ggml.c 694 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #include <stdarg.h>
  22. #include <signal.h>
  23. #if defined(__gnu_linux__)
  24. #include <syscall.h>
  25. #endif
  26. #ifdef GGML_USE_METAL
  27. #include <unistd.h>
  28. #endif
  29. #if defined(_MSC_VER)
  30. // disable "possible loss of data" to avoid hundreds of casts
  31. // we should just be careful :)
  32. #pragma warning(disable: 4244 4267)
  33. // disable POSIX deprecation warnings
  34. // these functions are never going away, anyway
  35. #pragma warning(disable: 4996)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int * ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int * ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void * unused) {
  66. (void) unused;
  67. int ret = (int) WaitForSingleObject(thread, INFINITE);
  68. CloseHandle(thread);
  69. return ret;
  70. }
  71. static int sched_yield (void) {
  72. Sleep (0);
  73. return 0;
  74. }
  75. #else
  76. #include <pthread.h>
  77. #include <stdatomic.h>
  78. typedef void * thread_ret_t;
  79. #include <sys/types.h>
  80. #include <sys/stat.h>
  81. #include <unistd.h>
  82. #endif
  83. #ifdef GGML_USE_CPU_HBM
  84. #include <hbwmalloc.h>
  85. #endif
  86. #if defined(__APPLE__)
  87. #include <TargetConditionals.h>
  88. #endif
  89. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  90. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  91. #include <sys/wait.h>
  92. void ggml_print_backtrace(void) {
  93. /*
  94. #include <execinfo.h>
  95. #include <dlfcn.h>
  96. void * trace[100];
  97. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  98. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  99. */
  100. // backtrack_symbols does not show line numbers, use gdb instead
  101. char attach[32];
  102. snprintf(attach, sizeof(attach), "attach %d", getpid());
  103. int pid = fork();
  104. if (pid == 0) {
  105. execlp("gdb", "gdb", "--batch",
  106. "-ex", "set style enabled on",
  107. "-ex", attach,
  108. "-ex", "bt -frame-info source-and-location",
  109. "-ex", "detach",
  110. "-ex", "quit",
  111. (char *) NULL);
  112. } else {
  113. waitpid(pid, NULL, 0);
  114. }
  115. }
  116. #else
  117. void ggml_print_backtrace(void) {
  118. // platform not supported
  119. }
  120. #endif
  121. /*#define GGML_PERF*/
  122. #define GGML_DEBUG 0
  123. #define GGML_GELU_FP16
  124. #define GGML_GELU_QUICK_FP16
  125. #define GGML_SILU_FP16
  126. // #define GGML_CROSS_ENTROPY_EXP_FP16
  127. // #define GGML_FLASH_ATTN_EXP_FP16
  128. #define GGML_SOFT_MAX_UNROLL 4
  129. #define GGML_VEC_DOT_UNROLL 2
  130. #define GGML_VEC_MAD_UNROLL 32
  131. //
  132. // logging
  133. //
  134. #if (GGML_DEBUG >= 1)
  135. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  136. #else
  137. #define GGML_PRINT_DEBUG(...)
  138. #endif
  139. #if (GGML_DEBUG >= 5)
  140. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  141. #else
  142. #define GGML_PRINT_DEBUG_5(...)
  143. #endif
  144. #if (GGML_DEBUG >= 10)
  145. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  146. #else
  147. #define GGML_PRINT_DEBUG_10(...)
  148. #endif
  149. #define GGML_PRINT(...) printf(__VA_ARGS__)
  150. //
  151. // end of logging block
  152. //
  153. #ifdef GGML_USE_ACCELERATE
  154. // uncomment to use vDSP for soft max computation
  155. // note: not sure if it is actually faster
  156. //#define GGML_SOFT_MAX_ACCELERATE
  157. #endif
  158. #if defined(_MSC_VER) || defined(__MINGW32__)
  159. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  160. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  161. #else
  162. inline static void * ggml_aligned_malloc(size_t size) {
  163. if (size == 0) {
  164. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  165. return NULL;
  166. }
  167. void * aligned_memory = NULL;
  168. #ifdef GGML_USE_CPU_HBM
  169. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  170. #elif GGML_USE_METAL
  171. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  172. #else
  173. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  174. #endif
  175. if (result != 0) {
  176. // Handle allocation failure
  177. const char *error_desc = "unknown allocation error";
  178. switch (result) {
  179. case EINVAL:
  180. error_desc = "invalid alignment value";
  181. break;
  182. case ENOMEM:
  183. error_desc = "insufficient memory";
  184. break;
  185. }
  186. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  187. GGML_ASSERT(false);
  188. return NULL;
  189. }
  190. return aligned_memory;
  191. }
  192. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  193. #ifdef GGML_USE_CPU_HBM
  194. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  195. #else
  196. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  197. #endif
  198. #endif
  199. inline static void * ggml_malloc(size_t size) {
  200. if (size == 0) {
  201. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  202. return NULL;
  203. }
  204. void * result = malloc(size);
  205. if (result == NULL) {
  206. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  207. GGML_ASSERT(false);
  208. }
  209. return result;
  210. }
  211. // calloc
  212. inline static void * ggml_calloc(size_t num, size_t size) {
  213. if (num == 0 || size == 0) {
  214. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  215. return NULL;
  216. }
  217. void * result = calloc(num, size);
  218. if (result == NULL) {
  219. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  220. GGML_ASSERT(false);
  221. }
  222. return result;
  223. }
  224. #define GGML_MALLOC(size) ggml_malloc(size)
  225. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  226. #define GGML_FREE(ptr) free(ptr)
  227. #define UNUSED GGML_UNUSED
  228. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  229. #if defined(GGML_USE_ACCELERATE)
  230. #include <Accelerate/Accelerate.h>
  231. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  232. #include "ggml-opencl.h"
  233. #elif defined(GGML_USE_VULKAN)
  234. #include "ggml-vulkan.h"
  235. #endif
  236. #elif defined(GGML_USE_OPENBLAS)
  237. #if defined(GGML_BLAS_USE_MKL)
  238. #include <mkl.h>
  239. #else
  240. #include <cblas.h>
  241. #endif
  242. #elif defined(GGML_USE_CUBLAS)
  243. #include "ggml-cuda.h"
  244. #elif defined(GGML_USE_CLBLAST)
  245. #include "ggml-opencl.h"
  246. #elif defined(GGML_USE_VULKAN)
  247. #include "ggml-vulkan.h"
  248. #elif defined(GGML_USE_SYCL)
  249. #include "ggml-sycl.h"
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed silu table for f16 (128 KB)
  265. static ggml_fp16_t ggml_table_silu_f16[1 << 16];
  266. // precomputed exp table for f16 (128 KB)
  267. static ggml_fp16_t ggml_table_exp_f16[1 << 16];
  268. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  269. float ggml_table_f32_f16[1 << 16];
  270. const char * ggml_status_to_string(enum ggml_status status) {
  271. switch (status) {
  272. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  273. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  274. case GGML_STATUS_SUCCESS: return "GGML status: success";
  275. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  276. }
  277. return "GGML status: unknown";
  278. }
  279. // note: do not use these inside ggml.c
  280. // these are meant to be used via the ggml.h API
  281. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  282. return GGML_FP16_TO_FP32(x);
  283. }
  284. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  285. return GGML_FP32_TO_FP16(x);
  286. }
  287. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  288. for (int i = 0; i < n; i++) {
  289. y[i] = GGML_FP16_TO_FP32(x[i]);
  290. }
  291. }
  292. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  293. int i = 0;
  294. #if defined(__F16C__)
  295. for (; i + 7 < n; i += 8) {
  296. __m256 x_vec = _mm256_loadu_ps(x + i);
  297. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  298. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  299. }
  300. for(; i + 3 < n; i += 4) {
  301. __m128 x_vec = _mm_loadu_ps(x + i);
  302. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  303. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  304. }
  305. #endif
  306. for (; i < n; i++) {
  307. y[i] = GGML_FP32_TO_FP16(x[i]);
  308. }
  309. }
  310. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  311. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  312. }
  313. //
  314. // timing
  315. //
  316. #if defined(_MSC_VER) || defined(__MINGW32__)
  317. static int64_t timer_freq, timer_start;
  318. void ggml_time_init(void) {
  319. LARGE_INTEGER t;
  320. QueryPerformanceFrequency(&t);
  321. timer_freq = t.QuadPart;
  322. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  323. // and the uptime is high enough.
  324. // We subtract the program start time to reduce the likelihood of that happening.
  325. QueryPerformanceCounter(&t);
  326. timer_start = t.QuadPart;
  327. }
  328. int64_t ggml_time_ms(void) {
  329. LARGE_INTEGER t;
  330. QueryPerformanceCounter(&t);
  331. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  332. }
  333. int64_t ggml_time_us(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  337. }
  338. #else
  339. void ggml_time_init(void) {}
  340. int64_t ggml_time_ms(void) {
  341. struct timespec ts;
  342. clock_gettime(CLOCK_MONOTONIC, &ts);
  343. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  344. }
  345. int64_t ggml_time_us(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  349. }
  350. #endif
  351. int64_t ggml_cycles(void) {
  352. return clock();
  353. }
  354. int64_t ggml_cycles_per_ms(void) {
  355. return CLOCKS_PER_SEC/1000;
  356. }
  357. #ifdef GGML_PERF
  358. #define ggml_perf_time_ms() ggml_time_ms()
  359. #define ggml_perf_time_us() ggml_time_us()
  360. #define ggml_perf_cycles() ggml_cycles()
  361. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  362. #else
  363. #define ggml_perf_time_ms() 0
  364. #define ggml_perf_time_us() 0
  365. #define ggml_perf_cycles() 0
  366. #define ggml_perf_cycles_per_ms() 0
  367. #endif
  368. //
  369. // cache line
  370. //
  371. #if defined(__cpp_lib_hardware_interference_size)
  372. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  373. #else
  374. #if defined(__POWER9_VECTOR__)
  375. #define CACHE_LINE_SIZE 128
  376. #else
  377. #define CACHE_LINE_SIZE 64
  378. #endif
  379. #endif
  380. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  381. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  382. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  383. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  384. [GGML_TYPE_I8] = {
  385. .type_name = "i8",
  386. .blck_size = 1,
  387. .type_size = sizeof(int8_t),
  388. .is_quantized = false,
  389. },
  390. [GGML_TYPE_I16] = {
  391. .type_name = "i16",
  392. .blck_size = 1,
  393. .type_size = sizeof(int16_t),
  394. .is_quantized = false,
  395. },
  396. [GGML_TYPE_I32] = {
  397. .type_name = "i32",
  398. .blck_size = 1,
  399. .type_size = sizeof(int32_t),
  400. .is_quantized = false,
  401. },
  402. [GGML_TYPE_I64] = {
  403. .type_name = "i64",
  404. .blck_size = 1,
  405. .type_size = sizeof(int64_t),
  406. .is_quantized = false,
  407. },
  408. [GGML_TYPE_F64] = {
  409. .type_name = "f64",
  410. .blck_size = 1,
  411. .type_size = sizeof(double),
  412. .is_quantized = false,
  413. .nrows = 1,
  414. },
  415. [GGML_TYPE_F32] = {
  416. .type_name = "f32",
  417. .blck_size = 1,
  418. .type_size = sizeof(float),
  419. .is_quantized = false,
  420. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  421. .vec_dot_type = GGML_TYPE_F32,
  422. .nrows = 1,
  423. },
  424. [GGML_TYPE_F16] = {
  425. .type_name = "f16",
  426. .blck_size = 1,
  427. .type_size = sizeof(ggml_fp16_t),
  428. .is_quantized = false,
  429. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  430. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  431. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  432. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  433. .vec_dot_type = GGML_TYPE_F16,
  434. .nrows = 1,
  435. },
  436. [GGML_TYPE_Q4_0] = {
  437. .type_name = "q4_0",
  438. .blck_size = QK4_0,
  439. .type_size = sizeof(block_q4_0),
  440. .is_quantized = true,
  441. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  442. .from_float = quantize_row_q4_0,
  443. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  444. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  445. .vec_dot_type = GGML_TYPE_Q8_0,
  446. #if defined (__ARM_FEATURE_MATMUL_INT8)
  447. .nrows = 2,
  448. #else
  449. .nrows = 1,
  450. #endif
  451. },
  452. [GGML_TYPE_Q4_1] = {
  453. .type_name = "q4_1",
  454. .blck_size = QK4_1,
  455. .type_size = sizeof(block_q4_1),
  456. .is_quantized = true,
  457. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  458. .from_float = quantize_row_q4_1,
  459. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  460. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  461. .vec_dot_type = GGML_TYPE_Q8_1,
  462. #if defined (__ARM_FEATURE_MATMUL_INT8)
  463. .nrows = 2,
  464. #else
  465. .nrows = 1,
  466. #endif
  467. },
  468. [4] = { // GGML_TYPE_Q4_2
  469. .type_name = "DEPRECATED",
  470. .blck_size = 0,
  471. .type_size = 0,
  472. .is_quantized = false,
  473. .to_float = NULL,
  474. .from_float = NULL,
  475. .from_float_reference = NULL,
  476. .vec_dot = NULL,
  477. .vec_dot_type = GGML_TYPE_COUNT,
  478. .nrows = 1,
  479. },
  480. [5] = { // GGML_TYPE_Q4_3
  481. .type_name = "DEPRECATED",
  482. .blck_size = 0,
  483. .type_size = 0,
  484. .is_quantized = false,
  485. .to_float = NULL,
  486. .from_float = NULL,
  487. .from_float_reference = NULL,
  488. .vec_dot = NULL,
  489. .vec_dot_type = GGML_TYPE_COUNT,
  490. .nrows = 1,
  491. },
  492. [GGML_TYPE_Q5_0] = {
  493. .type_name = "q5_0",
  494. .blck_size = QK5_0,
  495. .type_size = sizeof(block_q5_0),
  496. .is_quantized = true,
  497. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  498. .from_float = quantize_row_q5_0,
  499. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  500. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  501. .vec_dot_type = GGML_TYPE_Q8_0,
  502. .nrows = 1,
  503. },
  504. [GGML_TYPE_Q5_1] = {
  505. .type_name = "q5_1",
  506. .blck_size = QK5_1,
  507. .type_size = sizeof(block_q5_1),
  508. .is_quantized = true,
  509. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  510. .from_float = quantize_row_q5_1,
  511. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  512. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  513. .vec_dot_type = GGML_TYPE_Q8_1,
  514. .nrows = 1,
  515. },
  516. [GGML_TYPE_Q8_0] = {
  517. .type_name = "q8_0",
  518. .blck_size = QK8_0,
  519. .type_size = sizeof(block_q8_0),
  520. .is_quantized = true,
  521. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  522. .from_float = quantize_row_q8_0,
  523. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  524. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  525. .vec_dot_type = GGML_TYPE_Q8_0,
  526. #if defined (__ARM_FEATURE_MATMUL_INT8)
  527. .nrows = 2,
  528. #else
  529. .nrows = 1,
  530. #endif
  531. },
  532. [GGML_TYPE_Q8_1] = {
  533. .type_name = "q8_1",
  534. .blck_size = QK8_1,
  535. .type_size = sizeof(block_q8_1),
  536. .is_quantized = true,
  537. .from_float = quantize_row_q8_1,
  538. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  539. .vec_dot_type = GGML_TYPE_Q8_1,
  540. .nrows = 1,
  541. },
  542. [GGML_TYPE_Q2_K] = {
  543. .type_name = "q2_K",
  544. .blck_size = QK_K,
  545. .type_size = sizeof(block_q2_K),
  546. .is_quantized = true,
  547. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  548. .from_float = quantize_row_q2_K,
  549. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  550. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  551. .vec_dot_type = GGML_TYPE_Q8_K,
  552. .nrows = 1,
  553. },
  554. [GGML_TYPE_Q3_K] = {
  555. .type_name = "q3_K",
  556. .blck_size = QK_K,
  557. .type_size = sizeof(block_q3_K),
  558. .is_quantized = true,
  559. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  560. .from_float = quantize_row_q3_K,
  561. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  562. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  563. .vec_dot_type = GGML_TYPE_Q8_K,
  564. .nrows = 1,
  565. },
  566. [GGML_TYPE_Q4_K] = {
  567. .type_name = "q4_K",
  568. .blck_size = QK_K,
  569. .type_size = sizeof(block_q4_K),
  570. .is_quantized = true,
  571. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  572. .from_float = quantize_row_q4_K,
  573. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  574. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  575. .vec_dot_type = GGML_TYPE_Q8_K,
  576. .nrows = 1,
  577. },
  578. [GGML_TYPE_Q5_K] = {
  579. .type_name = "q5_K",
  580. .blck_size = QK_K,
  581. .type_size = sizeof(block_q5_K),
  582. .is_quantized = true,
  583. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  584. .from_float = quantize_row_q5_K,
  585. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  586. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  587. .vec_dot_type = GGML_TYPE_Q8_K,
  588. .nrows = 1,
  589. },
  590. [GGML_TYPE_Q6_K] = {
  591. .type_name = "q6_K",
  592. .blck_size = QK_K,
  593. .type_size = sizeof(block_q6_K),
  594. .is_quantized = true,
  595. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  596. .from_float = quantize_row_q6_K,
  597. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  598. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  599. .vec_dot_type = GGML_TYPE_Q8_K,
  600. .nrows = 1,
  601. },
  602. [GGML_TYPE_IQ2_XXS] = {
  603. .type_name = "iq2_xxs",
  604. .blck_size = QK_K,
  605. .type_size = sizeof(block_iq2_xxs),
  606. .is_quantized = true,
  607. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  608. .from_float = NULL,
  609. .from_float_reference = NULL,
  610. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  611. .vec_dot_type = GGML_TYPE_Q8_K,
  612. .nrows = 1,
  613. },
  614. [GGML_TYPE_IQ2_XS] = {
  615. .type_name = "iq2_xs",
  616. .blck_size = QK_K,
  617. .type_size = sizeof(block_iq2_xs),
  618. .is_quantized = true,
  619. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  620. .from_float = NULL,
  621. .from_float_reference = NULL,
  622. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  623. .vec_dot_type = GGML_TYPE_Q8_K,
  624. .nrows = 1,
  625. },
  626. [GGML_TYPE_IQ3_XXS] = {
  627. .type_name = "iq3_xxs",
  628. .blck_size = QK_K,
  629. .type_size = sizeof(block_iq3_xxs),
  630. .is_quantized = true,
  631. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  632. .from_float = quantize_row_iq3_xxs,
  633. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  634. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  635. .vec_dot_type = GGML_TYPE_Q8_K,
  636. .nrows = 1,
  637. },
  638. [GGML_TYPE_IQ3_S] = {
  639. .type_name = "iq3_s",
  640. .blck_size = QK_K,
  641. .type_size = sizeof(block_iq3_s),
  642. .is_quantized = true,
  643. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  644. .from_float = quantize_row_iq3_s,
  645. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  646. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  647. .vec_dot_type = GGML_TYPE_Q8_K,
  648. .nrows = 1,
  649. },
  650. [GGML_TYPE_IQ2_S] = {
  651. .type_name = "iq2_s",
  652. .blck_size = QK_K,
  653. .type_size = sizeof(block_iq2_s),
  654. .is_quantized = true,
  655. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  656. .from_float = quantize_row_iq2_s,
  657. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  658. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  659. .vec_dot_type = GGML_TYPE_Q8_K,
  660. .nrows = 1,
  661. },
  662. [GGML_TYPE_IQ1_S] = {
  663. .type_name = "iq1_s",
  664. .blck_size = QK_K,
  665. .type_size = sizeof(block_iq1_s),
  666. .is_quantized = true,
  667. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  668. .from_float = NULL,
  669. .from_float_reference = NULL,
  670. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  671. .vec_dot_type = GGML_TYPE_Q8_K,
  672. .nrows = 1,
  673. },
  674. [GGML_TYPE_IQ4_NL] = {
  675. .type_name = "iq4_nl",
  676. .blck_size = QK4_NL,
  677. .type_size = sizeof(block_iq4_nl),
  678. .is_quantized = true,
  679. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  680. .from_float = quantize_row_iq4_nl,
  681. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  682. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  683. .vec_dot_type = GGML_TYPE_Q8_0,
  684. .nrows = 1,
  685. },
  686. [GGML_TYPE_IQ4_XS] = {
  687. .type_name = "iq4_xs",
  688. #if QK_K == 64
  689. .blck_size = QK4_NL,
  690. #else
  691. .blck_size = QK_K,
  692. #endif
  693. .type_size = sizeof(block_iq4_xs),
  694. .is_quantized = true,
  695. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  696. .from_float = quantize_row_iq4_xs,
  697. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  698. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  699. #if QK_K == 64
  700. .vec_dot_type = GGML_TYPE_Q8_0,
  701. #else
  702. .vec_dot_type = GGML_TYPE_Q8_K,
  703. #endif
  704. .nrows = 1,
  705. },
  706. [GGML_TYPE_Q8_K] = {
  707. .type_name = "q8_K",
  708. .blck_size = QK_K,
  709. .type_size = sizeof(block_q8_K),
  710. .is_quantized = true,
  711. .from_float = quantize_row_q8_K,
  712. }
  713. };
  714. // For internal test use
  715. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  716. GGML_ASSERT(type < GGML_TYPE_COUNT);
  717. return type_traits[type];
  718. }
  719. //
  720. // simd mappings
  721. //
  722. #if defined(__ARM_NEON)
  723. #if !defined(__aarch64__)
  724. // 64-bit compatibility
  725. inline static float vaddvq_f32(float32x4_t v) {
  726. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  727. }
  728. #endif
  729. #endif
  730. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  731. // we then implement the fundamental computation operations below using only these macros
  732. // adding support for new architectures requires to define the corresponding SIMD macros
  733. //
  734. // GGML_F32_STEP / GGML_F16_STEP
  735. // number of elements to process in a single step
  736. //
  737. // GGML_F32_EPR / GGML_F16_EPR
  738. // number of elements to fit in a single register
  739. //
  740. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  741. #define GGML_SIMD
  742. // F32 NEON
  743. #define GGML_F32_STEP 16
  744. #define GGML_F32_EPR 4
  745. #define GGML_F32x4 float32x4_t
  746. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  747. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  748. #define GGML_F32x4_LOAD vld1q_f32
  749. #define GGML_F32x4_STORE vst1q_f32
  750. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  751. #define GGML_F32x4_ADD vaddq_f32
  752. #define GGML_F32x4_MUL vmulq_f32
  753. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  754. #define GGML_F32x4_REDUCE(res, x) \
  755. { \
  756. int offset = GGML_F32_ARR >> 1; \
  757. for (int i = 0; i < offset; ++i) { \
  758. x[i] = vaddq_f32(x[i], x[offset+i]); \
  759. } \
  760. offset >>= 1; \
  761. for (int i = 0; i < offset; ++i) { \
  762. x[i] = vaddq_f32(x[i], x[offset+i]); \
  763. } \
  764. offset >>= 1; \
  765. for (int i = 0; i < offset; ++i) { \
  766. x[i] = vaddq_f32(x[i], x[offset+i]); \
  767. } \
  768. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  769. }
  770. #define GGML_F32_VEC GGML_F32x4
  771. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  772. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  773. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  774. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  775. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  776. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  777. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  778. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  779. // F16 NEON
  780. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  781. #define GGML_F16_STEP 32
  782. #define GGML_F16_EPR 8
  783. #define GGML_F16x8 float16x8_t
  784. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  785. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  786. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  787. #define GGML_F16x8_STORE vst1q_f16
  788. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  789. #define GGML_F16x8_ADD vaddq_f16
  790. #define GGML_F16x8_MUL vmulq_f16
  791. #define GGML_F16x8_REDUCE(res, x) \
  792. do { \
  793. int offset = GGML_F16_ARR >> 1; \
  794. for (int i = 0; i < offset; ++i) { \
  795. x[i] = vaddq_f16(x[i], x[offset+i]); \
  796. } \
  797. offset >>= 1; \
  798. for (int i = 0; i < offset; ++i) { \
  799. x[i] = vaddq_f16(x[i], x[offset+i]); \
  800. } \
  801. offset >>= 1; \
  802. for (int i = 0; i < offset; ++i) { \
  803. x[i] = vaddq_f16(x[i], x[offset+i]); \
  804. } \
  805. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  806. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  807. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  808. } while (0)
  809. #define GGML_F16_VEC GGML_F16x8
  810. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  811. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  812. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  813. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  814. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  815. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  816. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  817. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  818. #else
  819. // if FP16 vector arithmetic is not supported, we use FP32 instead
  820. // and take advantage of the vcvt_ functions to convert to/from FP16
  821. #define GGML_F16_STEP 16
  822. #define GGML_F16_EPR 4
  823. #define GGML_F32Cx4 float32x4_t
  824. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  825. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  826. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  827. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  828. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  829. #define GGML_F32Cx4_ADD vaddq_f32
  830. #define GGML_F32Cx4_MUL vmulq_f32
  831. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  832. #define GGML_F16_VEC GGML_F32Cx4
  833. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  834. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  835. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  836. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  837. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  838. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  839. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  840. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  841. #endif
  842. #elif defined(__AVX512F__)
  843. #define GGML_SIMD
  844. // F32 AVX512
  845. #define GGML_F32_STEP 64
  846. #define GGML_F32_EPR 16
  847. #define GGML_F32x16 __m512
  848. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  849. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  850. #define GGML_F32x16_LOAD _mm512_loadu_ps
  851. #define GGML_F32x16_STORE _mm512_storeu_ps
  852. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  853. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  854. #define GGML_F32x16_ADD _mm512_add_ps
  855. #define GGML_F32x16_MUL _mm512_mul_ps
  856. #define GGML_F32x16_REDUCE(res, x) \
  857. do { \
  858. int offset = GGML_F32_ARR >> 1; \
  859. for (int i = 0; i < offset; ++i) { \
  860. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  861. } \
  862. offset >>= 1; \
  863. for (int i = 0; i < offset; ++i) { \
  864. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  865. } \
  866. offset >>= 1; \
  867. for (int i = 0; i < offset; ++i) { \
  868. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  869. } \
  870. res = _mm512_reduce_add_ps(x[0]); \
  871. } while (0)
  872. // TODO: is this optimal ?
  873. #define GGML_F32_VEC GGML_F32x16
  874. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  875. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  876. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  877. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  878. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  879. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  880. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  881. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  882. // F16 AVX512
  883. // F16 AVX
  884. #define GGML_F16_STEP 64
  885. #define GGML_F16_EPR 16
  886. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  887. #define GGML_F32Cx16 __m512
  888. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  889. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  890. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  891. // so F16C guard isn't required
  892. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((__m256i *)(x)))
  893. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  894. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  895. #define GGML_F32Cx16_ADD _mm512_add_ps
  896. #define GGML_F32Cx16_MUL _mm512_mul_ps
  897. #define GGML_F32Cx16_REDUCE(res, x) \
  898. do { \
  899. int offset = GGML_F32_ARR >> 1; \
  900. for (int i = 0; i < offset; ++i) { \
  901. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  902. } \
  903. offset >>= 1; \
  904. for (int i = 0; i < offset; ++i) { \
  905. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  906. } \
  907. offset >>= 1; \
  908. for (int i = 0; i < offset; ++i) { \
  909. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  910. } \
  911. res = _mm512_reduce_add_ps(x[0]); \
  912. } while (0)
  913. #define GGML_F16_VEC GGML_F32Cx16
  914. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  915. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  916. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  917. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  918. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  919. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  920. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  921. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  922. #elif defined(__AVX__)
  923. #define GGML_SIMD
  924. // F32 AVX
  925. #define GGML_F32_STEP 32
  926. #define GGML_F32_EPR 8
  927. #define GGML_F32x8 __m256
  928. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  929. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  930. #define GGML_F32x8_LOAD _mm256_loadu_ps
  931. #define GGML_F32x8_STORE _mm256_storeu_ps
  932. #if defined(__FMA__)
  933. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  934. #else
  935. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  936. #endif
  937. #define GGML_F32x8_ADD _mm256_add_ps
  938. #define GGML_F32x8_MUL _mm256_mul_ps
  939. #define GGML_F32x8_REDUCE(res, x) \
  940. do { \
  941. int offset = GGML_F32_ARR >> 1; \
  942. for (int i = 0; i < offset; ++i) { \
  943. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  944. } \
  945. offset >>= 1; \
  946. for (int i = 0; i < offset; ++i) { \
  947. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  948. } \
  949. offset >>= 1; \
  950. for (int i = 0; i < offset; ++i) { \
  951. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  952. } \
  953. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  954. _mm256_extractf128_ps(x[0], 1)); \
  955. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  956. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  957. } while (0)
  958. // TODO: is this optimal ?
  959. #define GGML_F32_VEC GGML_F32x8
  960. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  961. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  962. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  963. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  964. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  965. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  966. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  967. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  968. // F16 AVX
  969. #define GGML_F16_STEP 32
  970. #define GGML_F16_EPR 8
  971. // F16 arithmetic is not supported by AVX, so we use F32 instead
  972. #define GGML_F32Cx8 __m256
  973. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  974. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  975. #if defined(__F16C__)
  976. // the _mm256_cvt intrinsics require F16C
  977. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  978. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  979. #else
  980. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  981. float tmp[8];
  982. for (int i = 0; i < 8; i++) {
  983. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  984. }
  985. return _mm256_loadu_ps(tmp);
  986. }
  987. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  988. float arr[8];
  989. _mm256_storeu_ps(arr, y);
  990. for (int i = 0; i < 8; i++)
  991. x[i] = GGML_FP32_TO_FP16(arr[i]);
  992. }
  993. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  994. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  995. #endif
  996. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  997. #define GGML_F32Cx8_ADD _mm256_add_ps
  998. #define GGML_F32Cx8_MUL _mm256_mul_ps
  999. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1000. #define GGML_F16_VEC GGML_F32Cx8
  1001. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1002. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1003. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1004. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1005. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1006. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1007. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1008. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1009. #elif defined(__POWER9_VECTOR__)
  1010. #define GGML_SIMD
  1011. // F32 POWER9
  1012. #define GGML_F32_STEP 32
  1013. #define GGML_F32_EPR 4
  1014. #define GGML_F32x4 vector float
  1015. #define GGML_F32x4_ZERO 0.0f
  1016. #define GGML_F32x4_SET1 vec_splats
  1017. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1018. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1019. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1020. #define GGML_F32x4_ADD vec_add
  1021. #define GGML_F32x4_MUL vec_mul
  1022. #define GGML_F32x4_REDUCE(res, x) \
  1023. { \
  1024. int offset = GGML_F32_ARR >> 1; \
  1025. for (int i = 0; i < offset; ++i) { \
  1026. x[i] = vec_add(x[i], x[offset+i]); \
  1027. } \
  1028. offset >>= 1; \
  1029. for (int i = 0; i < offset; ++i) { \
  1030. x[i] = vec_add(x[i], x[offset+i]); \
  1031. } \
  1032. offset >>= 1; \
  1033. for (int i = 0; i < offset; ++i) { \
  1034. x[i] = vec_add(x[i], x[offset+i]); \
  1035. } \
  1036. res = vec_extract(x[0], 0) + \
  1037. vec_extract(x[0], 1) + \
  1038. vec_extract(x[0], 2) + \
  1039. vec_extract(x[0], 3); \
  1040. }
  1041. #define GGML_F32_VEC GGML_F32x4
  1042. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1043. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1044. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1045. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1046. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1047. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1048. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1049. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1050. // F16 POWER9
  1051. #define GGML_F16_STEP GGML_F32_STEP
  1052. #define GGML_F16_EPR GGML_F32_EPR
  1053. #define GGML_F16_VEC GGML_F32x4
  1054. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1055. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1056. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1057. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1058. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1059. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1060. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1061. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1062. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1063. #define GGML_F16_VEC_STORE(p, r, i) \
  1064. if (i & 0x1) \
  1065. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1066. r[i - GGML_ENDIAN_BYTE(0)]), \
  1067. 0, p - GGML_F16_EPR)
  1068. #elif defined(__wasm_simd128__)
  1069. #define GGML_SIMD
  1070. // F32 WASM
  1071. #define GGML_F32_STEP 16
  1072. #define GGML_F32_EPR 4
  1073. #define GGML_F32x4 v128_t
  1074. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1075. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1076. #define GGML_F32x4_LOAD wasm_v128_load
  1077. #define GGML_F32x4_STORE wasm_v128_store
  1078. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1079. #define GGML_F32x4_ADD wasm_f32x4_add
  1080. #define GGML_F32x4_MUL wasm_f32x4_mul
  1081. #define GGML_F32x4_REDUCE(res, x) \
  1082. { \
  1083. int offset = GGML_F32_ARR >> 1; \
  1084. for (int i = 0; i < offset; ++i) { \
  1085. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1086. } \
  1087. offset >>= 1; \
  1088. for (int i = 0; i < offset; ++i) { \
  1089. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1090. } \
  1091. offset >>= 1; \
  1092. for (int i = 0; i < offset; ++i) { \
  1093. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1094. } \
  1095. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1096. wasm_f32x4_extract_lane(x[0], 1) + \
  1097. wasm_f32x4_extract_lane(x[0], 2) + \
  1098. wasm_f32x4_extract_lane(x[0], 3); \
  1099. }
  1100. #define GGML_F32_VEC GGML_F32x4
  1101. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1102. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1103. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1104. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1105. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1106. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1107. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1108. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1109. // F16 WASM
  1110. #define GGML_F16_STEP 16
  1111. #define GGML_F16_EPR 4
  1112. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1113. float tmp[4];
  1114. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1115. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1116. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1117. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1118. return wasm_v128_load(tmp);
  1119. }
  1120. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1121. float tmp[4];
  1122. wasm_v128_store(tmp, x);
  1123. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1124. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1125. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1126. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1127. }
  1128. #define GGML_F16x4 v128_t
  1129. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1130. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1131. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1132. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1133. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1134. #define GGML_F16x4_ADD wasm_f32x4_add
  1135. #define GGML_F16x4_MUL wasm_f32x4_mul
  1136. #define GGML_F16x4_REDUCE(res, x) \
  1137. { \
  1138. int offset = GGML_F16_ARR >> 1; \
  1139. for (int i = 0; i < offset; ++i) { \
  1140. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1141. } \
  1142. offset >>= 1; \
  1143. for (int i = 0; i < offset; ++i) { \
  1144. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1145. } \
  1146. offset >>= 1; \
  1147. for (int i = 0; i < offset; ++i) { \
  1148. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1149. } \
  1150. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1151. wasm_f32x4_extract_lane(x[0], 1) + \
  1152. wasm_f32x4_extract_lane(x[0], 2) + \
  1153. wasm_f32x4_extract_lane(x[0], 3); \
  1154. }
  1155. #define GGML_F16_VEC GGML_F16x4
  1156. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1157. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1158. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1159. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1160. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1161. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1162. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1163. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1164. #elif defined(__SSE3__)
  1165. #define GGML_SIMD
  1166. // F32 SSE
  1167. #define GGML_F32_STEP 32
  1168. #define GGML_F32_EPR 4
  1169. #define GGML_F32x4 __m128
  1170. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1171. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1172. #define GGML_F32x4_LOAD _mm_loadu_ps
  1173. #define GGML_F32x4_STORE _mm_storeu_ps
  1174. #if defined(__FMA__)
  1175. // TODO: Does this work?
  1176. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1177. #else
  1178. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1179. #endif
  1180. #define GGML_F32x4_ADD _mm_add_ps
  1181. #define GGML_F32x4_MUL _mm_mul_ps
  1182. #define GGML_F32x4_REDUCE(res, x) \
  1183. { \
  1184. int offset = GGML_F32_ARR >> 1; \
  1185. for (int i = 0; i < offset; ++i) { \
  1186. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1187. } \
  1188. offset >>= 1; \
  1189. for (int i = 0; i < offset; ++i) { \
  1190. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1191. } \
  1192. offset >>= 1; \
  1193. for (int i = 0; i < offset; ++i) { \
  1194. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1195. } \
  1196. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1197. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1198. }
  1199. // TODO: is this optimal ?
