt(common_arg(
  2679. {"--save-frequency"}, "N",
  2680. string_format("save an imatrix copy every N iterations (default: %d)", params.n_save_freq),
  2681. [](common_params & params, int value) {
  2682. params.n_save_freq = value;
  2683. }
  2684. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2685. add_opt(common_arg(
  2686. {"--process-output"},
  2687. string_format("collect data for the output tensor (default: %s)", params.process_output ? "true" : "false"),
  2688. [](common_params & params) {
  2689. params.process_output = true;
  2690. }
  2691. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2692. add_opt(common_arg(
  2693. {"--no-ppl"},
  2694. string_format("do not compute perplexity (default: %s)", params.compute_ppl ? "true" : "false"),
  2695. [](common_params & params) {
  2696. params.compute_ppl = false;
  2697. }
  2698. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2699. add_opt(common_arg(
  2700. {"--chunk", "--from-chunk"}, "N",
  2701. string_format("start processing the input from chunk N (default: %d)", params.i_chunk),
  2702. [](common_params & params, int value) {
  2703. params.i_chunk = value;
  2704. }
  2705. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2706. add_opt(common_arg(
  2707. {"--show-statistics"},
  2708. string_format("show imatrix statistics and then exit (default: %s)", params.show_statistics ? "true" : "false"),
  2709. [](common_params & params) {
  2710. params.show_statistics = true;
  2711. }
  2712. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2713. add_opt(common_arg(
  2714. {"--parse-special"},
  2715. string_format("prase special tokens (chat, tool, etc) (default: %s)", params.parse_special ? "true" : "false"),
  2716. [](common_params & params) {
  2717. params.parse_special = true;
  2718. }
  2719. ).set_examples({LLAMA_EXAMPLE_IMATRIX}));
  2720. add_opt(common_arg(
  2721. {"-pps"},
  2722. string_format("is the prompt shared across parallel sequences (default: %s)", params.is_pp_shared ? "true" : "false"),
  2723. [](common_params & params) {
  2724. params.is_pp_shared = true;
  2725. }
  2726. ).set_examples({LLAMA_EXAMPLE_BENCH, LLAMA_EXAMPLE_PARALLEL}));
  2727. add_opt(common_arg(
  2728. {"-npp"}, "n0,n1,...",
  2729. "number of prompt tokens",
  2730. [](common_params & params, const std::string & value) {
  2731. auto p = string_split<int>(value, ',');
  2732. params.n_pp.insert(params.n_pp.end(), p.begin(), p.end());
  2733. }
  2734. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2735. add_opt(common_arg(
  2736. {"-ntg"}, "n0,n1,...",
  2737. "number of text generation tokens",
  2738. [](common_params & params, const std::string & value) {
  2739. auto p = string_split<int>(value, ',');
  2740. params.n_tg.insert(params.n_tg.end(), p.begin(), p.end());
  2741. }
  2742. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2743. add_opt(common_arg(
  2744. {"-npl"}, "n0,n1,...",
  2745. "number of parallel prompts",
  2746. [](common_params & params, const std::string & value) {
  2747. auto p = string_split<int>(value, ',');
  2748. params.n_pl.insert(params.n_pl.end(), p.begin(), p.end());
  2749. }
  2750. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  2751. add_opt(common_arg(
  2752. {"--embd-normalize"}, "N",
  2753. string_format("normalisation for embeddings (default: %d) (-1=none, 0=max absolute int16, 1=taxicab, 2=euclidean, >2=p-norm)", params.embd_normalize),
  2754. [](common_params & params, int value) {
  2755. params.embd_normalize = value;
  2756. }
  2757. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2758. add_opt(common_arg(
  2759. {"--embd-output-format"}, "FORMAT",
  2760. "empty = default, \"array\" = [[],[]...], \"json\" = openai style, \"json+\" = same \"json\" + cosine similarity matrix",
  2761. [](common_params & params, const std::string & value) {
  2762. params.embd_out = value;
  2763. }
  2764. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2765. add_opt(common_arg(
  2766. {"--embd-separator"}, "STRING",
  2767. "separator of embeddings (default \\n) for example \"<#sep#>\"",
  2768. [](common_params & params, const std::string & value) {
  2769. params.embd_sep = value;
  2770. }
  2771. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2772. add_opt(common_arg(
  2773. {"--cls-separator"}, "STRING",
  2774. "separator of classification sequences (default \\t) for example \"<#seq#>\"",
  2775. [](common_params & params, const std::string & value) {
  2776. params.cls_sep = value;
  2777. }
  2778. ).set_examples({LLAMA_EXAMPLE_EMBEDDING}));
  2779. add_opt(common_arg(
  2780. {"--host"}, "HOST",
  2781. string_format("ip address to listen, or bind to an UNIX socket if the address ends with .sock (default: %s)", params.hostname.c_str()),
  2782. [](common_params & params, const std::string & value) {
  2783. params.hostname = value;
  2784. }
  2785. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_HOST"));
  2786. add_opt(common_arg(
  2787. {"--port"}, "PORT",
  2788. string_format("port to listen (default: %d)", params.port),
  2789. [](common_params & params, int value) {
  2790. params.port = value;
  2791. }
  2792. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_PORT"));
  2793. add_opt(common_arg(
  2794. {"--path"}, "PATH",
  2795. string_format("path to serve static files from (default: %s)", params.public_path.c_str()),
