ggml-metal.metal 190 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450
  1. #include <metal_stdlib>
  2. using namespace metal;
  3. #define MAX(x, y) ((x) > (y) ? (x) : (y))
  4. #define MIN(x, y) ((x) < (y) ? (x) : (y))
  5. #define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
  6. #define QK4_0 32
  7. #define QR4_0 2
  8. typedef struct {
  9. half d; // delta
  10. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  11. } block_q4_0;
  12. #define QK4_1 32
  13. typedef struct {
  14. half d; // delta
  15. half m; // min
  16. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  17. } block_q4_1;
  18. #define QK5_0 32
  19. typedef struct {
  20. half d; // delta
  21. uint8_t qh[4]; // 5-th bit of quants
  22. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  23. } block_q5_0;
  24. #define QK5_1 32
  25. typedef struct {
  26. half d; // delta
  27. half m; // min
  28. uint8_t qh[4]; // 5-th bit of quants
  29. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  30. } block_q5_1;
  31. #define QK8_0 32
  32. typedef struct {
  33. half d; // delta
  34. int8_t qs[QK8_0]; // quants
  35. } block_q8_0;
  36. #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
  37. enum ggml_sort_order {
  38. GGML_SORT_ASC,
  39. GGML_SORT_DESC,
  40. };
  41. // general-purpose kernel for addition, multiplication and division of two tensors
  42. // pros: works for non-contiguous tensors, supports broadcast across all dims
  43. // cons: not very efficient
  44. kernel void kernel_add(
  45. device const char * src0,
  46. device const char * src1,
  47. device char * dst,
  48. constant int64_t & ne00,
  49. constant int64_t & ne01,
  50. constant int64_t & ne02,
  51. constant int64_t & ne03,
  52. constant uint64_t & nb00,
  53. constant uint64_t & nb01,
  54. constant uint64_t & nb02,
  55. constant uint64_t & nb03,
  56. constant int64_t & ne10,
  57. constant int64_t & ne11,
  58. constant int64_t & ne12,
  59. constant int64_t & ne13,
  60. constant uint64_t & nb10,
  61. constant uint64_t & nb11,
  62. constant uint64_t & nb12,
  63. constant uint64_t & nb13,
  64. constant int64_t & ne0,
  65. constant int64_t & ne1,
  66. constant int64_t & ne2,
  67. constant int64_t & ne3,
  68. constant uint64_t & nb0,
  69. constant uint64_t & nb1,
  70. constant uint64_t & nb2,
  71. constant uint64_t & nb3,
  72. constant int64_t & offs,
  73. uint3 tgpig[[threadgroup_position_in_grid]],
  74. uint3 tpitg[[thread_position_in_threadgroup]],
  75. uint3 ntg[[threads_per_threadgroup]]) {
  76. const int64_t i03 = tgpig.z;
  77. const int64_t i02 = tgpig.y;
  78. const int64_t i01 = tgpig.x;
  79. const int64_t i13 = i03 % ne13;
  80. const int64_t i12 = i02 % ne12;
  81. const int64_t i11 = i01 % ne11;
  82. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
  83. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  84. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
  85. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  86. const int i10 = i0 % ne10;
  87. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
  88. }
  89. }
  90. kernel void kernel_mul(
  91. device const char * src0,
  92. device const char * src1,
  93. device char * dst,
  94. constant int64_t & ne00,
  95. constant int64_t & ne01,
  96. constant int64_t & ne02,
  97. constant int64_t & ne03,
  98. constant uint64_t & nb00,
  99. constant uint64_t & nb01,
  100. constant uint64_t & nb02,
  101. constant uint64_t & nb03,
  102. constant int64_t & ne10,
  103. constant int64_t & ne11,
  104. constant int64_t & ne12,
  105. constant int64_t & ne13,
  106. constant uint64_t & nb10,
  107. constant uint64_t & nb11,
  108. constant uint64_t & nb12,
  109. constant uint64_t & nb13,
  110. constant int64_t & ne0,
  111. constant int64_t & ne1,
  112. constant int64_t & ne2,
  113. constant int64_t & ne3,
  114. constant uint64_t & nb0,
  115. constant uint64_t & nb1,
  116. constant uint64_t & nb2,
  117. constant uint64_t & nb3,
  118. uint3 tgpig[[threadgroup_position_in_grid]],
  119. uint3 tpitg[[thread_position_in_threadgroup]],
  120. uint3 ntg[[threads_per_threadgroup]]) {
  121. const int64_t i03 = tgpig.z;
  122. const int64_t i02 = tgpig.y;
  123. const int64_t i01 = tgpig.x;
  124. const int64_t i13 = i03 % ne13;
  125. const int64_t i12 = i02 % ne12;
  126. const int64_t i11 = i01 % ne11;
  127. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  128. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  129. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  130. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  131. const int i10 = i0 % ne10;
  132. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
  133. }
  134. }
  135. kernel void kernel_div(
  136. device const char * src0,
  137. device const char * src1,
  138. device char * dst,
  139. constant int64_t & ne00,
  140. constant int64_t & ne01,
  141. constant int64_t & ne02,
  142. constant int64_t & ne03,
  143. constant uint64_t & nb00,
  144. constant uint64_t & nb01,
  145. constant uint64_t & nb02,
  146. constant uint64_t & nb03,
  147. constant int64_t & ne10,
  148. constant int64_t & ne11,
  149. constant int64_t & ne12,
  150. constant int64_t & ne13,
  151. constant uint64_t & nb10,
  152. constant uint64_t & nb11,
  153. constant uint64_t & nb12,
  154. constant uint64_t & nb13,
  155. constant int64_t & ne0,
  156. constant int64_t & ne1,
  157. constant int64_t & ne2,
  158. constant int64_t & ne3,
  159. constant uint64_t & nb0,
  160. constant uint64_t & nb1,
  161. constant uint64_t & nb2,
  162. constant uint64_t & nb3,
  163. uint3 tgpig[[threadgroup_position_in_grid]],
  164. uint3 tpitg[[thread_position_in_threadgroup]],
  165. uint3 ntg[[threads_per_threadgroup]]) {
  166. const int64_t i03 = tgpig.z;
  167. const int64_t i02 = tgpig.y;
  168. const int64_t i01 = tgpig.x;
  169. const int64_t i13 = i03 % ne13;
  170. const int64_t i12 = i02 % ne12;
  171. const int64_t i11 = i01 % ne11;
  172. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  173. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  174. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  175. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  176. const int i10 = i0 % ne10;
  177. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
  178. }
  179. }
  180. // assumption: src1 is a row
  181. // broadcast src1 into src0
  182. kernel void kernel_add_row(
  183. device const float4 * src0,
  184. device const float4 * src1,
  185. device float4 * dst,
  186. constant uint64_t & nb [[buffer(28)]],
  187. uint tpig[[thread_position_in_grid]]) {
  188. dst[tpig] = src0[tpig] + src1[tpig % nb];
  189. }
  190. kernel void kernel_mul_row(
  191. device const float4 * src0,
  192. device const float4 * src1,
  193. device float4 * dst,
  194. constant uint64_t & nb [[buffer(28)]],
  195. uint tpig[[thread_position_in_grid]]) {
  196. dst[tpig] = src0[tpig] * src1[tpig % nb];
  197. }
  198. kernel void kernel_div_row(
  199. device const float4 * src0,
  200. device const float4 * src1,
  201. device float4 * dst,
  202. constant uint64_t & nb [[buffer(28)]],
  203. uint tpig[[thread_position_in_grid]]) {
  204. dst[tpig] = src0[tpig] / src1[tpig % nb];
  205. }
  206. kernel void kernel_scale(
  207. device const float * src0,
  208. device float * dst,
  209. constant float & scale,
  210. uint tpig[[thread_position_in_grid]]) {
  211. dst[tpig] = src0[tpig] * scale;
  212. }
  213. kernel void kernel_scale_4(
  214. device const float4 * src0,
  215. device float4 * dst,
  216. constant float & scale,
  217. uint tpig[[thread_position_in_grid]]) {
  218. dst[tpig] = src0[tpig] * scale;
  219. }
  220. kernel void kernel_relu(
  221. device const float * src0,
  222. device float * dst,
  223. uint tpig[[thread_position_in_grid]]) {
  224. dst[tpig] = max(0.0f, src0[tpig]);
  225. }
  226. kernel void kernel_tanh(
  227. device const float * src0,
  228. device float * dst,
  229. uint tpig[[thread_position_in_grid]]) {
  230. device const float & x = src0[tpig];
  231. dst[tpig] = precise::tanh(x);
  232. }
  233. constant float GELU_COEF_A = 0.044715f;
  234. constant float GELU_QUICK_COEF = -1.702f;
  235. constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  236. kernel void kernel_gelu(
  237. device const float4 * src0,
  238. device float4 * dst,
  239. uint tpig[[thread_position_in_grid]]) {
  240. device const float4 & x = src0[tpig];
  241. // BEWARE !!!
  242. // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
  243. // This was observed with Falcon 7B and 40B models
  244. //
  245. dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  246. }
  247. kernel void kernel_gelu_quick(
  248. device const float4 * src0,
  249. device float4 * dst,
  250. uint tpig[[thread_position_in_grid]]) {
  251. device const float4 & x = src0[tpig];
  252. dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
  253. }
  254. kernel void kernel_silu(
  255. device const float4 * src0,
  256. device float4 * dst,
  257. uint tpig[[thread_position_in_grid]]) {
  258. device const float4 & x = src0[tpig];
  259. dst[tpig] = x / (1.0f + exp(-x));
  260. }
  261. kernel void kernel_sqr(
  262. device const float * src0,
  263. device float * dst,
  264. uint tpig[[thread_position_in_grid]]) {
  265. dst[tpig] = src0[tpig] * src0[tpig];
  266. }
  267. kernel void kernel_sum_rows(
  268. device const float * src0,
  269. device float * dst,
  270. constant int64_t & ne00,
  271. constant int64_t & ne01,
  272. constant int64_t & ne02,
  273. constant int64_t & ne03,
  274. constant uint64_t & nb00,
  275. constant uint64_t & nb01,
  276. constant uint64_t & nb02,
  277. constant uint64_t & nb03,
  278. constant int64_t & ne10,
  279. constant int64_t & ne11,
  280. constant int64_t & ne12,
  281. constant int64_t & ne13,
  282. constant uint64_t & nb10,
  283. constant uint64_t & nb11,
  284. constant uint64_t & nb12,
  285. constant uint64_t & nb13,
  286. constant int64_t & ne0,
  287. constant int64_t & ne1,
  288. constant int64_t & ne2,
  289. constant int64_t & ne3,
  290. constant uint64_t & nb0,
  291. constant uint64_t & nb1,
  292. constant uint64_t & nb2,
  293. constant uint64_t & nb3,
  294. uint3 tpig[[thread_position_in_grid]]) {
  295. int64_t i3 = tpig.z;
  296. int64_t i2 = tpig.y;
  297. int64_t i1 = tpig.x;
  298. if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
  299. return;
  300. }
  301. device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
  302. device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
  303. float row_sum = 0;
  304. for (int64_t i0 = 0; i0 < ne00; i0++) {
  305. row_sum += src_row[i0];
  306. }
  307. dst_row[0] = row_sum;
  308. }
  309. kernel void kernel_soft_max(
  310. device const float * src0,
  311. device const float * src1,
  312. device float * dst,
  313. constant int64_t & ne00,
  314. constant int64_t & ne01,
  315. constant int64_t & ne02,
  316. constant float & scale,
  317. threadgroup float * buf [[threadgroup(0)]],
  318. uint tgpig[[threadgroup_position_in_grid]],
  319. uint tpitg[[thread_position_in_threadgroup]],
  320. uint sgitg[[simdgroup_index_in_threadgroup]],
  321. uint tiisg[[thread_index_in_simdgroup]],
  322. uint ntg[[threads_per_threadgroup]]) {
  323. const int64_t i03 = (tgpig) / (ne02*ne01);
  324. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  325. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  326. device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  327. device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
  328. device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  329. // parallel max
  330. float lmax = -INFINITY;
  331. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  332. lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
  333. }
  334. // find the max value in the block
  335. float max_val = simd_max(lmax);
  336. if (ntg > N_SIMDWIDTH) {
  337. if (sgitg == 0) {
  338. buf[tiisg] = -INFINITY;
  339. }
  340. threadgroup_barrier(mem_flags::mem_threadgroup);
  341. if (tiisg == 0) {
  342. buf[sgitg] = max_val;
  343. }
  344. threadgroup_barrier(mem_flags::mem_threadgroup);
  345. max_val = buf[tiisg];
  346. max_val = simd_max(max_val);
  347. }
  348. // parallel sum
  349. float lsum = 0.0f;
  350. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  351. const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
  352. lsum += exp_psrc0;
  353. pdst[i00] = exp_psrc0;
  354. }
  355. // This barrier fixes a failing test
  356. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  357. threadgroup_barrier(mem_flags::mem_none);
  358. float sum = simd_sum(lsum);
  359. if (ntg > N_SIMDWIDTH) {
  360. if (sgitg == 0) {
  361. buf[tiisg] = 0.0f;
  362. }
  363. threadgroup_barrier(mem_flags::mem_threadgroup);
  364. if (tiisg == 0) {
  365. buf[sgitg] = sum;
  366. }
  367. threadgroup_barrier(mem_flags::mem_threadgroup);
  368. sum = buf[tiisg];
  369. sum = simd_sum(sum);
  370. }
  371. const float inv_sum = 1.0f/sum;
  372. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  373. pdst[i00] *= inv_sum;
  374. }
  375. }
  376. kernel void kernel_soft_max_4(
  377. device const float * src0,
  378. device const float * src1,
  379. device float * dst,
  380. constant int64_t & ne00,
  381. constant int64_t & ne01,
  382. constant int64_t & ne02,
  383. constant float & scale,
  384. threadgroup float * buf [[threadgroup(0)]],
  385. uint tgpig[[threadgroup_position_in_grid]],
  386. uint tpitg[[thread_position_in_threadgroup]],
  387. uint sgitg[[simdgroup_index_in_threadgroup]],
  388. uint tiisg[[thread_index_in_simdgroup]],
  389. uint ntg[[threads_per_threadgroup]]) {
  390. const int64_t i03 = (tgpig) / (ne02*ne01);
  391. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  392. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  393. device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  394. device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
  395. device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  396. // parallel max
  397. float4 lmax4 = -INFINITY;
  398. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  399. lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
  400. }
  401. const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
  402. float max_val = simd_max(lmax);
  403. if (ntg > N_SIMDWIDTH) {
  404. if (sgitg == 0) {
  405. buf[tiisg] = -INFINITY;
  406. }
  407. threadgroup_barrier(mem_flags::mem_threadgroup);
  408. if (tiisg == 0) {
  409. buf[sgitg] = max_val;
  410. }
  411. threadgroup_barrier(mem_flags::mem_threadgroup);
  412. max_val = buf[tiisg];
  413. max_val = simd_max(max_val);
  414. }
  415. // parallel sum
  416. float4 lsum4 = 0.0f;
  417. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  418. const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
  419. lsum4 += exp_psrc4;
  420. pdst4[i00] = exp_psrc4;
  421. }
  422. const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
  423. // This barrier fixes a failing test
  424. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  425. threadgroup_barrier(mem_flags::mem_none);
  426. float sum = simd_sum(lsum);
  427. if (ntg > N_SIMDWIDTH) {
  428. if (sgitg == 0) {
  429. buf[tiisg] = 0.0f;
  430. }
  431. threadgroup_barrier(mem_flags::mem_threadgroup);
  432. if (tiisg == 0) {
  433. buf[sgitg] = sum;
  434. }
  435. threadgroup_barrier(mem_flags::mem_threadgroup);
  436. sum = buf[tiisg];
  437. sum = simd_sum(sum);
  438. }
  439. const float inv_sum = 1.0f/sum;
  440. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  441. pdst4[i00] *= inv_sum;
  442. }
  443. }
  444. kernel void kernel_diag_mask_inf(
  445. device const float * src0,
  446. device float * dst,
  447. constant int64_t & ne00,
  448. constant int64_t & ne01,
  449. constant int & n_past,
  450. uint3 tpig[[thread_position_in_grid]]) {
  451. const int64_t i02 = tpig[2];
  452. const int64_t i01 = tpig[1];
  453. const int64_t i00 = tpig[0];
  454. if (i00 > n_past + i01) {
  455. dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
  456. } else {
  457. dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
  458. }
  459. }
  460. kernel void kernel_diag_mask_inf_8(
  461. device const float4 * src0,
  462. device float4 * dst,
  463. constant int64_t & ne00,
  464. constant int64_t & ne01,
  465. constant int & n_past,
  466. uint3 tpig[[thread_position_in_grid]]) {
  467. const int64_t i = 2*tpig[0];
  468. dst[i+0] = src0[i+0];
  469. dst[i+1] = src0[i+1];
  470. int64_t i4 = 4*i;
  471. const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
  472. const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
  473. const int64_t i00 = i4;
  474. for (int k = 3; k >= 0; --k) {
  475. if (i00 + 4 + k <= n_past + i01) {
  476. break;
  477. }
  478. dst[i+1][k] = -INFINITY;
  479. if (i00 + k > n_past + i01) {
  480. dst[i][k] = -INFINITY;
  481. }
  482. }
  483. }
  484. kernel void kernel_norm(
  485. device const void * src0,
  486. device float * dst,
  487. constant int64_t & ne00,
  488. constant uint64_t & nb01,
  489. constant float & eps,
  490. threadgroup float * sum [[threadgroup(0)]],
  491. uint tgpig[[threadgroup_position_in_grid]],
  492. uint tpitg[[thread_position_in_threadgroup]],
  493. uint ntg[[threads_per_threadgroup]]) {
  494. device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
  495. // MEAN
  496. // parallel sum
  497. sum[tpitg] = 0.0f;
  498. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  499. sum[tpitg] += x[i00];
  500. }
  501. // reduce
  502. threadgroup_barrier(mem_flags::mem_threadgroup);
  503. for (uint i = ntg/2; i > 0; i /= 2) {
  504. if (tpitg < i) {
  505. sum[tpitg] += sum[tpitg + i];
  506. }
  507. threadgroup_barrier(mem_flags::mem_threadgroup);
  508. }
  509. const float mean = sum[0] / ne00;
  510. // recenter and VARIANCE
  511. threadgroup_barrier(mem_flags::mem_threadgroup);
  512. device float * y = dst + tgpig*ne00;
  513. sum[tpitg] = 0.0f;
  514. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  515. y[i00] = x[i00] - mean;
  516. sum[tpitg] += y[i00] * y[i00];
  517. }
  518. // reduce
  519. threadgroup_barrier(mem_flags::mem_threadgroup);
  520. for (uint i = ntg/2; i > 0; i /= 2) {
  521. if (tpitg < i) {
  522. sum[tpitg] += sum[tpitg + i];
  523. }
  524. threadgroup_barrier(mem_flags::mem_threadgroup);
  525. }
  526. const float variance = sum[0] / ne00;
  527. const float scale = 1.0f/sqrt(variance + eps);
  528. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  529. y[i00] = y[i00] * scale;
  530. }
  531. }
  532. kernel void kernel_rms_norm(
  533. device const void * src0,
  534. device float * dst,
  535. constant int64_t & ne00,
  536. constant uint64_t & nb01,
  537. constant float & eps,
  538. threadgroup float * buf [[threadgroup(0)]],
  539. uint tgpig[[threadgroup_position_in_grid]],
  540. uint tpitg[[thread_position_in_threadgroup]],
  541. uint sgitg[[simdgroup_index_in_threadgroup]],
  542. uint tiisg[[thread_index_in_simdgroup]],
  543. uint ntg[[threads_per_threadgroup]]) {
  544. device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
  545. float4 sumf = 0;
  546. float all_sum = 0;
  547. // parallel sum
  548. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  549. sumf += x[i00] * x[i00];
  550. }
  551. all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
  552. all_sum = simd_sum(all_sum);
  553. if (ntg > N_SIMDWIDTH) {
  554. if (sgitg == 0) {
  555. buf[tiisg] = 0.0f;
  556. }
  557. threadgroup_barrier(mem_flags::mem_threadgroup);
  558. if (tiisg == 0) {
  559. buf[sgitg] = all_sum;
  560. }
  561. threadgroup_barrier(mem_flags::mem_threadgroup);
  562. all_sum = buf[tiisg];
  563. all_sum = simd_sum(all_sum);
  564. }
  565. const float mean = all_sum/ne00;
  566. const float scale = 1.0f/sqrt(mean + eps);
  567. device float4 * y = (device float4 *) (dst + tgpig*ne00);
  568. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  569. y[i00] = x[i00] * scale;
  570. }
  571. }
  572. kernel void kernel_group_norm(
  573. device const float * src0,
  574. device float * dst,
  575. constant int64_t & ne00,
  576. constant int64_t & ne01,
  577. constant int64_t & ne02,
  578. constant uint64_t & nb00,
  579. constant uint64_t & nb01,
  580. constant uint64_t & nb02,
  581. constant int32_t & n_groups,
  582. constant float & eps,
  583. threadgroup float * buf [[threadgroup(0)]],
  584. uint tgpig[[threadgroup_position_in_grid]],
  585. uint tpitg[[thread_position_in_threadgroup]],
  586. uint sgitg[[simdgroup_index_in_threadgroup]],
  587. uint tiisg[[thread_index_in_simdgroup]],
  588. uint ntg[[threads_per_threadgroup]]) {
  589. const int64_t ne = ne00*ne01*ne02;
  590. const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
  591. int start = tgpig * gs;
  592. int end = start + gs;
  593. start += tpitg;
  594. if (end >= ne) {
  595. end = ne;
  596. }
  597. float tmp = 0.0f; // partial sum for thread in warp
  598. for (int j = start; j < end; j += ntg) {
  599. tmp += src0[j];
  600. }
  601. threadgroup_barrier(mem_flags::mem_threadgroup);
  602. tmp = simd_sum(tmp);
  603. if (ntg > N_SIMDWIDTH) {
  604. if (sgitg == 0) {
  605. buf[tiisg] = 0.0f;
  606. }
  607. threadgroup_barrier(mem_flags::mem_threadgroup);
  608. if (tiisg == 0) {
  609. buf[sgitg] = tmp;
  610. }
  611. threadgroup_barrier(mem_flags::mem_threadgroup);
  612. tmp = buf[tiisg];
  613. tmp = simd_sum(tmp);
  614. }
  615. const float mean = tmp / gs;
  616. tmp = 0.0f;
  617. for (int j = start; j < end; j += ntg) {
  618. float xi = src0[j] - mean;
  619. dst[j] = xi;
  620. tmp += xi * xi;
  621. }
  622. tmp = simd_sum(tmp);
  623. if (ntg > N_SIMDWIDTH) {
  624. if (sgitg == 0) {
  625. buf[tiisg] = 0.0f;
  626. }
  627. threadgroup_barrier(mem_flags::mem_threadgroup);
  628. if (tiisg == 0) {
  629. buf[sgitg] = tmp;
  630. }
  631. threadgroup_barrier(mem_flags::mem_threadgroup);
  632. tmp = buf[tiisg];
  633. tmp = simd_sum(tmp);
  634. }
  635. const float variance = tmp / gs;
  636. const float scale = 1.0f/sqrt(variance + eps);
  637. for (int j = start; j < end; j += ntg) {
  638. dst[j] *= scale;
  639. }
  640. }
  641. // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
  642. // il indicates where the q4 quants begin (0 or QK4_0/4)
  643. // we assume that the yl's have been multiplied with the appropriate scale factor
  644. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  645. inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
  646. float d = qb_curr->d;
  647. float2 acc = 0.f;
  648. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
  649. for (int i = 0; i < 8; i+=2) {
  650. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  651. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  652. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  653. + yl[i + 9] * (qs[i / 2] & 0xF000);
  654. }
  655. return d * (sumy * -8.f + acc[0] + acc[1]);
  656. }
  657. // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
  658. // il indicates where the q4 quants begin (0 or QK4_0/4)
  659. // we assume that the yl's have been multiplied with the appropriate scale factor
  660. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  661. inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
  662. float d = qb_curr->d;
  663. float m = qb_curr->m;
  664. float2 acc = 0.f;
  665. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
  666. for (int i = 0; i < 8; i+=2) {
  667. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  668. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  669. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  670. + yl[i + 9] * (qs[i / 2] & 0xF000);
  671. }
  672. return d * (acc[0] + acc[1]) + sumy * m;
  673. }
  674. // function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
  675. // il indicates where the q5 quants begin (0 or QK5_0/4)
  676. // we assume that the yl's have been multiplied with the appropriate scale factor
  677. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  678. inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
  679. float d = qb_curr->d;
  680. float2 acc = 0.f;
  681. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
  682. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  683. for (int i = 0; i < 8; i+=2) {
  684. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  685. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  686. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  687. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  688. }
  689. return d * (sumy * -16.f + acc[0] + acc[1]);
  690. }
  691. // function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
  692. // il indicates where the q5 quants begin (0 or QK5_1/4)
  693. // we assume that the yl's have been multiplied with the appropriate scale factor
  694. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  695. inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
  696. float d = qb_curr->d;
  697. float m = qb_curr->m;
  698. float2 acc = 0.f;
  699. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
  700. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  701. for (int i = 0; i < 8; i+=2) {
  702. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  703. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  704. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  705. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  706. }
  707. return d * (acc[0] + acc[1]) + sumy * m;
  708. }
  709. // putting them in the kernel cause a significant performance penalty
  710. #define N_DST 4 // each SIMD group works on 4 rows
  711. #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
  712. //Note: This is a template, but strictly speaking it only applies to
  713. // quantizations where the block size is 32. It also does not
  714. // guard against the number of rows not being divisible by
  715. // N_DST, so this is another explicit assumption of the implementation.