  1200. #define GGML_F32_VEC GGML_F32x4
  1201. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1202. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1203. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1204. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1205. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1206. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1207. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1208. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1209. // F16 SSE
  1210. #define GGML_F16_STEP 32
  1211. #define GGML_F16_EPR 4
  1212. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1213. float tmp[4];
  1214. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1215. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1216. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1217. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1218. return _mm_loadu_ps(tmp);
  1219. }
  1220. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1221. float arr[4];
  1222. _mm_storeu_ps(arr, y);
  1223. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1224. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1225. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1226. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1227. }
  1228. #define GGML_F32Cx4 __m128
  1229. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1230. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1231. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1232. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1233. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1234. #define GGML_F32Cx4_ADD _mm_add_ps
  1235. #define GGML_F32Cx4_MUL _mm_mul_ps
  1236. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1237. #define GGML_F16_VEC GGML_F32Cx4
  1238. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1239. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1240. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1241. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1242. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1243. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1244. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1245. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1246. #endif
  1247. // GGML_F32_ARR / GGML_F16_ARR
  1248. // number of registers to use per step
  1249. #ifdef GGML_SIMD
  1250. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1251. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1252. #endif
  1253. //
  1254. // fundamental operations
  1255. //
  1256. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1257. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1258. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1259. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1260. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1261. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1262. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1263. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1264. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1265. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1266. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1267. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1268. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1269. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1270. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1271. assert(nrc == 1);
  1272. UNUSED(nrc);
  1273. UNUSED(bx);
  1274. UNUSED(by);
  1275. UNUSED(bs);
  1276. #ifdef GGML_SIMD
  1277. float sumf = 0.0f;
  1278. const int np = (n & ~(GGML_F32_STEP - 1));
  1279. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1280. GGML_F32_VEC ax[GGML_F32_ARR];
  1281. GGML_F32_VEC ay[GGML_F32_ARR];
  1282. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1283. for (int j = 0; j < GGML_F32_ARR; j++) {
  1284. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1285. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1286. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1287. }
  1288. }
  1289. // reduce sum0..sum3 to sum0
  1290. GGML_F32_VEC_REDUCE(sumf, sum);
  1291. // leftovers
  1292. for (int i = np; i < n; ++i) {
  1293. sumf += x[i]*y[i];
  1294. }
  1295. #else
  1296. // scalar
  1297. ggml_float sumf = 0.0;
  1298. for (int i = 0; i < n; ++i) {
  1299. sumf += (ggml_float)(x[i]*y[i]);
  1300. }
  1301. #endif
  1302. *s = sumf;
  1303. }
  1304. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1305. assert(nrc == 1);
  1306. UNUSED(nrc);
  1307. UNUSED(bx);
  1308. UNUSED(by);
  1309. UNUSED(bs);
  1310. ggml_float sumf = 0.0;
  1311. #if defined(GGML_SIMD)
  1312. const int np = (n & ~(GGML_F16_STEP - 1));
  1313. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1314. GGML_F16_VEC ax[GGML_F16_ARR];
  1315. GGML_F16_VEC ay[GGML_F16_ARR];
  1316. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1317. for (int j = 0; j < GGML_F16_ARR; j++) {
  1318. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1319. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1320. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1321. }
  1322. }
  1323. // reduce sum0..sum3 to sum0
  1324. GGML_F16_VEC_REDUCE(sumf, sum);
  1325. // leftovers
  1326. for (int i = np; i < n; ++i) {
  1327. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1328. }
  1329. #else
  1330. for (int i = 0; i < n; ++i) {
  1331. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1332. }
  1333. #endif
  1334. *s = sumf;
  1335. }
  1336. // compute GGML_VEC_DOT_UNROLL dot products at once
  1337. // xs - x row stride in bytes
  1338. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1339. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1340. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1341. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1342. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1343. }
  1344. #if defined(GGML_SIMD)
  1345. const int np = (n & ~(GGML_F16_STEP - 1));
  1346. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1347. GGML_F16_VEC ax[GGML_F16_ARR];
  1348. GGML_F16_VEC ay[GGML_F16_ARR];
  1349. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1350. for (int j = 0; j < GGML_F16_ARR; j++) {
  1351. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1352. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1353. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1354. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1355. }
  1356. }
  1357. }
  1358. // reduce sum0..sum3 to sum0
  1359. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1360. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1361. }
  1362. // leftovers
  1363. for (int i = np; i < n; ++i) {
  1364. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1365. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1366. }
  1367. }
  1368. #else
  1369. for (int i = 0; i < n; ++i) {
  1370. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1371. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1372. }
  1373. }
  1374. #endif
  1375. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1376. s[i] = sumf[i];
  1377. }
  1378. }
  1379. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1380. #if defined(GGML_SIMD)
  1381. const int np = (n & ~(GGML_F32_STEP - 1));
  1382. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1383. GGML_F32_VEC ax[GGML_F32_ARR];
  1384. GGML_F32_VEC ay[GGML_F32_ARR];
  1385. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1386. for (int j = 0; j < GGML_F32_ARR; j++) {
  1387. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1388. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1389. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1390. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1391. }
  1392. }
  1393. // leftovers
  1394. for (int i = np; i < n; ++i) {
  1395. y[i] += x[i]*v;
  1396. }
  1397. #else
  1398. // scalar
  1399. for (int i = 0; i < n; ++i) {
  1400. y[i] += x[i]*v;
  1401. }
  1402. #endif
  1403. }
  1404. // xs and vs are byte strides of x and v
  1405. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1406. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1407. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1408. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1409. x[i] = (const float *) ((const char *) xv + i*xs);
  1410. v[i] = (const float *) ((const char *) vv + i*vs);
  1411. }
  1412. #if defined(GGML_SIMD)
  1413. const int np = (n & ~(GGML_F32_STEP - 1));
  1414. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1415. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1416. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1417. }
  1418. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1419. GGML_F32_VEC ay[GGML_F32_ARR];
  1420. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1421. for (int j = 0; j < GGML_F32_ARR; j++) {
  1422. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1423. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1424. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1425. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1426. }
  1427. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1428. }
  1429. }
  1430. // leftovers
  1431. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1432. for (int i = np; i < n; ++i) {
  1433. y[i] += x[k][i]*v[k][0];
  1434. }
  1435. }
  1436. #else
  1437. // scalar
  1438. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1439. for (int i = 0; i < n; ++i) {
  1440. y[i] += x[k][i]*v[k][0];
  1441. }
  1442. }
  1443. #endif
  1444. }
  1445. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1446. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1447. #if defined(GGML_USE_ACCELERATE)
  1448. vDSP_vsmul(y, 1, &v, y, 1, n);
  1449. #elif defined(GGML_SIMD)
  1450. const int np = (n & ~(GGML_F32_STEP - 1));
  1451. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1452. GGML_F32_VEC ay[GGML_F32_ARR];
  1453. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1454. for (int j = 0; j < GGML_F32_ARR; j++) {
  1455. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1456. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1457. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1458. }
  1459. }
  1460. // leftovers
  1461. for (int i = np; i < n; ++i) {
  1462. y[i] *= v;
  1463. }
  1464. #else
  1465. // scalar
  1466. for (int i = 0; i < n; ++i) {
  1467. y[i] *= v;
  1468. }
  1469. #endif
  1470. }
  1471. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1472. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1473. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1474. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1475. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1476. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1477. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1478. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1479. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1480. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1481. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1482. // TODO: optimize performance
  1483. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1484. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1485. static const float GELU_COEF_A = 0.044715f;
  1486. static const float GELU_QUICK_COEF = -1.702f;
  1487. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1488. inline static float ggml_gelu_f32(float x) {
  1489. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1490. }
  1491. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1492. const uint16_t * i16 = (const uint16_t *) x;
  1493. for (int i = 0; i < n; ++i) {
  1494. y[i] = ggml_table_gelu_f16[i16[i]];
  1495. }
  1496. }
  1497. #ifdef GGML_GELU_FP16
  1498. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1499. uint16_t t;
  1500. for (int i = 0; i < n; ++i) {
  1501. if (x[i] <= -10.0f) {
  1502. y[i] = 0.0f;
  1503. } else if (x[i] >= 10.0f) {
  1504. y[i] = x[i];
  1505. } else {
  1506. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1507. memcpy(&t, &fp16, sizeof(uint16_t));
  1508. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1509. }
  1510. }
  1511. }
  1512. #else
  1513. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1514. for (int i = 0; i < n; ++i) {
  1515. y[i] = ggml_gelu_f32(x[i]);
  1516. }
  1517. }
  1518. #endif
  1519. inline static float ggml_gelu_quick_f32(float x) {
  1520. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1521. }
  1522. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1523. // const uint16_t * i16 = (const uint16_t *) x;
  1524. // for (int i = 0; i < n; ++i) {
  1525. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1526. // }
  1527. //}
  1528. #ifdef GGML_GELU_QUICK_FP16
  1529. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1530. uint16_t t;
  1531. for (int i = 0; i < n; ++i) {
  1532. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1533. memcpy(&t, &fp16, sizeof(uint16_t));
  1534. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1535. }
  1536. }
  1537. #else
  1538. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1539. for (int i = 0; i < n; ++i) {
  1540. y[i] = ggml_gelu_quick_f32(x[i]);
  1541. }
  1542. }
  1543. #endif
  1544. // Sigmoid Linear Unit (SiLU) function
  1545. inline static float ggml_silu_f32(float x) {
  1546. return x/(1.0f + expf(-x));
  1547. }
  1548. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1549. // const uint16_t * i16 = (const uint16_t *) x;
  1550. // for (int i = 0; i < n; ++i) {
  1551. // y[i] = ggml_table_silu_f16[i16[i]];
  1552. // }
  1553. //}
  1554. #ifdef GGML_SILU_FP16
  1555. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1556. uint16_t t;
  1557. for (int i = 0; i < n; ++i) {
  1558. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1559. memcpy(&t, &fp16, sizeof(uint16_t));
  1560. y[i] = GGML_FP16_TO_FP32(ggml_table_silu_f16[t]);
  1561. }
  1562. }
  1563. #else
  1564. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1565. for (int i = 0; i < n; ++i) {
  1566. y[i] = ggml_silu_f32(x[i]);
  1567. }
  1568. }
  1569. #endif
  1570. inline static float ggml_silu_backward_f32(float x, float dy) {
  1571. const float s = 1.0f/(1.0f + expf(-x));
  1572. return dy*s*(1.0f + x*(1.0f - s));
  1573. }
  1574. #ifdef GGML_SILU_FP16
  1575. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1576. for (int i = 0; i < n; ++i) {
  1577. // we did not use x[i] to compute forward silu but its f16 equivalent
  1578. // take derivative at f16 of x[i]:
  1579. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1580. float usedx = GGML_FP16_TO_FP32(fp16);
  1581. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  1582. }
  1583. }
  1584. #else
  1585. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  1586. for (int i = 0; i < n; ++i) {
  1587. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  1588. }
  1589. }
  1590. #endif
  1591. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1592. #ifndef GGML_USE_ACCELERATE
  1593. ggml_float sum = 0.0;
  1594. for (int i = 0; i < n; ++i) {
  1595. sum += (ggml_float)x[i];
  1596. }
  1597. *s = sum;
  1598. #else
  1599. vDSP_sve(x, 1, s, n);
  1600. #endif
  1601. }
  1602. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  1603. ggml_float sum = 0.0;
  1604. for (int i = 0; i < n; ++i) {
  1605. sum += (ggml_float)x[i];
  1606. }
  1607. *s = sum;
  1608. }
  1609. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  1610. float sum = 0.0f;
  1611. for (int i = 0; i < n; ++i) {
  1612. sum += GGML_FP16_TO_FP32(x[i]);
  1613. }
  1614. *s = sum;
  1615. }
  1616. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1617. #ifndef GGML_USE_ACCELERATE
  1618. float max = -INFINITY;
  1619. for (int i = 0; i < n; ++i) {
  1620. max = MAX(max, x[i]);
  1621. }
  1622. *s = max;
  1623. #else
  1624. vDSP_maxv(x, 1, s, n);
  1625. #endif
  1626. }
  1627. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1628. ggml_vec_norm_f32(n, s, x);
  1629. *s = 1.f/(*s);
  1630. }
  1631. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  1632. float max = -INFINITY;
  1633. int idx = 0;
  1634. for (int i = 0; i < n; ++i) {
  1635. max = MAX(max, x[i]);
  1636. if (max == x[i]) { idx = i; }
  1637. }
  1638. *s = idx;
  1639. }
  1640. //
  1641. // data types
  1642. //
  1643. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  1644. "NONE",
  1645. "DUP",
  1646. "ADD",
  1647. "ADD1",
  1648. "ACC",
  1649. "SUB",
  1650. "MUL",
  1651. "DIV",
  1652. "SQR",
  1653. "SQRT",
  1654. "LOG",
  1655. "SUM",
  1656. "SUM_ROWS",
  1657. "MEAN",
  1658. "ARGMAX",
  1659. "REPEAT",
  1660. "REPEAT_BACK",
  1661. "CONCAT",
  1662. "SILU_BACK",
  1663. "NORM",
  1664. "RMS_NORM",
  1665. "RMS_NORM_BACK",
  1666. "GROUP_NORM",
  1667. "MUL_MAT",
  1668. "MUL_MAT_ID",
  1669. "OUT_PROD",
  1670. "SCALE",
  1671. "SET",
  1672. "CPY",
  1673. "CONT",
  1674. "RESHAPE",
  1675. "VIEW",
  1676. "PERMUTE",
  1677. "TRANSPOSE",
  1678. "GET_ROWS",
  1679. "GET_ROWS_BACK",
  1680. "DIAG",
  1681. "DIAG_MASK_INF",
  1682. "DIAG_MASK_ZERO",
  1683. "SOFT_MAX",
  1684. "SOFT_MAX_BACK",
  1685. "ROPE",
  1686. "ROPE_BACK",
  1687. "ALIBI",
  1688. "CLAMP",
  1689. "CONV_TRANSPOSE_1D",
  1690. "IM2COL",
  1691. "CONV_TRANSPOSE_2D",
  1692. "POOL_1D",
  1693. "POOL_2D",
  1694. "UPSCALE",
  1695. "PAD",
  1696. "ARANGE",
  1697. "TIMESTEP_EMBEDDING",
  1698. "ARGSORT",
  1699. "LEAKY_RELU",
  1700. "FLASH_ATTN",
  1701. "FLASH_FF",
  1702. "FLASH_ATTN_BACK",
  1703. "SSM_CONV",
  1704. "SSM_SCAN",
  1705. "WIN_PART",
  1706. "WIN_UNPART",
  1707. "GET_REL_POS",
  1708. "ADD_REL_POS",
  1709. "UNARY",
  1710. "MAP_UNARY",
  1711. "MAP_BINARY",
  1712. "MAP_CUSTOM1_F32",
  1713. "MAP_CUSTOM2_F32",
  1714. "MAP_CUSTOM3_F32",
  1715. "MAP_CUSTOM1",
  1716. "MAP_CUSTOM2",
  1717. "MAP_CUSTOM3",
  1718. "CROSS_ENTROPY_LOSS",
  1719. "CROSS_ENTROPY_LOSS_BACK",
  1720. };
  1721. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1722. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1723. "none",
  1724. "x",
  1725. "x+y",
  1726. "x+y",
  1727. "view(x,nb,offset)+=y->x",
  1728. "x-y",
  1729. "x*y",
  1730. "x/y",
  1731. "x^2",
  1732. "√x",
  1733. "log(x)",
  1734. "Σx",
  1735. "Σx_k",
  1736. "Σx/n",
  1737. "argmax(x)",
  1738. "repeat(x)",
  1739. "repeat_back(x)",
  1740. "concat(x, y)",
  1741. "silu_back(x)",
  1742. "norm(x)",
  1743. "rms_norm(x)",
  1744. "rms_norm_back(x)",
  1745. "group_norm(x)",
  1746. "X*Y",
  1747. "X[i]*Y",
  1748. "X*Y",
  1749. "x*v",
  1750. "y-\\>view(x)",
  1751. "x-\\>y",
  1752. "cont(x)",
  1753. "reshape(x)",
  1754. "view(x)",
  1755. "permute(x)",
  1756. "transpose(x)",
  1757. "get_rows(x)",
  1758. "get_rows_back(x)",
  1759. "diag(x)",
  1760. "diag_mask_inf(x)",
  1761. "diag_mask_zero(x)",
  1762. "soft_max(x)",
  1763. "soft_max_back(x)",
  1764. "rope(x)",
  1765. "rope_back(x)",
  1766. "alibi(x)",
  1767. "clamp(x)",
  1768. "conv_transpose_1d(x)",
  1769. "im2col(x)",
  1770. "conv_transpose_2d(x)",
  1771. "pool_1d(x)",
  1772. "pool_2d(x)",
  1773. "upscale(x)",
  1774. "pad(x)",
  1775. "arange(start, stop, step)",
  1776. "timestep_embedding(timesteps, dim, max_period)",
  1777. "argsort(x)",
  1778. "leaky_relu(x)",
  1779. "flash_attn(x)",
  1780. "flash_ff(x)",
  1781. "flash_attn_back(x)",
  1782. "ssm_conv(x)",
  1783. "ssm_scan(x)",
  1784. "win_part(x)",
  1785. "win_unpart(x)",
  1786. "get_rel_pos(x)",
  1787. "add_rel_pos(x)",
  1788. "unary(x)",
  1789. "f(x)",
  1790. "f(x,y)",
  1791. "custom_f32(x)",
  1792. "custom_f32(x,y)",
  1793. "custom_f32(x,y,z)",
  1794. "custom(x)",
  1795. "custom(x,y)",
  1796. "custom(x,y,z)",
  1797. "cross_entropy_loss(x,y)",
  1798. "cross_entropy_loss_back(x,y)",
  1799. };
  1800. static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
  1801. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  1802. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  1803. "ABS",
  1804. "SGN",
  1805. "NEG",
  1806. "STEP",
  1807. "TANH",
  1808. "ELU",
  1809. "RELU",
  1810. "GELU",
  1811. "GELU_QUICK",
  1812. "SILU",
  1813. "HARDSWISH",
  1814. "HARDSIGMOID",
  1815. };
  1816. static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12");
  1817. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1818. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1819. // WARN:
  1820. // Mis-configuration can lead to problem that's hard to reason about:
  1821. // * At best it crash or talks nosense.
  1822. // * At worst it talks slightly difference but hard to perceive.
  1823. //
  1824. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  1825. // Take care about compile options (e.g., GGML_USE_xxx).
  1826. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  1827. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  1828. static void ggml_setup_op_has_task_pass(void) {
  1829. { // INIT
  1830. bool * p = GGML_OP_HAS_INIT;
  1831. p[GGML_OP_ACC ] = true;
  1832. p[GGML_OP_MUL_MAT ] = true;
  1833. p[GGML_OP_MUL_MAT_ID ] = true;
  1834. p[GGML_OP_OUT_PROD ] = true;
  1835. p[GGML_OP_SET ] = true;
  1836. p[GGML_OP_GET_ROWS_BACK ] = true;
  1837. p[GGML_OP_DIAG_MASK_INF ] = true;
  1838. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  1839. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  1840. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  1841. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  1842. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1843. p[GGML_OP_ADD_REL_POS ] = true;
  1844. }
  1845. { // FINALIZE
  1846. bool * p = GGML_OP_HAS_FINALIZE;
  1847. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  1848. }
  1849. }
  1850. //
  1851. // ggml context
  1852. //
  1853. struct ggml_context {
  1854. size_t mem_size;
  1855. void * mem_buffer;
  1856. bool mem_buffer_owned;
  1857. bool no_alloc;
  1858. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1859. int n_objects;
  1860. struct ggml_object * objects_begin;
  1861. struct ggml_object * objects_end;
  1862. struct ggml_scratch scratch;
  1863. struct ggml_scratch scratch_save;
  1864. };
  1865. struct ggml_context_container {
  1866. bool used;
  1867. struct ggml_context context;
  1868. };
  1869. //
  1870. // NUMA support
  1871. //
  1872. #define GGML_NUMA_MAX_NODES 8
  1873. #define GGML_NUMA_MAX_CPUS 512
  1874. struct ggml_numa_node {
  1875. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  1876. uint32_t n_cpus;
  1877. };
  1878. struct ggml_numa_nodes {
  1879. enum ggml_numa_strategy numa_strategy;
  1880. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  1881. uint32_t n_nodes;
  1882. uint32_t total_cpus; // hardware threads on system
  1883. uint32_t current_node; // node on which main process is execting
  1884. #if defined(__gnu_linux__)
  1885. cpu_set_t cpuset; // cpuset from numactl
  1886. #else
  1887. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  1888. #endif
  1889. };
  1890. //
  1891. // ggml state
  1892. //
  1893. struct ggml_state {
  1894. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1895. struct ggml_numa_nodes numa;
  1896. };
  1897. // global state
  1898. static struct ggml_state g_state;
  1899. static atomic_int g_state_barrier = 0;
  1900. // barrier via spin lock
  1901. inline static void ggml_critical_section_start(void) {
  1902. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1903. while (processing > 0) {
  1904. // wait for other threads to finish
  1905. atomic_fetch_sub(&g_state_barrier, 1);
  1906. sched_yield(); // TODO: reconsider this
  1907. processing = atomic_fetch_add(&g_state_barrier, 1);
  1908. }
  1909. }
  1910. // TODO: make this somehow automatically executed
  1911. // some sort of "sentry" mechanism
  1912. inline static void ggml_critical_section_end(void) {
  1913. atomic_fetch_sub(&g_state_barrier, 1);
  1914. }
  1915. #if defined(__gnu_linux__)
  1916. static cpu_set_t ggml_get_numa_affinity(void) {
  1917. cpu_set_t cpuset;
  1918. pthread_t thread;
  1919. thread = pthread_self();
  1920. CPU_ZERO(&cpuset);
  1921. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  1922. return cpuset;
  1923. }
  1924. #else
  1925. static uint32_t ggml_get_numa_affinity(void) {
  1926. return 0; // no NUMA support
  1927. }
  1928. #endif
  1929. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  1930. if (g_state.numa.n_nodes > 0) {
  1931. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  1932. return;
  1933. }
  1934. #if defined(__gnu_linux__)
  1935. struct stat st;
  1936. char path[256];
  1937. int rv;
  1938. // set numa scheme
  1939. g_state.numa.numa_strategy = numa_flag;
  1940. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  1941. g_state.numa.cpuset = ggml_get_numa_affinity();
  1942. // enumerate nodes
  1943. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  1944. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  1945. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1946. if (stat(path, &st) != 0) { break; }
  1947. ++g_state.numa.n_nodes;
  1948. }
  1949. // enumerate CPUs
  1950. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  1951. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  1952. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1953. if (stat(path, &st) != 0) { break; }
  1954. ++g_state.numa.total_cpus;
  1955. }
  1956. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  1957. // figure out which node we're on
  1958. uint current_cpu;
  1959. int getcpu_ret = 0;
  1960. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28)
  1961. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  1962. #else
  1963. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  1964. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  1965. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  1966. # endif
  1967. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  1968. #endif
  1969. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  1970. g_state.numa.n_nodes = 0;
  1971. return;
  1972. }
  1973. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  1974. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  1975. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  1976. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  1977. node->n_cpus = 0;
  1978. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  1979. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  1980. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  1981. if (stat(path, &st) == 0) {
  1982. node->cpus[node->n_cpus++] = c;
  1983. GGML_PRINT_DEBUG(" %u", c);
  1984. }
  1985. }
  1986. GGML_PRINT_DEBUG("\n");
  1987. }
  1988. if (ggml_is_numa()) {
  1989. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  1990. if (fptr != NULL) {
  1991. char buf[42];
  1992. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  1993. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  1994. }
  1995. fclose(fptr);
  1996. }
  1997. }
  1998. #else
  1999. GGML_UNUSED(numa_flag);
  2000. // TODO
  2001. #endif
  2002. }
  2003. bool ggml_is_numa(void) {
  2004. return g_state.numa.n_nodes > 1;
  2005. }
  2006. ////////////////////////////////////////////////////////////////////////////////
  2007. void ggml_print_object(const struct ggml_object * obj) {
  2008. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2009. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2010. }
  2011. void ggml_print_objects(const struct ggml_context * ctx) {
  2012. struct ggml_object * obj = ctx->objects_begin;
  2013. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2014. while (obj != NULL) {
  2015. ggml_print_object(obj);
  2016. obj = obj->next;
  2017. }
  2018. GGML_PRINT("%s: --- end ---\n", __func__);
  2019. }
  2020. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2021. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2022. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2023. }
  2024. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2025. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2026. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2027. }
  2028. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2029. size_t nbytes;
  2030. size_t blck_size = ggml_blck_size(tensor->type);
  2031. if (blck_size == 1) {
  2032. nbytes = ggml_type_size(tensor->type);
  2033. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2034. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2035. }
  2036. }
  2037. else {
  2038. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2039. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2040. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2041. }
  2042. }
  2043. return nbytes;
  2044. }
  2045. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2046. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2047. }
  2048. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2049. return type_traits[type].blck_size;
  2050. }
  2051. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2052. return type_traits[type].type_size;
  2053. }
  2054. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2055. assert(ne % ggml_blck_size(type) == 0);
  2056. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2057. }
  2058. double ggml_type_sizef(enum ggml_type type) {
  2059. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2060. }
  2061. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2062. return type_traits[type].type_name;
  2063. }
  2064. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2065. return type_traits[type].is_quantized;
  2066. }
  2067. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2068. return GGML_OP_NAME[op];
  2069. }
  2070. const char * ggml_op_symbol(enum ggml_op op) {
  2071. return GGML_OP_SYMBOL[op];
  2072. }
  2073. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2074. return GGML_UNARY_OP_NAME[op];
  2075. }
  2076. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2077. if (t->op == GGML_OP_UNARY) {
  2078. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2079. return ggml_unary_op_name(uop);
  2080. }
  2081. else {
  2082. return ggml_op_name(t->op);
  2083. }
  2084. }
  2085. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2086. return ggml_type_size(tensor->type);
  2087. }
  2088. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2089. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2090. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2091. }
  2092. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2093. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2094. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2095. }
  2096. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2097. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2098. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2099. }
  2100. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2101. return tensor->ne[3] == 1;
  2102. }
  2103. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2104. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2105. if (tensor->ne[i] > 1) {
  2106. return i + 1;
  2107. }
  2108. }
  2109. return 1;
  2110. }
  2111. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2112. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2113. return (t0->ne[0] == t1->ne[0]) &&
  2114. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2115. (t1->ne[3]%t0->ne[3] == 0);
  2116. }
  2117. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2118. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2119. return (t0->ne[1] == t1->ne[1]) &&
  2120. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2121. (t1->ne[3]%t0->ne[3] == 0);
  2122. }
  2123. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2124. enum ggml_type wtype = GGML_TYPE_COUNT;
  2125. switch (ftype) {
  2126. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2127. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2128. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2129. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2130. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2131. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2132. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2133. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2134. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2135. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2136. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2137. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2138. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2139. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2140. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2141. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2142. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2143. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2144. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2145. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2146. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2147. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2148. }
  2149. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2150. return wtype;
  2151. }
  2152. size_t ggml_tensor_overhead(void) {
  2153. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2154. }
  2155. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2156. return tensor->nb[0] > tensor->nb[1];
  2157. }
  2158. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2159. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2160. return
  2161. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2162. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  2163. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2164. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2165. }
  2166. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  2167. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2168. return
  2169. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2170. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2171. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2172. }
  2173. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2174. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2175. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2176. }
  2177. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2178. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2179. return
  2180. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2181. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2182. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2183. }
  2184. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2185. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2186. return
  2187. (t0->ne[0] == t1->ne[0] ) &&
  2188. (t0->ne[1] == t1->ne[1] ) &&
  2189. (t0->ne[2] == t1->ne[2] ) &&
  2190. (t0->ne[3] == t1->ne[3] );
  2191. }
  2192. // check if t1 can be represented as a repeatition of t0
  2193. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2194. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2195. return
  2196. (t1->ne[0]%t0->ne[0] == 0) &&
  2197. (t1->ne[1]%t0->ne[1] == 0) &&
  2198. (t1->ne[2]%t0->ne[2] == 0) &&
  2199. (t1->ne[3]%t0->ne[3] == 0);
  2200. }
  2201. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2202. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2203. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2204. }
  2205. static inline int ggml_up32(int n) {
  2206. return (n + 31) & ~31;
  2207. }
  2208. //static inline int ggml_up64(int n) {
  2209. // return (n + 63) & ~63;
  2210. //}
  2211. static inline int ggml_up(int n, int m) {
  2212. // assert m is a power of 2
  2213. GGML_ASSERT((m & (m - 1)) == 0);
  2214. return (n + m - 1) & ~(m - 1);
  2215. }
  2216. // assert that pointer is aligned to GGML_MEM_ALIGN
  2217. #define ggml_assert_aligned(ptr) \
  2218. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2219. ////////////////////////////////////////////////////////////////////////////////
  2220. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2221. // make this function thread safe
  2222. ggml_critical_section_start();
  2223. static bool is_first_call = true;
  2224. if (is_first_call) {
  2225. // initialize time system (required on Windows)
  2226. ggml_time_init();
  2227. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2228. {
  2229. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2230. ggml_fp16_t ii;
  2231. for (int i = 0; i < (1 << 16); ++i) {
  2232. uint16_t ui = i;
  2233. memcpy(&ii, &ui, sizeof(ii));
  2234. const float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2235. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2236. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2237. ggml_table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2238. ggml_table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2239. }
  2240. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2241. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2242. }
  2243. // initialize g_state
  2244. {
  2245. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2246. g_state = (struct ggml_state) {
  2247. /*.contexts =*/ { { 0 } },
  2248. /*.numa =*/ {
  2249. .n_nodes = 0,
  2250. .total_cpus = 0,
  2251. },
  2252. };
  2253. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2254. g_state.contexts[i].used = false;
  2255. }
  2256. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2257. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2258. }
  2259. #if defined(GGML_USE_CUBLAS)
  2260. ggml_init_cublas();
  2261. #elif defined(GGML_USE_CLBLAST)
  2262. ggml_cl_init();
  2263. #elif defined(GGML_USE_VULKAN)
  2264. ggml_vk_init_cpu_assist();
  2265. #elif defined(GGML_USE_SYCL)
  2266. ggml_init_sycl();
  2267. #endif
  2268. ggml_setup_op_has_task_pass();
  2269. is_first_call = false;
  2270. }
  2271. // find non-used context in g_state
  2272. struct ggml_context * ctx = NULL;
  2273. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2274. if (!g_state.contexts[i].used) {
  2275. g_state.contexts[i].used = true;
  2276. ctx = &g_state.contexts[i].context;
  2277. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2278. break;
  2279. }
  2280. }
  2281. if (ctx == NULL) {
  2282. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2283. ggml_critical_section_end();
  2284. return NULL;
  2285. }
  2286. // allow to call ggml_init with 0 size
  2287. if (params.mem_size == 0) {
  2288. params.mem_size = GGML_MEM_ALIGN;
  2289. }
  2290. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2291. *ctx = (struct ggml_context) {
  2292. /*.mem_size =*/ mem_size,
  2293. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2294. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2295. /*.no_alloc =*/ params.no_alloc,
  2296. /*.no_alloc_save =*/ params.no_alloc,
  2297. /*.n_objects =*/ 0,
  2298. /*.objects_begin =*/ NULL,
  2299. /*.objects_end =*/ NULL,
  2300. /*.scratch =*/ { 0, 0, NULL, },
  2301. /*.scratch_save =*/ { 0, 0, NULL, },
  2302. };
  2303. GGML_ASSERT(ctx->mem_buffer != NULL);
  2304. ggml_assert_aligned(ctx->mem_buffer);
  2305. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2306. ggml_critical_section_end();
  2307. return ctx;
  2308. }
  2309. void ggml_free(struct ggml_context * ctx) {
  2310. if (ctx == NULL) {
  2311. return;
  2312. }
  2313. // make this function thread safe
  2314. ggml_critical_section_start();
  2315. bool found = false;
  2316. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2317. if (&g_state.contexts[i].context == ctx) {
  2318. g_state.contexts[i].used = false;
  2319. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2320. __func__, i, ggml_used_mem(ctx));
  2321. if (ctx->mem_buffer_owned) {
  2322. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2323. }
  2324. found = true;
  2325. break;
  2326. }
  2327. }
  2328. if (!found) {
  2329. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2330. }
  2331. ggml_critical_section_end();
  2332. }
  2333. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2334. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2335. }
  2336. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2337. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2338. ctx->scratch = scratch;
  2339. return result;
  2340. }
  2341. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2342. return ctx->no_alloc;
  2343. }
  2344. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2345. ctx->no_alloc = no_alloc;
  2346. }
  2347. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2348. return ctx->mem_buffer;
  2349. }
  2350. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2351. return ctx->mem_size;
  2352. }
  2353. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2354. size_t max_size = 0;
  2355. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2356. size_t bytes = ggml_nbytes(tensor);
  2357. max_size = MAX(max_size, bytes);
  2358. }
  2359. return max_size;
  2360. }
  2361. // IMPORTANT:
  2362. // when creating "opt" tensors, always save and load the scratch buffer
  2363. // this is an error prone process, but it is necessary to support inplace
  2364. // operators when using scratch buffers
  2365. // TODO: implement a better way
  2366. static void ggml_scratch_save(struct ggml_context * ctx) {
  2367. // this is needed to allow opt tensors to store their data
  2368. // TODO: again, need to find a better way
  2369. ctx->no_alloc_save = ctx->no_alloc;
  2370. ctx->no_alloc = false;
  2371. ctx->scratch_save = ctx->scratch;
  2372. ctx->scratch.data = NULL;
  2373. }
  2374. static void ggml_scratch_load(struct ggml_context * ctx) {
  2375. ctx->no_alloc = ctx->no_alloc_save;
  2376. ctx->scratch = ctx->scratch_save;
  2377. }
  2378. ////////////////////////////////////////////////////////////////////////////////
  2379. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  2380. // always insert objects at the end of the context's memory pool
  2381. struct ggml_object * obj_cur = ctx->objects_end;
  2382. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2383. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2384. const size_t cur_end = cur_offs + cur_size;
  2385. // align to GGML_MEM_ALIGN
  2386. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  2387. char * const mem_buffer = ctx->mem_buffer;
  2388. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2389. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2390. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2391. __func__, cur_end + size_needed, ctx->mem_size);
  2392. assert(false);
  2393. return NULL;
  2394. }
  2395. *obj_new = (struct ggml_object) {
  2396. .offs = cur_end + GGML_OBJECT_SIZE,
  2397. .size = size_needed,
  2398. .next = NULL,
  2399. .type = type,
  2400. };
  2401. ggml_assert_aligned(mem_buffer + obj_new->offs);
  2402. if (obj_cur != NULL) {
  2403. obj_cur->next = obj_new;
  2404. } else {
  2405. // this is the first object in this context
  2406. ctx->objects_begin = obj_new;
  2407. }
  2408. ctx->objects_end = obj_new;
  2409. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2410. return obj_new;
  2411. }
  2412. static struct ggml_tensor * ggml_new_tensor_impl(
  2413. struct ggml_context * ctx,
  2414. enum ggml_type type,
  2415. int n_dims,
  2416. const int64_t * ne,
  2417. struct ggml_tensor * view_src,
  2418. size_t view_offs) {
  2419. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  2420. // find the base tensor and absolute offset
  2421. if (view_src != NULL && view_src->view_src != NULL) {
  2422. view_offs += view_src->view_offs;
  2423. view_src = view_src->view_src;
  2424. }
  2425. size_t data_size = ggml_row_size(type, ne[0]);
  2426. for (int i = 1; i < n_dims; i++) {
  2427. data_size *= ne[i];
  2428. }
  2429. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  2430. void * data = view_src != NULL ? view_src->data : NULL;
  2431. if (data != NULL) {
  2432. data = (char *) data + view_offs;
  2433. }
  2434. size_t obj_alloc_size = 0;
  2435. if (view_src == NULL && !ctx->no_alloc) {
  2436. if (ctx->scratch.data != NULL) {
  2437. // allocate tensor data in the scratch buffer