  2796. [](common_params & params, const std::string & value) {
  2797. params.public_path = value;
  2798. }
  2799. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_STATIC_PATH"));
  2800. add_opt(common_arg(
  2801. {"--api-prefix"}, "PREFIX",
  2802. string_format("prefix path the server serves from, without the trailing slash (default: %s)", params.api_prefix.c_str()),
  2803. [](common_params & params, const std::string & value) {
  2804. params.api_prefix = value;
  2805. }
  2806. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_API_PREFIX"));
  2807. add_opt(common_arg(
  2808. {"--no-webui"},
  2809. string_format("Disable the Web UI (default: %s)", params.webui ? "enabled" : "disabled"),
  2810. [](common_params & params) {
  2811. params.webui = false;
  2812. }
  2813. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_WEBUI"));
  2814. add_opt(common_arg(
  2815. {"--embedding", "--embeddings"},
  2816. string_format("restrict to only support embedding use case; use only with dedicated embedding models (default: %s)", params.embedding ? "enabled" : "disabled"),
  2817. [](common_params & params) {
  2818. params.embedding = true;
  2819. }
  2820. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_EMBEDDINGS"));
  2821. add_opt(common_arg(
  2822. {"--reranking", "--rerank"},
  2823. string_format("enable reranking endpoint on server (default: %s)", "disabled"),
  2824. [](common_params & params) {
  2825. params.embedding = true;
  2826. params.pooling_type = LLAMA_POOLING_TYPE_RANK;
  2827. }
  2828. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_RERANKING"));
  2829. add_opt(common_arg(
  2830. {"--api-key"}, "KEY",
  2831. "API key to use for authentication (default: none)",
  2832. [](common_params & params, const std::string & value) {
  2833. params.api_keys.push_back(value);
  2834. }
  2835. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_API_KEY"));
  2836. add_opt(common_arg(
  2837. {"--api-key-file"}, "FNAME",
  2838. "path to file containing API keys (default: none)",
  2839. [](common_params & params, const std::string & value) {
  2840. std::ifstream key_file(value);
  2841. if (!key_file) {
  2842. throw std::runtime_error(string_format("error: failed to open file '%s'\n", value.c_str()));
  2843. }
  2844. std::string key;
  2845. while (std::getline(key_file, key)) {
  2846. if (!key.empty()) {
  2847. params.api_keys.push_back(key);
  2848. }
  2849. }
  2850. key_file.close();
  2851. }
  2852. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2853. add_opt(common_arg(
  2854. {"--ssl-key-file"}, "FNAME",
  2855. "path to file a PEM-encoded SSL private key",
  2856. [](common_params & params, const std::string & value) {
  2857. params.ssl_file_key = value;
  2858. }
  2859. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_KEY_FILE"));
  2860. add_opt(common_arg(
  2861. {"--ssl-cert-file"}, "FNAME",
  2862. "path to file a PEM-encoded SSL certificate",
  2863. [](common_params & params, const std::string & value) {
  2864. params.ssl_file_cert = value;
  2865. }
  2866. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_SSL_CERT_FILE"));
  2867. add_opt(common_arg(
  2868. {"--chat-template-kwargs"}, "STRING",
  2869. string_format("sets additional params for the json template parser"),
  2870. [](common_params & params, const std::string & value) {
  2871. auto parsed = json::parse(value);
  2872. for (const auto & item : parsed.items()) {
  2873. params.default_template_kwargs[item.key()] = item.value().dump();
  2874. }
  2875. }
  2876. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_CHAT_TEMPLATE_KWARGS"));
  2877. add_opt(common_arg(
  2878. {"-to", "--timeout"}, "N",
  2879. string_format("server read/write timeout in seconds (default: %d)", params.timeout_read),
  2880. [](common_params & params, int value) {
  2881. params.timeout_read = value;
  2882. params.timeout_write = value;
  2883. }
  2884. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_TIMEOUT"));
  2885. add_opt(common_arg(
  2886. {"--threads-http"}, "N",
  2887. string_format("number of threads used to process HTTP requests (default: %d)", params.n_threads_http),
  2888. [](common_params & params, int value) {
  2889. params.n_threads_http = value;
  2890. }
  2891. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_THREADS_HTTP"));
  2892. add_opt(common_arg(
  2893. {"--cache-reuse"}, "N",
  2894. string_format(
  2895. "min chunk size to attempt reusing from the cache via KV shifting (default: %d)\n"
  2896. "[(card)](https://ggml.ai/f0.png)", params.n_cache_reuse
  2897. ),
  2898. [](common_params & params, int value) {
  2899. params.n_cache_reuse = value;
  2900. }
  2901. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CACHE_REUSE"));
  2902. add_opt(common_arg(
  2903. {"--metrics"},
  2904. string_format("enable prometheus compatible metrics endpoint (default: %s)", params.endpoint_metrics ? "enabled" : "disabled"),
  2905. [](common_params & params) {
  2906. params.endpoint_metrics = true;
  2907. }
  2908. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_METRICS"));
  2909. add_opt(common_arg(
  2910. {"--props"},
  2911. string_format("enable changing global properties via POST /props (default: %s)", params.endpoint_props ? "enabled" : "disabled"),
  2912. [](common_params & params) {
  2913. params.endpoint_props = true;
  2914. }
  2915. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_PROPS"));