  716. template<typename block_q_type, int nr, int nsg, int nw>
  717. void mul_vec_q_n_f32_impl(
  718. device const void * src0,
  719. device const float * src1,
  720. device float * dst,
  721. int64_t ne00,
  722. int64_t ne01,
  723. int64_t ne02,
  724. int64_t ne10,
  725. int64_t ne12,
  726. int64_t ne0,
  727. int64_t ne1,
  728. uint r2,
  729. uint r3,
  730. uint3 tgpig, uint tiisg, uint sgitg) {
  731. const int nb = ne00/QK4_0;
  732. const int r0 = tgpig.x;
  733. const int r1 = tgpig.y;
  734. const int im = tgpig.z;
  735. const int first_row = (r0 * nsg + sgitg) * nr;
  736. const uint i12 = im%ne12;
  737. const uint i13 = im/ne12;
  738. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  739. device const block_q_type * x = (device const block_q_type *) src0 + offset0;
  740. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  741. float yl[16]; // src1 vector cache
  742. float sumf[nr] = {0.f};
  743. const int ix = (tiisg/2);
  744. const int il = (tiisg%2)*8;
  745. device const float * yb = y + ix * QK4_0 + il;
  746. // each thread in a SIMD group deals with half a block.
  747. for (int ib = ix; ib < nb; ib += nw/2) {
  748. float sumy = 0;
  749. for (int i = 0; i < 8; i += 2) {
  750. sumy += yb[i] + yb[i+1];
  751. yl[i+0] = yb[i+ 0];
  752. yl[i+1] = yb[i+ 1]/256.f;
  753. sumy += yb[i+16] + yb[i+17];
  754. yl[i+8] = yb[i+16]/16.f;
  755. yl[i+9] = yb[i+17]/4096.f;
  756. }
  757. for (int row = 0; row < nr; row++) {
  758. sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
  759. }
  760. yb += QK4_0 * 16;
  761. }
  762. for (int row = 0; row < nr; ++row) {
  763. const float tot = simd_sum(sumf[row]);
  764. if (tiisg == 0 && first_row + row < ne01) {
  765. dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
  766. }
  767. }
  768. }
  769. kernel void kernel_mul_mv_q4_0_f32(
  770. device const void * src0,
  771. device const float * src1,
  772. device float * dst,
  773. constant int64_t & ne00,
  774. constant int64_t & ne01,
  775. constant int64_t & ne02,
  776. constant uint64_t & nb00,
  777. constant uint64_t & nb01,
  778. constant uint64_t & nb02,
  779. constant int64_t & ne10,
  780. constant int64_t & ne11,
  781. constant int64_t & ne12,
  782. constant uint64_t & nb10,
  783. constant uint64_t & nb11,
  784. constant uint64_t & nb12,
  785. constant int64_t & ne0,
  786. constant int64_t & ne1,
  787. constant uint & r2,
  788. constant uint & r3,
  789. uint3 tgpig[[threadgroup_position_in_grid]],
  790. uint tiisg[[thread_index_in_simdgroup]],
  791. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  792. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  793. }
  794. kernel void kernel_mul_mv_q4_1_f32(
  795. device const void * src0,
  796. device const float * src1,
  797. device float * dst,
  798. constant int64_t & ne00,
  799. constant int64_t & ne01,
  800. constant int64_t & ne02,
  801. constant uint64_t & nb00,
  802. constant uint64_t & nb01,
  803. constant uint64_t & nb02,
  804. constant int64_t & ne10,
  805. constant int64_t & ne11,
  806. constant int64_t & ne12,
  807. constant uint64_t & nb10,
  808. constant uint64_t & nb11,
  809. constant uint64_t & nb12,
  810. constant int64_t & ne0,
  811. constant int64_t & ne1,
  812. constant uint & r2,
  813. constant uint & r3,
  814. uint3 tgpig[[threadgroup_position_in_grid]],
  815. uint tiisg[[thread_index_in_simdgroup]],
  816. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  817. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  818. }
  819. kernel void kernel_mul_mv_q5_0_f32(
  820. device const void * src0,
  821. device const float * src1,
  822. device float * dst,
  823. constant int64_t & ne00,
  824. constant int64_t & ne01,
  825. constant int64_t & ne02,
  826. constant uint64_t & nb00,
  827. constant uint64_t & nb01,
  828. constant uint64_t & nb02,
  829. constant int64_t & ne10,
  830. constant int64_t & ne11,
  831. constant int64_t & ne12,
  832. constant uint64_t & nb10,
  833. constant uint64_t & nb11,
  834. constant uint64_t & nb12,
  835. constant int64_t & ne0,
  836. constant int64_t & ne1,
  837. constant uint & r2,
  838. constant uint & r3,
  839. uint3 tgpig[[threadgroup_position_in_grid]],
  840. uint tiisg[[thread_index_in_simdgroup]],
  841. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  842. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  843. }
  844. kernel void kernel_mul_mv_q5_1_f32(
  845. device const void * src0,
  846. device const float * src1,
  847. device float * dst,
  848. constant int64_t & ne00,
  849. constant int64_t & ne01,
  850. constant int64_t & ne02,
  851. constant uint64_t & nb00,
  852. constant uint64_t & nb01,
  853. constant uint64_t & nb02,
  854. constant int64_t & ne10,
  855. constant int64_t & ne11,
  856. constant int64_t & ne12,
  857. constant uint64_t & nb10,
  858. constant uint64_t & nb11,
  859. constant uint64_t & nb12,
  860. constant int64_t & ne0,
  861. constant int64_t & ne1,
  862. constant uint & r2,
  863. constant uint & r3,
  864. uint3 tgpig[[threadgroup_position_in_grid]],
  865. uint tiisg[[thread_index_in_simdgroup]],
  866. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  867. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  868. }
  869. #define NB_Q8_0 8
  870. void kernel_mul_mv_q8_0_f32_impl(
  871. device const void * src0,
  872. device const float * src1,
  873. device float * dst,
  874. constant int64_t & ne00,
  875. constant int64_t & ne01,
  876. constant int64_t & ne02,
  877. constant int64_t & ne10,
  878. constant int64_t & ne12,
  879. constant int64_t & ne0,
  880. constant int64_t & ne1,
  881. constant uint & r2,
  882. constant uint & r3,
  883. uint3 tgpig[[threadgroup_position_in_grid]],
  884. uint tiisg[[thread_index_in_simdgroup]],
  885. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  886. const int nr = N_DST;
  887. const int nsg = N_SIMDGROUP;
  888. const int nw = N_SIMDWIDTH;
  889. const int nb = ne00/QK8_0;
  890. const int r0 = tgpig.x;
  891. const int r1 = tgpig.y;
  892. const int im = tgpig.z;
  893. const int first_row = (r0 * nsg + sgitg) * nr;
  894. const uint i12 = im%ne12;
  895. const uint i13 = im/ne12;
  896. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  897. device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
  898. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  899. float yl[NB_Q8_0];
  900. float sumf[nr]={0.f};
  901. const int ix = tiisg/4;
  902. const int il = tiisg%4;
  903. device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
  904. // each thread in a SIMD group deals with NB_Q8_0 quants at a time
  905. for (int ib = ix; ib < nb; ib += nw/4) {
  906. for (int i = 0; i < NB_Q8_0; ++i) {
  907. yl[i] = yb[i];
  908. }
  909. for (int row = 0; row < nr; row++) {
  910. device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
  911. float sumq = 0.f;
  912. for (int iq = 0; iq < NB_Q8_0; ++iq) {
  913. sumq += qs[iq] * yl[iq];
  914. }
  915. sumf[row] += sumq*x[ib+row*nb].d;
  916. }
  917. yb += NB_Q8_0 * nw;
  918. }
  919. for (int row = 0; row < nr; ++row) {
  920. const float tot = simd_sum(sumf[row]);
  921. if (tiisg == 0 && first_row + row < ne01) {
  922. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  923. }
  924. }
  925. }
  926. [[host_name("kernel_mul_mv_q8_0_f32")]]
  927. kernel void kernel_mul_mv_q8_0_f32(
  928. device const void * src0,
  929. device const float * src1,
  930. device float * dst,
  931. constant int64_t & ne00,
  932. constant int64_t & ne01,
  933. constant int64_t & ne02,
  934. constant uint64_t & nb00,
  935. constant uint64_t & nb01,
  936. constant uint64_t & nb02,
  937. constant int64_t & ne10,
  938. constant int64_t & ne11,
  939. constant int64_t & ne12,
  940. constant uint64_t & nb10,
  941. constant uint64_t & nb11,
  942. constant uint64_t & nb12,
  943. constant int64_t & ne0,
  944. constant int64_t & ne1,
  945. constant uint & r2,
  946. constant uint & r3,
  947. uint3 tgpig[[threadgroup_position_in_grid]],
  948. uint tiisg[[thread_index_in_simdgroup]],
  949. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  950. kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  951. }
  952. #define N_F32_F32 4
  953. void kernel_mul_mv_f32_f32_impl(
  954. device const char * src0,
  955. device const char * src1,
  956. device float * dst,
  957. constant int64_t & ne00,
  958. constant int64_t & ne01,
  959. constant int64_t & ne02,
  960. constant uint64_t & nb00,
  961. constant uint64_t & nb01,
  962. constant uint64_t & nb02,
  963. constant int64_t & ne10,
  964. constant int64_t & ne11,
  965. constant int64_t & ne12,
  966. constant uint64_t & nb10,
  967. constant uint64_t & nb11,
  968. constant uint64_t & nb12,
  969. constant int64_t & ne0,
  970. constant int64_t & ne1,
  971. constant uint & r2,
  972. constant uint & r3,
  973. uint3 tgpig[[threadgroup_position_in_grid]],
  974. uint tiisg[[thread_index_in_simdgroup]]) {
  975. const int64_t r0 = tgpig.x;
  976. const int64_t rb = tgpig.y*N_F32_F32;
  977. const int64_t im = tgpig.z;
  978. const uint i12 = im%ne12;
  979. const uint i13 = im/ne12;
  980. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  981. device const float * x = (device const float *) (src0 + offset0);
  982. if (ne00 < 128) {
  983. for (int row = 0; row < N_F32_F32; ++row) {
  984. int r1 = rb + row;
  985. if (r1 >= ne11) {
  986. break;
  987. }
  988. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  989. float sumf = 0;
  990. for (int i = tiisg; i < ne00; i += 32) {
  991. sumf += (float) x[i] * (float) y[i];
  992. }
  993. float all_sum = simd_sum(sumf);
  994. if (tiisg == 0) {
  995. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  996. }
  997. }
  998. } else {
  999. device const float4 * x4 = (device const float4 *)x;
  1000. for (int row = 0; row < N_F32_F32; ++row) {
  1001. int r1 = rb + row;
  1002. if (r1 >= ne11) {
  1003. break;
  1004. }
  1005. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1006. device const float4 * y4 = (device const float4 *) y;
  1007. float sumf = 0;
  1008. for (int i = tiisg; i < ne00/4; i += 32) {
  1009. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1010. }
  1011. float all_sum = simd_sum(sumf);
  1012. if (tiisg == 0) {
  1013. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1014. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1015. }
  1016. }
  1017. }
  1018. }
  1019. [[host_name("kernel_mul_mv_f32_f32")]]
  1020. kernel void kernel_mul_mv_f32_f32(
  1021. device const char * src0,
  1022. device const char * src1,
  1023. device float * dst,
  1024. constant int64_t & ne00,
  1025. constant int64_t & ne01,
  1026. constant int64_t & ne02,
  1027. constant uint64_t & nb00,
  1028. constant uint64_t & nb01,
  1029. constant uint64_t & nb02,
  1030. constant int64_t & ne10,
  1031. constant int64_t & ne11,
  1032. constant int64_t & ne12,
  1033. constant uint64_t & nb10,
  1034. constant uint64_t & nb11,
  1035. constant uint64_t & nb12,
  1036. constant int64_t & ne0,
  1037. constant int64_t & ne1,
  1038. constant uint & r2,
  1039. constant uint & r3,
  1040. uint3 tgpig[[threadgroup_position_in_grid]],
  1041. uint tiisg[[thread_index_in_simdgroup]]) {
  1042. kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1043. }
  1044. #define N_F16_F16 4
  1045. kernel void kernel_mul_mv_f16_f16(
  1046. device const char * src0,
  1047. device const char * src1,
  1048. device float * dst,
  1049. constant int64_t & ne00,
  1050. constant int64_t & ne01,
  1051. constant int64_t & ne02,
  1052. constant uint64_t & nb00,
  1053. constant uint64_t & nb01,
  1054. constant uint64_t & nb02,
  1055. constant int64_t & ne10,
  1056. constant int64_t & ne11,
  1057. constant int64_t & ne12,
  1058. constant uint64_t & nb10,
  1059. constant uint64_t & nb11,
  1060. constant uint64_t & nb12,
  1061. constant int64_t & ne0,
  1062. constant int64_t & ne1,
  1063. constant uint & r2,
  1064. constant uint & r3,
  1065. uint3 tgpig[[threadgroup_position_in_grid]],
  1066. uint tiisg[[thread_index_in_simdgroup]]) {
  1067. const int64_t r0 = tgpig.x;
  1068. const int64_t rb = tgpig.y*N_F16_F16;
  1069. const int64_t im = tgpig.z;
  1070. const uint i12 = im%ne12;
  1071. const uint i13 = im/ne12;
  1072. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1073. device const half * x = (device const half *) (src0 + offset0);
  1074. if (ne00 < 128) {
  1075. for (int row = 0; row < N_F16_F16; ++row) {
  1076. int r1 = rb + row;
  1077. if (r1 >= ne11) {
  1078. break;
  1079. }
  1080. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1081. float sumf = 0;
  1082. for (int i = tiisg; i < ne00; i += 32) {
  1083. sumf += (half) x[i] * (half) y[i];
  1084. }
  1085. float all_sum = simd_sum(sumf);
  1086. if (tiisg == 0) {
  1087. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1088. }
  1089. }
  1090. } else {
  1091. device const half4 * x4 = (device const half4 *)x;
  1092. for (int row = 0; row < N_F16_F16; ++row) {
  1093. int r1 = rb + row;
  1094. if (r1 >= ne11) {
  1095. break;
  1096. }
  1097. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1098. device const half4 * y4 = (device const half4 *) y;
  1099. float sumf = 0;
  1100. for (int i = tiisg; i < ne00/4; i += 32) {
  1101. for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
  1102. }
  1103. float all_sum = simd_sum(sumf);
  1104. if (tiisg == 0) {
  1105. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
  1106. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1107. }
  1108. }
  1109. }
  1110. }
  1111. void kernel_mul_mv_f16_f32_1row_impl(
  1112. device const char * src0,
  1113. device const char * src1,
  1114. device float * dst,
  1115. constant int64_t & ne00,
  1116. constant int64_t & ne01,
  1117. constant int64_t & ne02,
  1118. constant uint64_t & nb00,
  1119. constant uint64_t & nb01,
  1120. constant uint64_t & nb02,
  1121. constant int64_t & ne10,
  1122. constant int64_t & ne11,
  1123. constant int64_t & ne12,
  1124. constant uint64_t & nb10,
  1125. constant uint64_t & nb11,
  1126. constant uint64_t & nb12,
  1127. constant int64_t & ne0,
  1128. constant int64_t & ne1,
  1129. constant uint & r2,
  1130. constant uint & r3,
  1131. uint3 tgpig[[threadgroup_position_in_grid]],
  1132. uint tiisg[[thread_index_in_simdgroup]]) {
  1133. const int64_t r0 = tgpig.x;
  1134. const int64_t r1 = tgpig.y;
  1135. const int64_t im = tgpig.z;
  1136. const uint i12 = im%ne12;
  1137. const uint i13 = im/ne12;
  1138. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1139. device const half * x = (device const half *) (src0 + offset0);
  1140. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1141. float sumf = 0;
  1142. if (ne00 < 128) {
  1143. for (int i = tiisg; i < ne00; i += 32) {
  1144. sumf += (float) x[i] * (float) y[i];
  1145. }
  1146. float all_sum = simd_sum(sumf);
  1147. if (tiisg == 0) {
  1148. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1149. }
  1150. } else {
  1151. device const half4 * x4 = (device const half4 *) x;
  1152. device const float4 * y4 = (device const float4 *) y;
  1153. for (int i = tiisg; i < ne00/4; i += 32) {
  1154. for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
  1155. }
  1156. float all_sum = simd_sum(sumf);
  1157. if (tiisg == 0) {
  1158. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1159. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1160. }
  1161. }
  1162. }
  1163. [[host_name("kernel_mul_mv_f16_f32_1row")]]
  1164. kernel void kernel_mul_mv_f16_f32_1row(
  1165. device const char * src0,
  1166. device const char * src1,
  1167. device float * dst,
  1168. constant int64_t & ne00,
  1169. constant int64_t & ne01,
  1170. constant int64_t & ne02,
  1171. constant uint64_t & nb00,
  1172. constant uint64_t & nb01,
  1173. constant uint64_t & nb02,
  1174. constant int64_t & ne10,
  1175. constant int64_t & ne11,
  1176. constant int64_t & ne12,
  1177. constant uint64_t & nb10,
  1178. constant uint64_t & nb11,
  1179. constant uint64_t & nb12,
  1180. constant int64_t & ne0,
  1181. constant int64_t & ne1,
  1182. constant uint & r2,
  1183. constant uint & r3,
  1184. uint3 tgpig[[threadgroup_position_in_grid]],
  1185. uint tiisg[[thread_index_in_simdgroup]]) {
  1186. kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1187. }
  1188. #define N_F16_F32 4
  1189. void kernel_mul_mv_f16_f32_impl(
  1190. device const char * src0,
  1191. device const char * src1,
  1192. device float * dst,
  1193. constant int64_t & ne00,
  1194. constant int64_t & ne01,
  1195. constant int64_t & ne02,
  1196. constant uint64_t & nb00,
  1197. constant uint64_t & nb01,
  1198. constant uint64_t & nb02,
  1199. constant int64_t & ne10,
  1200. constant int64_t & ne11,
  1201. constant int64_t & ne12,
  1202. constant uint64_t & nb10,
  1203. constant uint64_t & nb11,
  1204. constant uint64_t & nb12,
  1205. constant int64_t & ne0,
  1206. constant int64_t & ne1,
  1207. constant uint & r2,
  1208. constant uint & r3,
  1209. uint3 tgpig[[threadgroup_position_in_grid]],
  1210. uint tiisg[[thread_index_in_simdgroup]]) {
  1211. const int64_t r0 = tgpig.x;
  1212. const int64_t rb = tgpig.y*N_F16_F32;
  1213. const int64_t im = tgpig.z;
  1214. const uint i12 = im%ne12;
  1215. const uint i13 = im/ne12;
  1216. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1217. device const half * x = (device const half *) (src0 + offset0);
  1218. if (ne00 < 128) {
  1219. for (int row = 0; row < N_F16_F32; ++row) {
  1220. int r1 = rb + row;
  1221. if (r1 >= ne11) {
  1222. break;
  1223. }
  1224. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1225. float sumf = 0;
  1226. for (int i = tiisg; i < ne00; i += 32) {
  1227. sumf += (float) x[i] * (float) y[i];
  1228. }
  1229. float all_sum = simd_sum(sumf);
  1230. if (tiisg == 0) {
  1231. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1232. }
  1233. }
  1234. } else {
  1235. device const half4 * x4 = (device const half4 *)x;
  1236. for (int row = 0; row < N_F16_F32; ++row) {
  1237. int r1 = rb + row;
  1238. if (r1 >= ne11) {
  1239. break;
  1240. }
  1241. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1242. device const float4 * y4 = (device const float4 *) y;
  1243. float sumf = 0;
  1244. for (int i = tiisg; i < ne00/4; i += 32) {
  1245. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1246. }
  1247. float all_sum = simd_sum(sumf);
  1248. if (tiisg == 0) {
  1249. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1250. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1251. }
  1252. }
  1253. }
  1254. }
  1255. [[host_name("kernel_mul_mv_f16_f32")]]
  1256. kernel void kernel_mul_mv_f16_f32(
  1257. device const char * src0,
  1258. device const char * src1,
  1259. device float * dst,
  1260. constant int64_t & ne00,
  1261. constant int64_t & ne01,
  1262. constant int64_t & ne02,
  1263. constant uint64_t & nb00,
  1264. constant uint64_t & nb01,
  1265. constant uint64_t & nb02,
  1266. constant int64_t & ne10,
  1267. constant int64_t & ne11,
  1268. constant int64_t & ne12,
  1269. constant uint64_t & nb10,
  1270. constant uint64_t & nb11,
  1271. constant uint64_t & nb12,
  1272. constant int64_t & ne0,
  1273. constant int64_t & ne1,
  1274. constant uint & r2,
  1275. constant uint & r3,
  1276. uint3 tgpig[[threadgroup_position_in_grid]],
  1277. uint tiisg[[thread_index_in_simdgroup]]) {
  1278. kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1279. }