  2438. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  2439. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  2440. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  2441. assert(false);
  2442. return NULL;
  2443. }
  2444. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2445. ctx->scratch.offs += data_size;
  2446. } else {
  2447. // allocate tensor data in the context's memory pool
  2448. obj_alloc_size = data_size;
  2449. }
  2450. }
  2451. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  2452. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  2453. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  2454. *result = (struct ggml_tensor) {
  2455. /*.type =*/ type,
  2456. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  2457. /*.buffer =*/ NULL,
  2458. /*.ne =*/ { 1, 1, 1, 1 },
  2459. /*.nb =*/ { 0, 0, 0, 0 },
  2460. /*.op =*/ GGML_OP_NONE,
  2461. /*.op_params =*/ { 0 },
  2462. /*.flags =*/ 0,
  2463. /*.grad =*/ NULL,
  2464. /*.src =*/ { NULL },
  2465. /*.perf_runs =*/ 0,
  2466. /*.perf_cycles =*/ 0,
  2467. /*.perf_time_us =*/ 0,
  2468. /*.view_src =*/ view_src,
  2469. /*.view_offs =*/ view_offs,
  2470. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  2471. /*.name =*/ { 0 },
  2472. /*.extra =*/ NULL,
  2473. /*.padding =*/ { 0 },
  2474. };
  2475. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  2476. //ggml_assert_aligned(result->data);
  2477. for (int i = 0; i < n_dims; i++) {
  2478. result->ne[i] = ne[i];
  2479. }
  2480. result->nb[0] = ggml_type_size(type);
  2481. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  2482. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2483. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2484. }
  2485. ctx->n_objects++;
  2486. return result;
  2487. }
  2488. struct ggml_tensor * ggml_new_tensor(
  2489. struct ggml_context * ctx,
  2490. enum ggml_type type,
  2491. int n_dims,
  2492. const int64_t * ne) {
  2493. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  2494. }
  2495. struct ggml_tensor * ggml_new_tensor_1d(
  2496. struct ggml_context * ctx,
  2497. enum ggml_type type,
  2498. int64_t ne0) {
  2499. return ggml_new_tensor(ctx, type, 1, &ne0);
  2500. }
  2501. struct ggml_tensor * ggml_new_tensor_2d(
  2502. struct ggml_context * ctx,
  2503. enum ggml_type type,
  2504. int64_t ne0,
  2505. int64_t ne1) {
  2506. const int64_t ne[2] = { ne0, ne1 };
  2507. return ggml_new_tensor(ctx, type, 2, ne);
  2508. }
  2509. struct ggml_tensor * ggml_new_tensor_3d(
  2510. struct ggml_context * ctx,
  2511. enum ggml_type type,
  2512. int64_t ne0,
  2513. int64_t ne1,
  2514. int64_t ne2) {
  2515. const int64_t ne[3] = { ne0, ne1, ne2 };
  2516. return ggml_new_tensor(ctx, type, 3, ne);
  2517. }
  2518. struct ggml_tensor * ggml_new_tensor_4d(
  2519. struct ggml_context * ctx,
  2520. enum ggml_type type,
  2521. int64_t ne0,
  2522. int64_t ne1,
  2523. int64_t ne2,
  2524. int64_t ne3) {
  2525. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  2526. return ggml_new_tensor(ctx, type, 4, ne);
  2527. }
  2528. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2529. ggml_scratch_save(ctx);
  2530. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2531. ggml_scratch_load(ctx);
  2532. ggml_set_i32(result, value);
  2533. return result;
  2534. }
  2535. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2536. ggml_scratch_save(ctx);
  2537. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2538. ggml_scratch_load(ctx);
  2539. ggml_set_f32(result, value);
  2540. return result;
  2541. }
  2542. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2543. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  2544. }
  2545. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  2546. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  2547. assert(params_size <= GGML_MAX_OP_PARAMS);
  2548. memcpy(tensor->op_params, params, params_size);
  2549. }
  2550. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  2551. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2552. return ((const int32_t *)(tensor->op_params))[i];
  2553. }
  2554. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  2555. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2556. return ((const float *)(tensor->op_params))[i];
  2557. }
  2558. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  2559. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  2560. ((int32_t *)(tensor->op_params))[i] = value;
  2561. }
  2562. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  2563. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  2564. ((float *)(tensor->op_params))[i] = value;
  2565. }
  2566. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2567. memset(tensor->data, 0, ggml_nbytes(tensor));
  2568. return tensor;
  2569. }
  2570. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2571. const int n = ggml_nrows(tensor);
  2572. const int nc = tensor->ne[0];
  2573. const size_t n1 = tensor->nb[1];
  2574. char * const data = tensor->data;
  2575. switch (tensor->type) {
  2576. case GGML_TYPE_I8:
  2577. {
  2578. assert(tensor->nb[0] == sizeof(int8_t));
  2579. for (int i = 0; i < n; i++) {
  2580. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2581. }
  2582. } break;
  2583. case GGML_TYPE_I16:
  2584. {
  2585. assert(tensor->nb[0] == sizeof(int16_t));
  2586. for (int i = 0; i < n; i++) {
  2587. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2588. }
  2589. } break;
  2590. case GGML_TYPE_I32:
  2591. {
  2592. assert(tensor->nb[0] == sizeof(int32_t));
  2593. for (int i = 0; i < n; i++) {
  2594. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2595. }
  2596. } break;
  2597. case GGML_TYPE_F16:
  2598. {
  2599. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2600. for (int i = 0; i < n; i++) {
  2601. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2602. }
  2603. } break;
  2604. case GGML_TYPE_F32:
  2605. {
  2606. assert(tensor->nb[0] == sizeof(float));
  2607. for (int i = 0; i < n; i++) {
  2608. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2609. }
  2610. } break;
  2611. default:
  2612. {
  2613. GGML_ASSERT(false);
  2614. } break;
  2615. }
  2616. return tensor;
  2617. }
  2618. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2619. const int n = ggml_nrows(tensor);
  2620. const int nc = tensor->ne[0];
  2621. const size_t n1 = tensor->nb[1];
  2622. char * const data = tensor->data;
  2623. switch (tensor->type) {
  2624. case GGML_TYPE_I8:
  2625. {
  2626. assert(tensor->nb[0] == sizeof(int8_t));
  2627. for (int i = 0; i < n; i++) {
  2628. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2629. }
  2630. } break;
  2631. case GGML_TYPE_I16:
  2632. {
  2633. assert(tensor->nb[0] == sizeof(int16_t));
  2634. for (int i = 0; i < n; i++) {
  2635. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2636. }
  2637. } break;
  2638. case GGML_TYPE_I32:
  2639. {
  2640. assert(tensor->nb[0] == sizeof(int32_t));
  2641. for (int i = 0; i < n; i++) {
  2642. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2643. }
  2644. } break;
  2645. case GGML_TYPE_F16:
  2646. {
  2647. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2648. for (int i = 0; i < n; i++) {
  2649. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  2650. }
  2651. } break;
  2652. case GGML_TYPE_F32:
  2653. {
  2654. assert(tensor->nb[0] == sizeof(float));
  2655. for (int i = 0; i < n; i++) {
  2656. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2657. }
  2658. } break;
  2659. default:
  2660. {
  2661. GGML_ASSERT(false);
  2662. } break;
  2663. }
  2664. return tensor;
  2665. }
  2666. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  2667. const int64_t ne2 = tensor->ne[2];
  2668. const int64_t ne1 = tensor->ne[1];
  2669. const int64_t ne0 = tensor->ne[0];
  2670. const int64_t i3_ = (i/(ne2*ne1*ne0));
  2671. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  2672. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  2673. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  2674. if (i0) {
  2675. * i0 = i0_;
  2676. }
  2677. if (i1) {
  2678. * i1 = i1_;
  2679. }
  2680. if (i2) {
  2681. * i2 = i2_;
  2682. }
  2683. if (i3) {
  2684. * i3 = i3_;
  2685. }
  2686. }
  2687. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2688. if (!ggml_is_contiguous(tensor)) {
  2689. int64_t id[4] = { 0, 0, 0, 0 };
  2690. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2691. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  2692. }
  2693. switch (tensor->type) {
  2694. case GGML_TYPE_I8:
  2695. {
  2696. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2697. return ((int8_t *)(tensor->data))[i];
  2698. }
  2699. case GGML_TYPE_I16:
  2700. {
  2701. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2702. return ((int16_t *)(tensor->data))[i];
  2703. }
  2704. case GGML_TYPE_I32:
  2705. {
  2706. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2707. return ((int32_t *)(tensor->data))[i];
  2708. }
  2709. case GGML_TYPE_F16:
  2710. {
  2711. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2712. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2713. }
  2714. case GGML_TYPE_F32:
  2715. {
  2716. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2717. return ((float *)(tensor->data))[i];
  2718. }
  2719. default:
  2720. {
  2721. GGML_ASSERT(false);
  2722. }
  2723. }
  2724. return 0.0f;
  2725. }
  2726. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2727. if (!ggml_is_contiguous(tensor)) {
  2728. int64_t id[4] = { 0, 0, 0, 0 };
  2729. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2730. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2731. return;
  2732. }
  2733. switch (tensor->type) {
  2734. case GGML_TYPE_I8:
  2735. {
  2736. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2737. ((int8_t *)(tensor->data))[i] = value;
  2738. } break;
  2739. case GGML_TYPE_I16:
  2740. {
  2741. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2742. ((int16_t *)(tensor->data))[i] = value;
  2743. } break;
  2744. case GGML_TYPE_I32:
  2745. {
  2746. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2747. ((int32_t *)(tensor->data))[i] = value;
  2748. } break;
  2749. case GGML_TYPE_F16:
  2750. {
  2751. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2752. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2753. } break;
  2754. case GGML_TYPE_F32:
  2755. {
  2756. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2757. ((float *)(tensor->data))[i] = value;
  2758. } break;
  2759. default:
  2760. {
  2761. GGML_ASSERT(false);
  2762. } break;
  2763. }
  2764. }
  2765. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2766. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2767. switch (tensor->type) {
  2768. case GGML_TYPE_I8:
  2769. return ((int8_t *) data)[0];
  2770. case GGML_TYPE_I16:
  2771. return ((int16_t *) data)[0];
  2772. case GGML_TYPE_I32:
  2773. return ((int32_t *) data)[0];
  2774. case GGML_TYPE_F16:
  2775. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2776. case GGML_TYPE_F32:
  2777. return ((float *) data)[0];
  2778. default:
  2779. GGML_ASSERT(false);
  2780. }
  2781. return 0.0f;
  2782. }
  2783. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  2784. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2785. switch (tensor->type) {
  2786. case GGML_TYPE_I8:
  2787. {
  2788. ((int8_t *)(data))[0] = value;
  2789. } break;
  2790. case GGML_TYPE_I16:
  2791. {
  2792. ((int16_t *)(data))[0] = value;
  2793. } break;
  2794. case GGML_TYPE_I32:
  2795. {
  2796. ((int32_t *)(data))[0] = value;
  2797. } break;
  2798. case GGML_TYPE_F16:
  2799. {
  2800. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2801. } break;
  2802. case GGML_TYPE_F32:
  2803. {
  2804. ((float *)(data))[0] = value;
  2805. } break;
  2806. default:
  2807. {
  2808. GGML_ASSERT(false);
  2809. } break;
  2810. }
  2811. }
  2812. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2813. if (!ggml_is_contiguous(tensor)) {
  2814. int64_t id[4] = { 0, 0, 0, 0 };
  2815. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2816. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  2817. }
  2818. switch (tensor->type) {
  2819. case GGML_TYPE_I8:
  2820. {
  2821. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2822. return ((int8_t *)(tensor->data))[i];
  2823. }
  2824. case GGML_TYPE_I16:
  2825. {
  2826. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2827. return ((int16_t *)(tensor->data))[i];
  2828. }
  2829. case GGML_TYPE_I32:
  2830. {
  2831. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2832. return ((int32_t *)(tensor->data))[i];
  2833. }
  2834. case GGML_TYPE_F16:
  2835. {
  2836. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2837. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2838. }
  2839. case GGML_TYPE_F32:
  2840. {
  2841. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2842. return ((float *)(tensor->data))[i];
  2843. }
  2844. default:
  2845. {
  2846. GGML_ASSERT(false);
  2847. }
  2848. }
  2849. return 0.0f;
  2850. }
  2851. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2852. if (!ggml_is_contiguous(tensor)) {
  2853. int64_t id[4] = { 0, 0, 0, 0 };
  2854. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  2855. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  2856. return;
  2857. }
  2858. switch (tensor->type) {
  2859. case GGML_TYPE_I8:
  2860. {
  2861. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2862. ((int8_t *)(tensor->data))[i] = value;
  2863. } break;
  2864. case GGML_TYPE_I16:
  2865. {
  2866. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2867. ((int16_t *)(tensor->data))[i] = value;
  2868. } break;
  2869. case GGML_TYPE_I32:
  2870. {
  2871. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2872. ((int32_t *)(tensor->data))[i] = value;
  2873. } break;
  2874. case GGML_TYPE_F16:
  2875. {
  2876. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2877. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2878. } break;
  2879. case GGML_TYPE_F32:
  2880. {
  2881. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2882. ((float *)(tensor->data))[i] = value;
  2883. } break;
  2884. default:
  2885. {
  2886. GGML_ASSERT(false);
  2887. } break;
  2888. }
  2889. }
  2890. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  2891. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2892. switch (tensor->type) {
  2893. case GGML_TYPE_I8:
  2894. return ((int8_t *) data)[0];
  2895. case GGML_TYPE_I16:
  2896. return ((int16_t *) data)[0];
  2897. case GGML_TYPE_I32:
  2898. return ((int32_t *) data)[0];
  2899. case GGML_TYPE_F16:
  2900. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  2901. case GGML_TYPE_F32:
  2902. return ((float *) data)[0];
  2903. default:
  2904. GGML_ASSERT(false);
  2905. }
  2906. return 0.0f;
  2907. }
  2908. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  2909. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  2910. switch (tensor->type) {
  2911. case GGML_TYPE_I8:
  2912. {
  2913. ((int8_t *)(data))[0] = value;
  2914. } break;
  2915. case GGML_TYPE_I16:
  2916. {
  2917. ((int16_t *)(data))[0] = value;
  2918. } break;
  2919. case GGML_TYPE_I32:
  2920. {
  2921. ((int32_t *)(data))[0] = value;
  2922. } break;
  2923. case GGML_TYPE_F16:
  2924. {
  2925. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  2926. } break;
  2927. case GGML_TYPE_F32:
  2928. {
  2929. ((float *)(data))[0] = value;
  2930. } break;
  2931. default:
  2932. {
  2933. GGML_ASSERT(false);
  2934. } break;
  2935. }
  2936. }
  2937. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2938. return tensor->data;
  2939. }
  2940. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2941. assert(tensor->type == GGML_TYPE_F32);
  2942. return (float *)(tensor->data);
  2943. }
  2944. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  2945. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  2946. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  2947. }
  2948. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  2949. return tensor->name;
  2950. }
  2951. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  2952. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  2953. tensor->name[sizeof(tensor->name) - 1] = '\0';
  2954. return tensor;
  2955. }
  2956. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  2957. va_list args;
  2958. va_start(args, fmt);
  2959. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  2960. va_end(args);
  2961. return tensor;
  2962. }
  2963. struct ggml_tensor * ggml_view_tensor(
  2964. struct ggml_context * ctx,
  2965. struct ggml_tensor * src) {
  2966. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  2967. ggml_format_name(result, "%s (view)", src->name);
  2968. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  2969. result->nb[i] = src->nb[i];
  2970. }
  2971. return result;
  2972. }
  2973. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  2974. struct ggml_object * obj = ctx->objects_begin;
  2975. char * const mem_buffer = ctx->mem_buffer;
  2976. while (obj != NULL) {
  2977. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2978. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2979. }
  2980. obj = obj->next;
  2981. }
  2982. return NULL;
  2983. }
  2984. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  2985. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  2986. obj = obj->next;
  2987. char * const mem_buffer = ctx->mem_buffer;
  2988. while (obj != NULL) {
  2989. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  2990. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  2991. }
  2992. obj = obj->next;
  2993. }
  2994. return NULL;
  2995. }
  2996. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  2997. struct ggml_object * obj = ctx->objects_begin;
  2998. char * const mem_buffer = ctx->mem_buffer;
  2999. while (obj != NULL) {
  3000. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3001. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3002. if (strcmp(cur->name, name) == 0) {
  3003. return cur;
  3004. }
  3005. }
  3006. obj = obj->next;
  3007. }
  3008. return NULL;
  3009. }
  3010. ////////////////////////////////////////////////////////////////////////////////
  3011. // ggml_dup
  3012. static struct ggml_tensor * ggml_dup_impl(
  3013. struct ggml_context * ctx,
  3014. struct ggml_tensor * a,
  3015. bool inplace) {
  3016. bool is_node = false;
  3017. if (!inplace && (a->grad)) {
  3018. is_node = true;
  3019. }
  3020. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3021. result->op = GGML_OP_DUP;
  3022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3023. result->src[0] = a;
  3024. return result;
  3025. }
  3026. struct ggml_tensor * ggml_dup(
  3027. struct ggml_context * ctx,
  3028. struct ggml_tensor * a) {
  3029. return ggml_dup_impl(ctx, a, false);
  3030. }
  3031. struct ggml_tensor * ggml_dup_inplace(
  3032. struct ggml_context * ctx,
  3033. struct ggml_tensor * a) {
  3034. return ggml_dup_impl(ctx, a, true);
  3035. }
  3036. // ggml_add
  3037. static struct ggml_tensor * ggml_add_impl(
  3038. struct ggml_context * ctx,
  3039. struct ggml_tensor * a,
  3040. struct ggml_tensor * b,
  3041. bool inplace) {
  3042. GGML_ASSERT(ggml_can_repeat(b, a));
  3043. bool is_node = false;
  3044. if (!inplace && (a->grad || b->grad)) {
  3045. // TODO: support backward pass for broadcasting
  3046. GGML_ASSERT(ggml_are_same_shape(a, b));
  3047. is_node = true;
  3048. }
  3049. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3050. result->op = GGML_OP_ADD;
  3051. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3052. result->src[0] = a;
  3053. result->src[1] = b;
  3054. return result;
  3055. }
  3056. struct ggml_tensor * ggml_add(
  3057. struct ggml_context * ctx,
  3058. struct ggml_tensor * a,
  3059. struct ggml_tensor * b) {
  3060. return ggml_add_impl(ctx, a, b, false);
  3061. }
  3062. struct ggml_tensor * ggml_add_inplace(
  3063. struct ggml_context * ctx,
  3064. struct ggml_tensor * a,
  3065. struct ggml_tensor * b) {
  3066. return ggml_add_impl(ctx, a, b, true);
  3067. }
  3068. // ggml_add_cast
  3069. static struct ggml_tensor * ggml_add_cast_impl(
  3070. struct ggml_context * ctx,
  3071. struct ggml_tensor * a,
  3072. struct ggml_tensor * b,
  3073. enum ggml_type type) {
  3074. // TODO: support less-strict constraint
  3075. // GGML_ASSERT(ggml_can_repeat(b, a));
  3076. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3077. GGML_ASSERT(ggml_is_quantized(a->type) || a->type == GGML_TYPE_F16); // currently only supported for quantized input and f16
  3078. bool is_node = false;
  3079. if (a->grad || b->grad) {
  3080. // TODO: support backward pass for broadcasting
  3081. GGML_ASSERT(ggml_are_same_shape(a, b));
  3082. is_node = true;
  3083. }
  3084. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3085. result->op = GGML_OP_ADD;
  3086. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3087. result->src[0] = a;
  3088. result->src[1] = b;
  3089. return result;
  3090. }
  3091. struct ggml_tensor * ggml_add_cast(
  3092. struct ggml_context * ctx,
  3093. struct ggml_tensor * a,
  3094. struct ggml_tensor * b,
  3095. enum ggml_type type) {
  3096. return ggml_add_cast_impl(ctx, a, b, type);
  3097. }
  3098. // ggml_add1
  3099. static struct ggml_tensor * ggml_add1_impl(
  3100. struct ggml_context * ctx,
  3101. struct ggml_tensor * a,
  3102. struct ggml_tensor * b,
  3103. bool inplace) {
  3104. GGML_ASSERT(ggml_is_scalar(b));
  3105. GGML_ASSERT(ggml_is_padded_1d(a));
  3106. bool is_node = false;
  3107. if (a->grad || b->grad) {
  3108. is_node = true;
  3109. }
  3110. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3111. result->op = GGML_OP_ADD1;
  3112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3113. result->src[0] = a;
  3114. result->src[1] = b;
  3115. return result;
  3116. }
  3117. struct ggml_tensor * ggml_add1(
  3118. struct ggml_context * ctx,
  3119. struct ggml_tensor * a,
  3120. struct ggml_tensor * b) {
  3121. return ggml_add1_impl(ctx, a, b, false);
  3122. }
  3123. struct ggml_tensor * ggml_add1_inplace(
  3124. struct ggml_context * ctx,
  3125. struct ggml_tensor * a,
  3126. struct ggml_tensor * b) {
  3127. return ggml_add1_impl(ctx, a, b, true);
  3128. }
  3129. // ggml_acc
  3130. static struct ggml_tensor * ggml_acc_impl(
  3131. struct ggml_context * ctx,
  3132. struct ggml_tensor * a,
  3133. struct ggml_tensor * b,
  3134. size_t nb1,
  3135. size_t nb2,
  3136. size_t nb3,
  3137. size_t offset,
  3138. bool inplace) {
  3139. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3140. GGML_ASSERT(ggml_is_contiguous(a));
  3141. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3142. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3143. bool is_node = false;
  3144. if (!inplace && (a->grad || b->grad)) {
  3145. is_node = true;
  3146. }
  3147. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3148. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3149. ggml_set_op_params(result, params, sizeof(params));
  3150. result->op = GGML_OP_ACC;
  3151. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3152. result->src[0] = a;
  3153. result->src[1] = b;
  3154. return result;
  3155. }
  3156. struct ggml_tensor * ggml_acc(
  3157. struct ggml_context * ctx,
  3158. struct ggml_tensor * a,
  3159. struct ggml_tensor * b,
  3160. size_t nb1,
  3161. size_t nb2,
  3162. size_t nb3,
  3163. size_t offset) {
  3164. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3165. }
  3166. struct ggml_tensor * ggml_acc_inplace(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a,
  3169. struct ggml_tensor * b,
  3170. size_t nb1,
  3171. size_t nb2,
  3172. size_t nb3,
  3173. size_t offset) {
  3174. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3175. }
  3176. // ggml_sub
  3177. static struct ggml_tensor * ggml_sub_impl(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a,
  3180. struct ggml_tensor * b,
  3181. bool inplace) {
  3182. GGML_ASSERT(ggml_are_same_shape(a, b));
  3183. bool is_node = false;
  3184. if (!inplace && (a->grad || b->grad)) {
  3185. is_node = true;
  3186. }
  3187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3188. result->op = GGML_OP_SUB;
  3189. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3190. result->src[0] = a;
  3191. result->src[1] = b;
  3192. return result;
  3193. }
  3194. struct ggml_tensor * ggml_sub(
  3195. struct ggml_context * ctx,
  3196. struct ggml_tensor * a,
  3197. struct ggml_tensor * b) {
  3198. return ggml_sub_impl(ctx, a, b, false);
  3199. }
  3200. struct ggml_tensor * ggml_sub_inplace(
  3201. struct ggml_context * ctx,
  3202. struct ggml_tensor * a,
  3203. struct ggml_tensor * b) {
  3204. return ggml_sub_impl(ctx, a, b, true);
  3205. }
  3206. // ggml_mul
  3207. static struct ggml_tensor * ggml_mul_impl(
  3208. struct ggml_context * ctx,
  3209. struct ggml_tensor * a,
  3210. struct ggml_tensor * b,
  3211. bool inplace) {
  3212. GGML_ASSERT(ggml_can_repeat(b, a));
  3213. bool is_node = false;
  3214. if (!inplace && (a->grad || b->grad)) {
  3215. // TODO: support backward pass for broadcasting
  3216. GGML_ASSERT(ggml_are_same_shape(a, b));
  3217. is_node = true;
  3218. }
  3219. if (inplace) {
  3220. GGML_ASSERT(!is_node);
  3221. }
  3222. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3223. result->op = GGML_OP_MUL;
  3224. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3225. result->src[0] = a;
  3226. result->src[1] = b;
  3227. return result;
  3228. }
  3229. struct ggml_tensor * ggml_mul(
  3230. struct ggml_context * ctx,
  3231. struct ggml_tensor * a,
  3232. struct ggml_tensor * b) {
  3233. return ggml_mul_impl(ctx, a, b, false);
  3234. }
  3235. struct ggml_tensor * ggml_mul_inplace(
  3236. struct ggml_context * ctx,
  3237. struct ggml_tensor * a,
  3238. struct ggml_tensor * b) {
  3239. return ggml_mul_impl(ctx, a, b, true);
  3240. }
  3241. // ggml_div
  3242. static struct ggml_tensor * ggml_div_impl(
  3243. struct ggml_context * ctx,
  3244. struct ggml_tensor * a,
  3245. struct ggml_tensor * b,
  3246. bool inplace) {
  3247. GGML_ASSERT(ggml_can_repeat(b, a));
  3248. bool is_node = false;
  3249. if (!inplace && (a->grad || b->grad)) {
  3250. is_node = true;
  3251. }
  3252. if (inplace) {
  3253. GGML_ASSERT(!is_node);
  3254. }
  3255. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3256. result->op = GGML_OP_DIV;
  3257. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3258. result->src[0] = a;
  3259. result->src[1] = b;
  3260. return result;
  3261. }
  3262. struct ggml_tensor * ggml_div(
  3263. struct ggml_context * ctx,
  3264. struct ggml_tensor * a,
  3265. struct ggml_tensor * b) {
  3266. return ggml_div_impl(ctx, a, b, false);
  3267. }
  3268. struct ggml_tensor * ggml_div_inplace(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a,
  3271. struct ggml_tensor * b) {
  3272. return ggml_div_impl(ctx, a, b, true);
  3273. }
  3274. // ggml_sqr
  3275. static struct ggml_tensor * ggml_sqr_impl(
  3276. struct ggml_context * ctx,
  3277. struct ggml_tensor * a,
  3278. bool inplace) {
  3279. bool is_node = false;
  3280. if (!inplace && (a->grad)) {
  3281. is_node = true;
  3282. }
  3283. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3284. result->op = GGML_OP_SQR;
  3285. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3286. result->src[0] = a;
  3287. return result;
  3288. }
  3289. struct ggml_tensor * ggml_sqr(
  3290. struct ggml_context * ctx,
  3291. struct ggml_tensor * a) {
  3292. return ggml_sqr_impl(ctx, a, false);
  3293. }
  3294. struct ggml_tensor * ggml_sqr_inplace(
  3295. struct ggml_context * ctx,
  3296. struct ggml_tensor * a) {
  3297. return ggml_sqr_impl(ctx, a, true);
  3298. }
  3299. // ggml_sqrt
  3300. static struct ggml_tensor * ggml_sqrt_impl(
  3301. struct ggml_context * ctx,
  3302. struct ggml_tensor * a,
  3303. bool inplace) {
  3304. bool is_node = false;
  3305. if (!inplace && (a->grad)) {
  3306. is_node = true;
  3307. }
  3308. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3309. result->op = GGML_OP_SQRT;
  3310. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3311. result->src[0] = a;
  3312. return result;
  3313. }
  3314. struct ggml_tensor * ggml_sqrt(
  3315. struct ggml_context * ctx,
  3316. struct ggml_tensor * a) {
  3317. return ggml_sqrt_impl(ctx, a, false);
  3318. }
  3319. struct ggml_tensor * ggml_sqrt_inplace(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a) {
  3322. return ggml_sqrt_impl(ctx, a, true);
  3323. }
  3324. // ggml_log
  3325. static struct ggml_tensor * ggml_log_impl(
  3326. struct ggml_context * ctx,
  3327. struct ggml_tensor * a,
  3328. bool inplace) {
  3329. bool is_node = false;
  3330. if (!inplace && (a->grad)) {
  3331. is_node = true;
  3332. }
  3333. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3334. result->op = GGML_OP_LOG;
  3335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3336. result->src[0] = a;
  3337. return result;
  3338. }
  3339. struct ggml_tensor * ggml_log(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a) {
  3342. return ggml_log_impl(ctx, a, false);
  3343. }
  3344. struct ggml_tensor * ggml_log_inplace(
  3345. struct ggml_context * ctx,
  3346. struct ggml_tensor * a) {
  3347. return ggml_log_impl(ctx, a, true);
  3348. }
  3349. // ggml_sum
  3350. struct ggml_tensor * ggml_sum(
  3351. struct ggml_context * ctx,
  3352. struct ggml_tensor * a) {
  3353. bool is_node = false;
  3354. if (a->grad) {
  3355. is_node = true;
  3356. }
  3357. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3358. result->op = GGML_OP_SUM;
  3359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3360. result->src[0] = a;
  3361. return result;
  3362. }
  3363. // ggml_sum_rows
  3364. struct ggml_tensor * ggml_sum_rows(
  3365. struct ggml_context * ctx,
  3366. struct ggml_tensor * a) {
  3367. bool is_node = false;
  3368. if (a->grad) {
  3369. is_node = true;
  3370. }
  3371. int64_t ne[GGML_MAX_DIMS] = { 1 };
  3372. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3373. ne[i] = a->ne[i];
  3374. }
  3375. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  3376. result->op = GGML_OP_SUM_ROWS;
  3377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3378. result->src[0] = a;
  3379. return result;
  3380. }
  3381. // ggml_mean
  3382. struct ggml_tensor * ggml_mean(
  3383. struct ggml_context * ctx,
  3384. struct ggml_tensor * a) {
  3385. bool is_node = false;
  3386. if (a->grad) {
  3387. GGML_ASSERT(false); // TODO: implement
  3388. is_node = true;
  3389. }
  3390. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3391. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3392. result->op = GGML_OP_MEAN;
  3393. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3394. result->src[0] = a;
  3395. return result;
  3396. }
  3397. // ggml_argmax
  3398. struct ggml_tensor * ggml_argmax(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a) {
  3401. GGML_ASSERT(ggml_is_matrix(a));
  3402. bool is_node = false;
  3403. if (a->grad) {
  3404. GGML_ASSERT(false);
  3405. is_node = true;
  3406. }
  3407. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  3408. result->op = GGML_OP_ARGMAX;
  3409. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3410. result->src[0] = a;
  3411. return result;
  3412. }
  3413. // ggml_repeat
  3414. struct ggml_tensor * ggml_repeat(
  3415. struct ggml_context * ctx,
  3416. struct ggml_tensor * a,
  3417. struct ggml_tensor * b) {
  3418. GGML_ASSERT(ggml_can_repeat(a, b));
  3419. bool is_node = false;
  3420. if (a->grad) {
  3421. is_node = true;
  3422. }
  3423. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3424. result->op = GGML_OP_REPEAT;
  3425. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3426. result->src[0] = a;
  3427. return result;
  3428. }
  3429. // ggml_repeat_back
  3430. struct ggml_tensor * ggml_repeat_back(
  3431. struct ggml_context * ctx,
  3432. struct ggml_tensor * a,
  3433. struct ggml_tensor * b) {
  3434. GGML_ASSERT(ggml_can_repeat(b, a));
  3435. bool is_node = false;
  3436. if (a->grad) {
  3437. is_node = true;
  3438. }
  3439. if (ggml_are_same_shape(a, b) && !is_node) {
  3440. return a;
  3441. }
  3442. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  3443. result->op = GGML_OP_REPEAT_BACK;
  3444. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3445. result->src[0] = a;
  3446. return result;
  3447. }
  3448. // ggml_concat
  3449. struct ggml_tensor * ggml_concat(
  3450. struct ggml_context* ctx,
  3451. struct ggml_tensor* a,
  3452. struct ggml_tensor* b) {
  3453. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  3454. bool is_node = false;
  3455. if (a->grad || b->grad) {
  3456. is_node = true;
  3457. }
  3458. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  3459. result->op = GGML_OP_CONCAT;
  3460. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3461. result->src[0] = a;
  3462. result->src[1] = b;
  3463. return result;
  3464. }
  3465. // ggml_abs
  3466. struct ggml_tensor * ggml_abs(
  3467. struct ggml_context * ctx,
  3468. struct ggml_tensor * a) {
  3469. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  3470. }
  3471. struct ggml_tensor * ggml_abs_inplace(
  3472. struct ggml_context * ctx,
  3473. struct ggml_tensor * a) {
  3474. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  3475. }
  3476. // ggml_sgn
  3477. struct ggml_tensor * ggml_sgn(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a) {
  3480. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  3481. }
  3482. struct ggml_tensor * ggml_sgn_inplace(
  3483. struct ggml_context * ctx,
  3484. struct ggml_tensor * a) {
  3485. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  3486. }
  3487. // ggml_neg
  3488. struct ggml_tensor * ggml_neg(
  3489. struct ggml_context * ctx,
  3490. struct ggml_tensor * a) {
  3491. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  3492. }
  3493. struct ggml_tensor * ggml_neg_inplace(
  3494. struct ggml_context * ctx,
  3495. struct ggml_tensor * a) {
  3496. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  3497. }
  3498. // ggml_step
  3499. struct ggml_tensor * ggml_step(
  3500. struct ggml_context * ctx,
  3501. struct ggml_tensor * a) {
  3502. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  3503. }
  3504. struct ggml_tensor * ggml_step_inplace(
  3505. struct ggml_context * ctx,
  3506. struct ggml_tensor * a) {
  3507. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  3508. }
  3509. // ggml_tanh
  3510. struct ggml_tensor * ggml_tanh(
  3511. struct ggml_context * ctx,
  3512. struct ggml_tensor * a) {
  3513. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  3514. }
  3515. struct ggml_tensor * ggml_tanh_inplace(
  3516. struct ggml_context * ctx,
  3517. struct ggml_tensor * a) {
  3518. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  3519. }
  3520. // ggml_elu
  3521. struct ggml_tensor * ggml_elu(
  3522. struct ggml_context * ctx,
  3523. struct ggml_tensor * a) {
  3524. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  3525. }
  3526. struct ggml_tensor * ggml_elu_inplace(
  3527. struct ggml_context * ctx,
  3528. struct ggml_tensor * a) {
  3529. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  3530. }
  3531. // ggml_relu
  3532. struct ggml_tensor * ggml_relu(
  3533. struct ggml_context * ctx,
  3534. struct ggml_tensor * a) {
  3535. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  3536. }
  3537. struct ggml_tensor * ggml_relu_inplace(
  3538. struct ggml_context * ctx,
  3539. struct ggml_tensor * a) {
  3540. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  3541. }
  3542. // ggml_leaky_relu
  3543. struct ggml_tensor * ggml_leaky_relu(
  3544. struct ggml_context * ctx,
  3545. struct ggml_tensor * a, float negative_slope, bool inplace) {
  3546. bool is_node = false;
  3547. if (!inplace && (a->grad)) {
  3548. is_node = true;
  3549. }
  3550. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3551. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  3552. result->op = GGML_OP_LEAKY_RELU;
  3553. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3554. result->src[0] = a;
  3555. return result;
  3556. }
  3557. // ggml_gelu
  3558. struct ggml_tensor * ggml_gelu(
  3559. struct ggml_context * ctx,
  3560. struct ggml_tensor * a) {
  3561. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  3562. }
  3563. struct ggml_tensor * ggml_gelu_inplace(
  3564. struct ggml_context * ctx,
  3565. struct ggml_tensor * a) {
  3566. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  3567. }
  3568. // ggml_gelu_quick
  3569. struct ggml_tensor * ggml_gelu_quick(
  3570. struct ggml_context * ctx,
  3571. struct ggml_tensor * a) {
  3572. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3573. }
  3574. struct ggml_tensor * ggml_gelu_quick_inplace(
  3575. struct ggml_context * ctx,
  3576. struct ggml_tensor * a) {
  3577. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  3578. }
  3579. // ggml_silu
  3580. struct ggml_tensor * ggml_silu(
  3581. struct ggml_context * ctx,
  3582. struct ggml_tensor * a) {
  3583. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  3584. }
  3585. struct ggml_tensor * ggml_silu_inplace(
  3586. struct ggml_context * ctx,
  3587. struct ggml_tensor * a) {
  3588. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  3589. }
  3590. // ggml_silu_back
  3591. struct ggml_tensor * ggml_silu_back(
  3592. struct ggml_context * ctx,
  3593. struct ggml_tensor * a,
  3594. struct ggml_tensor * b) {
  3595. bool is_node = false;
  3596. if (a->grad || b->grad) {
  3597. // TODO: implement backward
  3598. is_node = true;
  3599. }
  3600. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3601. result->op = GGML_OP_SILU_BACK;
  3602. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3603. result->src[0] = a;
  3604. result->src[1] = b;
  3605. return result;
  3606. }
  3607. // ggml hardswish
  3608. struct ggml_tensor * ggml_hardswish(
  3609. struct ggml_context * ctx,
  3610. struct ggml_tensor * a) {
  3611. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  3612. }
  3613. // ggml hardsigmoid
  3614. struct ggml_tensor * ggml_hardsigmoid(
  3615. struct ggml_context * ctx,
  3616. struct ggml_tensor * a) {
  3617. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  3618. }
  3619. // ggml_norm
  3620. static struct ggml_tensor * ggml_norm_impl(
  3621. struct ggml_context * ctx,
  3622. struct ggml_tensor * a,
  3623. float eps,
  3624. bool inplace) {
  3625. bool is_node = false;
  3626. if (!inplace && (a->grad)) {
  3627. GGML_ASSERT(false); // TODO: implement backward
  3628. is_node = true;
  3629. }
  3630. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3631. ggml_set_op_params(result, &eps, sizeof(eps));
  3632. result->op = GGML_OP_NORM;
  3633. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3634. result->src[0] = a;
  3635. return result;
  3636. }
  3637. struct ggml_tensor * ggml_norm(
  3638. struct ggml_context * ctx,
  3639. struct ggml_tensor * a,
  3640. float eps) {
  3641. return ggml_norm_impl(ctx, a, eps, false);
  3642. }
  3643. struct ggml_tensor * ggml_norm_inplace(
  3644. struct ggml_context * ctx,
  3645. struct ggml_tensor * a,
  3646. float eps) {
  3647. return ggml_norm_impl(ctx, a, eps, true);
  3648. }
  3649. // ggml_rms_norm
  3650. static struct ggml_tensor * ggml_rms_norm_impl(
  3651. struct ggml_context * ctx,
  3652. struct ggml_tensor * a,
  3653. float eps,
  3654. bool inplace) {
  3655. bool is_node = false;
  3656. if (!inplace && (a->grad)) {
  3657. is_node = true;
  3658. }
  3659. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3660. ggml_set_op_params(result, &eps, sizeof(eps));
  3661. result->op = GGML_OP_RMS_NORM;
  3662. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3663. result->src[0] = a;
  3664. return result;
  3665. }
  3666. struct ggml_tensor * ggml_rms_norm(
  3667. struct ggml_context * ctx,
  3668. struct ggml_tensor * a,
  3669. float eps) {
  3670. return ggml_rms_norm_impl(ctx, a, eps, false);
  3671. }
  3672. struct ggml_tensor * ggml_rms_norm_inplace(
  3673. struct ggml_context * ctx,
  3674. struct ggml_tensor * a,
  3675. float eps) {
  3676. return ggml_rms_norm_impl(ctx, a, eps, true);
  3677. }
  3678. // ggml_rms_norm_back
  3679. struct ggml_tensor * ggml_rms_norm_back(
  3680. struct ggml_context * ctx,
  3681. struct ggml_tensor * a,
  3682. struct ggml_tensor * b,
  3683. float eps) {
  3684. bool is_node = false;
  3685. if (a->grad) {
  3686. // TODO: implement backward
  3687. is_node = true;
  3688. }
  3689. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3690. ggml_set_op_params(result, &eps, sizeof(eps));
  3691. result->op = GGML_OP_RMS_NORM_BACK;
  3692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3693. result->src[0] = a;
  3694. result->src[1] = b;
  3695. return result;
  3696. }
  3697. // ggml_group_norm
  3698. static struct ggml_tensor * ggml_group_norm_impl(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a,
  3701. int n_groups,
  3702. bool inplace) {
  3703. bool is_node = false;
  3704. if (!inplace && (a->grad)) {
  3705. GGML_ASSERT(false); // TODO: implement backward
  3706. is_node = true;
  3707. }
  3708. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3709. result->op_params[0] = n_groups;
  3710. result->op = GGML_OP_GROUP_NORM;
  3711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3712. result->src[0] = a;
  3713. return result;
  3714. }
  3715. struct ggml_tensor * ggml_group_norm(
  3716. struct ggml_context * ctx,
  3717. struct ggml_tensor * a,
  3718. int n_groups) {
  3719. return ggml_group_norm_impl(ctx, a, n_groups, false);
  3720. }
  3721. struct ggml_tensor * ggml_group_norm_inplace(
  3722. struct ggml_context * ctx,
  3723. struct ggml_tensor * a,
  3724. int n_groups) {
  3725. return ggml_group_norm_impl(ctx, a, n_groups, true);
  3726. }
  3727. // ggml_mul_mat
  3728. struct ggml_tensor * ggml_mul_mat(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. struct ggml_tensor * b) {
  3732. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3733. GGML_ASSERT(!ggml_is_transposed(a));
  3734. bool is_node = false;
  3735. if (a->grad || b->grad) {
  3736. is_node = true;
  3737. }
  3738. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3739. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3740. result->op = GGML_OP_MUL_MAT;
  3741. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3742. result->src[0] = a;
  3743. result->src[1] = b;
  3744. return result;
  3745. }
  3746. void ggml_mul_mat_set_prec(
  3747. struct ggml_tensor * a,
  3748. enum ggml_prec prec) {
  3749. const int32_t prec_i32 = (int32_t) prec;
  3750. ggml_set_op_params_i32(a, 0, prec_i32);
  3751. }
  3752. // ggml_mul_mat_id
  3753. struct ggml_tensor * ggml_mul_mat_id(
  3754. struct ggml_context * ctx,
  3755. struct ggml_tensor * const as[],
  3756. int n_as,
  3757. struct ggml_tensor * ids,
  3758. int id,
  3759. struct ggml_tensor * b) {
  3760. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  3761. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1);
  3762. GGML_ASSERT(ids->ne[1] == b->ne[1]);
  3763. GGML_ASSERT(ids->ne[2] == b->ne[2] && ids->ne[3] == b->ne[3]);
  3764. GGML_ASSERT(n_as > 0 && n_as <= GGML_MAX_SRC - 2);
  3765. GGML_ASSERT(id >= 0 && id < ids->ne[0]);
  3766. bool is_node = false;
  3767. if (as[0]->grad || b->grad) {
  3768. is_node = true;
  3769. }
  3770. const int64_t ne[4] = { as[0]->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  3771. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3772. ggml_set_op_params_i32(result, 0, id);
  3773. ggml_set_op_params_i32(result, 1, n_as);
  3774. result->op = GGML_OP_MUL_MAT_ID;
  3775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3776. result->src[0] = ids;
  3777. result->src[1] = b;
  3778. for (int i = 0; i < n_as; i++) {
  3779. struct ggml_tensor * a = as[i];