  2916. add_opt(common_arg(
  2917. {"--slots"},
  2918. string_format("enable slots monitoring endpoint (default: %s)", params.endpoint_slots ? "enabled" : "disabled"),
  2919. [](common_params & params) {
  2920. params.endpoint_slots = true;
  2921. }
  2922. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_ENDPOINT_SLOTS"));
  2923. add_opt(common_arg(
  2924. {"--no-slots"},
  2925. "disables slots monitoring endpoint",
  2926. [](common_params & params) {
  2927. params.endpoint_slots = false;
  2928. }
  2929. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_ENDPOINT_SLOTS"));
  2930. add_opt(common_arg(
  2931. {"--slot-save-path"}, "PATH",
  2932. "path to save slot kv cache (default: disabled)",
  2933. [](common_params & params, const std::string & value) {
  2934. params.slot_save_path = value;
  2935. // if doesn't end with DIRECTORY_SEPARATOR, add it
  2936. if (!params.slot_save_path.empty() && params.slot_save_path[params.slot_save_path.size() - 1] != DIRECTORY_SEPARATOR) {
  2937. params.slot_save_path += DIRECTORY_SEPARATOR;
  2938. }
  2939. }
  2940. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  2941. add_opt(common_arg(
  2942. {"--jinja"},
  2943. "use jinja template for chat (default: disabled)",
  2944. [](common_params & params) {
  2945. params.use_jinja = true;
  2946. }
  2947. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_JINJA"));
  2948. add_opt(common_arg(
  2949. {"--reasoning-format"}, "FORMAT",
  2950. "controls whether thought tags are allowed and/or extracted from the response, and in which format they're returned; one of:\n"
  2951. "- none: leaves thoughts unparsed in `message.content`\n"
  2952. "- deepseek: puts thoughts in `message.reasoning_content` (except in streaming mode, which behaves as `none`)\n"
  2953. "(default: auto)",
  2954. [](common_params & params, const std::string & value) {
  2955. params.reasoning_format = common_reasoning_format_from_name(value);
  2956. }
  2957. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK"));
  2958. add_opt(common_arg(
  2959. {"--reasoning-budget"}, "N",
  2960. "controls the amount of thinking allowed; currently only one of: -1 for unrestricted thinking budget, or 0 to disable thinking (default: -1)",
  2961. [](common_params & params, int value) {
  2962. if (value != 0 && value != -1) { throw std::invalid_argument("invalid value"); }
  2963. params.reasoning_budget = value;
  2964. }
  2965. ).set_examples({LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MAIN}).set_env("LLAMA_ARG_THINK_BUDGET"));
  2966. add_opt(common_arg(
  2967. {"--chat-template"}, "JINJA_TEMPLATE",
  2968. string_format(
  2969. "set custom jinja chat template (default: template taken from model's metadata)\n"
  2970. "if suffix/prefix are specified, template will be disabled\n"
  2971. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2972. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2973. ),
  2974. [](common_params & params, const std::string & value) {
  2975. params.chat_template = value;
  2976. }
  2977. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER, LLAMA_EXAMPLE_MTMD}).set_env("LLAMA_ARG_CHAT_TEMPLATE"));
  2978. add_opt(common_arg(
  2979. {"--chat-template-file"}, "JINJA_TEMPLATE_FILE",
  2980. string_format(
  2981. "set custom jinja chat template file (default: template taken from model's metadata)\n"
  2982. "if suffix/prefix are specified, template will be disabled\n"
  2983. "only commonly used templates are accepted (unless --jinja is set before this flag):\n"
  2984. "list of built-in templates:\n%s", list_builtin_chat_templates().c_str()
  2985. ),
  2986. [](common_params & params, const std::string & value) {
  2987. params.chat_template = read_file(value);
  2988. }
  2989. ).set_examples({LLAMA_EXAMPLE_MAIN, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CHAT_TEMPLATE_FILE"));
  2990. add_opt(common_arg(
  2991. {"--no-prefill-assistant"},
  2992. string_format(
  2993. "whether to prefill the assistant's response if the last message is an assistant message (default: prefill enabled)\n"
  2994. "when this flag is set, if the last message is an assistant message then it will be treated as a full message and not prefilled\n"
  2995. ),
  2996. [](common_params & params) {
  2997. params.prefill_assistant = false;
  2998. }
  2999. ).set_examples({LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_NO_PREFILL_ASSISTANT"));
  3000. add_opt(common_arg(
  3001. {"-sps", "--slot-prompt-similarity"}, "SIMILARITY",
  3002. string_format("how much the prompt of a request must match the prompt of a slot in order to use that slot (default: %.2f, 0.0 = disabled)\n", params.slot_prompt_similarity),
  3003. [](common_params & params, const std::string & value) {
  3004. params.slot_prompt_similarity = std::stof(value);
  3005. }
  3006. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3007. add_opt(common_arg(
  3008. {"--lora-init-without-apply"},
  3009. string_format("load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: %s)", params.lora_init_without_apply ? "enabled" : "disabled"),
  3010. [](common_params & params) {
  3011. params.lora_init_without_apply = true;
  3012. }
  3013. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3014. add_opt(common_arg(
  3015. {"--simple-io"},
  3016. "use basic IO for better compatibility in subprocesses and limited consoles",