  1280. // Assumes row size (ne00) is a multiple of 4
  1281. kernel void kernel_mul_mv_f16_f32_l4(
  1282. device const char * src0,
  1283. device const char * src1,
  1284. device float * dst,
  1285. constant int64_t & ne00,
  1286. constant int64_t & ne01,
  1287. constant int64_t & ne02,
  1288. constant uint64_t & nb00,
  1289. constant uint64_t & nb01,
  1290. constant uint64_t & nb02,
  1291. constant int64_t & ne10,
  1292. constant int64_t & ne11,
  1293. constant int64_t & ne12,
  1294. constant uint64_t & nb10,
  1295. constant uint64_t & nb11,
  1296. constant uint64_t & nb12,
  1297. constant int64_t & ne0,
  1298. constant int64_t & ne1,
  1299. constant uint & r2,
  1300. constant uint & r3,
  1301. uint3 tgpig[[threadgroup_position_in_grid]],
  1302. uint tiisg[[thread_index_in_simdgroup]]) {
  1303. const int nrows = ne11;
  1304. const int64_t r0 = tgpig.x;
  1305. const int64_t im = tgpig.z;
  1306. const uint i12 = im%ne12;
  1307. const uint i13 = im/ne12;
  1308. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1309. device const half4 * x4 = (device const half4 *) (src0 + offset0);
  1310. for (int r1 = 0; r1 < nrows; ++r1) {
  1311. device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
  1312. float sumf = 0;
  1313. for (int i = tiisg; i < ne00/4; i += 32) {
  1314. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1315. }
  1316. float all_sum = simd_sum(sumf);
  1317. if (tiisg == 0) {
  1318. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1319. }
  1320. }
  1321. }
  1322. kernel void kernel_alibi_f32(
  1323. device const float * src0,
  1324. device float * dst,
  1325. constant int64_t & ne00,
  1326. constant int64_t & ne01,
  1327. constant int64_t & ne02,
  1328. constant int64_t & ne03,
  1329. constant uint64_t & nb00,
  1330. constant uint64_t & nb01,
  1331. constant uint64_t & nb02,
  1332. constant uint64_t & nb03,
  1333. constant int64_t & ne0,
  1334. constant int64_t & ne1,
  1335. constant int64_t & ne2,
  1336. constant int64_t & ne3,
  1337. constant uint64_t & nb0,
  1338. constant uint64_t & nb1,
  1339. constant uint64_t & nb2,
  1340. constant uint64_t & nb3,
  1341. constant float & m0,
  1342. constant float & m1,
  1343. constant int & n_heads_log2_floor,
  1344. uint3 tgpig[[threadgroup_position_in_grid]],
  1345. uint3 tpitg[[thread_position_in_threadgroup]],
  1346. uint3 ntg[[threads_per_threadgroup]]) {
  1347. const int64_t i03 = tgpig[2];
  1348. const int64_t i02 = tgpig[1];
  1349. const int64_t i01 = tgpig[0];
  1350. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1351. const int64_t i3 = n / (ne2*ne1*ne0);
  1352. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1353. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1354. //const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1355. const int64_t k = i3*ne3 + i2;
  1356. float m_k;
  1357. if (k < n_heads_log2_floor) {
  1358. m_k = pow(m0, k + 1);
  1359. } else {
  1360. m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1);
  1361. }
  1362. device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1;
  1363. device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01;
  1364. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1365. const float src_v = *(device float *)(src_row + i00*nb00);
  1366. device float * dst_v = (device float *)(dst_row + i00*nb0);
  1367. *dst_v = i00 * m_k + src_v;
  1368. }
  1369. }
  1370. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  1371. const float y = (i0 / 2 - low) / max(0.001f, high - low);
  1372. return 1.0f - min(1.0f, max(0.0f, y));
  1373. }
  1374. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  1375. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  1376. static void rope_yarn(
  1377. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  1378. thread float * cos_theta, thread float * sin_theta
  1379. ) {
  1380. // Get n-d rotational scaling corrected for extrapolation
  1381. float theta_interp = freq_scale * theta_extrap;
  1382. float theta = theta_interp;
  1383. if (ext_factor != 0.0f) {
  1384. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  1385. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  1386. // Get n-d magnitude scaling corrected for interpolation
  1387. mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
  1388. }
  1389. *cos_theta = cos(theta) * mscale;
  1390. *sin_theta = sin(theta) * mscale;
  1391. }
  1392. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  1393. // `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  1394. static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
  1395. return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
  1396. }
  1397. static void rope_yarn_corr_dims(
  1398. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  1399. ) {
  1400. // start and end correction dims
  1401. dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
  1402. dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
  1403. }
  1404. typedef void (rope_t)(
  1405. device const void * src0,
  1406. device const int32_t * src1,
  1407. device float * dst,
  1408. constant int64_t & ne00,
  1409. constant int64_t & ne01,
  1410. constant int64_t & ne02,
  1411. constant int64_t & ne03,
  1412. constant uint64_t & nb00,
  1413. constant uint64_t & nb01,
  1414. constant uint64_t & nb02,
  1415. constant uint64_t & nb03,
  1416. constant int64_t & ne0,
  1417. constant int64_t & ne1,
  1418. constant int64_t & ne2,
  1419. constant int64_t & ne3,
  1420. constant uint64_t & nb0,
  1421. constant uint64_t & nb1,
  1422. constant uint64_t & nb2,
  1423. constant uint64_t & nb3,
  1424. constant int & n_past,
  1425. constant int & n_dims,
  1426. constant int & mode,
  1427. constant int & n_orig_ctx,
  1428. constant float & freq_base,
  1429. constant float & freq_scale,
  1430. constant float & ext_factor,
  1431. constant float & attn_factor,
  1432. constant float & beta_fast,
  1433. constant float & beta_slow,
  1434. uint tiitg[[thread_index_in_threadgroup]],
  1435. uint3 tptg[[threads_per_threadgroup]],
  1436. uint3 tgpig[[threadgroup_position_in_grid]]);
  1437. template<typename T>
  1438. kernel void kernel_rope(
  1439. device const void * src0,
  1440. device const int32_t * src1,
  1441. device float * dst,
  1442. constant int64_t & ne00,
  1443. constant int64_t & ne01,
  1444. constant int64_t & ne02,
  1445. constant int64_t & ne03,
  1446. constant uint64_t & nb00,
  1447. constant uint64_t & nb01,
  1448. constant uint64_t & nb02,
  1449. constant uint64_t & nb03,
  1450. constant int64_t & ne0,
  1451. constant int64_t & ne1,
  1452. constant int64_t & ne2,
  1453. constant int64_t & ne3,
  1454. constant uint64_t & nb0,
  1455. constant uint64_t & nb1,
  1456. constant uint64_t & nb2,
  1457. constant uint64_t & nb3,
  1458. constant int & n_past,
  1459. constant int & n_dims,
  1460. constant int & mode,
  1461. constant int & n_orig_ctx,
  1462. constant float & freq_base,
  1463. constant float & freq_scale,
  1464. constant float & ext_factor,
  1465. constant float & attn_factor,
  1466. constant float & beta_fast,
  1467. constant float & beta_slow,
  1468. uint tiitg[[thread_index_in_threadgroup]],
  1469. uint3 tptg[[threads_per_threadgroup]],
  1470. uint3 tgpig[[threadgroup_position_in_grid]]) {
  1471. const int64_t i3 = tgpig[2];
  1472. const int64_t i2 = tgpig[1];
  1473. const int64_t i1 = tgpig[0];
  1474. const bool is_neox = mode & 2;
  1475. float corr_dims[2];
  1476. rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  1477. device const int32_t * pos = src1;
  1478. const int64_t p = pos[i2];
  1479. const float theta_0 = (float)p;
  1480. const float inv_ndims = -1.f/n_dims;
  1481. if (!is_neox) {
  1482. for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
  1483. const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
  1484. float cos_theta, sin_theta;
  1485. rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1486. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1487. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1488. const T x0 = src[0];
  1489. const T x1 = src[1];
  1490. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1491. dst_data[1] = x0*sin_theta + x1*cos_theta;
  1492. }
  1493. } else {
  1494. for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
  1495. if (ic < n_dims) {
  1496. const int64_t ib = 0;
  1497. // simplified from `(ib * n_dims + ic) * inv_ndims`
  1498. const float cur_rot = inv_ndims*ic - ib;
  1499. const float theta = theta_0 * pow(freq_base, cur_rot);
  1500. float cos_theta, sin_theta;
  1501. rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1502. const int64_t i0 = ib*n_dims + ic/2;
  1503. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1504. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1505. const float x0 = src[0];
  1506. const float x1 = src[n_dims/2];
  1507. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1508. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  1509. } else {
  1510. const int64_t i0 = ic;
  1511. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1512. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1513. dst_data[0] = src[0];
  1514. dst_data[1] = src[1];
  1515. }
  1516. }
  1517. }
  1518. }
  1519. template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
  1520. template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
  1521. kernel void kernel_im2col_f16(
  1522. device const float * x,
  1523. device half * dst,
  1524. constant int32_t & ofs0,
  1525. constant int32_t & ofs1,
  1526. constant int32_t & IW,
  1527. constant int32_t & IH,
  1528. constant int32_t & CHW,
  1529. constant int32_t & s0,
  1530. constant int32_t & s1,
  1531. constant int32_t & p0,
  1532. constant int32_t & p1,
  1533. constant int32_t & d0,
  1534. constant int32_t & d1,
  1535. uint3 tgpig[[threadgroup_position_in_grid]],
  1536. uint3 tgpg[[threadgroups_per_grid]],
  1537. uint3 tpitg[[thread_position_in_threadgroup]],
  1538. uint3 ntg[[threads_per_threadgroup]]) {
  1539. const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
  1540. const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
  1541. const int32_t offset_dst =
  1542. (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
  1543. (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
  1544. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  1545. dst[offset_dst] = 0.0f;
  1546. } else {
  1547. const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
  1548. dst[offset_dst] = x[offset_src + iih * IW + iiw];
  1549. }
  1550. }
  1551. kernel void kernel_upscale_f32(
  1552. device const char * src0,
  1553. device char * dst,
  1554. constant int64_t & ne00,
  1555. constant int64_t & ne01,
  1556. constant int64_t & ne02,
  1557. constant int64_t & ne03,
  1558. constant uint64_t & nb00,
  1559. constant uint64_t & nb01,
  1560. constant uint64_t & nb02,
  1561. constant uint64_t & nb03,
  1562. constant int64_t & ne0,
  1563. constant int64_t & ne1,
  1564. constant int64_t & ne2,
  1565. constant int64_t & ne3,
  1566. constant uint64_t & nb0,
  1567. constant uint64_t & nb1,
  1568. constant uint64_t & nb2,
  1569. constant uint64_t & nb3,
  1570. constant int32_t & sf,
  1571. uint3 tgpig[[threadgroup_position_in_grid]],
  1572. uint3 tpitg[[thread_position_in_threadgroup]],
  1573. uint3 ntg[[threads_per_threadgroup]]) {
  1574. const int64_t i3 = tgpig.z;
  1575. const int64_t i2 = tgpig.y;
  1576. const int64_t i1 = tgpig.x;
  1577. const int64_t i03 = i3;
  1578. const int64_t i02 = i2;
  1579. const int64_t i01 = i1/sf;
  1580. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1581. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1582. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1583. dst_ptr[i0] = src0_ptr[i0/sf];
  1584. }
  1585. }
  1586. kernel void kernel_pad_f32(
  1587. device const char * src0,
  1588. device char * dst,
  1589. constant int64_t & ne00,
  1590. constant int64_t & ne01,
  1591. constant int64_t & ne02,
  1592. constant int64_t & ne03,
  1593. constant uint64_t & nb00,
  1594. constant uint64_t & nb01,
  1595. constant uint64_t & nb02,
  1596. constant uint64_t & nb03,
  1597. constant int64_t & ne0,
  1598. constant int64_t & ne1,
  1599. constant int64_t & ne2,
  1600. constant int64_t & ne3,
  1601. constant uint64_t & nb0,
  1602. constant uint64_t & nb1,
  1603. constant uint64_t & nb2,
  1604. constant uint64_t & nb3,
  1605. uint3 tgpig[[threadgroup_position_in_grid]],
  1606. uint3 tpitg[[thread_position_in_threadgroup]],
  1607. uint3 ntg[[threads_per_threadgroup]]) {
  1608. const int64_t i3 = tgpig.z;
  1609. const int64_t i2 = tgpig.y;
  1610. const int64_t i1 = tgpig.x;
  1611. const int64_t i03 = i3;
  1612. const int64_t i02 = i2;
  1613. const int64_t i01 = i1;
  1614. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1615. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1616. if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
  1617. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1618. if (i0 < ne00) {
  1619. dst_ptr[i0] = src0_ptr[i0];
  1620. } else {
  1621. dst_ptr[i0] = 0.0f;
  1622. }
  1623. }
  1624. return;
  1625. }
  1626. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1627. dst_ptr[i0] = 0.0f;
  1628. }
  1629. }
  1630. // bitonic sort implementation following the CUDA kernels as reference
  1631. typedef void (argsort_t)(
  1632. device const float * x,
  1633. device int32_t * dst,
  1634. constant int64_t & ncols,
  1635. uint3 tgpig[[threadgroup_position_in_grid]],
  1636. uint3 tpitg[[thread_position_in_threadgroup]]);
  1637. template<ggml_sort_order order>
  1638. kernel void kernel_argsort_f32_i32(
  1639. device const float * x,
  1640. device int32_t * dst,
  1641. constant int64_t & ncols,
  1642. uint3 tgpig[[threadgroup_position_in_grid]],
  1643. uint3 tpitg[[thread_position_in_threadgroup]]) {
  1644. // bitonic sort
  1645. int col = tpitg[0];
  1646. int row = tgpig[1];
  1647. if (col >= ncols) return;
  1648. device const float * x_row = x + row * ncols;
  1649. device int32_t * dst_row = dst + row * ncols;
  1650. // initialize indices
  1651. if (col < ncols) {
  1652. dst_row[col] = col;
  1653. }
  1654. threadgroup_barrier(mem_flags::mem_threadgroup);
  1655. for (int k = 2; k <= ncols; k *= 2) {
  1656. for (int j = k / 2; j > 0; j /= 2) {
  1657. int ixj = col ^ j;
  1658. if (ixj > col) {
  1659. if ((col & k) == 0) {
  1660. if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
  1661. SWAP(dst_row[col], dst_row[ixj]);
  1662. }
  1663. } else {
  1664. if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
  1665. SWAP(dst_row[col], dst_row[ixj]);
  1666. }
  1667. }
  1668. }
  1669. threadgroup_barrier(mem_flags::mem_threadgroup);
  1670. }
  1671. }
  1672. }
  1673. template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ASC>;
  1674. template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_DESC>;
  1675. kernel void kernel_leaky_relu_f32(
  1676. device const float * src0,
  1677. device float * dst,
  1678. constant float & slope,
  1679. uint tpig[[thread_position_in_grid]]) {
  1680. dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
  1681. }
  1682. kernel void kernel_cpy_f16_f16(
  1683. device const half * src0,
  1684. device half * dst,
  1685. constant int64_t & ne00,
  1686. constant int64_t & ne01,
  1687. constant int64_t & ne02,
  1688. constant int64_t & ne03,
  1689. constant uint64_t & nb00,
  1690. constant uint64_t & nb01,
  1691. constant uint64_t & nb02,
  1692. constant uint64_t & nb03,
  1693. constant int64_t & ne0,
  1694. constant int64_t & ne1,
  1695. constant int64_t & ne2,
  1696. constant int64_t & ne3,
  1697. constant uint64_t & nb0,
  1698. constant uint64_t & nb1,
  1699. constant uint64_t & nb2,
  1700. constant uint64_t & nb3,
  1701. uint3 tgpig[[threadgroup_position_in_grid]],
  1702. uint3 tpitg[[thread_position_in_threadgroup]],
  1703. uint3 ntg[[threads_per_threadgroup]]) {
  1704. const int64_t i03 = tgpig[2];
  1705. const int64_t i02 = tgpig[1];
  1706. const int64_t i01 = tgpig[0];
  1707. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1708. const int64_t i3 = n / (ne2*ne1*ne0);
  1709. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1710. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1711. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1712. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1713. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1714. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1715. dst_data[i00] = src[0];
  1716. }
  1717. }
  1718. kernel void kernel_cpy_f16_f32(
  1719. device const half * src0,
  1720. device float * dst,
  1721. constant int64_t & ne00,
  1722. constant int64_t & ne01,
  1723. constant int64_t & ne02,
  1724. constant int64_t & ne03,
  1725. constant uint64_t & nb00,
  1726. constant uint64_t & nb01,
  1727. constant uint64_t & nb02,
  1728. constant uint64_t & nb03,
  1729. constant int64_t & ne0,
  1730. constant int64_t & ne1,
  1731. constant int64_t & ne2,
  1732. constant int64_t & ne3,
  1733. constant uint64_t & nb0,
  1734. constant uint64_t & nb1,
  1735. constant uint64_t & nb2,
  1736. constant uint64_t & nb3,
  1737. uint3 tgpig[[threadgroup_position_in_grid]],
  1738. uint3 tpitg[[thread_position_in_threadgroup]],
  1739. uint3 ntg[[threads_per_threadgroup]]) {
  1740. const int64_t i03 = tgpig[2];
  1741. const int64_t i02 = tgpig[1];
  1742. const int64_t i01 = tgpig[0];
  1743. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1744. const int64_t i3 = n / (ne2*ne1*ne0);
  1745. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1746. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1747. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1748. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1749. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1750. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1751. dst_data[i00] = src[0];
  1752. }
  1753. }
  1754. kernel void kernel_cpy_f32_f16(
  1755. device const float * src0,
  1756. device half * dst,
  1757. constant int64_t & ne00,
  1758. constant int64_t & ne01,
  1759. constant int64_t & ne02,
  1760. constant int64_t & ne03,
  1761. constant uint64_t & nb00,
  1762. constant uint64_t & nb01,
  1763. constant uint64_t & nb02,
  1764. constant uint64_t & nb03,
  1765. constant int64_t & ne0,
  1766. constant int64_t & ne1,
  1767. constant int64_t & ne2,
  1768. constant int64_t & ne3,
  1769. constant uint64_t & nb0,
  1770. constant uint64_t & nb1,
  1771. constant uint64_t & nb2,
  1772. constant uint64_t & nb3,
  1773. uint3 tgpig[[threadgroup_position_in_grid]],
  1774. uint3 tpitg[[thread_position_in_threadgroup]],
  1775. uint3 ntg[[threads_per_threadgroup]]) {
  1776. const int64_t i03 = tgpig[2];
  1777. const int64_t i02 = tgpig[1];
  1778. const int64_t i01 = tgpig[0];
  1779. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1780. const int64_t i3 = n / (ne2*ne1*ne0);
  1781. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1782. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1783. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1784. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1785. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1786. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1787. dst_data[i00] = src[0];
  1788. }
  1789. }
  1790. kernel void kernel_cpy_f32_f32(
  1791. device const float * src0,
  1792. device float * dst,
  1793. constant int64_t & ne00,