  3780. GGML_ASSERT(ggml_are_same_shape(as[0], a));
  3781. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3782. GGML_ASSERT(!ggml_is_transposed(a));
  3783. result->src[i + 2] = a;
  3784. }
  3785. return result;
  3786. }
  3787. // ggml_out_prod
  3788. struct ggml_tensor * ggml_out_prod(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a,
  3791. struct ggml_tensor * b) {
  3792. GGML_ASSERT(ggml_can_out_prod(a, b));
  3793. GGML_ASSERT(!ggml_is_transposed(a));
  3794. bool is_node = false;
  3795. if (a->grad || b->grad) {
  3796. is_node = true;
  3797. }
  3798. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  3799. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  3800. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  3801. result->op = GGML_OP_OUT_PROD;
  3802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3803. result->src[0] = a;
  3804. result->src[1] = b;
  3805. return result;
  3806. }
  3807. // ggml_scale
  3808. static struct ggml_tensor * ggml_scale_impl(
  3809. struct ggml_context * ctx,
  3810. struct ggml_tensor * a,
  3811. float s,
  3812. bool inplace) {
  3813. GGML_ASSERT(ggml_is_padded_1d(a));
  3814. bool is_node = false;
  3815. if (a->grad) {
  3816. is_node = true;
  3817. }
  3818. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3819. ggml_set_op_params(result, &s, sizeof(s));
  3820. result->op = GGML_OP_SCALE;
  3821. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3822. result->src[0] = a;
  3823. return result;
  3824. }
  3825. struct ggml_tensor * ggml_scale(
  3826. struct ggml_context * ctx,
  3827. struct ggml_tensor * a,
  3828. float s) {
  3829. return ggml_scale_impl(ctx, a, s, false);
  3830. }
  3831. struct ggml_tensor * ggml_scale_inplace(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. float s) {
  3835. return ggml_scale_impl(ctx, a, s, true);
  3836. }
  3837. // ggml_set
  3838. static struct ggml_tensor * ggml_set_impl(
  3839. struct ggml_context * ctx,
  3840. struct ggml_tensor * a,
  3841. struct ggml_tensor * b,
  3842. size_t nb1,
  3843. size_t nb2,
  3844. size_t nb3,
  3845. size_t offset,
  3846. bool inplace) {
  3847. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  3848. bool is_node = false;
  3849. if (a->grad || b->grad) {
  3850. is_node = true;
  3851. }
  3852. // make a view of the destination
  3853. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3854. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3855. ggml_set_op_params(result, params, sizeof(params));
  3856. result->op = GGML_OP_SET;
  3857. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3858. result->src[0] = a;
  3859. result->src[1] = b;
  3860. return result;
  3861. }
  3862. struct ggml_tensor * ggml_set(
  3863. struct ggml_context * ctx,
  3864. struct ggml_tensor * a,
  3865. struct ggml_tensor * b,
  3866. size_t nb1,
  3867. size_t nb2,
  3868. size_t nb3,
  3869. size_t offset) {
  3870. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3871. }
  3872. struct ggml_tensor * ggml_set_inplace(
  3873. struct ggml_context * ctx,
  3874. struct ggml_tensor * a,
  3875. struct ggml_tensor * b,
  3876. size_t nb1,
  3877. size_t nb2,
  3878. size_t nb3,
  3879. size_t offset) {
  3880. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3881. }
  3882. struct ggml_tensor * ggml_set_1d(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b,
  3886. size_t offset) {
  3887. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  3888. }
  3889. struct ggml_tensor * ggml_set_1d_inplace(
  3890. struct ggml_context * ctx,
  3891. struct ggml_tensor * a,
  3892. struct ggml_tensor * b,
  3893. size_t offset) {
  3894. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  3895. }
  3896. struct ggml_tensor * ggml_set_2d(
  3897. struct ggml_context * ctx,
  3898. struct ggml_tensor * a,
  3899. struct ggml_tensor * b,
  3900. size_t nb1,
  3901. size_t offset) {
  3902. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  3903. }
  3904. struct ggml_tensor * ggml_set_2d_inplace(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. struct ggml_tensor * b,
  3908. size_t nb1,
  3909. size_t offset) {
  3910. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  3911. }
  3912. // ggml_cpy
  3913. static struct ggml_tensor * ggml_cpy_impl(
  3914. struct ggml_context * ctx,
  3915. struct ggml_tensor * a,
  3916. struct ggml_tensor * b) {
  3917. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3918. bool is_node = false;
  3919. if (a->grad || b->grad) {
  3920. // inplace is false and either one have a grad
  3921. is_node = true;
  3922. }
  3923. // make a view of the destination
  3924. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3925. if (strlen(b->name) > 0) {
  3926. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  3927. } else {
  3928. ggml_format_name(result, "%s (copy)", a->name);
  3929. }
  3930. result->op = GGML_OP_CPY;
  3931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3932. result->src[0] = a;
  3933. result->src[1] = b;
  3934. return result;
  3935. }
  3936. struct ggml_tensor * ggml_cpy(
  3937. struct ggml_context * ctx,
  3938. struct ggml_tensor * a,
  3939. struct ggml_tensor * b) {
  3940. return ggml_cpy_impl(ctx, a, b);
  3941. }
  3942. struct ggml_tensor * ggml_cast(
  3943. struct ggml_context * ctx,
  3944. struct ggml_tensor * a,
  3945. enum ggml_type type) {
  3946. bool is_node = false;
  3947. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3948. ggml_format_name(result, "%s (copy)", a->name);
  3949. result->op = GGML_OP_CPY;
  3950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3951. result->src[0] = a;
  3952. result->src[1] = result;
  3953. return result;
  3954. }
  3955. // ggml_cont
  3956. static struct ggml_tensor * ggml_cont_impl(
  3957. struct ggml_context * ctx,
  3958. struct ggml_tensor * a) {
  3959. bool is_node = false;
  3960. if (a->grad) {
  3961. is_node = true;
  3962. }
  3963. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3964. ggml_format_name(result, "%s (cont)", a->name);
  3965. result->op = GGML_OP_CONT;
  3966. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3967. result->src[0] = a;
  3968. return result;
  3969. }
  3970. struct ggml_tensor * ggml_cont(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a) {
  3973. return ggml_cont_impl(ctx, a);
  3974. }
  3975. // make contiguous, with new shape
  3976. GGML_API struct ggml_tensor * ggml_cont_1d(
  3977. struct ggml_context * ctx,
  3978. struct ggml_tensor * a,
  3979. int64_t ne0) {
  3980. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  3981. }
  3982. GGML_API struct ggml_tensor * ggml_cont_2d(
  3983. struct ggml_context * ctx,
  3984. struct ggml_tensor * a,
  3985. int64_t ne0,
  3986. int64_t ne1) {
  3987. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  3988. }
  3989. GGML_API struct ggml_tensor * ggml_cont_3d(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a,
  3992. int64_t ne0,
  3993. int64_t ne1,
  3994. int64_t ne2) {
  3995. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  3996. }
  3997. struct ggml_tensor * ggml_cont_4d(
  3998. struct ggml_context * ctx,
  3999. struct ggml_tensor * a,
  4000. int64_t ne0,
  4001. int64_t ne1,
  4002. int64_t ne2,
  4003. int64_t ne3) {
  4004. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4005. bool is_node = false;
  4006. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4007. ggml_format_name(result, "%s (cont)", a->name);
  4008. result->op = GGML_OP_CONT;
  4009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4010. result->src[0] = a;
  4011. return result;
  4012. }
  4013. // ggml_reshape
  4014. struct ggml_tensor * ggml_reshape(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a,
  4017. struct ggml_tensor * b) {
  4018. GGML_ASSERT(ggml_is_contiguous(a));
  4019. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4020. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4021. bool is_node = false;
  4022. if (a->grad) {
  4023. is_node = true;
  4024. }
  4025. if (b->grad) {
  4026. // gradient propagation is not supported
  4027. //GGML_ASSERT(false);
  4028. }
  4029. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4030. ggml_format_name(result, "%s (reshaped)", a->name);
  4031. result->op = GGML_OP_RESHAPE;
  4032. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4033. result->src[0] = a;
  4034. return result;
  4035. }
  4036. struct ggml_tensor * ggml_reshape_1d(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. int64_t ne0) {
  4040. GGML_ASSERT(ggml_is_contiguous(a));
  4041. GGML_ASSERT(ggml_nelements(a) == ne0);
  4042. bool is_node = false;
  4043. if (a->grad) {
  4044. is_node = true;
  4045. }
  4046. const int64_t ne[1] = { ne0 };
  4047. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4048. ggml_format_name(result, "%s (reshaped)", a->name);
  4049. result->op = GGML_OP_RESHAPE;
  4050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4051. result->src[0] = a;
  4052. return result;
  4053. }
  4054. struct ggml_tensor * ggml_reshape_2d(
  4055. struct ggml_context * ctx,
  4056. struct ggml_tensor * a,
  4057. int64_t ne0,
  4058. int64_t ne1) {
  4059. GGML_ASSERT(ggml_is_contiguous(a));
  4060. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4061. bool is_node = false;
  4062. if (a->grad) {
  4063. is_node = true;
  4064. }
  4065. const int64_t ne[2] = { ne0, ne1 };
  4066. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4067. ggml_format_name(result, "%s (reshaped)", a->name);
  4068. result->op = GGML_OP_RESHAPE;
  4069. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4070. result->src[0] = a;
  4071. return result;
  4072. }
  4073. struct ggml_tensor * ggml_reshape_3d(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a,
  4076. int64_t ne0,
  4077. int64_t ne1,
  4078. int64_t ne2) {
  4079. GGML_ASSERT(ggml_is_contiguous(a));
  4080. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4081. bool is_node = false;
  4082. if (a->grad) {
  4083. is_node = true;
  4084. }
  4085. const int64_t ne[3] = { ne0, ne1, ne2 };
  4086. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4087. ggml_format_name(result, "%s (reshaped)", a->name);
  4088. result->op = GGML_OP_RESHAPE;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src[0] = a;
  4091. return result;
  4092. }
  4093. struct ggml_tensor * ggml_reshape_4d(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. int64_t ne0,
  4097. int64_t ne1,
  4098. int64_t ne2,
  4099. int64_t ne3) {
  4100. GGML_ASSERT(ggml_is_contiguous(a));
  4101. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4102. bool is_node = false;
  4103. if (a->grad) {
  4104. is_node = true;
  4105. }
  4106. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4107. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4108. ggml_format_name(result, "%s (reshaped)", a->name);
  4109. result->op = GGML_OP_RESHAPE;
  4110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4111. result->src[0] = a;
  4112. return result;
  4113. }
  4114. static struct ggml_tensor * ggml_view_impl(
  4115. struct ggml_context * ctx,
  4116. struct ggml_tensor * a,
  4117. int n_dims,
  4118. const int64_t * ne,
  4119. size_t offset) {
  4120. bool is_node = false;
  4121. if (a->grad) {
  4122. is_node = true;
  4123. }
  4124. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4125. ggml_format_name(result, "%s (view)", a->name);
  4126. ggml_set_op_params(result, &offset, sizeof(offset));
  4127. result->op = GGML_OP_VIEW;
  4128. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4129. result->src[0] = a;
  4130. return result;
  4131. }
  4132. // ggml_view_1d
  4133. struct ggml_tensor * ggml_view_1d(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. int64_t ne0,
  4137. size_t offset) {
  4138. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4139. return result;
  4140. }
  4141. // ggml_view_2d
  4142. struct ggml_tensor * ggml_view_2d(
  4143. struct ggml_context * ctx,
  4144. struct ggml_tensor * a,
  4145. int64_t ne0,
  4146. int64_t ne1,
  4147. size_t nb1,
  4148. size_t offset) {
  4149. const int64_t ne[2] = { ne0, ne1 };
  4150. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4151. result->nb[1] = nb1;
  4152. result->nb[2] = result->nb[1]*ne1;
  4153. result->nb[3] = result->nb[2];
  4154. return result;
  4155. }
  4156. // ggml_view_3d
  4157. struct ggml_tensor * ggml_view_3d(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a,
  4160. int64_t ne0,
  4161. int64_t ne1,
  4162. int64_t ne2,
  4163. size_t nb1,
  4164. size_t nb2,
  4165. size_t offset) {
  4166. const int64_t ne[3] = { ne0, ne1, ne2 };
  4167. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4168. result->nb[1] = nb1;
  4169. result->nb[2] = nb2;
  4170. result->nb[3] = result->nb[2]*ne2;
  4171. return result;
  4172. }
  4173. // ggml_view_4d
  4174. struct ggml_tensor * ggml_view_4d(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a,
  4177. int64_t ne0,
  4178. int64_t ne1,
  4179. int64_t ne2,
  4180. int64_t ne3,
  4181. size_t nb1,
  4182. size_t nb2,
  4183. size_t nb3,
  4184. size_t offset) {
  4185. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4186. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4187. result->nb[1] = nb1;
  4188. result->nb[2] = nb2;
  4189. result->nb[3] = nb3;
  4190. return result;
  4191. }
  4192. // ggml_permute
  4193. struct ggml_tensor * ggml_permute(
  4194. struct ggml_context * ctx,
  4195. struct ggml_tensor * a,
  4196. int axis0,
  4197. int axis1,
  4198. int axis2,
  4199. int axis3) {
  4200. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4201. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4202. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4203. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4204. GGML_ASSERT(axis0 != axis1);
  4205. GGML_ASSERT(axis0 != axis2);
  4206. GGML_ASSERT(axis0 != axis3);
  4207. GGML_ASSERT(axis1 != axis2);
  4208. GGML_ASSERT(axis1 != axis3);
  4209. GGML_ASSERT(axis2 != axis3);
  4210. bool is_node = false;
  4211. if (a->grad) {
  4212. is_node = true;
  4213. }
  4214. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4215. ggml_format_name(result, "%s (permuted)", a->name);
  4216. int ne[GGML_MAX_DIMS];
  4217. int nb[GGML_MAX_DIMS];
  4218. ne[axis0] = a->ne[0];
  4219. ne[axis1] = a->ne[1];
  4220. ne[axis2] = a->ne[2];
  4221. ne[axis3] = a->ne[3];
  4222. nb[axis0] = a->nb[0];
  4223. nb[axis1] = a->nb[1];
  4224. nb[axis2] = a->nb[2];
  4225. nb[axis3] = a->nb[3];
  4226. result->ne[0] = ne[0];
  4227. result->ne[1] = ne[1];
  4228. result->ne[2] = ne[2];
  4229. result->ne[3] = ne[3];
  4230. result->nb[0] = nb[0];
  4231. result->nb[1] = nb[1];
  4232. result->nb[2] = nb[2];
  4233. result->nb[3] = nb[3];
  4234. result->op = GGML_OP_PERMUTE;
  4235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4236. result->src[0] = a;
  4237. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4238. ggml_set_op_params(result, params, sizeof(params));
  4239. return result;
  4240. }
  4241. // ggml_transpose
  4242. struct ggml_tensor * ggml_transpose(
  4243. struct ggml_context * ctx,
  4244. struct ggml_tensor * a) {
  4245. bool is_node = false;
  4246. if (a->grad) {
  4247. is_node = true;
  4248. }
  4249. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4250. ggml_format_name(result, "%s (transposed)", a->name);
  4251. result->ne[0] = a->ne[1];
  4252. result->ne[1] = a->ne[0];
  4253. result->nb[0] = a->nb[1];
  4254. result->nb[1] = a->nb[0];
  4255. result->op = GGML_OP_TRANSPOSE;
  4256. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4257. result->src[0] = a;
  4258. return result;
  4259. }
  4260. // ggml_get_rows
  4261. struct ggml_tensor * ggml_get_rows(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a,
  4264. struct ggml_tensor * b) {
  4265. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4266. GGML_ASSERT(b->ne[3] == 1);
  4267. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4268. bool is_node = false;
  4269. if (a->grad || b->grad) {
  4270. is_node = true;
  4271. }
  4272. // TODO: implement non F32 return
  4273. enum ggml_type type = GGML_TYPE_F32;
  4274. if (a->type == GGML_TYPE_I32) {
  4275. type = a->type;
  4276. }
  4277. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4278. result->op = GGML_OP_GET_ROWS;
  4279. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4280. result->src[0] = a;
  4281. result->src[1] = b;
  4282. return result;
  4283. }
  4284. // ggml_get_rows_back
  4285. struct ggml_tensor * ggml_get_rows_back(
  4286. struct ggml_context * ctx,
  4287. struct ggml_tensor * a,
  4288. struct ggml_tensor * b,
  4289. struct ggml_tensor * c) {
  4290. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4291. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4292. bool is_node = false;
  4293. if (a->grad || b->grad) {
  4294. is_node = true;
  4295. }
  4296. // TODO: implement non F32 return
  4297. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4298. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4299. result->op = GGML_OP_GET_ROWS_BACK;
  4300. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4301. result->src[0] = a;
  4302. result->src[1] = b;
  4303. return result;
  4304. }
  4305. // ggml_diag
  4306. struct ggml_tensor * ggml_diag(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a) {
  4309. GGML_ASSERT(a->ne[1] == 1);
  4310. bool is_node = false;
  4311. if (a->grad) {
  4312. is_node = true;
  4313. }
  4314. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4315. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  4316. result->op = GGML_OP_DIAG;
  4317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4318. result->src[0] = a;
  4319. return result;
  4320. }
  4321. // ggml_diag_mask_inf
  4322. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. int n_past,
  4326. bool inplace) {
  4327. bool is_node = false;
  4328. if (a->grad) {
  4329. is_node = true;
  4330. }
  4331. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4332. int32_t params[] = { n_past };
  4333. ggml_set_op_params(result, params, sizeof(params));
  4334. result->op = GGML_OP_DIAG_MASK_INF;
  4335. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4336. result->src[0] = a;
  4337. return result;
  4338. }
  4339. struct ggml_tensor * ggml_diag_mask_inf(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a,
  4342. int n_past) {
  4343. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  4344. }
  4345. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. int n_past) {
  4349. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  4350. }
  4351. // ggml_diag_mask_zero
  4352. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  4353. struct ggml_context * ctx,
  4354. struct ggml_tensor * a,
  4355. int n_past,
  4356. bool inplace) {
  4357. bool is_node = false;
  4358. if (a->grad) {
  4359. is_node = true;
  4360. }
  4361. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4362. int32_t params[] = { n_past };
  4363. ggml_set_op_params(result, params, sizeof(params));
  4364. result->op = GGML_OP_DIAG_MASK_ZERO;
  4365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4366. result->src[0] = a;
  4367. return result;
  4368. }
  4369. struct ggml_tensor * ggml_diag_mask_zero(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a,
  4372. int n_past) {
  4373. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  4374. }
  4375. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a,
  4378. int n_past) {
  4379. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  4380. }
  4381. // ggml_soft_max
  4382. static struct ggml_tensor * ggml_soft_max_impl(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a,
  4385. struct ggml_tensor * mask,
  4386. struct ggml_tensor * pos,
  4387. float scale,
  4388. float max_bias,
  4389. bool inplace) {
  4390. GGML_ASSERT(ggml_is_contiguous(a));
  4391. if (mask) {
  4392. GGML_ASSERT(ggml_is_contiguous(mask));
  4393. GGML_ASSERT(ggml_is_matrix(mask));
  4394. GGML_ASSERT(ggml_can_repeat_rows(mask, a));
  4395. }
  4396. if (pos) {
  4397. GGML_ASSERT(ggml_is_vector(pos));
  4398. GGML_ASSERT(pos->type == GGML_TYPE_F32);
  4399. GGML_ASSERT(pos->ne[0] == a->ne[0]);
  4400. }
  4401. if (max_bias > 0.0f) {
  4402. GGML_ASSERT(pos);
  4403. }
  4404. bool is_node = false;
  4405. if (a->grad) {
  4406. is_node = true;
  4407. }
  4408. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4409. float params[] = { scale, max_bias };
  4410. ggml_set_op_params(result, params, sizeof(params));
  4411. result->op = GGML_OP_SOFT_MAX;
  4412. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4413. result->src[0] = a;
  4414. result->src[1] = mask;
  4415. result->src[2] = pos;
  4416. return result;
  4417. }
  4418. struct ggml_tensor * ggml_soft_max(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a) {
  4421. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, false);
  4422. }
  4423. struct ggml_tensor * ggml_soft_max_inplace(
  4424. struct ggml_context * ctx,
  4425. struct ggml_tensor * a) {
  4426. return ggml_soft_max_impl(ctx, a, NULL, NULL, 1.0f, 0.0f, true);
  4427. }
  4428. struct ggml_tensor * ggml_soft_max_ext(
  4429. struct ggml_context * ctx,
  4430. struct ggml_tensor * a,
  4431. struct ggml_tensor * mask,
  4432. struct ggml_tensor * pos,
  4433. float scale,
  4434. float max_bias) {
  4435. return ggml_soft_max_impl(ctx, a, mask, pos, scale, max_bias, false);
  4436. }
  4437. // ggml_soft_max_back
  4438. static struct ggml_tensor * ggml_soft_max_back_impl(
  4439. struct ggml_context * ctx,
  4440. struct ggml_tensor * a,
  4441. struct ggml_tensor * b,
  4442. bool inplace) {
  4443. bool is_node = false;
  4444. if (a->grad || b->grad) {
  4445. is_node = true; // TODO : implement backward pass
  4446. }
  4447. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4448. result->op = GGML_OP_SOFT_MAX_BACK;
  4449. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4450. result->src[0] = a;
  4451. result->src[1] = b;
  4452. return result;
  4453. }
  4454. struct ggml_tensor * ggml_soft_max_back(
  4455. struct ggml_context * ctx,
  4456. struct ggml_tensor * a,
  4457. struct ggml_tensor * b) {
  4458. return ggml_soft_max_back_impl(ctx, a, b, false);
  4459. }
  4460. struct ggml_tensor * ggml_soft_max_back_inplace(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * a,
  4463. struct ggml_tensor * b) {
  4464. return ggml_soft_max_back_impl(ctx, a, b, true);
  4465. }
  4466. // ggml_rope
  4467. static struct ggml_tensor * ggml_rope_impl(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. struct ggml_tensor * b,
  4471. int n_dims,
  4472. int mode,
  4473. int n_ctx,
  4474. int n_orig_ctx,
  4475. float freq_base,
  4476. float freq_scale,
  4477. float ext_factor,
  4478. float attn_factor,
  4479. float beta_fast,
  4480. float beta_slow,
  4481. float xpos_base,
  4482. bool xpos_down,
  4483. bool inplace) {
  4484. GGML_ASSERT(ggml_is_vector(b));
  4485. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4486. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4487. bool is_node = false;
  4488. if (a->grad) {
  4489. is_node = true;
  4490. }
  4491. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4492. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4493. memcpy(params + 5, &freq_base, sizeof(float));
  4494. memcpy(params + 6, &freq_scale, sizeof(float));
  4495. memcpy(params + 7, &ext_factor, sizeof(float));
  4496. memcpy(params + 8, &attn_factor, sizeof(float));
  4497. memcpy(params + 9, &beta_fast, sizeof(float));
  4498. memcpy(params + 10, &beta_slow, sizeof(float));
  4499. memcpy(params + 11, &xpos_base, sizeof(float));
  4500. memcpy(params + 12, &xpos_down, sizeof(bool));
  4501. ggml_set_op_params(result, params, sizeof(params));
  4502. result->op = GGML_OP_ROPE;
  4503. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4504. result->src[0] = a;
  4505. result->src[1] = b;
  4506. return result;
  4507. }
  4508. struct ggml_tensor * ggml_rope(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b,
  4512. int n_dims,
  4513. int mode,
  4514. int n_ctx) {
  4515. return ggml_rope_impl(
  4516. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, false
  4517. );
  4518. }
  4519. struct ggml_tensor * ggml_rope_inplace(
  4520. struct ggml_context * ctx,
  4521. struct ggml_tensor * a,
  4522. struct ggml_tensor * b,
  4523. int n_dims,
  4524. int mode,
  4525. int n_ctx) {
  4526. return ggml_rope_impl(
  4527. ctx, a, b, n_dims, mode, n_ctx, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, 0.0f, false, true
  4528. );
  4529. }
  4530. struct ggml_tensor * ggml_rope_custom(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. struct ggml_tensor * b,
  4534. int n_dims,
  4535. int mode,
  4536. int n_ctx,
  4537. int n_orig_ctx,
  4538. float freq_base,
  4539. float freq_scale,
  4540. float ext_factor,
  4541. float attn_factor,
  4542. float beta_fast,
  4543. float beta_slow) {
  4544. return ggml_rope_impl(
  4545. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4546. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, false
  4547. );
  4548. }
  4549. struct ggml_tensor * ggml_rope_custom_inplace(
  4550. struct ggml_context * ctx,
  4551. struct ggml_tensor * a,
  4552. struct ggml_tensor * b,
  4553. int n_dims,
  4554. int mode,
  4555. int n_ctx,
  4556. int n_orig_ctx,
  4557. float freq_base,
  4558. float freq_scale,
  4559. float ext_factor,
  4560. float attn_factor,
  4561. float beta_fast,
  4562. float beta_slow) {
  4563. return ggml_rope_impl(
  4564. ctx, a, b, n_dims, mode, n_ctx, n_orig_ctx, freq_base, freq_scale,
  4565. ext_factor, attn_factor, beta_fast, beta_slow, 0.0f, false, true
  4566. );
  4567. }
  4568. struct ggml_tensor * ggml_rope_xpos_inplace(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. struct ggml_tensor * b,
  4572. int n_dims,
  4573. float base,
  4574. bool down) {
  4575. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, base, down, true);
  4576. }
  4577. // ggml_rope_back
  4578. struct ggml_tensor * ggml_rope_back(
  4579. struct ggml_context * ctx,
  4580. struct ggml_tensor * a,
  4581. struct ggml_tensor * b,
  4582. int n_dims,
  4583. int mode,
  4584. int n_ctx,
  4585. int n_orig_ctx,
  4586. float freq_base,
  4587. float freq_scale,
  4588. float ext_factor,
  4589. float attn_factor,
  4590. float beta_fast,
  4591. float beta_slow,
  4592. float xpos_base,
  4593. bool xpos_down) {
  4594. GGML_ASSERT(ggml_is_vector(b));
  4595. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4596. GGML_ASSERT(a->ne[2] == b->ne[0]);
  4597. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  4598. bool is_node = false;
  4599. if (a->grad) {
  4600. is_node = false; // TODO: implement backward
  4601. }
  4602. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4603. int32_t params[13] = { /*n_past*/ 0, n_dims, mode, n_ctx, n_orig_ctx };
  4604. memcpy(params + 5, &freq_base, sizeof(float));
  4605. memcpy(params + 6, &freq_scale, sizeof(float));
  4606. memcpy(params + 7, &ext_factor, sizeof(float));
  4607. memcpy(params + 8, &attn_factor, sizeof(float));
  4608. memcpy(params + 9, &beta_fast, sizeof(float));
  4609. memcpy(params + 10, &beta_slow, sizeof(float));
  4610. memcpy(params + 11, &xpos_base, sizeof(float));
  4611. memcpy(params + 12, &xpos_down, sizeof(bool));
  4612. ggml_set_op_params(result, params, sizeof(params));
  4613. result->op = GGML_OP_ROPE_BACK;
  4614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4615. result->src[0] = a;
  4616. result->src[1] = b;
  4617. return result;
  4618. }
  4619. // ggml_alibi
  4620. struct ggml_tensor * ggml_alibi(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. int n_past,
  4624. int n_head,
  4625. float bias_max) {
  4626. GGML_ASSERT(n_past >= 0);
  4627. bool is_node = false;
  4628. if (a->grad) {
  4629. GGML_ASSERT(false); // TODO: implement backward
  4630. is_node = true;
  4631. }
  4632. // TODO: when implement backward, fix this:
  4633. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4634. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4635. int32_t op_params[3] = { n_past, n_head };
  4636. memcpy(op_params + 2, &bias_max, sizeof(float));
  4637. ggml_set_op_params(result, op_params, sizeof(op_params));
  4638. result->op = GGML_OP_ALIBI;
  4639. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4640. result->src[0] = a;
  4641. return result;
  4642. }
  4643. // ggml_clamp
  4644. struct ggml_tensor * ggml_clamp(
  4645. struct ggml_context * ctx,
  4646. struct ggml_tensor * a,
  4647. float min,
  4648. float max) {
  4649. bool is_node = false;
  4650. if (a->grad) {
  4651. GGML_ASSERT(false); // TODO: implement backward
  4652. is_node = true;
  4653. }
  4654. // TODO: when implement backward, fix this:
  4655. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4656. float params[] = { min, max };
  4657. ggml_set_op_params(result, params, sizeof(params));
  4658. result->op = GGML_OP_CLAMP;
  4659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4660. result->src[0] = a;
  4661. return result;
  4662. }
  4663. // ggml_conv_1d
  4664. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4665. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  4666. }
  4667. GGML_API struct ggml_tensor * ggml_conv_1d(
  4668. struct ggml_context * ctx,
  4669. struct ggml_tensor * a,
  4670. struct ggml_tensor * b,
  4671. int s0,
  4672. int p0,
  4673. int d0) {
  4674. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  4675. struct ggml_tensor * result =
  4676. ggml_mul_mat(ctx,
  4677. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  4678. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  4679. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  4680. return result;
  4681. }
  4682. // ggml_conv_1d_ph
  4683. struct ggml_tensor* ggml_conv_1d_ph(
  4684. struct ggml_context * ctx,
  4685. struct ggml_tensor * a,
  4686. struct ggml_tensor * b,
  4687. int s,
  4688. int d) {
  4689. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  4690. }
  4691. // ggml_conv_transpose_1d
  4692. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  4693. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  4694. }
  4695. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. struct ggml_tensor * b,
  4699. int s0,
  4700. int p0,
  4701. int d0) {
  4702. GGML_ASSERT(ggml_is_matrix(b));
  4703. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4704. GGML_ASSERT(a->ne[3] == 1);
  4705. GGML_ASSERT(p0 == 0);
  4706. GGML_ASSERT(d0 == 1);
  4707. bool is_node = false;
  4708. if (a->grad || b->grad) {
  4709. GGML_ASSERT(false); // TODO: implement backward
  4710. is_node = true;
  4711. }
  4712. const int64_t ne[4] = {
  4713. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  4714. a->ne[1], b->ne[2], 1,
  4715. };
  4716. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4717. int32_t params[] = { s0, p0, d0 };
  4718. ggml_set_op_params(result, params, sizeof(params));
  4719. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  4720. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4721. result->src[0] = a;
  4722. result->src[1] = b;
  4723. return result;
  4724. }
  4725. // ggml_conv_depthwise
  4726. struct ggml_tensor * ggml_conv_depthwise_2d(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a,
  4729. struct ggml_tensor * b,
  4730. int s0,
  4731. int s1,
  4732. int p0,
  4733. int p1,
  4734. int d0,
  4735. int d1) {
  4736. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  4737. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  4738. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  4739. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  4740. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  4741. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  4742. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  4743. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  4744. return result;
  4745. }
  4746. // ggml_conv_2d
  4747. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  4748. // a: [OC,IC, KH, KW]
  4749. // b: [N, IC, IH, IW]
  4750. // result: [N, OH, OW, IC*KH*KW]
  4751. struct ggml_tensor * ggml_im2col(
  4752. struct ggml_context * ctx,
  4753. struct ggml_tensor * a,
  4754. struct ggml_tensor * b,
  4755. int s0,
  4756. int s1,
  4757. int p0,
  4758. int p1,
  4759. int d0,
  4760. int d1,
  4761. bool is_2D,
  4762. enum ggml_type dst_type) {
  4763. if(is_2D) {
  4764. GGML_ASSERT(a->ne[2] == b->ne[2]);
  4765. } else {
  4766. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4767. }
  4768. bool is_node = false;
  4769. if (a->grad || b->grad) {
  4770. GGML_ASSERT(false); // TODO: implement backward
  4771. is_node = true;
  4772. }
  4773. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  4774. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  4775. const int64_t ne[4] = {
  4776. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  4777. OW,
  4778. is_2D ? OH : b->ne[2],
  4779. is_2D ? b->ne[3] : 1,
  4780. };
  4781. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  4782. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  4783. ggml_set_op_params(result, params, sizeof(params));
  4784. result->op = GGML_OP_IM2COL;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src[0] = a;
  4787. result->src[1] = b;
  4788. return result;
  4789. }
  4790. // a: [OC,IC, KH, KW]
  4791. // b: [N, IC, IH, IW]
  4792. // result: [N, OC, OH, OW]
  4793. struct ggml_tensor * ggml_conv_2d(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. struct ggml_tensor * b,
  4797. int s0,
  4798. int s1,
  4799. int p0,
  4800. int p1,
  4801. int d0,
  4802. int d1) {
  4803. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  4804. struct ggml_tensor * result =
  4805. ggml_mul_mat(ctx,
  4806. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  4807. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  4808. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  4809. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  4810. return result;
  4811. }
  4812. // ggml_conv_2d_sk_p0
  4813. struct ggml_tensor * ggml_conv_2d_sk_p0(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. struct ggml_tensor * b) {
  4817. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  4818. }
  4819. // ggml_conv_2d_s1_ph
  4820. struct ggml_tensor * ggml_conv_2d_s1_ph(
  4821. struct ggml_context * ctx,
  4822. struct ggml_tensor * a,
  4823. struct ggml_tensor * b) {
  4824. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  4825. }
  4826. // ggml_conv_transpose_2d_p0
  4827. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  4828. return (ins - 1) * s - 2 * p + ks;
  4829. }
  4830. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  4831. struct ggml_context * ctx,
  4832. struct ggml_tensor * a,
  4833. struct ggml_tensor * b,
  4834. int stride) {
  4835. GGML_ASSERT(a->ne[3] == b->ne[2]);
  4836. bool is_node = false;
  4837. if (a->grad || b->grad) {
  4838. GGML_ASSERT(false); // TODO: implement backward
  4839. is_node = true;
  4840. }
  4841. const int64_t ne[4] = {
  4842. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  4843. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  4844. a->ne[2], b->ne[3],
  4845. };
  4846. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4847. ggml_set_op_params_i32(result, 0, stride);
  4848. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  4849. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4850. result->src[0] = a;
  4851. result->src[1] = b;
  4852. return result;
  4853. }
  4854. // ggml_pool_*
  4855. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  4856. return (ins + 2 * p - ks) / s + 1;
  4857. }
  4858. // ggml_pool_1d
  4859. struct ggml_tensor * ggml_pool_1d(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. enum ggml_op_pool op,
  4863. int k0,
  4864. int s0,
  4865. int p0) {
  4866. bool is_node = false;
  4867. if (a->grad) {
  4868. GGML_ASSERT(false); // TODO: implement backward
  4869. is_node = true;
  4870. }
  4871. const int64_t ne[4] = {
  4872. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4873. a->ne[1],
  4874. a->ne[2],
  4875. a->ne[3],
  4876. };
  4877. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4878. int32_t params[] = { op, k0, s0, p0 };
  4879. ggml_set_op_params(result, params, sizeof(params));
  4880. result->op = GGML_OP_POOL_1D;
  4881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4882. result->src[0] = a;
  4883. return result;
  4884. }
  4885. // ggml_pool_2d
  4886. struct ggml_tensor * ggml_pool_2d(
  4887. struct ggml_context * ctx,
  4888. struct ggml_tensor * a,
  4889. enum ggml_op_pool op,
  4890. int k0,
  4891. int k1,
  4892. int s0,
  4893. int s1,
  4894. float p0,
  4895. float p1) {
  4896. bool is_node = false;
  4897. if (a->grad) {
  4898. GGML_ASSERT(false); // TODO: implement backward
  4899. is_node = true;
  4900. }
  4901. struct ggml_tensor * result;
  4902. const int64_t ne[3] = {
  4903. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  4904. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  4905. a->ne[2],
  4906. };
  4907. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  4908. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  4909. ggml_set_op_params(result, params, sizeof(params));
  4910. result->op = GGML_OP_POOL_2D;
  4911. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4912. result->src[0] = a;
  4913. return result;
  4914. }
  4915. // ggml_upscale
  4916. static struct ggml_tensor * ggml_upscale_impl(
  4917. struct ggml_context * ctx,
  4918. struct ggml_tensor * a,
  4919. int scale_factor) {
  4920. bool is_node = false;
  4921. if (a->grad) {
  4922. GGML_ASSERT(false); // TODO: implement backward
  4923. is_node = true;
  4924. }
  4925. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4926. a->ne[0] * scale_factor,
  4927. a->ne[1] * scale_factor,
  4928. a->ne[2], a->ne[3]);
  4929. result->op = GGML_OP_UPSCALE;
  4930. result->op_params[0] = scale_factor;
  4931. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4932. result->src[0] = a;
  4933. return result;
  4934. }
  4935. struct ggml_tensor * ggml_pad(
  4936. struct ggml_context * ctx,
  4937. struct ggml_tensor * a,
  4938. int p0, int p1, int p2, int p3) {
  4939. bool is_node = false;
  4940. if (a->grad) {
  4941. GGML_ASSERT(false); // TODO: implement backward
  4942. is_node = true;
  4943. }
  4944. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  4945. a->ne[0] + p0,
  4946. a->ne[1] + p1,
  4947. a->ne[2] + p2,
  4948. a->ne[3] + p3);
  4949. result->op = GGML_OP_PAD;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src[0] = a;
  4952. return result;
  4953. }
  4954. struct ggml_tensor * ggml_upscale(
  4955. struct ggml_context * ctx,
  4956. struct ggml_tensor * a,
  4957. int scale_factor) {
  4958. return ggml_upscale_impl(ctx, a, scale_factor);
  4959. }
  4960. struct ggml_tensor * ggml_arange(
  4961. struct ggml_context * ctx,
  4962. float start,
  4963. float stop,
  4964. float step) {
  4965. GGML_ASSERT(stop > start);
  4966. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  4967. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  4968. result->op = GGML_OP_ARANGE;
  4969. ggml_set_op_params_f32(result, 0, start);
  4970. ggml_set_op_params_f32(result, 1, stop);
  4971. ggml_set_op_params_f32(result, 2, step);
  4972. return result;
  4973. }
  4974. struct ggml_tensor * ggml_timestep_embedding(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * timesteps,
  4977. int dim,
  4978. int max_period) {
  4979. bool is_node = false;
  4980. if (timesteps->grad) {
  4981. GGML_ASSERT(false); // TODO: implement backward
  4982. is_node = true;
  4983. }
  4984. int actual_dim = dim;
  4985. if (dim % 2 != 0) {
  4986. actual_dim = dim + 1;
  4987. }
  4988. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  4989. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  4990. ggml_set_op_params_i32(result, 0, dim);
  4991. ggml_set_op_params_i32(result, 1, max_period);
  4992. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4993. result->src[0] = timesteps;
  4994. return result;
  4995. }
  4996. // ggml_argsort
  4997. struct ggml_tensor * ggml_argsort(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * a,
  5000. enum ggml_sort_order order) {
  5001. bool is_node = false;
  5002. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5003. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5004. result->op = GGML_OP_ARGSORT;
  5005. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5006. result->src[0] = a;
  5007. return result;
  5008. }
  5009. // ggml_top_k
  5010. struct ggml_tensor * ggml_top_k(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. int k) {
  5014. GGML_ASSERT(a->ne[0] >= k);
  5015. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5016. result = ggml_view_4d(ctx, result,
  5017. k, result->ne[1], result->ne[2], result->ne[3],
  5018. result->nb[1], result->nb[2], result->nb[3],
  5019. 0);
  5020. return result;
  5021. }
  5022. // ggml_flash_attn
  5023. struct ggml_tensor * ggml_flash_attn(
  5024. struct ggml_context * ctx,
  5025. struct ggml_tensor * q,
  5026. struct ggml_tensor * k,
  5027. struct ggml_tensor * v,
  5028. bool masked) {
  5029. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5030. // TODO: check if vT can be multiplied by (k*qT)
  5031. bool is_node = false;
  5032. if (q->grad || k->grad || v->grad) {
  5033. is_node = true;
  5034. }
  5035. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5036. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
  5037. int32_t t = masked ? 1 : 0;
  5038. ggml_set_op_params(result, &t, sizeof(t));
  5039. result->op = GGML_OP_FLASH_ATTN;
  5040. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5041. result->src[0] = q;
  5042. result->src[1] = k;
  5043. result->src[2] = v;
  5044. return result;
  5045. }
  5046. // ggml_flash_ff
  5047. struct ggml_tensor * ggml_flash_ff(
  5048. struct ggml_context * ctx,
  5049. struct ggml_tensor * a,
  5050. struct ggml_tensor * b0,
  5051. struct ggml_tensor * b1,
  5052. struct ggml_tensor * c0,
  5053. struct ggml_tensor * c1) {
  5054. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5055. // TODO: more checks
  5056. bool is_node = false;
  5057. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5058. is_node = true;
  5059. }
  5060. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5061. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
  5062. result->op = GGML_OP_FLASH_FF;
  5063. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5064. result->src[0] = a;
  5065. result->src[1] = b0;
  5066. result->src[2] = b1;
  5067. result->src[3] = c0;
  5068. result->src[4] = c1;
  5069. return result;
  5070. }
  5071. // ggml_flash_attn_back
  5072. struct ggml_tensor * ggml_flash_attn_back(
  5073. struct ggml_context * ctx,
  5074. struct ggml_tensor * q,
  5075. struct ggml_tensor * k,
  5076. struct ggml_tensor * v,
  5077. struct ggml_tensor * d,
  5078. bool masked) {
  5079. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5080. // TODO: check if vT can be multiplied by (k*qT)
  5081. // d shape [D,N,ne2,ne3]
  5082. // q shape [D,N,ne2,ne3]
  5083. // k shape [D,M,kvne2,ne3]
  5084. // v shape [M,D,kvne2,ne3]
  5085. const int64_t D = q->ne[0];
  5086. const int64_t N = q->ne[1];
  5087. const int64_t M = k->ne[1];
  5088. const int64_t ne2 = q->ne[2];
  5089. const int64_t ne3 = q->ne[3];
  5090. const int64_t kvne2 = k->ne[2];
  5091. GGML_ASSERT(k->ne[0] == D);
  5092. GGML_ASSERT(v->ne[0] == M);
  5093. GGML_ASSERT(v->ne[1] == D);
  5094. GGML_ASSERT(d->ne[0] == D);
  5095. GGML_ASSERT(d->ne[1] == N);
  5096. GGML_ASSERT(k->ne[2] == kvne2);
  5097. GGML_ASSERT(k->ne[3] == ne3);
  5098. GGML_ASSERT(v->ne[2] == kvne2);
  5099. GGML_ASSERT(v->ne[3] == ne3);
  5100. GGML_ASSERT(d->ne[2] == ne2);
  5101. GGML_ASSERT(d->ne[3] == ne3);
  5102. GGML_ASSERT(ne2 % kvne2 == 0);
  5103. bool is_node = false;
  5104. if (q->grad || k->grad || v->grad) {
  5105. // when using this operation (in backwards pass) these grads are set.