  3017. [](common_params & params) {
  3018. params.simple_io = true;
  3019. }
  3020. ).set_examples({LLAMA_EXAMPLE_MAIN}));
  3021. add_opt(common_arg(
  3022. {"--positive-file"}, "FNAME",
  3023. string_format("positive prompts file, one prompt per line (default: '%s')", params.cvector_positive_file.c_str()),
  3024. [](common_params & params, const std::string & value) {
  3025. params.cvector_positive_file = value;
  3026. }
  3027. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  3028. add_opt(common_arg(
  3029. {"--negative-file"}, "FNAME",
  3030. string_format("negative prompts file, one prompt per line (default: '%s')", params.cvector_negative_file.c_str()),
  3031. [](common_params & params, const std::string & value) {
  3032. params.cvector_negative_file = value;
  3033. }
  3034. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  3035. add_opt(common_arg(
  3036. {"--pca-batch"}, "N",
  3037. string_format("batch size used for PCA. Larger batch runs faster, but uses more memory (default: %d)", params.n_pca_batch),
  3038. [](common_params & params, int value) {
  3039. params.n_pca_batch = value;
  3040. }
  3041. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  3042. add_opt(common_arg(
  3043. {"--pca-iter"}, "N",
  3044. string_format("number of iterations used for PCA (default: %d)", params.n_pca_iterations),
  3045. [](common_params & params, int value) {
  3046. params.n_pca_iterations = value;
  3047. }
  3048. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  3049. add_opt(common_arg(
  3050. {"--method"}, "{pca, mean}",
  3051. "dimensionality reduction method to be used (default: pca)",
  3052. [](common_params & params, const std::string & value) {
  3053. /**/ if (value == "pca") { params.cvector_dimre_method = DIMRE_METHOD_PCA; }
  3054. else if (value == "mean") { params.cvector_dimre_method = DIMRE_METHOD_MEAN; }
  3055. else { throw std::invalid_argument("invalid value"); }
  3056. }
  3057. ).set_examples({LLAMA_EXAMPLE_CVECTOR_GENERATOR}));
  3058. add_opt(common_arg(
  3059. {"--output-format"}, "{md,jsonl}",
  3060. "output format for batched-bench results (default: md)",
  3061. [](common_params & params, const std::string & value) {
  3062. /**/ if (value == "jsonl") { params.batched_bench_output_jsonl = true; }
  3063. else if (value == "md") { params.batched_bench_output_jsonl = false; }
  3064. else { throw std::invalid_argument("invalid value"); }
  3065. }
  3066. ).set_examples({LLAMA_EXAMPLE_BENCH}));
  3067. add_opt(common_arg(
  3068. {"--log-disable"},
  3069. "Log disable",
  3070. [](common_params &) {
  3071. common_log_pause(common_log_main());
  3072. }
  3073. ));
  3074. add_opt(common_arg(
  3075. {"--log-file"}, "FNAME",
  3076. "Log to file",
  3077. [](common_params &, const std::string & value) {
  3078. common_log_set_file(common_log_main(), value.c_str());
  3079. }
  3080. ));
  3081. add_opt(common_arg({ "--log-colors" }, "[on|off|auto]",
  3082. "Set colored logging ('on', 'off', or 'auto', default: 'auto')\n"
  3083. "'auto' enables colors when output is to a terminal",
  3084. [](common_params &, const std::string & value) {
  3085. if (is_truthy(value)) {
  3086. common_log_set_colors(common_log_main(), LOG_COLORS_ENABLED);
  3087. } else if (is_falsey(value)) {
  3088. common_log_set_colors(common_log_main(), LOG_COLORS_DISABLED);
  3089. } else if (is_autoy(value)) {
  3090. common_log_set_colors(common_log_main(), LOG_COLORS_AUTO);
  3091. } else {
  3092. throw std::invalid_argument(
  3093. string_format("error: unkown value for --log-colors: '%s'\n", value.c_str()));
  3094. }
  3095. }).set_env("LLAMA_LOG_COLORS"));
  3096. add_opt(common_arg(
  3097. {"-v", "--verbose", "--log-verbose"},
  3098. "Set verbosity level to infinity (i.e. log all messages, useful for debugging)",
  3099. [](common_params & params) {
  3100. params.verbosity = INT_MAX;
  3101. common_log_set_verbosity_thold(INT_MAX);
  3102. }
  3103. ));
  3104. add_opt(common_arg(
  3105. {"--offline"},
  3106. "Offline mode: forces use of cache, prevents network access",
  3107. [](common_params & params) {
  3108. params.offline = true;
  3109. }
  3110. ).set_env("LLAMA_OFFLINE"));
  3111. add_opt(common_arg(
  3112. {"-lv", "--verbosity", "--log-verbosity"}, "N",
  3113. "Set the verbosity threshold. Messages with a higher verbosity will be ignored.",
  3114. [](common_params & params, int value) {
  3115. params.verbosity = value;
  3116. common_log_set_verbosity_thold(value);
  3117. }
  3118. ).set_env("LLAMA_LOG_VERBOSITY"));
  3119. add_opt(common_arg(
  3120. {"--log-prefix"},
  3121. "Enable prefix in log messages",
  3122. [](common_params &) {
  3123. common_log_set_prefix(common_log_main(), true);
  3124. }
  3125. ).set_env("LLAMA_LOG_PREFIX"));
  3126. add_opt(common_arg(
  3127. {"--log-timestamps"},
  3128. "Enable timestamps in log messages",
  3129. [](common_params &) {
  3130. common_log_set_timestamps(common_log_main(), true);
  3131. }
  3132. ).set_env("LLAMA_LOG_TIMESTAMPS"));
  3133. // speculative parameters
  3134. add_opt(common_arg(
  3135. {"-td", "--threads-draft"}, "N",
  3136. "number of threads to use during generation (default: same as --threads)",
  3137. [](common_params & params, int value) {
  3138. params.speculative.cpuparams.n_threads = value;
  3139. if (params.speculative.cpuparams.n_threads <= 0) {
