| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969 |
- // NOTE: This is modified from clip.cpp only for LLaVA,
- // so there might be still unnecessary artifacts hanging around
- // I'll gradually clean and extend it
- // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
- #include "clip.h"
- #include "clip-impl.h"
- #include "ggml.h"
- #include "ggml-cpp.h"
- #include "ggml-cpu.h"
- #include "ggml-alloc.h"
- #include "ggml-backend.h"
- #include "gguf.h"
- #include <cassert>
- #include <cmath>
- #include <cstdlib>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <regex>
- #include <stdexcept>
- #include <unordered_set>
- #include <vector>
- #include <sstream>
- #include <cinttypes>
- #include <limits>
- #include <array>
- #include <numeric>
- #include <functional>
- struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
- enum ffn_op_type {
- FFN_GELU,
- FFN_GELU_ERF,
- FFN_SILU,
- FFN_GELU_QUICK,
- };
- enum norm_type {
- NORM_TYPE_NORMAL,
- NORM_TYPE_RMS,
- };
- //#define CLIP_DEBUG_FUNCTIONS
- #ifdef CLIP_DEBUG_FUNCTIONS
- static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- // PPM header: P6 format, width, height, and max color value
- file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
- // Write pixel data
- for (size_t i = 0; i < img.buf.size(); i += 3) {
- // PPM expects binary data in RGB format, which matches our image buffer
- file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
- }
- file.close();
- }
- static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
- std::ofstream file(filename, std::ios::binary);
- if (!file.is_open()) {
- LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
- return;
- }
- int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
- int bytesPerPixel = 3;
- int widthInBytes = img.nx * bytesPerPixel;
- int paddingAmount = (4 - (widthInBytes % 4)) % 4;
- int stride = widthInBytes + paddingAmount;
- // Bitmap file header
- unsigned char fileHeader[14] = {
- 'B','M', // Signature
- 0,0,0,0, // Image file size in bytes
- 0,0,0,0, // Reserved
- 54,0,0,0 // Start of pixel array
- };
- // Total file size
- fileSize = 54 + (stride * img.ny);
- fileHeader[2] = (unsigned char)(fileSize);
- fileHeader[3] = (unsigned char)(fileSize >> 8);
- fileHeader[4] = (unsigned char)(fileSize >> 16);
- fileHeader[5] = (unsigned char)(fileSize >> 24);
- // Bitmap information header (BITMAPINFOHEADER)
- unsigned char infoHeader[40] = {
- 40,0,0,0, // Size of this header (40 bytes)
- 0,0,0,0, // Image width
- 0,0,0,0, // Image height
- 1,0, // Number of color planes
- 24,0, // Bits per pixel
- 0,0,0,0, // No compression
- 0,0,0,0, // Image size (can be 0 for no compression)
- 0,0,0,0, // X pixels per meter (not specified)
- 0,0,0,0, // Y pixels per meter (not specified)
- 0,0,0,0, // Total colors (color table not used)
- 0,0,0,0 // Important colors (all are important)
- };
- // Width and height in the information header
- infoHeader[4] = (unsigned char)(img.nx);
- infoHeader[5] = (unsigned char)(img.nx >> 8);
- infoHeader[6] = (unsigned char)(img.nx >> 16);
- infoHeader[7] = (unsigned char)(img.nx >> 24);
- infoHeader[8] = (unsigned char)(img.ny);
- infoHeader[9] = (unsigned char)(img.ny >> 8);
- infoHeader[10] = (unsigned char)(img.ny >> 16);
- infoHeader[11] = (unsigned char)(img.ny >> 24);
- // Write file headers
- file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
- file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
- // Pixel data
- std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
- for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
- for (int x = 0; x < img.nx; ++x) {
- // Each pixel
- size_t pixelIndex = (y * img.nx + x) * 3;
- unsigned char pixel[3] = {
- img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
- img.buf[pixelIndex + 1],
- img.buf[pixelIndex]
- };
- file.write(reinterpret_cast<char*>(pixel), 3);
- }
- // Write padding for the row
- file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
- }
- file.close();
- }
- // debug function to convert f32 to u8
- static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(3 * src.nx * src.ny);
- for (size_t i = 0; i < src.buf.size(); ++i) {
- dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
- }
- }
- #endif
- //
- // clip layers
- //
- enum patch_merge_type {
- PATCH_MERGE_FLAT,
- PATCH_MERGE_SPATIAL_UNPAD,
- };
- struct clip_hparams {
- int32_t image_size;
- int32_t patch_size;
- int32_t n_embd;
- int32_t n_ff;
- int32_t projection_dim;
- int32_t n_head;
- int32_t n_layer;
- // idefics3
- int32_t image_longest_edge = 0;
- int32_t image_min_pixels = 0;
- int32_t image_max_pixels = 0;
- int32_t n_merge = 0; // number of patch merges **per-side**
- float image_mean[3];
- float image_std[3];
- // for models using dynamic image size, we need to have a smaller image size to warmup
- // otherwise, user will get OOM everytime they load the model
- int32_t warmup_image_size = 0;
- int32_t warmup_audio_size = 3000;
- ffn_op_type ffn_op = FFN_GELU;
- patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
- float eps = 1e-6;
- float rope_theta = 0.0;
- std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
- int32_t image_crop_resolution;
- std::unordered_set<int32_t> vision_feature_layer;
- int32_t attn_window_size = 0;
- int32_t n_wa_pattern = 0;
- // audio
- int32_t n_mel_bins = 0; // whisper preprocessor
- int32_t proj_stack_factor = 0; // ultravox
- // legacy
- bool has_llava_projector = false;
- int minicpmv_version = 0;
- int32_t minicpmv_query_num = 0; // MiniCPM-V query number
- void set_limit_image_tokens(int n_tokens_min, int n_tokens_max) {
- const int cur_merge = n_merge == 0 ? 1 : n_merge;
- const int patch_area = patch_size * patch_size * cur_merge * cur_merge;
- image_min_pixels = n_tokens_min * patch_area;
- image_max_pixels = n_tokens_max * patch_area;
- warmup_image_size = static_cast<int>(std::sqrt(image_max_pixels));
- }
- void set_warmup_n_tokens(int n_tokens) {
- int n_tok_per_side = static_cast<int>(std::sqrt(n_tokens));
- GGML_ASSERT(n_tok_per_side * n_tok_per_side == n_tokens && "n_tokens must be n*n");
- const int cur_merge = n_merge == 0 ? 1 : n_merge;
- warmup_image_size = n_tok_per_side * patch_size * cur_merge;
- }
- };
- struct clip_layer {
- // attention
- ggml_tensor * k_w = nullptr;
- ggml_tensor * k_b = nullptr;
- ggml_tensor * q_w = nullptr;
- ggml_tensor * q_b = nullptr;
- ggml_tensor * v_w = nullptr;
- ggml_tensor * v_b = nullptr;
- ggml_tensor * qkv_w = nullptr;
- ggml_tensor * qkv_b = nullptr;
- ggml_tensor * o_w = nullptr;
- ggml_tensor * o_b = nullptr;
- ggml_tensor * k_norm = nullptr;
- ggml_tensor * q_norm = nullptr;
- // layernorm 1
- ggml_tensor * ln_1_w = nullptr;
- ggml_tensor * ln_1_b = nullptr;
- ggml_tensor * ff_up_w = nullptr;
- ggml_tensor * ff_up_b = nullptr;
- ggml_tensor * ff_gate_w = nullptr;
- ggml_tensor * ff_gate_b = nullptr;
- ggml_tensor * ff_down_w = nullptr;
- ggml_tensor * ff_down_b = nullptr;
- // layernorm 2
- ggml_tensor * ln_2_w = nullptr;
- ggml_tensor * ln_2_b = nullptr;
- // layer scale (no bias)
- ggml_tensor * ls_1_w = nullptr;
- ggml_tensor * ls_2_w = nullptr;
- // qwen3vl deepstack merger
- ggml_tensor * deepstack_norm_w = nullptr;
- ggml_tensor * deepstack_norm_b = nullptr;
- ggml_tensor * deepstack_fc1_w = nullptr;
- ggml_tensor * deepstack_fc1_b = nullptr;
- ggml_tensor * deepstack_fc2_w = nullptr;
- ggml_tensor * deepstack_fc2_b = nullptr;
- bool has_deepstack() const {
- return deepstack_fc1_w != nullptr;
- }
- };
- struct clip_model {
- clip_modality modality = CLIP_MODALITY_VISION;
- projector_type proj_type = PROJECTOR_TYPE_MLP;
- clip_hparams hparams;
- // embeddings
- ggml_tensor * class_embedding = nullptr;
- ggml_tensor * patch_embeddings_0 = nullptr;
- ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
- ggml_tensor * patch_bias = nullptr;
- ggml_tensor * position_embeddings = nullptr;
- ggml_tensor * pre_ln_w = nullptr;
- ggml_tensor * pre_ln_b = nullptr;
- std::vector<clip_layer> layers;
- int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
- ggml_tensor * post_ln_w;
- ggml_tensor * post_ln_b;
- ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
- ggml_tensor * mm_fc_w;
- ggml_tensor * mm_fc_b;
- // LLaVA projection
- ggml_tensor * mm_input_norm_w = nullptr;
- ggml_tensor * mm_input_norm_b = nullptr;
- ggml_tensor * mm_0_w = nullptr;
- ggml_tensor * mm_0_b = nullptr;
- ggml_tensor * mm_2_w = nullptr;
- ggml_tensor * mm_2_b = nullptr;
- ggml_tensor * image_newline = nullptr;
- // Yi type models with mlp+normalization projection
- ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
- ggml_tensor * mm_1_b = nullptr;
- ggml_tensor * mm_3_w = nullptr;
- ggml_tensor * mm_3_b = nullptr;
- ggml_tensor * mm_4_w = nullptr;
- ggml_tensor * mm_4_b = nullptr;
- // GLMV-Edge projection
- ggml_tensor * mm_model_adapter_conv_w = nullptr;
- ggml_tensor * mm_model_adapter_conv_b = nullptr;
- // MobileVLM projection
- ggml_tensor * mm_model_mlp_1_w = nullptr;
- ggml_tensor * mm_model_mlp_1_b = nullptr;
- ggml_tensor * mm_model_mlp_3_w = nullptr;
- ggml_tensor * mm_model_mlp_3_b = nullptr;
- ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
- ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
- ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
- ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
- ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
- ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
- ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
- ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
- ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
- ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
- ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
- ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
- ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
- ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
- ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
- ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
- ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
- ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
- ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
- ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
- // MobileVLM_V2 projection
- ggml_tensor * mm_model_mlp_0_w = nullptr;
- ggml_tensor * mm_model_mlp_0_b = nullptr;
- ggml_tensor * mm_model_mlp_2_w = nullptr;
- ggml_tensor * mm_model_mlp_2_b = nullptr;
- ggml_tensor * mm_model_peg_0_w = nullptr;
- ggml_tensor * mm_model_peg_0_b = nullptr;
- // MINICPMV projection
- ggml_tensor * mm_model_pos_embed_k = nullptr;
- ggml_tensor * mm_model_query = nullptr;
- ggml_tensor * mm_model_proj = nullptr;
- ggml_tensor * mm_model_kv_proj = nullptr;
- ggml_tensor * mm_model_attn_q_w = nullptr;
- ggml_tensor * mm_model_attn_q_b = nullptr;
- ggml_tensor * mm_model_attn_k_w = nullptr;
- ggml_tensor * mm_model_attn_k_b = nullptr;
- ggml_tensor * mm_model_attn_v_w = nullptr;
- ggml_tensor * mm_model_attn_v_b = nullptr;
- ggml_tensor * mm_model_attn_o_w = nullptr;
- ggml_tensor * mm_model_attn_o_b = nullptr;
- ggml_tensor * mm_model_ln_q_w = nullptr;
- ggml_tensor * mm_model_ln_q_b = nullptr;
- ggml_tensor * mm_model_ln_kv_w = nullptr;
- ggml_tensor * mm_model_ln_kv_b = nullptr;
- ggml_tensor * mm_model_ln_post_w = nullptr;
- ggml_tensor * mm_model_ln_post_b = nullptr;
- // gemma3
- ggml_tensor * mm_input_proj_w = nullptr;
- ggml_tensor * mm_soft_emb_norm_w = nullptr;
- // pixtral
- ggml_tensor * token_embd_img_break = nullptr;
- ggml_tensor * mm_patch_merger_w = nullptr;
- // ultravox / whisper encoder
- ggml_tensor * conv1d_1_w = nullptr;
- ggml_tensor * conv1d_1_b = nullptr;
- ggml_tensor * conv1d_2_w = nullptr;
- ggml_tensor * conv1d_2_b = nullptr;
- ggml_tensor * mm_norm_pre_w = nullptr;
- ggml_tensor * mm_norm_mid_w = nullptr;
- // cogvlm
- ggml_tensor * mm_post_fc_norm_w = nullptr;
- ggml_tensor * mm_post_fc_norm_b = nullptr;
- ggml_tensor * mm_h_to_4h_w = nullptr;
- ggml_tensor * mm_gate_w = nullptr;
- ggml_tensor * mm_4h_to_h_w = nullptr;
- ggml_tensor * mm_boi = nullptr;
- ggml_tensor * mm_eoi = nullptr;
- bool audio_has_avgpool() const {
- return proj_type == PROJECTOR_TYPE_QWEN2A
- || proj_type == PROJECTOR_TYPE_VOXTRAL;
- }
- bool audio_has_stack_frames() const {
- return proj_type == PROJECTOR_TYPE_ULTRAVOX
- || proj_type == PROJECTOR_TYPE_VOXTRAL;
- }
- };
- struct clip_ctx {
- clip_model model;
- gguf_context_ptr ctx_gguf;
- ggml_context_ptr ctx_data;
- std::vector<uint8_t> buf_compute_meta;
- std::vector<ggml_backend_t> backend_ptrs;
- std::vector<ggml_backend_buffer_type_t> backend_buft;
- ggml_backend_t backend = nullptr;
- ggml_backend_t backend_cpu = nullptr;
- ggml_backend_buffer_ptr buf;
- int max_nodes = 8192;
- ggml_backend_sched_ptr sched;
- // for debugging
- bool debug_graph = false;
- std::vector<ggml_tensor *> debug_print_tensors;
- clip_ctx(clip_context_params & ctx_params) {
- debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
- backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
- if (!backend_cpu) {
- throw std::runtime_error("failed to initialize CPU backend");
- }
- if (ctx_params.use_gpu) {
- auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
- if (backend_name != nullptr) {
- backend = ggml_backend_init_by_name(backend_name, nullptr);
- if (!backend) {
- LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
- }
- }
- if (!backend) {
- backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
- backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
- }
- }
- if (backend) {
- LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
- backend_ptrs.push_back(backend);
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
- } else {
- backend = backend_cpu;
- LOG_INF("%s: CLIP using CPU backend\n", __func__);
- }
- backend_ptrs.push_back(backend_cpu);
- backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
- sched.reset(
- ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
- );
- }
- ~clip_ctx() {
- ggml_backend_free(backend);
- if (backend != backend_cpu) {
- ggml_backend_free(backend_cpu);
- }
- }
- // this function is added so that we don't change too much of the existing code
- projector_type proj_type() const {
- return model.proj_type;
- }
- };
- struct clip_graph {
- clip_ctx * ctx;
- const clip_model & model;
- const clip_hparams & hparams;
- // we only support single image per batch
- const clip_image_f32 & img;
- const int patch_size;
- const int n_patches_x;
- const int n_patches_y;
- const int n_patches;
- const int n_embd;
- const int n_head;
- const int d_head;
- const int n_layer;
- const float eps;
- const float kq_scale;
- ggml_context_ptr ctx0_ptr;
- ggml_context * ctx0;
- ggml_cgraph * gf;
- clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
- ctx(ctx),
- model(ctx->model),
- hparams(model.hparams),
- img(img),
- patch_size(hparams.patch_size),
- n_patches_x(img.nx / patch_size),
- n_patches_y(img.ny / patch_size),
- n_patches(n_patches_x * n_patches_y),
- n_embd(hparams.n_embd),
- n_head(hparams.n_head),
- d_head(n_embd / n_head),
- n_layer(hparams.n_layer),
- eps(hparams.eps),
- kq_scale(1.0f / sqrtf((float)d_head)) {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx->buf_compute_meta.size(),
- /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
- /*.no_alloc =*/ true,
- };
- ctx0_ptr.reset(ggml_init(params));
- ctx0 = ctx0_ptr.get();
- gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
- }
- ggml_cgraph * build_siglip() {
- ggml_tensor * inp = build_inp();
- ggml_tensor * learned_pos_embd = model.position_embeddings;
- if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
- learned_pos_embd = resize_position_embeddings();
- }
- ggml_tensor * cur = build_vit(
- inp, n_patches,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- learned_pos_embd,
- nullptr);
- if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
- const int batch_size = 1;
- GGML_ASSERT(n_patches_x == n_patches_y);
- const int patches_per_image = n_patches_x;
- const int kernel_size = hparams.n_merge;
- cur = ggml_transpose(ctx0, cur);
- cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
- // doing a pool2d to reduce the number of output tokens
- cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
- cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
- cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- // apply norm before projection
- cur = ggml_rms_norm(ctx0, cur, eps);
- cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
- // apply projection
- cur = ggml_mul_mat(ctx0,
- ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
- cur);
- } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
- // pixel_shuffle
- // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
- const int scale_factor = model.hparams.n_merge;
- cur = build_patch_merge_permute(cur, scale_factor);
- cur = ggml_mul_mat(ctx0, model.projection, cur);
- } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
- // pixel unshuffle block
- const int scale_factor = model.hparams.n_merge;
- cur = build_patch_merge_permute(cur, scale_factor);
- // projection
- cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
- cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
- cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_1_b);
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_2_b);
- } else {
- GGML_ABORT("SigLIP: Unsupported projector type");
- }
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- ggml_cgraph * build_pixtral() {
- const int n_merge = hparams.n_merge;
- // 2D input positions
- ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
- ggml_set_name(pos_h, "pos_h");
- ggml_set_input(pos_h);
- ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
- ggml_set_name(pos_w, "pos_w");
- ggml_set_input(pos_w);
- auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
- return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