  5106. // we don't want to create (big) grad of our result, so is_node is false.
  5107. is_node = false;
  5108. }
  5109. // store gradients of q, k and v as continuous tensors concatenated in result.
  5110. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5111. const int64_t elem_q = ggml_nelements(q);
  5112. const int64_t elem_k = ggml_nelements(k);
  5113. const int64_t elem_v = ggml_nelements(v);
  5114. enum ggml_type result_type = GGML_TYPE_F32;
  5115. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5116. const size_t tsize = ggml_type_size(result_type);
  5117. const size_t offs_q = 0;
  5118. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5119. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5120. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5121. const size_t nelements = (end + tsize - 1)/tsize;
  5122. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5123. int32_t masked_i = masked ? 1 : 0;
  5124. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5125. result->op = GGML_OP_FLASH_ATTN_BACK;
  5126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5127. result->src[0] = q;
  5128. result->src[1] = k;
  5129. result->src[2] = v;
  5130. result->src[3] = d;
  5131. return result;
  5132. }
  5133. // ggml_ssm_conv
  5134. struct ggml_tensor * ggml_ssm_conv(
  5135. struct ggml_context * ctx,
  5136. struct ggml_tensor * s,
  5137. struct ggml_tensor * x,
  5138. struct ggml_tensor * c,
  5139. struct ggml_tensor * sq) {
  5140. GGML_ASSERT(ggml_is_3d(s));
  5141. GGML_ASSERT(ggml_is_matrix(x));
  5142. GGML_ASSERT(ggml_is_matrix(c));
  5143. GGML_ASSERT(ggml_is_matrix(sq));
  5144. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5145. const int64_t d_conv = c->ne[0];
  5146. const int64_t d_inner = c->ne[1];
  5147. const int64_t n_tokens = x->ne[1];
  5148. const int64_t n_kv = s->ne[2];
  5149. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5150. GGML_ASSERT( s->ne[1] == d_inner);
  5151. GGML_ASSERT( x->ne[0] == d_inner);
  5152. GGML_ASSERT(sq->ne[0] == n_kv);
  5153. GGML_ASSERT(sq->ne[1] == n_tokens);
  5154. bool is_node = false;
  5155. if (s->grad || x->grad || c->grad || sq->grad) {
  5156. GGML_ASSERT(false); // TODO: implement
  5157. is_node = true;
  5158. }
  5159. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5160. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5161. result->op = GGML_OP_SSM_CONV;
  5162. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5163. result->src[0] = s;
  5164. result->src[1] = x;
  5165. result->src[2] = c;
  5166. result->src[3] = sq;
  5167. return result;
  5168. }
  5169. // ggml_ssm_scan
  5170. struct ggml_tensor * ggml_ssm_scan(
  5171. struct ggml_context * ctx,
  5172. struct ggml_tensor * s,
  5173. struct ggml_tensor * x,
  5174. struct ggml_tensor * dt,
  5175. struct ggml_tensor * A,
  5176. struct ggml_tensor * B,
  5177. struct ggml_tensor * C,
  5178. struct ggml_tensor * sq) {
  5179. GGML_ASSERT(ggml_is_contiguous(s));
  5180. GGML_ASSERT(ggml_is_contiguous(x));
  5181. GGML_ASSERT(ggml_is_contiguous(dt));
  5182. GGML_ASSERT(ggml_is_contiguous(A));
  5183. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5184. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5185. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5186. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5187. {
  5188. const int64_t d_state = s->ne[0];
  5189. const int64_t d_inner = s->ne[1];
  5190. const int64_t n_tokens = x->ne[1];
  5191. GGML_ASSERT(x->ne[0] == d_inner);
  5192. GGML_ASSERT(A->ne[0] == d_state);
  5193. GGML_ASSERT(A->ne[1] == d_inner);
  5194. GGML_ASSERT(B->ne[0] == d_state);
  5195. GGML_ASSERT(B->ne[1] == n_tokens);
  5196. GGML_ASSERT(C->ne[0] == d_state);
  5197. GGML_ASSERT(C->ne[1] == n_tokens);
  5198. }
  5199. bool is_node = false;
  5200. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5201. GGML_ASSERT(false); // TODO: implement
  5202. is_node = true;
  5203. }
  5204. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5205. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5206. result->op = GGML_OP_SSM_SCAN;
  5207. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5208. result->src[0] = s;
  5209. result->src[1] = x;
  5210. result->src[2] = dt;
  5211. result->src[3] = A;
  5212. result->src[4] = B;
  5213. result->src[5] = C;
  5214. result->src[6] = sq;
  5215. return result;
  5216. }
  5217. // ggml_win_part
  5218. struct ggml_tensor * ggml_win_part(
  5219. struct ggml_context * ctx,
  5220. struct ggml_tensor * a,
  5221. int w) {
  5222. GGML_ASSERT(a->ne[3] == 1);
  5223. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5224. bool is_node = false;
  5225. if (a->grad) {
  5226. GGML_ASSERT(false); // TODO: implement backward
  5227. is_node = true;
  5228. }
  5229. // padding
  5230. const int px = (w - a->ne[1]%w)%w;
  5231. const int py = (w - a->ne[2]%w)%w;
  5232. const int npx = (px + a->ne[1])/w;
  5233. const int npy = (py + a->ne[2])/w;
  5234. const int np = npx*npy;
  5235. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5236. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5237. int32_t params[] = { npx, npy, w };
  5238. ggml_set_op_params(result, params, sizeof(params));
  5239. result->op = GGML_OP_WIN_PART;
  5240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5241. result->src[0] = a;
  5242. return result;
  5243. }
  5244. // ggml_win_unpart
  5245. struct ggml_tensor * ggml_win_unpart(
  5246. struct ggml_context * ctx,
  5247. struct ggml_tensor * a,
  5248. int w0,
  5249. int h0,
  5250. int w) {
  5251. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5252. bool is_node = false;
  5253. if (a->grad) {
  5254. GGML_ASSERT(false); // TODO: implement backward
  5255. is_node = true;
  5256. }
  5257. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5258. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5259. int32_t params[] = { w };
  5260. ggml_set_op_params(result, params, sizeof(params));
  5261. result->op = GGML_OP_WIN_UNPART;
  5262. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5263. result->src[0] = a;
  5264. return result;
  5265. }
  5266. // ggml_get_rel_pos
  5267. struct ggml_tensor * ggml_get_rel_pos(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. int qh,
  5271. int kh) {
  5272. GGML_ASSERT(qh == kh);
  5273. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5274. bool is_node = false;
  5275. if (a->grad) {
  5276. GGML_ASSERT(false); // TODO: implement backward
  5277. is_node = true;
  5278. }
  5279. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5280. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5281. result->op = GGML_OP_GET_REL_POS;
  5282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5283. result->src[0] = a;
  5284. return result;
  5285. }
  5286. // ggml_add_rel_pos
  5287. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5288. struct ggml_context * ctx,
  5289. struct ggml_tensor * a,
  5290. struct ggml_tensor * pw,
  5291. struct ggml_tensor * ph,
  5292. bool inplace) {
  5293. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  5294. GGML_ASSERT(ggml_is_contiguous(a));
  5295. GGML_ASSERT(ggml_is_contiguous(pw));
  5296. GGML_ASSERT(ggml_is_contiguous(ph));
  5297. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  5298. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  5299. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  5300. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  5301. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  5302. bool is_node = false;
  5303. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  5304. is_node = true;
  5305. }
  5306. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5307. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  5308. result->op = GGML_OP_ADD_REL_POS;
  5309. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5310. result->src[0] = a;
  5311. result->src[1] = pw;
  5312. result->src[2] = ph;
  5313. return result;
  5314. }
  5315. struct ggml_tensor * ggml_add_rel_pos(
  5316. struct ggml_context * ctx,
  5317. struct ggml_tensor * a,
  5318. struct ggml_tensor * pw,
  5319. struct ggml_tensor * ph) {
  5320. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  5321. }
  5322. struct ggml_tensor * ggml_add_rel_pos_inplace(
  5323. struct ggml_context * ctx,
  5324. struct ggml_tensor * a,
  5325. struct ggml_tensor * pw,
  5326. struct ggml_tensor * ph) {
  5327. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  5328. }
  5329. // gmml_unary
  5330. static struct ggml_tensor * ggml_unary_impl(
  5331. struct ggml_context * ctx,
  5332. struct ggml_tensor * a,
  5333. enum ggml_unary_op op,
  5334. bool inplace) {
  5335. bool is_node = false;
  5336. if (!inplace && (a->grad)) {
  5337. is_node = true;
  5338. }
  5339. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5340. ggml_set_op_params_i32(result, 0, (int32_t) op);
  5341. result->op = GGML_OP_UNARY;
  5342. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5343. result->src[0] = a;
  5344. return result;
  5345. }
  5346. struct ggml_tensor * ggml_unary(
  5347. struct ggml_context * ctx,
  5348. struct ggml_tensor * a,
  5349. enum ggml_unary_op op) {
  5350. return ggml_unary_impl(ctx, a, op, false);
  5351. }
  5352. struct ggml_tensor * ggml_unary_inplace(
  5353. struct ggml_context * ctx,
  5354. struct ggml_tensor * a,
  5355. enum ggml_unary_op op) {
  5356. return ggml_unary_impl(ctx, a, op, true);
  5357. }
  5358. // ggml_map_unary
  5359. static struct ggml_tensor * ggml_map_unary_impl_f32(
  5360. struct ggml_context * ctx,
  5361. struct ggml_tensor * a,
  5362. const ggml_unary_op_f32_t fun,
  5363. bool inplace) {
  5364. bool is_node = false;
  5365. if (!inplace && a->grad) {
  5366. is_node = true;
  5367. }
  5368. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5369. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5370. result->op = GGML_OP_MAP_UNARY;
  5371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5372. result->src[0] = a;
  5373. return result;
  5374. }
  5375. struct ggml_tensor * ggml_map_unary_f32(
  5376. struct ggml_context * ctx,
  5377. struct ggml_tensor * a,
  5378. const ggml_unary_op_f32_t fun) {
  5379. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5380. }
  5381. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5382. struct ggml_context * ctx,
  5383. struct ggml_tensor * a,
  5384. const ggml_unary_op_f32_t fun) {
  5385. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5386. }
  5387. // ggml_map_binary
  5388. static struct ggml_tensor * ggml_map_binary_impl_f32(
  5389. struct ggml_context * ctx,
  5390. struct ggml_tensor * a,
  5391. struct ggml_tensor * b,
  5392. const ggml_binary_op_f32_t fun,
  5393. bool inplace) {
  5394. GGML_ASSERT(ggml_are_same_shape(a, b));
  5395. bool is_node = false;
  5396. if (!inplace && (a->grad || b->grad)) {
  5397. is_node = true;
  5398. }
  5399. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5400. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5401. result->op = GGML_OP_MAP_BINARY;
  5402. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5403. result->src[0] = a;
  5404. result->src[1] = b;
  5405. return result;
  5406. }
  5407. struct ggml_tensor * ggml_map_binary_f32(
  5408. struct ggml_context * ctx,
  5409. struct ggml_tensor * a,
  5410. struct ggml_tensor * b,
  5411. const ggml_binary_op_f32_t fun) {
  5412. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5413. }
  5414. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5415. struct ggml_context * ctx,
  5416. struct ggml_tensor * a,
  5417. struct ggml_tensor * b,
  5418. const ggml_binary_op_f32_t fun) {
  5419. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5420. }
  5421. // ggml_map_custom1_f32
  5422. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  5423. struct ggml_context * ctx,
  5424. struct ggml_tensor * a,
  5425. const ggml_custom1_op_f32_t fun,
  5426. bool inplace) {
  5427. bool is_node = false;
  5428. if (!inplace && a->grad) {
  5429. is_node = true;
  5430. }
  5431. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5432. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5433. result->op = GGML_OP_MAP_CUSTOM1_F32;
  5434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5435. result->src[0] = a;
  5436. return result;
  5437. }
  5438. struct ggml_tensor * ggml_map_custom1_f32(
  5439. struct ggml_context * ctx,
  5440. struct ggml_tensor * a,
  5441. const ggml_custom1_op_f32_t fun) {
  5442. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5443. }
  5444. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5445. struct ggml_context * ctx,
  5446. struct ggml_tensor * a,
  5447. const ggml_custom1_op_f32_t fun) {
  5448. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5449. }
  5450. // ggml_map_custom2_f32
  5451. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  5452. struct ggml_context * ctx,
  5453. struct ggml_tensor * a,
  5454. struct ggml_tensor * b,
  5455. const ggml_custom2_op_f32_t fun,
  5456. bool inplace) {
  5457. bool is_node = false;
  5458. if (!inplace && (a->grad || b->grad)) {
  5459. is_node = true;
  5460. }
  5461. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5462. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5463. result->op = GGML_OP_MAP_CUSTOM2_F32;
  5464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5465. result->src[0] = a;
  5466. result->src[1] = b;
  5467. return result;
  5468. }
  5469. struct ggml_tensor * ggml_map_custom2_f32(
  5470. struct ggml_context * ctx,
  5471. struct ggml_tensor * a,
  5472. struct ggml_tensor * b,
  5473. const ggml_custom2_op_f32_t fun) {
  5474. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5475. }
  5476. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5477. struct ggml_context * ctx,
  5478. struct ggml_tensor * a,
  5479. struct ggml_tensor * b,
  5480. const ggml_custom2_op_f32_t fun) {
  5481. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5482. }
  5483. // ggml_map_custom3_f32
  5484. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  5485. struct ggml_context * ctx,
  5486. struct ggml_tensor * a,
  5487. struct ggml_tensor * b,
  5488. struct ggml_tensor * c,
  5489. const ggml_custom3_op_f32_t fun,
  5490. bool inplace) {
  5491. bool is_node = false;
  5492. if (!inplace && (a->grad || b->grad || c->grad)) {
  5493. is_node = true;
  5494. }
  5495. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5496. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  5497. result->op = GGML_OP_MAP_CUSTOM3_F32;
  5498. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5499. result->src[0] = a;
  5500. result->src[1] = b;
  5501. result->src[2] = c;
  5502. return result;
  5503. }
  5504. struct ggml_tensor * ggml_map_custom3_f32(
  5505. struct ggml_context * ctx,
  5506. struct ggml_tensor * a,
  5507. struct ggml_tensor * b,
  5508. struct ggml_tensor * c,
  5509. const ggml_custom3_op_f32_t fun) {
  5510. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5511. }
  5512. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a,
  5515. struct ggml_tensor * b,
  5516. struct ggml_tensor * c,
  5517. const ggml_custom3_op_f32_t fun) {
  5518. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5519. }
  5520. // ggml_map_custom1
  5521. struct ggml_map_custom1_op_params {
  5522. ggml_custom1_op_t fun;
  5523. int n_tasks;
  5524. void * userdata;
  5525. };
  5526. static struct ggml_tensor * ggml_map_custom1_impl(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a,
  5529. const ggml_custom1_op_t fun,
  5530. int n_tasks,
  5531. void * userdata,
  5532. bool inplace) {
  5533. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5534. bool is_node = false;
  5535. if (!inplace && a->grad) {
  5536. is_node = true;
  5537. }
  5538. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5539. struct ggml_map_custom1_op_params params = {
  5540. /*.fun =*/ fun,
  5541. /*.n_tasks =*/ n_tasks,
  5542. /*.userdata =*/ userdata
  5543. };
  5544. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5545. result->op = GGML_OP_MAP_CUSTOM1;
  5546. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5547. result->src[0] = a;
  5548. return result;
  5549. }
  5550. struct ggml_tensor * ggml_map_custom1(
  5551. struct ggml_context * ctx,
  5552. struct ggml_tensor * a,
  5553. const ggml_custom1_op_t fun,
  5554. int n_tasks,
  5555. void * userdata) {
  5556. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  5557. }
  5558. struct ggml_tensor * ggml_map_custom1_inplace(
  5559. struct ggml_context * ctx,
  5560. struct ggml_tensor * a,
  5561. const ggml_custom1_op_t fun,
  5562. int n_tasks,
  5563. void * userdata) {
  5564. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  5565. }
  5566. // ggml_map_custom2
  5567. struct ggml_map_custom2_op_params {
  5568. ggml_custom2_op_t fun;
  5569. int n_tasks;
  5570. void * userdata;
  5571. };
  5572. static struct ggml_tensor * ggml_map_custom2_impl(
  5573. struct ggml_context * ctx,
  5574. struct ggml_tensor * a,
  5575. struct ggml_tensor * b,
  5576. const ggml_custom2_op_t fun,
  5577. int n_tasks,
  5578. void * userdata,
  5579. bool inplace) {
  5580. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5581. bool is_node = false;
  5582. if (!inplace && (a->grad || b->grad)) {
  5583. is_node = true;
  5584. }
  5585. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5586. struct ggml_map_custom2_op_params params = {
  5587. /*.fun =*/ fun,
  5588. /*.n_tasks =*/ n_tasks,
  5589. /*.userdata =*/ userdata
  5590. };
  5591. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5592. result->op = GGML_OP_MAP_CUSTOM2;
  5593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5594. result->src[0] = a;
  5595. result->src[1] = b;
  5596. return result;
  5597. }
  5598. struct ggml_tensor * ggml_map_custom2(
  5599. struct ggml_context * ctx,
  5600. struct ggml_tensor * a,
  5601. struct ggml_tensor * b,
  5602. const ggml_custom2_op_t fun,
  5603. int n_tasks,
  5604. void * userdata) {
  5605. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  5606. }
  5607. struct ggml_tensor * ggml_map_custom2_inplace(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * a,
  5610. struct ggml_tensor * b,
  5611. const ggml_custom2_op_t fun,
  5612. int n_tasks,
  5613. void * userdata) {
  5614. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  5615. }
  5616. // ggml_map_custom3
  5617. struct ggml_map_custom3_op_params {
  5618. ggml_custom3_op_t fun;
  5619. int n_tasks;
  5620. void * userdata;
  5621. };
  5622. static struct ggml_tensor * ggml_map_custom3_impl(
  5623. struct ggml_context * ctx,
  5624. struct ggml_tensor * a,
  5625. struct ggml_tensor * b,
  5626. struct ggml_tensor * c,
  5627. const ggml_custom3_op_t fun,
  5628. int n_tasks,
  5629. void * userdata,
  5630. bool inplace) {
  5631. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  5632. bool is_node = false;
  5633. if (!inplace && (a->grad || b->grad || c->grad)) {
  5634. is_node = true;
  5635. }
  5636. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5637. struct ggml_map_custom3_op_params params = {
  5638. /*.fun =*/ fun,
  5639. /*.n_tasks =*/ n_tasks,
  5640. /*.userdata =*/ userdata
  5641. };
  5642. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  5643. result->op = GGML_OP_MAP_CUSTOM3;
  5644. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5645. result->src[0] = a;
  5646. result->src[1] = b;
  5647. result->src[2] = c;
  5648. return result;
  5649. }
  5650. struct ggml_tensor * ggml_map_custom3(
  5651. struct ggml_context * ctx,
  5652. struct ggml_tensor * a,
  5653. struct ggml_tensor * b,
  5654. struct ggml_tensor * c,
  5655. const ggml_custom3_op_t fun,
  5656. int n_tasks,
  5657. void * userdata) {
  5658. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  5659. }
  5660. struct ggml_tensor * ggml_map_custom3_inplace(
  5661. struct ggml_context * ctx,
  5662. struct ggml_tensor * a,
  5663. struct ggml_tensor * b,
  5664. struct ggml_tensor * c,
  5665. const ggml_custom3_op_t fun,
  5666. int n_tasks,
  5667. void * userdata) {
  5668. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  5669. }
  5670. // ggml_cross_entropy_loss
  5671. struct ggml_tensor * ggml_cross_entropy_loss(
  5672. struct ggml_context * ctx,
  5673. struct ggml_tensor * a,
  5674. struct ggml_tensor * b) {
  5675. GGML_ASSERT(ggml_are_same_shape(a, b));
  5676. bool is_node = false;
  5677. if (a->grad || b->grad) {
  5678. is_node = true;
  5679. }
  5680. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5681. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5683. result->src[0] = a;
  5684. result->src[1] = b;
  5685. return result;
  5686. }
  5687. // ggml_cross_entropy_loss_back
  5688. struct ggml_tensor * ggml_cross_entropy_loss_back(
  5689. struct ggml_context * ctx,
  5690. struct ggml_tensor * a,
  5691. struct ggml_tensor * b,
  5692. struct ggml_tensor * c) {
  5693. GGML_ASSERT(ggml_are_same_shape(a, b));
  5694. GGML_ASSERT(ggml_is_scalar(c));
  5695. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5696. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  5697. result->grad = NULL;
  5698. result->src[0] = a;
  5699. result->src[1] = b;
  5700. result->src[2] = c;
  5701. return result;
  5702. }
  5703. ////////////////////////////////////////////////////////////////////////////////
  5704. void ggml_set_param(
  5705. struct ggml_context * ctx,
  5706. struct ggml_tensor * tensor) {
  5707. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  5708. GGML_ASSERT(tensor->grad == NULL);
  5709. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5710. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  5711. }
  5712. // ggml_compute_forward_dup
  5713. static void ggml_compute_forward_dup_same_cont(
  5714. const struct ggml_compute_params * params,
  5715. struct ggml_tensor * dst) {
  5716. const struct ggml_tensor * src0 = dst->src[0];
  5717. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5718. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5719. GGML_ASSERT(src0->type == dst->type);
  5720. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5721. return;
  5722. }
  5723. const size_t nb00 = src0->nb[0];
  5724. const size_t nb0 = dst->nb[0];
  5725. const int ith = params->ith; // thread index
  5726. const int nth = params->nth; // number of threads
  5727. // parallelize by elements
  5728. const int ne = ggml_nelements(dst);
  5729. const int dr = (ne + nth - 1) / nth;
  5730. const int ie0 = dr * ith;
  5731. const int ie1 = MIN(ie0 + dr, ne);
  5732. if (ie0 < ie1) {
  5733. memcpy(
  5734. ((char *) dst->data + ie0*nb0),
  5735. ((char *) src0->data + ie0*nb00),
  5736. (ie1 - ie0) * ggml_type_size(src0->type));
  5737. }
  5738. }
  5739. static void ggml_compute_forward_dup_f16(
  5740. const struct ggml_compute_params * params,
  5741. struct ggml_tensor * dst) {
  5742. const struct ggml_tensor * src0 = dst->src[0];
  5743. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5744. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5745. return;
  5746. }
  5747. GGML_TENSOR_UNARY_OP_LOCALS
  5748. const int ith = params->ith; // thread index
  5749. const int nth = params->nth; // number of threads
  5750. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5751. ggml_compute_forward_dup_same_cont(params, dst);
  5752. return;
  5753. }
  5754. // parallelize by rows
  5755. const int nr = ne01;
  5756. // number of rows per thread
  5757. const int dr = (nr + nth - 1) / nth;
  5758. // row range for this thread
  5759. const int ir0 = dr * ith;
  5760. const int ir1 = MIN(ir0 + dr, nr);
  5761. if (src0->type == dst->type &&
  5762. ne00 == ne0 &&
  5763. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  5764. // copy by rows
  5765. const size_t rs = ne00*nb00;
  5766. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5767. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5768. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5769. memcpy(
  5770. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5771. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5772. rs);
  5773. }
  5774. }
  5775. }
  5776. return;
  5777. }
  5778. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5779. if (ggml_is_contiguous(dst)) {
  5780. if (nb00 == sizeof(ggml_fp16_t)) {
  5781. if (dst->type == GGML_TYPE_F16) {
  5782. size_t id = 0;
  5783. const size_t rs = ne00 * nb00;
  5784. char * dst_ptr = (char *) dst->data;
  5785. for (int i03 = 0; i03 < ne03; i03++) {
  5786. for (int i02 = 0; i02 < ne02; i02++) {
  5787. id += rs * ir0;
  5788. for (int i01 = ir0; i01 < ir1; i01++) {
  5789. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5790. memcpy(dst_ptr + id, src0_ptr, rs);
  5791. id += rs;
  5792. }
  5793. id += rs * (ne01 - ir1);
  5794. }
  5795. }
  5796. } else if (dst->type == GGML_TYPE_F32) {
  5797. size_t id = 0;
  5798. float * dst_ptr = (float *) dst->data;
  5799. for (int i03 = 0; i03 < ne03; i03++) {
  5800. for (int i02 = 0; i02 < ne02; i02++) {
  5801. id += ne00 * ir0;
  5802. for (int i01 = ir0; i01 < ir1; i01++) {
  5803. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5804. for (int i00 = 0; i00 < ne00; i00++) {
  5805. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5806. id++;
  5807. }
  5808. }
  5809. id += ne00 * (ne01 - ir1);
  5810. }
  5811. }
  5812. } else if (type_traits[dst->type].from_float) {
  5813. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  5814. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5815. size_t id = 0;
  5816. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  5817. char * dst_ptr = (char *) dst->data;
  5818. for (int i03 = 0; i03 < ne03; i03++) {
  5819. for (int i02 = 0; i02 < ne02; i02++) {
  5820. id += rs * ir0;
  5821. for (int i01 = ir0; i01 < ir1; i01++) {
  5822. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5823. for (int i00 = 0; i00 < ne00; i00++) {
  5824. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5825. }
  5826. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5827. id += rs;
  5828. }
  5829. id += rs * (ne01 - ir1);
  5830. }
  5831. }
  5832. } else {
  5833. GGML_ASSERT(false); // TODO: implement
  5834. }
  5835. } else {
  5836. //printf("%s: this is not optimal - fix me\n", __func__);
  5837. if (dst->type == GGML_TYPE_F32) {
  5838. size_t id = 0;
  5839. float * dst_ptr = (float *) dst->data;
  5840. for (int i03 = 0; i03 < ne03; i03++) {
  5841. for (int i02 = 0; i02 < ne02; i02++) {
  5842. id += ne00 * ir0;
  5843. for (int i01 = ir0; i01 < ir1; i01++) {
  5844. for (int i00 = 0; i00 < ne00; i00++) {
  5845. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5846. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5847. id++;
  5848. }
  5849. }
  5850. id += ne00 * (ne01 - ir1);
  5851. }
  5852. }
  5853. } else if (dst->type == GGML_TYPE_F16) {
  5854. size_t id = 0;
  5855. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5856. for (int i03 = 0; i03 < ne03; i03++) {
  5857. for (int i02 = 0; i02 < ne02; i02++) {
  5858. id += ne00 * ir0;
  5859. for (int i01 = ir0; i01 < ir1; i01++) {
  5860. for (int i00 = 0; i00 < ne00; i00++) {
  5861. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5862. dst_ptr[id] = *src0_ptr;
  5863. id++;
  5864. }
  5865. }
  5866. id += ne00 * (ne01 - ir1);
  5867. }
  5868. }
  5869. } else {
  5870. GGML_ASSERT(false); // TODO: implement
  5871. }
  5872. }
  5873. return;
  5874. }
  5875. // dst counters
  5876. int64_t i10 = 0;
  5877. int64_t i11 = 0;
  5878. int64_t i12 = 0;
  5879. int64_t i13 = 0;
  5880. if (dst->type == GGML_TYPE_F16) {
  5881. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5882. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5883. i10 += ne00 * ir0;
  5884. while (i10 >= ne0) {
  5885. i10 -= ne0;
  5886. if (++i11 == ne1) {
  5887. i11 = 0;
  5888. if (++i12 == ne2) {
  5889. i12 = 0;
  5890. if (++i13 == ne3) {
  5891. i13 = 0;
  5892. }
  5893. }
  5894. }
  5895. }
  5896. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5897. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5898. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5899. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5900. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5901. if (++i10 == ne00) {
  5902. i10 = 0;
  5903. if (++i11 == ne01) {
  5904. i11 = 0;
  5905. if (++i12 == ne02) {
  5906. i12 = 0;
  5907. if (++i13 == ne03) {
  5908. i13 = 0;
  5909. }
  5910. }
  5911. }
  5912. }
  5913. }
  5914. }
  5915. i10 += ne00 * (ne01 - ir1);
  5916. while (i10 >= ne0) {
  5917. i10 -= ne0;
  5918. if (++i11 == ne1) {
  5919. i11 = 0;
  5920. if (++i12 == ne2) {
  5921. i12 = 0;
  5922. if (++i13 == ne3) {
  5923. i13 = 0;
  5924. }
  5925. }
  5926. }
  5927. }
  5928. }
  5929. }
  5930. } else if (dst->type == GGML_TYPE_F32) {
  5931. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5932. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5933. i10 += ne00 * ir0;
  5934. while (i10 >= ne0) {
  5935. i10 -= ne0;
  5936. if (++i11 == ne1) {
  5937. i11 = 0;
  5938. if (++i12 == ne2) {
  5939. i12 = 0;
  5940. if (++i13 == ne3) {
  5941. i13 = 0;
  5942. }
  5943. }
  5944. }
  5945. }
  5946. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5947. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5948. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5949. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5950. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5951. if (++i10 == ne0) {
  5952. i10 = 0;
  5953. if (++i11 == ne1) {
  5954. i11 = 0;
  5955. if (++i12 == ne2) {
  5956. i12 = 0;
  5957. if (++i13 == ne3) {
  5958. i13 = 0;
  5959. }
  5960. }
  5961. }
  5962. }
  5963. }
  5964. }
  5965. i10 += ne00 * (ne01 - ir1);
  5966. while (i10 >= ne0) {
  5967. i10 -= ne0;
  5968. if (++i11 == ne1) {
  5969. i11 = 0;
  5970. if (++i12 == ne2) {
  5971. i12 = 0;
  5972. if (++i13 == ne3) {
  5973. i13 = 0;
  5974. }
  5975. }
  5976. }
  5977. }
  5978. }
  5979. }
  5980. } else {
  5981. GGML_ASSERT(false); // TODO: implement
  5982. }
  5983. }
  5984. static void ggml_compute_forward_dup_f32(
  5985. const struct ggml_compute_params * params,
  5986. struct ggml_tensor * dst) {
  5987. const struct ggml_tensor * src0 = dst->src[0];
  5988. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5989. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  5990. return;
  5991. }
  5992. GGML_TENSOR_UNARY_OP_LOCALS
  5993. const int ith = params->ith; // thread index
  5994. const int nth = params->nth; // number of threads
  5995. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5996. ggml_compute_forward_dup_same_cont(params, dst);
  5997. return;
  5998. }
  5999. // parallelize by rows
  6000. const int nr = ne01;
  6001. // number of rows per thread
  6002. const int dr = (nr + nth - 1) / nth;
  6003. // row range for this thread
  6004. const int ir0 = dr * ith;
  6005. const int ir1 = MIN(ir0 + dr, nr);
  6006. if (src0->type == dst->type &&
  6007. ne00 == ne0 &&
  6008. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6009. // copy by rows
  6010. const size_t rs = ne00*nb00;
  6011. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6012. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6013. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6014. memcpy(
  6015. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6016. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6017. rs);
  6018. }
  6019. }
  6020. }
  6021. return;
  6022. }
  6023. if (ggml_is_contiguous(dst)) {
  6024. // TODO: simplify
  6025. if (nb00 == sizeof(float)) {
  6026. if (dst->type == GGML_TYPE_F32) {
  6027. size_t id = 0;
  6028. const size_t rs = ne00 * nb00;
  6029. char * dst_ptr = (char *) dst->data;
  6030. for (int i03 = 0; i03 < ne03; i03++) {
  6031. for (int i02 = 0; i02 < ne02; i02++) {
  6032. id += rs * ir0;
  6033. for (int i01 = ir0; i01 < ir1; i01++) {
  6034. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6035. memcpy(dst_ptr + id, src0_ptr, rs);
  6036. id += rs;
  6037. }
  6038. id += rs * (ne01 - ir1);
  6039. }
  6040. }
  6041. } else if (type_traits[dst->type].from_float) {
  6042. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6043. size_t id = 0;
  6044. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6045. char * dst_ptr = (char *) dst->data;
  6046. for (int i03 = 0; i03 < ne03; i03++) {
  6047. for (int i02 = 0; i02 < ne02; i02++) {
  6048. id += rs * ir0;
  6049. for (int i01 = ir0; i01 < ir1; i01++) {
  6050. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6051. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6052. id += rs;
  6053. }
  6054. id += rs * (ne01 - ir1);
  6055. }
  6056. }
  6057. } else {
  6058. GGML_ASSERT(false); // TODO: implement
  6059. }
  6060. } else {
  6061. //printf("%s: this is not optimal - fix me\n", __func__);
  6062. if (dst->type == GGML_TYPE_F32) {
  6063. size_t id = 0;
  6064. float * dst_ptr = (float *) dst->data;
  6065. for (int i03 = 0; i03 < ne03; i03++) {
  6066. for (int i02 = 0; i02 < ne02; i02++) {
  6067. id += ne00 * ir0;
  6068. for (int i01 = ir0; i01 < ir1; i01++) {
  6069. for (int i00 = 0; i00 < ne00; i00++) {
  6070. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6071. dst_ptr[id] = *src0_ptr;
  6072. id++;
  6073. }
  6074. }
  6075. id += ne00 * (ne01 - ir1);
  6076. }
  6077. }
  6078. } else if (dst->type == GGML_TYPE_F16) {
  6079. size_t id = 0;
  6080. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6081. for (int i03 = 0; i03 < ne03; i03++) {
  6082. for (int i02 = 0; i02 < ne02; i02++) {
  6083. id += ne00 * ir0;
  6084. for (int i01 = ir0; i01 < ir1; i01++) {
  6085. for (int i00 = 0; i00 < ne00; i00++) {
  6086. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6087. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6088. id++;
  6089. }
  6090. }
  6091. id += ne00 * (ne01 - ir1);
  6092. }
  6093. }
  6094. } else {
  6095. GGML_ASSERT(false); // TODO: implement
  6096. }
  6097. }
  6098. return;
  6099. }
  6100. // dst counters
  6101. int64_t i10 = 0;
  6102. int64_t i11 = 0;
  6103. int64_t i12 = 0;
  6104. int64_t i13 = 0;
  6105. if (dst->type == GGML_TYPE_F32) {
  6106. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6108. i10 += ne00 * ir0;
  6109. while (i10 >= ne0) {
  6110. i10 -= ne0;
  6111. if (++i11 == ne1) {
  6112. i11 = 0;
  6113. if (++i12 == ne2) {
  6114. i12 = 0;
  6115. if (++i13 == ne3) {
  6116. i13 = 0;
  6117. }
  6118. }
  6119. }
  6120. }
  6121. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6122. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6123. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6124. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6125. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6126. if (++i10 == ne0) {
  6127. i10 = 0;
  6128. if (++i11 == ne1) {
  6129. i11 = 0;
  6130. if (++i12 == ne2) {
  6131. i12 = 0;
  6132. if (++i13 == ne3) {
  6133. i13 = 0;
  6134. }
  6135. }
  6136. }
  6137. }
  6138. }
  6139. }
  6140. i10 += ne00 * (ne01 - ir1);
  6141. while (i10 >= ne0) {
  6142. i10 -= ne0;
  6143. if (++i11 == ne1) {
  6144. i11 = 0;
  6145. if (++i12 == ne2) {
  6146. i12 = 0;
  6147. if (++i13 == ne3) {
  6148. i13 = 0;
  6149. }
  6150. }
  6151. }
  6152. }
  6153. }
  6154. }
  6155. } else if (dst->type == GGML_TYPE_F16) {
  6156. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6157. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6158. i10 += ne00 * ir0;
  6159. while (i10 >= ne0) {
  6160. i10 -= ne0;
  6161. if (++i11 == ne1) {
  6162. i11 = 0;
  6163. if (++i12 == ne2) {
  6164. i12 = 0;
  6165. if (++i13 == ne3) {
  6166. i13 = 0;
  6167. }
  6168. }
  6169. }
  6170. }
  6171. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6172. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6173. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6174. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6175. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6176. if (++i10 == ne0) {
  6177. i10 = 0;
  6178. if (++i11 == ne1) {
  6179. i11 = 0;
  6180. if (++i12 == ne2) {
  6181. i12 = 0;
  6182. if (++i13 == ne3) {
  6183. i13 = 0;
  6184. }
  6185. }
  6186. }
  6187. }
  6188. }
  6189. }
  6190. i10 += ne00 * (ne01 - ir1);
  6191. while (i10 >= ne0) {
  6192. i10 -= ne0;
  6193. if (++i11 == ne1) {
  6194. i11 = 0;
  6195. if (++i12 == ne2) {
  6196. i12 = 0;
  6197. if (++i13 == ne3) {
  6198. i13 = 0;
  6199. }
  6200. }
  6201. }
  6202. }
  6203. }
  6204. }
  6205. } else {
  6206. GGML_ASSERT(false); // TODO: implement
  6207. }
  6208. }
  6209. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  6210. static void ggml_compute_forward_dup_bytes(
  6211. const struct ggml_compute_params * params,
  6212. struct ggml_tensor * dst) {
  6213. const struct ggml_tensor * src0 = dst->src[0];
  6214. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6215. GGML_ASSERT(src0->type == dst->type);
  6216. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6217. return;
  6218. }
  6219. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  6220. ggml_compute_forward_dup_same_cont(params, dst);
  6221. return;
  6222. }
  6223. GGML_TENSOR_UNARY_OP_LOCALS;
  6224. const size_t type_size = ggml_type_size(src0->type);
  6225. const int ith = params->ith; // thread index
  6226. const int nth = params->nth; // number of threads
  6227. // parallelize by rows
  6228. const int nr = ne01;
  6229. // number of rows per thread
  6230. const int dr = (nr + nth - 1) / nth;
  6231. // row range for this thread
  6232. const int ir0 = dr * ith;
  6233. const int ir1 = MIN(ir0 + dr, nr);
  6234. if (src0->type == dst->type &&
  6235. ne00 == ne0 &&
  6236. nb00 == type_size && nb0 == type_size) {
  6237. // copy by rows
  6238. const size_t rs = ne00 * type_size;
  6239. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6240. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6241. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6242. memcpy(
  6243. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6244. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6245. rs);
  6246. }
  6247. }
  6248. }
  6249. return;
  6250. }
  6251. if (ggml_is_contiguous(dst)) {
  6252. size_t id = 0;
  6253. char * dst_ptr = (char *) dst->data;
  6254. const size_t rs = ne00 * type_size;
  6255. if (nb00 == type_size) {
  6256. // src0 is contigous on first dimension, copy by rows
  6257. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6258. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6259. id += rs * ir0;
  6260. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6261. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6262. memcpy(dst_ptr + id, src0_ptr, rs);
  6263. id += rs;
  6264. }
  6265. id += rs * (ne01 - ir1);
  6266. }
  6267. }
  6268. } else {
  6269. //printf("%s: this is not optimal - fix me\n", __func__);
  6270. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6271. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6272. id += rs * ir0;
  6273. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6274. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6275. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  6276. memcpy(dst_ptr + id, src0_ptr, type_size);
  6277. id += type_size;
  6278. }
  6279. }
  6280. id += rs * (ne01 - ir1);
  6281. }
  6282. }
  6283. }
  6284. return;
  6285. }
  6286. // dst counters
  6287. int64_t i10 = 0;
  6288. int64_t i11 = 0;
  6289. int64_t i12 = 0;
  6290. int64_t i13 = 0;
  6291. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6292. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6293. i10 += ne00 * ir0;
  6294. while (i10 >= ne0) {
  6295. i10 -= ne0;
  6296. if (++i11 == ne1) {
  6297. i11 = 0;
  6298. if (++i12 == ne2) {
  6299. i12 = 0;
  6300. if (++i13 == ne3) {
  6301. i13 = 0;
  6302. }
  6303. }
  6304. }
  6305. }
  6306. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6307. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6308. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6309. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6310. memcpy(dst_ptr, src0_ptr, type_size);
  6311. if (++i10 == ne0) {
  6312. i10 = 0;
  6313. if (++i11 == ne1) {
  6314. i11 = 0;
  6315. if (++i12 == ne2) {
  6316. i12 = 0;
  6317. if (++i13 == ne3) {
  6318. i13 = 0;
  6319. }
  6320. }
  6321. }
  6322. }
  6323. }
  6324. }
  6325. i10 += ne00 * (ne01 - ir1);
  6326. while (i10 >= ne0) {
  6327. i10 -= ne0;
  6328. if (++i11 == ne1) {
  6329. i11 = 0;
  6330. if (++i12 == ne2) {
  6331. i12 = 0;
  6332. if (++i13 == ne3) {
  6333. i13 = 0;
  6334. }
  6335. }
  6336. }
  6337. }
  6338. }
  6339. }
  6340. }
  6341. static void ggml_compute_forward_dup(
  6342. const struct ggml_compute_params * params,
  6343. struct ggml_tensor * dst) {
  6344. const struct ggml_tensor * src0 = dst->src[0];
  6345. if (src0->type == dst->type) {
  6346. ggml_compute_forward_dup_bytes(params, dst);
  6347. return;
  6348. }
  6349. switch (src0->type) {
  6350. case GGML_TYPE_F16:
  6351. {
  6352. ggml_compute_forward_dup_f16(params, dst);
  6353. } break;
  6354. case GGML_TYPE_F32:
  6355. {
  6356. ggml_compute_forward_dup_f32(params, dst);
  6357. } break;
  6358. default:
  6359. {
  6360. GGML_ASSERT(false);
  6361. } break;
  6362. }
  6363. }
  6364. // ggml_compute_forward_add
  6365. static void ggml_compute_forward_add_f32(
  6366. const struct ggml_compute_params * params,
  6367. struct ggml_tensor * dst) {
  6368. const struct ggml_tensor * src0 = dst->src[0];
  6369. const struct ggml_tensor * src1 = dst->src[1];
  6370. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  6371. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6372. return;
  6373. }
  6374. const int ith = params->ith;
  6375. const int nth = params->nth;
  6376. #ifdef GGML_USE_CLBLAST
  6377. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  6378. // TODO: OpenCL kernel support full broadcast
  6379. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  6380. if (ith == 0) {
  6381. ggml_cl_add(src0, src1, dst);
  6382. }
  6383. return;
  6384. }
