clip.cpp 209 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cstdlib>
  16. #include <cstring>
  17. #include <fstream>
  18. #include <map>
  19. #include <regex>
  20. #include <stdexcept>
  21. #include <unordered_set>
  22. #include <vector>
  23. #include <sstream>
  24. #include <cinttypes>
  25. #include <limits>
  26. #include <array>
  27. #include <numeric>
  28. #include <functional>
  29. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  30. enum ffn_op_type {
  31. FFN_GELU,
  32. FFN_GELU_ERF,
  33. FFN_SILU,
  34. FFN_GELU_QUICK,
  35. };
  36. enum norm_type {
  37. NORM_TYPE_NORMAL,
  38. NORM_TYPE_RMS,
  39. };
  40. //#define CLIP_DEBUG_FUNCTIONS
  41. #ifdef CLIP_DEBUG_FUNCTIONS
  42. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. // PPM header: P6 format, width, height, and max color value
  49. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  50. // Write pixel data
  51. for (size_t i = 0; i < img.buf.size(); i += 3) {
  52. // PPM expects binary data in RGB format, which matches our image buffer
  53. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  54. }
  55. file.close();
  56. }
  57. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  58. std::ofstream file(filename, std::ios::binary);
  59. if (!file.is_open()) {
  60. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  61. return;
  62. }
  63. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  64. int bytesPerPixel = 3;
  65. int widthInBytes = img.nx * bytesPerPixel;
  66. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  67. int stride = widthInBytes + paddingAmount;
  68. // Bitmap file header
  69. unsigned char fileHeader[14] = {
  70. 'B','M', // Signature
  71. 0,0,0,0, // Image file size in bytes
  72. 0,0,0,0, // Reserved
  73. 54,0,0,0 // Start of pixel array
  74. };
  75. // Total file size
  76. fileSize = 54 + (stride * img.ny);
  77. fileHeader[2] = (unsigned char)(fileSize);
  78. fileHeader[3] = (unsigned char)(fileSize >> 8);
  79. fileHeader[4] = (unsigned char)(fileSize >> 16);
  80. fileHeader[5] = (unsigned char)(fileSize >> 24);
  81. // Bitmap information header (BITMAPINFOHEADER)
  82. unsigned char infoHeader[40] = {
  83. 40,0,0,0, // Size of this header (40 bytes)
  84. 0,0,0,0, // Image width
  85. 0,0,0,0, // Image height
  86. 1,0, // Number of color planes
  87. 24,0, // Bits per pixel
  88. 0,0,0,0, // No compression
  89. 0,0,0,0, // Image size (can be 0 for no compression)
  90. 0,0,0,0, // X pixels per meter (not specified)
  91. 0,0,0,0, // Y pixels per meter (not specified)
  92. 0,0,0,0, // Total colors (color table not used)
  93. 0,0,0,0 // Important colors (all are important)
  94. };
  95. // Width and height in the information header
  96. infoHeader[4] = (unsigned char)(img.nx);
  97. infoHeader[5] = (unsigned char)(img.nx >> 8);
  98. infoHeader[6] = (unsigned char)(img.nx >> 16);
  99. infoHeader[7] = (unsigned char)(img.nx >> 24);
  100. infoHeader[8] = (unsigned char)(img.ny);
  101. infoHeader[9] = (unsigned char)(img.ny >> 8);
  102. infoHeader[10] = (unsigned char)(img.ny >> 16);
  103. infoHeader[11] = (unsigned char)(img.ny >> 24);
  104. // Write file headers
  105. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  106. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  107. // Pixel data
  108. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  109. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  110. for (int x = 0; x < img.nx; ++x) {
  111. // Each pixel
  112. size_t pixelIndex = (y * img.nx + x) * 3;
  113. unsigned char pixel[3] = {
  114. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  115. img.buf[pixelIndex + 1],
  116. img.buf[pixelIndex]
  117. };
  118. file.write(reinterpret_cast<char*>(pixel), 3);
  119. }
  120. // Write padding for the row
  121. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  122. }
  123. file.close();
  124. }
  125. // debug function to convert f32 to u8
  126. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  127. dst.nx = src.nx;
  128. dst.ny = src.ny;
  129. dst.buf.resize(3 * src.nx * src.ny);
  130. for (size_t i = 0; i < src.buf.size(); ++i) {
  131. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  132. }
  133. }
  134. #endif
  135. //
  136. // clip layers
  137. //
  138. enum patch_merge_type {
  139. PATCH_MERGE_FLAT,
  140. PATCH_MERGE_SPATIAL_UNPAD,
  141. };
  142. struct clip_hparams {
  143. int32_t image_size;
  144. int32_t patch_size;
  145. int32_t n_embd;
  146. int32_t n_ff;
  147. int32_t projection_dim;
  148. int32_t n_head;
  149. int32_t n_layer;
  150. // idefics3
  151. int32_t image_longest_edge = 0;
  152. int32_t image_min_pixels = 0;
  153. int32_t image_max_pixels = 0;
  154. int32_t n_merge = 0; // number of patch merges **per-side**
  155. float image_mean[3];
  156. float image_std[3];
  157. // for models using dynamic image size, we need to have a smaller image size to warmup
  158. // otherwise, user will get OOM everytime they load the model
  159. int32_t warmup_image_size = 0;
  160. int32_t warmup_audio_size = 3000;
  161. ffn_op_type ffn_op = FFN_GELU;
  162. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  163. float eps = 1e-6;
  164. float rope_theta = 0.0;
  165. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  166. int32_t image_crop_resolution;
  167. std::unordered_set<int32_t> vision_feature_layer;
  168. int32_t attn_window_size = 0;
  169. int32_t n_wa_pattern = 0;
  170. // audio
  171. int32_t n_mel_bins = 0; // whisper preprocessor
  172. int32_t proj_stack_factor = 0; // ultravox
  173. // legacy
  174. bool has_llava_projector = false;
  175. int minicpmv_version = 0;
  176. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  177. void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
  178. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  179. const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
  180. image_min_pixels = n_tokens_min * patch_area;
  181. image_max_pixels = n_tokens_max * patch_area;
  182. warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
  183. }
  184. void set_warmup_n_tokens(int n_tokens) {
  185. int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
  186. GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
  187. const int cur_merge = n_merge == 0 ? 1 : n_merge;
  188. warmup_image_size = n_tok_per_side * patch_size * cur_merge;
  189. }
  190. };
  191. struct clip_layer {
  192. // attention
  193. ggml_tensor * k_w = nullptr;
  194. ggml_tensor * k_b = nullptr;
  195. ggml_tensor * q_w = nullptr;
  196. ggml_tensor * q_b = nullptr;
  197. ggml_tensor * v_w = nullptr;
  198. ggml_tensor * v_b = nullptr;
  199. ggml_tensor * qkv_w = nullptr;
  200. ggml_tensor * qkv_b = nullptr;
  201. ggml_tensor * o_w = nullptr;
  202. ggml_tensor * o_b = nullptr;
  203. ggml_tensor * k_norm = nullptr;
  204. ggml_tensor * q_norm = nullptr;
  205. // layernorm 1
  206. ggml_tensor * ln_1_w = nullptr;
  207. ggml_tensor * ln_1_b = nullptr;
  208. ggml_tensor * ff_up_w = nullptr;
  209. ggml_tensor * ff_up_b = nullptr;
  210. ggml_tensor * ff_gate_w = nullptr;
  211. ggml_tensor * ff_gate_b = nullptr;
  212. ggml_tensor * ff_down_w = nullptr;
  213. ggml_tensor * ff_down_b = nullptr;
  214. // layernorm 2
  215. ggml_tensor * ln_2_w = nullptr;
  216. ggml_tensor * ln_2_b = nullptr;
  217. // layer scale (no bias)
  218. ggml_tensor * ls_1_w = nullptr;
  219. ggml_tensor * ls_2_w = nullptr;
  220. // qwen3vl deepstack merger
  221. ggml_tensor * deepstack_norm_w = nullptr;
  222. ggml_tensor * deepstack_norm_b = nullptr;
  223. ggml_tensor * deepstack_fc1_w = nullptr;
  224. ggml_tensor * deepstack_fc1_b = nullptr;
  225. ggml_tensor * deepstack_fc2_w = nullptr;
  226. ggml_tensor * deepstack_fc2_b = nullptr;
  227. bool has_deepstack() const {
  228. return deepstack_fc1_w != nullptr;
  229. }
  230. };
  231. struct clip_model {
  232. clip_modality modality = CLIP_MODALITY_VISION;
  233. projector_type proj_type = PROJECTOR_TYPE_MLP;
  234. clip_hparams hparams;
  235. // embeddings
  236. ggml_tensor * class_embedding = nullptr;
  237. ggml_tensor * patch_embeddings_0 = nullptr;
  238. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  239. ggml_tensor * patch_bias = nullptr;
  240. ggml_tensor * position_embeddings = nullptr;
  241. ggml_tensor * pre_ln_w = nullptr;
  242. ggml_tensor * pre_ln_b = nullptr;
  243. std::vector<clip_layer> layers;
  244. int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
  245. ggml_tensor * post_ln_w;
  246. ggml_tensor * post_ln_b;
  247. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  248. ggml_tensor * mm_fc_w;
  249. ggml_tensor * mm_fc_b;
  250. // LLaVA projection
  251. ggml_tensor * mm_input_norm_w = nullptr;
  252. ggml_tensor * mm_input_norm_b = nullptr;
  253. ggml_tensor * mm_0_w = nullptr;
  254. ggml_tensor * mm_0_b = nullptr;
  255. ggml_tensor * mm_2_w = nullptr;
  256. ggml_tensor * mm_2_b = nullptr;
  257. ggml_tensor * image_newline = nullptr;
  258. // Yi type models with mlp+normalization projection
  259. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  260. ggml_tensor * mm_1_b = nullptr;
  261. ggml_tensor * mm_3_w = nullptr;
  262. ggml_tensor * mm_3_b = nullptr;
  263. ggml_tensor * mm_4_w = nullptr;
  264. ggml_tensor * mm_4_b = nullptr;
  265. // GLMV-Edge projection
  266. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  267. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  268. // MobileVLM projection
  269. ggml_tensor * mm_model_mlp_1_w = nullptr;
  270. ggml_tensor * mm_model_mlp_1_b = nullptr;
  271. ggml_tensor * mm_model_mlp_3_w = nullptr;
  272. ggml_tensor * mm_model_mlp_3_b = nullptr;
  273. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  274. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  275. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  276. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  277. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  278. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  279. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  280. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  281. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  282. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  283. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  284. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  285. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  286. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  287. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  288. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  289. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  290. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  291. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  292. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  293. // MobileVLM_V2 projection
  294. ggml_tensor * mm_model_mlp_0_w = nullptr;
  295. ggml_tensor * mm_model_mlp_0_b = nullptr;
  296. ggml_tensor * mm_model_mlp_2_w = nullptr;
  297. ggml_tensor * mm_model_mlp_2_b = nullptr;
  298. ggml_tensor * mm_model_peg_0_w = nullptr;
  299. ggml_tensor * mm_model_peg_0_b = nullptr;
  300. // MINICPMV projection
  301. ggml_tensor * mm_model_pos_embed_k = nullptr;
  302. ggml_tensor * mm_model_query = nullptr;
  303. ggml_tensor * mm_model_proj = nullptr;
  304. ggml_tensor * mm_model_kv_proj = nullptr;
  305. ggml_tensor * mm_model_attn_q_w = nullptr;
  306. ggml_tensor * mm_model_attn_q_b = nullptr;
  307. ggml_tensor * mm_model_attn_k_w = nullptr;
  308. ggml_tensor * mm_model_attn_k_b = nullptr;
  309. ggml_tensor * mm_model_attn_v_w = nullptr;
  310. ggml_tensor * mm_model_attn_v_b = nullptr;
  311. ggml_tensor * mm_model_attn_o_w = nullptr;
  312. ggml_tensor * mm_model_attn_o_b = nullptr;
  313. ggml_tensor * mm_model_ln_q_w = nullptr;
  314. ggml_tensor * mm_model_ln_q_b = nullptr;
  315. ggml_tensor * mm_model_ln_kv_w = nullptr;
  316. ggml_tensor * mm_model_ln_kv_b = nullptr;
  317. ggml_tensor * mm_model_ln_post_w = nullptr;
  318. ggml_tensor * mm_model_ln_post_b = nullptr;
  319. // gemma3
  320. ggml_tensor * mm_input_proj_w = nullptr;
  321. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  322. // pixtral
  323. ggml_tensor * token_embd_img_break = nullptr;
  324. ggml_tensor * mm_patch_merger_w = nullptr;
  325. // ultravox / whisper encoder
  326. ggml_tensor * conv1d_1_w = nullptr;
  327. ggml_tensor * conv1d_1_b = nullptr;
  328. ggml_tensor * conv1d_2_w = nullptr;
  329. ggml_tensor * conv1d_2_b = nullptr;
  330. ggml_tensor * mm_norm_pre_w = nullptr;
  331. ggml_tensor * mm_norm_mid_w = nullptr;
  332. // cogvlm
  333. ggml_tensor * mm_post_fc_norm_w = nullptr;
  334. ggml_tensor * mm_post_fc_norm_b = nullptr;
  335. ggml_tensor * mm_h_to_4h_w = nullptr;
  336. ggml_tensor * mm_gate_w = nullptr;
  337. ggml_tensor * mm_4h_to_h_w = nullptr;
  338. ggml_tensor * mm_boi = nullptr;
  339. ggml_tensor * mm_eoi = nullptr;
  340. bool audio_has_avgpool() const {
  341. return proj_type == PROJECTOR_TYPE_QWEN2A
  342. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  343. }
  344. bool audio_has_stack_frames() const {
  345. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  346. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  347. }
  348. };
  349. struct clip_ctx {
  350. clip_model model;
  351. gguf_context_ptr ctx_gguf;
  352. ggml_context_ptr ctx_data;
  353. std::vector<uint8_t> buf_compute_meta;
  354. std::vector<ggml_backend_t> backend_ptrs;
  355. std::vector<ggml_backend_buffer_type_t> backend_buft;
  356. ggml_backend_t backend = nullptr;
  357. ggml_backend_t backend_cpu = nullptr;
  358. ggml_backend_buffer_ptr buf;
  359. int max_nodes = 8192;
  360. ggml_backend_sched_ptr sched;
  361. // for debugging
  362. bool debug_graph = false;
  363. std::vector<ggml_tensor *> debug_print_tensors;
  364. clip_ctx(clip_context_params & ctx_params) {
  365. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  366. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  367. if (!backend_cpu) {
  368. throw std::runtime_error("failed to initialize CPU backend");
  369. }
  370. if (ctx_params.use_gpu) {
  371. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  372. if (backend_name != nullptr) {
  373. backend = ggml_backend_init_by_name(backend_name, nullptr);
  374. if (!backend) {
  375. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  376. }
  377. }
  378. if (!backend) {
  379. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  380. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  381. }
  382. }
  383. if (backend) {
  384. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  385. backend_ptrs.push_back(backend);
  386. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  387. } else {
  388. backend = backend_cpu;
  389. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  390. }
  391. backend_ptrs.push_back(backend_cpu);
  392. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  393. sched.reset(
  394. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  395. );
  396. }
  397. ~clip_ctx() {
  398. ggml_backend_free(backend);
  399. if (backend != backend_cpu) {
  400. ggml_backend_free(backend_cpu);
  401. }
  402. }
  403. // this function is added so that we don't change too much of the existing code
  404. projector_type proj_type() const {
  405. return model.proj_type;
  406. }
  407. };
  408. struct clip_graph {
  409. clip_ctx * ctx;
  410. const clip_model & model;
  411. const clip_hparams & hparams;
  412. // we only support single image per batch
  413. const clip_image_f32 & img;
  414. const int patch_size;
  415. const int n_patches_x;
  416. const int n_patches_y;
  417. const int n_patches;
  418. const int n_embd;
  419. const int n_head;
  420. const int d_head;
  421. const int n_layer;
  422. const float eps;
  423. const float kq_scale;
  424. ggml_context_ptr ctx0_ptr;
  425. ggml_context * ctx0;
  426. ggml_cgraph * gf;
  427. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  428. ctx(ctx),
  429. model(ctx->model),
  430. hparams(model.hparams),
  431. img(img),
  432. patch_size(hparams.patch_size),
  433. n_patches_x(img.nx / patch_size),
  434. n_patches_y(img.ny / patch_size),
  435. n_patches(n_patches_x * n_patches_y),
  436. n_embd(hparams.n_embd),
  437. n_head(hparams.n_head),
  438. d_head(n_embd / n_head),
  439. n_layer(hparams.n_layer),
  440. eps(hparams.eps),
  441. kq_scale(1.0f / sqrtf((float)d_head)) {
  442. struct ggml_init_params params = {
  443. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  444. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  445. /*.no_alloc =*/ true,
  446. };
  447. ctx0_ptr.reset(ggml_init(params));
  448. ctx0 = ctx0_ptr.get();
  449. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  450. }
  451. ggml_cgraph * build_siglip() {
  452. ggml_tensor * inp = build_inp();
  453. ggml_tensor * learned_pos_embd = model.position_embeddings;
  454. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  455. learned_pos_embd = resize_position_embeddings();
  456. }
  457. ggml_tensor * cur = build_vit(
  458. inp, n_patches,
  459. NORM_TYPE_NORMAL,
  460. hparams.ffn_op,
  461. learned_pos_embd,
  462. nullptr);
  463. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  464. const int batch_size = 1;
  465. GGML_ASSERT(n_patches_x == n_patches_y);
  466. const int patches_per_image = n_patches_x;
  467. const int kernel_size = hparams.n_merge;
  468. cur = ggml_transpose(ctx0, cur);
  469. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  470. // doing a pool2d to reduce the number of output tokens
  471. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  472. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  473. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  474. // apply norm before projection
  475. cur = ggml_rms_norm(ctx0, cur, eps);
  476. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  477. // apply projection
  478. cur = ggml_mul_mat(ctx0,
  479. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  480. cur);
  481. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  482. // pixel_shuffle
  483. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  484. const int scale_factor = model.hparams.n_merge;
  485. cur = build_patch_merge_permute(cur, scale_factor);
  486. cur = ggml_mul_mat(ctx0, model.projection, cur);
  487. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  488. // pixel unshuffle block
  489. const int scale_factor = model.hparams.n_merge;
  490. cur = build_patch_merge_permute(cur, scale_factor);
  491. // projection
  492. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  493. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  494. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  495. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  496. cur = ggml_add(ctx0, cur, model.mm_1_b);
  497. cur = ggml_gelu(ctx0, cur);
  498. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  499. cur = ggml_add(ctx0, cur, model.mm_2_b);
  500. } else {
  501. GGML_ABORT("SigLIP: Unsupported projector type");
  502. }
  503. // build the graph
  504. ggml_build_forward_expand(gf, cur);
  505. return gf;
  506. }
  507. ggml_cgraph * build_pixtral() {
  508. const int n_merge = hparams.n_merge;
  509. // 2D input positions
  510. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  511. ggml_set_name(pos_h, "pos_h");
  512. ggml_set_input(pos_h);
  513. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  514. ggml_set_name(pos_w, "pos_w");
  515. ggml_set_input(pos_w);
  516. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  517. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  518. };
  519. ggml_tensor * inp = build_inp();
  520. ggml_tensor * cur = build_vit(
  521. inp, n_patches,
  522. NORM_TYPE_RMS,
  523. hparams.ffn_op,
  524. nullptr, // no learned pos embd
  525. add_pos);
  526. // mistral small 3.1 patch merger
  527. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  528. if (model.mm_patch_merger_w) {
  529. GGML_ASSERT(hparams.n_merge > 0);
  530. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  531. // reshape image tokens to 2D grid
  532. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  533. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  534. cur = ggml_cont(ctx0, cur);
  535. // torch.nn.functional.unfold is just an im2col under the hood
  536. // we just need a dummy kernel to make it work
  537. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  538. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  539. // project to n_embd
  540. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  541. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  542. }
  543. // LlavaMultiModalProjector (always using GELU activation)
  544. {
  545. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  546. if (model.mm_1_b) {
  547. cur = ggml_add(ctx0, cur, model.mm_1_b);
  548. }
  549. cur = ggml_gelu(ctx0, cur);
  550. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  551. if (model.mm_2_b) {
  552. cur = ggml_add(ctx0, cur, model.mm_2_b);
  553. }
  554. }
  555. // arrangement of the [IMG_BREAK] token
  556. if (model.token_embd_img_break) {
  557. // not efficient, but works
  558. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  559. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  560. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  561. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  562. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  563. const int p_total = p_x * p_y;