  3140. params.speculative.cpuparams.n_threads = std::thread::hardware_concurrency();
  3141. }
  3142. }
  3143. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3144. add_opt(common_arg(
  3145. {"-tbd", "--threads-batch-draft"}, "N",
  3146. "number of threads to use during batch and prompt processing (default: same as --threads-draft)",
  3147. [](common_params & params, int value) {
  3148. params.speculative.cpuparams_batch.n_threads = value;
  3149. if (params.speculative.cpuparams_batch.n_threads <= 0) {
  3150. params.speculative.cpuparams_batch.n_threads = std::thread::hardware_concurrency();
  3151. }
  3152. }
  3153. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3154. add_opt(common_arg(
  3155. {"-Cd", "--cpu-mask-draft"}, "M",
  3156. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  3157. [](common_params & params, const std::string & mask) {
  3158. params.speculative.cpuparams.mask_valid = true;
  3159. if (!parse_cpu_mask(mask, params.speculative.cpuparams.cpumask)) {
  3160. throw std::invalid_argument("invalid cpumask");
  3161. }
  3162. }
  3163. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3164. add_opt(common_arg(
  3165. {"-Crd", "--cpu-range-draft"}, "lo-hi",
  3166. "Ranges of CPUs for affinity. Complements --cpu-mask-draft",
  3167. [](common_params & params, const std::string & range) {
  3168. params.speculative.cpuparams.mask_valid = true;
  3169. if (!parse_cpu_range(range, params.speculative.cpuparams.cpumask)) {
  3170. throw std::invalid_argument("invalid range");
  3171. }
  3172. }
  3173. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3174. add_opt(common_arg(
  3175. {"--cpu-strict-draft"}, "<0|1>",
  3176. "Use strict CPU placement for draft model (default: same as --cpu-strict)",
  3177. [](common_params & params, int value) {
  3178. params.speculative.cpuparams.strict_cpu = value;
  3179. }
  3180. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3181. add_opt(common_arg(
  3182. {"--prio-draft"}, "N",
  3183. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams.priority),
  3184. [](common_params & params, int prio) {
  3185. if (prio < 0 || prio > 3) {
  3186. throw std::invalid_argument("invalid value");
  3187. }
  3188. params.speculative.cpuparams.priority = (enum ggml_sched_priority) prio;
  3189. }
  3190. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3191. add_opt(common_arg(
  3192. {"--poll-draft"}, "<0|1>",
  3193. "Use polling to wait for draft model work (default: same as --poll])",
  3194. [](common_params & params, int value) {
  3195. params.speculative.cpuparams.poll = value;
  3196. }
  3197. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3198. add_opt(common_arg(
  3199. {"-Cbd", "--cpu-mask-batch-draft"}, "M",
  3200. "Draft model CPU affinity mask. Complements cpu-range-draft (default: same as --cpu-mask)",
  3201. [](common_params & params, const std::string & mask) {
  3202. params.speculative.cpuparams_batch.mask_valid = true;
  3203. if (!parse_cpu_mask(mask, params.speculative.cpuparams_batch.cpumask)) {
  3204. throw std::invalid_argument("invalid cpumask");
  3205. }
  3206. }
  3207. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3208. add_opt(common_arg(
  3209. {"-Crbd", "--cpu-range-batch-draft"}, "lo-hi",
  3210. "Ranges of CPUs for affinity. Complements --cpu-mask-draft-batch)",
  3211. [](common_params & params, const std::string & range) {
  3212. params.speculative.cpuparams_batch.mask_valid = true;
  3213. if (!parse_cpu_range(range, params.speculative.cpuparams_batch.cpumask)) {
  3214. throw std::invalid_argument("invalid cpumask");
  3215. }
  3216. }
  3217. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3218. add_opt(common_arg(
  3219. {"--cpu-strict-batch-draft"}, "<0|1>",
  3220. "Use strict CPU placement for draft model (default: --cpu-strict-draft)",
  3221. [](common_params & params, int value) {
  3222. params.speculative.cpuparams_batch.strict_cpu = value;
  3223. }
  3224. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3225. add_opt(common_arg(
  3226. {"--prio-batch-draft"}, "N",
  3227. string_format("set draft process/thread priority : 0-normal, 1-medium, 2-high, 3-realtime (default: %d)\n", params.speculative.cpuparams_batch.priority),
  3228. [](common_params & params, int prio) {
  3229. if (prio < 0 || prio > 3) {
  3230. throw std::invalid_argument("invalid value");
  3231. }
  3232. params.speculative.cpuparams_batch.priority = (enum ggml_sched_priority) prio;
  3233. }
  3234. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3235. add_opt(common_arg(
  3236. {"--poll-batch-draft"}, "<0|1>",
  3237. "Use polling to wait for draft model work (default: --poll-draft)",
  3238. [](common_params & params, int value) {
  3239. params.speculative.cpuparams_batch.poll = value;
  3240. }
  3241. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
  3242. add_opt(common_arg(
  3243. {"--draft-max", "--draft", "--draft-n"}, "N",
  3244. string_format("number of tokens to draft for speculative decoding (default: %d)", params.speculative.n_max),
  3245. [](common_params & params, int value) {
  3246. params.speculative.n_max = value;
  3247. }
  3248. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
  3249. add_opt(common_arg(
  3250. {"--draft-min", "--draft-n-min"}, "N",
  3251. string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
  3252. [](common_params & params, int value) {