- };
- ggml_tensor * inp = build_inp();
- ggml_tensor * cur = build_vit(
- inp, n_patches,
- NORM_TYPE_RMS,
- hparams.ffn_op,
- nullptr, // no learned pos embd
- add_pos);
- // mistral small 3.1 patch merger
- // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
- if (model.mm_patch_merger_w) {
- GGML_ASSERT(hparams.n_merge > 0);
- cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
- // reshape image tokens to 2D grid
- cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
- cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
- cur = ggml_cont(ctx0, cur);
- // torch.nn.functional.unfold is just an im2col under the hood
- // we just need a dummy kernel to make it work
- ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
- cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
- // project to n_embd
- cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
- cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
- }
- // LlavaMultiModalProjector (always using GELU activation)
- {
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- if (model.mm_1_b) {
- cur = ggml_add(ctx0, cur, model.mm_1_b);
- }
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
- if (model.mm_2_b) {
- cur = ggml_add(ctx0, cur, model.mm_2_b);
- }
- }
- // arrangement of the [IMG_BREAK] token
- if (model.token_embd_img_break) {
- // not efficient, but works
- // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
- // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
- // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
- const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
- const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
- const int p_total = p_x * p_y;
- const int n_embd_text = cur->ne[0];
- const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
- ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
- ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
- tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
- tok = ggml_add(ctx0, tok, model.token_embd_img_break);
- tmp = ggml_concat(ctx0, tmp, tok, 1);
- cur = ggml_view_2d(ctx0, tmp,
- n_embd_text, n_tokens_output,
- ggml_row_size(tmp->type, n_embd_text), 0);
- }
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- // Qwen2VL and Qwen2.5VL use M-RoPE
- ggml_cgraph * build_qwen2vl() {
- GGML_ASSERT(model.patch_bias == nullptr);
- GGML_ASSERT(model.class_embedding == nullptr);
- const int batch_size = 1;
- const bool use_window_attn = hparams.n_wa_pattern > 0;
- const int n_wa_pattern = hparams.n_wa_pattern;
- const int n_pos = n_patches;
- const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
- norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
- ? NORM_TYPE_RMS // qwen 2.5 vl
- : NORM_TYPE_NORMAL; // qwen 2 vl
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
- ggml_tensor * inp_raw = build_inp_raw();
- ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- GGML_ASSERT(img.nx % (patch_size * 2) == 0);
- GGML_ASSERT(img.ny % (patch_size * 2) == 0);
- // second conv dimension
- {
- auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_add(ctx0, inp, inp_1);
- inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
- inp = ggml_cont_4d(
- ctx0, inp,
- n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
- inp = ggml_reshape_4d(
- ctx0, inp,
- n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
- inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
- inp = ggml_cont_3d(
- ctx0, inp,
- n_embd, n_patches_x * n_patches_y, batch_size);
- }
- ggml_tensor * inpL = inp;
- ggml_tensor * window_mask = nullptr;
- ggml_tensor * window_idx = nullptr;
- ggml_tensor * inv_window_idx = nullptr;
- ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- // pre-layernorm
- if (model.pre_ln_w) {
- inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
- }
- if (use_window_attn) {
- // handle window attention inputs
- inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
- ggml_set_name(inv_window_idx, "inv_window_idx");
- ggml_set_input(inv_window_idx);
- // mask for window attention
- window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
- ggml_set_name(window_mask, "window_mask");
- ggml_set_input(window_mask);
- // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
- GGML_ASSERT(batch_size == 1);
- inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
- inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
- inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
- }
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- auto & layer = model.layers[il];
- const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
- ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // layernorm1
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
- cb(cur, "ln1", il);
- // self-attention
- {
- ggml_tensor * Qcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
- ggml_tensor * Kcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
- ggml_tensor * Vcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
- Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
- Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
- Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // apply M-RoPE
- Qcur = ggml_rope_multi(
- ctx0, Qcur, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- Kcur = ggml_rope_multi(
- ctx0, Kcur, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- cb(Qcur, "Qcur_rope", il);
- cb(Kcur, "Kcur_rope", il);
- ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur; // inpL = residual, cur = hidden_states
- cb(cur, "ffn_inp", il);
- // layernorm2
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
- cb(cur, "ffn_inp_normed", il);
- // ffn
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- layer.ff_gate_w, layer.ff_gate_b,
- layer.ff_down_w, layer.ff_down_b,
- hparams.ffn_op, il);
- cb(cur, "ffn_out", il);
- // residual 2
- cur = ggml_add(ctx0, inpL, cur);
- cb(cur, "layer_out", il);
- inpL = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
- }
- // multimodal projection
- ggml_tensor * embeddings = inpL;
- embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
- if (use_window_attn) {
- window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
- ggml_set_name(window_idx, "window_idx");
- ggml_set_input(window_idx);
- // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
- GGML_ASSERT(batch_size == 1);
- embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
- embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
- embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- // Qwen3VL
- ggml_cgraph * build_qwen3vl() {
- GGML_ASSERT(model.patch_bias != nullptr);
- GGML_ASSERT(model.position_embeddings != nullptr);
- GGML_ASSERT(model.class_embedding == nullptr);
- const int batch_size = 1;
- const int n_pos = n_patches;
- const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
- norm_type norm_t = NORM_TYPE_NORMAL;
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
- ggml_tensor * inp_raw = build_inp_raw();
- ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- GGML_ASSERT(img.nx % (patch_size * 2) == 0);
- GGML_ASSERT(img.ny % (patch_size * 2) == 0);
- // second conv dimension
- {
- auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_add(ctx0, inp, inp_1);
- inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
- inp = ggml_cont_4d(
- ctx0, inp,
- n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
- inp = ggml_reshape_4d(
- ctx0, inp,
- n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
- inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
- inp = ggml_cont_3d(
- ctx0, inp,
- n_embd, n_patches_x * n_patches_y, batch_size);
- }
- // add patch bias
- if (model.patch_bias != nullptr) {
- inp = ggml_add(ctx0, inp, model.patch_bias);
- cb(inp, "patch_bias", -1);
- }
- // calculate absolute position embedding and apply
- ggml_tensor * learned_pos_embd = resize_position_embeddings();
- learned_pos_embd = ggml_cont_4d(
- ctx0, learned_pos_embd,
- n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
- learned_pos_embd = ggml_reshape_4d(
- ctx0, learned_pos_embd,
- n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
- learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
- learned_pos_embd = ggml_cont_3d(
- ctx0, learned_pos_embd,
- n_embd, n_patches_x * n_patches_y, batch_size);
- inp = ggml_add(ctx0, inp, learned_pos_embd);
- cb(inp, "inp_pos_emb", -1);
- ggml_tensor * inpL = inp;
- ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- // pre-layernorm
- if (model.pre_ln_w) {
- inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
- }
- // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
- ggml_tensor * deepstack_features = nullptr;
- const int merge_factor = hparams.n_merge > 0 ? hparams.n_merge * hparams.n_merge : 4; // default 2x2=4 for qwen3vl
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- auto & layer = model.layers[il];
- ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // layernorm1
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
- cb(cur, "ln1", il);
- // self-attention
- {
- cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
- cur = ggml_add(ctx0, cur, layer.qkv_b);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
- cur->nb[1], 0);
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
- cur->nb[1], n_embd * sizeof(float));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
- cur->nb[1], 2 * n_embd * sizeof(float));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- // apply M-RoPE
- Qcur = ggml_rope_multi(
- ctx0, Qcur, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- Kcur = ggml_rope_multi(
- ctx0, Kcur, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- cb(Qcur, "Qcur_rope", il);
- cb(Kcur, "Kcur_rope", il);
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur; // inpL = residual, cur = hidden_states
- cb(cur, "ffn_inp", il);
- // layernorm2
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
- cb(cur, "ffn_inp_normed", il);
- // ffn
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- layer.ff_gate_w, layer.ff_gate_b,
- layer.ff_down_w, layer.ff_down_b,
- hparams.ffn_op, il);
- cb(cur, "ffn_out", il);
- // residual 2
- cur = ggml_add(ctx0, inpL, cur);
- cb(cur, "layer_out", il);
- if (layer.has_deepstack()) {
- ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
- feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
- feat = build_ffn(feat,
- layer.deepstack_fc1_w, layer.deepstack_fc1_b,
- nullptr, nullptr,
- layer.deepstack_fc2_w, layer.deepstack_fc2_b,
- ffn_op_type::FFN_GELU, il);
- if(!deepstack_features) {
- deepstack_features = feat;
- } else {
- // concat along the feature dimension
- deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
- }
- }
- inpL = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
- }
- // multimodal projection
- ggml_tensor * embeddings = inpL;
- embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
- embeddings = build_ffn(embeddings,
- model.mm_0_w, model.mm_0_b,
- nullptr, nullptr,
- model.mm_1_w, model.mm_1_b,
- ffn_op_type::FFN_GELU, -1);
- embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- ggml_cgraph * build_minicpmv() {
- const int batch_size = 1;
- GGML_ASSERT(model.class_embedding == nullptr);
- const int n_pos = n_patches;
- // position embeddings for the projector (not for ViT)
- int n_output_dim = clip_n_mmproj_embd(ctx);
- ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
- ggml_set_name(pos_embed, "pos_embed");
- ggml_set_input(pos_embed);
- // for selecting learned pos embd, used by ViT
- struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
- ggml_tensor * inp = build_inp();
- ggml_tensor * embeddings = build_vit(
- inp, n_patches,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- learned_pos_embd,
- nullptr);
- // resampler projector (it is just another transformer)
- ggml_tensor * q = model.mm_model_query;
- ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
- // norm
- q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
- v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
- // k = v + pos_embed
- ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
- // attention
- {
- int n_embd = clip_n_mmproj_embd(ctx);
- const int d_head = 128;
- int n_head = n_embd/d_head;
- // Use actual config value if available, otherwise fall back to hardcoded values
- int num_query = ctx->model.hparams.minicpmv_query_num;
- ggml_tensor * Q = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
- model.mm_model_attn_q_b);
- ggml_tensor * K = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
- model.mm_model_attn_k_b);
- ggml_tensor * V = ggml_add(ctx0,
- ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
- model.mm_model_attn_v_b);
- Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
- K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
- V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
- cb(Q, "resampler_Q", -1);
- cb(K, "resampler_K", -1);
- cb(V, "resampler_V", -1);
- embeddings = build_attn(
- model.mm_model_attn_o_w,
- model.mm_model_attn_o_b,
- Q, K, V, nullptr, kq_scale, -1);
- cb(embeddings, "resampler_attn_out", -1);
- }
- // layernorm
- embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
- // projection
- embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- ggml_cgraph * build_internvl() {
- GGML_ASSERT(model.class_embedding != nullptr);
- GGML_ASSERT(model.position_embeddings != nullptr);
- const int n_pos = n_patches + 1;
- ggml_tensor * inp = build_inp();
- // add CLS token
- inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
- // The larger models use a different ViT, which uses RMS norm instead of layer norm
- // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
- norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
- ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
- : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
- ggml_tensor * cur = build_vit(
- inp, n_pos,
- norm_t,
- hparams.ffn_op,
- model.position_embeddings,
- nullptr);
- // remove CLS token
- cur = ggml_view_2d(ctx0, cur,
- n_embd, n_patches,
- ggml_row_size(cur->type, n_embd), 0);
- // pixel shuffle
- {
- const int scale_factor = model.hparams.n_merge;
- const int bsz = 1; // batch size, always 1 for now since we don't support batching
- const int height = n_patches_y;
- const int width = n_patches_x;
- GGML_ASSERT(scale_factor > 0);
- cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_cont_4d(ctx0, cur,
- n_embd * scale_factor * scale_factor,
- height / scale_factor,
- width / scale_factor,
- bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- // flatten to 2D
- cur = ggml_cont_2d(ctx0, cur,
- n_embd * scale_factor * scale_factor,
- cur->ne[1] * cur->ne[2]);
- }
- // projector (always using GELU activation)
- {
- // projector LayerNorm uses pytorch's default eps = 1e-5
- // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
- cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_1_b);
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_3_b);
- }
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- ggml_cgraph * build_llama4() {
- GGML_ASSERT(model.class_embedding != nullptr);
- GGML_ASSERT(model.position_embeddings != nullptr);
- const int n_pos = n_patches + 1; // +1 for [CLS]
- // 2D input positions
- ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(pos_h, "pos_h");
- ggml_set_input(pos_h);
- ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(pos_w, "pos_w");
- ggml_set_input(pos_w);
- ggml_tensor * inp = build_inp_raw();
- // Llama4UnfoldConvolution
- {
- ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
- patch_size, patch_size, 3, n_embd);
- inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
- inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
- inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
- cb(inp, "patch_conv", -1);
- }
- // add CLS token
- inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
- // build ViT with 2D position embeddings
- auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
- // first half is X axis and second half is Y axis
- // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
- // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
- return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
- };
- ggml_tensor * cur = build_vit(
- inp, n_pos,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- model.position_embeddings,
- add_pos);
- // remove CLS token
- cur = ggml_view_2d(ctx0, cur,
- n_embd, n_patches,
- ggml_row_size(cur->type, n_embd), 0);
- // pixel shuffle
- // based on Llama4VisionPixelShuffleMLP
- // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
- {
- const int scale_factor = model.hparams.n_merge;
- const int bsz = 1; // batch size, always 1 for now since we don't support batching
- GGML_ASSERT(scale_factor > 0);
- GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
- cur = ggml_reshape_4d(ctx0, cur,
- n_embd * scale_factor,
- n_patches_x / scale_factor,
- n_patches_y,
- bsz);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_cont_4d(ctx0, cur,
- n_embd * scale_factor * scale_factor,
- n_patches_x / scale_factor,
- n_patches_y / scale_factor,
- bsz);
- //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- // flatten to 2D
- cur = ggml_cont_2d(ctx0, cur,
- n_embd * scale_factor * scale_factor,
- n_patches / scale_factor / scale_factor);
- cb(cur, "pixel_shuffle", -1);
- }
- // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
- {
- cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
- cur = ggml_gelu(ctx0, cur);
- cb(cur, "adapter_mlp", -1);
- }
- // Llama4MultiModalProjector
- cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
- cb(cur, "projected", -1);
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- ggml_cgraph * build_kimivl() {
- // 2D input positions
- ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
- ggml_set_name(pos_h, "pos_h");
- ggml_set_input(pos_h);
- ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
- ggml_set_name(pos_w, "pos_w");
- ggml_set_input(pos_w);
- ggml_tensor * learned_pos_embd = resize_position_embeddings();
- // build ViT with 2D position embeddings
- auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
- // first half is X axis and second half is Y axis
- return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
- };
- ggml_tensor * inp = build_inp();
- ggml_tensor * cur = build_vit(
- inp, n_patches,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- learned_pos_embd,
- add_pos);
- cb(cur, "vit_out", -1);
- {
- // patch_merger
- const int scale_factor = model.hparams.n_merge;
- cur = build_patch_merge_permute(cur, scale_factor);
- // projection norm
- int proj_inp_dim = cur->ne[0];
- cur = ggml_view_2d(ctx0, cur,
- n_embd, cur->ne[1] * scale_factor * scale_factor,
- ggml_row_size(cur->type, n_embd), 0);
- cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
- cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
- cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
- cur = ggml_view_2d(ctx0, cur,
- proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
- ggml_row_size(cur->type, proj_inp_dim), 0);
- cb(cur, "proj_inp_normed", -1);
- // projection mlp
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_1_b);
- cur = ggml_gelu(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_2_b);
- cb(cur, "proj_out", -1);
- }
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- // this graph is used by llava, granite and glm
- // due to having embedding_stack (used by granite), we cannot reuse build_vit
- ggml_cgraph * build_llava() {
- const int batch_size = 1;
- const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
- GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
- // Calculate the deepest feature layer based on hparams and projector type
- int max_feature_layer = n_layer;
- {
- // Get the index of the second to last layer; this is the default for models that have a llava projector
- int il_last = hparams.n_layer - 1;
- int deepest_feature_layer = -1;
- if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
- il_last += 1;
- }
- // If we set explicit vision feature layers, only go up to the deepest one
- // NOTE: only used by granite-vision models for now
- for (const auto & feature_layer : hparams.vision_feature_layer) {
- if (feature_layer > deepest_feature_layer) {
- deepest_feature_layer = feature_layer;
- }
- }
- max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
- }
- ggml_tensor * inp = build_inp();
- // concat class_embeddings and patch_embeddings
- if (model.class_embedding) {
- inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
- }
- ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
- ggml_tensor * inpL = inp;
- // pre-layernorm
- if (model.pre_ln_w) {
- inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
- cb(inpL, "pre_ln", -1);
- }
- std::vector<ggml_tensor *> embedding_stack;
- const auto & vision_feature_layer = hparams.vision_feature_layer;
- // loop over layers
- for (int il = 0; il < max_feature_layer; il++) {
- auto & layer = model.layers[il];
- ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // If this is an embedding feature layer, save the output.
- // NOTE: 0 index here refers to the input to the encoder.
- if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
- embedding_stack.push_back(cur);
- }
- // layernorm1
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
- cb(cur, "layer_inp_normed", il);
- // self-attention
- {
- ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
- if (layer.q_b) {
- Qcur = ggml_add(ctx0, Qcur, layer.q_b);
- }
- ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
- if (layer.k_b) {
- Kcur = ggml_add(ctx0, Kcur, layer.k_b);
- }
- ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
- if (layer.v_b) {
- Vcur = ggml_add(ctx0, Vcur, layer.v_b);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
- Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
- Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur; // inpL = residual, cur = hidden_states
- cb(cur, "ffn_inp", il);
- // layernorm2
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
- cb(cur, "ffn_inp_normed", il);
- // ffn
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- layer.ff_gate_w, layer.ff_gate_b,
- layer.ff_down_w, layer.ff_down_b,
- hparams.ffn_op, il);
- cb(cur, "ffn_out", il);
- // residual 2
- cur = ggml_add(ctx0, inpL, cur);
- cb(cur, "layer_out", il);
- inpL = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
- }
- ggml_tensor * embeddings = inpL;
- // process vision feature layers (used by granite)
- {
- // final layer is a vision feature layer
- if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
- embedding_stack.push_back(inpL);
- }
- // If feature layers are explicitly set, stack them (if we have multiple)
- if (!embedding_stack.empty()) {
- embeddings = embedding_stack[0];
- for (size_t i = 1; i < embedding_stack.size(); i++) {
- embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
- }
- }
- }
- // llava projector (also used by granite)
- if (ctx->model.hparams.has_llava_projector) {
- embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
- ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
- ggml_set_name(patches, "patches");
- ggml_set_input(patches);
- // shape [1, 576, 1024]
- // ne is whcn, ne = [1024, 576, 1, 1]
- embeddings = ggml_get_rows(ctx0, embeddings, patches);
- // print_tensor_info(embeddings, "embeddings");
- // llava projector
- if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- embeddings = ggml_gelu(ctx0, embeddings);
- if (model.mm_2_w) {
- embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
- }
- }
- else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
- embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
- // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
- // First LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
- model.mm_1_b);
- // GELU activation
- embeddings = ggml_gelu(ctx0, embeddings);
- // Second linear layer
- embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
- embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
- // Second LayerNorm
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
- model.mm_4_b);
- }
- else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
- // MobileVLM projector
- int n_patch = 24;
- ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
- mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
- mlp_1 = ggml_gelu(ctx0, mlp_1);
- ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
- mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
- // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
- // block 1
- ggml_tensor * block_1 = nullptr;
- {
- // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
- mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
- mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
- // stride = 1, padding = 1, bias is nullptr
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
- // layer norm
- // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // hardswish
- ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
- // residual
- block_1 = ggml_add(ctx0, mlp_3, block_1);
- }
- // block_2
- {
- // stride = 2
- block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // layer norm
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
- // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
- // hardswish
- ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
- // not sure the parameters is right for globalAvgPooling
- block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
- // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- // pointwise conv
- block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
- block_1 = ggml_relu(ctx0, block_1);
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
- block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
- block_1 = ggml_hardsigmoid(ctx0, block_1);
- // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
- block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
- block_1 = ggml_mul(ctx0, block_1_hw, block_1);
- int w = block_1->ne[0], h = block_1->ne[1];
- block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
- block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
- // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
- block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
- block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
- // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
- block_1 = ggml_norm(ctx0, block_1, eps);
- block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
- block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
- // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
- }
- embeddings = block_1;
- }
- else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
- {
- int n_patch = 24;
- ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
- mlp_0 = ggml_gelu(ctx0, mlp_0);
- ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
- mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
- // mlp_2 ne = [2048, 576, 1, 1]
- // // AVG Pool Layer 2*2, strides = 2
- mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
- // mlp_2 ne = [576, 2048, 1, 1]
- mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
- // mlp_2 ne [24, 24, 2048, 1]
- mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
- // weight ne = [3, 3, 2048, 1]
- ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
- peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
- mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
- peg_0 = ggml_add(ctx0, peg_0, mlp_2);
- peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
- embeddings = peg_0;
- }
- else {
- GGML_ABORT("fatal error");
- }
- }
- // glm projector
- else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
- size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
- embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
- embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
- embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
- embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
- embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
- embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
- // GLU
- {
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
- embeddings = ggml_norm(ctx0, embeddings, eps);
- embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
- embeddings = ggml_gelu_inplace(ctx0, embeddings);
- ggml_tensor * x = embeddings;
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
- x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
- embeddings = ggml_swiglu_split(ctx0, embeddings, x);
- embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
- }
- // arrangement of BOI/EOI token embeddings
- // note: these embeddings are not present in text model, hence we cannot process them as text tokens
- // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
- {
- embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
- embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
- }
- }
- else {
- GGML_ABORT("llava: unknown projector type");
- }
- // build the graph
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
- // whisper encoder with custom projector
- ggml_cgraph * build_whisper_enc() {
- const int n_frames = img.nx;
- const int n_pos = n_frames / 2;
- GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
- ggml_tensor * inp = build_inp_raw(1);
- // conv1d block
- {
- // convolution + gelu
- ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
- cur = ggml_add(ctx0, cur, model.conv1d_1_b);
- cur = ggml_gelu_erf(ctx0, cur);
- cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
- cur = ggml_add(ctx0, cur, model.conv1d_2_b);
- cur = ggml_gelu_erf(ctx0, cur);
- // transpose
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
- cb(inp, "after_conv1d", -1);
- }
- // sanity check (only check one layer, but it should be the same for all)
- GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
- GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
- GGML_ASSERT(model.layers[0].q_b);
- GGML_ASSERT(model.layers[0].v_b);
- GGML_ASSERT(!model.layers[0].k_b); // no bias for k
- GGML_ASSERT(model.post_ln_w && model.post_ln_b);
- ggml_tensor * pos_embd_selected = ggml_view_2d(
- ctx0, model.position_embeddings,
- model.position_embeddings->ne[0], n_pos,
- model.position_embeddings->nb[1], 0
- );
- ggml_tensor * cur = build_vit(
- inp, n_pos,
- NORM_TYPE_NORMAL,
- hparams.ffn_op,
- pos_embd_selected,
- nullptr);
- cb(cur, "after_transformer", -1);
- if (model.audio_has_stack_frames()) {
- // StackAudioFrames
- // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
- int64_t stride = n_embd * hparams.proj_stack_factor;
- int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
- int64_t pad = padded_len - ggml_nelements(cur);
- if (pad > 0) {
- cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
- cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
- }
- cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
- ggml_row_size(cur->type, stride), 0);
- cb(cur, "after_stacked", -1);
- }
- if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
- // UltravoxProjector
- // pre-norm
- cur = ggml_rms_norm(ctx0, cur, 1e-6);
- cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
- // ffn in
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- // swiglu
- // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
- cur = ggml_swiglu_swapped(ctx0, cur);
- // mid-norm
- cur = ggml_rms_norm(ctx0, cur, 1e-6);
- cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
- // ffn out
- cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
- } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
- // projector
- cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
- cur = ggml_add(ctx0, cur, model.mm_fc_b);
- } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
- // projector
- cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
- cur = ggml_gelu_erf(ctx0, cur);
- cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
- } else {
- GGML_ABORT("%s: unknown projector type", __func__);
- }
- cb(cur, "projected", -1);
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- // cogvlm vision encoder
- ggml_cgraph * build_cogvlm() {
- GGML_ASSERT(model.class_embedding != nullptr);
- GGML_ASSERT(model.position_embeddings != nullptr);
- const int n_pos = n_patches + 1; // +1 for [CLS]
- // build input and concatenate class embedding
- ggml_tensor * inp = build_inp();
- inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
- inp = ggml_add(ctx0, inp, model.position_embeddings);
- cb(inp, "inp_pos", -1);
- ggml_tensor * inpL = inp;
- for (int il = 0; il < n_layer; il++) {
- auto & layer = model.layers[il];
- ggml_tensor * cur = inpL;
- cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
- cur = ggml_add(ctx0, cur, layer.qkv_b);
- ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
- cur->nb[1], 0);
- ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
- cur->nb[1], n_embd * sizeof(float));
- ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
- cur->nb[1], 2 * n_embd * sizeof(float));
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
- cb(cur, "attn_post_norm", il);
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur;
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- layer.ff_gate_w, layer.ff_gate_b,
- layer.ff_down_w, layer.ff_down_b,
- hparams.ffn_op, il);
- cb(cur, "ffn_out", il);
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
- cb(cur, "ffn_post_norm", il);
- cur = ggml_add(ctx0, cur, inpL);
- cb(cur, "layer_out", il);
- inpL = cur;
- }
- // remove CLS token (like build_llama4 does)
- ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
- n_embd, n_patches,
- ggml_row_size(inpL->type, n_embd), 0);
- // Multiply with mm_model_proj
- cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
- // Apply layernorm, weight, bias
- cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
- // Apply GELU
- cur = ggml_gelu_inplace(ctx0, cur);
- // Branch 1: multiply with mm_h_to_4h_w
- ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
- // Branch 2: multiply with mm_gate_w
- ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
- // Apply silu
- gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
- // Apply mm_4h_to_h_w
- cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
- // Concatenate with boi and eoi
- cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
- cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
- // build the graph
- ggml_build_forward_expand(gf, cur);
- return gf;
- }
- private:
- //
- // utility functions
- //
- void cb(ggml_tensor * cur0, const char * name, int il) const {
- if (ctx->debug_graph) {
- ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
- std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
- ggml_set_name(cur, cur_name.c_str());
- ggml_set_output(cur);
- ggml_build_forward_expand(gf, cur);
- ctx->debug_print_tensors.push_back(cur);
- }
- }
- // siglip2 naflex
- ggml_tensor * resize_position_embeddings() {
- ggml_tensor * pos_embd = model.position_embeddings;
- const int height = img.ny / patch_size;
- const int width = img.nx / patch_size;
- const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
- const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
- GGML_ASSERT(pos_embd);
- if (height == n_per_side && width == n_per_side) {
- return pos_embd;
- }
- pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
- pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
- pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
- pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
- pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
- return pos_embd;
- }
- // build vision transformer (ViT) cgraph
- // this function should cover most of the models