  564. const int n_embd_text = cur->ne[0];
  565. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  566. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  567. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  568. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  569. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  570. tmp = ggml_concat(ctx0, tmp, tok, 1);
  571. cur = ggml_view_2d(ctx0, tmp,
  572. n_embd_text, n_tokens_output,
  573. ggml_row_size(tmp->type, n_embd_text), 0);
  574. }
  575. // build the graph
  576. ggml_build_forward_expand(gf, cur);
  577. return gf;
  578. }
  579. // Qwen2VL and Qwen2.5VL use M-RoPE
  580. ggml_cgraph * build_qwen2vl() {
  581. GGML_ASSERT(model.patch_bias == nullptr);
  582. GGML_ASSERT(model.class_embedding == nullptr);
  583. const int batch_size = 1;
  584. const bool use_window_attn = hparams.n_wa_pattern > 0;
  585. const int n_wa_pattern = hparams.n_wa_pattern;
  586. const int n_pos = n_patches;
  587. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  588. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  589. ? NORM_TYPE_RMS // qwen 2.5 vl
  590. : NORM_TYPE_NORMAL; // qwen 2 vl
  591. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  592. ggml_tensor * inp_raw = build_inp_raw();
  593. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  594. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  595. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  596. // second conv dimension
  597. {
  598. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  599. inp = ggml_add(ctx0, inp, inp_1);
  600. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  601. inp = ggml_cont_4d(
  602. ctx0, inp,
  603. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  604. inp = ggml_reshape_4d(
  605. ctx0, inp,
  606. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  607. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  608. inp = ggml_cont_3d(
  609. ctx0, inp,
  610. n_embd, n_patches_x * n_patches_y, batch_size);
  611. }
  612. ggml_tensor * inpL = inp;
  613. ggml_tensor * window_mask = nullptr;
  614. ggml_tensor * window_idx = nullptr;
  615. ggml_tensor * inv_window_idx = nullptr;
  616. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  617. ggml_set_name(positions, "positions");
  618. ggml_set_input(positions);
  619. // pre-layernorm
  620. if (model.pre_ln_w) {
  621. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  622. }
  623. if (use_window_attn) {
  624. // handle window attention inputs
  625. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  626. ggml_set_name(inv_window_idx, "inv_window_idx");
  627. ggml_set_input(inv_window_idx);
  628. // mask for window attention
  629. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  630. ggml_set_name(window_mask, "window_mask");
  631. ggml_set_input(window_mask);
  632. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  633. GGML_ASSERT(batch_size == 1);
  634. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  635. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  636. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  637. }
  638. // loop over layers
  639. for (int il = 0; il < n_layer; il++) {
  640. auto & layer = model.layers[il];
  641. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  642. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  643. // layernorm1
  644. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  645. cb(cur, "ln1", il);
  646. // self-attention
  647. {
  648. ggml_tensor * Qcur = ggml_add(ctx0,
  649. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  650. ggml_tensor * Kcur = ggml_add(ctx0,
  651. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  652. ggml_tensor * Vcur = ggml_add(ctx0,
  653. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  654. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  655. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  656. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  657. cb(Qcur, "Qcur", il);
  658. cb(Kcur, "Kcur", il);
  659. cb(Vcur, "Vcur", il);
  660. // apply M-RoPE
  661. Qcur = ggml_rope_multi(
  662. ctx0, Qcur, positions, nullptr,
  663. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  664. Kcur = ggml_rope_multi(
  665. ctx0, Kcur, positions, nullptr,
  666. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  667. cb(Qcur, "Qcur_rope", il);
  668. cb(Kcur, "Kcur_rope", il);
  669. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  670. cur = build_attn(layer.o_w, layer.o_b,
  671. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  672. cb(cur, "attn_out", il);
  673. }
  674. // re-add the layer input, e.g., residual
  675. cur = ggml_add(ctx0, cur, inpL);
  676. inpL = cur; // inpL = residual, cur = hidden_states
  677. cb(cur, "ffn_inp", il);
  678. // layernorm2
  679. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  680. cb(cur, "ffn_inp_normed", il);
  681. // ffn
  682. cur = build_ffn(cur,
  683. layer.ff_up_w, layer.ff_up_b,
  684. layer.ff_gate_w, layer.ff_gate_b,
  685. layer.ff_down_w, layer.ff_down_b,
  686. hparams.ffn_op, il);
  687. cb(cur, "ffn_out", il);
  688. // residual 2
  689. cur = ggml_add(ctx0, inpL, cur);
  690. cb(cur, "layer_out", il);
  691. inpL = cur;
  692. }
  693. // post-layernorm
  694. if (model.post_ln_w) {
  695. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  696. }
  697. // multimodal projection
  698. ggml_tensor * embeddings = inpL;
  699. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  700. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  701. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  702. // GELU activation
  703. embeddings = ggml_gelu(ctx0, embeddings);
  704. // Second linear layer
  705. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  706. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  707. if (use_window_attn) {
  708. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  709. ggml_set_name(window_idx, "window_idx");
  710. ggml_set_input(window_idx);
  711. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  712. GGML_ASSERT(batch_size == 1);
  713. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  714. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  715. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  716. }
  717. // build the graph
  718. ggml_build_forward_expand(gf, embeddings);
  719. return gf;
  720. }
  721. // Qwen3VL
  722. ggml_cgraph * build_qwen3vl() {
  723. GGML_ASSERT(model.patch_bias != nullptr);
  724. GGML_ASSERT(model.position_embeddings != nullptr);
  725. GGML_ASSERT(model.class_embedding == nullptr);
  726. const int batch_size = 1;
  727. const int n_pos = n_patches;
  728. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  729. norm_type norm_t = NORM_TYPE_NORMAL;
  730. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  731. ggml_tensor * inp_raw = build_inp_raw();
  732. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  733. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  734. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  735. // second conv dimension
  736. {
  737. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  738. inp = ggml_add(ctx0, inp, inp_1);
  739. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  740. inp = ggml_cont_4d(
  741. ctx0, inp,
  742. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  743. inp = ggml_reshape_4d(
  744. ctx0, inp,
  745. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  746. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  747. inp = ggml_cont_3d(
  748. ctx0, inp,
  749. n_embd, n_patches_x * n_patches_y, batch_size);
  750. }
  751. // add patch bias
  752. if (model.patch_bias != nullptr) {
  753. inp = ggml_add(ctx0, inp, model.patch_bias);
  754. cb(inp, "patch_bias", -1);
  755. }
  756. // calculate absolute position embedding and apply
  757. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  758. learned_pos_embd = ggml_cont_4d(
  759. ctx0, learned_pos_embd,
  760. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  761. learned_pos_embd = ggml_reshape_4d(
  762. ctx0, learned_pos_embd,
  763. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  764. learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
  765. learned_pos_embd = ggml_cont_3d(
  766. ctx0, learned_pos_embd,
  767. n_embd, n_patches_x * n_patches_y, batch_size);
  768. inp = ggml_add(ctx0, inp, learned_pos_embd);
  769. cb(inp, "inp_pos_emb", -1);
  770. ggml_tensor * inpL = inp;
  771. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  772. ggml_set_name(positions, "positions");
  773. ggml_set_input(positions);
  774. // pre-layernorm
  775. if (model.pre_ln_w) {
  776. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  777. }
  778. // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
  779. ggml_tensor * deepstack_features = nullptr;
  780. const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
  781. // loop over layers
  782. for (int il = 0; il < n_layer; il++) {
  783. auto & layer = model.layers[il];
  784. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  785. // layernorm1
  786. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  787. cb(cur, "ln1", il);
  788. // self-attention
  789. {
  790. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  791. cur = ggml_add(ctx0, cur, layer.qkv_b);
  792. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  793. cur->nb[1], 0);
  794. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  795. cur->nb[1], n_embd * sizeof(float));
  796. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  797. cur->nb[1], 2 * n_embd * sizeof(float));
  798. cb(Qcur, "Qcur", il);
  799. cb(Kcur, "Kcur", il);
  800. cb(Vcur, "Vcur", il);
  801. // apply M-RoPE
  802. Qcur = ggml_rope_multi(
  803. ctx0, Qcur, positions, nullptr,
  804. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  805. Kcur = ggml_rope_multi(
  806. ctx0, Kcur, positions, nullptr,
  807. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  808. cb(Qcur, "Qcur_rope", il);
  809. cb(Kcur, "Kcur_rope", il);
  810. cur = build_attn(layer.o_w, layer.o_b,
  811. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  812. cb(cur, "attn_out", il);
  813. }
  814. // re-add the layer input, e.g., residual
  815. cur = ggml_add(ctx0, cur, inpL);
  816. inpL = cur; // inpL = residual, cur = hidden_states
  817. cb(cur, "ffn_inp", il);
  818. // layernorm2
  819. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  820. cb(cur, "ffn_inp_normed", il);
  821. // ffn
  822. cur = build_ffn(cur,
  823. layer.ff_up_w, layer.ff_up_b,
  824. layer.ff_gate_w, layer.ff_gate_b,
  825. layer.ff_down_w, layer.ff_down_b,
  826. hparams.ffn_op, il);
  827. cb(cur, "ffn_out", il);
  828. // residual 2
  829. cur = ggml_add(ctx0, inpL, cur);
  830. cb(cur, "layer_out", il);
  831. if (layer.has_deepstack()) {
  832. ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
  833. feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
  834. feat = build_ffn(feat,
  835. layer.deepstack_fc1_w, layer.deepstack_fc1_b,
  836. nullptr, nullptr,
  837. layer.deepstack_fc2_w, layer.deepstack_fc2_b,
  838. ffn_op_type::FFN_GELU, il);
  839. if(!deepstack_features) {
  840. deepstack_features = feat;
  841. } else {
  842. // concat along the feature dimension
  843. deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
  844. }
  845. }
  846. inpL = cur;
  847. }
  848. // post-layernorm
  849. if (model.post_ln_w) {
  850. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  851. }
  852. // multimodal projection
  853. ggml_tensor * embeddings = inpL;
  854. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  855. embeddings = build_ffn(embeddings,
  856. model.mm_0_w, model.mm_0_b,
  857. nullptr, nullptr,
  858. model.mm_1_w, model.mm_1_b,
  859. ffn_op_type::FFN_GELU, -1);
  860. embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
  861. // build the graph
  862. ggml_build_forward_expand(gf, embeddings);
  863. return gf;
  864. }
  865. ggml_cgraph * build_minicpmv() {
  866. const int batch_size = 1;
  867. GGML_ASSERT(model.class_embedding == nullptr);
  868. const int n_pos = n_patches;
  869. // position embeddings for the projector (not for ViT)
  870. int n_output_dim = clip_n_mmproj_embd(ctx);
  871. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  872. ggml_set_name(pos_embed, "pos_embed");
  873. ggml_set_input(pos_embed);
  874. // for selecting learned pos embd, used by ViT
  875. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  876. ggml_set_name(positions, "positions");
  877. ggml_set_input(positions);
  878. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  879. ggml_tensor * inp = build_inp();
  880. ggml_tensor * embeddings = build_vit(
  881. inp, n_patches,
  882. NORM_TYPE_NORMAL,
  883. hparams.ffn_op,
  884. learned_pos_embd,
  885. nullptr);
  886. // resampler projector (it is just another transformer)
  887. ggml_tensor * q = model.mm_model_query;
  888. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  889. // norm
  890. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  891. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  892. // k = v + pos_embed
  893. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  894. // attention
  895. {
  896. int n_embd = clip_n_mmproj_embd(ctx);
  897. const int d_head = 128;
  898. int n_head = n_embd/d_head;
  899. // Use actual config value if available, otherwise fall back to hardcoded values
  900. int num_query = ctx->model.hparams.minicpmv_query_num;
  901. ggml_tensor * Q = ggml_add(ctx0,
  902. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  903. model.mm_model_attn_q_b);
  904. ggml_tensor * K = ggml_add(ctx0,
  905. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  906. model.mm_model_attn_k_b);
  907. ggml_tensor * V = ggml_add(ctx0,
  908. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  909. model.mm_model_attn_v_b);
  910. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  911. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  912. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  913. cb(Q, "resampler_Q", -1);
  914. cb(K, "resampler_K", -1);
  915. cb(V, "resampler_V", -1);
  916. embeddings = build_attn(
  917. model.mm_model_attn_o_w,
  918. model.mm_model_attn_o_b,
  919. Q, K, V, nullptr, kq_scale, -1);
  920. cb(embeddings, "resampler_attn_out", -1);
  921. }
  922. // layernorm
  923. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  924. // projection
  925. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  926. // build the graph
  927. ggml_build_forward_expand(gf, embeddings);
  928. return gf;
  929. }
  930. ggml_cgraph * build_internvl() {
  931. GGML_ASSERT(model.class_embedding != nullptr);
  932. GGML_ASSERT(model.position_embeddings != nullptr);
  933. const int n_pos = n_patches + 1;
  934. ggml_tensor * inp = build_inp();
  935. // add CLS token
  936. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  937. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  938. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  939. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  940. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  941. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  942. ggml_tensor * cur = build_vit(
  943. inp, n_pos,
  944. norm_t,
  945. hparams.ffn_op,
  946. model.position_embeddings,
  947. nullptr);
  948. // remove CLS token
  949. cur = ggml_view_2d(ctx0, cur,
  950. n_embd, n_patches,
  951. ggml_row_size(cur->type, n_embd), 0);
  952. // pixel shuffle
  953. {
  954. const int scale_factor = model.hparams.n_merge;
  955. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  956. const int height = n_patches_y;
  957. const int width = n_patches_x;
  958. GGML_ASSERT(scale_factor > 0);
  959. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  960. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  961. cur = ggml_cont_4d(ctx0, cur,
  962. n_embd * scale_factor * scale_factor,
  963. height / scale_factor,
  964. width / scale_factor,
  965. bsz);
  966. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  967. // flatten to 2D
  968. cur = ggml_cont_2d(ctx0, cur,
  969. n_embd * scale_factor * scale_factor,
  970. cur->ne[1] * cur->ne[2]);
  971. }
  972. // projector (always using GELU activation)
  973. {
  974. // projector LayerNorm uses pytorch's default eps = 1e-5
  975. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  976. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  977. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  978. cur = ggml_add(ctx0, cur, model.mm_1_b);
  979. cur = ggml_gelu(ctx0, cur);
  980. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  981. cur = ggml_add(ctx0, cur, model.mm_3_b);
  982. }
  983. // build the graph
  984. ggml_build_forward_expand(gf, cur);
  985. return gf;
  986. }
  987. ggml_cgraph * build_llama4() {
  988. GGML_ASSERT(model.class_embedding != nullptr);
  989. GGML_ASSERT(model.position_embeddings != nullptr);
  990. const int n_pos = n_patches + 1; // +1 for [CLS]
  991. // 2D input positions
  992. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  993. ggml_set_name(pos_h, "pos_h");
  994. ggml_set_input(pos_h);
  995. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  996. ggml_set_name(pos_w, "pos_w");
  997. ggml_set_input(pos_w);
  998. ggml_tensor * inp = build_inp_raw();
  999. // Llama4UnfoldConvolution
  1000. {
  1001. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  1002. patch_size, patch_size, 3, n_embd);
  1003. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  1004. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  1005. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  1006. cb(inp, "patch_conv", -1);
  1007. }
  1008. // add CLS token
  1009. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1010. // build ViT with 2D position embeddings
  1011. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1012. // first half is X axis and second half is Y axis
  1013. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  1014. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  1015. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1016. };
  1017. ggml_tensor * cur = build_vit(
  1018. inp, n_pos,
  1019. NORM_TYPE_NORMAL,
  1020. hparams.ffn_op,
  1021. model.position_embeddings,
  1022. add_pos);
  1023. // remove CLS token
  1024. cur = ggml_view_2d(ctx0, cur,
  1025. n_embd, n_patches,
  1026. ggml_row_size(cur->type, n_embd), 0);
  1027. // pixel shuffle
  1028. // based on Llama4VisionPixelShuffleMLP
  1029. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  1030. {
  1031. const int scale_factor = model.hparams.n_merge;
  1032. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1033. GGML_ASSERT(scale_factor > 0);
  1034. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  1035. cur = ggml_reshape_4d(ctx0, cur,
  1036. n_embd * scale_factor,
  1037. n_patches_x / scale_factor,
  1038. n_patches_y,
  1039. bsz);
  1040. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1041. cur = ggml_cont_4d(ctx0, cur,
  1042. n_embd * scale_factor * scale_factor,
  1043. n_patches_x / scale_factor,
  1044. n_patches_y / scale_factor,
  1045. bsz);
  1046. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1047. // flatten to 2D
  1048. cur = ggml_cont_2d(ctx0, cur,
  1049. n_embd * scale_factor * scale_factor,
  1050. n_patches / scale_factor / scale_factor);
  1051. cb(cur, "pixel_shuffle", -1);
  1052. }
  1053. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  1054. {
  1055. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  1056. cur = ggml_gelu(ctx0, cur);
  1057. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  1058. cur = ggml_gelu(ctx0, cur);
  1059. cb(cur, "adapter_mlp", -1);
  1060. }
  1061. // Llama4MultiModalProjector
  1062. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1063. cb(cur, "projected", -1);
  1064. // build the graph
  1065. ggml_build_forward_expand(gf, cur);
  1066. return gf;
  1067. }
  1068. ggml_cgraph * build_kimivl() {
  1069. // 2D input positions
  1070. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1071. ggml_set_name(pos_h, "pos_h");
  1072. ggml_set_input(pos_h);
  1073. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1074. ggml_set_name(pos_w, "pos_w");
  1075. ggml_set_input(pos_w);
  1076. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  1077. // build ViT with 2D position embeddings
  1078. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1079. // first half is X axis and second half is Y axis
  1080. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1081. };
  1082. ggml_tensor * inp = build_inp();
  1083. ggml_tensor * cur = build_vit(
  1084. inp, n_patches,
  1085. NORM_TYPE_NORMAL,
  1086. hparams.ffn_op,
  1087. learned_pos_embd,
  1088. add_pos);
  1089. cb(cur, "vit_out", -1);
  1090. {
  1091. // patch_merger
  1092. const int scale_factor = model.hparams.n_merge;
  1093. cur = build_patch_merge_permute(cur, scale_factor);
  1094. // projection norm
  1095. int proj_inp_dim = cur->ne[0];
  1096. cur = ggml_view_2d(ctx0, cur,
  1097. n_embd, cur->ne[1] * scale_factor * scale_factor,
  1098. ggml_row_size(cur->type, n_embd), 0);
  1099. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  1100. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  1101. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  1102. cur = ggml_view_2d(ctx0, cur,
  1103. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  1104. ggml_row_size(cur->type, proj_inp_dim), 0);
  1105. cb(cur, "proj_inp_normed", -1);