  6385. #endif
  6386. const int nr = ggml_nrows(src0);
  6387. GGML_TENSOR_BINARY_OP_LOCALS
  6388. GGML_ASSERT( nb0 == sizeof(float));
  6389. GGML_ASSERT(nb00 == sizeof(float));
  6390. // rows per thread
  6391. const int dr = (nr + nth - 1)/nth;
  6392. // row range for this thread
  6393. const int ir0 = dr*ith;
  6394. const int ir1 = MIN(ir0 + dr, nr);
  6395. if (nb10 == sizeof(float)) {
  6396. for (int ir = ir0; ir < ir1; ++ir) {
  6397. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6398. const int64_t i03 = ir/(ne02*ne01);
  6399. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6400. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6401. const int64_t i13 = i03 % ne13;
  6402. const int64_t i12 = i02 % ne12;
  6403. const int64_t i11 = i01 % ne11;
  6404. const int64_t nr0 = ne00 / ne10;
  6405. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6406. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6407. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6408. for (int64_t r = 0; r < nr0; ++r) {
  6409. #ifdef GGML_USE_ACCELERATE
  6410. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  6411. #else
  6412. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  6413. #endif
  6414. }
  6415. }
  6416. } else {
  6417. // src1 is not contiguous
  6418. for (int ir = ir0; ir < ir1; ++ir) {
  6419. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6420. const int64_t i03 = ir/(ne02*ne01);
  6421. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6422. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6423. const int64_t i13 = i03 % ne13;
  6424. const int64_t i12 = i02 % ne12;
  6425. const int64_t i11 = i01 % ne11;
  6426. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6427. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6428. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  6429. const int64_t i10 = i0 % ne10;
  6430. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  6431. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6432. }
  6433. }
  6434. }
  6435. }
  6436. static void ggml_compute_forward_add_f16_f32(
  6437. const struct ggml_compute_params * params,
  6438. struct ggml_tensor * dst) {
  6439. const struct ggml_tensor * src0 = dst->src[0];
  6440. const struct ggml_tensor * src1 = dst->src[1];
  6441. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6442. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6443. return;
  6444. }
  6445. const int ith = params->ith;
  6446. const int nth = params->nth;
  6447. const int nr = ggml_nrows(src0);
  6448. GGML_TENSOR_BINARY_OP_LOCALS
  6449. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6450. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6451. if (dst->type == GGML_TYPE_F32) {
  6452. GGML_ASSERT( nb0 == sizeof(float));
  6453. }
  6454. else {
  6455. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6456. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6457. }
  6458. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6459. // rows per thread
  6460. const int dr = (nr + nth - 1)/nth;
  6461. // row range for this thread
  6462. const int ir0 = dr*ith;
  6463. const int ir1 = MIN(ir0 + dr, nr);
  6464. if (nb10 == sizeof(float)) {
  6465. if (dst->type == GGML_TYPE_F16) {
  6466. for (int ir = ir0; ir < ir1; ++ir) {
  6467. // src0, src1 and dst are same shape => same indices
  6468. const int i3 = ir/(ne2*ne1);
  6469. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6470. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6471. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6472. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6473. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6474. for (int i = 0; i < ne0; i++) {
  6475. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6476. }
  6477. }
  6478. } else {
  6479. for (int ir = ir0; ir < ir1; ++ir) {
  6480. // src0, src1 and dst are same shape => same indices
  6481. const int i3 = ir/(ne2*ne1);
  6482. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6483. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6484. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6485. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6486. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6487. for (int i = 0; i < ne0; i++) {
  6488. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  6489. }
  6490. }
  6491. }
  6492. }
  6493. else {
  6494. // src1 is not contiguous
  6495. GGML_ASSERT(false);
  6496. }
  6497. }
  6498. static void ggml_compute_forward_add_f16_f16(
  6499. const struct ggml_compute_params * params,
  6500. struct ggml_tensor * dst) {
  6501. const struct ggml_tensor * src0 = dst->src[0];
  6502. const struct ggml_tensor * src1 = dst->src[1];
  6503. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6504. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6505. return;
  6506. }
  6507. const int ith = params->ith;
  6508. const int nth = params->nth;
  6509. const int nr = ggml_nrows(src0);
  6510. GGML_TENSOR_BINARY_OP_LOCALS
  6511. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6512. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6513. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6514. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6515. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6516. // rows per thread
  6517. const int dr = (nr + nth - 1)/nth;
  6518. // row range for this thread
  6519. const int ir0 = dr*ith;
  6520. const int ir1 = MIN(ir0 + dr, nr);
  6521. if (nb10 == sizeof(ggml_fp16_t)) {
  6522. for (int ir = ir0; ir < ir1; ++ir) {
  6523. // src0, src1 and dst are same shape => same indices
  6524. const int i3 = ir/(ne2*ne1);
  6525. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6526. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6527. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6528. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6529. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6530. for (int i = 0; i < ne0; i++) {
  6531. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6532. }
  6533. }
  6534. }
  6535. else {
  6536. // src1 is not contiguous
  6537. GGML_ASSERT(false);
  6538. }
  6539. }
  6540. static void ggml_compute_forward_add_q_f32(
  6541. const struct ggml_compute_params * params,
  6542. struct ggml_tensor * dst) {
  6543. const struct ggml_tensor * src0 = dst->src[0];
  6544. const struct ggml_tensor * src1 = dst->src[1];
  6545. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6546. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6547. return;
  6548. }
  6549. const int nr = ggml_nrows(src0);
  6550. GGML_TENSOR_BINARY_OP_LOCALS
  6551. const int ith = params->ith;
  6552. const int nth = params->nth;
  6553. const enum ggml_type type = src0->type;
  6554. const enum ggml_type dtype = dst->type;
  6555. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6556. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  6557. // we don't support permuted src0 or src1
  6558. GGML_ASSERT(nb00 == ggml_type_size(type));
  6559. GGML_ASSERT(nb10 == sizeof(float));
  6560. // dst cannot be transposed or permuted
  6561. GGML_ASSERT(nb0 <= nb1);
  6562. GGML_ASSERT(nb1 <= nb2);
  6563. GGML_ASSERT(nb2 <= nb3);
  6564. GGML_ASSERT(ggml_is_quantized(src0->type));
  6565. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6566. // rows per thread
  6567. const int dr = (nr + nth - 1)/nth;
  6568. // row range for this thread
  6569. const int ir0 = dr*ith;
  6570. const int ir1 = MIN(ir0 + dr, nr);
  6571. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6572. for (int ir = ir0; ir < ir1; ++ir) {
  6573. // src0 indices
  6574. const int i03 = ir/(ne02*ne01);
  6575. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6576. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6577. // src1 and dst are same shape as src0 => same indices
  6578. const int i13 = i03;
  6579. const int i12 = i02;
  6580. const int i11 = i01;
  6581. const int i3 = i03;
  6582. const int i2 = i02;
  6583. const int i1 = i01;
  6584. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6585. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6586. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6587. assert(ne00 % 32 == 0);
  6588. // unquantize row from src0 to temp buffer
  6589. dequantize_row_q(src0_row, wdata, ne00);
  6590. // add src1
  6591. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6592. // quantize row to dst
  6593. if (quantize_row_q != NULL) {
  6594. quantize_row_q(wdata, dst_row, ne00);
  6595. } else {
  6596. memcpy(dst_row, wdata, ne0*nb0);
  6597. }
  6598. }
  6599. }
  6600. static void ggml_compute_forward_add(
  6601. const struct ggml_compute_params * params,
  6602. struct ggml_tensor * dst) {
  6603. const struct ggml_tensor * src0 = dst->src[0];
  6604. const struct ggml_tensor * src1 = dst->src[1];
  6605. switch (src0->type) {
  6606. case GGML_TYPE_F32:
  6607. {
  6608. if (src1->type == GGML_TYPE_F32) {
  6609. ggml_compute_forward_add_f32(params, dst);
  6610. }
  6611. else {
  6612. GGML_ASSERT(false);
  6613. }
  6614. } break;
  6615. case GGML_TYPE_F16:
  6616. {
  6617. if (src1->type == GGML_TYPE_F16) {
  6618. ggml_compute_forward_add_f16_f16(params, dst);
  6619. }
  6620. else if (src1->type == GGML_TYPE_F32) {
  6621. ggml_compute_forward_add_f16_f32(params, dst);
  6622. }
  6623. else {
  6624. GGML_ASSERT(false);
  6625. }
  6626. } break;
  6627. case GGML_TYPE_Q4_0:
  6628. case GGML_TYPE_Q4_1:
  6629. case GGML_TYPE_Q5_0:
  6630. case GGML_TYPE_Q5_1:
  6631. case GGML_TYPE_Q8_0:
  6632. case GGML_TYPE_Q2_K:
  6633. case GGML_TYPE_Q3_K:
  6634. case GGML_TYPE_Q4_K:
  6635. case GGML_TYPE_Q5_K:
  6636. case GGML_TYPE_Q6_K:
  6637. case GGML_TYPE_IQ2_XXS:
  6638. case GGML_TYPE_IQ2_XS:
  6639. case GGML_TYPE_IQ3_XXS:
  6640. case GGML_TYPE_IQ1_S:
  6641. case GGML_TYPE_IQ4_NL:
  6642. case GGML_TYPE_IQ4_XS:
  6643. case GGML_TYPE_IQ3_S:
  6644. case GGML_TYPE_IQ2_S:
  6645. {
  6646. ggml_compute_forward_add_q_f32(params, dst);
  6647. } break;
  6648. default:
  6649. {
  6650. GGML_ASSERT(false);
  6651. } break;
  6652. }
  6653. }
  6654. // ggml_compute_forward_add1
  6655. static void ggml_compute_forward_add1_f32(
  6656. const struct ggml_compute_params * params,
  6657. struct ggml_tensor * dst) {
  6658. const struct ggml_tensor * src0 = dst->src[0];
  6659. const struct ggml_tensor * src1 = dst->src[1];
  6660. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6661. GGML_ASSERT(ggml_is_scalar(src1));
  6662. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6663. return;
  6664. }
  6665. const int ith = params->ith;
  6666. const int nth = params->nth;
  6667. const int nr = ggml_nrows(src0);
  6668. GGML_TENSOR_UNARY_OP_LOCALS
  6669. GGML_ASSERT( nb0 == sizeof(float));
  6670. GGML_ASSERT(nb00 == sizeof(float));
  6671. // rows per thread
  6672. const int dr = (nr + nth - 1)/nth;
  6673. // row range for this thread
  6674. const int ir0 = dr*ith;
  6675. const int ir1 = MIN(ir0 + dr, nr);
  6676. for (int ir = ir0; ir < ir1; ++ir) {
  6677. // src0 and dst are same shape => same indices
  6678. const int i3 = ir/(ne2*ne1);
  6679. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6680. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6681. #ifdef GGML_USE_ACCELERATE
  6682. UNUSED(ggml_vec_add1_f32);
  6683. vDSP_vadd(
  6684. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6685. (float *) ((char *) src1->data), 0,
  6686. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6687. ne0);
  6688. #else
  6689. ggml_vec_add1_f32(ne0,
  6690. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6691. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6692. *(float *) src1->data);
  6693. #endif
  6694. }
  6695. }
  6696. static void ggml_compute_forward_add1_f16_f32(
  6697. const struct ggml_compute_params * params,
  6698. struct ggml_tensor * dst) {
  6699. const struct ggml_tensor * src0 = dst->src[0];
  6700. const struct ggml_tensor * src1 = dst->src[1];
  6701. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6702. GGML_ASSERT(ggml_is_scalar(src1));
  6703. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6704. return;
  6705. }
  6706. // scalar to add
  6707. const float v = *(float *) src1->data;
  6708. const int ith = params->ith;
  6709. const int nth = params->nth;
  6710. const int nr = ggml_nrows(src0);
  6711. GGML_TENSOR_UNARY_OP_LOCALS
  6712. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6713. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6714. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6715. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6716. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6717. // rows per thread
  6718. const int dr = (nr + nth - 1)/nth;
  6719. // row range for this thread
  6720. const int ir0 = dr*ith;
  6721. const int ir1 = MIN(ir0 + dr, nr);
  6722. for (int ir = ir0; ir < ir1; ++ir) {
  6723. // src0 and dst are same shape => same indices
  6724. const int i3 = ir/(ne2*ne1);
  6725. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6726. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6727. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6728. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6729. for (int i = 0; i < ne0; i++) {
  6730. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6731. }
  6732. }
  6733. }
  6734. static void ggml_compute_forward_add1_f16_f16(
  6735. const struct ggml_compute_params * params,
  6736. struct ggml_tensor * dst) {
  6737. const struct ggml_tensor * src0 = dst->src[0];
  6738. const struct ggml_tensor * src1 = dst->src[1];
  6739. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6740. GGML_ASSERT(ggml_is_scalar(src1));
  6741. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6742. return;
  6743. }
  6744. // scalar to add
  6745. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6746. const int ith = params->ith;
  6747. const int nth = params->nth;
  6748. const int nr = ggml_nrows(src0);
  6749. GGML_TENSOR_UNARY_OP_LOCALS
  6750. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6751. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6752. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6753. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6754. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6755. // rows per thread
  6756. const int dr = (nr + nth - 1)/nth;
  6757. // row range for this thread
  6758. const int ir0 = dr*ith;
  6759. const int ir1 = MIN(ir0 + dr, nr);
  6760. for (int ir = ir0; ir < ir1; ++ir) {
  6761. // src0 and dst are same shape => same indices
  6762. const int i3 = ir/(ne2*ne1);
  6763. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6764. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6765. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6766. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6767. for (int i = 0; i < ne0; i++) {
  6768. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6769. }
  6770. }
  6771. }
  6772. static void ggml_compute_forward_add1_q_f32(
  6773. const struct ggml_compute_params * params,
  6774. struct ggml_tensor * dst) {
  6775. const struct ggml_tensor * src0 = dst->src[0];
  6776. const struct ggml_tensor * src1 = dst->src[1];
  6777. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6778. GGML_ASSERT(ggml_is_scalar(src1));
  6779. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6780. return;
  6781. }
  6782. // scalar to add
  6783. const float v = *(float *) src1->data;
  6784. const int ith = params->ith;
  6785. const int nth = params->nth;
  6786. const int nr = ggml_nrows(src0);
  6787. GGML_TENSOR_UNARY_OP_LOCALS
  6788. const enum ggml_type type = src0->type;
  6789. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6790. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6791. // we don't support permuted src0
  6792. GGML_ASSERT(nb00 == ggml_type_size(type));
  6793. // dst cannot be transposed or permuted
  6794. GGML_ASSERT(nb0 <= nb1);
  6795. GGML_ASSERT(nb1 <= nb2);
  6796. GGML_ASSERT(nb2 <= nb3);
  6797. GGML_ASSERT(ggml_is_quantized(src0->type));
  6798. GGML_ASSERT(dst->type == src0->type);
  6799. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6800. // rows per thread
  6801. const int dr = (nr + nth - 1)/nth;
  6802. // row range for this thread
  6803. const int ir0 = dr*ith;
  6804. const int ir1 = MIN(ir0 + dr, nr);
  6805. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6806. for (int ir = ir0; ir < ir1; ++ir) {
  6807. // src0 and dst are same shape => same indices
  6808. const int i3 = ir/(ne2*ne1);
  6809. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6810. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6811. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6812. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6813. assert(ne0 % 32 == 0);
  6814. // unquantize row from src0 to temp buffer
  6815. dequantize_row_q(src0_row, wdata, ne0);
  6816. // add src1
  6817. ggml_vec_acc1_f32(ne0, wdata, v);
  6818. // quantize row to dst
  6819. quantize_row_q(wdata, dst_row, ne0);
  6820. }
  6821. }
  6822. static void ggml_compute_forward_add1(
  6823. const struct ggml_compute_params * params,
  6824. struct ggml_tensor * dst) {
  6825. const struct ggml_tensor * src0 = dst->src[0];
  6826. const struct ggml_tensor * src1 = dst->src[1];
  6827. switch (src0->type) {
  6828. case GGML_TYPE_F32:
  6829. {
  6830. ggml_compute_forward_add1_f32(params, dst);
  6831. } break;
  6832. case GGML_TYPE_F16:
  6833. {
  6834. if (src1->type == GGML_TYPE_F16) {
  6835. ggml_compute_forward_add1_f16_f16(params, dst);
  6836. }
  6837. else if (src1->type == GGML_TYPE_F32) {
  6838. ggml_compute_forward_add1_f16_f32(params, dst);
  6839. }
  6840. else {
  6841. GGML_ASSERT(false);
  6842. }
  6843. } break;
  6844. case GGML_TYPE_Q4_0:
  6845. case GGML_TYPE_Q4_1:
  6846. case GGML_TYPE_Q5_0:
  6847. case GGML_TYPE_Q5_1:
  6848. case GGML_TYPE_Q8_0:
  6849. case GGML_TYPE_Q8_1:
  6850. case GGML_TYPE_Q2_K:
  6851. case GGML_TYPE_Q3_K:
  6852. case GGML_TYPE_Q4_K:
  6853. case GGML_TYPE_Q5_K:
  6854. case GGML_TYPE_Q6_K:
  6855. case GGML_TYPE_IQ2_XXS:
  6856. case GGML_TYPE_IQ2_XS:
  6857. case GGML_TYPE_IQ3_XXS:
  6858. case GGML_TYPE_IQ1_S:
  6859. case GGML_TYPE_IQ4_NL:
  6860. case GGML_TYPE_IQ4_XS:
  6861. case GGML_TYPE_IQ3_S:
  6862. case GGML_TYPE_IQ2_S:
  6863. {
  6864. ggml_compute_forward_add1_q_f32(params, dst);
  6865. } break;
  6866. default:
  6867. {
  6868. GGML_ASSERT(false);
  6869. } break;
  6870. }
  6871. }
  6872. // ggml_compute_forward_acc
  6873. static void ggml_compute_forward_acc_f32(
  6874. const struct ggml_compute_params * params,
  6875. struct ggml_tensor * dst) {
  6876. const struct ggml_tensor * src0 = dst->src[0];
  6877. const struct ggml_tensor * src1 = dst->src[1];
  6878. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6879. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6880. // view src0 and dst with these strides and data offset inbytes during acc
  6881. // nb0 is implicitly element_size because src0 and dst are contiguous
  6882. size_t nb1 = ((int32_t *) dst->op_params)[0];
  6883. size_t nb2 = ((int32_t *) dst->op_params)[1];
  6884. size_t nb3 = ((int32_t *) dst->op_params)[2];
  6885. size_t offset = ((int32_t *) dst->op_params)[3];
  6886. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  6887. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  6888. if (params->ith != 0) {
  6889. return;
  6890. }
  6891. // memcpy needs to be synchronized across threads to avoid race conditions.
  6892. // => do it in INIT phase
  6893. memcpy(
  6894. ((char *) dst->data),
  6895. ((char *) src0->data),
  6896. ggml_nbytes(dst));
  6897. }
  6898. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6899. return;
  6900. }
  6901. const int ith = params->ith;
  6902. const int nth = params->nth;
  6903. const int nr = ggml_nrows(src1);
  6904. const int nc = src1->ne[0];
  6905. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  6906. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  6907. // src0 and dst as viewed during acc
  6908. const size_t nb0 = ggml_element_size(src0);
  6909. const size_t nb00 = nb0;
  6910. const size_t nb01 = nb1;
  6911. const size_t nb02 = nb2;
  6912. const size_t nb03 = nb3;
  6913. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6914. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6915. GGML_ASSERT(nb10 == sizeof(float));
  6916. // rows per thread
  6917. const int dr = (nr + nth - 1)/nth;
  6918. // row range for this thread
  6919. const int ir0 = dr*ith;
  6920. const int ir1 = MIN(ir0 + dr, nr);
  6921. for (int ir = ir0; ir < ir1; ++ir) {
  6922. // src0 and dst are viewed with shape of src1 and offset
  6923. // => same indices
  6924. const int i3 = ir/(ne12*ne11);
  6925. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6926. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6927. #ifdef GGML_USE_ACCELERATE
  6928. vDSP_vadd(
  6929. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6930. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6931. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6932. #else
  6933. ggml_vec_add_f32(nc,
  6934. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6935. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6936. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6937. #endif
  6938. }
  6939. }
  6940. static void ggml_compute_forward_acc(
  6941. const struct ggml_compute_params * params,
  6942. struct ggml_tensor * dst) {
  6943. const struct ggml_tensor * src0 = dst->src[0];
  6944. switch (src0->type) {
  6945. case GGML_TYPE_F32:
  6946. {
  6947. ggml_compute_forward_acc_f32(params, dst);
  6948. } break;
  6949. case GGML_TYPE_F16:
  6950. case GGML_TYPE_Q4_0:
  6951. case GGML_TYPE_Q4_1:
  6952. case GGML_TYPE_Q5_0:
  6953. case GGML_TYPE_Q5_1:
  6954. case GGML_TYPE_Q8_0:
  6955. case GGML_TYPE_Q8_1:
  6956. case GGML_TYPE_Q2_K:
  6957. case GGML_TYPE_Q3_K:
  6958. case GGML_TYPE_Q4_K:
  6959. case GGML_TYPE_Q5_K:
  6960. case GGML_TYPE_Q6_K:
  6961. case GGML_TYPE_IQ2_XXS:
  6962. case GGML_TYPE_IQ2_XS:
  6963. case GGML_TYPE_IQ3_XXS:
  6964. case GGML_TYPE_IQ1_S:
  6965. case GGML_TYPE_IQ4_NL:
  6966. case GGML_TYPE_IQ4_XS:
  6967. case GGML_TYPE_IQ3_S:
  6968. case GGML_TYPE_IQ2_S:
  6969. default:
  6970. {
  6971. GGML_ASSERT(false);
  6972. } break;
  6973. }
  6974. }
  6975. // ggml_compute_forward_sub
  6976. static void ggml_compute_forward_sub_f32(
  6977. const struct ggml_compute_params * params,
  6978. struct ggml_tensor * dst) {
  6979. const struct ggml_tensor * src0 = dst->src[0];
  6980. const struct ggml_tensor * src1 = dst->src[1];
  6981. assert(params->ith == 0);
  6982. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6983. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  6984. return;
  6985. }
  6986. const int nr = ggml_nrows(src0);
  6987. GGML_TENSOR_BINARY_OP_LOCALS
  6988. GGML_ASSERT( nb0 == sizeof(float));
  6989. GGML_ASSERT(nb00 == sizeof(float));
  6990. if (nb10 == sizeof(float)) {
  6991. for (int ir = 0; ir < nr; ++ir) {
  6992. // src0, src1 and dst are same shape => same indices
  6993. const int i3 = ir/(ne2*ne1);
  6994. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6995. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6996. #ifdef GGML_USE_ACCELERATE
  6997. vDSP_vsub(
  6998. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6999. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7000. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7001. ne0);
  7002. #else
  7003. ggml_vec_sub_f32(ne0,
  7004. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7005. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7006. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7007. #endif
  7008. // }
  7009. // }
  7010. }
  7011. } else {
  7012. // src1 is not contiguous
  7013. for (int ir = 0; ir < nr; ++ir) {
  7014. // src0, src1 and dst are same shape => same indices
  7015. const int i3 = ir/(ne2*ne1);
  7016. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7017. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7018. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7019. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7020. for (int i0 = 0; i0 < ne0; i0++) {
  7021. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7022. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7023. }
  7024. }
  7025. }
  7026. }
  7027. static void ggml_compute_forward_sub(
  7028. const struct ggml_compute_params * params,
  7029. struct ggml_tensor * dst) {
  7030. const struct ggml_tensor * src0 = dst->src[0];
  7031. switch (src0->type) {
  7032. case GGML_TYPE_F32:
  7033. {
  7034. ggml_compute_forward_sub_f32(params, dst);
  7035. } break;
  7036. default:
  7037. {
  7038. GGML_ASSERT(false);
  7039. } break;
  7040. }
  7041. }
  7042. // ggml_compute_forward_mul
  7043. static void ggml_compute_forward_mul_f32(
  7044. const struct ggml_compute_params * params,
  7045. struct ggml_tensor * dst) {
  7046. const struct ggml_tensor * src0 = dst->src[0];
  7047. const struct ggml_tensor * src1 = dst->src[1];
  7048. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7049. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7050. return;
  7051. }
  7052. const int ith = params->ith;
  7053. const int nth = params->nth;
  7054. #if defined(GGML_USE_CLBLAST)
  7055. if (src1->backend == GGML_BACKEND_TYPE_GPU) {
  7056. // TODO: OpenCL kernel support full broadcast
  7057. GGML_ASSERT(ggml_can_repeat_rows(src1, src0));
  7058. if (ith == 0) {
  7059. ggml_cl_mul(src0, src1, dst);
  7060. }
  7061. return;
  7062. }
  7063. #endif
  7064. const int64_t nr = ggml_nrows(src0);
  7065. GGML_TENSOR_BINARY_OP_LOCALS
  7066. GGML_ASSERT( nb0 == sizeof(float));
  7067. GGML_ASSERT(nb00 == sizeof(float));
  7068. if (nb10 == sizeof(float)) {
  7069. for (int64_t ir = ith; ir < nr; ir += nth) {
  7070. // src0 and dst are same shape => same indices
  7071. const int64_t i03 = ir/(ne02*ne01);
  7072. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7073. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7074. const int64_t i13 = i03 % ne13;
  7075. const int64_t i12 = i02 % ne12;
  7076. const int64_t i11 = i01 % ne11;
  7077. const int64_t nr0 = ne00 / ne10;
  7078. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7079. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7080. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7081. for (int64_t r = 0 ; r < nr0; ++r) {
  7082. #ifdef GGML_USE_ACCELERATE
  7083. UNUSED(ggml_vec_mul_f32);
  7084. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7085. #else
  7086. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7087. #endif
  7088. }
  7089. }
  7090. } else {
  7091. // src1 is not contiguous
  7092. for (int64_t ir = ith; ir < nr; ir += nth) {
  7093. // src0 and dst are same shape => same indices
  7094. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7095. const int64_t i03 = ir/(ne02*ne01);
  7096. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7097. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7098. const int64_t i13 = i03 % ne13;
  7099. const int64_t i12 = i02 % ne12;
  7100. const int64_t i11 = i01 % ne11;
  7101. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7102. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7103. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7104. const int64_t i10 = i0 % ne10;
  7105. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7106. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7107. }
  7108. }
  7109. }
  7110. }
  7111. static void ggml_compute_forward_mul(
  7112. const struct ggml_compute_params * params,
  7113. struct ggml_tensor * dst) {
  7114. const struct ggml_tensor * src0 = dst->src[0];
  7115. const struct ggml_tensor * src1 = dst->src[1];
  7116. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  7117. switch (src0->type) {
  7118. case GGML_TYPE_F32:
  7119. {
  7120. ggml_compute_forward_mul_f32(params, dst);
  7121. } break;
  7122. default:
  7123. {
  7124. GGML_ASSERT(false);
  7125. } break;
  7126. }
  7127. }
  7128. // ggml_compute_forward_div
  7129. static void ggml_compute_forward_div_f32(
  7130. const struct ggml_compute_params * params,
  7131. struct ggml_tensor * dst) {
  7132. const struct ggml_tensor * src0 = dst->src[0];
  7133. const struct ggml_tensor * src1 = dst->src[1];
  7134. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7135. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7136. return;
  7137. }
  7138. const int ith = params->ith;
  7139. const int nth = params->nth;
  7140. const int64_t nr = ggml_nrows(src0);
  7141. GGML_TENSOR_BINARY_OP_LOCALS
  7142. GGML_ASSERT( nb0 == sizeof(float));
  7143. GGML_ASSERT(nb00 == sizeof(float));
  7144. if (nb10 == sizeof(float)) {
  7145. for (int64_t ir = ith; ir < nr; ir += nth) {
  7146. // src0 and dst are same shape => same indices
  7147. const int64_t i03 = ir/(ne02*ne01);
  7148. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7149. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7150. const int64_t i13 = i03 % ne13;
  7151. const int64_t i12 = i02 % ne12;
  7152. const int64_t i11 = i01 % ne11;
  7153. const int64_t nr0 = ne00 / ne10;
  7154. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7155. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7156. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7157. for (int64_t r = 0; r < nr0; ++r) {
  7158. #ifdef GGML_USE_ACCELERATE
  7159. UNUSED(ggml_vec_div_f32);
  7160. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  7161. #else
  7162. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7163. #endif
  7164. }
  7165. }
  7166. } else {
  7167. // src1 is not contiguous
  7168. for (int64_t ir = ith; ir < nr; ir += nth) {
  7169. // src0 and dst are same shape => same indices
  7170. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7171. const int64_t i03 = ir/(ne02*ne01);
  7172. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7173. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7174. const int64_t i13 = i03 % ne13;
  7175. const int64_t i12 = i02 % ne12;
  7176. const int64_t i11 = i01 % ne11;
  7177. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7178. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7179. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  7180. const int64_t i10 = i0 % ne10;
  7181. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7182. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7183. }
  7184. }
  7185. }
  7186. }
  7187. static void ggml_compute_forward_div(
  7188. const struct ggml_compute_params * params,
  7189. struct ggml_tensor * dst) {
  7190. const struct ggml_tensor * src0 = dst->src[0];
  7191. switch (src0->type) {
  7192. case GGML_TYPE_F32:
  7193. {
  7194. ggml_compute_forward_div_f32(params, dst);
  7195. } break;
  7196. default:
  7197. {
  7198. GGML_ASSERT(false);
  7199. } break;
  7200. }
  7201. }
  7202. // ggml_compute_forward_sqr
  7203. static void ggml_compute_forward_sqr_f32(
  7204. const struct ggml_compute_params * params,
  7205. struct ggml_tensor * dst) {
  7206. const struct ggml_tensor * src0 = dst->src[0];
  7207. assert(params->ith == 0);
  7208. assert(ggml_are_same_shape(src0, dst));
  7209. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7210. return;
  7211. }
  7212. const int n = ggml_nrows(src0);
  7213. const int nc = src0->ne[0];
  7214. assert( dst->nb[0] == sizeof(float));
  7215. assert(src0->nb[0] == sizeof(float));
  7216. for (int i = 0; i < n; i++) {
  7217. ggml_vec_sqr_f32(nc,
  7218. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7219. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7220. }
  7221. }
  7222. static void ggml_compute_forward_sqr(
  7223. const struct ggml_compute_params * params,
  7224. struct ggml_tensor * dst) {
  7225. const struct ggml_tensor * src0 = dst->src[0];
  7226. switch (src0->type) {
  7227. case GGML_TYPE_F32:
  7228. {
  7229. ggml_compute_forward_sqr_f32(params, dst);
  7230. } break;
  7231. default:
  7232. {
  7233. GGML_ASSERT(false);
  7234. } break;
  7235. }
  7236. }
  7237. // ggml_compute_forward_sqrt
  7238. static void ggml_compute_forward_sqrt_f32(
  7239. const struct ggml_compute_params * params,
  7240. struct ggml_tensor * dst) {
  7241. const struct ggml_tensor * src0 = dst->src[0];
  7242. assert(params->ith == 0);
  7243. assert(ggml_are_same_shape(src0, dst));
  7244. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7245. return;
  7246. }
  7247. const int n = ggml_nrows(src0);
  7248. const int nc = src0->ne[0];
  7249. assert( dst->nb[0] == sizeof(float));
  7250. assert(src0->nb[0] == sizeof(float));
  7251. for (int i = 0; i < n; i++) {
  7252. ggml_vec_sqrt_f32(nc,
  7253. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7254. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7255. }
  7256. }
  7257. static void ggml_compute_forward_sqrt(
  7258. const struct ggml_compute_params * params,
  7259. struct ggml_tensor * dst) {
  7260. const struct ggml_tensor * src0 = dst->src[0];
  7261. switch (src0->type) {
  7262. case GGML_TYPE_F32:
  7263. {
  7264. ggml_compute_forward_sqrt_f32(params, dst);
  7265. } break;
  7266. default:
  7267. {
  7268. GGML_ASSERT(false);
  7269. } break;
  7270. }
  7271. }
  7272. // ggml_compute_forward_log
  7273. static void ggml_compute_forward_log_f32(
  7274. const struct ggml_compute_params * params,
  7275. struct ggml_tensor * dst) {
  7276. const struct ggml_tensor * src0 = dst->src[0];
  7277. GGML_ASSERT(params->ith == 0);
  7278. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7279. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7280. return;
  7281. }
  7282. const int n = ggml_nrows(src0);
  7283. const int nc = src0->ne[0];
  7284. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7285. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7286. for (int i = 0; i < n; i++) {
  7287. ggml_vec_log_f32(nc,
  7288. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7289. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7290. }
  7291. }
  7292. static void ggml_compute_forward_log(
  7293. const struct ggml_compute_params * params,
  7294. struct ggml_tensor * dst) {
  7295. const struct ggml_tensor * src0 = dst->src[0];
  7296. switch (src0->type) {
  7297. case GGML_TYPE_F32:
  7298. {
  7299. ggml_compute_forward_log_f32(params, dst);
  7300. } break;
  7301. default:
  7302. {
  7303. GGML_ASSERT(false);
  7304. } break;
  7305. }
  7306. }
  7307. // ggml_compute_forward_sum
  7308. static void ggml_compute_forward_sum_f32(
  7309. const struct ggml_compute_params * params,
  7310. struct ggml_tensor * dst) {
  7311. const struct ggml_tensor * src0 = dst->src[0];
  7312. assert(params->ith == 0);
  7313. assert(ggml_is_scalar(dst));
  7314. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7315. return;
  7316. }
  7317. assert(ggml_is_scalar(dst));
  7318. assert(src0->nb[0] == sizeof(float));
  7319. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7320. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7321. ggml_float sum = 0;
  7322. ggml_float row_sum = 0;
  7323. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7324. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7325. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7326. ggml_vec_sum_f32_ggf(ne00,
  7327. &row_sum,
  7328. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7329. sum += row_sum;
  7330. }
  7331. }
  7332. }
  7333. ((float *) dst->data)[0] = sum;
  7334. }
  7335. static void ggml_compute_forward_sum_f16(
  7336. const struct ggml_compute_params * params,
  7337. struct ggml_tensor * dst) {
  7338. const struct ggml_tensor * src0 = dst->src[0];
  7339. assert(params->ith == 0);
  7340. assert(ggml_is_scalar(dst));
  7341. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7342. return;
  7343. }
  7344. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7345. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  7346. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  7347. float sum = 0;
  7348. float row_sum = 0;
  7349. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7350. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7351. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7352. ggml_vec_sum_f16_ggf(ne00,
  7353. &row_sum,
  7354. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  7355. sum += row_sum;
  7356. }
  7357. }
  7358. }
  7359. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  7360. }
  7361. static void ggml_compute_forward_sum(
  7362. const struct ggml_compute_params * params,
  7363. struct ggml_tensor * dst) {
  7364. const struct ggml_tensor * src0 = dst->src[0];
  7365. switch (src0->type) {
  7366. case GGML_TYPE_F32:
  7367. {
  7368. ggml_compute_forward_sum_f32(params, dst);
  7369. } break;
  7370. case GGML_TYPE_F16:
  7371. {
  7372. ggml_compute_forward_sum_f16(params, dst);
  7373. } break;
  7374. default:
  7375. {
  7376. GGML_ASSERT(false);
  7377. } break;
  7378. }
  7379. }
  7380. // ggml_compute_forward_sum_rows
  7381. static void ggml_compute_forward_sum_rows_f32(
  7382. const struct ggml_compute_params * params,
  7383. struct ggml_tensor * dst) {
  7384. const struct ggml_tensor * src0 = dst->src[0];
  7385. GGML_ASSERT(params->ith == 0);
  7386. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7387. return;
  7388. }
  7389. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7390. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7391. GGML_TENSOR_UNARY_OP_LOCALS
  7392. GGML_ASSERT(ne0 == 1);
  7393. GGML_ASSERT(ne1 == ne01);
  7394. GGML_ASSERT(ne2 == ne02);
  7395. GGML_ASSERT(ne3 == ne03);
  7396. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7397. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7398. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7399. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7400. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7401. float row_sum = 0;
  7402. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7403. dst_row[0] = row_sum;
  7404. }
  7405. }
  7406. }
  7407. }
  7408. static void ggml_compute_forward_sum_rows(
  7409. const struct ggml_compute_params * params,
  7410. struct ggml_tensor * dst) {
  7411. const struct ggml_tensor * src0 = dst->src[0];
  7412. switch (src0->type) {
  7413. case GGML_TYPE_F32:
  7414. {
  7415. ggml_compute_forward_sum_rows_f32(params, dst);
  7416. } break;
  7417. default:
  7418. {
  7419. GGML_ASSERT(false);
  7420. } break;
  7421. }
  7422. }
  7423. // ggml_compute_forward_mean
  7424. static void ggml_compute_forward_mean_f32(
  7425. const struct ggml_compute_params * params,
  7426. struct ggml_tensor * dst) {
  7427. const struct ggml_tensor * src0 = dst->src[0];
  7428. assert(params->ith == 0);
  7429. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7430. return;
  7431. }
  7432. assert(src0->nb[0] == sizeof(float));
  7433. GGML_TENSOR_UNARY_OP_LOCALS
  7434. assert(ne0 == 1);
  7435. assert(ne1 == ne01);
  7436. assert(ne2 == ne02);
  7437. assert(ne3 == ne03);
  7438. UNUSED(ne0);
  7439. UNUSED(ne1);
  7440. UNUSED(ne2);
  7441. UNUSED(ne3);
  7442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7444. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7445. ggml_vec_sum_f32(ne00,
  7446. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7447. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7448. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7449. }
  7450. }
  7451. }
  7452. }
  7453. static void ggml_compute_forward_mean(
  7454. const struct ggml_compute_params * params,
  7455. struct ggml_tensor * dst) {
  7456. const struct ggml_tensor * src0 = dst->src[0];
  7457. switch (src0->type) {
  7458. case GGML_TYPE_F32:
  7459. {
  7460. ggml_compute_forward_mean_f32(params, dst);
  7461. } break;
  7462. default:
  7463. {
  7464. GGML_ASSERT(false);
  7465. } break;
  7466. }
  7467. }
  7468. // ggml_compute_forward_argmax
  7469. static void ggml_compute_forward_argmax_f32(
  7470. const struct ggml_compute_params * params,
  7471. struct ggml_tensor * dst) {
  7472. const struct ggml_tensor * src0 = dst->src[0];
  7473. assert(params->ith == 0);
  7474. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7475. return;
  7476. }
  7477. assert(src0->nb[0] == sizeof(float));
  7478. assert(dst->nb[0] == sizeof(float));
  7479. const int64_t ne00 = src0->ne[0];
  7480. const int64_t ne01 = src0->ne[1];
  7481. const size_t nb01 = src0->nb[1];
  7482. const size_t nb0 = dst->nb[0];
  7483. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7484. float * src = (float *) ((char *) src0->data + i1*nb01);
  7485. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7486. int v = 0;
  7487. ggml_vec_argmax_f32(ne00, &v, src);
  7488. dst_[0] = v;
  7489. }
  7490. }
  7491. static void ggml_compute_forward_argmax(
  7492. const struct ggml_compute_params * params,
  7493. struct ggml_tensor * dst) {
  7494. const struct ggml_tensor * src0 = dst->src[0];
  7495. switch (src0->type) {
  7496. case GGML_TYPE_F32:
  7497. {
  7498. ggml_compute_forward_argmax_f32(params, dst);
  7499. } break;
  7500. default:
  7501. {
  7502. GGML_ASSERT(false);
  7503. } break;
  7504. }
  7505. }
  7506. // ggml_compute_forward_repeat
  7507. static void ggml_compute_forward_repeat_f32(
  7508. const struct ggml_compute_params * params,
  7509. struct ggml_tensor * dst) {
  7510. const struct ggml_tensor * src0 = dst->src[0];
  7511. GGML_ASSERT(params->ith == 0);
  7512. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7513. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7514. return;
  7515. }
  7516. GGML_TENSOR_UNARY_OP_LOCALS
  7517. // guaranteed to be an integer due to the check in ggml_can_repeat
  7518. const int nr0 = (int)(ne0/ne00);
  7519. const int nr1 = (int)(ne1/ne01);
  7520. const int nr2 = (int)(ne2/ne02);
  7521. const int nr3 = (int)(ne3/ne03);
  7522. // TODO: support for transposed / permuted tensors
  7523. GGML_ASSERT(nb0 == sizeof(float));
  7524. GGML_ASSERT(nb00 == sizeof(float));
  7525. // TODO: maybe this is not optimal?