- // if your model has specific features, you should probably duplicate this function
- ggml_tensor * build_vit(
- ggml_tensor * inp,
- int64_t n_pos,
- norm_type norm_t,
- ffn_op_type ffn_t,
- ggml_tensor * learned_pos_embd,
- std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
- ) {
- if (learned_pos_embd) {
- inp = ggml_add(ctx0, inp, learned_pos_embd);
- cb(inp, "pos_embed", -1);
- }
- ggml_tensor * inpL = inp;
- // pre-layernorm
- if (model.pre_ln_w) {
- inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
- cb(inpL, "pre_ln", -1);
- }
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- auto & layer = model.layers[il];
- ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // layernorm1
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
- cb(cur, "layer_inp_normed", il);
- // self-attention
- {
- ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
- if (layer.q_b) {
- Qcur = ggml_add(ctx0, Qcur, layer.q_b);
- }
- ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
- if (layer.k_b) {
- Kcur = ggml_add(ctx0, Kcur, layer.k_b);
- }
- ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
- if (layer.v_b) {
- Vcur = ggml_add(ctx0, Vcur, layer.v_b);
- }
- if (layer.q_norm) {
- Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
- cb(Qcur, "Qcur_norm", il);
- }
- if (layer.k_norm) {
- Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
- cb(Kcur, "Kcur_norm", il);
- }
- Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
- Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
- Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
- cb(Qcur, "Qcur", il);
- cb(Kcur, "Kcur", il);
- cb(Vcur, "Vcur", il);
- if (add_pos) {
- Qcur = add_pos(Qcur, layer);
- Kcur = add_pos(Kcur, layer);
- cb(Qcur, "Qcur_pos", il);
- cb(Kcur, "Kcur_pos", il);
- }
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, nullptr, kq_scale, il);
- cb(cur, "attn_out", il);
- }
- if (layer.ls_1_w) {
- cur = ggml_mul(ctx0, cur, layer.ls_1_w);
- cb(cur, "attn_out_scaled", il);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur; // inpL = residual, cur = hidden_states
- cb(cur, "ffn_inp", il);
- // layernorm2
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
- cb(cur, "ffn_inp_normed", il);
- // ffn
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- layer.ff_gate_w, layer.ff_gate_b,
- layer.ff_down_w, layer.ff_down_b,
- ffn_t, il);
- cb(cur, "ffn_out", il);
- if (layer.ls_2_w) {
- cur = ggml_mul(ctx0, cur, layer.ls_2_w);
- cb(cur, "ffn_out_scaled", il);
- }
- // residual 2
- cur = ggml_add(ctx0, inpL, cur);
- cb(cur, "layer_out", il);
- inpL = cur;
- }
- if (ctx->model.audio_has_avgpool()) {
- ggml_tensor * cur = inpL;
- cur = ggml_transpose(ctx0, cur);
- cur = ggml_cont(ctx0, cur);
- cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
- cur = ggml_transpose(ctx0, cur);
- cur = ggml_cont(ctx0, cur);
- inpL = cur;
- }
- // post-layernorm
- if (model.post_ln_w) {
- inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
- }
- return inpL;
- }
- // build the input after conv2d (inp_raw --> patches)
- // returns tensor with shape [n_embd, n_patches]
- ggml_tensor * build_inp() {
- ggml_tensor * inp_raw = build_inp_raw();
- ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
- inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
- inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
- if (model.patch_bias) {
- inp = ggml_add(ctx0, inp, model.patch_bias);
- cb(inp, "patch_bias", -1);
- }
- return inp;
- }
- ggml_tensor * build_inp_raw(int channels = 3) {
- ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
- ggml_set_name(inp_raw, "inp_raw");
- ggml_set_input(inp_raw);
- return inp_raw;
- }
- ggml_tensor * build_norm(
- ggml_tensor * cur,
- ggml_tensor * mw,
- ggml_tensor * mb,
- norm_type type,
- float norm_eps,
- int il) const {
- cur = type == NORM_TYPE_RMS
- ? ggml_rms_norm(ctx0, cur, norm_eps)
- : ggml_norm(ctx0, cur, norm_eps);
- if (mw || mb) {
- cb(cur, "norm", il);
- }
- if (mw) {
- cur = ggml_mul(ctx0, cur, mw);
- if (mb) {
- cb(cur, "norm_w", il);
- }
- }
- if (mb) {
- cur = ggml_add(ctx0, cur, mb);
- }
- return cur;
- }
- ggml_tensor * build_ffn(
- ggml_tensor * cur,
- ggml_tensor * up,
- ggml_tensor * up_b,
- ggml_tensor * gate,
- ggml_tensor * gate_b,
- ggml_tensor * down,
- ggml_tensor * down_b,
- ffn_op_type type_op,
- int il) const {
- ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
- cb(tmp, "ffn_up", il);
- if (up_b) {
- tmp = ggml_add(ctx0, tmp, up_b);
- cb(tmp, "ffn_up_b", il);
- }
- if (gate) {
- cur = ggml_mul_mat(ctx0, gate, cur);
- cb(cur, "ffn_gate", il);
- if (gate_b) {
- cur = ggml_add(ctx0, cur, gate_b);
- cb(cur, "ffn_gate_b", il);
- }
- } else {
- cur = tmp;
- }
- // we only support parallel ffn for now
- switch (type_op) {
- case FFN_SILU:
- if (gate) {
- cur = ggml_swiglu_split(ctx0, cur, tmp);
- cb(cur, "ffn_swiglu", il);
- } else {
- cur = ggml_silu(ctx0, cur);
- cb(cur, "ffn_silu", il);
- } break;
- case FFN_GELU:
- if (gate) {
- cur = ggml_geglu_split(ctx0, cur, tmp);
- cb(cur, "ffn_geglu", il);
- } else {
- cur = ggml_gelu(ctx0, cur);
- cb(cur, "ffn_gelu", il);
- } break;
- case FFN_GELU_ERF:
- if (gate) {
- cur = ggml_geglu_erf_split(ctx0, cur, tmp);
- cb(cur, "ffn_geglu_erf", il);
- } else {
- cur = ggml_gelu_erf(ctx0, cur);
- cb(cur, "ffn_gelu_erf", il);
- } break;
- case FFN_GELU_QUICK:
- if (gate) {
- cur = ggml_geglu_quick_split(ctx0, cur, tmp);
- cb(cur, "ffn_geglu_quick", il);
- } else {
- cur = ggml_gelu_quick(ctx0, cur);
- cb(cur, "ffn_gelu_quick", il);
- } break;
- }
- if (down) {
- cur = ggml_mul_mat(ctx0, down, cur);
- }
- if (down_b) {
- cb(cur, "ffn_down", il);
- }
- if (down_b) {
- cur = ggml_add(ctx0, cur, down_b);
- }
- return cur;
- }
- ggml_tensor * build_attn(
- ggml_tensor * wo,
- ggml_tensor * wo_b,
- ggml_tensor * q_cur,
- ggml_tensor * k_cur,
- ggml_tensor * v_cur,
- ggml_tensor * kq_mask,
- float kq_scale,
- int il) const {
- // these nodes are added to the graph together so that they are not reordered
- // by doing so, the number of splits in the graph is reduced
- ggml_build_forward_expand(gf, q_cur);
- ggml_build_forward_expand(gf, k_cur);
- ggml_build_forward_expand(gf, v_cur);
- ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
- //cb(q, "q", il);
- ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
- //cb(k, "k", il);
- ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
- v = ggml_cont(ctx0, v);
- //cb(k, "v", il);
- ggml_tensor * cur;
- // TODO @ngxson : support flash attention
- {
- const auto n_tokens = q->ne[1];
- const auto n_head = q->ne[2];
- // const auto n_kv = k->ne[1]; // for flash attention
- ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
- // F32 may not needed for vision encoders?
- // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
- kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
- ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
- cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
- cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
- }
- cb(cur, "kqv_out", il);
- if (wo) {
- cur = ggml_mul_mat(ctx0, wo, cur);
- }
- if (wo_b) {
- cur = ggml_add(ctx0, cur, wo_b);
- }
- return cur;
- }
- // implementation of the 2D RoPE without adding a new op in ggml
- // this is not efficient (use double the memory), but works on all backends
- // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
- static ggml_tensor * build_rope_2d(
- ggml_context * ctx0,
- ggml_tensor * cur,
- ggml_tensor * pos_a, // first half
- ggml_tensor * pos_b, // second half
- const float freq_base,
- const bool interleave_freq
- ) {
- const int64_t n_dim = cur->ne[0];
- const int64_t n_head = cur->ne[1];
- const int64_t n_pos = cur->ne[2];
- // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
- // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
- // first half of cur will use 1e-0, 1e-2 (even)
- // second half of cur will use 1e-1, 1e-3 (odd)
- // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
- // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
- // then for the second half, we use freq_scale to shift the inv_freq
- // ^ why? replace (2i) with (2i+1) in the above equation
- const float freq_scale_odd = interleave_freq
- ? std::pow(freq_base, (float)-2/n_dim)
- : 1.0;
- // first half
- ggml_tensor * first;
- {
- first = ggml_view_3d(ctx0, cur,
- n_dim/2, n_head, n_pos,
- ggml_row_size(cur->type, n_dim),
- ggml_row_size(cur->type, n_dim*n_head),
- 0);
- first = ggml_rope_ext(
- ctx0,
- first,
- pos_a, // positions
- nullptr, // freq factors
- n_dim/2, // n_dims
- 0, 0, freq_base,
- 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
- );
- }
- // second half
- ggml_tensor * second;
- {
- second = ggml_view_3d(ctx0, cur,
- n_dim/2, n_head, n_pos,
- ggml_row_size(cur->type, n_dim),
- ggml_row_size(cur->type, n_dim*n_head),
- n_dim/2 * ggml_element_size(cur));
- second = ggml_rope_ext(
- ctx0,
- second,
- pos_b, // positions
- nullptr, // freq factors
- n_dim/2, // n_dims
- 0, 0, freq_base,
- freq_scale_odd,
- 0.0f, 1.0f, 0.0f, 0.0f
- );
- }
- cur = ggml_concat(ctx0, first, second, 0);
- return cur;
- }
- // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
- // support dynamic resolution
- ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
- GGML_ASSERT(scale_factor > 1);
- const int n_embd = cur->ne[0];
- int width = img.nx / patch_size;
- int height = img.ny / patch_size;
- // pad width and height to factor
- const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
- const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
- cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
- if (pad_width || pad_height) {
- cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
- width += pad_width;
- height += pad_height;
- }
- // unshuffle h
- cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- // unshuffle w
- cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
- cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
- cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
- cb(cur, "pixel_shuffle", -1);
- return cur;
- }
- };
- static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
- GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
- clip_graph graph(ctx, *imgs.entries[0]);
- ggml_cgraph * res;
- switch (ctx->proj_type()) {
- case PROJECTOR_TYPE_GEMMA3:
- case PROJECTOR_TYPE_IDEFICS3:
- case PROJECTOR_TYPE_LFM2:
- {
- res = graph.build_siglip();
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- case PROJECTOR_TYPE_LIGHTONOCR:
- {
- res = graph.build_pixtral();
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- {
- res = graph.build_qwen2vl();
- } break;
- case PROJECTOR_TYPE_QWEN3VL:
- {
- res = graph.build_qwen3vl();
- } break;
- case PROJECTOR_TYPE_MINICPMV:
- {
- res = graph.build_minicpmv();
- } break;
- case PROJECTOR_TYPE_INTERNVL:
- {
- res = graph.build_internvl();
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- res = graph.build_llama4();
- } break;
- case PROJECTOR_TYPE_ULTRAVOX:
- case PROJECTOR_TYPE_VOXTRAL:
- case PROJECTOR_TYPE_QWEN2A:
- {
- res = graph.build_whisper_enc();
- } break;
- case PROJECTOR_TYPE_KIMIVL:
- {
- res = graph.build_kimivl();
- } break;
- case PROJECTOR_TYPE_COGVLM:
- {
- res = graph.build_cogvlm();
- } break;
- default:
- {
- res = graph.build_llava();
- } break;
- }
- return res;
- }
- struct clip_model_loader {
- ggml_context_ptr ctx_meta;
- gguf_context_ptr ctx_gguf;
- std::string fname;
- size_t model_size = 0; // in bytes
- bool has_vision = false;
- bool has_audio = false;
- // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
- clip_model_loader(const char * fname) : fname(fname) {
- struct ggml_context * meta = nullptr;
- struct gguf_init_params params = {
- /*.no_alloc = */ true,
- /*.ctx = */ &meta,
- };
- ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
- if (!ctx_gguf.get()) {
- throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
- }
- ctx_meta.reset(meta);
- const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
- // print gguf info
- {
- std::string name;
- get_string(KEY_NAME, name, false);
- std::string description;
- get_string(KEY_DESCRIPTION, description, false);
- LOG_INF("%s: model name: %s\n", __func__, name.c_str());
- LOG_INF("%s: description: %s\n", __func__, description.c_str());
- LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
- LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
- LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
- LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
- LOG_INF("\n");
- }
- // modalities
- {
- get_bool(KEY_HAS_VISION_ENC, has_vision, false);
- get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
- if (has_vision) {
- LOG_INF("%s: has vision encoder\n", __func__);
- }
- if (has_audio) {
- LOG_INF("%s: has audio encoder\n", __func__);
- }
- }
- // tensors
- {
- for (int i = 0; i < n_tensors; ++i) {
- const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
- const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
- enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
- ggml_tensor * cur = ggml_get_tensor(meta, name);
- size_t tensor_size = ggml_nbytes(cur);
- model_size += tensor_size;
- LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
- __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
- }
- }
- }
- void load_hparams(clip_model & model, clip_modality modality) {
- auto & hparams = model.hparams;
- std::string log_ffn_op; // for logging
- // sanity check
- if (modality == CLIP_MODALITY_VISION) {
- GGML_ASSERT(has_vision);
- } else if (modality == CLIP_MODALITY_AUDIO) {
- GGML_ASSERT(has_audio);
- }
- model.modality = modality;
- // projector type
- std::string proj_type;
- {
- // default key
- get_string(KEY_PROJ_TYPE, proj_type, false);
- // for models with mixed modalities
- if (proj_type.empty()) {
- if (modality == CLIP_MODALITY_VISION) {
- get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
- } else if (modality == CLIP_MODALITY_AUDIO) {
- get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
- } else {
- GGML_ABORT("unknown modality");
- }
- }
- model.proj_type = clip_projector_type_from_string(proj_type);
- if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
- throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
- }
- // correct arch for multimodal models (legacy method)
- if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
- model.proj_type = modality == CLIP_MODALITY_VISION
- ? PROJECTOR_TYPE_QWEN25VL
- : PROJECTOR_TYPE_QWEN2A;
- }
- }
- const bool is_vision = model.modality == CLIP_MODALITY_VISION;
- const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
- // other hparams
- {
- const char * prefix = is_vision ? "vision" : "audio";
- get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
- get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
- get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
- get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
- get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
- get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
- if (is_vision) {
- get_u32(KEY_IMAGE_SIZE, hparams.image_size);
- get_u32(KEY_PATCH_SIZE, hparams.patch_size);
- get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
- get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
- get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
- if (hparams.minicpmv_query_num == 0) {
- // Fallback to hardcoded values for legacy models
- if (hparams.minicpmv_version == 3) {
- hparams.minicpmv_query_num = 64;
- } else if (hparams.minicpmv_version == 4) {
- hparams.minicpmv_query_num = 64;
- } else if (hparams.minicpmv_version == 5) {
- hparams.minicpmv_query_num = 64;
- } else if (hparams.minicpmv_version == 6) {
- hparams.minicpmv_query_num = 64;
- } else {
- hparams.minicpmv_query_num = 96;
- }
- }
- } else if (is_audio) {
- get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
- } else {
- GGML_ASSERT(false && "unknown modality");
- }
- // for pinpoints, we need to convert it into a list of resolution candidates
- {
- std::vector<int> pinpoints;
- get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
- if (!pinpoints.empty()) {
- for (size_t i = 0; i < pinpoints.size(); i += 2) {
- hparams.image_res_candidates.push_back({
- pinpoints[i],
- pinpoints[i+1],
- });
- }
- }
- }
- // default warmup value
- hparams.warmup_image_size = hparams.image_size;
- hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
- || model.proj_type == PROJECTOR_TYPE_MLP_NORM
- || model.proj_type == PROJECTOR_TYPE_LDP
- || model.proj_type == PROJECTOR_TYPE_LDPV2;
- {
- bool use_gelu = false;
- bool use_silu = false;
- get_bool(KEY_USE_GELU, use_gelu, false);
- get_bool(KEY_USE_SILU, use_silu, false);
- if (use_gelu && use_silu) {
- throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
- }
- if (use_gelu) {
- hparams.ffn_op = FFN_GELU;
- log_ffn_op = "gelu";
- } else if (use_silu) {
- hparams.ffn_op = FFN_SILU;
- log_ffn_op = "silu";
- } else {
- hparams.ffn_op = FFN_GELU_QUICK;
- log_ffn_op = "gelu_quick";
- }
- }
- {
- std::string mm_patch_merge_type;
- get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
- if (mm_patch_merge_type == "spatial_unpad") {
- hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
- }
- }
- if (is_vision) {
- int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
- int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
- GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
- GGML_ASSERT(idx_std >= 0 && "image_std not found");
- const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
- const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
- for (int i = 0; i < 3; ++i) {
- hparams.image_mean[i] = mean_data[i];
- hparams.image_std[i] = std_data[i];
- }
- }
- // Load the vision feature layer indices if they are explicitly provided;
- // if multiple vision feature layers are present, the values will be concatenated
- // to form the final visual features.