  1106. // projection mlp
  1107. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1108. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1109. cur = ggml_gelu(ctx0, cur);
  1110. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1111. cur = ggml_add(ctx0, cur, model.mm_2_b);
  1112. cb(cur, "proj_out", -1);
  1113. }
  1114. // build the graph
  1115. ggml_build_forward_expand(gf, cur);
  1116. return gf;
  1117. }
  1118. // this graph is used by llava, granite and glm
  1119. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  1120. ggml_cgraph * build_llava() {
  1121. const int batch_size = 1;
  1122. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  1123. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  1124. // Calculate the deepest feature layer based on hparams and projector type
  1125. int max_feature_layer = n_layer;
  1126. {
  1127. // Get the index of the second to last layer; this is the default for models that have a llava projector
  1128. int il_last = hparams.n_layer - 1;
  1129. int deepest_feature_layer = -1;
  1130. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1131. il_last += 1;
  1132. }
  1133. // If we set explicit vision feature layers, only go up to the deepest one
  1134. // NOTE: only used by granite-vision models for now
  1135. for (const auto & feature_layer : hparams.vision_feature_layer) {
  1136. if (feature_layer > deepest_feature_layer) {
  1137. deepest_feature_layer = feature_layer;
  1138. }
  1139. }
  1140. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  1141. }
  1142. ggml_tensor * inp = build_inp();
  1143. // concat class_embeddings and patch_embeddings
  1144. if (model.class_embedding) {
  1145. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1146. }
  1147. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1148. ggml_set_name(positions, "positions");
  1149. ggml_set_input(positions);
  1150. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  1151. ggml_tensor * inpL = inp;
  1152. // pre-layernorm
  1153. if (model.pre_ln_w) {
  1154. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1155. cb(inpL, "pre_ln", -1);
  1156. }
  1157. std::vector<ggml_tensor *> embedding_stack;
  1158. const auto & vision_feature_layer = hparams.vision_feature_layer;
  1159. // loop over layers
  1160. for (int il = 0; il < max_feature_layer; il++) {
  1161. auto & layer = model.layers[il];
  1162. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1163. // If this is an embedding feature layer, save the output.
  1164. // NOTE: 0 index here refers to the input to the encoder.
  1165. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  1166. embedding_stack.push_back(cur);
  1167. }
  1168. // layernorm1
  1169. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1170. cb(cur, "layer_inp_normed", il);
  1171. // self-attention
  1172. {
  1173. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1174. if (layer.q_b) {
  1175. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1176. }
  1177. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1178. if (layer.k_b) {
  1179. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1180. }
  1181. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1182. if (layer.v_b) {
  1183. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1184. }
  1185. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1186. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1187. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1188. cb(Qcur, "Qcur", il);
  1189. cb(Kcur, "Kcur", il);
  1190. cb(Vcur, "Vcur", il);
  1191. cur = build_attn(layer.o_w, layer.o_b,
  1192. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1193. cb(cur, "attn_out", il);
  1194. }
  1195. // re-add the layer input, e.g., residual
  1196. cur = ggml_add(ctx0, cur, inpL);
  1197. inpL = cur; // inpL = residual, cur = hidden_states
  1198. cb(cur, "ffn_inp", il);
  1199. // layernorm2
  1200. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1201. cb(cur, "ffn_inp_normed", il);
  1202. // ffn
  1203. cur = build_ffn(cur,
  1204. layer.ff_up_w, layer.ff_up_b,
  1205. layer.ff_gate_w, layer.ff_gate_b,
  1206. layer.ff_down_w, layer.ff_down_b,
  1207. hparams.ffn_op, il);
  1208. cb(cur, "ffn_out", il);
  1209. // residual 2
  1210. cur = ggml_add(ctx0, inpL, cur);
  1211. cb(cur, "layer_out", il);
  1212. inpL = cur;
  1213. }
  1214. // post-layernorm
  1215. if (model.post_ln_w) {
  1216. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1217. }
  1218. ggml_tensor * embeddings = inpL;
  1219. // process vision feature layers (used by granite)
  1220. {
  1221. // final layer is a vision feature layer
  1222. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1223. embedding_stack.push_back(inpL);
  1224. }
  1225. // If feature layers are explicitly set, stack them (if we have multiple)
  1226. if (!embedding_stack.empty()) {
  1227. embeddings = embedding_stack[0];
  1228. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1229. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1230. }
  1231. }
  1232. }
  1233. // llava projector (also used by granite)
  1234. if (ctx->model.hparams.has_llava_projector) {
  1235. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1236. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1237. ggml_set_name(patches, "patches");
  1238. ggml_set_input(patches);
  1239. // shape [1, 576, 1024]
  1240. // ne is whcn, ne = [1024, 576, 1, 1]
  1241. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1242. // print_tensor_info(embeddings, "embeddings");
  1243. // llava projector
  1244. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1245. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1246. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1247. embeddings = ggml_gelu(ctx0, embeddings);
  1248. if (model.mm_2_w) {
  1249. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1250. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1251. }
  1252. }
  1253. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1254. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1255. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1256. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1257. // First LayerNorm
  1258. embeddings = ggml_norm(ctx0, embeddings, eps);
  1259. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1260. model.mm_1_b);
  1261. // GELU activation
  1262. embeddings = ggml_gelu(ctx0, embeddings);
  1263. // Second linear layer
  1264. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1265. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1266. // Second LayerNorm
  1267. embeddings = ggml_norm(ctx0, embeddings, eps);
  1268. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1269. model.mm_4_b);
  1270. }
  1271. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1272. // MobileVLM projector
  1273. int n_patch = 24;
  1274. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1275. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1276. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1277. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1278. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1279. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1280. // block 1
  1281. ggml_tensor * block_1 = nullptr;
  1282. {
  1283. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1284. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1285. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1286. // stride = 1, padding = 1, bias is nullptr
  1287. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1288. // layer norm
  1289. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1290. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1291. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1292. block_1 = ggml_norm(ctx0, block_1, eps);
  1293. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1294. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1295. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1296. // hardswish
  1297. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1298. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1299. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1300. // pointwise conv
  1301. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1302. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1303. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1304. block_1 = ggml_relu(ctx0, block_1);
  1305. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1306. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1307. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1308. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1309. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1310. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1311. int w = block_1->ne[0], h = block_1->ne[1];
  1312. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1313. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1314. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1315. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1316. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1317. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1318. block_1 = ggml_norm(ctx0, block_1, eps);
  1319. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1320. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1321. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1322. // residual
  1323. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1324. }
  1325. // block_2
  1326. {
  1327. // stride = 2
  1328. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1329. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1330. // layer norm
  1331. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1332. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1333. block_1 = ggml_norm(ctx0, block_1, eps);
  1334. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1335. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1336. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1337. // hardswish
  1338. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1339. // not sure the parameters is right for globalAvgPooling
  1340. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1341. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1342. // pointwise conv
  1343. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1344. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1345. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1346. block_1 = ggml_relu(ctx0, block_1);
  1347. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1348. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1349. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1350. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1351. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1352. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1353. int w = block_1->ne[0], h = block_1->ne[1];
  1354. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1355. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1356. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1357. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1358. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1359. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1360. block_1 = ggml_norm(ctx0, block_1, eps);
  1361. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1362. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1363. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1364. }
  1365. embeddings = block_1;
  1366. }
  1367. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1368. {
  1369. int n_patch = 24;
  1370. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1371. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1372. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1373. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1374. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1375. // mlp_2 ne = [2048, 576, 1, 1]
  1376. // // AVG Pool Layer 2*2, strides = 2
  1377. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1378. // mlp_2 ne = [576, 2048, 1, 1]
  1379. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1380. // mlp_2 ne [24, 24, 2048, 1]
  1381. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1382. // weight ne = [3, 3, 2048, 1]
  1383. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1384. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1385. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1386. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1387. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1388. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1389. embeddings = peg_0;
  1390. }
  1391. else {
  1392. GGML_ABORT("fatal error");
  1393. }
  1394. }
  1395. // glm projector
  1396. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1397. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1398. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1399. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1400. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1401. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1402. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1403. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1404. // GLU
  1405. {
  1406. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1407. embeddings = ggml_norm(ctx0, embeddings, eps);
  1408. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1409. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1410. ggml_tensor * x = embeddings;
  1411. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1412. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1413. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1414. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1415. }
  1416. // arrangement of BOI/EOI token embeddings
  1417. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1418. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1419. {
  1420. embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
  1421. embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
  1422. }
  1423. }
  1424. else {
  1425. GGML_ABORT("llava: unknown projector type");
  1426. }
  1427. // build the graph
  1428. ggml_build_forward_expand(gf, embeddings);
  1429. return gf;
  1430. }
  1431. // whisper encoder with custom projector
  1432. ggml_cgraph * build_whisper_enc() {
  1433. const int n_frames = img.nx;
  1434. const int n_pos = n_frames / 2;
  1435. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1436. ggml_tensor * inp = build_inp_raw(1);
  1437. // conv1d block
  1438. {
  1439. // convolution + gelu
  1440. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1441. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1442. cur = ggml_gelu_erf(ctx0, cur);
  1443. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1444. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1445. cur = ggml_gelu_erf(ctx0, cur);
  1446. // transpose
  1447. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1448. cb(inp, "after_conv1d", -1);
  1449. }
  1450. // sanity check (only check one layer, but it should be the same for all)
  1451. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1452. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1453. GGML_ASSERT(model.layers[0].q_b);
  1454. GGML_ASSERT(model.layers[0].v_b);
  1455. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1456. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1457. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1458. ctx0, model.position_embeddings,
  1459. model.position_embeddings->ne[0], n_pos,
  1460. model.position_embeddings->nb[1], 0
  1461. );
  1462. ggml_tensor * cur = build_vit(
  1463. inp, n_pos,
  1464. NORM_TYPE_NORMAL,
  1465. hparams.ffn_op,
  1466. pos_embd_selected,
  1467. nullptr);
  1468. cb(cur, "after_transformer", -1);
  1469. if (model.audio_has_stack_frames()) {
  1470. // StackAudioFrames
  1471. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1472. int64_t stride = n_embd * hparams.proj_stack_factor;
  1473. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1474. int64_t pad = padded_len - ggml_nelements(cur);
  1475. if (pad > 0) {
  1476. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1477. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1478. }
  1479. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1480. ggml_row_size(cur->type, stride), 0);
  1481. cb(cur, "after_stacked", -1);
  1482. }
  1483. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1484. // UltravoxProjector
  1485. // pre-norm
  1486. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1487. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1488. // ffn in
  1489. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1490. // swiglu
  1491. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1492. cur = ggml_swiglu_swapped(ctx0, cur);
  1493. // mid-norm
  1494. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1495. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1496. // ffn out
  1497. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1498. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1499. // projector
  1500. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1501. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1502. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1503. // projector
  1504. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1505. cur = ggml_gelu_erf(ctx0, cur);
  1506. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1507. } else {
  1508. GGML_ABORT("%s: unknown projector type", __func__);
  1509. }
  1510. cb(cur, "projected", -1);
  1511. ggml_build_forward_expand(gf, cur);
  1512. return gf;
  1513. }
  1514. // cogvlm vision encoder
  1515. ggml_cgraph * build_cogvlm() {
  1516. GGML_ASSERT(model.class_embedding != nullptr);
  1517. GGML_ASSERT(model.position_embeddings != nullptr);
  1518. const int n_pos = n_patches + 1; // +1 for [CLS]
  1519. // build input and concatenate class embedding
  1520. ggml_tensor * inp = build_inp();
  1521. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1522. inp = ggml_add(ctx0, inp, model.position_embeddings);
  1523. cb(inp, "inp_pos", -1);
  1524. ggml_tensor * inpL = inp;
  1525. for (int il = 0; il < n_layer; il++) {
  1526. auto & layer = model.layers[il];
  1527. ggml_tensor * cur = inpL;
  1528. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  1529. cur = ggml_add(ctx0, cur, layer.qkv_b);
  1530. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1531. cur->nb[1], 0);
  1532. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1533. cur->nb[1], n_embd * sizeof(float));
  1534. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1535. cur->nb[1], 2 * n_embd * sizeof(float));
  1536. cb(Qcur, "Qcur", il);
  1537. cb(Kcur, "Kcur", il);
  1538. cb(Vcur, "Vcur", il);
  1539. cur = build_attn(layer.o_w, layer.o_b,
  1540. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1541. cb(cur, "attn_out", il);
  1542. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1543. cb(cur, "attn_post_norm", il);
  1544. cur = ggml_add(ctx0, cur, inpL);
  1545. inpL = cur;
  1546. cur = build_ffn(cur,
  1547. layer.ff_up_w, layer.ff_up_b,
  1548. layer.ff_gate_w, layer.ff_gate_b,
  1549. layer.ff_down_w, layer.ff_down_b,
  1550. hparams.ffn_op, il);
  1551. cb(cur, "ffn_out", il);
  1552. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1553. cb(cur, "ffn_post_norm", il);
  1554. cur = ggml_add(ctx0, cur, inpL);
  1555. cb(cur, "layer_out", il);
  1556. inpL = cur;
  1557. }
  1558. // remove CLS token (like build_llama4 does)
  1559. ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
  1560. n_embd, n_patches,
  1561. ggml_row_size(inpL->type, n_embd), 0);
  1562. // Multiply with mm_model_proj
  1563. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1564. // Apply layernorm, weight, bias
  1565. cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1566. // Apply GELU
  1567. cur = ggml_gelu_inplace(ctx0, cur);
  1568. // Branch 1: multiply with mm_h_to_4h_w
  1569. ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
  1570. // Branch 2: multiply with mm_gate_w
  1571. ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
  1572. // Apply silu
  1573. gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
  1574. // Apply mm_4h_to_h_w
  1575. cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
  1576. // Concatenate with boi and eoi
  1577. cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
  1578. cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
  1579. // build the graph
  1580. ggml_build_forward_expand(gf, cur);
  1581. return gf;
  1582. }
  1583. private:
  1584. //
  1585. // utility functions
  1586. //
  1587. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1588. if (ctx->debug_graph) {
  1589. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1590. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1591. ggml_set_name(cur, cur_name.c_str());
  1592. ggml_set_output(cur);
  1593. ggml_build_forward_expand(gf, cur);
  1594. ctx->debug_print_tensors.push_back(cur);
  1595. }
  1596. }
  1597. // siglip2 naflex
  1598. ggml_tensor * resize_position_embeddings() {
  1599. ggml_tensor * pos_embd = model.position_embeddings;
  1600. const int height = img.ny / patch_size;
  1601. const int width = img.nx / patch_size;
  1602. const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
  1603. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1604. GGML_ASSERT(pos_embd);
  1605. if (height == n_per_side && width == n_per_side) {
  1606. return pos_embd;
  1607. }