  3253. params.speculative.n_min = value;
  3254. }
  3255. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
  3256. add_opt(common_arg(
  3257. {"--draft-p-split"}, "P",
  3258. string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
  3259. [](common_params & params, const std::string & value) {
  3260. params.speculative.p_split = std::stof(value);
  3261. }
  3262. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
  3263. add_opt(common_arg(
  3264. {"--draft-p-min"}, "P",
  3265. string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
  3266. [](common_params & params, const std::string & value) {
  3267. params.speculative.p_min = std::stof(value);
  3268. }
  3269. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
  3270. add_opt(common_arg(
  3271. {"-cd", "--ctx-size-draft"}, "N",
  3272. string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
  3273. [](common_params & params, int value) {
  3274. params.speculative.n_ctx = value;
  3275. }
  3276. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
  3277. add_opt(common_arg(
  3278. {"-devd", "--device-draft"}, "<dev1,dev2,..>",
  3279. "comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
  3280. "use --list-devices to see a list of available devices",
  3281. [](common_params & params, const std::string & value) {
  3282. params.speculative.devices = parse_device_list(value);
  3283. }
  3284. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3285. add_opt(common_arg(
  3286. {"-ngld", "--gpu-layers-draft", "--n-gpu-layers-draft"}, "N",
  3287. "number of layers to store in VRAM for the draft model",
  3288. [](common_params & params, int value) {
  3289. params.speculative.n_gpu_layers = value;
  3290. if (!llama_supports_gpu_offload()) {
  3291. fprintf(stderr, "warning: no usable GPU found, --gpu-layers-draft option will be ignored\n");
  3292. fprintf(stderr, "warning: one possible reason is that llama.cpp was compiled without GPU support\n");
  3293. fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
  3294. }
  3295. }
  3296. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
  3297. add_opt(common_arg(
  3298. {"-md", "--model-draft"}, "FNAME",
  3299. "draft model for speculative decoding (default: unused)",
  3300. [](common_params & params, const std::string & value) {
  3301. params.speculative.model.path = value;
  3302. }
  3303. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
  3304. add_opt(common_arg(
  3305. {"--spec-replace"}, "TARGET", "DRAFT",
  3306. "translate the string in TARGET into DRAFT if the draft model and main model are not compatible",
  3307. [](common_params & params, const std::string & tgt, const std::string & dft) {
  3308. params.speculative.replacements.push_back({ tgt, dft });
  3309. }
  3310. ).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
  3311. add_opt(common_arg(
  3312. {"-ctkd", "--cache-type-k-draft"}, "TYPE",
  3313. string_format(
  3314. "KV cache data type for K for the draft model\n"
  3315. "allowed values: %s\n"
  3316. "(default: %s)",
  3317. get_all_kv_cache_types().c_str(),
  3318. ggml_type_name(params.speculative.cache_type_k)
  3319. ),
  3320. [](common_params & params, const std::string & value) {
  3321. params.speculative.cache_type_k = kv_cache_type_from_str(value);
  3322. }
  3323. ).set_env("LLAMA_ARG_CACHE_TYPE_K_DRAFT"));
  3324. add_opt(common_arg(
  3325. {"-ctvd", "--cache-type-v-draft"}, "TYPE",
  3326. string_format(
  3327. "KV cache data type for V for the draft model\n"
  3328. "allowed values: %s\n"
  3329. "(default: %s)",
  3330. get_all_kv_cache_types().c_str(),
  3331. ggml_type_name(params.speculative.cache_type_v)
  3332. ),
  3333. [](common_params & params, const std::string & value) {
  3334. params.speculative.cache_type_v = kv_cache_type_from_str(value);
  3335. }
  3336. ).set_env("LLAMA_ARG_CACHE_TYPE_V_DRAFT"));
  3337. add_opt(common_arg(
  3338. {"-mv", "--model-vocoder"}, "FNAME",
  3339. "vocoder model for audio generation (default: unused)",
  3340. [](common_params & params, const std::string & value) {
  3341. params.vocoder.model.path = value;
  3342. }
  3343. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3344. add_opt(common_arg(
  3345. {"--tts-use-guide-tokens"},
  3346. "Use guide tokens to improve TTS word recall",
  3347. [](common_params & params) {
  3348. params.vocoder.use_guide_tokens = true;
  3349. }
  3350. ).set_examples({LLAMA_EXAMPLE_TTS, LLAMA_EXAMPLE_SERVER}));
  3351. add_opt(common_arg(
  3352. {"--tts-speaker-file"}, "FNAME",
  3353. "speaker file path for audio generation",
  3354. [](common_params & params, const std::string & value) {
  3355. params.vocoder.speaker_file = value;
  3356. }
  3357. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3358. // model-specific
  3359. add_opt(common_arg(
  3360. {"--tts-oute-default"},
  3361. string_format("use default OuteTTS models (note: can download weights from the internet)"),
  3362. [](common_params & params) {
  3363. params.model.hf_repo = "OuteAI/OuteTTS-0.2-500M-GGUF";
  3364. params.model.hf_file = "OuteTTS-0.2-500M-Q8_0.gguf";
  3365. params.vocoder.model.hf_repo = "ggml-org/WavTokenizer";
  3366. params.vocoder.model.hf_file = "WavTokenizer-Large-75-F16.gguf";
  3367. }
  3368. ).set_examples({LLAMA_EXAMPLE_TTS}));
  3369. add_opt(common_arg(
  3370. {"--embd-bge-small-en-default"},