- // NOTE: gguf conversions should standardize the values of the vision feature layer to
- // be non-negative, since we use -1 to mark values as unset here.
- std::vector<int> vision_feature_layer;
- get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
- // convert std::vector to std::unordered_set
- for (auto & layer : vision_feature_layer) {
- hparams.vision_feature_layer.insert(layer);
- }
- // model-specific params
- switch (model.proj_type) {
- case PROJECTOR_TYPE_MINICPMV:
- {
- if (hparams.minicpmv_version == 0) {
- hparams.minicpmv_version = 2; // default to 2 if not set
- }
- } break;
- case PROJECTOR_TYPE_INTERNVL:
- {
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
- } break;
- case PROJECTOR_TYPE_IDEFICS3:
- {
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
- get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.image_longest_edge, false);
- } break;
- case PROJECTOR_TYPE_LFM2:
- {
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
- // ref: https://huggingface.co/LiquidAI/LFM2-VL-3B/blob/main/preprocessor_config.json
- hparams.set_limit_image_tokens(64, 256);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- case PROJECTOR_TYPE_LIGHTONOCR:
- {
- // ref: https://huggingface.co/mistral-community/pixtral-12b/blob/main/preprocessor_config.json
- // TODO: verify the image_min_tokens
- hparams.rope_theta = 10000.0f;
- get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
- hparams.set_limit_image_tokens(8, 1024);
- hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
- } break;
- case PROJECTOR_TYPE_KIMIVL:
- {
- hparams.rope_theta = 10000.0f;
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
- // TODO: check kimivl preprocessor for exact values
- hparams.set_limit_image_tokens(8, 1024);
- hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- {
- // default value (used by all model sizes in gemma 3 family)
- // number of patches for each **side** is reduced by a factor of 4
- hparams.n_merge = 4;
- // test model (tinygemma3) has a different value, we optionally read it
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- case PROJECTOR_TYPE_QWEN3VL:
- {
- hparams.n_merge = 2; // default value for Qwen 2 and 2.5
- get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.n_merge, false);
- get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern, model.proj_type == PROJECTOR_TYPE_QWEN25VL); // only 2.5 requires it
- // ref: https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
- // the actual max limit is 12845056/14/14/2/2/4 = 4096 tokens
- // but we set a lower value to avoid OOM
- // TODO: make it configurable by user
- // TODO (2): bbox coordinates become inaccurate with small number of tokens,
- // therefore we need to increase the min_tokens
- // see: https://github.com/ggml-org/llama.cpp/issues/16842#issuecomment-3475144858
- hparams.set_limit_image_tokens(8, 2048);
- hparams.set_warmup_n_tokens(256); // avoid OOM on warmup
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- hparams.rope_theta = 10000.0f;
- get_u32(KEY_PROJ_SCALE_FACTOR, hparams.n_merge, false);
- set_llava_uhd_res_candidates(model, 3);
- } break;
- case PROJECTOR_TYPE_ULTRAVOX:
- case PROJECTOR_TYPE_QWEN2A:
- case PROJECTOR_TYPE_VOXTRAL:
- {
- bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
- model.proj_type == PROJECTOR_TYPE_VOXTRAL;
- get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
- if (hparams.n_mel_bins != 128) {
- throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
- }
- hparams.ffn_op = FFN_GELU_ERF;
- log_ffn_op = "gelu_erf"; // temporary solution for logging
- } break;
- default:
- break;
- }
- LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
- LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
- LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
- LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
- LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
- LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
- LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
- if (is_vision) {
- LOG_INF("\n--- vision hparams ---\n");
- LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
- LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
- LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
- LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
- LOG_INF("%s: n_merge: %d\n", __func__, hparams.n_merge);
- LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
- if (hparams.image_min_pixels > 0) {
- LOG_INF("%s: image_min_pixels: %d\n", __func__, hparams.image_min_pixels);
- }
- if (hparams.image_max_pixels > 0) {
- LOG_INF("%s: image_max_pixels: %d\n", __func__, hparams.image_max_pixels);
- }
- } else if (is_audio) {
- LOG_INF("\n--- audio hparams ---\n");
- LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
- LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
- }
- LOG_INF("\n");
- LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
- LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
- }
- }
- void load_tensors(clip_ctx & ctx_clip) {
- auto & model = ctx_clip.model;
- auto & hparams = model.hparams;
- std::map<std::string, size_t> tensor_offset;
- std::vector<ggml_tensor *> tensors_to_load;
- // TODO @ngxson : support both audio and video in the future
- const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
- // get offsets
- for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
- const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
- tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
- }
- // create data context
- struct ggml_init_params params = {
- /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ctx_clip.ctx_data.reset(ggml_init(params));
- if (!ctx_clip.ctx_data) {
- throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
- }
- // helper function
- auto get_tensor = [&](const std::string & name, bool required = true) {
- ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
- if (!cur && required) {
- throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
- }
- if (cur) {
- tensors_to_load.push_back(cur);
- // add tensors to context
- ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
- ggml_set_name(data_tensor, cur->name);
- cur = data_tensor;
- }
- return cur;
- };
- model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
- model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
- model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
- model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
- model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
- model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
- model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
- model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
- model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
- // layers
- model.layers.resize(hparams.n_layer);
- for (int il = 0; il < hparams.n_layer; ++il) {
- auto & layer = model.layers[il];
- layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
- layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
- layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
- layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
- layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
- layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
- layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
- layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
- layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
- layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
- layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
- layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
- layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
- layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
- layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
- layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
- layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
- layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
- // ffn
- layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
- layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
- layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
- layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
- layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
- layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
- // qwen3vl deepstack layer
- layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
- layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
- layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
- layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
- layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
- layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
- if (layer.has_deepstack()) {
- model.n_deepstack_layers++;
- }
- // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
- // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
- bool is_ffn_swapped = (
- // only old models need this fix
- model.proj_type == PROJECTOR_TYPE_MLP
- || model.proj_type == PROJECTOR_TYPE_MLP_NORM
- || model.proj_type == PROJECTOR_TYPE_LDP
- || model.proj_type == PROJECTOR_TYPE_LDPV2
- || model.proj_type == PROJECTOR_TYPE_QWEN2VL
- || model.proj_type == PROJECTOR_TYPE_QWEN25VL
- || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
- || model.proj_type == PROJECTOR_TYPE_GEMMA3
- || model.proj_type == PROJECTOR_TYPE_IDEFICS3
- || model.proj_type == PROJECTOR_TYPE_MINICPMV
- ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
- if (is_ffn_swapped) {
- // swap up and down weights
- ggml_tensor * tmp = layer.ff_up_w;
- layer.ff_up_w = layer.ff_down_w;
- layer.ff_down_w = tmp;
- // swap up and down biases
- tmp = layer.ff_up_b;
- layer.ff_up_b = layer.ff_down_b;
- layer.ff_down_b = tmp;
- if (il == 0) {
- LOG_WRN("%s: ffn up/down are swapped\n", __func__);
- }
- }
- }
- switch (model.proj_type) {
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- {
- // LLaVA projection
- model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
- model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
- // Yi-type llava
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
- // missing in Yi-type llava
- model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
- model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
- // Yi-type llava
- model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
- model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
- model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
- model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
- if (model.mm_3_w) {
- // TODO: this is a hack to support Yi-type llava
- model.proj_type = PROJECTOR_TYPE_MLP_NORM;
- }
- model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
- } break;
- case PROJECTOR_TYPE_LDP:
- {
- // MobileVLM projection
- model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
- model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
- model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
- model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
- model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
- model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
- model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
- model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
- model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
- model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
- model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
- model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
- model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
- model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
- model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
- model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
- model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
- model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
- model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
- model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
- model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
- model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
- model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
- model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
- } break;
- case PROJECTOR_TYPE_LDPV2:
- {
- // MobilVLM_V2 projection
- model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
- model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
- model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
- model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
- model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
- model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
- } break;
- case PROJECTOR_TYPE_MINICPMV:
- {
- // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
- model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
- model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
- model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
- model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
- model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
- model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
- model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
- model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
- model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
- model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
- model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
- model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
- model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
- model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
- model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
- model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
- model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
- model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
- } break;
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
- model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
- model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
- model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
- model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
- model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
- model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
- model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
- model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
- model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- {
- model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
- model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
- } break;
- case PROJECTOR_TYPE_QWEN3VL:
- {
- model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
- model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- {
- model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
- model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
- } break;
- case PROJECTOR_TYPE_IDEFICS3:
- {
- model.projection = get_tensor(TN_MM_PROJECTOR);
- } break;
- case PROJECTOR_TYPE_LFM2:
- case PROJECTOR_TYPE_KIMIVL:
- {
- model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
- model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
- model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- {
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
- model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
- // [IMG_BREAK] token embedding
- model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
- // for mistral small 3.1
- model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
- model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
- } break;
- case PROJECTOR_TYPE_LIGHTONOCR:
- {
- model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
- model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
- model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
- model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
- model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
- } break;
- case PROJECTOR_TYPE_ULTRAVOX:
- {
- model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
- model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
- model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
- model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
- model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
- model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
- model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
- model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
- } break;
- case PROJECTOR_TYPE_QWEN2A:
- {
- model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
- model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
- model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
- model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
- model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
- model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
- } break;
- case PROJECTOR_TYPE_VOXTRAL:
- {
- model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
- model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
- model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
- model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
- model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
- model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
- } break;
- case PROJECTOR_TYPE_INTERNVL:
- {
- model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
- model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
- model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
- model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
- model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
- model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
- model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
- model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
- } break;
- case PROJECTOR_TYPE_COGVLM:
- {
- model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
- model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
- model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
- model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
- model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
- model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
- model.mm_boi = get_tensor(TN_TOK_BOI);
- model.mm_eoi = get_tensor(TN_TOK_EOI);
- } break;
- default:
- GGML_ASSERT(false && "unknown projector type");
- }
- // load data
- {
- std::vector<uint8_t> read_buf;
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
- }
- // alloc memory and offload data
- ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
- ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
- ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
- for (auto & t : tensors_to_load) {
- ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
- const size_t offset = tensor_offset[t->name];
- fin.seekg(offset, std::ios::beg);
- if (!fin) {
- throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
- }
- size_t num_bytes = ggml_nbytes(cur);
- if (ggml_backend_buft_is_host(buft)) {
- // for the CPU and Metal backend, we can read directly into the tensor
- fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
- } else {
- // read into a temporary buffer first, then copy to device memory
- read_buf.resize(num_bytes);
- fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
- ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