  1794. constant int64_t & ne01,
  1795. constant int64_t & ne02,
  1796. constant int64_t & ne03,
  1797. constant uint64_t & nb00,
  1798. constant uint64_t & nb01,
  1799. constant uint64_t & nb02,
  1800. constant uint64_t & nb03,
  1801. constant int64_t & ne0,
  1802. constant int64_t & ne1,
  1803. constant int64_t & ne2,
  1804. constant int64_t & ne3,
  1805. constant uint64_t & nb0,
  1806. constant uint64_t & nb1,
  1807. constant uint64_t & nb2,
  1808. constant uint64_t & nb3,
  1809. uint3 tgpig[[threadgroup_position_in_grid]],
  1810. uint3 tpitg[[thread_position_in_threadgroup]],
  1811. uint3 ntg[[threads_per_threadgroup]]) {
  1812. const int64_t i03 = tgpig[2];
  1813. const int64_t i02 = tgpig[1];
  1814. const int64_t i01 = tgpig[0];
  1815. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1816. const int64_t i3 = n / (ne2*ne1*ne0);
  1817. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1818. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1819. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1820. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1821. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1822. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1823. dst_data[i00] = src[0];
  1824. }
  1825. }
  1826. kernel void kernel_cpy_f32_q8_0(
  1827. device const float * src0,
  1828. device void * dst,
  1829. constant int64_t & ne00,
  1830. constant int64_t & ne01,
  1831. constant int64_t & ne02,
  1832. constant int64_t & ne03,
  1833. constant uint64_t & nb00,
  1834. constant uint64_t & nb01,
  1835. constant uint64_t & nb02,
  1836. constant uint64_t & nb03,
  1837. constant int64_t & ne0,
  1838. constant int64_t & ne1,
  1839. constant int64_t & ne2,
  1840. constant int64_t & ne3,
  1841. constant uint64_t & nb0,
  1842. constant uint64_t & nb1,
  1843. constant uint64_t & nb2,
  1844. constant uint64_t & nb3,
  1845. uint3 tgpig[[threadgroup_position_in_grid]],
  1846. uint3 tpitg[[thread_position_in_threadgroup]],
  1847. uint3 ntg[[threads_per_threadgroup]]) {
  1848. const int64_t i03 = tgpig[2];
  1849. const int64_t i02 = tgpig[1];
  1850. const int64_t i01 = tgpig[0];
  1851. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1852. const int64_t i3 = n / (ne2*ne1*ne0);
  1853. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1854. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1855. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
  1856. device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1857. for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
  1858. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1859. float amax = 0.0f; // absolute max
  1860. for (int j = 0; j < QK8_0; j++) {
  1861. const float v = src[j];
  1862. amax = MAX(amax, fabs(v));
  1863. }
  1864. const float d = amax / ((1 << 7) - 1);
  1865. const float id = d ? 1.0f/d : 0.0f;
  1866. dst_data[i00/QK8_0].d = d;
  1867. for (int j = 0; j < QK8_0; ++j) {
  1868. const float x0 = src[j]*id;
  1869. dst_data[i00/QK8_0].qs[j] = round(x0);
  1870. }
  1871. }
  1872. }
  1873. kernel void kernel_cpy_f32_q4_0(
  1874. device const float * src0,
  1875. device void * dst,
  1876. constant int64_t & ne00,
  1877. constant int64_t & ne01,
  1878. constant int64_t & ne02,
  1879. constant int64_t & ne03,
  1880. constant uint64_t & nb00,
  1881. constant uint64_t & nb01,
  1882. constant uint64_t & nb02,
  1883. constant uint64_t & nb03,
  1884. constant int64_t & ne0,
  1885. constant int64_t & ne1,
  1886. constant int64_t & ne2,
  1887. constant int64_t & ne3,
  1888. constant uint64_t & nb0,
  1889. constant uint64_t & nb1,
  1890. constant uint64_t & nb2,
  1891. constant uint64_t & nb3,
  1892. uint3 tgpig[[threadgroup_position_in_grid]],
  1893. uint3 tpitg[[thread_position_in_threadgroup]],
  1894. uint3 ntg[[threads_per_threadgroup]]) {
  1895. const int64_t i03 = tgpig[2];
  1896. const int64_t i02 = tgpig[1];
  1897. const int64_t i01 = tgpig[0];
  1898. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1899. const int64_t i3 = n / (ne2*ne1*ne0);
  1900. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1901. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1902. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
  1903. device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1904. for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
  1905. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1906. float amax = 0.0f; // absolute max
  1907. float max = 0.0f;
  1908. for (int j = 0; j < QK4_0; j++) {
  1909. const float v = src[j];
  1910. if (amax < fabs(v)) {
  1911. amax = fabs(v);
  1912. max = v;
  1913. }
  1914. }
  1915. const float d = max / -8;
  1916. const float id = d ? 1.0f/d : 0.0f;
  1917. dst_data[i00/QK4_0].d = d;
  1918. for (int j = 0; j < QK4_0/2; ++j) {
  1919. const float x0 = src[0 + j]*id;
  1920. const float x1 = src[QK4_0/2 + j]*id;
  1921. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  1922. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  1923. dst_data[i00/QK4_0].qs[j] = xi0;
  1924. dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
  1925. }
  1926. }
  1927. }
  1928. kernel void kernel_cpy_f32_q4_1(
  1929. device const float * src0,
  1930. device void * dst,
  1931. constant int64_t & ne00,
  1932. constant int64_t & ne01,
  1933. constant int64_t & ne02,
  1934. constant int64_t & ne03,
  1935. constant uint64_t & nb00,
  1936. constant uint64_t & nb01,
  1937. constant uint64_t & nb02,
  1938. constant uint64_t & nb03,
  1939. constant int64_t & ne0,
  1940. constant int64_t & ne1,
  1941. constant int64_t & ne2,
  1942. constant int64_t & ne3,
  1943. constant uint64_t & nb0,
  1944. constant uint64_t & nb1,
  1945. constant uint64_t & nb2,
  1946. constant uint64_t & nb3,
  1947. uint3 tgpig[[threadgroup_position_in_grid]],
  1948. uint3 tpitg[[thread_position_in_threadgroup]],
  1949. uint3 ntg[[threads_per_threadgroup]]) {
  1950. const int64_t i03 = tgpig[2];
  1951. const int64_t i02 = tgpig[1];
  1952. const int64_t i01 = tgpig[0];
  1953. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1954. const int64_t i3 = n / (ne2*ne1*ne0);
  1955. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1956. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1957. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
  1958. device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1959. for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
  1960. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1961. float min = FLT_MAX;
  1962. float max = -FLT_MAX;
  1963. for (int j = 0; j < QK4_1; j++) {
  1964. const float v = src[j];
  1965. if (min > v) min = v;
  1966. if (max < v) max = v;
  1967. }
  1968. const float d = (max - min) / ((1 << 4) - 1);
  1969. const float id = d ? 1.0f/d : 0.0f;
  1970. dst_data[i00/QK4_1].d = d;
  1971. dst_data[i00/QK4_1].m = min;
  1972. for (int j = 0; j < QK4_1/2; ++j) {
  1973. const float x0 = (src[0 + j] - min)*id;
  1974. const float x1 = (src[QK4_1/2 + j] - min)*id;
  1975. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  1976. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  1977. dst_data[i00/QK4_1].qs[j] = xi0;
  1978. dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
  1979. }
  1980. }
  1981. }
  1982. kernel void kernel_concat(
  1983. device const char * src0,
  1984. device const char * src1,
  1985. device char * dst,
  1986. constant int64_t & ne00,
  1987. constant int64_t & ne01,
  1988. constant int64_t & ne02,
  1989. constant int64_t & ne03,
  1990. constant uint64_t & nb00,
  1991. constant uint64_t & nb01,
  1992. constant uint64_t & nb02,
  1993. constant uint64_t & nb03,
  1994. constant int64_t & ne10,
  1995. constant int64_t & ne11,
  1996. constant int64_t & ne12,
  1997. constant int64_t & ne13,
  1998. constant uint64_t & nb10,
  1999. constant uint64_t & nb11,
  2000. constant uint64_t & nb12,
  2001. constant uint64_t & nb13,
  2002. constant int64_t & ne0,
  2003. constant int64_t & ne1,
  2004. constant int64_t & ne2,
  2005. constant int64_t & ne3,
  2006. constant uint64_t & nb0,
  2007. constant uint64_t & nb1,
  2008. constant uint64_t & nb2,
  2009. constant uint64_t & nb3,
  2010. uint3 tgpig[[threadgroup_position_in_grid]],
  2011. uint3 tpitg[[thread_position_in_threadgroup]],
  2012. uint3 ntg[[threads_per_threadgroup]]) {
  2013. const int64_t i03 = tgpig.z;
  2014. const int64_t i02 = tgpig.y;
  2015. const int64_t i01 = tgpig.x;
  2016. const int64_t i13 = i03 % ne13;
  2017. const int64_t i12 = i02 % ne12;
  2018. const int64_t i11 = i01 % ne11;
  2019. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
  2020. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
  2021. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
  2022. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  2023. if (i02 < ne02) {
  2024. ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
  2025. src0_ptr += ntg.x*nb00;
  2026. } else {
  2027. ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
  2028. src1_ptr += ntg.x*nb10;
  2029. }
  2030. dst_ptr += ntg.x*nb0;
  2031. }
  2032. }
  2033. //============================================ k-quants ======================================================
  2034. #ifndef QK_K
  2035. #define QK_K 256
  2036. #else
  2037. static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
  2038. #endif
  2039. #if QK_K == 256
  2040. #define K_SCALE_SIZE 12
  2041. #else
  2042. #define K_SCALE_SIZE 4
  2043. #endif
  2044. typedef struct {
  2045. uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
  2046. uint8_t qs[QK_K/4]; // quants
  2047. half d; // super-block scale for quantized scales
  2048. half dmin; // super-block scale for quantized mins
  2049. } block_q2_K;
  2050. // 84 bytes / block
  2051. typedef struct {
  2052. uint8_t hmask[QK_K/8]; // quants - high bit
  2053. uint8_t qs[QK_K/4]; // quants - low 2 bits
  2054. #if QK_K == 64
  2055. uint8_t scales[2];
  2056. #else
  2057. uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
  2058. #endif
  2059. half d; // super-block scale
  2060. } block_q3_K;
  2061. #if QK_K == 64
  2062. typedef struct {
  2063. half d[2]; // super-block scales/mins
  2064. uint8_t scales[2];
  2065. uint8_t qs[QK_K/2]; // 4-bit quants
  2066. } block_q4_K;
  2067. #else
  2068. typedef struct {
  2069. half d; // super-block scale for quantized scales
  2070. half dmin; // super-block scale for quantized mins
  2071. uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
  2072. uint8_t qs[QK_K/2]; // 4--bit quants
  2073. } block_q4_K;
  2074. #endif
  2075. #if QK_K == 64
  2076. typedef struct {
  2077. half d; // super-block scales/mins
  2078. int8_t scales[QK_K/16]; // 8-bit block scales
  2079. uint8_t qh[QK_K/8]; // quants, high bit
  2080. uint8_t qs[QK_K/2]; // quants, low 4 bits
  2081. } block_q5_K;
  2082. #else
  2083. typedef struct {
  2084. half d; // super-block scale for quantized scales
  2085. half dmin; // super-block scale for quantized mins
  2086. uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
  2087. uint8_t qh[QK_K/8]; // quants, high bit
  2088. uint8_t qs[QK_K/2]; // quants, low 4 bits
  2089. } block_q5_K;
  2090. // 176 bytes / block
  2091. #endif
  2092. typedef struct {
  2093. uint8_t ql[QK_K/2]; // quants, lower 4 bits
  2094. uint8_t qh[QK_K/4]; // quants, upper 2 bits
  2095. int8_t scales[QK_K/16]; // scales, quantized with 8 bits
  2096. half d; // super-block scale
  2097. } block_q6_K;
  2098. // 210 bytes / block
  2099. typedef struct {
  2100. half d;
  2101. uint16_t qs[QK_K/8];
  2102. } block_iq2_xxs;
  2103. // 66 bytes / block for QK_K = 256, so 2.0625 bpw
  2104. //====================================== dot products =========================
  2105. void kernel_mul_mv_q2_K_f32_impl(
  2106. device const void * src0,
  2107. device const float * src1,
  2108. device float * dst,
  2109. constant int64_t & ne00,
  2110. constant int64_t & ne01,
  2111. constant int64_t & ne02,
  2112. constant int64_t & ne10,
  2113. constant int64_t & ne12,
  2114. constant int64_t & ne0,
  2115. constant int64_t & ne1,
  2116. constant uint & r2,
  2117. constant uint & r3,
  2118. uint3 tgpig[[threadgroup_position_in_grid]],
  2119. uint tiisg[[thread_index_in_simdgroup]],
  2120. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2121. const int nb = ne00/QK_K;
  2122. const int r0 = tgpig.x;
  2123. const int r1 = tgpig.y;
  2124. const int im = tgpig.z;
  2125. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2126. const int ib_row = first_row * nb;
  2127. const uint i12 = im%ne12;
  2128. const uint i13 = im/ne12;
  2129. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2130. device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
  2131. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2132. float yl[32];
  2133. float sumf[N_DST]={0.f}, all_sum;
  2134. const int step = sizeof(block_q2_K) * nb;
  2135. #if QK_K == 256
  2136. const int ix = tiisg/8; // 0...3
  2137. const int it = tiisg%8; // 0...7
  2138. const int iq = it/4; // 0 or 1
  2139. const int ir = it%4; // 0...3
  2140. const int is = (8*ir)/16;// 0 or 1
  2141. device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
  2142. for (int ib = ix; ib < nb; ib += 4) {
  2143. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2144. for (int i = 0; i < 8; ++i) {
  2145. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2146. yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
  2147. yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
  2148. yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
  2149. }
  2150. device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
  2151. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2152. device const half * dh = &x[ib].d;
  2153. for (int row = 0; row < N_DST; row++) {
  2154. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2155. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2156. for (int i = 0; i < 8; i += 2) {
  2157. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2158. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2159. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2160. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2161. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2162. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2163. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2164. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2165. }
  2166. float dall = dh[0];
  2167. float dmin = dh[1] * 1.f/16.f;
  2168. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2169. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
  2170. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
  2171. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
  2172. dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
  2173. qs += step/2;
  2174. sc += step;
  2175. dh += step/2;
  2176. }
  2177. y4 += 4 * QK_K;
  2178. }
  2179. #else
  2180. const int ix = tiisg/2; // 0...15
  2181. const int it = tiisg%2; // 0...1
  2182. device const float * y4 = y + ix * QK_K + 8 * it;
  2183. for (int ib = ix; ib < nb; ib += 16) {
  2184. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2185. for (int i = 0; i < 8; ++i) {
  2186. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2187. yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
  2188. yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
  2189. yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
  2190. }
  2191. device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
  2192. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2193. device const half * dh = &x[ib].d;
  2194. for (int row = 0; row < N_DST; row++) {
  2195. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2196. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2197. for (int i = 0; i < 8; i += 2) {
  2198. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2199. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2200. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2201. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2202. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2203. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2204. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2205. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2206. }
  2207. float dall = dh[0];
  2208. float dmin = dh[1];
  2209. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2210. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
  2211. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
  2212. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
  2213. dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
  2214. qs += step/2;
  2215. sc += step;
  2216. dh += step/2;
  2217. }
  2218. y4 += 16 * QK_K;
  2219. }
  2220. #endif
  2221. for (int row = 0; row < N_DST; ++row) {
  2222. all_sum = simd_sum(sumf[row]);
  2223. if (tiisg == 0) {
  2224. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2225. }
  2226. }
  2227. }
  2228. [[host_name("kernel_mul_mv_q2_K_f32")]]
  2229. kernel void kernel_mul_mv_q2_K_f32(
  2230. device const void * src0,
  2231. device const float * src1,
  2232. device float * dst,
  2233. constant int64_t & ne00,
  2234. constant int64_t & ne01,
  2235. constant int64_t & ne02,
  2236. constant uint64_t & nb00,
  2237. constant uint64_t & nb01,
  2238. constant uint64_t & nb02,
  2239. constant int64_t & ne10,
  2240. constant int64_t & ne11,
  2241. constant int64_t & ne12,
  2242. constant uint64_t & nb10,
  2243. constant uint64_t & nb11,
  2244. constant uint64_t & nb12,
  2245. constant int64_t & ne0,
  2246. constant int64_t & ne1,
  2247. constant uint & r2,
  2248. constant uint & r3,
  2249. uint3 tgpig[[threadgroup_position_in_grid]],
  2250. uint tiisg[[thread_index_in_simdgroup]],
  2251. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2252. kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2253. }
  2254. #if QK_K == 256
  2255. void kernel_mul_mv_q3_K_f32_impl(
  2256. device const void * src0,
  2257. device const float * src1,
  2258. device float * dst,
  2259. constant int64_t & ne00,
  2260. constant int64_t & ne01,
  2261. constant int64_t & ne02,
  2262. constant int64_t & ne10,
  2263. constant int64_t & ne12,
  2264. constant int64_t & ne0,
  2265. constant int64_t & ne1,
  2266. constant uint & r2,
  2267. constant uint & r3,
  2268. uint3 tgpig[[threadgroup_position_in_grid]],
  2269. uint tiisg[[thread_index_in_simdgroup]],
  2270. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2271. const int nb = ne00/QK_K;
  2272. const int64_t r0 = tgpig.x;
  2273. const int64_t r1 = tgpig.y;
  2274. const int64_t im = tgpig.z;
  2275. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2276. const uint i12 = im%ne12;
  2277. const uint i13 = im/ne12;
  2278. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2279. device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
  2280. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2281. float yl[32];
  2282. //const uint16_t kmask1 = 0x3030;
  2283. //const uint16_t kmask2 = 0x0f0f;
  2284. const int tid = tiisg/4;
  2285. const int ix = tiisg%4;
  2286. const int ip = tid/4; // 0 or 1
  2287. const int il = 2*((tid%4)/2); // 0 or 2
  2288. const int ir = tid%2;
  2289. const int n = 8;
  2290. const int l0 = n*ir;
  2291. // One would think that the Metal compiler would figure out that ip and il can only have
  2292. // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
  2293. // with these two tales.