  3371. string_format("use default bge-small-en-v1.5 model (note: can download weights from the internet)"),
  3372. [](common_params & params) {
  3373. params.model.hf_repo = "ggml-org/bge-small-en-v1.5-Q8_0-GGUF";
  3374. params.model.hf_file = "bge-small-en-v1.5-q8_0.gguf";
  3375. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3376. params.embd_normalize = 2;
  3377. params.n_ctx = 512;
  3378. params.verbose_prompt = true;
  3379. params.embedding = true;
  3380. }
  3381. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3382. add_opt(common_arg(
  3383. {"--embd-e5-small-en-default"},
  3384. string_format("use default e5-small-v2 model (note: can download weights from the internet)"),
  3385. [](common_params & params) {
  3386. params.model.hf_repo = "ggml-org/e5-small-v2-Q8_0-GGUF";
  3387. params.model.hf_file = "e5-small-v2-q8_0.gguf";
  3388. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3389. params.embd_normalize = 2;
  3390. params.n_ctx = 512;
  3391. params.verbose_prompt = true;
  3392. params.embedding = true;
  3393. }
  3394. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3395. add_opt(common_arg(
  3396. {"--embd-gte-small-default"},
  3397. string_format("use default gte-small model (note: can download weights from the internet)"),
  3398. [](common_params & params) {
  3399. params.model.hf_repo = "ggml-org/gte-small-Q8_0-GGUF";
  3400. params.model.hf_file = "gte-small-q8_0.gguf";
  3401. params.pooling_type = LLAMA_POOLING_TYPE_NONE;
  3402. params.embd_normalize = 2;
  3403. params.n_ctx = 512;
  3404. params.verbose_prompt = true;
  3405. params.embedding = true;
  3406. }
  3407. ).set_examples({LLAMA_EXAMPLE_EMBEDDING, LLAMA_EXAMPLE_SERVER}));
  3408. add_opt(common_arg(
  3409. {"--fim-qwen-1.5b-default"},
  3410. string_format("use default Qwen 2.5 Coder 1.5B (note: can download weights from the internet)"),
  3411. [](common_params & params) {
  3412. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-1.5B-Q8_0-GGUF";
  3413. params.model.hf_file = "qwen2.5-coder-1.5b-q8_0.gguf";
  3414. params.port = 8012;
  3415. params.n_ubatch = 1024;
  3416. params.n_batch = 1024;
  3417. params.n_ctx = 0;
  3418. params.n_cache_reuse = 256;
  3419. }
  3420. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3421. add_opt(common_arg(
  3422. {"--fim-qwen-3b-default"},
  3423. string_format("use default Qwen 2.5 Coder 3B (note: can download weights from the internet)"),
  3424. [](common_params & params) {
  3425. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-3B-Q8_0-GGUF";
  3426. params.model.hf_file = "qwen2.5-coder-3b-q8_0.gguf";
  3427. params.port = 8012;
  3428. params.n_ubatch = 1024;
  3429. params.n_batch = 1024;
  3430. params.n_ctx = 0;
  3431. params.n_cache_reuse = 256;
  3432. }
  3433. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3434. add_opt(common_arg(
  3435. {"--fim-qwen-7b-default"},
  3436. string_format("use default Qwen 2.5 Coder 7B (note: can download weights from the internet)"),
  3437. [](common_params & params) {
  3438. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3439. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3440. params.port = 8012;
  3441. params.n_ubatch = 1024;
  3442. params.n_batch = 1024;
  3443. params.n_ctx = 0;
  3444. params.n_cache_reuse = 256;
  3445. }
  3446. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3447. add_opt(common_arg(
  3448. {"--fim-qwen-7b-spec"},
  3449. string_format("use Qwen 2.5 Coder 7B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3450. [](common_params & params) {
  3451. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-7B-Q8_0-GGUF";
  3452. params.model.hf_file = "qwen2.5-coder-7b-q8_0.gguf";
  3453. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3454. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3455. params.port = 8012;
  3456. params.n_ubatch = 1024;
  3457. params.n_batch = 1024;
  3458. params.n_ctx = 0;
  3459. params.n_cache_reuse = 256;
  3460. }
  3461. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3462. add_opt(common_arg(
  3463. {"--fim-qwen-14b-spec"},
  3464. string_format("use Qwen 2.5 Coder 14B + 0.5B draft for speculative decoding (note: can download weights from the internet)"),
  3465. [](common_params & params) {
  3466. params.model.hf_repo = "ggml-org/Qwen2.5-Coder-14B-Q8_0-GGUF";
  3467. params.model.hf_file = "qwen2.5-coder-14b-q8_0.gguf";
  3468. params.speculative.model.hf_repo = "ggml-org/Qwen2.5-Coder-0.5B-Q8_0-GGUF";
  3469. params.speculative.model.hf_file = "qwen2.5-coder-0.5b-q8_0.gguf";
  3470. params.port = 8012;
  3471. params.n_ubatch = 1024;
  3472. params.n_batch = 1024;
  3473. params.n_ctx = 0;
  3474. params.n_cache_reuse = 256;
  3475. }
  3476. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3477. add_opt(common_arg(
  3478. {"--fim-qwen-30b-default"},
  3479. string_format("use default Qwen 3 Coder 30B A3B Instruct (note: can download weights from the internet)"),
  3480. [](common_params & params) {
  3481. params.model.hf_repo = "ggml-org/Qwen3-Coder-30B-A3B-Instruct-Q8_0-GGUF";
  3482. params.model.hf_file = "qwen3-coder-30b-a3b-instruct-q8_0.gguf";
  3483. params.port = 8012;
  3484. params.n_ubatch = 1024;
  3485. params.n_batch = 1024;
  3486. params.n_ctx = 0;
  3487. params.n_cache_reuse = 256;
  3488. }
  3489. ).set_examples({LLAMA_EXAMPLE_SERVER}));
  3490. add_opt(common_arg(
  3491. { "--diffusion-steps" }, "N",