  1608. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1609. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1610. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1611. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1612. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1613. return pos_embd;
  1614. }
  1615. // build vision transformer (ViT) cgraph
  1616. // this function should cover most of the models
  1617. // if your model has specific features, you should probably duplicate this function
  1618. ggml_tensor * build_vit(
  1619. ggml_tensor * inp,
  1620. int64_t n_pos,
  1621. norm_type norm_t,
  1622. ffn_op_type ffn_t,
  1623. ggml_tensor * learned_pos_embd,
  1624. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1625. ) {
  1626. if (learned_pos_embd) {
  1627. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1628. cb(inp, "pos_embed", -1);
  1629. }
  1630. ggml_tensor * inpL = inp;
  1631. // pre-layernorm
  1632. if (model.pre_ln_w) {
  1633. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1634. cb(inpL, "pre_ln", -1);
  1635. }
  1636. // loop over layers
  1637. for (int il = 0; il < n_layer; il++) {
  1638. auto & layer = model.layers[il];
  1639. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1640. // layernorm1
  1641. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1642. cb(cur, "layer_inp_normed", il);
  1643. // self-attention
  1644. {
  1645. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1646. if (layer.q_b) {
  1647. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1648. }
  1649. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1650. if (layer.k_b) {
  1651. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1652. }
  1653. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1654. if (layer.v_b) {
  1655. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1656. }
  1657. if (layer.q_norm) {
  1658. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1659. cb(Qcur, "Qcur_norm", il);
  1660. }
  1661. if (layer.k_norm) {
  1662. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1663. cb(Kcur, "Kcur_norm", il);
  1664. }
  1665. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1666. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1667. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1668. cb(Qcur, "Qcur", il);
  1669. cb(Kcur, "Kcur", il);
  1670. cb(Vcur, "Vcur", il);
  1671. if (add_pos) {
  1672. Qcur = add_pos(Qcur, layer);
  1673. Kcur = add_pos(Kcur, layer);
  1674. cb(Qcur, "Qcur_pos", il);
  1675. cb(Kcur, "Kcur_pos", il);
  1676. }
  1677. cur = build_attn(layer.o_w, layer.o_b,
  1678. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1679. cb(cur, "attn_out", il);
  1680. }
  1681. if (layer.ls_1_w) {
  1682. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1683. cb(cur, "attn_out_scaled", il);
  1684. }
  1685. // re-add the layer input, e.g., residual
  1686. cur = ggml_add(ctx0, cur, inpL);
  1687. inpL = cur; // inpL = residual, cur = hidden_states
  1688. cb(cur, "ffn_inp", il);
  1689. // layernorm2
  1690. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1691. cb(cur, "ffn_inp_normed", il);
  1692. // ffn
  1693. cur = build_ffn(cur,
  1694. layer.ff_up_w, layer.ff_up_b,
  1695. layer.ff_gate_w, layer.ff_gate_b,
  1696. layer.ff_down_w, layer.ff_down_b,
  1697. ffn_t, il);
  1698. cb(cur, "ffn_out", il);
  1699. if (layer.ls_2_w) {
  1700. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1701. cb(cur, "ffn_out_scaled", il);
  1702. }
  1703. // residual 2
  1704. cur = ggml_add(ctx0, inpL, cur);
  1705. cb(cur, "layer_out", il);
  1706. inpL = cur;
  1707. }
  1708. if (ctx->model.audio_has_avgpool()) {
  1709. ggml_tensor * cur = inpL;
  1710. cur = ggml_transpose(ctx0, cur);
  1711. cur = ggml_cont(ctx0, cur);
  1712. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1713. cur = ggml_transpose(ctx0, cur);
  1714. cur = ggml_cont(ctx0, cur);
  1715. inpL = cur;
  1716. }
  1717. // post-layernorm
  1718. if (model.post_ln_w) {
  1719. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1720. }
  1721. return inpL;
  1722. }
  1723. // build the input after conv2d (inp_raw --> patches)
  1724. // returns tensor with shape [n_embd, n_patches]
  1725. ggml_tensor * build_inp() {
  1726. ggml_tensor * inp_raw = build_inp_raw();
  1727. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1728. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1729. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1730. if (model.patch_bias) {
  1731. inp = ggml_add(ctx0, inp, model.patch_bias);
  1732. cb(inp, "patch_bias", -1);
  1733. }
  1734. return inp;
  1735. }
  1736. ggml_tensor * build_inp_raw(int channels = 3) {
  1737. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1738. ggml_set_name(inp_raw, "inp_raw");
  1739. ggml_set_input(inp_raw);
  1740. return inp_raw;
  1741. }
  1742. ggml_tensor * build_norm(
  1743. ggml_tensor * cur,
  1744. ggml_tensor * mw,
  1745. ggml_tensor * mb,
  1746. norm_type type,
  1747. float norm_eps,
  1748. int il) const {
  1749. cur = type == NORM_TYPE_RMS
  1750. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1751. : ggml_norm(ctx0, cur, norm_eps);
  1752. if (mw || mb) {
  1753. cb(cur, "norm", il);
  1754. }
  1755. if (mw) {
  1756. cur = ggml_mul(ctx0, cur, mw);
  1757. if (mb) {
  1758. cb(cur, "norm_w", il);
  1759. }
  1760. }
  1761. if (mb) {
  1762. cur = ggml_add(ctx0, cur, mb);
  1763. }
  1764. return cur;
  1765. }
  1766. ggml_tensor * build_ffn(
  1767. ggml_tensor * cur,
  1768. ggml_tensor * up,
  1769. ggml_tensor * up_b,
  1770. ggml_tensor * gate,
  1771. ggml_tensor * gate_b,
  1772. ggml_tensor * down,
  1773. ggml_tensor * down_b,
  1774. ffn_op_type type_op,
  1775. int il) const {
  1776. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1777. cb(tmp, "ffn_up", il);
  1778. if (up_b) {
  1779. tmp = ggml_add(ctx0, tmp, up_b);
  1780. cb(tmp, "ffn_up_b", il);
  1781. }
  1782. if (gate) {
  1783. cur = ggml_mul_mat(ctx0, gate, cur);
  1784. cb(cur, "ffn_gate", il);
  1785. if (gate_b) {
  1786. cur = ggml_add(ctx0, cur, gate_b);
  1787. cb(cur, "ffn_gate_b", il);
  1788. }
  1789. } else {
  1790. cur = tmp;
  1791. }
  1792. // we only support parallel ffn for now
  1793. switch (type_op) {
  1794. case FFN_SILU:
  1795. if (gate) {
  1796. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1797. cb(cur, "ffn_swiglu", il);
  1798. } else {
  1799. cur = ggml_silu(ctx0, cur);
  1800. cb(cur, "ffn_silu", il);
  1801. } break;
  1802. case FFN_GELU:
  1803. if (gate) {
  1804. cur = ggml_geglu_split(ctx0, cur, tmp);
  1805. cb(cur, "ffn_geglu", il);
  1806. } else {
  1807. cur = ggml_gelu(ctx0, cur);
  1808. cb(cur, "ffn_gelu", il);
  1809. } break;
  1810. case FFN_GELU_ERF:
  1811. if (gate) {
  1812. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1813. cb(cur, "ffn_geglu_erf", il);
  1814. } else {
  1815. cur = ggml_gelu_erf(ctx0, cur);
  1816. cb(cur, "ffn_gelu_erf", il);
  1817. } break;
  1818. case FFN_GELU_QUICK:
  1819. if (gate) {
  1820. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1821. cb(cur, "ffn_geglu_quick", il);
  1822. } else {
  1823. cur = ggml_gelu_quick(ctx0, cur);
  1824. cb(cur, "ffn_gelu_quick", il);
  1825. } break;
  1826. }
  1827. if (down) {
  1828. cur = ggml_mul_mat(ctx0, down, cur);
  1829. }
  1830. if (down_b) {
  1831. cb(cur, "ffn_down", il);
  1832. }
  1833. if (down_b) {
  1834. cur = ggml_add(ctx0, cur, down_b);
  1835. }
  1836. return cur;
  1837. }
  1838. ggml_tensor * build_attn(
  1839. ggml_tensor * wo,
  1840. ggml_tensor * wo_b,
  1841. ggml_tensor * q_cur,
  1842. ggml_tensor * k_cur,
  1843. ggml_tensor * v_cur,
  1844. ggml_tensor * kq_mask,
  1845. float kq_scale,
  1846. int il) const {
  1847. // these nodes are added to the graph together so that they are not reordered
  1848. // by doing so, the number of splits in the graph is reduced
  1849. ggml_build_forward_expand(gf, q_cur);
  1850. ggml_build_forward_expand(gf, k_cur);
  1851. ggml_build_forward_expand(gf, v_cur);
  1852. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1853. //cb(q, "q", il);
  1854. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1855. //cb(k, "k", il);
  1856. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1857. v = ggml_cont(ctx0, v);
  1858. //cb(k, "v", il);
  1859. ggml_tensor * cur;
  1860. // TODO @ngxson : support flash attention
  1861. {
  1862. const auto n_tokens = q->ne[1];
  1863. const auto n_head = q->ne[2];
  1864. // const auto n_kv = k->ne[1]; // for flash attention
  1865. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1866. // F32 may not needed for vision encoders?
  1867. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1868. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1869. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1870. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1871. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1872. }
  1873. cb(cur, "kqv_out", il);
  1874. if (wo) {
  1875. cur = ggml_mul_mat(ctx0, wo, cur);
  1876. }
  1877. if (wo_b) {
  1878. cur = ggml_add(ctx0, cur, wo_b);
  1879. }
  1880. return cur;
  1881. }
  1882. // implementation of the 2D RoPE without adding a new op in ggml
  1883. // this is not efficient (use double the memory), but works on all backends
  1884. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1885. static ggml_tensor * build_rope_2d(
  1886. ggml_context * ctx0,
  1887. ggml_tensor * cur,
  1888. ggml_tensor * pos_a, // first half
  1889. ggml_tensor * pos_b, // second half
  1890. const float freq_base,
  1891. const bool interleave_freq
  1892. ) {
  1893. const int64_t n_dim = cur->ne[0];
  1894. const int64_t n_head = cur->ne[1];
  1895. const int64_t n_pos = cur->ne[2];
  1896. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1897. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1898. // first half of cur will use 1e-0, 1e-2 (even)
  1899. // second half of cur will use 1e-1, 1e-3 (odd)
  1900. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1901. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1902. // then for the second half, we use freq_scale to shift the inv_freq
  1903. // ^ why? replace (2i) with (2i+1) in the above equation
  1904. const float freq_scale_odd = interleave_freq
  1905. ? std::pow(freq_base, (float)-2/n_dim)
  1906. : 1.0;
  1907. // first half
  1908. ggml_tensor * first;
  1909. {
  1910. first = ggml_view_3d(ctx0, cur,
  1911. n_dim/2, n_head, n_pos,
  1912. ggml_row_size(cur->type, n_dim),
  1913. ggml_row_size(cur->type, n_dim*n_head),
  1914. 0);
  1915. first = ggml_rope_ext(
  1916. ctx0,
  1917. first,
  1918. pos_a, // positions
  1919. nullptr, // freq factors
  1920. n_dim/2, // n_dims
  1921. 0, 0, freq_base,
  1922. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1923. );
  1924. }
  1925. // second half
  1926. ggml_tensor * second;
  1927. {
  1928. second = ggml_view_3d(ctx0, cur,
  1929. n_dim/2, n_head, n_pos,
  1930. ggml_row_size(cur->type, n_dim),
  1931. ggml_row_size(cur->type, n_dim*n_head),
  1932. n_dim/2 * ggml_element_size(cur));
  1933. second = ggml_rope_ext(
  1934. ctx0,
  1935. second,
  1936. pos_b, // positions
  1937. nullptr, // freq factors
  1938. n_dim/2, // n_dims
  1939. 0, 0, freq_base,
  1940. freq_scale_odd,
  1941. 0.0f, 1.0f, 0.0f, 0.0f
  1942. );
  1943. }
  1944. cur = ggml_concat(ctx0, first, second, 0);
  1945. return cur;
  1946. }
  1947. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  1948. // support dynamic resolution
  1949. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  1950. GGML_ASSERT(scale_factor > 1);
  1951. const int n_embd = cur->ne[0];
  1952. int width = img.nx / patch_size;
  1953. int height = img.ny / patch_size;
  1954. // pad width and height to factor
  1955. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  1956. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  1957. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  1958. if (pad_width || pad_height) {
  1959. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  1960. width += pad_width;
  1961. height += pad_height;
  1962. }
  1963. // unshuffle h
  1964. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  1965. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1966. // unshuffle w
  1967. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  1968. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1969. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  1970. cb(cur, "pixel_shuffle", -1);
  1971. return cur;
  1972. }
  1973. };
  1974. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1975. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1976. clip_graph graph(ctx, *imgs.entries[0]);
  1977. ggml_cgraph * res;
  1978. switch (ctx->proj_type()) {
  1979. case PROJECTOR_TYPE_GEMMA3:
  1980. case PROJECTOR_TYPE_IDEFICS3:
  1981. case PROJECTOR_TYPE_LFM2:
  1982. {
  1983. res = graph.build_siglip();
  1984. } break;
  1985. case PROJECTOR_TYPE_PIXTRAL:
  1986. case PROJECTOR_TYPE_LIGHTONOCR:
  1987. {
  1988. res = graph.build_pixtral();
  1989. } break;
  1990. case PROJECTOR_TYPE_QWEN2VL:
  1991. case PROJECTOR_TYPE_QWEN25VL:
  1992. {
  1993. res = graph.build_qwen2vl();
  1994. } break;
  1995. case PROJECTOR_TYPE_QWEN3VL:
  1996. {
  1997. res = graph.build_qwen3vl();
  1998. } break;
  1999. case PROJECTOR_TYPE_MINICPMV:
  2000. {
  2001. res = graph.build_minicpmv();
  2002. } break;
  2003. case PROJECTOR_TYPE_INTERNVL:
  2004. {
  2005. res = graph.build_internvl();
  2006. } break;
  2007. case PROJECTOR_TYPE_LLAMA4:
  2008. {
  2009. res = graph.build_llama4();
  2010. } break;
  2011. case PROJECTOR_TYPE_ULTRAVOX:
  2012. case PROJECTOR_TYPE_VOXTRAL:
  2013. case PROJECTOR_TYPE_QWEN2A:
  2014. {
  2015. res = graph.build_whisper_enc();
  2016. } break;
  2017. case PROJECTOR_TYPE_KIMIVL:
  2018. {
  2019. res = graph.build_kimivl();
  2020. } break;
  2021. case PROJECTOR_TYPE_COGVLM:
  2022. {
  2023. res = graph.build_cogvlm();
  2024. } break;
  2025. default:
  2026. {
  2027. res = graph.build_llava();
  2028. } break;
  2029. }
  2030. return res;
  2031. }
  2032. struct clip_model_loader {
  2033. ggml_context_ptr ctx_meta;
  2034. gguf_context_ptr ctx_gguf;
  2035. std::string fname;
  2036. size_t model_size = 0; // in bytes
  2037. bool has_vision = false;
  2038. bool has_audio = false;
  2039. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  2040. clip_model_loader(const char * fname) : fname(fname) {
  2041. struct ggml_context * meta = nullptr;
  2042. struct gguf_init_params params = {
  2043. /*.no_alloc = */ true,
  2044. /*.ctx = */ &meta,
  2045. };
  2046. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  2047. if (!ctx_gguf.get()) {
  2048. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  2049. }
  2050. ctx_meta.reset(meta);
  2051. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  2052. // print gguf info
  2053. {
  2054. std::string name;
  2055. get_string(KEY_NAME, name, false);
  2056. std::string description;
  2057. get_string(KEY_DESCRIPTION, description, false);
  2058. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  2059. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  2060. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  2061. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  2062. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  2063. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  2064. LOG_INF("\n");
  2065. }
  2066. // modalities
  2067. {
  2068. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  2069. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  2070. if (has_vision) {
  2071. LOG_INF("%s: has vision encoder\n", __func__);
  2072. }
  2073. if (has_audio) {
  2074. LOG_INF("%s: has audio encoder\n", __func__);
  2075. }
  2076. }
  2077. // tensors
  2078. {
  2079. for (int i = 0; i < n_tensors; ++i) {
  2080. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2081. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  2082. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  2083. ggml_tensor * cur = ggml_get_tensor(meta, name);
  2084. size_t tensor_size = ggml_nbytes(cur);
  2085. model_size += tensor_size;
  2086. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  2087. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  2088. }
  2089. }
  2090. }
  2091. void load_hparams(clip_model & model, clip_modality modality) {
  2092. auto & hparams = model.hparams;
  2093. std::string log_ffn_op; // for logging
  2094. // sanity check
  2095. if (modality == CLIP_MODALITY_VISION) {
  2096. GGML_ASSERT(has_vision);
  2097. } else if (modality == CLIP_MODALITY_AUDIO) {
  2098. GGML_ASSERT(has_audio);
  2099. }
  2100. model.modality = modality;
  2101. // projector type
  2102. std::string proj_type;
  2103. {
  2104. // default key
  2105. get_string(KEY_PROJ_TYPE, proj_type, false);
  2106. // for models with mixed modalities
  2107. if (proj_type.empty()) {
  2108. if (modality == CLIP_MODALITY_VISION) {
  2109. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  2110. } else if (modality == CLIP_MODALITY_AUDIO) {
  2111. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  2112. } else {
  2113. GGML_ABORT("unknown modality");
  2114. }
  2115. }
  2116. model.proj_type = clip_projector_type_from_string(proj_type);
  2117. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  2118. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  2119. }
  2120. // correct arch for multimodal models (legacy method)
  2121. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  2122. model.proj_type = modality == CLIP_MODALITY_VISION
  2123. ? PROJECTOR_TYPE_QWEN25VL
  2124. : PROJECTOR_TYPE_QWEN2A;
  2125. }
  2126. }
  2127. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  2128. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  2129. // other hparams
  2130. {
  2131. const char * prefix = is_vision ? "vision" : "audio";
  2132. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  2133. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  2134. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  2135. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  2136. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  2137. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  2138. if (is_vision) {
  2139. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  2140. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  2141. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  2142. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  2143. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  2144. if (hparams.minicpmv_query_num == 0) {
  2145. // Fallback to hardcoded values for legacy models
  2146. if (hparams.minicpmv_version == 3) {
  2147. hparams.minicpmv_query_num = 64;
  2148. } else if (hparams.minicpmv_version == 4) {
  2149. hparams.minicpmv_query_num = 64;
  2150. } else if (hparams.minicpmv_version == 5) {
  2151. hparams.minicpmv_query_num = 64;
  2152. } else if (hparams.minicpmv_version == 6) {
  2153. hparams.minicpmv_query_num = 64;
  2154. } else {
  2155. hparams.minicpmv_query_num = 96;
  2156. }
  2157. }
  2158. } else if (is_audio) {
  2159. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  2160. } else {
  2161. GGML_ASSERT(false && "unknown modality");
  2162. }
  2163. // for pinpoints, we need to convert it into a list of resolution candidates
  2164. {
  2165. std::vector<int> pinpoints;
  2166. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  2167. if (!pinpoints.empty()) {
  2168. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2169. hparams.image_res_candidates.push_back({
  2170. pinpoints[i],
  2171. pinpoints[i+1],
  2172. });
  2173. }
  2174. }
  2175. }
  2176. // default warmup value
  2177. hparams.warmup_image_size = hparams.image_size;
  2178. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  2179. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2180. || model.proj_type == PROJECTOR_TYPE_LDP
  2181. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  2182. {
  2183. bool use_gelu = false;
  2184. bool use_silu = false;
  2185. get_bool(KEY_USE_GELU, use_gelu, false);
  2186. get_bool(KEY_USE_SILU, use_silu, false);
  2187. if (use_gelu && use_silu) {
  2188. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  2189. }
  2190. if (use_gelu) {
  2191. hparams.ffn_op = FFN_GELU;
  2192. log_ffn_op = "gelu";
  2193. } else if (use_silu) {
  2194. hparams.ffn_op = FFN_SILU;
  2195. log_ffn_op = "silu";
  2196. } else {
  2197. hparams.ffn_op = FFN_GELU_QUICK;
  2198. log_ffn_op = "gelu_quick";
  2199. }
  2200. }
  2201. {
  2202. std::string mm_patch_merge_type;
  2203. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  2204. if (mm_patch_merge_type == "spatial_unpad") {
  2205. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  2206. }
  2207. }
  2208. if (is_vision) {
  2209. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  2210. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  2211. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  2212. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  2213. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  2214. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  2215. for (int i = 0; i < 3; ++i) {
  2216. hparams.image_mean[i] = mean_data[i];
  2217. hparams.image_std[i] = std_data[i];
  2218. }
  2219. }
  2220. // Load the vision feature layer indices if they are explicitly provided;
  2221. // if multiple vision feature layers are present, the values will be concatenated
  2222. // to form the final visual features.