  2294. //
  2295. // Possible masks for the high bit
  2296. const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
  2297. {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
  2298. {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
  2299. {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
  2300. // Possible masks for the low 2 bits
  2301. const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
  2302. const ushort4 hm = mm[2*ip + il/2];
  2303. const int shift = 2*il;
  2304. const float v1 = il == 0 ? 4.f : 64.f;
  2305. const float v2 = 4.f * v1;
  2306. const uint16_t s_shift1 = 4*ip;
  2307. const uint16_t s_shift2 = s_shift1 + il;
  2308. const int q_offset = 32*ip + l0;
  2309. const int y_offset = 128*ip + 32*il + l0;
  2310. const int step = sizeof(block_q3_K) * nb / 2;
  2311. device const float * y1 = yy + ix*QK_K + y_offset;
  2312. uint32_t scales32, aux32;
  2313. thread uint16_t * scales16 = (thread uint16_t *)&scales32;
  2314. thread const int8_t * scales = (thread const int8_t *)&scales32;
  2315. float sumf1[2] = {0.f};
  2316. float sumf2[2] = {0.f};
  2317. for (int i = ix; i < nb; i += 4) {
  2318. for (int l = 0; l < 8; ++l) {
  2319. yl[l+ 0] = y1[l+ 0];
  2320. yl[l+ 8] = y1[l+16];
  2321. yl[l+16] = y1[l+32];
  2322. yl[l+24] = y1[l+48];
  2323. }
  2324. device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
  2325. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
  2326. device const uint16_t * a = (device const uint16_t *)(x[i].scales);
  2327. device const half * dh = &x[i].d;
  2328. for (int row = 0; row < 2; ++row) {
  2329. const float d_all = (float)dh[0];
  2330. scales16[0] = a[4];
  2331. scales16[1] = a[5];
  2332. aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
  2333. scales16[0] = a[il+0];
  2334. scales16[1] = a[il+1];
  2335. scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
  2336. float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
  2337. for (int l = 0; l < n; l += 2) {
  2338. const int32_t qs = q[l/2];
  2339. s1 += yl[l+0] * (qs & qm[il/2][0]);
  2340. s2 += yl[l+1] * (qs & qm[il/2][1]);
  2341. s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
  2342. s4 += yl[l+16] * (qs & qm[il/2][2]);
  2343. s5 += yl[l+17] * (qs & qm[il/2][3]);
  2344. s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
  2345. }
  2346. float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2347. float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2348. sumf1[row] += d1 * (scales[0] - 32);
  2349. sumf2[row] += d2 * (scales[2] - 32);
  2350. s1 = s2 = s3 = s4 = s5 = s6 = 0;
  2351. for (int l = 0; l < n; l += 2) {
  2352. const int32_t qs = q[l/2+8];
  2353. s1 += yl[l+8] * (qs & qm[il/2][0]);
  2354. s2 += yl[l+9] * (qs & qm[il/2][1]);
  2355. s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
  2356. s4 += yl[l+24] * (qs & qm[il/2][2]);
  2357. s5 += yl[l+25] * (qs & qm[il/2][3]);
  2358. s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
  2359. }
  2360. d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2361. d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2362. sumf1[row] += d1 * (scales[1] - 32);
  2363. sumf2[row] += d2 * (scales[3] - 32);
  2364. q += step;
  2365. h += step;
  2366. a += step;
  2367. dh += step;
  2368. }
  2369. y1 += 4 * QK_K;
  2370. }
  2371. for (int row = 0; row < 2; ++row) {
  2372. const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
  2373. sumf1[row] = simd_sum(sumf);
  2374. }
  2375. if (tiisg == 0) {
  2376. for (int row = 0; row < 2; ++row) {
  2377. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
  2378. }
  2379. }
  2380. }
  2381. #else
  2382. void kernel_mul_mv_q3_K_f32_impl(
  2383. device const void * src0,
  2384. device const float * src1,
  2385. device float * dst,
  2386. constant int64_t & ne00,
  2387. constant int64_t & ne01,
  2388. constant int64_t & ne02,
  2389. constant int64_t & ne10,
  2390. constant int64_t & ne12,
  2391. constant int64_t & ne0,
  2392. constant int64_t & ne1,
  2393. constant uint & r2,
  2394. constant uint & r3,
  2395. uint3 tgpig[[threadgroup_position_in_grid]],
  2396. uint tiisg[[thread_index_in_simdgroup]],
  2397. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2398. const int nb = ne00/QK_K;
  2399. const int64_t r0 = tgpig.x;
  2400. const int64_t r1 = tgpig.y;
  2401. const int64_t im = tgpig.z;
  2402. const int row = 2 * r0 + sgitg;
  2403. const uint i12 = im%ne12;
  2404. const uint i13 = im/ne12;
  2405. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2406. device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
  2407. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2408. const int ix = tiisg/4;
  2409. const int il = 4 * (tiisg%4);// 0, 4, 8, 12
  2410. const int iq = il/8; // 0, 0, 1, 1
  2411. const int in = il%8; // 0, 4, 0, 4
  2412. float2 sum = {0.f, 0.f};
  2413. for (int i = ix; i < nb; i += 8) {
  2414. const float d_all = (float)(x[i].d);
  2415. device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
  2416. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
  2417. device const uint16_t * s = (device const uint16_t *)(x[i].scales);
  2418. device const float * y = yy + i * QK_K + il;
  2419. const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
  2420. const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
  2421. const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
  2422. const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
  2423. for (int l = 0; l < 4; l += 2) {
  2424. const uint16_t hm = h[l/2] >> iq;
  2425. sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
  2426. + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
  2427. + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
  2428. + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
  2429. sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
  2430. + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
  2431. + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
  2432. + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
  2433. }
  2434. }
  2435. const float sumf = sum[0] + sum[1] * 1.f/256.f;
  2436. const float tot = simd_sum(sumf);
  2437. if (tiisg == 0) {
  2438. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2439. }
  2440. }
  2441. #endif
  2442. [[host_name("kernel_mul_mv_q3_K_f32")]]
  2443. kernel void kernel_mul_mv_q3_K_f32(
  2444. device const void * src0,
  2445. device const float * src1,
  2446. device float * dst,
  2447. constant int64_t & ne00,
  2448. constant int64_t & ne01,
  2449. constant int64_t & ne02,
  2450. constant uint64_t & nb00,
  2451. constant uint64_t & nb01,
  2452. constant uint64_t & nb02,
  2453. constant int64_t & ne10,
  2454. constant int64_t & ne11,
  2455. constant int64_t & ne12,
  2456. constant uint64_t & nb10,
  2457. constant uint64_t & nb11,
  2458. constant uint64_t & nb12,
  2459. constant int64_t & ne0,
  2460. constant int64_t & ne1,
  2461. constant uint & r2,
  2462. constant uint & r3,
  2463. uint3 tgpig[[threadgroup_position_in_grid]],
  2464. uint tiisg[[thread_index_in_simdgroup]],
  2465. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2466. kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2467. }
  2468. #if QK_K == 256
  2469. void kernel_mul_mv_q4_K_f32_impl(
  2470. device const void * src0,
  2471. device const float * src1,
  2472. device float * dst,
  2473. constant int64_t & ne00,
  2474. constant int64_t & ne01,
  2475. constant int64_t & ne02,
  2476. constant int64_t & ne10,
  2477. constant int64_t & ne12,
  2478. constant int64_t & ne0,
  2479. constant int64_t & ne1,
  2480. constant uint & r2,
  2481. constant uint & r3,
  2482. uint3 tgpig[[threadgroup_position_in_grid]],
  2483. uint tiisg[[thread_index_in_simdgroup]],
  2484. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2485. const uint16_t kmask1 = 0x3f3f;
  2486. const uint16_t kmask2 = 0x0f0f;
  2487. const uint16_t kmask3 = 0xc0c0;
  2488. const int ix = tiisg/8; // 0...3
  2489. const int it = tiisg%8; // 0...7
  2490. const int iq = it/4; // 0 or 1
  2491. const int ir = it%4; // 0...3
  2492. const int nb = ne00/QK_K;
  2493. const int r0 = tgpig.x;
  2494. const int r1 = tgpig.y;
  2495. const int im = tgpig.z;
  2496. //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2497. const int first_row = r0 * N_DST;
  2498. const int ib_row = first_row * nb;
  2499. const uint i12 = im%ne12;
  2500. const uint i13 = im/ne12;
  2501. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2502. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2503. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2504. float yl[16];
  2505. float yh[16];
  2506. float sumf[N_DST]={0.f}, all_sum;
  2507. const int step = sizeof(block_q4_K) * nb / 2;
  2508. device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
  2509. uint16_t sc16[4];
  2510. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2511. for (int ib = ix; ib < nb; ib += 4) {
  2512. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2513. for (int i = 0; i < 8; ++i) {
  2514. yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
  2515. yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
  2516. yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
  2517. yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
  2518. }
  2519. device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
  2520. device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2521. device const half * dh = &x[ib].d;
  2522. for (int row = 0; row < N_DST; row++) {
  2523. sc16[0] = sc[0] & kmask1;
  2524. sc16[1] = sc[2] & kmask1;
  2525. sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
  2526. sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
  2527. device const uint16_t * q2 = q1 + 32;
  2528. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2529. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2530. for (int i = 0; i < 8; i += 2) {
  2531. acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
  2532. acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
  2533. acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
  2534. acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
  2535. acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
  2536. acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
  2537. acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
  2538. acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
  2539. }
  2540. float dall = dh[0];
  2541. float dmin = dh[1];
  2542. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
  2543. (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
  2544. (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
  2545. (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
  2546. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2547. q1 += step;
  2548. sc += step;
  2549. dh += step;
  2550. }
  2551. y4 += 4 * QK_K;
  2552. }
  2553. for (int row = 0; row < N_DST; ++row) {
  2554. all_sum = simd_sum(sumf[row]);
  2555. if (tiisg == 0) {
  2556. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2557. }
  2558. }
  2559. }
  2560. #else
  2561. void kernel_mul_mv_q4_K_f32_impl(
  2562. device const void * src0,
  2563. device const float * src1,
  2564. device float * dst,
  2565. constant int64_t & ne00,
  2566. constant int64_t & ne01,
  2567. constant int64_t & ne02,
  2568. constant int64_t & ne10,
  2569. constant int64_t & ne12,
  2570. constant int64_t & ne0,
  2571. constant int64_t & ne1,
  2572. constant uint & r2,
  2573. constant uint & r3,
  2574. uint3 tgpig[[threadgroup_position_in_grid]],
  2575. uint tiisg[[thread_index_in_simdgroup]],
  2576. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2577. const int ix = tiisg/4; // 0...7
  2578. const int it = tiisg%4; // 0...3
  2579. const int nb = ne00/QK_K;
  2580. const int r0 = tgpig.x;
  2581. const int r1 = tgpig.y;
  2582. const int im = tgpig.z;
  2583. const int first_row = r0 * N_DST;
  2584. const int ib_row = first_row * nb;
  2585. const uint i12 = im%ne12;
  2586. const uint i13 = im/ne12;
  2587. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2588. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2589. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2590. float yl[8];
  2591. float yh[8];
  2592. float sumf[N_DST]={0.f}, all_sum;
  2593. const int step = sizeof(block_q4_K) * nb / 2;
  2594. device const float * y4 = y + ix * QK_K + 8 * it;
  2595. uint16_t sc16[4];
  2596. for (int ib = ix; ib < nb; ib += 8) {
  2597. float2 sumy = {0.f, 0.f};
  2598. for (int i = 0; i < 8; ++i) {
  2599. yl[i] = y4[i+ 0]; sumy[0] += yl[i];
  2600. yh[i] = y4[i+32]; sumy[1] += yh[i];
  2601. }
  2602. device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
  2603. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2604. device const half * dh = x[ib].d;
  2605. for (int row = 0; row < N_DST; row++) {
  2606. sc16[0] = sc[0] & 0x000f;
  2607. sc16[1] = sc[0] & 0x0f00;
  2608. sc16[2] = sc[0] & 0x00f0;
  2609. sc16[3] = sc[0] & 0xf000;
  2610. float2 acc1 = {0.f, 0.f};
  2611. float2 acc2 = {0.f, 0.f};
  2612. for (int i = 0; i < 8; i += 2) {
  2613. acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
  2614. acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
  2615. acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
  2616. acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
  2617. }
  2618. float dall = dh[0];
  2619. float dmin = dh[1];
  2620. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
  2621. (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
  2622. dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
  2623. qs += step;
  2624. sc += step;
  2625. dh += step;
  2626. }
  2627. y4 += 8 * QK_K;
  2628. }
  2629. for (int row = 0; row < N_DST; ++row) {
  2630. all_sum = simd_sum(sumf[row]);
  2631. if (tiisg == 0) {
  2632. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2633. }
  2634. }
  2635. }
  2636. #endif
  2637. [[host_name("kernel_mul_mv_q4_K_f32")]]
  2638. kernel void kernel_mul_mv_q4_K_f32(
  2639. device const void * src0,
  2640. device const float * src1,
  2641. device float * dst,
  2642. constant int64_t & ne00,
  2643. constant int64_t & ne01,
  2644. constant int64_t & ne02,
  2645. constant uint64_t & nb00,
  2646. constant uint64_t & nb01,
  2647. constant uint64_t & nb02,
  2648. constant int64_t & ne10,
  2649. constant int64_t & ne11,
  2650. constant int64_t & ne12,
  2651. constant uint64_t & nb10,
  2652. constant uint64_t & nb11,
  2653. constant uint64_t & nb12,
  2654. constant int64_t & ne0,
  2655. constant int64_t & ne1,
  2656. constant uint & r2,
  2657. constant uint & r3,
  2658. uint3 tgpig[[threadgroup_position_in_grid]],
  2659. uint tiisg[[thread_index_in_simdgroup]],
  2660. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2661. kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2662. }
  2663. void kernel_mul_mv_q5_K_f32_impl(
  2664. device const void * src0,
  2665. device const float * src1,
  2666. device float * dst,
  2667. constant int64_t & ne00,
  2668. constant int64_t & ne01,
  2669. constant int64_t & ne02,
  2670. constant int64_t & ne10,
  2671. constant int64_t & ne12,
  2672. constant int64_t & ne0,
  2673. constant int64_t & ne1,
  2674. constant uint & r2,
  2675. constant uint & r3,
  2676. uint3 tgpig[[threadgroup_position_in_grid]],
  2677. uint tiisg[[thread_index_in_simdgroup]],
  2678. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2679. const int nb = ne00/QK_K;
  2680. const int64_t r0 = tgpig.x;
  2681. const int64_t r1 = tgpig.y;
  2682. const int im = tgpig.z;
  2683. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2684. const uint i12 = im%ne12;
  2685. const uint i13 = im/ne12;
  2686. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2687. device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
  2688. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2689. float sumf[2]={0.f};
  2690. const int step = sizeof(block_q5_K) * nb;
  2691. #if QK_K == 256
  2692. #
  2693. float yl[16], yh[16];
  2694. const uint16_t kmask1 = 0x3f3f;
  2695. const uint16_t kmask2 = 0x0f0f;
  2696. const uint16_t kmask3 = 0xc0c0;
  2697. const int tid = tiisg/4;
  2698. const int ix = tiisg%4;
  2699. const int iq = tid/4;
  2700. const int ir = tid%4;
  2701. const int n = 8;
  2702. const int l0 = n*ir;
  2703. const int q_offset = 32*iq + l0;
  2704. const int y_offset = 64*iq + l0;
  2705. const uint8_t hm1 = 1u << (2*iq);
  2706. const uint8_t hm2 = hm1 << 1;
  2707. const uint8_t hm3 = hm1 << 4;
  2708. const uint8_t hm4 = hm2 << 4;
  2709. uint16_t sc16[4];
  2710. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2711. device const float * y1 = yy + ix*QK_K + y_offset;
  2712. for (int i = ix; i < nb; i += 4) {
  2713. device const uint8_t * q1 = x[i].qs + q_offset;
  2714. device const uint8_t * qh = x[i].qh + l0;
  2715. device const half * dh = &x[i].d;
  2716. device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
  2717. device const float * y2 = y1 + 128;
  2718. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2719. for (int l = 0; l < 8; ++l) {
  2720. yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
  2721. yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
  2722. yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
  2723. yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
  2724. }
  2725. for (int row = 0; row < 2; ++row) {
  2726. device const uint8_t * q2 = q1 + 64;
  2727. sc16[0] = a[0] & kmask1;
  2728. sc16[1] = a[2] & kmask1;
  2729. sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
  2730. sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
  2731. float4 acc1 = {0.f};
  2732. float4 acc2 = {0.f};
  2733. for (int l = 0; l < n; ++l) {
  2734. uint8_t h = qh[l];
  2735. acc1[0] += yl[l+0] * (q1[l] & 0x0F);
  2736. acc1[1] += yl[l+8] * (q1[l] & 0xF0);
  2737. acc1[2] += yh[l+0] * (q2[l] & 0x0F);
  2738. acc1[3] += yh[l+8] * (q2[l] & 0xF0);
  2739. acc2[0] += h & hm1 ? yl[l+0] : 0.f;
  2740. acc2[1] += h & hm2 ? yl[l+8] : 0.f;
  2741. acc2[2] += h & hm3 ? yh[l+0] : 0.f;
  2742. acc2[3] += h & hm4 ? yh[l+8] : 0.f;
  2743. }
  2744. const float dall = dh[0];
  2745. const float dmin = dh[1];
  2746. sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
  2747. sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
  2748. sc8[4] * (acc1[2] + 16.f*acc2[2]) +
  2749. sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
  2750. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2751. q1 += step;
  2752. qh += step;
  2753. dh += step/2;
  2754. a += step/2;
  2755. }
  2756. y1 += 4 * QK_K;
  2757. }
  2758. #else
  2759. float yl[8], yh[8];
  2760. const int il = 4 * (tiisg/8); // 0, 4, 8, 12
  2761. const int ix = tiisg%8;
  2762. const int iq = il/8; // 0, 0, 1, 1
  2763. const int in = il%8; // 0, 4, 0, 4
  2764. device const float * y = yy + ix*QK_K + il;
  2765. for (int i = ix; i < nb; i += 8) {
  2766. for (int l = 0; l < 4; ++l) {
  2767. yl[l+0] = y[l+ 0];
  2768. yl[l+4] = y[l+16];
  2769. yh[l+0] = y[l+32];
  2770. yh[l+4] = y[l+48];
  2771. }
  2772. device const half * dh = &x[i].d;
  2773. device const uint8_t * q = x[i].qs + il;
  2774. device const uint8_t * h = x[i].qh + in;
  2775. device const int8_t * s = x[i].scales;
  2776. for (int row = 0; row < 2; ++row) {
  2777. const float d = dh[0];
  2778. float2 acc = {0.f, 0.f};
  2779. for (int l = 0; l < 4; ++l) {
  2780. const uint8_t hl = h[l] >> iq;
  2781. acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
  2782. + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
  2783. acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
  2784. + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
  2785. }
  2786. sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
  2787. q += step;
  2788. h += step;
  2789. s += step;
  2790. dh += step/2;
  2791. }
  2792. y += 8 * QK_K;
  2793. }
  2794. #endif
  2795. for (int row = 0; row < 2; ++row) {
  2796. const float tot = simd_sum(sumf[row]);
  2797. if (tiisg == 0) {
  2798. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  2799. }
  2800. }
  2801. }
  2802. [[host_name("kernel_mul_mv_q5_K_f32")]]
  2803. kernel void kernel_mul_mv_q5_K_f32(
  2804. device const void * src0,
  2805. device const float * src1,
  2806. device float * dst,
  2807. constant int64_t & ne00,
  2808. constant int64_t & ne01,
  2809. constant int64_t & ne02,
  2810. constant uint64_t & nb00,
  2811. constant uint64_t & nb01,
  2812. constant uint64_t & nb02,
  2813. constant int64_t & ne10,
  2814. constant int64_t & ne11,
  2815. constant int64_t & ne12,
  2816. constant uint64_t & nb10,
  2817. constant uint64_t & nb11,
  2818. constant uint64_t & nb12,
  2819. constant int64_t & ne0,
  2820. constant int64_t & ne1,
  2821. constant uint & r2,
  2822. constant uint & r3,
  2823. uint3 tgpig[[threadgroup_position_in_grid]],
  2824. uint tiisg[[thread_index_in_simdgroup]],
  2825. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2826. kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2827. }
  2828. void kernel_mul_mv_q6_K_f32_impl(
  2829. device const void * src0,
  2830. device const float * src1,
  2831. device float * dst,
  2832. constant int64_t & ne00,
  2833. constant int64_t & ne01,
  2834. constant int64_t & ne02,
  2835. constant int64_t & ne10,
  2836. constant int64_t & ne12,
  2837. constant int64_t & ne0,
  2838. constant int64_t & ne1,
  2839. constant uint & r2,
  2840. constant uint & r3,
  2841. uint3 tgpig[[threadgroup_position_in_grid]],
  2842. uint tiisg[[thread_index_in_simdgroup]],
  2843. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2844. const uint8_t kmask1 = 0x03;
  2845. const uint8_t kmask2 = 0x0C;
  2846. const uint8_t kmask3 = 0x30;
  2847. const uint8_t kmask4 = 0xC0;
  2848. const int nb = ne00/QK_K;
  2849. const int64_t r0 = tgpig.x;
  2850. const int64_t r1 = tgpig.y;
  2851. const int im = tgpig.z;
  2852. const int row = 2 * r0 + sgitg;
  2853. const uint i12 = im%ne12;
  2854. const uint i13 = im/ne12;
  2855. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2856. device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
  2857. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2858. float sumf = 0;
  2859. #if QK_K == 256
  2860. const int tid = tiisg/2;
  2861. const int ix = tiisg%2;
  2862. const int ip = tid/8; // 0 or 1
  2863. const int il = tid%8;
  2864. const int n = 4;
  2865. const int l0 = n*il;
  2866. const int is = 8*ip + l0/16;
  2867. const int y_offset = 128*ip + l0;
  2868. const int q_offset_l = 64*ip + l0;
  2869. const int q_offset_h = 32*ip + l0;
  2870. for (int i = ix; i < nb; i += 2) {
  2871. device const uint8_t * q1 = x[i].ql + q_offset_l;
  2872. device const uint8_t * q2 = q1 + 32;
  2873. device const uint8_t * qh = x[i].qh + q_offset_h;
  2874. device const int8_t * sc = x[i].scales + is;
  2875. device const float * y = yy + i * QK_K + y_offset;
  2876. const float dall = x[i].d;
  2877. float4 sums = {0.f, 0.f, 0.f, 0.f};
  2878. for (int l = 0; l < n; ++l) {
  2879. sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  2880. sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  2881. sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