- }
- }
- fin.close();
- LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
- }
- }
- void alloc_compute_meta(clip_ctx & ctx_clip) {
- const auto & hparams = ctx_clip.model.hparams;
- ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
- // create a fake batch
- clip_image_f32_batch batch;
- clip_image_f32_ptr img(clip_image_f32_init());
- if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
- img->nx = hparams.warmup_image_size;
- img->ny = hparams.warmup_image_size;
- LOG_INF("%s: warmup with image size = %d x %d\n", __func__, img->nx, img->ny);
- } else {
- img->nx = hparams.warmup_audio_size;
- img->ny = hparams.n_mel_bins;
- LOG_INF("%s: warmup with audio size = %d\n", __func__, img->nx);
- }
- batch.entries.push_back(std::move(img));
- ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
- ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
- for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
- ggml_backend_t backend = ctx_clip.backend_ptrs[i];
- ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
- size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
- if (size > 1) {
- LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
- ggml_backend_buft_name(buft),
- size / 1024.0 / 1024.0);
- }
- }
- }
- void get_bool(const std::string & key, bool & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_bool(ctx_gguf.get(), i);
- }
- void get_i32(const std::string & key, int & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_i32(ctx_gguf.get(), i);
- }
- void get_u32(const std::string & key, int & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_u32(ctx_gguf.get(), i);
- }
- void get_f32(const std::string & key, float & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = gguf_get_val_f32(ctx_gguf.get(), i);
- }
- void get_string(const std::string & key, std::string & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
- }
- void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
- const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
- if (i < 0) {
- if (required) throw std::runtime_error("Key not found: " + key);
- return;
- }
- int n = gguf_get_arr_n(ctx_gguf.get(), i);
- output.resize(n);
- const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
- for (int i = 0; i < n; ++i) {
- output[i] = values[i];
- }
- }
- void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
- auto & hparams = model.hparams;
- for (int x = 1; x <= max_patches_per_side; x++) {
- for (int y = 1; y <= max_patches_per_side; y++) {
- if (x == 1 && y == 1) {
- continue; // skip the first point
- }
- hparams.image_res_candidates.push_back(clip_image_size{
- x*hparams.image_size,
- y*hparams.image_size,
- });
- }
- }
- }
- };
- struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
- g_logger_state.verbosity_thold = ctx_params.verbosity;
- clip_ctx * ctx_vision = nullptr;
- clip_ctx * ctx_audio = nullptr;
- try {
- clip_model_loader loader(fname);
- if (loader.has_vision) {
- ctx_vision = new clip_ctx(ctx_params);
- loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
- loader.load_tensors(*ctx_vision);
- loader.alloc_compute_meta(*ctx_vision);
- }
- if (loader.has_audio) {
- ctx_audio = new clip_ctx(ctx_params);
- loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
- loader.load_tensors(*ctx_audio);
- loader.alloc_compute_meta(*ctx_audio);
- }
- } catch (const std::exception & e) {
- LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
- if (ctx_vision) {
- delete ctx_vision;
- }
- if (ctx_audio) {
- delete ctx_audio;
- }
- return {nullptr, nullptr};
- }
- return {ctx_vision, ctx_audio};
- }
- struct clip_image_size * clip_image_size_init() {
- struct clip_image_size * load_image_size = new struct clip_image_size();
- load_image_size->width = 448;
- load_image_size->height = 448;
- return load_image_size;
- }
- struct clip_image_u8 * clip_image_u8_init() {
- return new clip_image_u8();
- }
- struct clip_image_f32 * clip_image_f32_init() {
- return new clip_image_f32();
- }
- struct clip_image_f32_batch * clip_image_f32_batch_init() {
- return new clip_image_f32_batch();
- }
- unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
- if (nx) *nx = img->nx;
- if (ny) *ny = img->ny;
- return img->buf.data();
- }
- void clip_image_size_free(struct clip_image_size * load_image_size) {
- if (load_image_size == nullptr) {
- return;
- }
- delete load_image_size;
- }
- void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
- void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
- void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
- void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
- size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
- return batch->entries.size();
- }
- size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return 0;
- }
- return batch->entries[idx]->nx;
- }
- size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return 0;
- }
- return batch->entries[idx]->ny;
- }
- clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
- if (idx < 0 || idx >= (int)batch->entries.size()) {
- LOG_ERR("%s: invalid index %d\n", __func__, idx);
- return nullptr;
- }
- return batch->entries[idx].get();
- }
- void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
- img->nx = nx;
- img->ny = ny;
- img->buf.resize(3 * nx * ny);
- memcpy(img->buf.data(), rgb_pixels, img->buf.size());
- }
- // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
- static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
- dst.nx = src.nx;
- dst.ny = src.ny;
- dst.buf.resize(src.buf.size());
- // TODO @ngxson : seems like this could be done more efficiently on cgraph
- for (size_t i = 0; i < src.buf.size(); ++i) {
- int c = i % 3; // rgb
- dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
- }
- }
- // set of tools to manupulate images
- // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
- struct img_tool {
- enum resize_algo {
- RESIZE_ALGO_BILINEAR,
- RESIZE_ALGO_BICUBIC,
- // RESIZE_ALGO_LANCZOS, // TODO
- };
- static void resize(
- const clip_image_u8 & src,
- clip_image_u8 & dst,
- const clip_image_size & target_resolution,
- resize_algo algo,
- bool add_padding = true, // TODO: define the behavior for add_padding = false
- std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
- dst.nx = target_resolution.width;
- dst.ny = target_resolution.height;
- dst.buf.resize(3 * dst.nx * dst.ny);
- if (dst.nx == src.nx && dst.ny == src.ny) {
- // no resize needed, simple copy
- dst.buf = src.buf;
- return;
- }
- if (!add_padding) {
- // direct resize
- switch (algo) {
- case RESIZE_ALGO_BILINEAR:
- resize_bilinear(src, dst, target_resolution.width, target_resolution.height);
- break;
- case RESIZE_ALGO_BICUBIC:
- resize_bicubic(src, dst, target_resolution.width, target_resolution.height);
- break;
- default:
- throw std::runtime_error("Unsupported resize algorithm");
- }
- } else {
- // resize with padding
- clip_image_u8 resized_image;
- float scale_w = static_cast<float>(target_resolution.width) / src.nx;
- float scale_h = static_cast<float>(target_resolution.height) / src.ny;
- float scale = std::min(scale_w, scale_h);
- int new_width = std::min(static_cast<int>(std::ceil(src.nx * scale)), target_resolution.width);
- int new_height = std::min(static_cast<int>(std::ceil(src.ny * scale)), target_resolution.height);
- switch (algo) {
- case RESIZE_ALGO_BILINEAR:
- resize_bilinear(src, resized_image, new_width, new_height);
- break;
- case RESIZE_ALGO_BICUBIC:
- resize_bicubic(src, resized_image, new_width, new_height);
- break;
- default:
- throw std::runtime_error("Unsupported resize algorithm");
- }
- // fill dst with pad_color
- fill(dst, pad_color);
- int offset_x = (target_resolution.width - new_width) / 2;
- int offset_y = (target_resolution.height - new_height) / 2;
- composite(dst, resized_image, offset_x, offset_y);
- }
- }
- static void crop(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
- dst.nx = w;
- dst.ny = h;
- dst.buf.resize(3 * w * h);
- for (int i = 0; i < h; ++i) {
- for (int j = 0; j < w; ++j) {
- int src_idx = 3 * ((y + i)*image.nx + (x + j));
- int dst_idx = 3 * (i*w + j);
- dst.buf[dst_idx] = image.buf[src_idx];
- dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
- dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
- }
- }
- }
- // calculate the size of the **resized** image, while preserving the aspect ratio
- // the calculated size will be aligned to the nearest multiple of align_size
- // if H or W size is larger than longest_edge, it will be resized to longest_edge
- static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int longest_edge) {
- GGML_ASSERT(align_size > 0);
- if (inp_size.width <= 0 || inp_size.height <= 0 || longest_edge <= 0) {
- return {0, 0};
- }
- float scale = std::min(static_cast<float>(longest_edge) / inp_size.width,
- static_cast<float>(longest_edge) / inp_size.height);
- float target_width_f = static_cast<float>(inp_size.width) * scale;
- float target_height_f = static_cast<float>(inp_size.height) * scale;
- auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
- int aligned_width = ceil_by_factor(target_width_f);
- int aligned_height = ceil_by_factor(target_height_f);
- return {aligned_width, aligned_height};
- }
- // calculate the size of the **resized** image, while preserving the aspect ratio
- // the calculated size will have min_pixels <= W*H <= max_pixels
- // this is referred as "smart_resize" in transformers code
- static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int min_pixels, const int max_pixels) {
- GGML_ASSERT(align_size > 0);
- const int width = inp_size.width;
- const int height = inp_size.height;
- auto ceil_by_factor = [f = align_size](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
- auto floor_by_factor = [f = align_size](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
- // always align up first
- int h_bar = std::max(align_size, ceil_by_factor(height));
- int w_bar = std::max(align_size, ceil_by_factor(width));
- if (h_bar * w_bar > max_pixels) {
- const auto beta = std::sqrt(static_cast<float>(height * width) / max_pixels);
- h_bar = std::max(align_size, floor_by_factor(height / beta));
- w_bar = std::max(align_size, floor_by_factor(width / beta));
- } else if (h_bar * w_bar < min_pixels) {
- const auto beta = std::sqrt(static_cast<float>(min_pixels) / (height * width));
- h_bar = ceil_by_factor(height * beta);
- w_bar = ceil_by_factor(width * beta);
- }
- return {w_bar, h_bar};
- }
- // draw src image into dst image at offset (offset_x, offset_y)
- static void composite(clip_image_u8 & dst, const clip_image_u8 & src, int offset_x, int offset_y) {
- for (int y = 0; y < src.ny; ++y) {
- for (int x = 0; x < src.nx; ++x) {
- int dx = x + offset_x;
- int dy = y + offset_y;
- // skip pixels that would be out of bounds in the destination
- if (dx < 0 || dy < 0 || dx >= dst.nx || dy >= dst.ny) {
- continue;
- }
- size_t dst_idx = 3 * (static_cast<size_t>(dy) * dst.nx + static_cast<size_t>(dx));
- size_t src_idx = 3 * (static_cast<size_t>(y) * src.nx + static_cast<size_t>(x));
- dst.buf[dst_idx + 0] = src.buf[src_idx + 0];
- dst.buf[dst_idx + 1] = src.buf[src_idx + 1];
- dst.buf[dst_idx + 2] = src.buf[src_idx + 2];
- }
- }
- }
- // fill the image with a solid color
- static void fill(clip_image_u8 & img, const std::array<uint8_t, 3> & color) {
- for (size_t i = 0; i < img.buf.size(); i += 3) {
- img.buf[i] = color[0];
- img.buf[i + 1] = color[1];
- img.buf[i + 2] = color[2];
- }
- }
- private:
- // Bilinear resize function
- static void resize_bilinear(const clip_image_u8 & src, clip_image_u8 & dst, int target_width, int target_height) {
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float x_ratio = static_cast<float>(src.nx - 1) / target_width;
- float y_ratio = static_cast<float>(src.ny - 1) / target_height;
- for (int y = 0; y < target_height; y++) {
- for (int x = 0; x < target_width; x++) {
- float px = x_ratio * x;
- float py = y_ratio * y;
- int x_floor = static_cast<int>(px);
- int y_floor = static_cast<int>(py);
- float x_lerp = px - x_floor;
- float y_lerp = py - y_floor;
- for (int c = 0; c < 3; c++) {
- float top = lerp(
- static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- float bottom = lerp(
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
- static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
- x_lerp
- );
- dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
- }
- }
- }
- }
- // Bicubic resize function
- // part of image will be cropped if the aspect ratio is different
- static bool resize_bicubic(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
- const int nx = img.nx;
- const int ny = img.ny;
- dst.nx = target_width;
- dst.ny = target_height;
- dst.buf.resize(3 * target_width * target_height);
- float Cc;
- float C[5] = {};
- float d0, d2, d3, a0, a1, a2, a3;
- int i, j, k, jj;
- int x, y;
- float dx, dy;
- float tx, ty;
- tx = (float)nx / (float)target_width;
- ty = (float)ny / (float)target_height;
- // Bicubic interpolation; adapted from ViT.cpp, inspired from :
- // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
- // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
- for (i = 0; i < target_height; i++) {
- for (j = 0; j < target_width; j++) {
- x = (int)(tx * j);
- y = (int)(ty * i);
- dx = tx * j - x;
- dy = ty * i - y;
- for (k = 0; k < 3; k++) {
- for (jj = 0; jj <= 3; jj++) {
- d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
- d0 = C[0] - C[1];
- d2 = C[2] - C[1];
- d3 = C[3] - C[1];
- a0 = C[1];
- a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
- a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
- a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
- Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
- const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
- dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
- }
- }
- }
- }
- return true;
- }
- static inline int clip(int x, int lower, int upper) {
- return std::max(lower, std::min(x, upper));
- }
- // Linear interpolation between two points
- static inline float lerp(float s, float e, float t) {
- return s + (e - s) * t;
- }
- };
- /**
- * implementation of LLaVA-UHD:
- * - https://arxiv.org/pdf/2403.11703
- * - https://github.com/thunlp/LLaVA-UHD
- * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
- *
- * overview:
- * - an image always have a single overview (downscaled image)
- * - an image can have 0 or multiple slices, depending on the image size
- * - each slice can then be considered as a separate image
- *
- * for example:
- *
- * [overview] --> [slice 1] --> [slice 2]
- * | |
- * +--> [slice 3] --> [slice 4]
- */
- struct llava_uhd {
- struct slice_coordinates {
- int x;
- int y;
- clip_image_size size;
- };
- struct slice_instructions {
- clip_image_size overview_size; // size of downscaled image
- clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
- clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
- std::vector<slice_coordinates> slices;
- bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
- };
- static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
- slice_instructions res;
- const int patch_size = clip_get_patch_size(ctx);
- const int slice_size = clip_get_image_size(ctx);
- const int original_width = original_size.width;
- const int original_height = original_size.height;
- const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
- const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
- if (!has_slices) {
- // skip slicing logic
- res.overview_size = clip_image_size{slice_size, slice_size};
- res.refined_size = clip_image_size{0, 0};
- res.grid_size = clip_image_size{0, 0};
- return res;
- }
- if (has_pinpoints) {
- // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
- auto refine_size = llava_uhd::select_best_resolution(
- original_size,
- ctx->model.hparams.image_res_candidates);
- res.overview_size = clip_image_size{slice_size, slice_size};
- res.refined_size = refine_size;
- res.grid_size = clip_image_size{0, 0};
- res.padding_refined = true;
- LOG_DBG("%s: using pinpoints for slicing\n", __func__);
- LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
- __func__, original_width, original_height,
- res.overview_size.width, res.overview_size.height,
- res.refined_size.width, res.refined_size.height);
- for (int y = 0; y < refine_size.height; y += slice_size) {
- for (int x = 0; x < refine_size.width; x += slice_size) {
- slice_coordinates slice;
- slice.x = x;
- slice.y = y;
- slice.size.width = std::min(slice_size, refine_size.width - x);
- slice.size.height = std::min(slice_size, refine_size.height - y);
- res.slices.push_back(slice);
- LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
- __func__, (int)res.slices.size() - 1,
- slice.x, slice.y, slice.size.width, slice.size.height);
- }
- }
- res.grid_size.height = refine_size.height / slice_size;
- res.grid_size.width = refine_size.width / slice_size;
- LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
- return res;
- }
- // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
- auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
- res.overview_size = best_size;
- {
- const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
- const float log_ratio = log((float)original_width / original_height);
- const float ratio = (float)original_width * original_height / (slice_size * slice_size);
- const int multiple = fmin(ceil(ratio), max_slice_nums);
- auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
- auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
- res.grid_size = best_grid;
- res.refined_size = refine_size;
- LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
- __func__, original_width, original_height,
- res.overview_size.width, res.overview_size.height,
- res.refined_size.width, res.refined_size.height,
- res.grid_size.width, res.grid_size.height);
- int width = refine_size.width;
- int height = refine_size.height;
- int grid_x = int(width / best_grid.width);
- int grid_y = int(height / best_grid.height);
- for (int patches_y = 0, ic = 0;
- patches_y < refine_size.height && ic < best_grid.height;
- patches_y += grid_y, ic += 1) {
- for (int patches_x = 0, jc = 0;
- patches_x < refine_size.width && jc < best_grid.width;
- patches_x += grid_x, jc += 1) {
- slice_coordinates slice;
- slice.x = patches_x;
- slice.y = patches_y;
- slice.size.width = grid_x;
- slice.size.height = grid_y;
- res.slices.push_back(slice);
- LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
- __func__, (int)res.slices.size() - 1,
- slice.x, slice.y, slice.size.width, slice.size.height);
- }
- }
- }
- return res;
- }
- static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
- std::vector<clip_image_u8_ptr> output;
- img_tool::resize_algo interpolation = img_tool::RESIZE_ALGO_BILINEAR; // TODO: make it configurable
- // resize to overview size
- clip_image_u8_ptr resized_img(clip_image_u8_init());
- img_tool::resize(*img, *resized_img, inst.overview_size, interpolation);
- output.push_back(std::move(resized_img));
- if (inst.slices.empty()) {
- // no slices, just return the resized image
- return output;
- }
- // resize to refined size
- clip_image_u8_ptr refined_img(clip_image_u8_init());
- if (inst.padding_refined) {
- img_tool::resize(*img, *refined_img, inst.refined_size, interpolation);
- } else {
- // only algo bicubic preserves the ratio; old models rely on this behavior
- // TODO: do we need to support other algos here?