  2223. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  2224. // be non-negative, since we use -1 to mark values as unset here.
  2225. std::vector<int> vision_feature_layer;
  2226. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  2227. // convert std::vector to std::unordered_set
  2228. for (auto & layer : vision_feature_layer) {
  2229. hparams.vision_feature_layer.insert(layer);
  2230. }
  2231. // model-specific params
  2232. switch (model.proj_type) {
  2233. case PROJECTOR_TYPE_MINICPMV:
  2234. {
  2235. if (hparams.minicpmv_version == 0) {
  2236. hparams.minicpmv_version = 2; // default to 2 if not set
  2237. }
  2238. } break;
  2239. case PROJECTOR_TYPE_INTERNVL:
  2240. {
  2241. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2242. } break;
  2243. case PROJECTOR_TYPE_IDEFICS3:
  2244. {
  2245. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2246. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
  2247. } break;
  2248. case PROJECTOR_TYPE_LFM2:
  2249. {
  2250. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2251. // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
  2252. hparams.set_limit_image_tokens(64, 256);
  2253. } break;
  2254. case PROJECTOR_TYPE_PIXTRAL:
  2255. case PROJECTOR_TYPE_LIGHTONOCR:
  2256. {
  2257. // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
  2258. // TODO: verify the image_min_tokens
  2259. hparams.rope_theta = 10000.0f;
  2260. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2261. hparams.set_limit_image_tokens(8, 1024);
  2262. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2263. } break;
  2264. case PROJECTOR_TYPE_KIMIVL:
  2265. {
  2266. hparams.rope_theta = 10000.0f;
  2267. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2268. // TODO: check kimivl preprocessor for exact values
  2269. hparams.set_limit_image_tokens(8, 1024);
  2270. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2271. } break;
  2272. case PROJECTOR_TYPE_GEMMA3:
  2273. {
  2274. // default value (used by all model sizes in gemma 3 family)
  2275. // number of patches for each **side** is reduced by a factor of 4
  2276. hparams.n_merge = 4;
  2277. // test model (tinygemma3) has a different value, we optionally read it
  2278. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2279. } break;
  2280. case PROJECTOR_TYPE_QWEN2VL:
  2281. case PROJECTOR_TYPE_QWEN25VL:
  2282. case PROJECTOR_TYPE_QWEN3VL:
  2283. {
  2284. hparams.n_merge = 2; // default value for Qwen 2 and 2.5
  2285. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
  2286. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
  2287. // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2288. // the actual max limit is 12845056/14/14/2/2/4 = 4096 tokens
  2289. // but we set a lower value to avoid OOM
  2290. // TODO: make it configurable by user
  2291. // TODO (2): bbox coordinates become inaccurate with small number of tokens,
  2292. // therefore we need to increase the min_tokens
  2293. // see: https://github.com/ggml-org/llama.cpp/issues/16842#issuecomment-3475144858
  2294. hparams.set_limit_image_tokens(8, 2048);
  2295. hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
  2296. } break;
  2297. case PROJECTOR_TYPE_LLAMA4:
  2298. {
  2299. hparams.rope_theta = 10000.0f;
  2300. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
  2301. set_llava_uhd_res_candidates(model, 3);
  2302. } break;
  2303. case PROJECTOR_TYPE_ULTRAVOX:
  2304. case PROJECTOR_TYPE_QWEN2A:
  2305. case PROJECTOR_TYPE_VOXTRAL:
  2306. {
  2307. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2308. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2309. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2310. if (hparams.n_mel_bins != 128) {
  2311. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2312. }
  2313. hparams.ffn_op = FFN_GELU_ERF;
  2314. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2315. } break;
  2316. default:
  2317. break;
  2318. }
  2319. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2320. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2321. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2322. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2323. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2324. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2325. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2326. if (is_vision) {
  2327. LOG_INF("\n--- vision hparams ---\n");
  2328. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2329. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2330. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2331. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2332. LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
  2333. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2334. if (hparams.image_min_pixels > 0) {
  2335. LOG_INF("%s: image_min_pixels: %d\n", __func__, hparams.image_min_pixels);
  2336. }
  2337. if (hparams.image_max_pixels > 0) {
  2338. LOG_INF("%s: image_max_pixels: %d\n", __func__, hparams.image_max_pixels);
  2339. }
  2340. } else if (is_audio) {
  2341. LOG_INF("\n--- audio hparams ---\n");
  2342. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2343. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2344. }
  2345. LOG_INF("\n");
  2346. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2347. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2348. }
  2349. }
  2350. void load_tensors(clip_ctx & ctx_clip) {
  2351. auto & model = ctx_clip.model;
  2352. auto & hparams = model.hparams;
  2353. std::map<std::string, size_t> tensor_offset;
  2354. std::vector<ggml_tensor *> tensors_to_load;
  2355. // TODO @ngxson : support both audio and video in the future
  2356. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2357. // get offsets
  2358. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2359. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2360. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2361. }
  2362. // create data context
  2363. struct ggml_init_params params = {
  2364. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2365. /*.mem_buffer =*/ NULL,
  2366. /*.no_alloc =*/ true,
  2367. };
  2368. ctx_clip.ctx_data.reset(ggml_init(params));
  2369. if (!ctx_clip.ctx_data) {
  2370. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2371. }
  2372. // helper function
  2373. auto get_tensor = [&](const std::string & name, bool required = true) {
  2374. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2375. if (!cur && required) {
  2376. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2377. }
  2378. if (cur) {
  2379. tensors_to_load.push_back(cur);
  2380. // add tensors to context
  2381. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2382. ggml_set_name(data_tensor, cur->name);
  2383. cur = data_tensor;
  2384. }
  2385. return cur;
  2386. };
  2387. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2388. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2389. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2390. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2391. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2392. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2393. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2394. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2395. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2396. // layers
  2397. model.layers.resize(hparams.n_layer);
  2398. for (int il = 0; il < hparams.n_layer; ++il) {
  2399. auto & layer = model.layers[il];
  2400. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  2401. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  2402. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  2403. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2404. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  2405. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2406. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2407. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2408. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2409. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2410. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2411. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2412. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2413. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2414. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2415. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  2416. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2417. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2418. // ffn
  2419. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2420. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2421. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2422. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2423. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2424. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2425. // qwen3vl deepstack layer
  2426. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  2427. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  2428. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  2429. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  2430. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  2431. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  2432. if (layer.has_deepstack()) {
  2433. model.n_deepstack_layers++;
  2434. }
  2435. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2436. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2437. bool is_ffn_swapped = (
  2438. // only old models need this fix
  2439. model.proj_type == PROJECTOR_TYPE_MLP
  2440. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2441. || model.proj_type == PROJECTOR_TYPE_LDP
  2442. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2443. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2444. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2445. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2446. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2447. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2448. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2449. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2450. if (is_ffn_swapped) {
  2451. // swap up and down weights
  2452. ggml_tensor * tmp = layer.ff_up_w;
  2453. layer.ff_up_w = layer.ff_down_w;
  2454. layer.ff_down_w = tmp;
  2455. // swap up and down biases
  2456. tmp = layer.ff_up_b;
  2457. layer.ff_up_b = layer.ff_down_b;
  2458. layer.ff_down_b = tmp;
  2459. if (il == 0) {
  2460. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2461. }
  2462. }
  2463. }
  2464. switch (model.proj_type) {
  2465. case PROJECTOR_TYPE_MLP:
  2466. case PROJECTOR_TYPE_MLP_NORM:
  2467. {
  2468. // LLaVA projection
  2469. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2470. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2471. // Yi-type llava
  2472. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2473. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2474. // missing in Yi-type llava
  2475. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2476. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2477. // Yi-type llava
  2478. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2479. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2480. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2481. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2482. if (model.mm_3_w) {
  2483. // TODO: this is a hack to support Yi-type llava
  2484. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2485. }
  2486. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2487. } break;
  2488. case PROJECTOR_TYPE_LDP:
  2489. {
  2490. // MobileVLM projection
  2491. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2492. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2493. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2494. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2495. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2496. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2497. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2498. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2499. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2500. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2501. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2502. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2503. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2504. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2505. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2506. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2507. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2508. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2509. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2510. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2511. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2512. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2513. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2514. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2515. } break;
  2516. case PROJECTOR_TYPE_LDPV2:
  2517. {
  2518. // MobilVLM_V2 projection
  2519. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2520. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2521. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2522. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2523. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2524. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2525. } break;
  2526. case PROJECTOR_TYPE_MINICPMV:
  2527. {
  2528. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2529. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2530. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2531. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2532. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2533. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2534. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2535. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2536. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2537. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2538. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2539. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2540. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2541. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2542. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2543. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2544. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2545. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2546. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2547. } break;
  2548. case PROJECTOR_TYPE_GLM_EDGE:
  2549. {
  2550. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2551. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2552. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2553. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2554. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2555. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2556. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2557. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2558. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2559. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2560. } break;
  2561. case PROJECTOR_TYPE_QWEN2VL:
  2562. case PROJECTOR_TYPE_QWEN25VL:
  2563. {
  2564. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2565. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2566. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2567. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2568. } break;
  2569. case PROJECTOR_TYPE_QWEN3VL:
  2570. {
  2571. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2572. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2573. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2574. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2575. } break;
  2576. case PROJECTOR_TYPE_GEMMA3:
  2577. {
  2578. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2579. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2580. } break;
  2581. case PROJECTOR_TYPE_IDEFICS3:
  2582. {
  2583. model.projection = get_tensor(TN_MM_PROJECTOR);
  2584. } break;
  2585. case PROJECTOR_TYPE_LFM2:
  2586. case PROJECTOR_TYPE_KIMIVL:
  2587. {
  2588. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2589. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2590. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2591. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2592. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2593. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2594. } break;
  2595. case PROJECTOR_TYPE_PIXTRAL:
  2596. {
  2597. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2598. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2599. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2600. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2601. // [IMG_BREAK] token embedding
  2602. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2603. // for mistral small 3.1
  2604. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2605. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2606. } break;
  2607. case PROJECTOR_TYPE_LIGHTONOCR:
  2608. {
  2609. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2610. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2611. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2612. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2613. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2614. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2615. } break;
  2616. case PROJECTOR_TYPE_ULTRAVOX:
  2617. {
  2618. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2619. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2620. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2621. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2622. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2623. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2624. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2625. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2626. } break;
  2627. case PROJECTOR_TYPE_QWEN2A:
  2628. {
  2629. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2630. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2631. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2632. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2633. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2634. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2635. } break;
  2636. case PROJECTOR_TYPE_VOXTRAL:
  2637. {
  2638. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2639. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2640. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2641. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2642. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2643. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2644. } break;
  2645. case PROJECTOR_TYPE_INTERNVL:
  2646. {
  2647. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2648. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2649. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2650. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2651. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2652. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2653. } break;
  2654. case PROJECTOR_TYPE_LLAMA4:
  2655. {
  2656. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2657. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2658. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2659. } break;
  2660. case PROJECTOR_TYPE_COGVLM:
  2661. {
  2662. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2663. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  2664. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  2665. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  2666. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  2667. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  2668. model.mm_boi = get_tensor(TN_TOK_BOI);
  2669. model.mm_eoi = get_tensor(TN_TOK_EOI);
  2670. } break;
  2671. default:
  2672. GGML_ASSERT(false && "unknown projector type");
  2673. }
  2674. // load data
  2675. {
  2676. std::vector<uint8_t> read_buf;
  2677. auto fin = std::ifstream(fname, std::ios::binary);
  2678. if (!fin) {
  2679. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2680. }
  2681. // alloc memory and offload data
  2682. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2683. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2684. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2685. for (auto & t : tensors_to_load) {
  2686. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2687. const size_t offset = tensor_offset[t->name];
  2688. fin.seekg(offset, std::ios::beg);
  2689. if (!fin) {
  2690. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2691. }
  2692. size_t num_bytes = ggml_nbytes(cur);
  2693. if (ggml_backend_buft_is_host(buft)) {
  2694. // for the CPU and Metal backend, we can read directly into the tensor
  2695. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2696. } else {
  2697. // read into a temporary buffer first, then copy to device memory
  2698. read_buf.resize(num_bytes);
  2699. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2700. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2701. }
  2702. }
  2703. fin.close();
  2704. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2705. }
  2706. }
  2707. void alloc_compute_meta(clip_ctx & ctx_clip) {
  2708. const auto & hparams = ctx_clip.model.hparams;
  2709. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2710. // create a fake batch
  2711. clip_image_f32_batch batch;
  2712. clip_image_f32_ptr img(clip_image_f32_init());
  2713. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2714. img->nx = hparams.warmup_image_size;
  2715. img->ny = hparams.warmup_image_size;
  2716. LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
  2717. } else {
  2718. img->nx = hparams.warmup_audio_size;
  2719. img->ny = hparams.n_mel_bins;
  2720. LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