  2882. sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  2883. }
  2884. sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
  2885. }
  2886. #else
  2887. const int ix = tiisg/4;
  2888. const int il = 4*(tiisg%4);
  2889. for (int i = ix; i < nb; i += 8) {
  2890. device const float * y = yy + i * QK_K + il;
  2891. device const uint8_t * ql = x[i].ql + il;
  2892. device const uint8_t * qh = x[i].qh + il;
  2893. device const int8_t * s = x[i].scales;
  2894. const float d = x[i].d;
  2895. float4 sums = {0.f, 0.f, 0.f, 0.f};
  2896. for (int l = 0; l < 4; ++l) {
  2897. sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  2898. sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  2899. sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
  2900. sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  2901. }
  2902. sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
  2903. }
  2904. #endif
  2905. const float tot = simd_sum(sumf);
  2906. if (tiisg == 0) {
  2907. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2908. }
  2909. }
  2910. [[host_name("kernel_mul_mv_q6_K_f32")]]
  2911. kernel void kernel_mul_mv_q6_K_f32(
  2912. device const void * src0,
  2913. device const float * src1,
  2914. device float * dst,
  2915. constant int64_t & ne00,
  2916. constant int64_t & ne01,
  2917. constant int64_t & ne02,
  2918. constant uint64_t & nb00,
  2919. constant uint64_t & nb01,
  2920. constant uint64_t & nb02,
  2921. constant int64_t & ne10,
  2922. constant int64_t & ne11,
  2923. constant int64_t & ne12,
  2924. constant uint64_t & nb10,
  2925. constant uint64_t & nb11,
  2926. constant uint64_t & nb12,
  2927. constant int64_t & ne0,
  2928. constant int64_t & ne1,
  2929. constant uint & r2,
  2930. constant uint & r3,
  2931. uint3 tgpig[[threadgroup_position_in_grid]],
  2932. uint tiisg[[thread_index_in_simdgroup]],
  2933. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2934. kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2935. }
  2936. // ======================= "True" 2-bit
  2937. constexpr constant static uint64_t kgrid_iq2xxs[256] = {
  2938. 0x0808080808080808, 0x080808080808082b, 0x0808080808081919, 0x0808080808082b08,
  2939. 0x0808080808082b2b, 0x0808080808190819, 0x0808080808191908, 0x08080808082b0808,
  2940. 0x08080808082b082b, 0x08080808082b2b08, 0x08080808082b2b2b, 0x0808080819080819,
  2941. 0x0808080819081908, 0x0808080819190808, 0x0808080819192b08, 0x08080808192b0819,
  2942. 0x08080808192b1908, 0x080808082b080808, 0x080808082b08082b, 0x080808082b082b2b,
  2943. 0x080808082b2b082b, 0x0808081908080819, 0x0808081908081908, 0x0808081908190808,
  2944. 0x0808081908191919, 0x0808081919080808, 0x080808192b081908, 0x080808192b192b08,
  2945. 0x0808082b08080808, 0x0808082b0808082b, 0x0808082b082b082b, 0x0808082b2b08082b,
  2946. 0x0808190808080819, 0x0808190808081908, 0x0808190808190808, 0x08081908082b0819,
  2947. 0x08081908082b1908, 0x0808190819080808, 0x080819081908082b, 0x0808190819082b08,
  2948. 0x08081908192b0808, 0x080819082b080819, 0x080819082b081908, 0x080819082b190808,
  2949. 0x080819082b2b1908, 0x0808191908080808, 0x080819190808082b, 0x0808191908082b08,
  2950. 0x08081919082b0808, 0x080819191908192b, 0x08081919192b2b19, 0x080819192b080808,
  2951. 0x080819192b190819, 0x0808192b08082b19, 0x0808192b08190808, 0x0808192b19080808,
  2952. 0x0808192b2b081908, 0x0808192b2b2b1908, 0x08082b0808080808, 0x08082b0808081919,
  2953. 0x08082b0808082b08, 0x08082b0808191908, 0x08082b08082b2b08, 0x08082b0819080819,
  2954. 0x08082b0819081908, 0x08082b0819190808, 0x08082b081919082b, 0x08082b082b082b08,
  2955. 0x08082b1908081908, 0x08082b1919080808, 0x08082b2b0808082b, 0x08082b2b08191908,
  2956. 0x0819080808080819, 0x0819080808081908, 0x0819080808190808, 0x08190808082b0819,
  2957. 0x0819080819080808, 0x08190808192b0808, 0x081908082b081908, 0x081908082b190808,
  2958. 0x081908082b191919, 0x0819081908080808, 0x0819081908082b08, 0x08190819082b0808,
  2959. 0x0819081919190808, 0x0819081919192b2b, 0x081908192b080808, 0x0819082b082b1908,
  2960. 0x0819082b19081919, 0x0819190808080808, 0x0819190808082b08, 0x08191908082b0808,
  2961. 0x08191908082b1919, 0x0819190819082b19, 0x081919082b080808, 0x0819191908192b08,
  2962. 0x08191919192b082b, 0x0819192b08080808, 0x0819192b0819192b, 0x08192b0808080819,
  2963. 0x08192b0808081908, 0x08192b0808190808, 0x08192b0819080808, 0x08192b082b080819,
  2964. 0x08192b1908080808, 0x08192b1908081919, 0x08192b192b2b0808, 0x08192b2b19190819,
  2965. 0x082b080808080808, 0x082b08080808082b, 0x082b080808082b2b, 0x082b080819081908,
  2966. 0x082b0808192b0819, 0x082b08082b080808, 0x082b08082b08082b, 0x082b0819082b2b19,
  2967. 0x082b081919082b08, 0x082b082b08080808, 0x082b082b0808082b, 0x082b190808080819,
  2968. 0x082b190808081908, 0x082b190808190808, 0x082b190819080808, 0x082b19081919192b,
  2969. 0x082b191908080808, 0x082b191919080819, 0x082b1919192b1908, 0x082b192b2b190808,
  2970. 0x082b2b0808082b08, 0x082b2b08082b0808, 0x082b2b082b191908, 0x082b2b2b19081908,
  2971. 0x1908080808080819, 0x1908080808081908, 0x1908080808190808, 0x1908080808192b08,
  2972. 0x19080808082b0819, 0x19080808082b1908, 0x1908080819080808, 0x1908080819082b08,
  2973. 0x190808081919192b, 0x19080808192b0808, 0x190808082b080819, 0x190808082b081908,
  2974. 0x190808082b190808, 0x1908081908080808, 0x19080819082b0808, 0x19080819192b0819,
  2975. 0x190808192b080808, 0x190808192b081919, 0x1908082b08080819, 0x1908082b08190808,
  2976. 0x1908082b19082b08, 0x1908082b1919192b, 0x1908082b192b2b08, 0x1908190808080808,
  2977. 0x1908190808082b08, 0x19081908082b0808, 0x190819082b080808, 0x190819082b192b19,
  2978. 0x190819190819082b, 0x19081919082b1908, 0x1908192b08080808, 0x19082b0808080819,
  2979. 0x19082b0808081908, 0x19082b0808190808, 0x19082b0819080808, 0x19082b0819081919,
  2980. 0x19082b1908080808, 0x19082b1919192b08, 0x19082b19192b0819, 0x19082b192b08082b,
  2981. 0x19082b2b19081919, 0x19082b2b2b190808, 0x1919080808080808, 0x1919080808082b08,
  2982. 0x1919080808190819, 0x1919080808192b19, 0x19190808082b0808, 0x191908082b080808,
  2983. 0x191908082b082b08, 0x1919081908081908, 0x191908191908082b, 0x191908192b2b1908,
  2984. 0x1919082b2b190819, 0x191919082b190808, 0x191919082b19082b, 0x1919191908082b2b,
  2985. 0x1919192b08080819, 0x1919192b19191908, 0x19192b0808080808, 0x19192b0808190819,
  2986. 0x19192b0808192b19, 0x19192b08192b1908, 0x19192b1919080808, 0x19192b2b08082b08,
  2987. 0x192b080808081908, 0x192b080808190808, 0x192b080819080808, 0x192b0808192b2b08,
  2988. 0x192b081908080808, 0x192b081919191919, 0x192b082b08192b08, 0x192b082b192b0808,
  2989. 0x192b190808080808, 0x192b190808081919, 0x192b191908190808, 0x192b19190819082b,
  2990. 0x192b19192b081908, 0x192b2b081908082b, 0x2b08080808080808, 0x2b0808080808082b,
  2991. 0x2b08080808082b2b, 0x2b08080819080819, 0x2b0808082b08082b, 0x2b08081908081908,
  2992. 0x2b08081908192b08, 0x2b08081919080808, 0x2b08082b08190819, 0x2b08190808080819,
  2993. 0x2b08190808081908, 0x2b08190808190808, 0x2b08190808191919, 0x2b08190819080808,
  2994. 0x2b081908192b0808, 0x2b08191908080808, 0x2b0819191908192b, 0x2b0819192b191908,
  2995. 0x2b08192b08082b19, 0x2b08192b19080808, 0x2b08192b192b0808, 0x2b082b080808082b,
  2996. 0x2b082b1908081908, 0x2b082b2b08190819, 0x2b19080808081908, 0x2b19080808190808,
  2997. 0x2b190808082b1908, 0x2b19080819080808, 0x2b1908082b2b0819, 0x2b1908190819192b,
  2998. 0x2b1908192b080808, 0x2b19082b19081919, 0x2b19190808080808, 0x2b191908082b082b,
  2999. 0x2b19190819081908, 0x2b19191919190819, 0x2b192b082b080819, 0x2b192b19082b0808,
  3000. 0x2b2b08080808082b, 0x2b2b080819190808, 0x2b2b08082b081919, 0x2b2b081908082b19,
  3001. 0x2b2b082b08080808, 0x2b2b190808192b08, 0x2b2b2b0819190808, 0x2b2b2b1908081908,
  3002. };
  3003. constexpr constant static uint8_t ksigns_iq2xs[128] = {
  3004. 0, 129, 130, 3, 132, 5, 6, 135, 136, 9, 10, 139, 12, 141, 142, 15,
  3005. 144, 17, 18, 147, 20, 149, 150, 23, 24, 153, 154, 27, 156, 29, 30, 159,
  3006. 160, 33, 34, 163, 36, 165, 166, 39, 40, 169, 170, 43, 172, 45, 46, 175,
  3007. 48, 177, 178, 51, 180, 53, 54, 183, 184, 57, 58, 187, 60, 189, 190, 63,
  3008. 192, 65, 66, 195, 68, 197, 198, 71, 72, 201, 202, 75, 204, 77, 78, 207,
  3009. 80, 209, 210, 83, 212, 85, 86, 215, 216, 89, 90, 219, 92, 221, 222, 95,
  3010. 96, 225, 226, 99, 228, 101, 102, 231, 232, 105, 106, 235, 108, 237, 238, 111,
  3011. 240, 113, 114, 243, 116, 245, 246, 119, 120, 249, 250, 123, 252, 125, 126, 255,
  3012. };
  3013. constexpr constant static uint8_t kmask_iq2xs[8] = {1, 2, 4, 8, 16, 32, 64, 128};
  3014. void kernel_mul_mv_iq2_xxs_f32_impl(
  3015. device const void * src0,
  3016. device const float * src1,
  3017. device float * dst,
  3018. constant int64_t & ne00,
  3019. constant int64_t & ne01,
  3020. constant int64_t & ne02,
  3021. constant int64_t & ne10,
  3022. constant int64_t & ne12,
  3023. constant int64_t & ne0,
  3024. constant int64_t & ne1,
  3025. constant uint & r2,
  3026. constant uint & r3,
  3027. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3028. uint3 tgpig[[threadgroup_position_in_grid]],
  3029. uint tiisg[[thread_index_in_simdgroup]],
  3030. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3031. const int nb = ne00/QK_K;
  3032. const int r0 = tgpig.x;
  3033. const int r1 = tgpig.y;
  3034. const int im = tgpig.z;
  3035. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  3036. const int ib_row = first_row * nb;
  3037. const uint i12 = im%ne12;
  3038. const uint i13 = im/ne12;
  3039. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  3040. device const block_iq2_xxs * x = (device const block_iq2_xxs *) src0 + ib_row + offset0;
  3041. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  3042. float yl[32];
  3043. float sumf[N_DST]={0.f}, all_sum;
  3044. const int nb32 = nb * (QK_K / 32);
  3045. threadgroup uint64_t * values = (threadgroup uint64_t *)shared_values;
  3046. threadgroup uint8_t * shared_signs = (threadgroup uint8_t *)(values + 256);
  3047. {
  3048. int nval = 4;
  3049. int pos = (32*sgitg + tiisg)*nval;
  3050. for (int i = 0; i < nval; ++i) values[pos + i] = kgrid_iq2xxs[pos + i];
  3051. nval = 2;
  3052. pos = (32*sgitg + tiisg)*nval;
  3053. for (int i = 0; i < nval; ++i) shared_signs[pos+i] = ksigns_iq2xs[pos+i];
  3054. threadgroup_barrier(mem_flags::mem_threadgroup);
  3055. }
  3056. #if QK_K == 256
  3057. const int ix = tiisg;
  3058. device const float * y4 = y + 32 * ix;
  3059. for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
  3060. for (int i = 0; i < 32; ++i) {
  3061. yl[i] = y4[i];
  3062. }
  3063. const int ibl = ib32 / (QK_K / 32);
  3064. const int ib = ib32 % (QK_K / 32);
  3065. device const block_iq2_xxs * xr = x + ibl;
  3066. device const uint16_t * q2 = xr->qs + 4 * ib;
  3067. device const half * dh = &xr->d;
  3068. for (int row = 0; row < N_DST; row++) {
  3069. const float db = dh[0];
  3070. device const uint8_t * aux8 = (device const uint8_t *)q2;
  3071. const uint32_t aux32 = q2[2] | (q2[3] << 16);
  3072. const float d = db * (0.5f + (aux32 >> 28));
  3073. float sum = 0;
  3074. for (int l = 0; l < 4; ++l) {
  3075. const threadgroup uint8_t * grid = (const threadgroup uint8_t *)(values + aux8[l]);
  3076. const uint8_t signs = shared_signs[(aux32 >> 7*l) & 127];
  3077. for (int j = 0; j < 8; ++j) {
  3078. sum += yl[8*l + j] * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
  3079. }
  3080. }
  3081. sumf[row] += d * sum;
  3082. dh += nb*sizeof(block_iq2_xxs)/2;
  3083. q2 += nb*sizeof(block_iq2_xxs)/2;
  3084. }
  3085. y4 += 32 * 32;
  3086. }
  3087. #else
  3088. // TODO
  3089. #endif
  3090. for (int row = 0; row < N_DST; ++row) {
  3091. all_sum = simd_sum(sumf[row]);
  3092. if (tiisg == 0) {
  3093. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum * 0.25f;
  3094. }
  3095. }
  3096. }
  3097. [[host_name("kernel_mul_mv_iq2_xxs_f32")]]
  3098. kernel void kernel_mul_mv_iq2_xxs_f32(
  3099. device const void * src0,
  3100. device const float * src1,
  3101. device float * dst,
  3102. constant int64_t & ne00,
  3103. constant int64_t & ne01,
  3104. constant int64_t & ne02,
  3105. constant uint64_t & nb00,
  3106. constant uint64_t & nb01,
  3107. constant uint64_t & nb02,
  3108. constant int64_t & ne10,
  3109. constant int64_t & ne11,
  3110. constant int64_t & ne12,
  3111. constant uint64_t & nb10,
  3112. constant uint64_t & nb11,
  3113. constant uint64_t & nb12,
  3114. constant int64_t & ne0,
  3115. constant int64_t & ne1,
  3116. constant uint & r2,
  3117. constant uint & r3,
  3118. threadgroup int8_t * shared_values [[threadgroup(0)]],
  3119. uint3 tgpig[[threadgroup_position_in_grid]],
  3120. uint tiisg[[thread_index_in_simdgroup]],
  3121. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3122. kernel_mul_mv_iq2_xxs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
  3123. }
  3124. //============================= templates and their specializations =============================
  3125. // NOTE: this is not dequantizing - we are simply fitting the template
  3126. template <typename type4x4>
  3127. void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
  3128. float4x4 temp = *(((device float4x4 *)src));
  3129. for (int i = 0; i < 16; i++){
  3130. reg[i/4][i%4] = temp[i/4][i%4];
  3131. }
  3132. }
  3133. template <typename type4x4>
  3134. void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
  3135. half4x4 temp = *(((device half4x4 *)src));
  3136. for (int i = 0; i < 16; i++){
  3137. reg[i/4][i%4] = temp[i/4][i%4];
  3138. }
  3139. }
  3140. template <typename type4x4>
  3141. void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
  3142. device const uint16_t * qs = ((device const uint16_t *)xb + 1);
  3143. const float d1 = il ? (xb->d / 16.h) : xb->d;
  3144. const float d2 = d1 / 256.f;
  3145. const float md = -8.h * xb->d;
  3146. const ushort mask0 = il ? 0x00F0 : 0x000F;
  3147. const ushort mask1 = mask0 << 8;
  3148. for (int i=0;i<8;i++) {
  3149. reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
  3150. reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
  3151. }
  3152. }
  3153. template <typename type4x4>
  3154. void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
  3155. device const uint16_t * qs = ((device const uint16_t *)xb + 2);
  3156. const float d1 = il ? (xb->d / 16.h) : xb->d;
  3157. const float d2 = d1 / 256.f;
  3158. const float m = xb->m;
  3159. const ushort mask0 = il ? 0x00F0 : 0x000F;
  3160. const ushort mask1 = mask0 << 8;
  3161. for (int i=0;i<8;i++) {
  3162. reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
  3163. reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
  3164. }
  3165. }
  3166. template <typename type4x4>
  3167. void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
  3168. device const uint16_t * qs = ((device const uint16_t *)xb + 3);
  3169. const float d = xb->d;
  3170. const float md = -16.h * xb->d;
  3171. const ushort mask = il ? 0x00F0 : 0x000F;
  3172. const uint32_t qh = *((device const uint32_t *)xb->qh);
  3173. const int x_mv = il ? 4 : 0;
  3174. const int gh_mv = il ? 12 : 0;
  3175. const int gh_bk = il ? 0 : 4;
  3176. for (int i = 0; i < 8; i++) {
  3177. // extract the 5-th bits for x0 and x1
  3178. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  3179. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  3180. // combine the 4-bits from qs with the 5th bit
  3181. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  3182. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  3183. reg[i/2][2*(i%2)+0] = d * x0 + md;
  3184. reg[i/2][2*(i%2)+1] = d * x1 + md;
  3185. }
  3186. }
  3187. template <typename type4x4>
  3188. void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
  3189. device const uint16_t * qs = ((device const uint16_t *)xb + 4);
  3190. const float d = xb->d;
  3191. const float m = xb->m;
  3192. const ushort mask = il ? 0x00F0 : 0x000F;
  3193. const uint32_t qh = *((device const uint32_t *)xb->qh);
  3194. const int x_mv = il ? 4 : 0;
  3195. const int gh_mv = il ? 12 : 0;
  3196. const int gh_bk = il ? 0 : 4;
  3197. for (int i = 0; i < 8; i++) {
  3198. // extract the 5-th bits for x0 and x1
  3199. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  3200. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  3201. // combine the 4-bits from qs with the 5th bit
  3202. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  3203. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  3204. reg[i/2][2*(i%2)+0] = d * x0 + m;
  3205. reg[i/2][2*(i%2)+1] = d * x1 + m;
  3206. }
  3207. }
  3208. template <typename type4x4>
  3209. void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
  3210. device const int8_t * qs = ((device const int8_t *)xb->qs);
  3211. const half d = xb->d;
  3212. for (int i = 0; i < 16; i++) {
  3213. reg[i/4][i%4] = (qs[i + 16*il] * d);
  3214. }
  3215. }
  3216. template <typename type4x4>
  3217. void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
  3218. const float d = xb->d;
  3219. const float min = xb->dmin;
  3220. device const uint8_t * q = (device const uint8_t *)xb->qs;
  3221. float dl, ml;
  3222. uint8_t sc = xb->scales[il];
  3223. #if QK_K == 256
  3224. q = q + 32*(il/8) + 16*(il&1);
  3225. il = (il/2)%4;
  3226. #endif
  3227. half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3228. uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3229. dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
  3230. for (int i = 0; i < 16; ++i) {
  3231. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  3232. }
  3233. }
  3234. template <typename type4x4>
  3235. void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
  3236. const half d_all = xb->d;
  3237. device const uint8_t * q = (device const uint8_t *)xb->qs;
  3238. device const uint8_t * h = (device const uint8_t *)xb->hmask;
  3239. device const int8_t * scales = (device const int8_t *)xb->scales;
  3240. #if QK_K == 256
  3241. q = q + 32 * (il/8) + 16 * (il&1);
  3242. h = h + 16 * (il&1);
  3243. uint8_t m = 1 << (il/2);
  3244. uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
  3245. ((il/4)>0 ? 12 : 3);
  3246. uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
  3247. uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
  3248. int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
  3249. : (scale_2&kmask2) | ((scale_1&kmask1) << 4);
  3250. float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
  3251. const float ml = 4.f * dl;
  3252. il = (il/2) & 3;
  3253. const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3254. const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3255. dl *= coef;
  3256. for (int i = 0; i < 16; ++i) {
  3257. reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
  3258. }
  3259. #else
  3260. float kcoef = il&1 ? 1.f/16.f : 1.f;
  3261. uint16_t kmask = il&1 ? 0xF0 : 0x0F;
  3262. float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
  3263. float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3264. uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3265. uint8_t m = 1<<(il*2);
  3266. for (int i = 0; i < 16; ++i) {
  3267. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
  3268. }
  3269. #endif
  3270. }
  3271. static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
  3272. return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
  3273. : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
  3274. }
  3275. template <typename type4x4>
  3276. void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
  3277. device const uchar * q = xb->qs;
  3278. #if QK_K == 256
  3279. short is = (il/4) * 2;
  3280. q = q + (il/4) * 32 + 16 * (il&1);
  3281. il = il & 3;
  3282. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  3283. const float d = il < 2 ? xb->d : xb->d / 16.h;
  3284. const float min = xb->dmin;
  3285. const float dl = d * sc[0];
  3286. const float ml = min * sc[1];
  3287. #else
  3288. q = q + 16 * (il&1);
  3289. device const uint8_t * s = xb->scales;
  3290. device const half2 * dh = (device const half2 *)xb->d;
  3291. const float2 d = (float2)dh[0];
  3292. const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
  3293. const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
  3294. #endif
  3295. const ushort mask = il<2 ? 0x0F : 0xF0;
  3296. for (int i = 0; i < 16; ++i) {
  3297. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  3298. }
  3299. }
  3300. template <typename type4x4>
  3301. void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
  3302. device const uint8_t * q = xb->qs;
  3303. device const uint8_t * qh = xb->qh;
  3304. #if QK_K == 256
  3305. short is = (il/4) * 2;
  3306. q = q + 32 * (il/4) + 16 * (il&1);
  3307. qh = qh + 16 * (il&1);
  3308. uint8_t ul = 1 << (il/2);
  3309. il = il & 3;
  3310. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  3311. const float d = il < 2 ? xb->d : xb->d / 16.f;
  3312. const float min = xb->dmin;
  3313. const float dl = d * sc[0];
  3314. const float ml = min * sc[1];
  3315. const ushort mask = il<2 ? 0x0F : 0xF0;
  3316. const float qh_val = il<2 ? 16.f : 256.f;
  3317. for (int i = 0; i < 16; ++i) {
  3318. reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
  3319. }
  3320. #else
  3321. q = q + 16 * (il&1);
  3322. device const int8_t * s = xb->scales;
  3323. const float dl = xb->d * s[il];
  3324. uint8_t m = 1<<(il*2);
  3325. const float coef = il<2 ? 1.f : 1.f/16.f;
  3326. const ushort mask = il<2 ? 0x0F : 0xF0;
  3327. for (int i = 0; i < 16; ++i) {
  3328. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
  3329. }
  3330. #endif
  3331. }
  3332. template <typename type4x4>
  3333. void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
  3334. const half d_all = xb->d;
  3335. device const uint8_t * ql = (device const uint8_t *)xb->ql;
  3336. device const uint8_t * qh = (device const uint8_t *)xb->qh;
  3337. device const int8_t * scales = (device const int8_t *)xb->scales;
  3338. #if QK_K == 256
  3339. ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
  3340. qh = qh + 32*(il/8) + 16*(il&1);
  3341. float sc = scales[(il%2) + 2 * ((il/2))];
  3342. il = (il/2) & 3;
  3343. #else
  3344. ql = ql + 16 * (il&1);
  3345. float sc = scales[il];
  3346. #endif
  3347. const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3348. const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
  3349. const float coef = il>1 ? 1.f/16.f : 1.f;
  3350. const float ml = d_all * sc * 32.f;
  3351. const float dl = d_all * sc * coef;
  3352. for (int i = 0; i < 16; ++i) {
  3353. const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
  3354. : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
  3355. reg[i/4][i%4] = dl * q - ml;
  3356. }
  3357. }
  3358. template <typename type4x4>
  3359. void dequantize_iq2_xxs(device const block_iq2_xxs * xb, short il, thread type4x4 & reg) {
  3360. // il is 0...15 for QK_K = 256 => index of block of 32 is il/2
  3361. const float d = xb->d;
  3362. const int ib32 = il/2;
  3363. il = il%2;
  3364. // il = 0 or 1. il = 0 processes the first 16 quants in a block of 32, il = 1 the second 16
  3365. // each block of 32 needs 2 uint32_t's for the quants & scale, so 4 uint16_t's.