- img_tool::resize(*img, *refined_img, inst.refined_size, img_tool::RESIZE_ALGO_BICUBIC, false);
- }
- // create slices
- for (const auto & slice : inst.slices) {
- int x = slice.x;
- int y = slice.y;
- int w = slice.size.width;
- int h = slice.size.height;
- clip_image_u8_ptr img_slice(clip_image_u8_init());
- img_tool::crop(*refined_img, *img_slice, x, y, w, h);
- output.push_back(std::move(img_slice));
- }
- return output;
- }
- private:
- static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.width;
- int height = original_size.height;
- if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
- float r = static_cast<float>(width) / height;
- height = static_cast<int>(scale_resolution / std::sqrt(r));
- width = static_cast<int>(height * r);
- }
- clip_image_size res;
- res.width = ensure_divide(width, patch_size);
- res.height = ensure_divide(height, patch_size);
- return res;
- }
- static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
- float scale_width = static_cast<float>(target_max.width) / orig.width;
- float scale_height = static_cast<float>(target_max.height) / orig.height;
- float scale = std::min(scale_width, scale_height);
- return clip_image_size{
- static_cast<int>(orig.width * scale),
- static_cast<int>(orig.height * scale),
- };
- }
- /**
- * Selects the best resolution from a list of possible resolutions based on the original size.
- *
- * For example, when given a list of resolutions:
- * - 100x100
- * - 200x100
- * - 100x200
- * - 200x200
- *
- * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
- *
- * @param original_size The original size of the image
- * @param possible_resolutions A list of possible resolutions
- * @return The best fit resolution
- */
- static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
- clip_image_size best_fit;
- int min_wasted_area = std::numeric_limits<int>::max();
- int max_effective_resolution = 0;
- for (const clip_image_size & candidate : possible_resolutions) {
- auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
- int effective_resolution = std::min(
- target_size.width * target_size.height,
- original_size.width * original_size.height);
- int wasted_area = (candidate.width * candidate.height) - effective_resolution;
- if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
- max_effective_resolution = effective_resolution;
- min_wasted_area = wasted_area;
- best_fit = candidate;
- }
- LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
- }
- return best_fit;
- }
- static int ensure_divide(int length, int patch_size) {
- return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
- }
- static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
- int width = original_size.width;
- int height = original_size.height;
- int grid_x = grid.width;
- int grid_y = grid.height;
- int refine_width = ensure_divide(width, grid_x);
- int refine_height = ensure_divide(height, grid_y);
- clip_image_size grid_size;
- grid_size.width = refine_width / grid_x;
- grid_size.height = refine_height / grid_y;
- auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
- int best_grid_width = best_grid_size.width;
- int best_grid_height = best_grid_size.height;
- clip_image_size refine_size;
- refine_size.width = best_grid_width * grid_x;
- refine_size.height = best_grid_height * grid_y;
- return refine_size;
- }
- static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
- std::vector<int> candidate_split_grids_nums;
- for (int i : {multiple - 1, multiple, multiple + 1}) {
- if (i == 1 || i > max_slice_nums) {
- continue;
- }
- candidate_split_grids_nums.push_back(i);
- }
- std::vector<clip_image_size> candidate_grids;
- for (int split_grids_nums : candidate_split_grids_nums) {
- int m = 1;
- while (m <= split_grids_nums) {
- if (split_grids_nums % m == 0) {
- candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
- }
- ++m;
- }
- }
- clip_image_size best_grid{1, 1};
- float min_error = std::numeric_limits<float>::infinity();
- for (const auto& grid : candidate_grids) {
- float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
- if (error < min_error) {
- best_grid = grid;
- min_error = error;
- }
- }
- return best_grid;
- }
- };
- // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
- // res_imgs memory is being allocated here, previous allocations will be freed if found
- bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
- clip_image_size original_size{img->nx, img->ny};
- auto & params = ctx->model.hparams;
- switch (ctx->proj_type()) {
- case PROJECTOR_TYPE_MINICPMV:
- {
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- res_imgs->grid_x = inst.grid_size.width;
- res_imgs->grid_y = inst.grid_size.height;
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- case PROJECTOR_TYPE_QWEN3VL:
- {
- // step 1: make a blank canvas which aligns to the grid
- clip_image_u8 resized;
- const clip_image_size new_size = img_tool::calc_size_preserved_ratio(
- original_size,
- params.patch_size * 2,
- params.image_min_pixels,
- params.image_max_pixels);
- img_tool::resize(*img, resized, new_size, img_tool::RESIZE_ALGO_BILINEAR, false);
- // clip_image_save_to_bmp(resized, "preproc.bmp");
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- // clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
- // res_imgs->data[0] = *res;
- res_imgs->entries.push_back(std::move(img_f32));
- } break;
- case PROJECTOR_TYPE_IDEFICS3:
- {
- // The refined size has two steps:
- // 1. Resize w/ aspect-ratio preserving such that the longer side is
- // the preprocessor longest size
- // 2. Resize w/out preserving aspect ratio such that both sides are
- // multiples of image_size (always rounding up)
- //
- // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
- const clip_image_size refined_size = img_tool::calc_size_preserved_ratio(
- original_size, params.image_size, params.image_longest_edge);
- // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
- // __func__, original_size.width, original_size.height,
- // refined_size.width, refined_size.height);
- llava_uhd::slice_instructions instructions;
- instructions.overview_size = clip_image_size{params.image_size, params.image_size};
- instructions.refined_size = refined_size;
- instructions.grid_size = clip_image_size{
- static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
- static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
- };
- for (int y = 0; y < refined_size.height; y += params.image_size) {
- for (int x = 0; x < refined_size.width; x += params.image_size) {
- // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
- instructions.slices.push_back(llava_uhd::slice_coordinates{
- /* x */x,
- /* y */y,
- /* size */clip_image_size{
- std::min(params.image_size, refined_size.width - x),
- std::min(params.image_size, refined_size.height - y)
- }
- });
- }
- }
- auto imgs = llava_uhd::slice_image(img, instructions);
- // cast and normalize to f32
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- res_imgs->grid_x = instructions.grid_size.width;
- res_imgs->grid_y = instructions.grid_size.height;
- } break;
- case PROJECTOR_TYPE_GLM_EDGE:
- case PROJECTOR_TYPE_GEMMA3:
- case PROJECTOR_TYPE_INTERNVL: // TODO @ngxson : support dynamic resolution
- {
- clip_image_u8 resized_image;
- int sz = params.image_size;
- img_tool::resize(*img, resized_image, {sz, sz}, img_tool::RESIZE_ALGO_BILINEAR);
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- //clip_image_save_to_bmp(resized_image, "resized.bmp");
- normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(img_f32));
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- case PROJECTOR_TYPE_LIGHTONOCR:
- {
- GGML_ASSERT(params.image_min_pixels && params.image_max_pixels);
- clip_image_u8 resized_image;
- // the original pixtral model doesn't have n_merge
- const int cur_merge = params.n_merge == 0 ? 1 : params.n_merge;
- const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
- original_size,
- params.patch_size * cur_merge,
- params.image_min_pixels,
- params.image_max_pixels);
- img_tool::resize(*img, resized_image, target_size, img_tool::RESIZE_ALGO_BILINEAR);
- clip_image_f32_ptr img_f32(clip_image_f32_init());
- normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(img_f32));
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- GGML_ASSERT(!params.image_res_candidates.empty());
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- res_imgs->grid_x = inst.grid_size.width;
- res_imgs->grid_y = inst.grid_size.height;
- } break;
- case PROJECTOR_TYPE_LFM2:
- case PROJECTOR_TYPE_KIMIVL:
- {
- GGML_ASSERT(params.image_min_pixels && params.image_max_pixels);
- const clip_image_size target_size = img_tool::calc_size_preserved_ratio(
- original_size,
- params.patch_size * params.n_merge,
- params.image_min_pixels,
- params.image_max_pixels);
- const std::array<uint8_t, 3> pad_color = {122, 116, 104};
- clip_image_u8 resized_img;
- img_tool::resize(*img, resized_img, target_size, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- } break;
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- case PROJECTOR_TYPE_LDP:
- case PROJECTOR_TYPE_LDPV2:
- case PROJECTOR_TYPE_COGVLM: // TODO @ngxson : is this correct for cogvlm?
- {
- // TODO @ngxson : refactor the code below to avoid duplicated logic
- // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
- // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
- if (params.image_res_candidates.empty()) { // pad_to_square
- // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
- // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
- const int longer_side = std::max(img->nx, img->ny);
- temp->nx = longer_side;
- temp->ny = longer_side;
- temp->buf.resize(3 * longer_side * longer_side);
- // background color in RGB from LLaVA (this is the mean rgb color * 255)
- const std::array<uint8_t, 3> pad_color = {122, 116, 104};
- // resize the image to the target_size
- img_tool::resize(*img, *temp, clip_image_size{params.image_size, params.image_size}, img_tool::RESIZE_ALGO_BILINEAR, true, pad_color);
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- } else {
- // "spatial_unpad" with "anyres" processing for llava-1.6
- auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
- std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
- for (size_t i = 0; i < imgs.size(); ++i) {
- // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
- clip_image_f32_ptr res(clip_image_f32_init());
- normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
- res_imgs->entries.push_back(std::move(res));
- }
- }
- } break;
- default:
- LOG_ERR("%s: unsupported projector type %d\n", __func__, ctx->proj_type());
- return false;
- }
- return true;
- }
- ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
- return ctx->model.image_newline;
- }
- void clip_free(clip_ctx * ctx) {
- if (ctx == nullptr) {
- return;
- }
- delete ctx;
- }
- // deprecated
- size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
- const int32_t nx = ctx->model.hparams.image_size;
- const int32_t ny = ctx->model.hparams.image_size;
- return clip_embd_nbytes_by_img(ctx, nx, ny);
- }
- size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
- clip_image_f32 img;
- img.nx = img_w;
- img.ny = img_h;
- return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
- }
- int32_t clip_get_image_size(const struct clip_ctx * ctx) {
- return ctx->model.hparams.image_size;
- }
- int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
- return ctx->model.hparams.patch_size;
- }
- int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
- return ctx->model.hparams.n_embd;
- }
- const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
- return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
- }
- int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->model.hparams;
- const int n_total = clip_n_output_tokens(ctx, img);
- if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
- return img->nx / (params.patch_size * 2);
- }
- return n_total;
- }
- int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->model.hparams;
- if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
- return img->ny / (params.patch_size * 2);
- }
- return 1;
- }
- int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
- const auto & params = ctx->model.hparams;
- // for models with fixed size image, the input image is already pre-processed and resized to square
- int patch_size = params.patch_size;
- int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
- projector_type proj = ctx->proj_type();
- switch (proj) {
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- {
- // do nothing
- } break;
- case PROJECTOR_TYPE_LDP:
- case PROJECTOR_TYPE_LDPV2:
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- n_patches /= 4;
- if (ctx->model.mm_boi) {
- n_patches += 2; // for BOI and EOI token embeddings
- }
- } break;
- case PROJECTOR_TYPE_MINICPMV:
- {
- // Use actual config value if available, otherwise fall back to hardcoded values
- if (params.minicpmv_query_num > 0) {
- n_patches = params.minicpmv_query_num;
- } else {
- // Fallback to hardcoded values for legacy models
- if (params.minicpmv_version == 2) {
- n_patches = 96;
- } else if (params.minicpmv_version == 3) {
- n_patches = 64;
- } else if (params.minicpmv_version == 4) {
- n_patches = 64;
- } else if (params.minicpmv_version == 5) {
- // MiniCPM-V 4.0
- n_patches = 64;
- } else if (params.minicpmv_version == 6) {
- // MiniCPM-V 4.5
- n_patches = 64;
- } else {
- GGML_ABORT("Unknown minicpmv version");
- }
- }
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- case PROJECTOR_TYPE_QWEN3VL:
- {
- // dynamic size (2 conv, so double patch size)
- int x_patch = img->nx / (params.patch_size * 2);
- int y_patch = img->ny / (params.patch_size * 2);
- n_patches = x_patch * y_patch;
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- case PROJECTOR_TYPE_IDEFICS3:
- case PROJECTOR_TYPE_INTERNVL:
- case PROJECTOR_TYPE_LLAMA4:
- {
- // both X and Y are downscaled by the scale factor
- int scale_factor = ctx->model.hparams.n_merge;
- n_patches /= (scale_factor * scale_factor);
- } break;
- case PROJECTOR_TYPE_LFM2:
- case PROJECTOR_TYPE_KIMIVL:
- {
- // dynamic size
- int out_patch_size = params.patch_size * ctx->model.hparams.n_merge;
- int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
- int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
- n_patches = x_patch * y_patch;
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- case PROJECTOR_TYPE_LIGHTONOCR:
- {
- // dynamic size
- int n_merge = ctx->model.hparams.n_merge;
- int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
- int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
- if (ctx->model.token_embd_img_break) {
- n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
- } else {
- n_patches = n_patches_y * n_patches_x;
- }
- } break;
- case PROJECTOR_TYPE_VOXTRAL:
- case PROJECTOR_TYPE_ULTRAVOX:
- case PROJECTOR_TYPE_QWEN2A:
- {
- n_patches = img->nx;
- const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
- if (ctx->model.audio_has_stack_frames()) {
- GGML_ASSERT(proj_stack_factor > 0);
- const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
- n_patches = n_len / proj_stack_factor;
- }
- // whisper downscales input token by half after conv1d
- n_patches /= 2;
- if (ctx->model.audio_has_avgpool()) {
- // divide by 2 because of nn.AvgPool1d(2, stride=2)
- n_patches /= 2;
- }
- } break;
- case PROJECTOR_TYPE_COGVLM:
- {
- n_patches += 2; // for BOI and EOI token embeddings
- } break;
- default:
- GGML_ABORT("unsupported projector type");
- }
- return n_patches;
- }
- static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
- assert(embed_dim % 2 == 0);
- int H = pos.size();
- int W = pos[0].size();
- std::vector<float> omega(embed_dim / 2);
- for (int i = 0; i < embed_dim / 2; ++i) {
- omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
- }
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- float out_value = pos[h][w] * omega[d];
- emb[h][w][d] = sin(out_value);
- emb[h][w][d + embed_dim / 2] = cos(out_value);
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
- assert(embed_dim % 2 == 0);
- std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
- std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
- int H = emb_h.size();
- int W = emb_h[0].size();