  2721. }
  2722. batch.entries.push_back(std::move(img));
  2723. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2724. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2725. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2726. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2727. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2728. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2729. if (size > 1) {
  2730. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2731. ggml_backend_buft_name(buft),
  2732. size / 1024.0 / 1024.0);
  2733. }
  2734. }
  2735. }
  2736. void get_bool(const std::string & key, bool & output, bool required = true) {
  2737. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2738. if (i < 0) {
  2739. if (required) throw std::runtime_error("Key not found: " + key);
  2740. return;
  2741. }
  2742. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2743. }
  2744. void get_i32(const std::string & key, int & output, bool required = true) {
  2745. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2746. if (i < 0) {
  2747. if (required) throw std::runtime_error("Key not found: " + key);
  2748. return;
  2749. }
  2750. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2751. }
  2752. void get_u32(const std::string & key, int & output, bool required = true) {
  2753. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2754. if (i < 0) {
  2755. if (required) throw std::runtime_error("Key not found: " + key);
  2756. return;
  2757. }
  2758. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2759. }
  2760. void get_f32(const std::string & key, float & output, bool required = true) {
  2761. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2762. if (i < 0) {
  2763. if (required) throw std::runtime_error("Key not found: " + key);
  2764. return;
  2765. }
  2766. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2767. }
  2768. void get_string(const std::string & key, std::string & output, bool required = true) {
  2769. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2770. if (i < 0) {
  2771. if (required) throw std::runtime_error("Key not found: " + key);
  2772. return;
  2773. }
  2774. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2775. }
  2776. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2777. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2778. if (i < 0) {
  2779. if (required) throw std::runtime_error("Key not found: " + key);
  2780. return;
  2781. }
  2782. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2783. output.resize(n);
  2784. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2785. for (int i = 0; i < n; ++i) {
  2786. output[i] = values[i];
  2787. }
  2788. }
  2789. void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2790. auto & hparams = model.hparams;
  2791. for (int x = 1; x <= max_patches_per_side; x++) {
  2792. for (int y = 1; y <= max_patches_per_side; y++) {
  2793. if (x == 1 && y == 1) {
  2794. continue; // skip the first point
  2795. }
  2796. hparams.image_res_candidates.push_back(clip_image_size{
  2797. x*hparams.image_size,
  2798. y*hparams.image_size,
  2799. });
  2800. }
  2801. }
  2802. }
  2803. };
  2804. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2805. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2806. clip_ctx * ctx_vision = nullptr;
  2807. clip_ctx * ctx_audio = nullptr;
  2808. try {
  2809. clip_model_loader loader(fname);
  2810. if (loader.has_vision) {
  2811. ctx_vision = new clip_ctx(ctx_params);
  2812. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2813. loader.load_tensors(*ctx_vision);
  2814. loader.alloc_compute_meta(*ctx_vision);
  2815. }
  2816. if (loader.has_audio) {
  2817. ctx_audio = new clip_ctx(ctx_params);
  2818. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2819. loader.load_tensors(*ctx_audio);
  2820. loader.alloc_compute_meta(*ctx_audio);
  2821. }
  2822. } catch (const std::exception & e) {
  2823. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2824. if (ctx_vision) {
  2825. delete ctx_vision;
  2826. }
  2827. if (ctx_audio) {
  2828. delete ctx_audio;
  2829. }
  2830. return {nullptr, nullptr};
  2831. }
  2832. return {ctx_vision, ctx_audio};
  2833. }
  2834. struct clip_image_size * clip_image_size_init() {
  2835. struct clip_image_size * load_image_size = new struct clip_image_size();
  2836. load_image_size->width = 448;
  2837. load_image_size->height = 448;
  2838. return load_image_size;
  2839. }
  2840. struct clip_image_u8 * clip_image_u8_init() {
  2841. return new clip_image_u8();
  2842. }
  2843. struct clip_image_f32 * clip_image_f32_init() {
  2844. return new clip_image_f32();
  2845. }
  2846. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2847. return new clip_image_f32_batch();
  2848. }
  2849. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2850. if (nx) *nx = img->nx;
  2851. if (ny) *ny = img->ny;
  2852. return img->buf.data();
  2853. }
  2854. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2855. if (load_image_size == nullptr) {
  2856. return;
  2857. }
  2858. delete load_image_size;
  2859. }
  2860. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2861. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2862. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2863. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2864. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2865. return batch->entries.size();
  2866. }
  2867. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2868. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2869. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2870. return 0;
  2871. }
  2872. return batch->entries[idx]->nx;
  2873. }
  2874. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2875. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2876. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2877. return 0;
  2878. }
  2879. return batch->entries[idx]->ny;
  2880. }
  2881. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2882. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2883. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2884. return nullptr;
  2885. }
  2886. return batch->entries[idx].get();
  2887. }
  2888. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2889. img->nx = nx;
  2890. img->ny = ny;
  2891. img->buf.resize(3 * nx * ny);
  2892. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2893. }
  2894. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2895. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2896. dst.nx = src.nx;
  2897. dst.ny = src.ny;
  2898. dst.buf.resize(src.buf.size());
  2899. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2900. for (size_t i = 0; i < src.buf.size(); ++i) {
  2901. int c = i % 3; // rgb
  2902. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2903. }
  2904. }
  2905. // set of tools to manupulate images
  2906. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2907. struct img_tool {
  2908. enum resize_algo {
  2909. RESIZE_ALGO_BILINEAR,
  2910. RESIZE_ALGO_BICUBIC,
  2911. // RESIZE_ALGO_LANCZOS, // TODO
  2912. };
  2913. static void resize(
  2914. const clip_image_u8 & src,
  2915. clip_image_u8 & dst,
  2916. const clip_image_size & target_resolution,
  2917. resize_algo algo,
  2918. bool add_padding = true, // TODO: define the behavior for add_padding = false
  2919. std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2920. dst.nx = target_resolution.width;
  2921. dst.ny = target_resolution.height;
  2922. dst.buf.resize(3 * dst.nx * dst.ny);
  2923. if (dst.nx == src.nx && dst.ny == src.ny) {
  2924. // no resize needed, simple copy
  2925. dst.buf = src.buf;
  2926. return;
  2927. }
  2928. if (!add_padding) {
  2929. // direct resize
  2930. switch (algo) {
  2931. case RESIZE_ALGO_BILINEAR:
  2932. resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
  2933. break;
  2934. case RESIZE_ALGO_BICUBIC:
  2935. resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
  2936. break;
  2937. default:
  2938. throw std::runtime_error("Unsupported resize algorithm");
  2939. }
  2940. } else {
  2941. // resize with padding
  2942. clip_image_u8 resized_image;
  2943. float scale_w = static_cast<float>(target_resolution.width) / src.nx;
  2944. float scale_h = static_cast<float>(target_resolution.height) / src.ny;
  2945. float scale = std::min(scale_w, scale_h);
  2946. int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
  2947. int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
  2948. switch (algo) {
  2949. case RESIZE_ALGO_BILINEAR:
  2950. resize_bilinear(src, resized_image, new_width, new_height);
  2951. break;
  2952. case RESIZE_ALGO_BICUBIC:
  2953. resize_bicubic(src, resized_image, new_width, new_height);
  2954. break;
  2955. default:
  2956. throw std::runtime_error("Unsupported resize algorithm");
  2957. }
  2958. // fill dst with pad_color
  2959. fill(dst, pad_color);
  2960. int offset_x = (target_resolution.width - new_width) / 2;
  2961. int offset_y = (target_resolution.height - new_height) / 2;
  2962. composite(dst, resized_image, offset_x, offset_y);
  2963. }
  2964. }
  2965. static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2966. dst.nx = w;
  2967. dst.ny = h;
  2968. dst.buf.resize(3 * w * h);
  2969. for (int i = 0; i < h; ++i) {
  2970. for (int j = 0; j < w; ++j) {
  2971. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2972. int dst_idx = 3 * (i*w + j);
  2973. dst.buf[dst_idx] = image.buf[src_idx];
  2974. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2975. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2976. }
  2977. }
  2978. }
  2979. // calculate the size of the **resized** image, while preserving the aspect ratio
  2980. // the calculated size will be aligned to the nearest multiple of align_size
  2981. // if H or W size is larger than longest_edge, it will be resized to longest_edge
  2982. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
  2983. GGML_ASSERT(align_size > 0);
  2984. if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
  2985. return {0, 0};
  2986. }
  2987. float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
  2988. static_cast<float>(longest_edge) / inp_size.height);
  2989. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2990. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2991. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  2992. int aligned_width = ceil_by_factor(target_width_f);
  2993. int aligned_height = ceil_by_factor(target_height_f);
  2994. return {aligned_width, aligned_height};
  2995. }
  2996. // calculate the size of the **resized** image, while preserving the aspect ratio
  2997. // the calculated size will have min_pixels <= W*H <= max_pixels
  2998. // this is referred as "smart_resize" in transformers code
  2999. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
  3000. GGML_ASSERT(align_size > 0);
  3001. const int width = inp_size.width;
  3002. const int height = inp_size.height;
  3003. auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3004. auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3005. // always align up first
  3006. int h_bar = std::max(align_size, ceil_by_factor(height));
  3007. int w_bar = std::max(align_size, ceil_by_factor(width));
  3008. if (h_bar * w_bar > max_pixels) {
  3009. const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
  3010. h_bar = std::max(align_size, floor_by_factor(height / beta));
  3011. w_bar = std::max(align_size, floor_by_factor(width / beta));
  3012. } else if (h_bar * w_bar < min_pixels) {
  3013. const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
  3014. h_bar = ceil_by_factor(height * beta);
  3015. w_bar = ceil_by_factor(width * beta);
  3016. }
  3017. return {w_bar, h_bar};
  3018. }
  3019. // draw src image into dst image at offset (offset_x, offset_y)
  3020. static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
  3021. for (int y = 0; y < src.ny; ++y) {
  3022. for (int x = 0; x < src.nx; ++x) {
  3023. int dx = x + offset_x;
  3024. int dy = y + offset_y;
  3025. // skip pixels that would be out of bounds in the destination
  3026. if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
  3027. continue;
  3028. }
  3029. size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
  3030. size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
  3031. dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
  3032. dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
  3033. dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
  3034. }
  3035. }
  3036. }
  3037. // fill the image with a solid color
  3038. static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
  3039. for (size_t i = 0; i < img.buf.size(); i += 3) {
  3040. img.buf[i] = color[0];
  3041. img.buf[i + 1] = color[1];
  3042. img.buf[i + 2] = color[2];
  3043. }
  3044. }
  3045. private:
  3046. // Bilinear resize function
  3047. static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
  3048. dst.nx = target_width;
  3049. dst.ny = target_height;
  3050. dst.buf.resize(3 * target_width * target_height);
  3051. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  3052. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  3053. for (int y = 0; y < target_height; y++) {
  3054. for (int x = 0; x < target_width; x++) {
  3055. float px = x_ratio * x;
  3056. float py = y_ratio * y;
  3057. int x_floor = static_cast<int>(px);
  3058. int y_floor = static_cast<int>(py);
  3059. float x_lerp = px - x_floor;
  3060. float y_lerp = py - y_floor;
  3061. for (int c = 0; c < 3; c++) {
  3062. float top = lerp(
  3063. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  3064. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  3065. x_lerp
  3066. );
  3067. float bottom = lerp(
  3068. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  3069. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  3070. x_lerp
  3071. );
  3072. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  3073. }
  3074. }
  3075. }
  3076. }
  3077. // Bicubic resize function
  3078. // part of image will be cropped if the aspect ratio is different
  3079. static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  3080. const int nx = img.nx;
  3081. const int ny = img.ny;
  3082. dst.nx = target_width;
  3083. dst.ny = target_height;
  3084. dst.buf.resize(3 * target_width * target_height);
  3085. float Cc;
  3086. float C[5] = {};
  3087. float d0, d2, d3, a0, a1, a2, a3;
  3088. int i, j, k, jj;
  3089. int x, y;
  3090. float dx, dy;
  3091. float tx, ty;
  3092. tx = (float)nx / (float)target_width;
  3093. ty = (float)ny / (float)target_height;
  3094. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  3095. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  3096. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  3097. for (i = 0; i < target_height; i++) {
  3098. for (j = 0; j < target_width; j++) {
  3099. x = (int)(tx * j);
  3100. y = (int)(ty * i);
  3101. dx = tx * j - x;
  3102. dy = ty * i - y;
  3103. for (k = 0; k < 3; k++) {
  3104. for (jj = 0; jj <= 3; jj++) {
  3105. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3106. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3107. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3108. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  3109. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3110. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3111. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3112. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  3113. d0 = C[0] - C[1];
  3114. d2 = C[2] - C[1];
  3115. d3 = C[3] - C[1];
  3116. a0 = C[1];
  3117. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  3118. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  3119. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  3120. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  3121. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  3122. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  3123. }
  3124. }
  3125. }
  3126. }
  3127. return true;
  3128. }
  3129. static inline int clip(int x, int lower, int upper) {
  3130. return std::max(lower, std::min(x, upper));
  3131. }
  3132. // Linear interpolation between two points
  3133. static inline float lerp(float s, float e, float t) {
  3134. return s + (e - s) * t;
  3135. }
  3136. };
  3137. /**
  3138. * implementation of LLaVA-UHD:
  3139. * - https://arxiv.org/pdf/2403.11703
  3140. * - https://github.com/thunlp/LLaVA-UHD
  3141. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  3142. *
  3143. * overview:
  3144. * - an image always have a single overview (downscaled image)
  3145. * - an image can have 0 or multiple slices, depending on the image size
  3146. * - each slice can then be considered as a separate image
  3147. *
  3148. * for example:
  3149. *
  3150. * [overview] --> [slice 1] --> [slice 2]
  3151. * | |
  3152. * +--> [slice 3] --> [slice 4]
  3153. */
  3154. struct llava_uhd {
  3155. struct slice_coordinates {
  3156. int x;
  3157. int y;
  3158. clip_image_size size;
  3159. };
  3160. struct slice_instructions {
  3161. clip_image_size overview_size; // size of downscaled image
  3162. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  3163. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  3164. std::vector<slice_coordinates> slices;
  3165. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  3166. };
  3167. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  3168. slice_instructions res;
  3169. const int patch_size = clip_get_patch_size(ctx);
  3170. const int slice_size = clip_get_image_size(ctx);
  3171. const int original_width = original_size.width;
  3172. const int original_height = original_size.height;
  3173. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  3174. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  3175. if (!has_slices) {
  3176. // skip slicing logic
  3177. res.overview_size = clip_image_size{slice_size, slice_size};
  3178. res.refined_size = clip_image_size{0, 0};
  3179. res.grid_size = clip_image_size{0, 0};
  3180. return res;
  3181. }
  3182. if (has_pinpoints) {
  3183. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  3184. auto refine_size = llava_uhd::select_best_resolution(
  3185. original_size,
  3186. ctx->model.hparams.image_res_candidates);
  3187. res.overview_size = clip_image_size{slice_size, slice_size};
  3188. res.refined_size = refine_size;
  3189. res.grid_size = clip_image_size{0, 0};
  3190. res.padding_refined = true;
  3191. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  3192. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  3193. __func__, original_width, original_height,
  3194. res.overview_size.width, res.overview_size.height,
  3195. res.refined_size.width, res.refined_size.height);
  3196. for (int y = 0; y < refine_size.height; y += slice_size) {
  3197. for (int x = 0; x < refine_size.width; x += slice_size) {
  3198. slice_coordinates slice;
  3199. slice.x = x;
  3200. slice.y = y;
  3201. slice.size.width = std::min(slice_size, refine_size.width - x);
  3202. slice.size.height = std::min(slice_size, refine_size.height - y);
  3203. res.slices.push_back(slice);
  3204. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3205. __func__, (int)res.slices.size() - 1,
  3206. slice.x, slice.y, slice.size.width, slice.size.height);
  3207. }
  3208. }
  3209. res.grid_size.height = refine_size.height / slice_size;
  3210. res.grid_size.width = refine_size.width / slice_size;
  3211. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  3212. return res;
  3213. }
  3214. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  3215. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  3216. res.overview_size = best_size;
  3217. {
  3218. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  3219. const float log_ratio = log((float)original_width / original_height);
  3220. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  3221. const int multiple = fmin(ceil(ratio), max_slice_nums);
  3222. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  3223. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  3224. res.grid_size = best_grid;
  3225. res.refined_size = refine_size;
  3226. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  3227. __func__, original_width, original_height,
  3228. res.overview_size.width, res.overview_size.height,
  3229. res.refined_size.width, res.refined_size.height,
  3230. res.grid_size.width, res.grid_size.height);
  3231. int width = refine_size.width;
  3232. int height = refine_size.height;
  3233. int grid_x = int(width / best_grid.width);
  3234. int grid_y = int(height / best_grid.height);
  3235. for (int patches_y = 0, ic = 0;
  3236. patches_y < refine_size.height && ic < best_grid.height;
  3237. patches_y += grid_y, ic += 1) {
  3238. for (int patches_x = 0, jc = 0;
  3239. patches_x < refine_size.width && jc < best_grid.width;
  3240. patches_x += grid_x, jc += 1) {
  3241. slice_coordinates slice;
  3242. slice.x = patches_x;
  3243. slice.y = patches_y;
  3244. slice.size.width = grid_x;
  3245. slice.size.height = grid_y;
  3246. res.slices.push_back(slice);
  3247. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3248. __func__, (int)res.slices.size() - 1,
  3249. slice.x, slice.y, slice.size.width, slice.size.height);
  3250. }
  3251. }
  3252. }
  3253. return res;
  3254. }
  3255. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  3256. std::vector<clip_image_u8_ptr> output;
  3257. img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
  3258. // resize to overview size
  3259. clip_image_u8_ptr resized_img(clip_image_u8_init());
  3260. img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
  3261. output.push_back(std::move(resized_img));
  3262. if (inst.slices.empty()) {
  3263. // no slices, just return the resized image
  3264. return output;
  3265. }
  3266. // resize to refined size
  3267. clip_image_u8_ptr refined_img(clip_image_u8_init());
  3268. if (inst.padding_refined) {
  3269. img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
  3270. } else {
  3271. // only algo bicubic preserves the ratio; old models rely on this behavior
  3272. // TODO: do we need to support other algos here?