  3366. device const uint16_t * q2 = xb->qs + 4*ib32;
  3367. const uint32_t aux32_g = q2[0] | (q2[1] << 16);
  3368. const uint32_t aux32_s = q2[2] | (q2[3] << 16);
  3369. thread const uint8_t * aux8 = (thread const uint8_t *)&aux32_g;
  3370. const float dl = d * (0.5f + (aux32_s >> 28)) * 0.25f;
  3371. constant uint8_t * grid = (constant uint8_t *)(kgrid_iq2xxs + aux8[2*il+0]);
  3372. uint8_t signs = ksigns_iq2xs[(aux32_s >> 14*il) & 127];
  3373. for (int i = 0; i < 8; ++i) {
  3374. reg[i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  3375. }
  3376. grid = (constant uint8_t *)(kgrid_iq2xxs + aux8[2*il+1]);
  3377. signs = ksigns_iq2xs[(aux32_s >> (14*il+7)) & 127];
  3378. for (int i = 0; i < 8; ++i) {
  3379. reg[2+i/4][i%4] = dl * grid[i] * (signs & kmask_iq2xs[i] ? -1.f : 1.f);
  3380. }
  3381. }
  3382. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
  3383. kernel void kernel_get_rows(
  3384. device const void * src0,
  3385. device const char * src1,
  3386. device float * dst,
  3387. constant int64_t & ne00,
  3388. constant uint64_t & nb01,
  3389. constant uint64_t & nb02,
  3390. constant int64_t & ne10,
  3391. constant uint64_t & nb10,
  3392. constant uint64_t & nb11,
  3393. constant uint64_t & nb1,
  3394. constant uint64_t & nb2,
  3395. uint3 tgpig[[threadgroup_position_in_grid]],
  3396. uint tiitg[[thread_index_in_threadgroup]],
  3397. uint3 tptg [[threads_per_threadgroup]]) {
  3398. //const int64_t i = tgpig;
  3399. //const int64_t r = ((device int32_t *) src1)[i];
  3400. const int64_t i10 = tgpig.x;
  3401. const int64_t i11 = tgpig.y;
  3402. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3403. const int64_t i02 = i11;
  3404. for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
  3405. float4x4 temp;
  3406. dequantize_func(
  3407. ((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
  3408. *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
  3409. }
  3410. }
  3411. kernel void kernel_get_rows_f32(
  3412. device const void * src0,
  3413. device const char * src1,
  3414. device float * dst,
  3415. constant int64_t & ne00,
  3416. constant uint64_t & nb01,
  3417. constant uint64_t & nb02,
  3418. constant int64_t & ne10,
  3419. constant uint64_t & nb10,
  3420. constant uint64_t & nb11,
  3421. constant uint64_t & nb1,
  3422. constant uint64_t & nb2,
  3423. uint3 tgpig[[threadgroup_position_in_grid]],
  3424. uint tiitg[[thread_index_in_threadgroup]],
  3425. uint3 tptg [[threads_per_threadgroup]]) {
  3426. const int64_t i10 = tgpig.x;
  3427. const int64_t i11 = tgpig.y;
  3428. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3429. const int64_t i02 = i11;
  3430. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3431. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3432. ((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3433. }
  3434. }
  3435. kernel void kernel_get_rows_f16(
  3436. device const void * src0,
  3437. device const char * src1,
  3438. device float * dst,
  3439. constant int64_t & ne00,
  3440. constant uint64_t & nb01,
  3441. constant uint64_t & nb02,
  3442. constant int64_t & ne10,
  3443. constant uint64_t & nb10,
  3444. constant uint64_t & nb11,
  3445. constant uint64_t & nb1,
  3446. constant uint64_t & nb2,
  3447. uint3 tgpig[[threadgroup_position_in_grid]],
  3448. uint tiitg[[thread_index_in_threadgroup]],
  3449. uint3 tptg [[threads_per_threadgroup]]) {
  3450. const int64_t i10 = tgpig.x;
  3451. const int64_t i11 = tgpig.y;
  3452. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3453. const int64_t i02 = i11;
  3454. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3455. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3456. ((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3457. }
  3458. }
  3459. kernel void kernel_get_rows_i32(
  3460. device const void * src0,
  3461. device const char * src1,
  3462. device int32_t * dst,
  3463. constant int64_t & ne00,
  3464. constant uint64_t & nb01,
  3465. constant uint64_t & nb02,
  3466. constant int64_t & ne10,
  3467. constant uint64_t & nb10,
  3468. constant uint64_t & nb11,
  3469. constant uint64_t & nb1,
  3470. constant uint64_t & nb2,
  3471. uint3 tgpig[[threadgroup_position_in_grid]],
  3472. uint tiitg[[thread_index_in_threadgroup]],
  3473. uint3 tptg [[threads_per_threadgroup]]) {
  3474. const int64_t i10 = tgpig.x;
  3475. const int64_t i11 = tgpig.y;
  3476. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3477. const int64_t i02 = i11;
  3478. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3479. ((device int32_t *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3480. ((device int32_t *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3481. }
  3482. }
  3483. #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
  3484. #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
  3485. #define BLOCK_SIZE_K 32
  3486. #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
  3487. #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
  3488. #define THREAD_PER_BLOCK 128
  3489. #define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
  3490. #define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
  3491. #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
  3492. #define SG_MAT_ROW 8
  3493. // each block_q contains 16*nl weights
  3494. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3495. void kernel_mul_mm_impl(device const uchar * src0,
  3496. device const uchar * src1,
  3497. device float * dst,
  3498. constant int64_t & ne00,
  3499. constant int64_t & ne02,
  3500. constant uint64_t & nb01,
  3501. constant uint64_t & nb02,
  3502. constant int64_t & ne12,
  3503. constant uint64_t & nb10,
  3504. constant uint64_t & nb11,
  3505. constant uint64_t & nb12,
  3506. constant int64_t & ne0,
  3507. constant int64_t & ne1,
  3508. constant uint & r2,
  3509. constant uint & r3,
  3510. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3511. uint3 tgpig[[threadgroup_position_in_grid]],
  3512. uint tiitg[[thread_index_in_threadgroup]],
  3513. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3514. threadgroup half * sa = (threadgroup half *)(shared_memory);
  3515. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  3516. const uint r0 = tgpig.y;
  3517. const uint r1 = tgpig.x;
  3518. const uint im = tgpig.z;
  3519. // if this block is of 64x32 shape or smaller
  3520. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  3521. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  3522. // a thread shouldn't load data outside of the matrix
  3523. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  3524. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  3525. simdgroup_half8x8 ma[4];
  3526. simdgroup_float8x8 mb[2];
  3527. simdgroup_float8x8 c_res[8];
  3528. for (int i = 0; i < 8; i++){
  3529. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  3530. }
  3531. short il = (tiitg % THREAD_PER_ROW);
  3532. const uint i12 = im%ne12;
  3533. const uint i13 = im/ne12;
  3534. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  3535. ushort offset1 = il/nl;
  3536. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  3537. device const float * y = (device const float *)(src1
  3538. + nb12 * im
  3539. + nb11 * (r1 * BLOCK_SIZE_N + thread_col)
  3540. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  3541. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  3542. // load data and store to threadgroup memory
  3543. half4x4 temp_a;
  3544. dequantize_func(x, il, temp_a);
  3545. threadgroup_barrier(mem_flags::mem_threadgroup);
  3546. #pragma unroll(16)
  3547. for (int i = 0; i < 16; i++) {
  3548. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  3549. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  3550. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  3551. }
  3552. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  3553. il = (il + 2 < nl) ? il + 2 : il % 2;
  3554. x = (il < 2) ? x + (2+nl-1)/nl : x;
  3555. y += BLOCK_SIZE_K;
  3556. threadgroup_barrier(mem_flags::mem_threadgroup);
  3557. // load matrices from threadgroup memory and conduct outer products
  3558. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  3559. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  3560. #pragma unroll(4)
  3561. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  3562. #pragma unroll(4)
  3563. for (int i = 0; i < 4; i++) {
  3564. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  3565. }
  3566. simdgroup_barrier(mem_flags::mem_none);
  3567. #pragma unroll(2)
  3568. for (int i = 0; i < 2; i++) {
  3569. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  3570. }
  3571. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  3572. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  3573. #pragma unroll(8)
  3574. for (int i = 0; i < 8; i++){
  3575. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  3576. }
  3577. }
  3578. }
  3579. if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
  3580. device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
  3581. + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
  3582. for (int i = 0; i < 8; i++) {
  3583. simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
  3584. }
  3585. } else {
  3586. // block is smaller than 64x32, we should avoid writing data outside of the matrix
  3587. threadgroup_barrier(mem_flags::mem_threadgroup);
  3588. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  3589. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  3590. for (int i = 0; i < 8; i++) {
  3591. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  3592. }
  3593. threadgroup_barrier(mem_flags::mem_threadgroup);
  3594. device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
  3595. if (sgitg == 0) {
  3596. for (int i = 0; i < n_rows; i++) {
  3597. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  3598. *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  3599. }
  3600. }
  3601. }
  3602. }
  3603. }
  3604. // same as kernel_mul_mm_impl, but src1 and dst are accessed via indices stored in src1ids
  3605. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3606. void kernel_mul_mm_id_impl(
  3607. device const uchar * src0,
  3608. device const uchar * src1,
  3609. thread short * src1ids,
  3610. device float * dst,
  3611. constant int64_t & ne00,
  3612. constant int64_t & ne02,
  3613. constant uint64_t & nb01,
  3614. constant uint64_t & nb02,
  3615. constant int64_t & ne12,
  3616. constant uint64_t & nb10,
  3617. constant uint64_t & nb11,
  3618. constant uint64_t & nb12,
  3619. constant int64_t & ne0,
  3620. int64_t ne1,
  3621. constant uint & r2,
  3622. constant uint & r3,
  3623. threadgroup uchar * shared_memory,
  3624. uint3 tgpig[[threadgroup_position_in_grid]],
  3625. uint tiitg[[thread_index_in_threadgroup]],
  3626. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3627. threadgroup half * sa = (threadgroup half *)(shared_memory);
  3628. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  3629. const uint r0 = tgpig.y;
  3630. const uint r1 = tgpig.x;
  3631. const uint im = tgpig.z;
  3632. if (r1 * BLOCK_SIZE_N >= ne1) return;
  3633. // if this block is of 64x32 shape or smaller
  3634. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  3635. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  3636. // a thread shouldn't load data outside of the matrix
  3637. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  3638. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  3639. simdgroup_half8x8 ma[4];
  3640. simdgroup_float8x8 mb[2];
  3641. simdgroup_float8x8 c_res[8];
  3642. for (int i = 0; i < 8; i++){
  3643. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  3644. }
  3645. short il = (tiitg % THREAD_PER_ROW);
  3646. const uint i12 = im%ne12;
  3647. const uint i13 = im/ne12;
  3648. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  3649. ushort offset1 = il/nl;
  3650. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  3651. device const float * y = (device const float *)(src1
  3652. + nb12 * im
  3653. + nb11 * src1ids[r1 * BLOCK_SIZE_N + thread_col]
  3654. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  3655. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  3656. // load data and store to threadgroup memory
  3657. half4x4 temp_a;
  3658. dequantize_func(x, il, temp_a);
  3659. threadgroup_barrier(mem_flags::mem_threadgroup);
  3660. for (int i = 0; i < 16; i++) {
  3661. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  3662. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  3663. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  3664. }
  3665. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  3666. il = (il + 2 < nl) ? il + 2 : il % 2;
  3667. x = (il < 2) ? x + (2+nl-1)/nl : x;
  3668. y += BLOCK_SIZE_K;
  3669. threadgroup_barrier(mem_flags::mem_threadgroup);
  3670. // load matrices from threadgroup memory and conduct outer products
  3671. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  3672. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  3673. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  3674. for (int i = 0; i < 4; i++) {
  3675. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  3676. }
  3677. simdgroup_barrier(mem_flags::mem_none);
  3678. for (int i = 0; i < 2; i++) {
  3679. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  3680. }
  3681. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  3682. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  3683. for (int i = 0; i < 8; i++){
  3684. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  3685. }
  3686. }
  3687. }
  3688. {
  3689. threadgroup_barrier(mem_flags::mem_threadgroup);
  3690. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  3691. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  3692. for (int i = 0; i < 8; i++) {
  3693. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  3694. }
  3695. threadgroup_barrier(mem_flags::mem_threadgroup);
  3696. device float * C = dst + (BLOCK_SIZE_M * r0) + im*ne1*ne0;
  3697. if (sgitg == 0) {
  3698. for (int i = 0; i < n_rows; i++) {
  3699. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  3700. *(C + i + src1ids[j + r1*BLOCK_SIZE_N] * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  3701. }
  3702. }
  3703. }
  3704. }
  3705. }
  3706. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3707. kernel void kernel_mul_mm(device const uchar * src0,
  3708. device const uchar * src1,
  3709. device float * dst,
  3710. constant int64_t & ne00,
  3711. constant int64_t & ne02,
  3712. constant uint64_t & nb01,
  3713. constant uint64_t & nb02,
  3714. constant int64_t & ne12,
  3715. constant uint64_t & nb10,
  3716. constant uint64_t & nb11,
  3717. constant uint64_t & nb12,
  3718. constant int64_t & ne0,
  3719. constant int64_t & ne1,
  3720. constant uint & r2,
  3721. constant uint & r3,
  3722. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3723. uint3 tgpig[[threadgroup_position_in_grid]],
  3724. uint tiitg[[thread_index_in_threadgroup]],
  3725. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3726. kernel_mul_mm_impl<block_q, nl, dequantize_func>(
  3727. src0,
  3728. src1,
  3729. dst,
  3730. ne00,
  3731. ne02,
  3732. nb01,
  3733. nb02,
  3734. ne12,
  3735. nb10,
  3736. nb11,
  3737. nb12,
  3738. ne0,
  3739. ne1,
  3740. r2,
  3741. r3,
  3742. shared_memory,
  3743. tgpig,
  3744. tiitg,
  3745. sgitg);
  3746. }
  3747. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3748. kernel void kernel_mul_mm_id(
  3749. device const uchar * ids,
  3750. device const uchar * src1,
  3751. device float * dst,
  3752. constant uint64_t & nbi1,
  3753. constant int64_t & ne00,
  3754. constant int64_t & ne02,
  3755. constant uint64_t & nb01,
  3756. constant uint64_t & nb02,
  3757. constant int64_t & ne12,
  3758. constant int64_t & ne13,
  3759. constant uint64_t & nb10,
  3760. constant uint64_t & nb11,
  3761. constant uint64_t & nb12,
  3762. constant int64_t & ne0,
  3763. constant int64_t & ne1,
  3764. constant uint64_t & nb1,
  3765. constant uint & r2,
  3766. constant uint & r3,
  3767. constant int & idx,
  3768. device const uchar * src00,
  3769. device const uchar * src01,
  3770. device const uchar * src02,
  3771. device const uchar * src03,
  3772. device const uchar * src04,
  3773. device const uchar * src05,
  3774. device const uchar * src06,
  3775. device const uchar * src07,
  3776. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3777. uint3 tgpig[[threadgroup_position_in_grid]],
  3778. uint tiitg[[thread_index_in_threadgroup]],
  3779. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3780. device const uchar * src0s[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3781. // expert id
  3782. const int32_t id = tgpig.z/(ne12*ne13);
  3783. tgpig.z = tgpig.z%(ne12*ne13);
  3784. // row indices of src1 for expert id
  3785. int64_t _ne1 = 0;
  3786. short src1ids[512];
  3787. for (int64_t i1 = 0; i1 < ne1; i1++) {
  3788. if (((device int32_t *) (ids + i1*nbi1))[idx] == id) {
  3789. src1ids[_ne1++] = i1;
  3790. }
  3791. }
  3792. kernel_mul_mm_id_impl<block_q, nl, dequantize_func>(
  3793. src0s[id],
  3794. src1,
  3795. src1ids,
  3796. dst,
  3797. ne00,
  3798. ne02,
  3799. nb01,
  3800. nb02,
  3801. ne12,
  3802. nb10,
  3803. nb11,
  3804. nb12,
  3805. ne0,
  3806. _ne1,
  3807. r2,
  3808. r3,
  3809. shared_memory,
  3810. tgpig,
  3811. tiitg,
  3812. sgitg);
  3813. }
  3814. #if QK_K == 256
  3815. #define QK_NL 16
  3816. #else
  3817. #define QK_NL 4
  3818. #endif
  3819. //
  3820. // get rows
  3821. //
  3822. typedef void (get_rows_t)(
  3823. device const void * src0,
  3824. device const char * src1,
  3825. device float * dst,
  3826. constant int64_t & ne00,
  3827. constant uint64_t & nb01,
  3828. constant uint64_t & nb02,
  3829. constant int64_t & ne10,
  3830. constant uint64_t & nb10,
  3831. constant uint64_t & nb11,
  3832. constant uint64_t & nb1,
  3833. constant uint64_t & nb2,
  3834. uint3, uint, uint3);
  3835. //template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
  3836. //template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
  3837. template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
  3838. template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
  3839. template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
  3840. template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
  3841. template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
  3842. template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
  3843. template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
  3844. template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
  3845. template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
  3846. template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
  3847. template [[host_name("kernel_get_rows_iq2_xxs")]] kernel get_rows_t kernel_get_rows<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  3848. //
  3849. // matrix-matrix multiplication
  3850. //
  3851. typedef void (mat_mm_t)(
  3852. device const uchar * src0,
  3853. device const uchar * src1,
  3854. device float * dst,
  3855. constant int64_t & ne00,
  3856. constant int64_t & ne02,
  3857. constant uint64_t & nb01,
  3858. constant uint64_t & nb02,
  3859. constant int64_t & ne12,
  3860. constant uint64_t & nb10,
  3861. constant uint64_t & nb11,
  3862. constant uint64_t & nb12,
  3863. constant int64_t & ne0,
  3864. constant int64_t & ne1,
  3865. constant uint & r2,
  3866. constant uint & r3,
  3867. threadgroup uchar *,
  3868. uint3, uint, uint);
  3869. template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
  3870. template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
  3871. template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
  3872. template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
  3873. template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
  3874. template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
  3875. template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
  3876. template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
  3877. template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
  3878. template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
  3879. template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
  3880. template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
  3881. template [[host_name("kernel_mul_mm_iq2_xxs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  3882. //
  3883. // indirect matrix-matrix multiplication
  3884. //
  3885. typedef void (mat_mm_id_t)(
  3886. device const uchar * ids,
  3887. device const uchar * src1,
  3888. device float * dst,
  3889. constant uint64_t & nbi1,
  3890. constant int64_t & ne00,
  3891. constant int64_t & ne02,
  3892. constant uint64_t & nb01,
  3893. constant uint64_t & nb02,
  3894. constant int64_t & ne12,
  3895. constant int64_t & ne13,
  3896. constant uint64_t & nb10,
  3897. constant uint64_t & nb11,
  3898. constant uint64_t & nb12,
  3899. constant int64_t & ne0,
  3900. constant int64_t & ne1,
  3901. constant uint64_t & nb1,
  3902. constant uint & r2,
  3903. constant uint & r3,
  3904. constant int & idx,
  3905. device const uchar * src00,
  3906. device const uchar * src01,
  3907. device const uchar * src02,
  3908. device const uchar * src03,
  3909. device const uchar * src04,
  3910. device const uchar * src05,
  3911. device const uchar * src06,
  3912. device const uchar * src07,
  3913. threadgroup uchar *,
  3914. uint3, uint, uint);
  3915. template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
  3916. template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
  3917. template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
  3918. template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
  3919. template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
  3920. template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
  3921. template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
  3922. template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
  3923. template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
  3924. template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
  3925. template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
  3926. template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
  3927. template [[host_name("kernel_mul_mm_id_iq2_xxs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq2_xxs, QK_NL, dequantize_iq2_xxs>;
  3928. //
  3929. // matrix-vector multiplication
  3930. //
  3931. [[host_name("kernel_mul_mv_id_f32_f32")]]
  3932. kernel void kernel_mul_mv_id_f32_f32(
  3933. device const char * ids,
  3934. device const char * src1,
  3935. device float * dst,
  3936. constant uint64_t & nbi1,
  3937. constant int64_t & ne00,
  3938. constant int64_t & ne01,
  3939. constant int64_t & ne02,
  3940. constant uint64_t & nb00,
  3941. constant uint64_t & nb01,
  3942. constant uint64_t & nb02,
  3943. constant int64_t & ne10,
  3944. constant int64_t & ne11,
  3945. constant int64_t & ne12,
  3946. constant int64_t & ne13,
  3947. constant uint64_t & nb10,
  3948. constant uint64_t & nb11,
  3949. constant uint64_t & nb12,
  3950. constant int64_t & ne0,