  7526. for (int i3 = 0; i3 < nr3; i3++) {
  7527. for (int k3 = 0; k3 < ne03; k3++) {
  7528. for (int i2 = 0; i2 < nr2; i2++) {
  7529. for (int k2 = 0; k2 < ne02; k2++) {
  7530. for (int i1 = 0; i1 < nr1; i1++) {
  7531. for (int k1 = 0; k1 < ne01; k1++) {
  7532. for (int i0 = 0; i0 < nr0; i0++) {
  7533. ggml_vec_cpy_f32(ne00,
  7534. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7535. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7536. }
  7537. }
  7538. }
  7539. }
  7540. }
  7541. }
  7542. }
  7543. }
  7544. static void ggml_compute_forward_repeat_f16(
  7545. const struct ggml_compute_params * params,
  7546. struct ggml_tensor * dst) {
  7547. const struct ggml_tensor * src0 = dst->src[0];
  7548. GGML_ASSERT(params->ith == 0);
  7549. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7550. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7551. return;
  7552. }
  7553. GGML_TENSOR_UNARY_OP_LOCALS
  7554. // guaranteed to be an integer due to the check in ggml_can_repeat
  7555. const int nr0 = (int)(ne0/ne00);
  7556. const int nr1 = (int)(ne1/ne01);
  7557. const int nr2 = (int)(ne2/ne02);
  7558. const int nr3 = (int)(ne3/ne03);
  7559. // TODO: support for transposed / permuted tensors
  7560. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  7561. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7562. // TODO: maybe this is not optimal?
  7563. for (int i3 = 0; i3 < nr3; i3++) {
  7564. for (int k3 = 0; k3 < ne03; k3++) {
  7565. for (int i2 = 0; i2 < nr2; i2++) {
  7566. for (int k2 = 0; k2 < ne02; k2++) {
  7567. for (int i1 = 0; i1 < nr1; i1++) {
  7568. for (int k1 = 0; k1 < ne01; k1++) {
  7569. for (int i0 = 0; i0 < nr0; i0++) {
  7570. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  7571. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  7572. // ggml_vec_cpy_f16(ne00, y, x)
  7573. for (int i = 0; i < ne00; ++i) {
  7574. y[i] = x[i];
  7575. }
  7576. }
  7577. }
  7578. }
  7579. }
  7580. }
  7581. }
  7582. }
  7583. }
  7584. static void ggml_compute_forward_repeat(
  7585. const struct ggml_compute_params * params,
  7586. struct ggml_tensor * dst) {
  7587. const struct ggml_tensor * src0 = dst->src[0];
  7588. switch (src0->type) {
  7589. case GGML_TYPE_F16:
  7590. case GGML_TYPE_I16:
  7591. {
  7592. ggml_compute_forward_repeat_f16(params, dst);
  7593. } break;
  7594. case GGML_TYPE_F32:
  7595. case GGML_TYPE_I32:
  7596. {
  7597. ggml_compute_forward_repeat_f32(params, dst);
  7598. } break;
  7599. default:
  7600. {
  7601. GGML_ASSERT(false);
  7602. } break;
  7603. }
  7604. }
  7605. // ggml_compute_forward_repeat_back
  7606. static void ggml_compute_forward_repeat_back_f32(
  7607. const struct ggml_compute_params * params,
  7608. struct ggml_tensor * dst) {
  7609. const struct ggml_tensor * src0 = dst->src[0];
  7610. GGML_ASSERT(params->ith == 0);
  7611. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7612. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7613. return;
  7614. }
  7615. GGML_TENSOR_UNARY_OP_LOCALS
  7616. // guaranteed to be an integer due to the check in ggml_can_repeat
  7617. const int nr0 = (int)(ne00/ne0);
  7618. const int nr1 = (int)(ne01/ne1);
  7619. const int nr2 = (int)(ne02/ne2);
  7620. const int nr3 = (int)(ne03/ne3);
  7621. // TODO: support for transposed / permuted tensors
  7622. GGML_ASSERT(nb0 == sizeof(float));
  7623. GGML_ASSERT(nb00 == sizeof(float));
  7624. if (ggml_is_contiguous(dst)) {
  7625. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7626. } else {
  7627. for (int k3 = 0; k3 < ne3; k3++) {
  7628. for (int k2 = 0; k2 < ne2; k2++) {
  7629. for (int k1 = 0; k1 < ne1; k1++) {
  7630. ggml_vec_set_f32(ne0,
  7631. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7632. 0);
  7633. }
  7634. }
  7635. }
  7636. }
  7637. // TODO: maybe this is not optimal?
  7638. for (int i3 = 0; i3 < nr3; i3++) {
  7639. for (int k3 = 0; k3 < ne3; k3++) {
  7640. for (int i2 = 0; i2 < nr2; i2++) {
  7641. for (int k2 = 0; k2 < ne2; k2++) {
  7642. for (int i1 = 0; i1 < nr1; i1++) {
  7643. for (int k1 = 0; k1 < ne1; k1++) {
  7644. for (int i0 = 0; i0 < nr0; i0++) {
  7645. ggml_vec_acc_f32(ne0,
  7646. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7647. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7648. }
  7649. }
  7650. }
  7651. }
  7652. }
  7653. }
  7654. }
  7655. }
  7656. static void ggml_compute_forward_repeat_back(
  7657. const struct ggml_compute_params * params,
  7658. struct ggml_tensor * dst) {
  7659. const struct ggml_tensor * src0 = dst->src[0];
  7660. switch (src0->type) {
  7661. case GGML_TYPE_F32:
  7662. {
  7663. ggml_compute_forward_repeat_back_f32(params, dst);
  7664. } break;
  7665. default:
  7666. {
  7667. GGML_ASSERT(false);
  7668. } break;
  7669. }
  7670. }
  7671. // ggml_compute_forward_concat
  7672. static void ggml_compute_forward_concat_f32(
  7673. const struct ggml_compute_params * params,
  7674. struct ggml_tensor * dst) {
  7675. const struct ggml_tensor * src0 = dst->src[0];
  7676. const struct ggml_tensor * src1 = dst->src[1];
  7677. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7678. return;
  7679. }
  7680. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7681. const int ith = params->ith;
  7682. const int nth = params->nth;
  7683. GGML_TENSOR_BINARY_OP_LOCALS
  7684. // TODO: support for transposed / permuted tensors
  7685. GGML_ASSERT(nb0 == sizeof(float));
  7686. GGML_ASSERT(nb00 == sizeof(float));
  7687. GGML_ASSERT(nb10 == sizeof(float));
  7688. for (int i3 = 0; i3 < ne3; i3++) {
  7689. for (int i2 = ith; i2 < ne2; i2 += nth) {
  7690. if (i2 < ne02) { // src0
  7691. for (int i1 = 0; i1 < ne1; i1++) {
  7692. for (int i0 = 0; i0 < ne0; i0++) {
  7693. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  7694. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7695. *y = *x;
  7696. }
  7697. }
  7698. } // src1
  7699. else {
  7700. for (int i1 = 0; i1 < ne1; i1++) {
  7701. for (int i0 = 0; i0 < ne0; i0++) {
  7702. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  7703. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  7704. *y = *x;
  7705. }
  7706. }
  7707. }
  7708. }
  7709. }
  7710. }
  7711. static void ggml_compute_forward_concat(
  7712. const struct ggml_compute_params* params,
  7713. struct ggml_tensor* dst) {
  7714. const struct ggml_tensor * src0 = dst->src[0];
  7715. switch (src0->type) {
  7716. case GGML_TYPE_F32:
  7717. case GGML_TYPE_I32:
  7718. {
  7719. ggml_compute_forward_concat_f32(params, dst);
  7720. } break;
  7721. default:
  7722. {
  7723. GGML_ASSERT(false);
  7724. } break;
  7725. }
  7726. }
  7727. // ggml_compute_forward_abs
  7728. static void ggml_compute_forward_abs_f32(
  7729. const struct ggml_compute_params * params,
  7730. struct ggml_tensor * dst) {
  7731. const struct ggml_tensor * src0 = dst->src[0];
  7732. assert(params->ith == 0);
  7733. assert(ggml_are_same_shape(src0, dst));
  7734. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7735. return;
  7736. }
  7737. const int n = ggml_nrows(src0);
  7738. const int nc = src0->ne[0];
  7739. assert(dst->nb[0] == sizeof(float));
  7740. assert(src0->nb[0] == sizeof(float));
  7741. for (int i = 0; i < n; i++) {
  7742. ggml_vec_abs_f32(nc,
  7743. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7744. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7745. }
  7746. }
  7747. static void ggml_compute_forward_abs(
  7748. const struct ggml_compute_params * params,
  7749. struct ggml_tensor * dst) {
  7750. const struct ggml_tensor * src0 = dst->src[0];
  7751. switch (src0->type) {
  7752. case GGML_TYPE_F32:
  7753. {
  7754. ggml_compute_forward_abs_f32(params, dst);
  7755. } break;
  7756. default:
  7757. {
  7758. GGML_ASSERT(false);
  7759. } break;
  7760. }
  7761. }
  7762. // ggml_compute_forward_sgn
  7763. static void ggml_compute_forward_sgn_f32(
  7764. const struct ggml_compute_params * params,
  7765. struct ggml_tensor * dst) {
  7766. const struct ggml_tensor * src0 = dst->src[0];
  7767. assert(params->ith == 0);
  7768. assert(ggml_are_same_shape(src0, dst));
  7769. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7770. return;
  7771. }
  7772. const int n = ggml_nrows(src0);
  7773. const int nc = src0->ne[0];
  7774. assert(dst->nb[0] == sizeof(float));
  7775. assert(src0->nb[0] == sizeof(float));
  7776. for (int i = 0; i < n; i++) {
  7777. ggml_vec_sgn_f32(nc,
  7778. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7779. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7780. }
  7781. }
  7782. static void ggml_compute_forward_sgn(
  7783. const struct ggml_compute_params * params,
  7784. struct ggml_tensor * dst) {
  7785. const struct ggml_tensor * src0 = dst->src[0];
  7786. switch (src0->type) {
  7787. case GGML_TYPE_F32:
  7788. {
  7789. ggml_compute_forward_sgn_f32(params, dst);
  7790. } break;
  7791. default:
  7792. {
  7793. GGML_ASSERT(false);
  7794. } break;
  7795. }
  7796. }
  7797. // ggml_compute_forward_neg
  7798. static void ggml_compute_forward_neg_f32(
  7799. const struct ggml_compute_params * params,
  7800. struct ggml_tensor * dst) {
  7801. const struct ggml_tensor * src0 = dst->src[0];
  7802. assert(params->ith == 0);
  7803. assert(ggml_are_same_shape(src0, dst));
  7804. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7805. return;
  7806. }
  7807. const int n = ggml_nrows(src0);
  7808. const int nc = src0->ne[0];
  7809. assert(dst->nb[0] == sizeof(float));
  7810. assert(src0->nb[0] == sizeof(float));
  7811. for (int i = 0; i < n; i++) {
  7812. ggml_vec_neg_f32(nc,
  7813. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7814. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7815. }
  7816. }
  7817. static void ggml_compute_forward_neg(
  7818. const struct ggml_compute_params * params,
  7819. struct ggml_tensor * dst) {
  7820. const struct ggml_tensor * src0 = dst->src[0];
  7821. switch (src0->type) {
  7822. case GGML_TYPE_F32:
  7823. {
  7824. ggml_compute_forward_neg_f32(params, dst);
  7825. } break;
  7826. default:
  7827. {
  7828. GGML_ASSERT(false);
  7829. } break;
  7830. }
  7831. }
  7832. // ggml_compute_forward_step
  7833. static void ggml_compute_forward_step_f32(
  7834. const struct ggml_compute_params * params,
  7835. struct ggml_tensor * dst) {
  7836. const struct ggml_tensor * src0 = dst->src[0];
  7837. assert(params->ith == 0);
  7838. assert(ggml_are_same_shape(src0, dst));
  7839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7840. return;
  7841. }
  7842. const int n = ggml_nrows(src0);
  7843. const int nc = src0->ne[0];
  7844. assert(dst->nb[0] == sizeof(float));
  7845. assert(src0->nb[0] == sizeof(float));
  7846. for (int i = 0; i < n; i++) {
  7847. ggml_vec_step_f32(nc,
  7848. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7849. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7850. }
  7851. }
  7852. static void ggml_compute_forward_step(
  7853. const struct ggml_compute_params * params,
  7854. struct ggml_tensor * dst) {
  7855. const struct ggml_tensor * src0 = dst->src[0];
  7856. switch (src0->type) {
  7857. case GGML_TYPE_F32:
  7858. {
  7859. ggml_compute_forward_step_f32(params, dst);
  7860. } break;
  7861. default:
  7862. {
  7863. GGML_ASSERT(false);
  7864. } break;
  7865. }
  7866. }
  7867. // ggml_compute_forward_tanh
  7868. static void ggml_compute_forward_tanh_f32(
  7869. const struct ggml_compute_params * params,
  7870. struct ggml_tensor * dst) {
  7871. const struct ggml_tensor * src0 = dst->src[0];
  7872. assert(params->ith == 0);
  7873. assert(ggml_are_same_shape(src0, dst));
  7874. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7875. return;
  7876. }
  7877. const int n = ggml_nrows(src0);
  7878. const int nc = src0->ne[0];
  7879. assert(dst->nb[0] == sizeof(float));
  7880. assert(src0->nb[0] == sizeof(float));
  7881. for (int i = 0; i < n; i++) {
  7882. ggml_vec_tanh_f32(nc,
  7883. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7884. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7885. }
  7886. }
  7887. static void ggml_compute_forward_tanh(
  7888. const struct ggml_compute_params * params,
  7889. struct ggml_tensor * dst) {
  7890. const struct ggml_tensor * src0 = dst->src[0];
  7891. switch (src0->type) {
  7892. case GGML_TYPE_F32:
  7893. {
  7894. ggml_compute_forward_tanh_f32(params, dst);
  7895. } break;
  7896. default:
  7897. {
  7898. GGML_ASSERT(false);
  7899. } break;
  7900. }
  7901. }
  7902. // ggml_compute_forward_elu
  7903. static void ggml_compute_forward_elu_f32(
  7904. const struct ggml_compute_params * params,
  7905. struct ggml_tensor * dst) {
  7906. const struct ggml_tensor * src0 = dst->src[0];
  7907. assert(params->ith == 0);
  7908. assert(ggml_are_same_shape(src0, dst));
  7909. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7910. return;
  7911. }
  7912. const int n = ggml_nrows(src0);
  7913. const int nc = src0->ne[0];
  7914. assert(dst->nb[0] == sizeof(float));
  7915. assert(src0->nb[0] == sizeof(float));
  7916. for (int i = 0; i < n; i++) {
  7917. ggml_vec_elu_f32(nc,
  7918. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7919. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7920. }
  7921. }
  7922. static void ggml_compute_forward_elu(
  7923. const struct ggml_compute_params * params,
  7924. struct ggml_tensor * dst) {
  7925. const struct ggml_tensor * src0 = dst->src[0];
  7926. switch (src0->type) {
  7927. case GGML_TYPE_F32:
  7928. {
  7929. ggml_compute_forward_elu_f32(params, dst);
  7930. } break;
  7931. default:
  7932. {
  7933. GGML_ASSERT(false);
  7934. } break;
  7935. }
  7936. }
  7937. // ggml_compute_forward_relu
  7938. static void ggml_compute_forward_relu_f32(
  7939. const struct ggml_compute_params * params,
  7940. struct ggml_tensor * dst) {
  7941. const struct ggml_tensor * src0 = dst->src[0];
  7942. assert(params->ith == 0);
  7943. assert(ggml_are_same_shape(src0, dst));
  7944. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7945. return;
  7946. }
  7947. const int n = ggml_nrows(src0);
  7948. const int nc = src0->ne[0];
  7949. assert(dst->nb[0] == sizeof(float));
  7950. assert(src0->nb[0] == sizeof(float));
  7951. for (int i = 0; i < n; i++) {
  7952. ggml_vec_relu_f32(nc,
  7953. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7954. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7955. }
  7956. }
  7957. static void ggml_compute_forward_relu(
  7958. const struct ggml_compute_params * params,
  7959. struct ggml_tensor * dst) {
  7960. const struct ggml_tensor * src0 = dst->src[0];
  7961. switch (src0->type) {
  7962. case GGML_TYPE_F32:
  7963. {
  7964. ggml_compute_forward_relu_f32(params, dst);
  7965. } break;
  7966. default:
  7967. {
  7968. GGML_ASSERT(false);
  7969. } break;
  7970. }
  7971. }
  7972. // ggml_compute_forward_gelu
  7973. static void ggml_compute_forward_gelu_f32(
  7974. const struct ggml_compute_params * params,
  7975. struct ggml_tensor * dst) {
  7976. const struct ggml_tensor * src0 = dst->src[0];
  7977. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  7978. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  7979. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7980. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  7981. return;
  7982. }
  7983. const int ith = params->ith;
  7984. const int nth = params->nth;
  7985. const int nc = src0->ne[0];
  7986. const int nr = ggml_nrows(src0);
  7987. // rows per thread
  7988. const int dr = (nr + nth - 1)/nth;
  7989. // row range for this thread
  7990. const int ir0 = dr*ith;
  7991. const int ir1 = MIN(ir0 + dr, nr);
  7992. for (int i1 = ir0; i1 < ir1; i1++) {
  7993. ggml_vec_gelu_f32(nc,
  7994. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7995. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7996. #ifndef NDEBUG
  7997. for (int k = 0; k < nc; k++) {
  7998. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7999. UNUSED(x);
  8000. assert(!isnan(x));
  8001. assert(!isinf(x));
  8002. }
  8003. #endif
  8004. }
  8005. }
  8006. static void ggml_compute_forward_gelu(
  8007. const struct ggml_compute_params * params,
  8008. struct ggml_tensor * dst) {
  8009. const struct ggml_tensor * src0 = dst->src[0];
  8010. switch (src0->type) {
  8011. case GGML_TYPE_F32:
  8012. {
  8013. ggml_compute_forward_gelu_f32(params, dst);
  8014. } break;
  8015. default:
  8016. {
  8017. GGML_ASSERT(false);
  8018. } break;
  8019. }
  8020. }
  8021. // ggml_compute_forward_gelu_quick
  8022. static void ggml_compute_forward_gelu_quick_f32(
  8023. const struct ggml_compute_params * params,
  8024. struct ggml_tensor * dst) {
  8025. const struct ggml_tensor * src0 = dst->src[0];
  8026. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8027. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8028. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8029. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8030. return;
  8031. }
  8032. const int ith = params->ith;
  8033. const int nth = params->nth;
  8034. const int nc = src0->ne[0];
  8035. const int nr = ggml_nrows(src0);
  8036. // rows per thread
  8037. const int dr = (nr + nth - 1)/nth;
  8038. // row range for this thread
  8039. const int ir0 = dr*ith;
  8040. const int ir1 = MIN(ir0 + dr, nr);
  8041. for (int i1 = ir0; i1 < ir1; i1++) {
  8042. ggml_vec_gelu_quick_f32(nc,
  8043. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8044. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8045. #ifndef NDEBUG
  8046. for (int k = 0; k < nc; k++) {
  8047. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8048. UNUSED(x);
  8049. assert(!isnan(x));
  8050. assert(!isinf(x));
  8051. }
  8052. #endif
  8053. }
  8054. }
  8055. static void ggml_compute_forward_gelu_quick(
  8056. const struct ggml_compute_params * params,
  8057. struct ggml_tensor * dst) {
  8058. const struct ggml_tensor * src0 = dst->src[0];
  8059. switch (src0->type) {
  8060. case GGML_TYPE_F32:
  8061. {
  8062. ggml_compute_forward_gelu_quick_f32(params, dst);
  8063. } break;
  8064. default:
  8065. {
  8066. GGML_ASSERT(false);
  8067. } break;
  8068. }
  8069. }
  8070. // ggml_compute_forward_silu
  8071. static void ggml_compute_forward_silu_f32(
  8072. const struct ggml_compute_params * params,
  8073. struct ggml_tensor * dst) {
  8074. const struct ggml_tensor * src0 = dst->src[0];
  8075. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8076. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8077. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8078. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8079. return;
  8080. }
  8081. const int ith = params->ith;
  8082. const int nth = params->nth;
  8083. const int nc = src0->ne[0];
  8084. const int nr = ggml_nrows(src0);
  8085. // rows per thread
  8086. const int dr = (nr + nth - 1)/nth;
  8087. // row range for this thread
  8088. const int ir0 = dr*ith;
  8089. const int ir1 = MIN(ir0 + dr, nr);
  8090. for (int i1 = ir0; i1 < ir1; i1++) {
  8091. ggml_vec_silu_f32(nc,
  8092. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8093. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8094. #ifndef NDEBUG
  8095. for (int k = 0; k < nc; k++) {
  8096. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  8097. UNUSED(x);
  8098. assert(!isnan(x));
  8099. assert(!isinf(x));
  8100. }
  8101. #endif
  8102. }
  8103. }
  8104. static void ggml_compute_forward_silu(
  8105. const struct ggml_compute_params * params,
  8106. struct ggml_tensor * dst) {
  8107. const struct ggml_tensor * src0 = dst->src[0];
  8108. switch (src0->type) {
  8109. case GGML_TYPE_F32:
  8110. {
  8111. ggml_compute_forward_silu_f32(params, dst);
  8112. } break;
  8113. default:
  8114. {
  8115. GGML_ASSERT(false);
  8116. } break;
  8117. }
  8118. }
  8119. // ggml_compute_forward_leaky_relu
  8120. static void ggml_compute_forward_leaky_relu_f32(
  8121. const struct ggml_compute_params * params,
  8122. struct ggml_tensor * dst) {
  8123. const struct ggml_tensor * src0 = dst->src[0];
  8124. assert(params->ith == 0);
  8125. assert(ggml_are_same_shape(src0, dst));
  8126. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8127. return;
  8128. }
  8129. const int n = ggml_nrows(src0);
  8130. const int nc = src0->ne[0];
  8131. float negative_slope;
  8132. memcpy(&negative_slope, dst->op_params, sizeof(float));
  8133. assert(dst->nb[0] == sizeof(float));
  8134. assert(src0->nb[0] == sizeof(float));
  8135. for (int i = 0; i < n; i++) {
  8136. ggml_vec_leaky_relu_f32(nc,
  8137. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8138. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  8139. }
  8140. }
  8141. static void ggml_compute_forward_leaky_relu(
  8142. const struct ggml_compute_params * params,
  8143. struct ggml_tensor * dst) {
  8144. const struct ggml_tensor * src0 = dst->src[0];
  8145. switch (src0->type) {
  8146. case GGML_TYPE_F32:
  8147. {
  8148. ggml_compute_forward_leaky_relu_f32(params, dst);
  8149. } break;
  8150. default:
  8151. {
  8152. GGML_ASSERT(false);
  8153. } break;
  8154. }
  8155. }
  8156. // ggml_compute_forward_silu_back
  8157. static void ggml_compute_forward_silu_back_f32(
  8158. const struct ggml_compute_params * params,
  8159. struct ggml_tensor * dst) {
  8160. const struct ggml_tensor * src0 = dst->src[0];
  8161. const struct ggml_tensor * grad = dst->src[1];
  8162. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  8163. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8164. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8165. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8166. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8167. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8168. return;
  8169. }
  8170. const int ith = params->ith;
  8171. const int nth = params->nth;
  8172. const int nc = src0->ne[0];
  8173. const int nr = ggml_nrows(src0);
  8174. // rows per thread
  8175. const int dr = (nr + nth - 1)/nth;
  8176. // row range for this thread
  8177. const int ir0 = dr*ith;
  8178. const int ir1 = MIN(ir0 + dr, nr);
  8179. for (int i1 = ir0; i1 < ir1; i1++) {
  8180. ggml_vec_silu_backward_f32(nc,
  8181. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8182. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8183. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8184. #ifndef NDEBUG
  8185. for (int k = 0; k < nc; k++) {
  8186. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8187. UNUSED(x);
  8188. assert(!isnan(x));
  8189. assert(!isinf(x));
  8190. }
  8191. #endif
  8192. }
  8193. }
  8194. static void ggml_compute_forward_silu_back(
  8195. const struct ggml_compute_params * params,
  8196. struct ggml_tensor * dst) {
  8197. const struct ggml_tensor * src0 = dst->src[0];
  8198. switch (src0->type) {
  8199. case GGML_TYPE_F32:
  8200. {
  8201. ggml_compute_forward_silu_back_f32(params, dst);
  8202. } break;
  8203. default:
  8204. {
  8205. GGML_ASSERT(false);
  8206. } break;
  8207. }
  8208. }
  8209. static void ggml_compute_forward_hardswish_f32(
  8210. const struct ggml_compute_params * params,
  8211. struct ggml_tensor * dst) {
  8212. const struct ggml_tensor * src0 = dst->src[0];
  8213. assert(params->ith == 0);
  8214. assert(ggml_are_same_shape(src0, dst));
  8215. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8216. return;
  8217. }
  8218. const int n = ggml_nrows(src0);
  8219. const int nc = src0->ne[0];
  8220. assert(dst->nb[0] == sizeof(float));
  8221. assert(src0->nb[0] == sizeof(float));
  8222. for (int i = 0; i < n; i++) {
  8223. ggml_vec_hardswish_f32(nc,
  8224. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8225. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8226. }
  8227. }
  8228. static void ggml_compute_forward_hardswish(
  8229. const struct ggml_compute_params * params,
  8230. struct ggml_tensor * dst) {
  8231. const struct ggml_tensor * src0 = dst->src[0];
  8232. switch (src0->type) {
  8233. case GGML_TYPE_F32:
  8234. {
  8235. ggml_compute_forward_hardswish_f32(params, dst);
  8236. } break;
  8237. default:
  8238. {
  8239. GGML_ASSERT(false);
  8240. } break;
  8241. }
  8242. }
  8243. static void ggml_compute_forward_hardsigmoid_f32(
  8244. const struct ggml_compute_params * params,
  8245. struct ggml_tensor * dst) {
  8246. const struct ggml_tensor * src0 = dst->src[0];
  8247. assert(params->ith == 0);
  8248. assert(ggml_are_same_shape(src0, dst));
  8249. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8250. return;
  8251. }
  8252. const int n = ggml_nrows(src0);
  8253. const int nc = src0->ne[0];
  8254. assert(dst->nb[0] == sizeof(float));
  8255. assert(src0->nb[0] == sizeof(float));
  8256. for (int i = 0; i < n; i++) {
  8257. ggml_vec_hardsigmoid_f32(nc,
  8258. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8259. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8260. }
  8261. }
  8262. static void ggml_compute_forward_hardsigmoid(
  8263. const struct ggml_compute_params * params,
  8264. struct ggml_tensor * dst) {
  8265. const struct ggml_tensor * src0 = dst->src[0];
  8266. switch (src0->type) {
  8267. case GGML_TYPE_F32:
  8268. {
  8269. ggml_compute_forward_hardsigmoid_f32(params, dst);
  8270. } break;
  8271. default:
  8272. {
  8273. GGML_ASSERT(false);
  8274. } break;
  8275. }
  8276. }
  8277. // ggml_compute_forward_norm
  8278. static void ggml_compute_forward_norm_f32(
  8279. const struct ggml_compute_params * params,
  8280. struct ggml_tensor * dst) {
  8281. const struct ggml_tensor * src0 = dst->src[0];
  8282. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8283. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8284. return;
  8285. }
  8286. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8287. const int ith = params->ith;
  8288. const int nth = params->nth;
  8289. GGML_TENSOR_UNARY_OP_LOCALS
  8290. float eps;
  8291. memcpy(&eps, dst->op_params, sizeof(float));
  8292. GGML_ASSERT(eps > 0.0f);
  8293. // TODO: optimize
  8294. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8295. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8296. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8297. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8298. ggml_float sum = 0.0;
  8299. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8300. sum += (ggml_float)x[i00];
  8301. }
  8302. float mean = sum/ne00;
  8303. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8304. ggml_float sum2 = 0.0;
  8305. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8306. float v = x[i00] - mean;
  8307. y[i00] = v;
  8308. sum2 += (ggml_float)(v*v);
  8309. }
  8310. float variance = sum2/ne00;
  8311. const float scale = 1.0f/sqrtf(variance + eps);
  8312. ggml_vec_scale_f32(ne00, y, scale);
  8313. }
  8314. }
  8315. }
  8316. }
  8317. static void ggml_compute_forward_norm(
  8318. const struct ggml_compute_params * params,
  8319. struct ggml_tensor * dst) {
  8320. const struct ggml_tensor * src0 = dst->src[0];
  8321. switch (src0->type) {
  8322. case GGML_TYPE_F32:
  8323. {
  8324. ggml_compute_forward_norm_f32(params, dst);
  8325. } break;
  8326. default:
  8327. {
  8328. GGML_ASSERT(false);
  8329. } break;
  8330. }
  8331. }
  8332. // ggml_compute_forward_group_rms_norm
  8333. static void ggml_compute_forward_rms_norm_f32(
  8334. const struct ggml_compute_params * params,
  8335. struct ggml_tensor * dst) {
  8336. const struct ggml_tensor * src0 = dst->src[0];
  8337. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8338. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8339. return;
  8340. }
  8341. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8342. const int ith = params->ith;
  8343. const int nth = params->nth;
  8344. GGML_TENSOR_UNARY_OP_LOCALS
  8345. float eps;
  8346. memcpy(&eps, dst->op_params, sizeof(float));
  8347. GGML_ASSERT(eps > 0.0f);
  8348. // TODO: optimize
  8349. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8350. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8351. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8352. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8353. ggml_float sum = 0.0;
  8354. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8355. sum += (ggml_float)(x[i00] * x[i00]);
  8356. }
  8357. const float mean = sum/ne00;
  8358. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8359. memcpy(y, x, ne00 * sizeof(float));
  8360. // for (int i00 = 0; i00 < ne00; i00++) {
  8361. // y[i00] = x[i00];
  8362. // }
  8363. const float scale = 1.0f/sqrtf(mean + eps);
  8364. ggml_vec_scale_f32(ne00, y, scale);
  8365. }
  8366. }
  8367. }
  8368. }
  8369. static void ggml_compute_forward_rms_norm(
  8370. const struct ggml_compute_params * params,
  8371. struct ggml_tensor * dst) {
  8372. const struct ggml_tensor * src0 = dst->src[0];
  8373. switch (src0->type) {
  8374. case GGML_TYPE_F32:
  8375. {
  8376. ggml_compute_forward_rms_norm_f32(params, dst);
  8377. } break;
  8378. default:
  8379. {
  8380. GGML_ASSERT(false);
  8381. } break;
  8382. }
  8383. }
  8384. static void ggml_compute_forward_rms_norm_back_f32(
  8385. const struct ggml_compute_params * params,
  8386. struct ggml_tensor * dst) {
  8387. const struct ggml_tensor * src0 = dst->src[0];
  8388. const struct ggml_tensor * src1 = dst->src[1];
  8389. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8390. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8391. return;
  8392. }
  8393. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8394. const int ith = params->ith;
  8395. const int nth = params->nth;
  8396. GGML_TENSOR_BINARY_OP_LOCALS
  8397. float eps;
  8398. memcpy(&eps, dst->op_params, sizeof(float));
  8399. // TODO: optimize
  8400. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8401. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8402. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8403. // src1 is same shape as src0 => same indices
  8404. const int64_t i11 = i01;
  8405. const int64_t i12 = i02;
  8406. const int64_t i13 = i03;
  8407. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8408. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8409. ggml_float sum_xx = 0.0;
  8410. ggml_float sum_xdz = 0.0;
  8411. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8412. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8413. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8414. }
  8415. //const float mean = (float)(sum_xx)/ne00;
  8416. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8417. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8418. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8419. // we could cache rms from forward pass to improve performance.