  3273. img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
  3274. }
  3275. // create slices
  3276. for (const auto & slice : inst.slices) {
  3277. int x = slice.x;
  3278. int y = slice.y;
  3279. int w = slice.size.width;
  3280. int h = slice.size.height;
  3281. clip_image_u8_ptr img_slice(clip_image_u8_init());
  3282. img_tool::crop(*refined_img, *img_slice, x, y, w, h);
  3283. output.push_back(std::move(img_slice));
  3284. }
  3285. return output;
  3286. }
  3287. private:
  3288. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3289. int width = original_size.width;
  3290. int height = original_size.height;
  3291. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  3292. float r = static_cast<float>(width) / height;
  3293. height = static_cast<int>(scale_resolution / std::sqrt(r));
  3294. width = static_cast<int>(height * r);
  3295. }
  3296. clip_image_size res;
  3297. res.width = ensure_divide(width, patch_size);
  3298. res.height = ensure_divide(height, patch_size);
  3299. return res;
  3300. }
  3301. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  3302. float scale_width = static_cast<float>(target_max.width) / orig.width;
  3303. float scale_height = static_cast<float>(target_max.height) / orig.height;
  3304. float scale = std::min(scale_width, scale_height);
  3305. return clip_image_size{
  3306. static_cast<int>(orig.width * scale),
  3307. static_cast<int>(orig.height * scale),
  3308. };
  3309. }
  3310. /**
  3311. * Selects the best resolution from a list of possible resolutions based on the original size.
  3312. *
  3313. * For example, when given a list of resolutions:
  3314. * - 100x100
  3315. * - 200x100
  3316. * - 100x200
  3317. * - 200x200
  3318. *
  3319. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  3320. *
  3321. * @param original_size The original size of the image
  3322. * @param possible_resolutions A list of possible resolutions
  3323. * @return The best fit resolution
  3324. */
  3325. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  3326. clip_image_size best_fit;
  3327. int min_wasted_area = std::numeric_limits<int>::max();
  3328. int max_effective_resolution = 0;
  3329. for (const clip_image_size & candidate : possible_resolutions) {
  3330. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  3331. int effective_resolution = std::min(
  3332. target_size.width * target_size.height,
  3333. original_size.width * original_size.height);
  3334. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  3335. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  3336. max_effective_resolution = effective_resolution;
  3337. min_wasted_area = wasted_area;
  3338. best_fit = candidate;
  3339. }
  3340. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  3341. }
  3342. return best_fit;
  3343. }
  3344. static int ensure_divide(int length, int patch_size) {
  3345. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  3346. }
  3347. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3348. int width = original_size.width;
  3349. int height = original_size.height;
  3350. int grid_x = grid.width;
  3351. int grid_y = grid.height;
  3352. int refine_width = ensure_divide(width, grid_x);
  3353. int refine_height = ensure_divide(height, grid_y);
  3354. clip_image_size grid_size;
  3355. grid_size.width = refine_width / grid_x;
  3356. grid_size.height = refine_height / grid_y;
  3357. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  3358. int best_grid_width = best_grid_size.width;
  3359. int best_grid_height = best_grid_size.height;
  3360. clip_image_size refine_size;
  3361. refine_size.width = best_grid_width * grid_x;
  3362. refine_size.height = best_grid_height * grid_y;
  3363. return refine_size;
  3364. }
  3365. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  3366. std::vector<int> candidate_split_grids_nums;
  3367. for (int i : {multiple - 1, multiple, multiple + 1}) {
  3368. if (i == 1 || i > max_slice_nums) {
  3369. continue;
  3370. }
  3371. candidate_split_grids_nums.push_back(i);
  3372. }
  3373. std::vector<clip_image_size> candidate_grids;
  3374. for (int split_grids_nums : candidate_split_grids_nums) {
  3375. int m = 1;
  3376. while (m <= split_grids_nums) {
  3377. if (split_grids_nums % m == 0) {
  3378. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  3379. }
  3380. ++m;
  3381. }
  3382. }
  3383. clip_image_size best_grid{1, 1};
  3384. float min_error = std::numeric_limits<float>::infinity();
  3385. for (const auto& grid : candidate_grids) {
  3386. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  3387. if (error < min_error) {
  3388. best_grid = grid;
  3389. min_error = error;
  3390. }
  3391. }
  3392. return best_grid;
  3393. }
  3394. };
  3395. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3396. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3397. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3398. clip_image_size original_size{img->nx, img->ny};
  3399. auto & params = ctx->model.hparams;
  3400. switch (ctx->proj_type()) {
  3401. case PROJECTOR_TYPE_MINICPMV:
  3402. {
  3403. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3404. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3405. for (size_t i = 0; i < imgs.size(); ++i) {
  3406. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3407. clip_image_f32_ptr res(clip_image_f32_init());
  3408. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3409. res_imgs->entries.push_back(std::move(res));
  3410. }
  3411. res_imgs->grid_x = inst.grid_size.width;
  3412. res_imgs->grid_y = inst.grid_size.height;
  3413. } break;
  3414. case PROJECTOR_TYPE_QWEN2VL:
  3415. case PROJECTOR_TYPE_QWEN25VL:
  3416. case PROJECTOR_TYPE_QWEN3VL:
  3417. {
  3418. // step 1: make a blank canvas which aligns to the grid
  3419. clip_image_u8 resized;
  3420. const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
  3421. original_size,
  3422. params.patch_size * 2,
  3423. params.image_min_pixels,
  3424. params.image_max_pixels);
  3425. img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
  3426. // clip_image_save_to_bmp(resized, "preproc.bmp");
  3427. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3428. // clip_image_f32_ptr res(clip_image_f32_init());
  3429. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3430. // res_imgs->data[0] = *res;
  3431. res_imgs->entries.push_back(std::move(img_f32));
  3432. } break;
  3433. case PROJECTOR_TYPE_IDEFICS3:
  3434. {
  3435. // The refined size has two steps:
  3436. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  3437. // the preprocessor longest size
  3438. // 2. Resize w/out preserving aspect ratio such that both sides are
  3439. // multiples of image_size (always rounding up)
  3440. //
  3441. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  3442. const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
  3443. original_size, params.image_size, params.image_longest_edge);
  3444. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  3445. // __func__, original_size.width, original_size.height,
  3446. // refined_size.width, refined_size.height);
  3447. llava_uhd::slice_instructions instructions;
  3448. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  3449. instructions.refined_size = refined_size;
  3450. instructions.grid_size = clip_image_size{
  3451. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  3452. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  3453. };
  3454. for (int y = 0; y < refined_size.height; y += params.image_size) {
  3455. for (int x = 0; x < refined_size.width; x += params.image_size) {
  3456. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  3457. instructions.slices.push_back(llava_uhd::slice_coordinates{
  3458. /* x */x,
  3459. /* y */y,
  3460. /* size */clip_image_size{
  3461. std::min(params.image_size, refined_size.width - x),
  3462. std::min(params.image_size, refined_size.height - y)
  3463. }
  3464. });
  3465. }
  3466. }
  3467. auto imgs = llava_uhd::slice_image(img, instructions);
  3468. // cast and normalize to f32
  3469. for (size_t i = 0; i < imgs.size(); ++i) {
  3470. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3471. clip_image_f32_ptr res(clip_image_f32_init());
  3472. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3473. res_imgs->entries.push_back(std::move(res));
  3474. }
  3475. res_imgs->grid_x = instructions.grid_size.width;
  3476. res_imgs->grid_y = instructions.grid_size.height;
  3477. } break;
  3478. case PROJECTOR_TYPE_GLM_EDGE:
  3479. case PROJECTOR_TYPE_GEMMA3:
  3480. case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
  3481. {
  3482. clip_image_u8 resized_image;
  3483. int sz = params.image_size;
  3484. img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
  3485. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3486. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3487. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3488. res_imgs->entries.push_back(std::move(img_f32));
  3489. } break;
  3490. case PROJECTOR_TYPE_PIXTRAL:
  3491. case PROJECTOR_TYPE_LIGHTONOCR:
  3492. {
  3493. GGML_ASSERT(params.image_min_pixels && params.image_max_pixels);
  3494. clip_image_u8 resized_image;
  3495. // the original pixtral model doesn't have n_merge
  3496. const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
  3497. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3498. original_size,
  3499. params.patch_size * cur_merge,
  3500. params.image_min_pixels,
  3501. params.image_max_pixels);
  3502. img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
  3503. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3504. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3505. res_imgs->entries.push_back(std::move(img_f32));
  3506. } break;
  3507. case PROJECTOR_TYPE_LLAMA4:
  3508. {
  3509. GGML_ASSERT(!params.image_res_candidates.empty());
  3510. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3511. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3512. for (size_t i = 0; i < imgs.size(); ++i) {
  3513. clip_image_f32_ptr res(clip_image_f32_init());
  3514. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3515. res_imgs->entries.push_back(std::move(res));
  3516. }
  3517. res_imgs->grid_x = inst.grid_size.width;
  3518. res_imgs->grid_y = inst.grid_size.height;
  3519. } break;
  3520. case PROJECTOR_TYPE_LFM2:
  3521. case PROJECTOR_TYPE_KIMIVL:
  3522. {
  3523. GGML_ASSERT(params.image_min_pixels && params.image_max_pixels);
  3524. const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
  3525. original_size,
  3526. params.patch_size * params.n_merge,
  3527. params.image_min_pixels,
  3528. params.image_max_pixels);
  3529. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3530. clip_image_u8 resized_img;
  3531. img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3532. clip_image_f32_ptr res(clip_image_f32_init());
  3533. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3534. res_imgs->entries.push_back(std::move(res));
  3535. } break;
  3536. case PROJECTOR_TYPE_MLP:
  3537. case PROJECTOR_TYPE_MLP_NORM:
  3538. case PROJECTOR_TYPE_LDP:
  3539. case PROJECTOR_TYPE_LDPV2:
  3540. case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
  3541. {
  3542. // TODO @ngxson : refactor the code below to avoid duplicated logic
  3543. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3544. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3545. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3546. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3547. if (params.image_res_candidates.empty()) { // pad_to_square
  3548. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3549. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3550. const int longer_side = std::max(img->nx, img->ny);
  3551. temp->nx = longer_side;
  3552. temp->ny = longer_side;
  3553. temp->buf.resize(3 * longer_side * longer_side);
  3554. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3555. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3556. // resize the image to the target_size
  3557. img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
  3558. clip_image_f32_ptr res(clip_image_f32_init());
  3559. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3560. res_imgs->entries.push_back(std::move(res));
  3561. } else {
  3562. // "spatial_unpad" with "anyres" processing for llava-1.6
  3563. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3564. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3565. for (size_t i = 0; i < imgs.size(); ++i) {
  3566. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3567. clip_image_f32_ptr res(clip_image_f32_init());
  3568. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3569. res_imgs->entries.push_back(std::move(res));
  3570. }
  3571. }
  3572. } break;
  3573. default:
  3574. LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
  3575. return false;
  3576. }
  3577. return true;
  3578. }
  3579. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3580. return ctx->model.image_newline;
  3581. }
  3582. void clip_free(clip_ctx * ctx) {
  3583. if (ctx == nullptr) {
  3584. return;
  3585. }
  3586. delete ctx;
  3587. }
  3588. // deprecated
  3589. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3590. const int32_t nx = ctx->model.hparams.image_size;
  3591. const int32_t ny = ctx->model.hparams.image_size;
  3592. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3593. }
  3594. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3595. clip_image_f32 img;
  3596. img.nx = img_w;
  3597. img.ny = img_h;
  3598. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3599. }
  3600. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3601. return ctx->model.hparams.image_size;
  3602. }
  3603. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3604. return ctx->model.hparams.patch_size;
  3605. }
  3606. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3607. return ctx->model.hparams.n_embd;
  3608. }
  3609. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3610. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3611. }
  3612. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3613. const auto & params = ctx->model.hparams;
  3614. const int n_total = clip_n_output_tokens(ctx, img);
  3615. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3616. return img->nx / (params.patch_size * 2);
  3617. }
  3618. return n_total;
  3619. }
  3620. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3621. const auto & params = ctx->model.hparams;
  3622. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3623. return img->ny / (params.patch_size * 2);
  3624. }
  3625. return 1;
  3626. }
  3627. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3628. const auto & params = ctx->model.hparams;
  3629. // for models with fixed size image, the input image is already pre-processed and resized to square
  3630. int patch_size = params.patch_size;
  3631. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3632. projector_type proj = ctx->proj_type();
  3633. switch (proj) {
  3634. case PROJECTOR_TYPE_MLP:
  3635. case PROJECTOR_TYPE_MLP_NORM:
  3636. {
  3637. // do nothing
  3638. } break;
  3639. case PROJECTOR_TYPE_LDP:
  3640. case PROJECTOR_TYPE_LDPV2:
  3641. case PROJECTOR_TYPE_GLM_EDGE:
  3642. {
  3643. n_patches /= 4;
  3644. if (ctx->model.mm_boi) {
  3645. n_patches += 2; // for BOI and EOI token embeddings
  3646. }
  3647. } break;
  3648. case PROJECTOR_TYPE_MINICPMV:
  3649. {
  3650. // Use actual config value if available, otherwise fall back to hardcoded values
  3651. if (params.minicpmv_query_num > 0) {
  3652. n_patches = params.minicpmv_query_num;
  3653. } else {
  3654. // Fallback to hardcoded values for legacy models
  3655. if (params.minicpmv_version == 2) {
  3656. n_patches = 96;
  3657. } else if (params.minicpmv_version == 3) {
  3658. n_patches = 64;
  3659. } else if (params.minicpmv_version == 4) {
  3660. n_patches = 64;
  3661. } else if (params.minicpmv_version == 5) {
  3662. // MiniCPM-V 4.0
  3663. n_patches = 64;
  3664. } else if (params.minicpmv_version == 6) {
  3665. // MiniCPM-V 4.5
  3666. n_patches = 64;
  3667. } else {
  3668. GGML_ABORT("Unknown minicpmv version");
  3669. }
  3670. }
  3671. } break;
  3672. case PROJECTOR_TYPE_QWEN2VL:
  3673. case PROJECTOR_TYPE_QWEN25VL:
  3674. case PROJECTOR_TYPE_QWEN3VL:
  3675. {
  3676. // dynamic size (2 conv, so double patch size)
  3677. int x_patch = img->nx / (params.patch_size * 2);
  3678. int y_patch = img->ny / (params.patch_size * 2);
  3679. n_patches = x_patch * y_patch;
  3680. } break;
  3681. case PROJECTOR_TYPE_GEMMA3:
  3682. case PROJECTOR_TYPE_IDEFICS3:
  3683. case PROJECTOR_TYPE_INTERNVL:
  3684. case PROJECTOR_TYPE_LLAMA4:
  3685. {
  3686. // both X and Y are downscaled by the scale factor
  3687. int scale_factor = ctx->model.hparams.n_merge;
  3688. n_patches /= (scale_factor * scale_factor);
  3689. } break;
  3690. case PROJECTOR_TYPE_LFM2:
  3691. case PROJECTOR_TYPE_KIMIVL:
  3692. {
  3693. // dynamic size
  3694. int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
  3695. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3696. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3697. n_patches = x_patch * y_patch;
  3698. } break;
  3699. case PROJECTOR_TYPE_PIXTRAL:
  3700. case PROJECTOR_TYPE_LIGHTONOCR:
  3701. {
  3702. // dynamic size
  3703. int n_merge = ctx->model.hparams.n_merge;
  3704. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3705. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3706. if (ctx->model.token_embd_img_break) {
  3707. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3708. } else {
  3709. n_patches = n_patches_y * n_patches_x;
  3710. }
  3711. } break;
  3712. case PROJECTOR_TYPE_VOXTRAL:
  3713. case PROJECTOR_TYPE_ULTRAVOX:
  3714. case PROJECTOR_TYPE_QWEN2A:
  3715. {
  3716. n_patches = img->nx;
  3717. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3718. if (ctx->model.audio_has_stack_frames()) {
  3719. GGML_ASSERT(proj_stack_factor > 0);
  3720. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3721. n_patches = n_len / proj_stack_factor;
  3722. }
  3723. // whisper downscales input token by half after conv1d
  3724. n_patches /= 2;
  3725. if (ctx->model.audio_has_avgpool()) {
  3726. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3727. n_patches /= 2;
  3728. }
  3729. } break;
  3730. case PROJECTOR_TYPE_COGVLM:
  3731. {
  3732. n_patches += 2; // for BOI and EOI token embeddings
  3733. } break;
  3734. default:
  3735. GGML_ABORT("unsupported projector type");
  3736. }
  3737. return n_patches;
  3738. }
  3739. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3740. assert(embed_dim % 2 == 0);
  3741. int H = pos.size();
  3742. int W = pos[0].size();
  3743. std::vector<float> omega(embed_dim / 2);
  3744. for (int i = 0; i < embed_dim / 2; ++i) {
  3745. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3746. }
  3747. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3748. for (int h = 0; h < H; ++h) {
  3749. for (int w = 0; w < W; ++w) {
  3750. for (int d = 0; d < embed_dim / 2; ++d) {
  3751. float out_value = pos[h][w] * omega[d];
  3752. emb[h][w][d] = sin(out_value);