  3492. string_format("number of diffusion steps (default: %d)", params.diffusion.steps),
  3493. [](common_params & params, int value) { params.diffusion.steps = value; }
  3494. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3495. add_opt(common_arg(
  3496. { "--diffusion-visual" },
  3497. string_format("enable visual diffusion mode (show progressive generation) (default: %s)",
  3498. params.diffusion.visual_mode ? "true" : "false"),
  3499. [](common_params & params) { params.diffusion.visual_mode = true; }
  3500. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3501. add_opt(common_arg(
  3502. { "--diffusion-eps" }, "F",
  3503. string_format("epsilon for timesteps (default: %.6f)", (double) params.diffusion.eps),
  3504. [](common_params & params, const std::string & value) { params.diffusion.eps = std::stof(value); }
  3505. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3506. add_opt(common_arg(
  3507. { "--diffusion-algorithm" }, "N",
  3508. string_format("diffusion algorithm: 0=ORIGIN, 1=ENTROPY_BASED, 2=MARGIN_BASED, 3=RANDOM, 4=LOW_CONFIDENCE (default: %d)",
  3509. params.diffusion.algorithm),
  3510. [](common_params & params, int value) { params.diffusion.algorithm = value; }
  3511. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3512. add_opt(common_arg(
  3513. { "--diffusion-alg-temp" }, "F",
  3514. string_format("dream algorithm temperature (default: %.3f)", (double) params.diffusion.alg_temp),
  3515. [](common_params & params, const std::string & value) { params.diffusion.alg_temp = std::stof(value); }
  3516. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3517. add_opt(common_arg(
  3518. { "--diffusion-block-length" }, "N",
  3519. string_format("llada block length for generation (default: %d)", params.diffusion.block_length),
  3520. [](common_params & params, int value) { params.diffusion.block_length = value; }
  3521. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3522. add_opt(common_arg(
  3523. { "--diffusion-cfg-scale" }, "F",
  3524. string_format("llada classifier-free guidance scale (default: %.3f)", (double) params.diffusion.cfg_scale),
  3525. [](common_params & params, const std::string & value) { params.diffusion.cfg_scale = std::stof(value); }
  3526. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3527. add_opt(common_arg(
  3528. { "--diffusion-add-gumbel-noise" }, "F",
  3529. string_format("add gumbel noise to the logits if temp > 0.0 (default: %s)", params.diffusion.add_gumbel_noise ? "true" : "false"),
  3530. [](common_params & params, const std::string & value) { params.diffusion.add_gumbel_noise = std::stof(value); }
  3531. ).set_examples({ LLAMA_EXAMPLE_DIFFUSION }));
  3532. add_opt(
  3533. common_arg({ "-lr", "--learning-rate" }, "ALPHA",
  3534. string_format(
  3535. "adamw or sgd optimizer alpha (default: %.2g); note: sgd alpha recommended ~10x (no momentum)",
  3536. (double) params.lr.lr0),
  3537. [](common_params & params, const std::string & value) { params.lr.lr0 = std::stof(value); })
  3538. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3539. add_opt(
  3540. common_arg({ "-lr-min", "--learning-rate-min" }, "ALPHA",
  3541. string_format(
  3542. "(if >0) final learning rate after decay (if -decay-epochs is set, default=%.2g)",
  3543. (double) params.lr.lr_min),
  3544. [](common_params & params, const std::string & value) { params.lr.lr_min = std::stof(value); })
  3545. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3546. add_opt(
  3547. common_arg({ "-decay-epochs", "--learning-rate-decay-epochs" }, "ALPHA",
  3548. string_format(
  3549. "(if >0) decay learning rate to -lr-min after this many epochs (exponential decay, default=%.2g)",
  3550. (double) params.lr.decay_epochs),
  3551. [](common_params & params, const std::string & value) { params.lr.decay_epochs = std::stof(value); })
  3552. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3553. add_opt(common_arg(
  3554. { "-wd", "--weight-decay" }, "WD",
  3555. string_format(
  3556. "adamw or sgd optimizer weight decay (0 is off; recommend very small e.g. 1e-9) (default: %.2g).",
  3557. (double) params.lr.wd),
  3558. [](common_params & params, const std::string & value) { params.lr.wd = std::stof(value); })
  3559. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3560. add_opt(common_arg({ "-val-split", "--val-split" }, "FRACTION",
  3561. string_format("fraction of data to use as validation set for training (default: %.2g).",
  3562. (double) params.val_split),
  3563. [](common_params & params, const std::string & value) { params.val_split = std::stof(value); })
  3564. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3565. add_opt(common_arg({ "-epochs", "--epochs" }, "N",
  3566. string_format("optimizer max # of epochs (default: %d)", params.lr.epochs),
  3567. [](common_params & params, int epochs) { params.lr.epochs = epochs; })
  3568. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3569. add_opt(common_arg({ "-opt", "--optimizer" }, "sgd|adamw", "adamw or sgd",
  3570. [](common_params & params, const std::string & name) {
  3571. params.optimizer = common_opt_get_optimizer(name.c_str());
  3572. if (params.optimizer == GGML_OPT_OPTIMIZER_TYPE_COUNT) {
  3573. throw std::invalid_argument("invalid --optimizer, valid options: adamw, sgd");
  3574. }
  3575. })
  3576. .set_examples({ LLAMA_EXAMPLE_FINETUNE }));
  3577. return ctx_arg;
  3578. }