  3951. constant int64_t & ne1,
  3952. constant uint64_t & nb1,
  3953. constant uint & r2,
  3954. constant uint & r3,
  3955. constant int & idx,
  3956. device const char * src00,
  3957. device const char * src01,
  3958. device const char * src02,
  3959. device const char * src03,
  3960. device const char * src04,
  3961. device const char * src05,
  3962. device const char * src06,
  3963. device const char * src07,
  3964. uint3 tgpig[[threadgroup_position_in_grid]],
  3965. uint tiitg[[thread_index_in_threadgroup]],
  3966. uint tiisg[[thread_index_in_simdgroup]],
  3967. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3968. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3969. const int64_t bid = tgpig.z/(ne12*ne13);
  3970. tgpig.z = tgpig.z%(ne12*ne13);
  3971. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3972. kernel_mul_mv_f32_f32_impl(
  3973. src0[id],
  3974. src1 + bid*nb11,
  3975. dst + bid*ne0,
  3976. ne00,
  3977. ne01,
  3978. ne02,
  3979. nb00,
  3980. nb01,
  3981. nb02,
  3982. ne10,
  3983. ne11,
  3984. ne12,
  3985. nb10,
  3986. nb11,
  3987. nb12,
  3988. ne0,
  3989. ne1,
  3990. r2,
  3991. r3,
  3992. tgpig,
  3993. tiisg);
  3994. }
  3995. [[host_name("kernel_mul_mv_id_f16_f32")]]
  3996. kernel void kernel_mul_mv_id_f16_f32(
  3997. device const char * ids,
  3998. device const char * src1,
  3999. device float * dst,
  4000. constant uint64_t & nbi1,
  4001. constant int64_t & ne00,
  4002. constant int64_t & ne01,
  4003. constant int64_t & ne02,
  4004. constant uint64_t & nb00,
  4005. constant uint64_t & nb01,
  4006. constant uint64_t & nb02,
  4007. constant int64_t & ne10,
  4008. constant int64_t & ne11,
  4009. constant int64_t & ne12,
  4010. constant int64_t & ne13,
  4011. constant uint64_t & nb10,
  4012. constant uint64_t & nb11,
  4013. constant uint64_t & nb12,
  4014. constant int64_t & ne0,
  4015. constant int64_t & ne1,
  4016. constant uint64_t & nb1,
  4017. constant uint & r2,
  4018. constant uint & r3,
  4019. constant int & idx,
  4020. device const char * src00,
  4021. device const char * src01,
  4022. device const char * src02,
  4023. device const char * src03,
  4024. device const char * src04,
  4025. device const char * src05,
  4026. device const char * src06,
  4027. device const char * src07,
  4028. uint3 tgpig[[threadgroup_position_in_grid]],
  4029. uint tiitg[[thread_index_in_threadgroup]],
  4030. uint tiisg[[thread_index_in_simdgroup]],
  4031. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4032. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4033. const int64_t bid = tgpig.z/(ne12*ne13);
  4034. tgpig.z = tgpig.z%(ne12*ne13);
  4035. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4036. kernel_mul_mv_f16_f32_impl(
  4037. src0[id],
  4038. src1 + bid*nb11,
  4039. dst + bid*ne0,
  4040. ne00,
  4041. ne01,
  4042. ne02,
  4043. nb00,
  4044. nb01,
  4045. nb02,
  4046. ne10,
  4047. ne11,
  4048. ne12,
  4049. nb10,
  4050. nb11,
  4051. nb12,
  4052. ne0,
  4053. ne1,
  4054. r2,
  4055. r3,
  4056. tgpig,
  4057. tiisg);
  4058. }
  4059. [[host_name("kernel_mul_mv_id_q8_0_f32")]]
  4060. kernel void kernel_mul_mv_id_q8_0_f32(
  4061. device const char * ids,
  4062. device const char * src1,
  4063. device float * dst,
  4064. constant uint64_t & nbi1,
  4065. constant int64_t & ne00,
  4066. constant int64_t & ne01,
  4067. constant int64_t & ne02,
  4068. constant uint64_t & nb00,
  4069. constant uint64_t & nb01,
  4070. constant uint64_t & nb02,
  4071. constant int64_t & ne10,
  4072. constant int64_t & ne11,
  4073. constant int64_t & ne12,
  4074. constant int64_t & ne13,
  4075. constant uint64_t & nb10,
  4076. constant uint64_t & nb11,
  4077. constant uint64_t & nb12,
  4078. constant int64_t & ne0,
  4079. constant int64_t & ne1,
  4080. constant uint64_t & nb1,
  4081. constant uint & r2,
  4082. constant uint & r3,
  4083. constant int & idx,
  4084. device const char * src00,
  4085. device const char * src01,
  4086. device const char * src02,
  4087. device const char * src03,
  4088. device const char * src04,
  4089. device const char * src05,
  4090. device const char * src06,
  4091. device const char * src07,
  4092. uint3 tgpig[[threadgroup_position_in_grid]],
  4093. uint tiitg[[thread_index_in_threadgroup]],
  4094. uint tiisg[[thread_index_in_simdgroup]],
  4095. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4096. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4097. const int64_t bid = tgpig.z/(ne12*ne13);
  4098. tgpig.z = tgpig.z%(ne12*ne13);
  4099. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4100. kernel_mul_mv_q8_0_f32_impl(
  4101. src0[id],
  4102. (device const float *) (src1 + bid*nb11),
  4103. dst + bid*ne0,
  4104. ne00,
  4105. ne01,
  4106. ne02,
  4107. ne10,
  4108. ne12,
  4109. ne0,
  4110. ne1,
  4111. r2,
  4112. r3,
  4113. tgpig,
  4114. tiisg,
  4115. sgitg);
  4116. }
  4117. [[host_name("kernel_mul_mv_id_q4_0_f32")]]
  4118. kernel void kernel_mul_mv_id_q4_0_f32(
  4119. device const char * ids,
  4120. device const char * src1,
  4121. device float * dst,
  4122. constant uint64_t & nbi1,
  4123. constant int64_t & ne00,
  4124. constant int64_t & ne01,
  4125. constant int64_t & ne02,
  4126. constant uint64_t & nb00,
  4127. constant uint64_t & nb01,
  4128. constant uint64_t & nb02,
  4129. constant int64_t & ne10,
  4130. constant int64_t & ne11,
  4131. constant int64_t & ne12,
  4132. constant int64_t & ne13,
  4133. constant uint64_t & nb10,
  4134. constant uint64_t & nb11,
  4135. constant uint64_t & nb12,
  4136. constant int64_t & ne0,
  4137. constant int64_t & ne1,
  4138. constant uint64_t & nb1,
  4139. constant uint & r2,
  4140. constant uint & r3,
  4141. constant int & idx,
  4142. device const char * src00,
  4143. device const char * src01,
  4144. device const char * src02,
  4145. device const char * src03,
  4146. device const char * src04,
  4147. device const char * src05,
  4148. device const char * src06,
  4149. device const char * src07,
  4150. uint3 tgpig[[threadgroup_position_in_grid]],
  4151. uint tiitg[[thread_index_in_threadgroup]],
  4152. uint tiisg[[thread_index_in_simdgroup]],
  4153. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4154. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4155. const int64_t bid = tgpig.z/(ne12*ne13);
  4156. tgpig.z = tgpig.z%(ne12*ne13);
  4157. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4158. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  4159. src0[id],
  4160. (device const float *) (src1 + bid*nb11),
  4161. dst + bid*ne0,
  4162. ne00,
  4163. ne01,
  4164. ne02,
  4165. ne10,
  4166. ne12,
  4167. ne0,
  4168. ne1,
  4169. r2,
  4170. r3,
  4171. tgpig,
  4172. tiisg,
  4173. sgitg);
  4174. }
  4175. [[host_name("kernel_mul_mv_id_q4_1_f32")]]
  4176. kernel void kernel_mul_mv_id_q4_1_f32(
  4177. device const char * ids,
  4178. device const char * src1,
  4179. device float * dst,
  4180. constant uint64_t & nbi1,
  4181. constant int64_t & ne00,
  4182. constant int64_t & ne01,
  4183. constant int64_t & ne02,
  4184. constant uint64_t & nb00,
  4185. constant uint64_t & nb01,
  4186. constant uint64_t & nb02,
  4187. constant int64_t & ne10,
  4188. constant int64_t & ne11,
  4189. constant int64_t & ne12,
  4190. constant int64_t & ne13,
  4191. constant uint64_t & nb10,
  4192. constant uint64_t & nb11,
  4193. constant uint64_t & nb12,
  4194. constant int64_t & ne0,
  4195. constant int64_t & ne1,
  4196. constant uint64_t & nb1,
  4197. constant uint & r2,
  4198. constant uint & r3,
  4199. constant int & idx,
  4200. device const char * src00,
  4201. device const char * src01,
  4202. device const char * src02,
  4203. device const char * src03,
  4204. device const char * src04,
  4205. device const char * src05,
  4206. device const char * src06,
  4207. device const char * src07,
  4208. uint3 tgpig[[threadgroup_position_in_grid]],
  4209. uint tiitg[[thread_index_in_threadgroup]],
  4210. uint tiisg[[thread_index_in_simdgroup]],
  4211. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4212. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4213. const int64_t bid = tgpig.z/(ne12*ne13);
  4214. tgpig.z = tgpig.z%(ne12*ne13);
  4215. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4216. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  4217. src0[id],
  4218. (device const float *) (src1 + bid*nb11),
  4219. dst + bid*ne0,
  4220. ne00,
  4221. ne01,
  4222. ne02,
  4223. ne10,
  4224. ne12,
  4225. ne0,
  4226. ne1,
  4227. r2,
  4228. r3,
  4229. tgpig,
  4230. tiisg,
  4231. sgitg);
  4232. }
  4233. [[host_name("kernel_mul_mv_id_q5_0_f32")]]
  4234. kernel void kernel_mul_mv_id_q5_0_f32(
  4235. device const char * ids,
  4236. device const char * src1,
  4237. device float * dst,
  4238. constant uint64_t & nbi1,
  4239. constant int64_t & ne00,
  4240. constant int64_t & ne01,
  4241. constant int64_t & ne02,
  4242. constant uint64_t & nb00,
  4243. constant uint64_t & nb01,
  4244. constant uint64_t & nb02,
  4245. constant int64_t & ne10,
  4246. constant int64_t & ne11,
  4247. constant int64_t & ne12,
  4248. constant int64_t & ne13,
  4249. constant uint64_t & nb10,
  4250. constant uint64_t & nb11,
  4251. constant uint64_t & nb12,
  4252. constant int64_t & ne0,
  4253. constant int64_t & ne1,
  4254. constant uint64_t & nb1,
  4255. constant uint & r2,
  4256. constant uint & r3,
  4257. constant int & idx,
  4258. device const char * src00,
  4259. device const char * src01,
  4260. device const char * src02,
  4261. device const char * src03,
  4262. device const char * src04,
  4263. device const char * src05,
  4264. device const char * src06,
  4265. device const char * src07,
  4266. uint3 tgpig[[threadgroup_position_in_grid]],
  4267. uint tiitg[[thread_index_in_threadgroup]],
  4268. uint tiisg[[thread_index_in_simdgroup]],
  4269. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4270. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4271. const int64_t bid = tgpig.z/(ne12*ne13);
  4272. tgpig.z = tgpig.z%(ne12*ne13);
  4273. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4274. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  4275. src0[id],
  4276. (device const float *) (src1 + bid*nb11),
  4277. dst + bid*ne0,
  4278. ne00,
  4279. ne01,
  4280. ne02,
  4281. ne10,
  4282. ne12,
  4283. ne0,
  4284. ne1,
  4285. r2,
  4286. r3,
  4287. tgpig,
  4288. tiisg,
  4289. sgitg);
  4290. }
  4291. [[host_name("kernel_mul_mv_id_q5_1_f32")]]
  4292. kernel void kernel_mul_mv_id_q5_1_f32(
  4293. device const char * ids,
  4294. device const char * src1,
  4295. device float * dst,
  4296. constant uint64_t & nbi1,
  4297. constant int64_t & ne00,
  4298. constant int64_t & ne01,
  4299. constant int64_t & ne02,
  4300. constant uint64_t & nb00,
  4301. constant uint64_t & nb01,
  4302. constant uint64_t & nb02,
  4303. constant int64_t & ne10,
  4304. constant int64_t & ne11,
  4305. constant int64_t & ne12,
  4306. constant int64_t & ne13,
  4307. constant uint64_t & nb10,
  4308. constant uint64_t & nb11,
  4309. constant uint64_t & nb12,
  4310. constant int64_t & ne0,
  4311. constant int64_t & ne1,
  4312. constant uint64_t & nb1,
  4313. constant uint & r2,
  4314. constant uint & r3,
  4315. constant int & idx,
  4316. device const char * src00,
  4317. device const char * src01,
  4318. device const char * src02,
  4319. device const char * src03,
  4320. device const char * src04,
  4321. device const char * src05,
  4322. device const char * src06,
  4323. device const char * src07,
  4324. uint3 tgpig[[threadgroup_position_in_grid]],
  4325. uint tiitg[[thread_index_in_threadgroup]],
  4326. uint tiisg[[thread_index_in_simdgroup]],
  4327. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4328. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4329. const int64_t bid = tgpig.z/(ne12*ne13);
  4330. tgpig.z = tgpig.z%(ne12*ne13);
  4331. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4332. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  4333. src0[id],
  4334. (device const float *) (src1 + bid*nb11),
  4335. dst + bid*ne0,
  4336. ne00,
  4337. ne01,
  4338. ne02,
  4339. ne10,
  4340. ne12,
  4341. ne0,
  4342. ne1,
  4343. r2,
  4344. r3,
  4345. tgpig,
  4346. tiisg,
  4347. sgitg);
  4348. }
  4349. [[host_name("kernel_mul_mv_id_q2_K_f32")]]
  4350. kernel void kernel_mul_mv_id_q2_K_f32(
  4351. device const char * ids,
  4352. device const char * src1,
  4353. device float * dst,
  4354. constant uint64_t & nbi1,
  4355. constant int64_t & ne00,
  4356. constant int64_t & ne01,
  4357. constant int64_t & ne02,
  4358. constant uint64_t & nb00,
  4359. constant uint64_t & nb01,
  4360. constant uint64_t & nb02,
  4361. constant int64_t & ne10,
  4362. constant int64_t & ne11,
  4363. constant int64_t & ne12,
  4364. constant int64_t & ne13,
  4365. constant uint64_t & nb10,
  4366. constant uint64_t & nb11,
  4367. constant uint64_t & nb12,
  4368. constant int64_t & ne0,
  4369. constant int64_t & ne1,
  4370. constant uint64_t & nb1,
  4371. constant uint & r2,
  4372. constant uint & r3,
  4373. constant int & idx,
  4374. device const char * src00,
  4375. device const char * src01,
  4376. device const char * src02,
  4377. device const char * src03,
  4378. device const char * src04,
  4379. device const char * src05,
  4380. device const char * src06,
  4381. device const char * src07,
  4382. uint3 tgpig[[threadgroup_position_in_grid]],
  4383. uint tiitg[[thread_index_in_threadgroup]],
  4384. uint tiisg[[thread_index_in_simdgroup]],
  4385. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4386. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4387. const int64_t bid = tgpig.z/(ne12*ne13);
  4388. tgpig.z = tgpig.z%(ne12*ne13);
  4389. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4390. kernel_mul_mv_q2_K_f32_impl(
  4391. src0[id],
  4392. (device const float *) (src1 + bid*nb11),
  4393. dst + bid*ne0,
  4394. ne00,
  4395. ne01,
  4396. ne02,
  4397. ne10,
  4398. ne12,
  4399. ne0,
  4400. ne1,
  4401. r2,
  4402. r3,
  4403. tgpig,
  4404. tiisg,
  4405. sgitg);
  4406. }
  4407. [[host_name("kernel_mul_mv_id_q3_K_f32")]]
  4408. kernel void kernel_mul_mv_id_q3_K_f32(
  4409. device const char * ids,
  4410. device const char * src1,
  4411. device float * dst,
  4412. constant uint64_t & nbi1,
  4413. constant int64_t & ne00,
  4414. constant int64_t & ne01,
  4415. constant int64_t & ne02,
  4416. constant uint64_t & nb00,
  4417. constant uint64_t & nb01,
  4418. constant uint64_t & nb02,
  4419. constant int64_t & ne10,
  4420. constant int64_t & ne11,
  4421. constant int64_t & ne12,
  4422. constant int64_t & ne13,
  4423. constant uint64_t & nb10,
  4424. constant uint64_t & nb11,
  4425. constant uint64_t & nb12,
  4426. constant int64_t & ne0,
  4427. constant int64_t & ne1,
  4428. constant uint64_t & nb1,
  4429. constant uint & r2,
  4430. constant uint & r3,
  4431. constant int & idx,
  4432. device const char * src00,
  4433. device const char * src01,
  4434. device const char * src02,
  4435. device const char * src03,
  4436. device const char * src04,
  4437. device const char * src05,
  4438. device const char * src06,
  4439. device const char * src07,
  4440. uint3 tgpig[[threadgroup_position_in_grid]],
  4441. uint tiitg[[thread_index_in_threadgroup]],
  4442. uint tiisg[[thread_index_in_simdgroup]],
  4443. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4444. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4445. const int64_t bid = tgpig.z/(ne12*ne13);
  4446. tgpig.z = tgpig.z%(ne12*ne13);
  4447. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4448. kernel_mul_mv_q3_K_f32_impl(
  4449. src0[id],
  4450. (device const float *) (src1 + bid*nb11),
  4451. dst + bid*ne0,
  4452. ne00,
  4453. ne01,
  4454. ne02,
  4455. ne10,
  4456. ne12,
  4457. ne0,
  4458. ne1,
  4459. r2,
  4460. r3,
  4461. tgpig,
  4462. tiisg,
  4463. sgitg);
  4464. }
  4465. [[host_name("kernel_mul_mv_id_q4_K_f32")]]
  4466. kernel void kernel_mul_mv_id_q4_K_f32(
  4467. device const char * ids,
  4468. device const char * src1,
  4469. device float * dst,
  4470. constant uint64_t & nbi1,
  4471. constant int64_t & ne00,
  4472. constant int64_t & ne01,
  4473. constant int64_t & ne02,
  4474. constant uint64_t & nb00,
  4475. constant uint64_t & nb01,
  4476. constant uint64_t & nb02,
  4477. constant int64_t & ne10,
  4478. constant int64_t & ne11,
  4479. constant int64_t & ne12,
  4480. constant int64_t & ne13,
  4481. constant uint64_t & nb10,
  4482. constant uint64_t & nb11,
  4483. constant uint64_t & nb12,
  4484. constant int64_t & ne0,
  4485. constant int64_t & ne1,
  4486. constant uint64_t & nb1,
  4487. constant uint & r2,
  4488. constant uint & r3,
  4489. constant int & idx,
  4490. device const char * src00,
  4491. device const char * src01,
  4492. device const char * src02,
  4493. device const char * src03,
  4494. device const char * src04,
  4495. device const char * src05,
  4496. device const char * src06,
  4497. device const char * src07,
  4498. uint3 tgpig[[threadgroup_position_in_grid]],
  4499. uint tiitg[[thread_index_in_threadgroup]],
  4500. uint tiisg[[thread_index_in_simdgroup]],
  4501. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4502. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4503. const int64_t bid = tgpig.z/(ne12*ne13);
  4504. tgpig.z = tgpig.z%(ne12*ne13);
  4505. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4506. kernel_mul_mv_q4_K_f32_impl(
  4507. src0[id],
  4508. (device const float *) (src1 + bid*nb11),
  4509. dst + bid*ne0,
  4510. ne00,
  4511. ne01,
  4512. ne02,
  4513. ne10,
  4514. ne12,
  4515. ne0,
  4516. ne1,
  4517. r2,
  4518. r3,
  4519. tgpig,
  4520. tiisg,
  4521. sgitg);
  4522. }
  4523. [[host_name("kernel_mul_mv_id_q5_K_f32")]]
  4524. kernel void kernel_mul_mv_id_q5_K_f32(
  4525. device const char * ids,
  4526. device const char * src1,
  4527. device float * dst,
  4528. constant uint64_t & nbi1,
  4529. constant int64_t & ne00,
  4530. constant int64_t & ne01,
  4531. constant int64_t & ne02,
  4532. constant uint64_t & nb00,
  4533. constant uint64_t & nb01,
  4534. constant uint64_t & nb02,
  4535. constant int64_t & ne10,
  4536. constant int64_t & ne11,
  4537. constant int64_t & ne12,
  4538. constant int64_t & ne13,
  4539. constant uint64_t & nb10,
  4540. constant uint64_t & nb11,
  4541. constant uint64_t & nb12,
  4542. constant int64_t & ne0,
  4543. constant int64_t & ne1,
  4544. constant uint64_t & nb1,
  4545. constant uint & r2,
  4546. constant uint & r3,
  4547. constant int & idx,
  4548. device const char * src00,
  4549. device const char * src01,
  4550. device const char * src02,
  4551. device const char * src03,
  4552. device const char * src04,
  4553. device const char * src05,
  4554. device const char * src06,
  4555. device const char * src07,
  4556. uint3 tgpig[[threadgroup_position_in_grid]],
  4557. uint tiitg[[thread_index_in_threadgroup]],
  4558. uint tiisg[[thread_index_in_simdgroup]],
  4559. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4560. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4561. const int64_t bid = tgpig.z/(ne12*ne13);
  4562. tgpig.z = tgpig.z%(ne12*ne13);
  4563. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4564. kernel_mul_mv_q5_K_f32_impl(
  4565. src0[id],
  4566. (device const float *) (src1 + bid*nb11),
  4567. dst + bid*ne0,
  4568. ne00,
  4569. ne01,
  4570. ne02,
  4571. ne10,
  4572. ne12,
  4573. ne0,
  4574. ne1,
  4575. r2,
  4576. r3,
  4577. tgpig,
  4578. tiisg,
  4579. sgitg);
  4580. }
  4581. [[host_name("kernel_mul_mv_id_q6_K_f32")]]
  4582. kernel void kernel_mul_mv_id_q6_K_f32(
  4583. device const char * ids,
  4584. device const char * src1,
  4585. device float * dst,
  4586. constant uint64_t & nbi1,
  4587. constant int64_t & ne00,
  4588. constant int64_t & ne01,
  4589. constant int64_t & ne02,
  4590. constant uint64_t & nb00,
  4591. constant uint64_t & nb01,
  4592. constant uint64_t & nb02,
  4593. constant int64_t & ne10,
  4594. constant int64_t & ne11,
  4595. constant int64_t & ne12,
  4596. constant int64_t & ne13,
  4597. constant uint64_t & nb10,
  4598. constant uint64_t & nb11,
  4599. constant uint64_t & nb12,
  4600. constant int64_t & ne0,
  4601. constant int64_t & ne1,
  4602. constant uint64_t & nb1,
  4603. constant uint & r2,
  4604. constant uint & r3,
  4605. constant int & idx,
  4606. device const char * src00,
  4607. device const char * src01,
  4608. device const char * src02,
  4609. device const char * src03,
  4610. device const char * src04,
  4611. device const char * src05,
  4612. device const char * src06,
  4613. device const char * src07,
  4614. uint3 tgpig[[threadgroup_position_in_grid]],
  4615. uint tiitg[[thread_index_in_threadgroup]],
  4616. uint tiisg[[thread_index_in_simdgroup]],
  4617. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4618. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4619. const int64_t bid = tgpig.z/(ne12*ne13);
  4620. tgpig.z = tgpig.z%(ne12*ne13);
  4621. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4622. kernel_mul_mv_q6_K_f32_impl(
  4623. src0[id],
  4624. (device const float *) (src1 + bid*nb11),
  4625. dst + bid*ne0,
  4626. ne00,
  4627. ne01,
  4628. ne02,
  4629. ne10,
  4630. ne12,
  4631. ne0,
  4632. ne1,
  4633. r2,
  4634. r3,
  4635. tgpig,
  4636. tiisg,
  4637. sgitg);
  4638. }
  4639. [[host_name("kernel_mul_mv_id_iq2_xxs_f32")]]
  4640. kernel void kernel_mul_mv_id_iq2_xxs_f32(
  4641. device const char * ids,
  4642. device const char * src1,
  4643. device float * dst,
  4644. constant uint64_t & nbi1,
  4645. constant int64_t & ne00,
  4646. constant int64_t & ne01,
  4647. constant int64_t & ne02,
  4648. constant uint64_t & nb00,
  4649. constant uint64_t & nb01,
  4650. constant uint64_t & nb02,
  4651. constant int64_t & ne10,
  4652. constant int64_t & ne11,
  4653. constant int64_t & ne12,
  4654. constant int64_t & ne13,
  4655. constant uint64_t & nb10,
  4656. constant uint64_t & nb11,
  4657. constant uint64_t & nb12,
  4658. constant int64_t & ne0,
  4659. constant int64_t & ne1,
  4660. constant uint64_t & nb1,
  4661. constant uint & r2,
  4662. constant uint & r3,
  4663. constant int & idx,
  4664. device const char * src00,
  4665. device const char * src01,
  4666. device const char * src02,
  4667. device const char * src03,
  4668. device const char * src04,
  4669. device const char * src05,
  4670. device const char * src06,
  4671. device const char * src07,
  4672. threadgroup int8_t * shared_values [[threadgroup(0)]],
  4673. uint3 tgpig[[threadgroup_position_in_grid]],
  4674. uint tiitg[[thread_index_in_threadgroup]],
  4675. uint tiisg[[thread_index_in_simdgroup]],
  4676. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4677. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4678. const int64_t bid = tgpig.z/(ne12*ne13);
  4679. tgpig.z = tgpig.z%(ne12*ne13);
  4680. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4681. kernel_mul_mv_iq2_xxs_f32_impl(
  4682. src0[id],
  4683. (device const float *) (src1 + bid*nb11),
  4684. dst + bid*ne0,
  4685. ne00,
  4686. ne01,
  4687. ne02,
  4688. ne10,
  4689. ne12,
  4690. ne0,
  4691. ne1,
  4692. r2,
  4693. r3,
  4694. shared_values,
  4695. tgpig,
  4696. tiisg,
  4697. sgitg);
  4698. }