- std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- for (int d = 0; d < embed_dim / 2; ++d) {
- emb[h][w][d] = emb_h[h][w][d];
- emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
- }
- }
- }
- return emb;
- }
- static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
- int grid_h_size = image_size.first;
- int grid_w_size = image_size.second;
- std::vector<float> grid_h(grid_h_size);
- std::vector<float> grid_w(grid_w_size);
- for (int i = 0; i < grid_h_size; ++i) {
- grid_h[i] = static_cast<float>(i);
- }
- for (int i = 0; i < grid_w_size; ++i) {
- grid_w[i] = static_cast<float>(i);
- }
- std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid[h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
- for (int h = 0; h < grid_h_size; ++h) {
- for (int w = 0; w < grid_w_size; ++w) {
- grid_2d[0][h][w] = grid_h[h];
- grid_2d[1][h][w] = grid_w[w];
- }
- }
- std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
- int H = image_size.first;
- int W = image_size.second;
- std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
- for (int h = 0; h < H; ++h) {
- for (int w = 0; w < W; ++w) {
- pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
- }
- }
- return pos_embed_2d;
- }
- bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
- clip_image_f32_batch imgs;
- clip_image_f32_ptr img_copy(clip_image_f32_init());
- *img_copy = *img;
- imgs.entries.push_back(std::move(img_copy));
- return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
- }
- bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
- const clip_image_f32_batch & imgs = *imgs_c_ptr;
- int batch_size = imgs.entries.size();
- // TODO @ngxson : implement batch size > 1 as a loop
- // we don't need true batching support because the cgraph will gonna be big anyway
- if (batch_size != 1) {
- return false; // only support batch size of 1
- }
- // build the inference graph
- ctx->debug_print_tensors.clear();
- ggml_backend_sched_reset(ctx->sched.get());
- ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
- ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
- // set inputs
- const auto & model = ctx->model;
- const auto & hparams = model.hparams;
- const int image_size_width = imgs.entries[0]->nx;
- const int image_size_height = imgs.entries[0]->ny;
- const int patch_size = hparams.patch_size;
- const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
- const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
- const int pos_w = image_size_width / patch_size;
- const int pos_h = image_size_height / patch_size;
- const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
- auto get_inp_tensor = [&gf](const char * name) {
- ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
- if (inp == nullptr) {
- GGML_ABORT("Failed to get tensor %s", name);
- }
- if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
- GGML_ABORT("Tensor %s is not an input tensor", name);
- }
- return inp;
- };
- auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
- ggml_tensor * cur = get_inp_tensor(name);
- GGML_ASSERT(cur->type == GGML_TYPE_F32);
- GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
- ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
- };
- auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
- ggml_tensor * cur = get_inp_tensor(name);
- GGML_ASSERT(cur->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
- ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
- };
- // set input pixel values
- if (!imgs.is_audio) {
- size_t nelem = 0;
- for (const auto & img : imgs.entries) {
- nelem += img->nx * img->ny * 3;
- }
- std::vector<float> inp_raw(nelem);
- // layout of data (note: the channel dim is unrolled to better visualize the layout):
- //
- // ┌──W──┐
- // │ H │ channel = R
- // ├─────┤ │
- // │ H │ channel = G
- // ├─────┤ │
- // │ H │ channel = B
- // └─────┘ │
- // ──────┘ x B
- for (size_t i = 0; i < imgs.entries.size(); i++) {
- const int nx = imgs.entries[i]->nx;
- const int ny = imgs.entries[i]->ny;
- const int n = nx * ny;
- for (int b = 0; b < batch_size; b++) {
- float * batch_entry = inp_raw.data() + b * (3*n);
- for (int y = 0; y < ny; y++) {
- for (int x = 0; x < nx; x++) {
- size_t base_src = 3*(y * nx + x); // idx of the first channel
- size_t base_dst = y * nx + x; // idx of the first channel
- batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
- batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
- batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
- }
- }
- }
- }
- set_input_f32("inp_raw", inp_raw);
- } else {
- // audio input
- GGML_ASSERT(imgs.entries.size() == 1);
- const auto & mel_inp = imgs.entries[0];
- const int n_step = mel_inp->nx;
- const int n_mel = mel_inp->ny;
- std::vector<float> inp_raw(n_step * n_mel);
- std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
- set_input_f32("inp_raw", inp_raw);
- }
- // set input per projector
- switch (ctx->model.proj_type) {
- case PROJECTOR_TYPE_MINICPMV:
- {
- // inspired from siglip:
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
- // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
- std::vector<int32_t> positions(pos_h * pos_w);
- int bucket_coords_h[1024];
- int bucket_coords_w[1024];
- for (int i = 0; i < pos_h; i++){
- bucket_coords_h[i] = std::floor(70.0*i/pos_h);
- }
- for (int i = 0; i < pos_w; i++){
- bucket_coords_w[i] = std::floor(70.0*i/pos_w);
- }
- for (int i = 0, id = 0; i < pos_h; i++){
- for (int j = 0; j < pos_w; j++){
- positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
- }
- }
- set_input_i32("positions", positions);
- // inspired from resampler of Qwen-VL:
- // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
- // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
- int embed_dim = clip_n_mmproj_embd(ctx);
- // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
- auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
- std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
- for(int i = 0; i < pos_w * pos_h; ++i){
- for(int j = 0; j < embed_dim; ++j){
- pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
- }
- }
- set_input_f32("pos_embed", pos_embed);
- } break;
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN3VL:
- {
- const int merge_ratio = 2;
- const int pw = image_size_width / patch_size;
- const int ph = image_size_height / patch_size;
- std::vector<int> positions(n_pos * 4);
- int ptr = 0;
- for (int y = 0; y < ph; y += merge_ratio) {
- for (int x = 0; x < pw; x += merge_ratio) {
- for (int dy = 0; dy < 2; dy++) {
- for (int dx = 0; dx < 2; dx++) {
- positions[ ptr] = y + dy;
- positions[ num_patches + ptr] = x + dx;
- positions[2 * num_patches + ptr] = y + dy;
- positions[3 * num_patches + ptr] = x + dx;
- ptr++;
- }
- }
- }
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_QWEN25VL:
- {
- // pw * ph = number of tokens output by ViT after apply patch merger
- // ipw * ipw = number of vision token been processed inside ViT
- const int merge_ratio = 2;
- const int pw = image_size_width / patch_size / merge_ratio;
- const int ph = image_size_height / patch_size / merge_ratio;
- const int ipw = image_size_width / patch_size;
- const int iph = image_size_height / patch_size;
- std::vector<int> idx (ph * pw);
- std::vector<int> inv_idx(ph * pw);
- if (use_window_attn) {
- const int attn_window_size = 112;
- const int grid_window = attn_window_size / patch_size / merge_ratio;
- int dst = 0;
- // [num_vision_tokens, num_vision_tokens] attention mask tensor
- std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
- int mask_row = 0;
- for (int y = 0; y < ph; y += grid_window) {
- for (int x = 0; x < pw; x += grid_window) {
- const int win_h = std::min(grid_window, ph - y);
- const int win_w = std::min(grid_window, pw - x);
- const int dst_0 = dst;
- // group all tokens belong to the same window togather (to a continue range)
- for (int dy = 0; dy < win_h; dy++) {
- for (int dx = 0; dx < win_w; dx++) {
- const int src = (y + dy) * pw + (x + dx);
- GGML_ASSERT(src < (int)idx.size());
- GGML_ASSERT(dst < (int)inv_idx.size());
- idx [src] = dst;
- inv_idx[dst] = src;
- dst++;
- }
- }
- for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
- int row_offset = mask_row * (ipw * iph);
- std::fill(
- mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
- mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
- 0.0);
- mask_row++;
- }
- }
- }
- set_input_i32("window_idx", idx);
- set_input_i32("inv_window_idx", inv_idx);
- set_input_f32("window_mask", mask);
- } else {
- for (int i = 0; i < ph * pw; i++) {
- idx[i] = i;
- }
- }
- const int mpow = merge_ratio * merge_ratio;
- std::vector<int> positions(n_pos * 4);
- int ptr = 0;
- for (int y = 0; y < iph; y += merge_ratio) {
- for (int x = 0; x < ipw; x += merge_ratio) {
- for (int dy = 0; dy < 2; dy++) {
- for (int dx = 0; dx < 2; dx++) {
- auto remap = idx[ptr / mpow];
- remap = (remap * mpow) + (ptr % mpow);
- positions[ remap] = y + dy;
- positions[ num_patches + remap] = x + dx;
- positions[2 * num_patches + remap] = y + dy;
- positions[3 * num_patches + remap] = x + dx;
- ptr++;
- }
- }
- }
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_PIXTRAL:
- case PROJECTOR_TYPE_KIMIVL:
- case PROJECTOR_TYPE_LIGHTONOCR:
- {
- // set the 2D positions
- int n_patches_per_col = image_size_width / patch_size;
- std::vector<int> pos_data(n_pos);
- // dimension H
- for (int i = 0; i < n_pos; i++) {
- pos_data[i] = i / n_patches_per_col;
- }
- set_input_i32("pos_h", pos_data);
- // dimension W
- for (int i = 0; i < n_pos; i++) {
- pos_data[i] = i % n_patches_per_col;
- }
- set_input_i32("pos_w", pos_data);
- } break;
- case PROJECTOR_TYPE_GLM_EDGE:
- {
- // llava and other models
- std::vector<int32_t> positions(n_pos);
- for (int i = 0; i < n_pos; i++) {
- positions[i] = i;
- }
- set_input_i32("positions", positions);
- } break;
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_MLP_NORM:
- case PROJECTOR_TYPE_LDP:
- case PROJECTOR_TYPE_LDPV2:
- {
- // llava and other models
- std::vector<int32_t> positions(n_pos);
- for (int i = 0; i < n_pos; i++) {
- positions[i] = i;
- }
- set_input_i32("positions", positions);
- // The patches vector is used to get rows to index into the embeds with;
- // we should skip dim 0 only if we have CLS to avoid going out of bounds
- // when retrieving the rows.
- int patch_offset = model.class_embedding ? 1 : 0;
- std::vector<int32_t> patches(num_patches);
- for (int i = 0; i < num_patches; i++) {
- patches[i] = i + patch_offset;
- }
- set_input_i32("patches", patches);
- } break;
- case PROJECTOR_TYPE_GEMMA3:
- case PROJECTOR_TYPE_IDEFICS3:
- case PROJECTOR_TYPE_INTERNVL:
- case PROJECTOR_TYPE_QWEN2A:
- case PROJECTOR_TYPE_ULTRAVOX:
- case PROJECTOR_TYPE_LFM2:
- case PROJECTOR_TYPE_VOXTRAL:
- case PROJECTOR_TYPE_COGVLM:
- {
- // do nothing
- } break;
- case PROJECTOR_TYPE_LLAMA4:
- {
- // set the 2D positions
- int n_patches_per_col = image_size_width / patch_size;
- std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
- // last pos is always kept 0, it's for CLS
- // dimension H
- for (int i = 0; i < num_patches; i++) {
- pos_data[i] = (i / n_patches_per_col) + 1;
- }
- set_input_i32("pos_h", pos_data);
- // dimension W
- for (int i = 0; i < num_patches; i++) {
- pos_data[i] = (i % n_patches_per_col) + 1;
- }
- set_input_i32("pos_w", pos_data);
- } break;
- default:
- GGML_ABORT("Unknown projector type");
- }
- // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
- ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
- ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
- if (reg) {
- auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
- if (ggml_backend_set_n_threads_fn) {
- ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
- }
- }
- auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
- if (status != GGML_STATUS_SUCCESS) {
- LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
- return false;
- }
- // print debug nodes
- if (ctx->debug_graph) {
- LOG_INF("\n\n---\n\n");
- LOG_INF("\n\nDebug graph:\n\n");
- for (ggml_tensor * t : ctx->debug_print_tensors) {
- std::vector<uint8_t> data(ggml_nbytes(t));
- ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
- print_tensor_shape(t);
- print_tensor_data(t, data.data(), 3);
- }
- }
- // the last node is the embedding tensor
- ggml_tensor * embeddings = ggml_graph_node(gf, -1);
- // sanity check (only support batch size of 1 for now)
- const int n_tokens_out = embeddings->ne[1];
- const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
- if (n_tokens_out != expected_n_tokens_out) {
- LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
- GGML_ABORT("Invalid number of output tokens");
- }
- // copy the embeddings to the location passed by the user
- ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
- return true;
- }
- int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
- switch (ctx->model.proj_type) {
- case PROJECTOR_TYPE_LDP:
- return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
- case PROJECTOR_TYPE_LDPV2:
- return ctx->model.mm_model_peg_0_b->ne[0];
- case PROJECTOR_TYPE_MLP:
- case PROJECTOR_TYPE_PIXTRAL:
- case PROJECTOR_TYPE_LIGHTONOCR:
- return ctx->model.mm_2_w->ne[1];
- case PROJECTOR_TYPE_MLP_NORM:
- return ctx->model.mm_3_b->ne[0];
- case PROJECTOR_TYPE_MINICPMV:
- return ctx->model.mm_model_proj->ne[0];
- case PROJECTOR_TYPE_GLM_EDGE:
- return ctx->model.mm_model_mlp_3_w->ne[1];
- case PROJECTOR_TYPE_QWEN2VL:
- case PROJECTOR_TYPE_QWEN25VL:
- return ctx->model.mm_1_b->ne[0];
- case PROJECTOR_TYPE_QWEN3VL:
- // main path + deepstack paths
- return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
- case PROJECTOR_TYPE_GEMMA3:
- return ctx->model.mm_input_proj_w->ne[0];
- case PROJECTOR_TYPE_IDEFICS3:
- return ctx->model.projection->ne[1];
- case PROJECTOR_TYPE_ULTRAVOX:
- case PROJECTOR_TYPE_VOXTRAL:
- return ctx->model.mm_2_w->ne[1];
- case PROJECTOR_TYPE_INTERNVL:
- return ctx->model.mm_3_w->ne[1];
- case PROJECTOR_TYPE_LLAMA4:
- return ctx->model.mm_model_proj->ne[1];
- case PROJECTOR_TYPE_QWEN2A:
- return ctx->model.mm_fc_w->ne[1];
- case PROJECTOR_TYPE_LFM2:
- case PROJECTOR_TYPE_KIMIVL:
- return ctx->model.mm_2_w->ne[1];
- case PROJECTOR_TYPE_COGVLM:
- return ctx->model.mm_4h_to_h_w->ne[1];
- default:
- GGML_ABORT("Unknown projector type");
- }
- }
- int clip_is_minicpmv(const struct clip_ctx * ctx) {
- if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
- return ctx->model.hparams.minicpmv_version;
- }
- return 0;
- }
- bool clip_is_glm(const struct clip_ctx * ctx) {
- return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
- }
- bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
- return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
- || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
- || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
- }
- bool clip_is_llava(const struct clip_ctx * ctx) {
- return ctx->model.hparams.has_llava_projector;
- }
- bool clip_is_gemma3(const struct clip_ctx * ctx) {
- return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
- }
- bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
- return ctx->model.modality == CLIP_MODALITY_VISION;
- }
- bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
- return ctx->model.modality == CLIP_MODALITY_AUDIO;
- }
- bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
- return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
- || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
- || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
- }
- bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
- clip_image_f32 clip_img;
- clip_img.buf.resize(h * w * 3);
- for (int i = 0; i < h*w*3; i++)
- {
- clip_img.buf[i] = img[i];
- }
- clip_img.nx = w;
- clip_img.ny = h;
- clip_image_encode(ctx, n_threads, &clip_img, vec);
- return true;
- }
- //
- // API used internally with mtmd
- //
- projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
- return ctx->proj_type();
- }
- void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
- clip_image_f32 * audio = new clip_image_f32;
- audio->nx = n_frames;
- audio->ny = n_mel;
- audio->buf.resize(n_frames * n_mel);
- std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
- batch->entries.push_back(clip_image_f32_ptr(audio));
- batch->is_audio = true;
- }
|