  3753. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3754. }
  3755. }
  3756. }
  3757. return emb;
  3758. }
  3759. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3760. assert(embed_dim % 2 == 0);
  3761. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3762. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3763. int H = emb_h.size();
  3764. int W = emb_h[0].size();
  3765. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3766. for (int h = 0; h < H; ++h) {
  3767. for (int w = 0; w < W; ++w) {
  3768. for (int d = 0; d < embed_dim / 2; ++d) {
  3769. emb[h][w][d] = emb_h[h][w][d];
  3770. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3771. }
  3772. }
  3773. }
  3774. return emb;
  3775. }
  3776. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3777. int grid_h_size = image_size.first;
  3778. int grid_w_size = image_size.second;
  3779. std::vector<float> grid_h(grid_h_size);
  3780. std::vector<float> grid_w(grid_w_size);
  3781. for (int i = 0; i < grid_h_size; ++i) {
  3782. grid_h[i] = static_cast<float>(i);
  3783. }
  3784. for (int i = 0; i < grid_w_size; ++i) {
  3785. grid_w[i] = static_cast<float>(i);
  3786. }
  3787. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3788. for (int h = 0; h < grid_h_size; ++h) {
  3789. for (int w = 0; w < grid_w_size; ++w) {
  3790. grid[h][w] = grid_w[w];
  3791. }
  3792. }
  3793. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3794. for (int h = 0; h < grid_h_size; ++h) {
  3795. for (int w = 0; w < grid_w_size; ++w) {
  3796. grid_2d[0][h][w] = grid_h[h];
  3797. grid_2d[1][h][w] = grid_w[w];
  3798. }
  3799. }
  3800. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3801. int H = image_size.first;
  3802. int W = image_size.second;
  3803. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3804. for (int h = 0; h < H; ++h) {
  3805. for (int w = 0; w < W; ++w) {
  3806. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3807. }
  3808. }
  3809. return pos_embed_2d;
  3810. }
  3811. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3812. clip_image_f32_batch imgs;
  3813. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3814. *img_copy = *img;
  3815. imgs.entries.push_back(std::move(img_copy));
  3816. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3817. }
  3818. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3819. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3820. int batch_size = imgs.entries.size();
  3821. // TODO @ngxson : implement batch size > 1 as a loop
  3822. // we don't need true batching support because the cgraph will gonna be big anyway
  3823. if (batch_size != 1) {
  3824. return false; // only support batch size of 1
  3825. }
  3826. // build the inference graph
  3827. ctx->debug_print_tensors.clear();
  3828. ggml_backend_sched_reset(ctx->sched.get());
  3829. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3830. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3831. // set inputs
  3832. const auto & model = ctx->model;
  3833. const auto & hparams = model.hparams;
  3834. const int image_size_width = imgs.entries[0]->nx;
  3835. const int image_size_height = imgs.entries[0]->ny;
  3836. const int patch_size = hparams.patch_size;
  3837. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3838. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3839. const int pos_w = image_size_width / patch_size;
  3840. const int pos_h = image_size_height / patch_size;
  3841. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3842. auto get_inp_tensor = [&gf](const char * name) {
  3843. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3844. if (inp == nullptr) {
  3845. GGML_ABORT("Failed to get tensor %s", name);
  3846. }
  3847. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3848. GGML_ABORT("Tensor %s is not an input tensor", name);
  3849. }
  3850. return inp;
  3851. };
  3852. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3853. ggml_tensor * cur = get_inp_tensor(name);
  3854. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3855. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3856. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3857. };
  3858. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3859. ggml_tensor * cur = get_inp_tensor(name);
  3860. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3861. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3862. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3863. };
  3864. // set input pixel values
  3865. if (!imgs.is_audio) {
  3866. size_t nelem = 0;
  3867. for (const auto & img : imgs.entries) {
  3868. nelem += img->nx * img->ny * 3;
  3869. }
  3870. std::vector<float> inp_raw(nelem);
  3871. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3872. //
  3873. // ┌──W──┐
  3874. // │ H │ channel = R
  3875. // ├─────┤ │
  3876. // │ H │ channel = G
  3877. // ├─────┤ │
  3878. // │ H │ channel = B
  3879. // └─────┘ │
  3880. // ──────┘ x B
  3881. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3882. const int nx = imgs.entries[i]->nx;
  3883. const int ny = imgs.entries[i]->ny;
  3884. const int n = nx * ny;
  3885. for (int b = 0; b < batch_size; b++) {
  3886. float * batch_entry = inp_raw.data() + b * (3*n);
  3887. for (int y = 0; y < ny; y++) {
  3888. for (int x = 0; x < nx; x++) {
  3889. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3890. size_t base_dst = y * nx + x; // idx of the first channel
  3891. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3892. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3893. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3894. }
  3895. }
  3896. }
  3897. }
  3898. set_input_f32("inp_raw", inp_raw);
  3899. } else {
  3900. // audio input
  3901. GGML_ASSERT(imgs.entries.size() == 1);
  3902. const auto & mel_inp = imgs.entries[0];
  3903. const int n_step = mel_inp->nx;
  3904. const int n_mel = mel_inp->ny;
  3905. std::vector<float> inp_raw(n_step * n_mel);
  3906. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3907. set_input_f32("inp_raw", inp_raw);
  3908. }
  3909. // set input per projector
  3910. switch (ctx->model.proj_type) {
  3911. case PROJECTOR_TYPE_MINICPMV:
  3912. {
  3913. // inspired from siglip:
  3914. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3915. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3916. std::vector<int32_t> positions(pos_h * pos_w);
  3917. int bucket_coords_h[1024];
  3918. int bucket_coords_w[1024];
  3919. for (int i = 0; i < pos_h; i++){
  3920. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3921. }
  3922. for (int i = 0; i < pos_w; i++){
  3923. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3924. }
  3925. for (int i = 0, id = 0; i < pos_h; i++){
  3926. for (int j = 0; j < pos_w; j++){
  3927. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3928. }
  3929. }
  3930. set_input_i32("positions", positions);
  3931. // inspired from resampler of Qwen-VL:
  3932. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3933. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3934. int embed_dim = clip_n_mmproj_embd(ctx);
  3935. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3936. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3937. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3938. for(int i = 0; i < pos_w * pos_h; ++i){
  3939. for(int j = 0; j < embed_dim; ++j){
  3940. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3941. }
  3942. }
  3943. set_input_f32("pos_embed", pos_embed);
  3944. } break;
  3945. case PROJECTOR_TYPE_QWEN2VL:
  3946. case PROJECTOR_TYPE_QWEN3VL:
  3947. {
  3948. const int merge_ratio = 2;
  3949. const int pw = image_size_width / patch_size;
  3950. const int ph = image_size_height / patch_size;
  3951. std::vector<int> positions(n_pos * 4);
  3952. int ptr = 0;
  3953. for (int y = 0; y < ph; y += merge_ratio) {
  3954. for (int x = 0; x < pw; x += merge_ratio) {
  3955. for (int dy = 0; dy < 2; dy++) {
  3956. for (int dx = 0; dx < 2; dx++) {
  3957. positions[ ptr] = y + dy;
  3958. positions[ num_patches + ptr] = x + dx;
  3959. positions[2 * num_patches + ptr] = y + dy;
  3960. positions[3 * num_patches + ptr] = x + dx;
  3961. ptr++;
  3962. }
  3963. }
  3964. }
  3965. }
  3966. set_input_i32("positions", positions);
  3967. } break;
  3968. case PROJECTOR_TYPE_QWEN25VL:
  3969. {
  3970. // pw * ph = number of tokens output by ViT after apply patch merger
  3971. // ipw * ipw = number of vision token been processed inside ViT
  3972. const int merge_ratio = 2;
  3973. const int pw = image_size_width / patch_size / merge_ratio;
  3974. const int ph = image_size_height / patch_size / merge_ratio;
  3975. const int ipw = image_size_width / patch_size;
  3976. const int iph = image_size_height / patch_size;
  3977. std::vector<int> idx (ph * pw);
  3978. std::vector<int> inv_idx(ph * pw);
  3979. if (use_window_attn) {
  3980. const int attn_window_size = 112;
  3981. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3982. int dst = 0;
  3983. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3984. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3985. int mask_row = 0;
  3986. for (int y = 0; y < ph; y += grid_window) {
  3987. for (int x = 0; x < pw; x += grid_window) {
  3988. const int win_h = std::min(grid_window, ph - y);
  3989. const int win_w = std::min(grid_window, pw - x);
  3990. const int dst_0 = dst;
  3991. // group all tokens belong to the same window togather (to a continue range)
  3992. for (int dy = 0; dy < win_h; dy++) {
  3993. for (int dx = 0; dx < win_w; dx++) {
  3994. const int src = (y + dy) * pw + (x + dx);
  3995. GGML_ASSERT(src < (int)idx.size());
  3996. GGML_ASSERT(dst < (int)inv_idx.size());
  3997. idx [src] = dst;
  3998. inv_idx[dst] = src;
  3999. dst++;
  4000. }
  4001. }
  4002. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  4003. int row_offset = mask_row * (ipw * iph);
  4004. std::fill(
  4005. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  4006. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  4007. 0.0);
  4008. mask_row++;
  4009. }
  4010. }
  4011. }
  4012. set_input_i32("window_idx", idx);
  4013. set_input_i32("inv_window_idx", inv_idx);
  4014. set_input_f32("window_mask", mask);
  4015. } else {
  4016. for (int i = 0; i < ph * pw; i++) {
  4017. idx[i] = i;
  4018. }
  4019. }
  4020. const int mpow = merge_ratio * merge_ratio;
  4021. std::vector<int> positions(n_pos * 4);
  4022. int ptr = 0;
  4023. for (int y = 0; y < iph; y += merge_ratio) {
  4024. for (int x = 0; x < ipw; x += merge_ratio) {
  4025. for (int dy = 0; dy < 2; dy++) {
  4026. for (int dx = 0; dx < 2; dx++) {
  4027. auto remap = idx[ptr / mpow];
  4028. remap = (remap * mpow) + (ptr % mpow);
  4029. positions[ remap] = y + dy;
  4030. positions[ num_patches + remap] = x + dx;
  4031. positions[2 * num_patches + remap] = y + dy;
  4032. positions[3 * num_patches + remap] = x + dx;
  4033. ptr++;
  4034. }
  4035. }
  4036. }
  4037. }
  4038. set_input_i32("positions", positions);
  4039. } break;
  4040. case PROJECTOR_TYPE_PIXTRAL:
  4041. case PROJECTOR_TYPE_KIMIVL:
  4042. case PROJECTOR_TYPE_LIGHTONOCR:
  4043. {
  4044. // set the 2D positions
  4045. int n_patches_per_col = image_size_width / patch_size;
  4046. std::vector<int> pos_data(n_pos);
  4047. // dimension H
  4048. for (int i = 0; i < n_pos; i++) {
  4049. pos_data[i] = i / n_patches_per_col;
  4050. }
  4051. set_input_i32("pos_h", pos_data);
  4052. // dimension W
  4053. for (int i = 0; i < n_pos; i++) {
  4054. pos_data[i] = i % n_patches_per_col;
  4055. }
  4056. set_input_i32("pos_w", pos_data);
  4057. } break;
  4058. case PROJECTOR_TYPE_GLM_EDGE:
  4059. {
  4060. // llava and other models
  4061. std::vector<int32_t> positions(n_pos);
  4062. for (int i = 0; i < n_pos; i++) {
  4063. positions[i] = i;
  4064. }
  4065. set_input_i32("positions", positions);
  4066. } break;
  4067. case PROJECTOR_TYPE_MLP:
  4068. case PROJECTOR_TYPE_MLP_NORM:
  4069. case PROJECTOR_TYPE_LDP:
  4070. case PROJECTOR_TYPE_LDPV2:
  4071. {
  4072. // llava and other models
  4073. std::vector<int32_t> positions(n_pos);
  4074. for (int i = 0; i < n_pos; i++) {
  4075. positions[i] = i;
  4076. }
  4077. set_input_i32("positions", positions);
  4078. // The patches vector is used to get rows to index into the embeds with;
  4079. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  4080. // when retrieving the rows.
  4081. int patch_offset = model.class_embedding ? 1 : 0;
  4082. std::vector<int32_t> patches(num_patches);
  4083. for (int i = 0; i < num_patches; i++) {
  4084. patches[i] = i + patch_offset;
  4085. }
  4086. set_input_i32("patches", patches);
  4087. } break;
  4088. case PROJECTOR_TYPE_GEMMA3:
  4089. case PROJECTOR_TYPE_IDEFICS3:
  4090. case PROJECTOR_TYPE_INTERNVL:
  4091. case PROJECTOR_TYPE_QWEN2A:
  4092. case PROJECTOR_TYPE_ULTRAVOX:
  4093. case PROJECTOR_TYPE_LFM2:
  4094. case PROJECTOR_TYPE_VOXTRAL:
  4095. case PROJECTOR_TYPE_COGVLM:
  4096. {
  4097. // do nothing
  4098. } break;
  4099. case PROJECTOR_TYPE_LLAMA4:
  4100. {
  4101. // set the 2D positions
  4102. int n_patches_per_col = image_size_width / patch_size;
  4103. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  4104. // last pos is always kept 0, it's for CLS
  4105. // dimension H
  4106. for (int i = 0; i < num_patches; i++) {
  4107. pos_data[i] = (i / n_patches_per_col) + 1;
  4108. }
  4109. set_input_i32("pos_h", pos_data);
  4110. // dimension W
  4111. for (int i = 0; i < num_patches; i++) {
  4112. pos_data[i] = (i % n_patches_per_col) + 1;
  4113. }
  4114. set_input_i32("pos_w", pos_data);
  4115. } break;
  4116. default:
  4117. GGML_ABORT("Unknown projector type");
  4118. }
  4119. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  4120. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  4121. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  4122. if (reg) {
  4123. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4124. if (ggml_backend_set_n_threads_fn) {
  4125. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  4126. }
  4127. }
  4128. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  4129. if (status != GGML_STATUS_SUCCESS) {
  4130. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  4131. return false;
  4132. }
  4133. // print debug nodes
  4134. if (ctx->debug_graph) {
  4135. LOG_INF("\n\n---\n\n");
  4136. LOG_INF("\n\nDebug graph:\n\n");
  4137. for (ggml_tensor * t : ctx->debug_print_tensors) {
  4138. std::vector<uint8_t> data(ggml_nbytes(t));
  4139. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  4140. print_tensor_shape(t);
  4141. print_tensor_data(t, data.data(), 3);
  4142. }
  4143. }
  4144. // the last node is the embedding tensor
  4145. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  4146. // sanity check (only support batch size of 1 for now)
  4147. const int n_tokens_out = embeddings->ne[1];
  4148. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  4149. if (n_tokens_out != expected_n_tokens_out) {
  4150. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  4151. GGML_ABORT("Invalid number of output tokens");
  4152. }
  4153. // copy the embeddings to the location passed by the user
  4154. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  4155. return true;
  4156. }
  4157. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  4158. switch (ctx->model.proj_type) {
  4159. case PROJECTOR_TYPE_LDP:
  4160. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  4161. case PROJECTOR_TYPE_LDPV2:
  4162. return ctx->model.mm_model_peg_0_b->ne[0];
  4163. case PROJECTOR_TYPE_MLP:
  4164. case PROJECTOR_TYPE_PIXTRAL:
  4165. case PROJECTOR_TYPE_LIGHTONOCR:
  4166. return ctx->model.mm_2_w->ne[1];
  4167. case PROJECTOR_TYPE_MLP_NORM:
  4168. return ctx->model.mm_3_b->ne[0];
  4169. case PROJECTOR_TYPE_MINICPMV:
  4170. return ctx->model.mm_model_proj->ne[0];
  4171. case PROJECTOR_TYPE_GLM_EDGE:
  4172. return ctx->model.mm_model_mlp_3_w->ne[1];
  4173. case PROJECTOR_TYPE_QWEN2VL:
  4174. case PROJECTOR_TYPE_QWEN25VL:
  4175. return ctx->model.mm_1_b->ne[0];
  4176. case PROJECTOR_TYPE_QWEN3VL:
  4177. // main path + deepstack paths
  4178. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  4179. case PROJECTOR_TYPE_GEMMA3:
  4180. return ctx->model.mm_input_proj_w->ne[0];
  4181. case PROJECTOR_TYPE_IDEFICS3:
  4182. return ctx->model.projection->ne[1];
  4183. case PROJECTOR_TYPE_ULTRAVOX:
  4184. case PROJECTOR_TYPE_VOXTRAL:
  4185. return ctx->model.mm_2_w->ne[1];
  4186. case PROJECTOR_TYPE_INTERNVL:
  4187. return ctx->model.mm_3_w->ne[1];
  4188. case PROJECTOR_TYPE_LLAMA4:
  4189. return ctx->model.mm_model_proj->ne[1];
  4190. case PROJECTOR_TYPE_QWEN2A:
  4191. return ctx->model.mm_fc_w->ne[1];
  4192. case PROJECTOR_TYPE_LFM2:
  4193. case PROJECTOR_TYPE_KIMIVL:
  4194. return ctx->model.mm_2_w->ne[1];
  4195. case PROJECTOR_TYPE_COGVLM:
  4196. return ctx->model.mm_4h_to_h_w->ne[1];
  4197. default:
  4198. GGML_ABORT("Unknown projector type");
  4199. }
  4200. }
  4201. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  4202. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  4203. return ctx->model.hparams.minicpmv_version;
  4204. }
  4205. return 0;
  4206. }
  4207. bool clip_is_glm(const struct clip_ctx * ctx) {
  4208. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  4209. }
  4210. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  4211. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  4212. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  4213. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
  4214. }
  4215. bool clip_is_llava(const struct clip_ctx * ctx) {
  4216. return ctx->model.hparams.has_llava_projector;
  4217. }
  4218. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  4219. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  4220. }
  4221. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  4222. return ctx->model.modality == CLIP_MODALITY_VISION;
  4223. }
  4224. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  4225. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  4226. }
  4227. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  4228. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  4229. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  4230. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  4231. }
  4232. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  4233. clip_image_f32 clip_img;
  4234. clip_img.buf.resize(h * w * 3);
  4235. for (int i = 0; i < h*w*3; i++)
  4236. {
  4237. clip_img.buf[i] = img[i];
  4238. }
  4239. clip_img.nx = w;
  4240. clip_img.ny = h;
  4241. clip_image_encode(ctx, n_threads, &clip_img, vec);
  4242. return true;
  4243. }
  4244. //
  4245. // API used internally with mtmd
  4246. //
  4247. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  4248. return ctx->proj_type();
  4249. }
  4250. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  4251. clip_image_f32 * audio = new clip_image_f32;
  4252. audio->nx = n_frames;
  4253. audio->ny = n_mel;
  4254. audio->buf.resize(n_frames * n_mel);
  4255. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  4256. batch->entries.push_back(clip_image_f32_ptr(audio));
  4257. batch->is_audio = true;
  4258. }