  8420. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8421. //const float rms = sqrtf(mean_eps);
  8422. const float rrms = 1.0f / sqrtf(mean_eps);
  8423. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8424. {
  8425. // z = rms_norm(x)
  8426. //
  8427. // rms_norm(src0) =
  8428. // scale(
  8429. // src0,
  8430. // div(
  8431. // 1,
  8432. // sqrt(
  8433. // add(
  8434. // scale(
  8435. // sum(
  8436. // sqr(
  8437. // src0)),
  8438. // (1.0/N)),
  8439. // eps))));
  8440. // postorder:
  8441. // ## op args grad
  8442. // 00 param src0 grad[#00]
  8443. // 01 const 1
  8444. // 02 sqr (#00) grad[#02]
  8445. // 03 sum (#02) grad[#03]
  8446. // 04 const 1/N
  8447. // 05 scale (#03, #04) grad[#05]
  8448. // 06 const eps
  8449. // 07 add (#05, #06) grad[#07]
  8450. // 08 sqrt (#07) grad[#08]
  8451. // 09 div (#01,#08) grad[#09]
  8452. // 10 scale (#00,#09) grad[#10]
  8453. //
  8454. // backward pass, given grad[#10]
  8455. // #10: scale
  8456. // grad[#00] += scale(grad[#10],#09)
  8457. // grad[#09] += sum(mul(grad[#10],#00))
  8458. // #09: div
  8459. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8460. // #08: sqrt
  8461. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8462. // #07: add
  8463. // grad[#05] += grad[#07]
  8464. // #05: scale
  8465. // grad[#03] += scale(grad[#05],#04)
  8466. // #03: sum
  8467. // grad[#02] += repeat(grad[#03], #02)
  8468. // #02:
  8469. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8470. //
  8471. // substitute and simplify:
  8472. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8473. // grad[#02] = repeat(grad[#03], #02)
  8474. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8475. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8476. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8477. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8478. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8479. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8480. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8481. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8482. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8483. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8484. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8485. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8486. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8487. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8488. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8489. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8490. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8491. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8492. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8493. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8494. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8495. // a = b*c + d*e
  8496. // a = b*c*f/f + d*e*f/f
  8497. // a = (b*c*f + d*e*f)*(1/f)
  8498. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8499. // a = (b + d*e/c)*c
  8500. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8501. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8502. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8503. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8504. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8505. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8506. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8507. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8508. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8509. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8510. }
  8511. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8512. // post-order:
  8513. // dx := x
  8514. // dx := scale(dx,-mean_xdz/mean_eps)
  8515. // dx := add(dx, dz)
  8516. // dx := scale(dx, rrms)
  8517. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8518. ggml_vec_cpy_f32 (ne00, dx, x);
  8519. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8520. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8521. ggml_vec_acc_f32 (ne00, dx, dz);
  8522. ggml_vec_scale_f32(ne00, dx, rrms);
  8523. }
  8524. }
  8525. }
  8526. }
  8527. static void ggml_compute_forward_rms_norm_back(
  8528. const struct ggml_compute_params * params,
  8529. struct ggml_tensor * dst) {
  8530. const struct ggml_tensor * src0 = dst->src[0];
  8531. switch (src0->type) {
  8532. case GGML_TYPE_F32:
  8533. {
  8534. ggml_compute_forward_rms_norm_back_f32(params, dst);
  8535. } break;
  8536. default:
  8537. {
  8538. GGML_ASSERT(false);
  8539. } break;
  8540. }
  8541. }
  8542. // ggml_compute_forward_group_norm
  8543. static void ggml_compute_forward_group_norm_f32(
  8544. const struct ggml_compute_params * params,
  8545. struct ggml_tensor * dst) {
  8546. const struct ggml_tensor * src0 = dst->src[0];
  8547. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8548. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  8549. return;
  8550. }
  8551. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8552. const int ith = params->ith;
  8553. const int nth = params->nth;
  8554. GGML_TENSOR_UNARY_OP_LOCALS
  8555. const float eps = 1e-6f; // TODO: make this a parameter
  8556. // TODO: optimize
  8557. int n_channels = src0->ne[2];
  8558. int n_groups = dst->op_params[0];
  8559. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  8560. for (int i = ith; i < n_groups; i += nth) {
  8561. int start = i * n_channels_per_group;
  8562. int end = start + n_channels_per_group;
  8563. if (end > n_channels) {
  8564. end = n_channels;
  8565. }
  8566. int step = end - start;
  8567. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8568. ggml_float sum = 0.0;
  8569. for (int64_t i02 = start; i02 < end; i02++) {
  8570. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8571. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8572. ggml_float sumr = 0.0;
  8573. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8574. sumr += (ggml_float)x[i00];
  8575. }
  8576. sum += sumr;
  8577. }
  8578. }
  8579. const float mean = sum / (ne00 * ne01 * step);
  8580. ggml_float sum2 = 0.0;
  8581. for (int64_t i02 = start; i02 < end; i02++) {
  8582. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8583. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  8584. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8585. ggml_float sumr = 0.0;
  8586. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8587. float v = x[i00] - mean;
  8588. y[i00] = v;
  8589. sumr += (ggml_float)(v * v);
  8590. }
  8591. sum2 += sumr;
  8592. }
  8593. }
  8594. const float variance = sum2 / (ne00 * ne01 * step);
  8595. const float scale = 1.0f / sqrtf(variance + eps);
  8596. for (int64_t i02 = start; i02 < end; i02++) {
  8597. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8598. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  8599. ggml_vec_scale_f32(ne00, y, scale);
  8600. }
  8601. }
  8602. }
  8603. }
  8604. }
  8605. static void ggml_compute_forward_group_norm(
  8606. const struct ggml_compute_params * params,
  8607. struct ggml_tensor * dst) {
  8608. const struct ggml_tensor * src0 = dst->src[0];
  8609. switch (src0->type) {
  8610. case GGML_TYPE_F32:
  8611. {
  8612. ggml_compute_forward_group_norm_f32(params, dst);
  8613. } break;
  8614. default:
  8615. {
  8616. GGML_ASSERT(false);
  8617. } break;
  8618. }
  8619. }
  8620. // ggml_compute_forward_mul_mat
  8621. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8622. // helper function to determine if it is better to use BLAS or not
  8623. // for large matrices, BLAS is faster
  8624. static bool ggml_compute_forward_mul_mat_use_blas(struct ggml_tensor * dst) {
  8625. const struct ggml_tensor * src0 = dst->src[0];
  8626. const struct ggml_tensor * src1 = dst->src[1];
  8627. //const int64_t ne00 = src0->ne[0];
  8628. //const int64_t ne01 = src0->ne[1];
  8629. const int64_t ne10 = src1->ne[0];
  8630. const int64_t ne0 = dst->ne[0];
  8631. const int64_t ne1 = dst->ne[1];
  8632. // NOTE: with GGML_OP_MUL_MAT_ID we don't want to go through the BLAS branch because it will dequantize (to_float)
  8633. // all the experts for each batch element and the processing would become incredibly slow
  8634. // TODO: find the optimal values for these
  8635. if (dst->op != GGML_OP_MUL_MAT_ID &&
  8636. ggml_is_contiguous(src0) &&
  8637. ggml_is_contiguous(src1) &&
  8638. //src0->type == GGML_TYPE_F32 &&
  8639. src1->type == GGML_TYPE_F32 &&
  8640. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8641. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8642. return true;
  8643. }
  8644. return false;
  8645. }
  8646. #endif
  8647. static void ggml_compute_forward_mul_mat(
  8648. const struct ggml_compute_params * params,
  8649. struct ggml_tensor * dst) {
  8650. const struct ggml_tensor * src0 = dst->src[0];
  8651. const struct ggml_tensor * src1 = dst->src[1];
  8652. int64_t t0 = ggml_perf_time_us();
  8653. UNUSED(t0);
  8654. GGML_TENSOR_BINARY_OP_LOCALS
  8655. const int ith = params->ith;
  8656. const int nth = params->nth;
  8657. const enum ggml_type type = src0->type;
  8658. const bool src1_cont = ggml_is_contiguous(src1);
  8659. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8660. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8661. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8662. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  8663. GGML_ASSERT(ne0 == ne01);
  8664. GGML_ASSERT(ne1 == ne11);
  8665. GGML_ASSERT(ne2 == ne12);
  8666. GGML_ASSERT(ne3 == ne13);
  8667. // we don't support permuted src0 or src1
  8668. GGML_ASSERT(nb00 == ggml_type_size(type));
  8669. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8670. // dst cannot be transposed or permuted
  8671. GGML_ASSERT(nb0 == sizeof(float));
  8672. GGML_ASSERT(nb0 <= nb1);
  8673. GGML_ASSERT(nb1 <= nb2);
  8674. GGML_ASSERT(nb2 <= nb3);
  8675. // broadcast factors
  8676. const int64_t r2 = ne12/ne02;
  8677. const int64_t r3 = ne13/ne03;
  8678. // nb01 >= nb00 - src0 is not transposed
  8679. // compute by src0 rows
  8680. #if defined(GGML_USE_CLBLAST)
  8681. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8682. if (params->ith == 0 && params->type == GGML_TASK_TYPE_COMPUTE) {
  8683. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8684. }
  8685. return;
  8686. }
  8687. #endif
  8688. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8689. if (ggml_compute_forward_mul_mat_use_blas(dst)) {
  8690. const int64_t ne_plane = ne01*ne00;
  8691. const size_t desired_wsize = ne13*ne12*ne_plane*sizeof(float);
  8692. UNUSED(desired_wsize);
  8693. if (params->type == GGML_TASK_TYPE_INIT) {
  8694. if (type != GGML_TYPE_F32) {
  8695. assert(params->wsize >= desired_wsize);
  8696. // parallelize by src0 rows
  8697. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8698. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8699. // broadcast src0 into src1 across 2nd,3rd dimension
  8700. const int64_t i03 = i13/r3;
  8701. const int64_t i02 = i12/r2;
  8702. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8703. float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8704. ggml_to_float_t const to_float = type_traits[type].to_float;
  8705. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8706. to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00);
  8707. }
  8708. }
  8709. }
  8710. }
  8711. return;
  8712. }
  8713. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8714. return;
  8715. }
  8716. // perform sgemm, parallelization controlled by blas lib
  8717. if (ith != 0) {
  8718. return;
  8719. }
  8720. //const int64_t tgemm0 = ggml_perf_time_us();
  8721. for (int64_t i13 = 0; i13 < ne13; i13++) {
  8722. for (int64_t i12 = 0; i12 < ne12; i12++) {
  8723. const int64_t i03 = i13/r3;
  8724. const int64_t i02 = i12/r2;
  8725. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  8726. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  8727. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  8728. if (type != GGML_TYPE_F32) {
  8729. x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane;
  8730. }
  8731. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8732. ne1, ne01, ne10,
  8733. 1.0f, y, ne10,
  8734. x, ne00,
  8735. 0.0f, d, ne01);
  8736. }
  8737. }
  8738. //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2);
  8739. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8740. return;
  8741. }
  8742. #endif
  8743. if (params->type == GGML_TASK_TYPE_INIT) {
  8744. if (ith != 0) {
  8745. return;
  8746. }
  8747. if (src1->type != vec_dot_type) {
  8748. char * wdata = params->wdata;
  8749. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8750. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8751. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8752. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8753. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8754. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8755. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8756. wdata += row_size;
  8757. }
  8758. }
  8759. }
  8760. }
  8761. return;
  8762. }
  8763. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8764. return;
  8765. }
  8766. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8767. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8768. const int64_t nr0 = ne01; // src0 rows
  8769. const int64_t nr1 = ne1*ne12*ne13; // src1 rows
  8770. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8771. // distribute the thread work across the inner or outer loop based on which one is larger
  8772. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8773. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8774. const int64_t ith0 = ith % nth0;
  8775. const int64_t ith1 = ith / nth0;
  8776. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8777. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8778. const int64_t ir010 = dr0*ith0;
  8779. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8780. const int64_t ir110 = dr1*ith1;
  8781. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8782. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8783. // threads with no work simply yield (not sure if it helps)
  8784. if (ir010 >= ir011 || ir110 >= ir111) {
  8785. sched_yield();
  8786. return;
  8787. }
  8788. assert(ne12 % ne02 == 0);
  8789. assert(ne13 % ne03 == 0);
  8790. // block-tiling attempt
  8791. const int64_t blck_0 = 16;
  8792. const int64_t blck_1 = 16;
  8793. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  8794. int64_t nrc = vec_dot_num_rows;
  8795. // TODO: currently the mmla kernels support only even numbered rows/cols.
  8796. // this check can be removed once they are extended to support odd numbered rows/cols too
  8797. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  8798. nrc = 1;
  8799. }
  8800. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  8801. // attempt to reduce false-sharing (does not seem to make a difference)
  8802. // 16 * 2, accounting for mmla kernels
  8803. float tmp[32];
  8804. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8805. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8806. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ir1 += nrc) {
  8807. const int64_t i13 = (ir1/(ne12*ne1));
  8808. const int64_t i12 = (ir1 - i13*ne12*ne1)/ne1;
  8809. const int64_t i11 = (ir1 - i13*ne12*ne1 - i12*ne1);
  8810. // broadcast src0 into src1
  8811. const int64_t i03 = i13/r3;
  8812. const int64_t i02 = i12/r2;
  8813. const int64_t i1 = i11;
  8814. const int64_t i2 = i12;
  8815. const int64_t i3 = i13;
  8816. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  8817. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8818. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8819. // the original src1 data pointer, so we should index using the indices directly
  8820. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8821. const char * src1_col = (const char *) wdata +
  8822. (src1_cont || src1->type != vec_dot_type
  8823. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8824. : (i11*nb11 + i12*nb12 + i13*nb13));
  8825. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8826. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8827. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8828. //}
  8829. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ir0 += nrc) {
  8830. vec_dot(ne00, &tmp[ir0 - iir0], (nrc>1 ? 16 : 0), src0_row + ir0*nb01, (nrc>1 ? nb01 : 0), src1_col, (nrc>1 ? src1_col_stride : 0), nrc);
  8831. }
  8832. for (int cn = 0; cn < nrc; ++cn) {
  8833. memcpy(&dst_col[iir0 + cn*nb1/nb0], tmp + (cn*16), (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8834. }
  8835. }
  8836. }
  8837. }
  8838. }
  8839. // ggml_compute_forward_mul_mat_id
  8840. static void ggml_compute_forward_mul_mat_id(
  8841. const struct ggml_compute_params * params,
  8842. struct ggml_tensor * dst) {
  8843. const struct ggml_tensor * ids = dst->src[0];
  8844. const struct ggml_tensor * src1 = dst->src[1];
  8845. const struct ggml_tensor * src0 = dst->src[2]; // only for GGML_TENSOR_BINARY_OP_LOCALS
  8846. GGML_TENSOR_BINARY_OP_LOCALS
  8847. const int ith = params->ith;
  8848. const int nth = params->nth;
  8849. const enum ggml_type type = src0->type;
  8850. const bool src1_cont = ggml_is_contiguous(src1);
  8851. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8852. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8853. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8854. GGML_ASSERT(ne0 == ne01);
  8855. GGML_ASSERT(ne1 == ne11);
  8856. GGML_ASSERT(ne2 == ne12);
  8857. GGML_ASSERT(ne3 == ne13);
  8858. // we don't support permuted src0 or src1
  8859. GGML_ASSERT(nb00 == ggml_type_size(type));
  8860. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  8861. // dst cannot be transposed or permuted
  8862. GGML_ASSERT(nb0 == sizeof(float));
  8863. GGML_ASSERT(nb0 <= nb1);
  8864. GGML_ASSERT(nb1 <= nb2);
  8865. GGML_ASSERT(nb2 <= nb3);
  8866. // broadcast factors
  8867. const int64_t r2 = ne12/ne02;
  8868. const int64_t r3 = ne13/ne03;
  8869. // row groups
  8870. const int id = ggml_get_op_params_i32(dst, 0);
  8871. const int n_as = ggml_get_op_params_i32(dst, 1);
  8872. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  8873. (char *) params->wdata :
  8874. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  8875. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  8876. int64_t * matrix_rows = matrix_row_counts + n_as; // [n_as][ne11]
  8877. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)]
  8878. if (params->type == GGML_TASK_TYPE_INIT) {
  8879. if (ith != 0) {
  8880. return;
  8881. }
  8882. char * wdata = params->wdata;
  8883. if (src1->type != vec_dot_type) {
  8884. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8885. assert(params->wsize >= ne11*ne12*ne13*row_size);
  8886. assert(src1->type == GGML_TYPE_F32);
  8887. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8888. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8889. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8890. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8891. wdata += row_size;
  8892. }
  8893. }
  8894. }
  8895. }
  8896. // initialize matrix_row_counts
  8897. GGML_ASSERT(wdata == wdata_src1_end);
  8898. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  8899. // group rows by src0 matrix
  8900. for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
  8901. const int32_t row_id = *(const int32_t *) ((const char *) ids->data + i01*ids->nb[1] + id*ids->nb[0]);
  8902. GGML_ASSERT(row_id >= 0 && row_id < n_as);
  8903. MMID_MATRIX_ROW(row_id, matrix_row_counts[row_id]) = i01;
  8904. matrix_row_counts[row_id] += 1;
  8905. }
  8906. return;
  8907. }
  8908. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  8909. return;
  8910. }
  8911. // compute each matrix multiplication in sequence
  8912. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  8913. const int64_t cne1 = matrix_row_counts[cur_a];
  8914. if (cne1 == 0) {
  8915. continue;
  8916. }
  8917. const struct ggml_tensor * src0_cur = dst->src[cur_a + 2];
  8918. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8919. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  8920. const int64_t nr0 = ne01; // src0 rows
  8921. const int64_t nr1 = cne1*ne12*ne13; // src1 rows
  8922. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  8923. // distribute the thread work across the inner or outer loop based on which one is larger
  8924. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  8925. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  8926. const int64_t ith0 = ith % nth0;
  8927. const int64_t ith1 = ith / nth0;
  8928. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  8929. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  8930. const int64_t ir010 = dr0*ith0;
  8931. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  8932. const int64_t ir110 = dr1*ith1;
  8933. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  8934. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  8935. // threads with no work simply yield (not sure if it helps)
  8936. if (ir010 >= ir011 || ir110 >= ir111) {
  8937. sched_yield();
  8938. continue;
  8939. }
  8940. assert(ne12 % ne02 == 0);
  8941. assert(ne13 % ne03 == 0);
  8942. // block-tiling attempt
  8943. const int64_t blck_0 = 16;
  8944. const int64_t blck_1 = 16;
  8945. // attempt to reduce false-sharing (does not seem to make a difference)
  8946. float tmp[16];
  8947. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  8948. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  8949. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  8950. const int64_t i13 = (ir1/(ne12*cne1)); // Note: currently, src1 is always a matrix
  8951. const int64_t i12 = (ir1 - i13*ne12*cne1)/cne1;
  8952. const int64_t _i11 = (ir1 - i13*ne12*cne1 - i12*cne1);
  8953. const int64_t i11 = MMID_MATRIX_ROW(cur_a, _i11);
  8954. // broadcast src0 into src1
  8955. const int64_t i03 = i13/r3;
  8956. const int64_t i02 = i12/r2;
  8957. const int64_t i1 = i11;
  8958. const int64_t i2 = i12;
  8959. const int64_t i3 = i13;
  8960. const char * src0_row = (const char *) src0_cur->data + (0 + i02*nb02 + i03*nb03);
  8961. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  8962. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  8963. // the original src1 data pointer, so we should index using the indices directly
  8964. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  8965. const char * src1_col = (const char *) wdata +
  8966. (src1_cont || src1->type != vec_dot_type
  8967. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  8968. : (i11*nb11 + i12*nb12 + i13*nb13));
  8969. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  8970. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8971. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  8972. //}
  8973. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  8974. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_row + ir0*nb01, 0, src1_col, 0, 1);
  8975. }
  8976. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  8977. }
  8978. }
  8979. }
  8980. }
  8981. #undef MMID_MATRIX_ROW
  8982. }
  8983. // ggml_compute_forward_out_prod
  8984. static void ggml_compute_forward_out_prod_f32(
  8985. const struct ggml_compute_params * params,
  8986. struct ggml_tensor * dst) {
  8987. const struct ggml_tensor * src0 = dst->src[0];
  8988. const struct ggml_tensor * src1 = dst->src[1];
  8989. // int64_t t0 = ggml_perf_time_us();
  8990. // UNUSED(t0);
  8991. GGML_TENSOR_BINARY_OP_LOCALS
  8992. const int ith = params->ith;
  8993. const int nth = params->nth;
  8994. GGML_ASSERT(ne0 == ne00);
  8995. GGML_ASSERT(ne1 == ne10);
  8996. GGML_ASSERT(ne2 == ne02);
  8997. GGML_ASSERT(ne02 == ne12);
  8998. GGML_ASSERT(ne3 == ne13);
  8999. GGML_ASSERT(ne03 == ne13);
  9000. // we don't support permuted src0 or src1
  9001. GGML_ASSERT(nb00 == sizeof(float));
  9002. // dst cannot be transposed or permuted
  9003. GGML_ASSERT(nb0 == sizeof(float));
  9004. // GGML_ASSERT(nb0 <= nb1);
  9005. // GGML_ASSERT(nb1 <= nb2);
  9006. // GGML_ASSERT(nb2 <= nb3);
  9007. // nb01 >= nb00 - src0 is not transposed
  9008. // compute by src0 rows
  9009. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9010. // TODO: #if defined(GGML_USE_CLBLAST)
  9011. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9012. bool use_blas = ggml_is_matrix(src0) &&
  9013. ggml_is_matrix(src1) &&
  9014. ggml_is_contiguous(src0) &&
  9015. (ggml_is_contiguous(src1) || ggml_is_transposed(src1));
  9016. #endif
  9017. if (params->type == GGML_TASK_TYPE_INIT) {
  9018. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) // gemm beta will zero dst
  9019. if (use_blas) {
  9020. return;
  9021. }
  9022. #endif
  9023. if (ith != 0) {
  9024. return;
  9025. }
  9026. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9027. return;
  9028. }
  9029. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9030. return;
  9031. }
  9032. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9033. if (use_blas) {
  9034. if (params->ith != 0) { // All threads other than the first do no work.
  9035. return;
  9036. }
  9037. // Arguments to ggml_compute_forward_out_prod (expressed as major,minor)
  9038. // src0: (k,n)
  9039. // src1: (k,m)
  9040. // dst: (m,n)
  9041. //
  9042. // Arguments to sgemm (see https://github.com/Reference-LAPACK/lapack/blob/master/BLAS/SRC/sgemm.f)
  9043. // Also expressed as (major,minor)
  9044. // a: (m,k): so src1 transposed
  9045. // b: (k,n): so src0
  9046. // c: (m,n)
  9047. //
  9048. // However, if ggml_is_transposed(src1) is true, then
  9049. // src1->data already contains a transposed version, so sgemm mustn't
  9050. // transpose it further.
  9051. int n = src0->ne[0];
  9052. int k = src0->ne[1];
  9053. int m = src1->ne[0];
  9054. int transposeA, lda;
  9055. if (!ggml_is_transposed(src1)) {
  9056. transposeA = CblasTrans;
  9057. lda = m;
  9058. } else {
  9059. transposeA = CblasNoTrans;
  9060. lda = k;
  9061. }
  9062. float * a = (float *) ((char *) src1->data);
  9063. float * b = (float *) ((char *) src0->data);
  9064. float * c = (float *) ((char *) dst->data);
  9065. cblas_sgemm(CblasRowMajor, transposeA, CblasNoTrans, m, n, k, 1.0, a, lda, b, n, 0.0, c, n);
  9066. return;
  9067. }
  9068. #endif
  9069. // dst[:,:,:,:] = 0
  9070. // for i2,i3:
  9071. // for i1:
  9072. // for i01:
  9073. // for i0:
  9074. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9075. // parallelize by last three dimensions
  9076. // total rows in dst
  9077. const int64_t nr = ne1*ne2*ne3;
  9078. // rows per thread
  9079. const int64_t dr = (nr + nth - 1)/nth;
  9080. // row range for this thread
  9081. const int64_t ir0 = dr*ith;
  9082. const int64_t ir1 = MIN(ir0 + dr, nr);
  9083. // block-tiling attempt
  9084. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9085. const int64_t blck_1 = 16;
  9086. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9087. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9088. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9089. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9090. for (int64_t ir = bir; ir < bir1; ++ir) {
  9091. // dst indices
  9092. const int64_t i3 = ir/(ne2*ne1);
  9093. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9094. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9095. const int64_t i02 = i2;
  9096. const int64_t i03 = i3;
  9097. //const int64_t i10 = i1;
  9098. const int64_t i12 = i2;
  9099. const int64_t i13 = i3;
  9100. #if GGML_VEC_MAD_UNROLL > 2
  9101. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9102. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9103. const int64_t i11 = i01;
  9104. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9105. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9106. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9107. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9108. }
  9109. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9110. const int64_t i11 = i01;
  9111. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9112. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9113. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9114. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9115. }
  9116. #else
  9117. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9118. const int64_t i11 = i01;
  9119. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9120. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9121. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9122. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9123. }
  9124. #endif
  9125. }
  9126. }
  9127. }
  9128. //int64_t t1 = ggml_perf_time_us();
  9129. //static int64_t acc = 0;
  9130. //acc += t1 - t0;
  9131. //if (t1 - t0 > 10) {
  9132. // printf("\n");
  9133. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9134. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9135. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9136. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9137. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9138. //}
  9139. }
  9140. static void ggml_compute_forward_out_prod_q_f32(
  9141. const struct ggml_compute_params * params,
  9142. struct ggml_tensor * dst) {
  9143. const struct ggml_tensor * src0 = dst->src[0];
  9144. const struct ggml_tensor * src1 = dst->src[1];
  9145. // int64_t t0 = ggml_perf_time_us();
  9146. // UNUSED(t0);
  9147. GGML_TENSOR_BINARY_OP_LOCALS;
  9148. const int ith = params->ith;
  9149. const int nth = params->nth;
  9150. const enum ggml_type type = src0->type;
  9151. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9152. GGML_ASSERT(ne02 == ne12);
  9153. GGML_ASSERT(ne03 == ne13);
  9154. GGML_ASSERT(ne2 == ne12);
  9155. GGML_ASSERT(ne3 == ne13);
  9156. // we don't support permuted src0 dim0
  9157. GGML_ASSERT(nb00 == ggml_type_size(type));
  9158. // dst dim0 cannot be transposed or permuted
  9159. GGML_ASSERT(nb0 == sizeof(float));
  9160. // GGML_ASSERT(nb0 <= nb1);
  9161. // GGML_ASSERT(nb1 <= nb2);
  9162. // GGML_ASSERT(nb2 <= nb3);
  9163. GGML_ASSERT(ne0 == ne00);
  9164. GGML_ASSERT(ne1 == ne10);
  9165. GGML_ASSERT(ne2 == ne02);
  9166. GGML_ASSERT(ne3 == ne03);
  9167. // nb01 >= nb00 - src0 is not transposed
  9168. // compute by src0 rows
  9169. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9170. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9171. if (params->type == GGML_TASK_TYPE_INIT) {
  9172. if (ith != 0) {
  9173. return;
  9174. }
  9175. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9176. return;
  9177. }
  9178. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  9179. return;
  9180. }
  9181. // parallelize by last three dimensions
  9182. // total rows in dst
  9183. const int64_t nr = ne1*ne2*ne3;
  9184. // rows per thread
  9185. const int64_t dr = (nr + nth - 1)/nth;
  9186. // row range for this thread
  9187. const int64_t ir0 = dr*ith;
  9188. const int64_t ir1 = MIN(ir0 + dr, nr);
  9189. // dst[:,:,:,:] = 0
  9190. // for i2,i3:
  9191. // for i1:
  9192. // for i01:
  9193. // for i0:
  9194. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9195. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9196. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9197. // dst indices
  9198. const int64_t i3 = ir/(ne2*ne1);
  9199. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9200. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9201. const int64_t i02 = i2;
  9202. const int64_t i03 = i3;
  9203. //const int64_t i10 = i1;
  9204. const int64_t i12 = i2;
  9205. const int64_t i13 = i3;
  9206. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9207. const int64_t i11 = i01;
  9208. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9209. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9210. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9211. dequantize_row_q(s0, wdata, ne0);
  9212. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9213. }
  9214. }
  9215. //int64_t t1 = ggml_perf_time_us();
  9216. //static int64_t acc = 0;
  9217. //acc += t1 - t0;
  9218. //if (t1 - t0 > 10) {
  9219. // printf("\n");
  9220. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9221. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9222. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9223. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9224. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9225. //}
  9226. }
  9227. static void ggml_compute_forward_out_prod(
  9228. const struct ggml_compute_params * params,
  9229. struct ggml_tensor * dst) {
  9230. const struct ggml_tensor * src0 = dst->src[0];
  9231. switch (src0->type) {
  9232. case GGML_TYPE_Q4_0:
  9233. case GGML_TYPE_Q4_1:
  9234. case GGML_TYPE_Q5_0:
  9235. case GGML_TYPE_Q5_1:
  9236. case GGML_TYPE_Q8_0:
  9237. case GGML_TYPE_Q2_K:
  9238. case GGML_TYPE_Q3_K:
  9239. case GGML_TYPE_Q4_K:
  9240. case GGML_TYPE_Q5_K:
  9241. case GGML_TYPE_Q6_K:
  9242. case GGML_TYPE_IQ2_XXS:
  9243. case GGML_TYPE_IQ2_XS:
  9244. case GGML_TYPE_IQ3_XXS:
  9245. case GGML_TYPE_IQ1_S:
  9246. case GGML_TYPE_IQ4_NL:
  9247. case GGML_TYPE_IQ4_XS:
  9248. case GGML_TYPE_IQ3_S:
  9249. case GGML_TYPE_IQ2_S:
  9250. {
  9251. ggml_compute_forward_out_prod_q_f32(params, dst);
  9252. } break;
  9253. case GGML_TYPE_F16:
  9254. {
  9255. GGML_ASSERT(false); // todo
  9256. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  9257. } break;
  9258. case GGML_TYPE_F32:
  9259. {
  9260. ggml_compute_forward_out_prod_f32(params, dst);
  9261. } break;
  9262. default:
  9263. {
  9264. GGML_ASSERT(false);
  9265. } break;
  9266. }
  9267. }
  9268. // ggml_compute_forward_scale
  9269. static void ggml_compute_forward_scale_f32(
  9270. const struct ggml_compute_params * params,
  9271. struct ggml_tensor * dst) {
  9272. const struct ggml_tensor * src0 = dst->src[0];
  9273. GGML_ASSERT(ggml_is_contiguous(src0));
  9274. GGML_ASSERT(ggml_is_contiguous(dst));
  9275. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9276. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9277. return;
  9278. }
  9279. // scale factor
  9280. float v;
  9281. memcpy(&v, dst->op_params, sizeof(float));
  9282. const int ith = params->ith;
  9283. const int nth = params->nth;
  9284. const int nc = src0->ne[0];
  9285. const int nr = ggml_nrows(src0);
  9286. // rows per thread
  9287. const int dr = (nr + nth - 1)/nth;
  9288. // row range for this thread
  9289. const int ir0 = dr*ith;
  9290. const int ir1 = MIN(ir0 + dr, nr);
  9291. const size_t nb01 = src0->nb[1];
  9292. const size_t nb1 = dst->nb[1];
  9293. for (int i1 = ir0; i1 < ir1; i1++) {
  9294. if (dst->data != src0->data) {
  9295. // src0 is same shape as dst => same indices
  9296. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9297. }
  9298. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9299. }
  9300. }
  9301. static void ggml_compute_forward_scale(
  9302. const struct ggml_compute_params * params,
  9303. struct ggml_tensor * dst) {
  9304. const struct ggml_tensor * src0 = dst->src[0];
  9305. switch (src0->type) {
  9306. case GGML_TYPE_F32:
  9307. {
  9308. ggml_compute_forward_scale_f32(params, dst);
  9309. } break;
  9310. default:
  9311. {
  9312. GGML_ASSERT(false);
  9313. } break;
  9314. }
  9315. }
  9316. // ggml_compute_forward_set
  9317. static void ggml_compute_forward_set_f32(
  9318. const struct ggml_compute_params * params,
  9319. struct ggml_tensor * dst) {
  9320. const struct ggml_tensor * src0 = dst->src[0];
  9321. const struct ggml_tensor * src1 = dst->src[1];
  9322. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9323. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9324. // view src0 and dst with these strides and data offset inbytes during set
  9325. // nb0 is implicitly element_size because src0 and dst are contiguous
  9326. size_t nb1 = ((int32_t *) dst->op_params)[0];
  9327. size_t nb2 = ((int32_t *) dst->op_params)[1];
  9328. size_t nb3 = ((int32_t *) dst->op_params)[2];
  9329. size_t offset = ((int32_t *) dst->op_params)[3];
  9330. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  9331. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9332. if (params->ith != 0) {
  9333. return;
  9334. }
  9335. // memcpy needs to be synchronized across threads to avoid race conditions.
  9336. // => do it in INIT phase
  9337. memcpy(
  9338. ((char *) dst->data),
  9339. ((char *) src0->data),
  9340. ggml_nbytes(dst));
  9341. }
  9342. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9343. return;
  9344. }
  9345. const int ith = params->ith;
  9346. const int nth = params->nth;
  9347. const int nr = ggml_nrows(src1);
  9348. const int nc = src1->ne[0];
  9349. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  9350. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  9351. // src0 and dst as viewed during set
  9352. const size_t nb0 = ggml_element_size(src0);
  9353. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9354. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9355. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9356. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9357. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9358. GGML_ASSERT(nb10 == sizeof(float));
  9359. // rows per thread
  9360. const int dr = (nr + nth - 1)/nth;
  9361. // row range for this thread
  9362. const int ir0 = dr*ith;
  9363. const int ir1 = MIN(ir0 + dr, nr);
  9364. for (int ir = ir0; ir < ir1; ++ir) {
  9365. // src0 and dst are viewed with shape of src1 and offset
  9366. // => same indices
  9367. const int i3 = ir/(ne12*ne11);
  9368. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9369. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9370. ggml_vec_cpy_f32(nc,
  9371. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9372. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9373. }
  9374. }
  9375. static void ggml_compute_forward_set(
  9376. const struct ggml_compute_params * params,
  9377. struct ggml_tensor * dst) {
  9378. const struct ggml_tensor * src0 = dst->src[0];
  9379. switch (src0->type) {
  9380. case GGML_TYPE_F32:
  9381. {
  9382. ggml_compute_forward_set_f32(params, dst);
  9383. } break;
  9384. case GGML_TYPE_F16:
  9385. case GGML_TYPE_Q4_0:
  9386. case GGML_TYPE_Q4_1:
  9387. case GGML_TYPE_Q5_0:
  9388. case GGML_TYPE_Q5_1:
  9389. case GGML_TYPE_Q8_0:
  9390. case GGML_TYPE_Q8_1:
  9391. case GGML_TYPE_Q2_K:
  9392. case GGML_TYPE_Q3_K:
  9393. case GGML_TYPE_Q4_K:
  9394. case GGML_TYPE_Q5_K:
  9395. case GGML_TYPE_Q6_K:
  9396. case GGML_TYPE_IQ2_XXS:
  9397. case GGML_TYPE_IQ2_XS:
  9398. case GGML_TYPE_IQ3_XXS:
  9399. case GGML_TYPE_IQ1_S:
  9400. case GGML_TYPE_IQ4_NL:
  9401. case GGML_TYPE_IQ4_XS:
  9402. case GGML_TYPE_IQ3_S:
  9403. case GGML_TYPE_IQ2_S:
  9404. default:
  9405. {
  9406. GGML_ASSERT(false);
  9407. } break;
  9408. }
  9409. }
  9410. // ggml_compute_forward_cpy
  9411. static void ggml_compute_forward_cpy(
  9412. const struct ggml_compute_params * params,
  9413. struct ggml_tensor * dst) {
  9414. ggml_compute_forward_dup(params, dst);
  9415. }
  9416. // ggml_compute_forward_cont
  9417. static void ggml_compute_forward_cont(
  9418. const struct ggml_compute_params * params,
  9419. struct ggml_tensor * dst) {
  9420. ggml_compute_forward_dup(params, dst);
  9421. }
  9422. // ggml_compute_forward_reshape
  9423. static void ggml_compute_forward_reshape(
  9424. const struct ggml_compute_params * params,
  9425. struct ggml_tensor * dst) {
  9426. // NOP
  9427. UNUSED(params);
  9428. UNUSED(dst);
  9429. }
  9430. // ggml_compute_forward_view
  9431. static void ggml_compute_forward_view(
  9432. const struct ggml_compute_params * params,
  9433. const struct ggml_tensor * dst) {
  9434. // NOP
  9435. UNUSED(params);
  9436. UNUSED(dst);
  9437. }
  9438. // ggml_compute_forward_permute
  9439. static void ggml_compute_forward_permute(
  9440. const struct ggml_compute_params * params,
  9441. const struct ggml_tensor * dst) {
  9442. // NOP
  9443. UNUSED(params);
  9444. UNUSED(dst);
  9445. }
  9446. // ggml_compute_forward_transpose
  9447. static void ggml_compute_forward_transpose(
  9448. const struct ggml_compute_params * params,
  9449. const struct ggml_tensor * dst) {
  9450. // NOP
  9451. UNUSED(params);
  9452. UNUSED(dst);
  9453. }
  9454. // ggml_compute_forward_get_rows
  9455. static void ggml_compute_forward_get_rows_q(
  9456. const struct ggml_compute_params * params,
  9457. struct ggml_tensor * dst) {
  9458. const struct ggml_tensor * src0 = dst->src[0];
  9459. const struct ggml_tensor * src1 = dst->src[1];
  9460. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9461. return;
  9462. }
  9463. GGML_TENSOR_BINARY_OP_LOCALS
  9464. const int64_t nc = ne00;
  9465. const int64_t nr = ggml_nelements(src1);
  9466. const enum ggml_type type = src0->type;
  9467. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9468. assert(ne0 == nc);
  9469. assert(ne02 == ne11);
  9470. assert(nb00 == ggml_type_size(type));
  9471. assert(ggml_nrows(dst) == nr);
  9472. const int ith = params->ith;
  9473. const int nth = params->nth;
  9474. // rows per thread
  9475. const int dr = (nr + nth - 1)/nth;
  9476. // row range for this thread
  9477. const int ir0 = dr*ith;
  9478. const int ir1 = MIN(ir0 + dr, nr);
  9479. for (int64_t i = ir0; i < ir1; ++i) {
  9480. const int64_t i12 = i/(ne11*ne10);
  9481. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9482. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9483. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9484. dequantize_row_q(
  9485. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9486. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9487. }
  9488. }
  9489. static void ggml_compute_forward_get_rows_f16(
  9490. const struct ggml_compute_params * params,
  9491. struct ggml_tensor * dst) {
  9492. const struct ggml_tensor * src0 = dst->src[0];
  9493. const struct ggml_tensor * src1 = dst->src[1];
  9494. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9495. return;
  9496. }
  9497. GGML_TENSOR_BINARY_OP_LOCALS
  9498. const int64_t nc = ne00;
  9499. const int64_t nr = ggml_nelements(src1);
  9500. assert(ne0 == nc);
  9501. assert(ne02 == ne11);
  9502. assert(nb00 == sizeof(ggml_fp16_t));
  9503. assert(ggml_nrows(dst) == nr);
  9504. const int ith = params->ith;
  9505. const int nth = params->nth;
  9506. // rows per thread
  9507. const int dr = (nr + nth - 1)/nth;
  9508. // row range for this thread
  9509. const int ir0 = dr*ith;
  9510. const int ir1 = MIN(ir0 + dr, nr);
  9511. for (int64_t i = ir0; i < ir1; ++i) {
  9512. const int64_t i12 = i/(ne11*ne10);
  9513. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9514. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9515. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9516. ggml_fp16_to_fp32_row(
  9517. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  9518. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  9519. }
  9520. }
  9521. static void ggml_compute_forward_get_rows_f32(
  9522. const struct ggml_compute_params * params,
  9523. struct ggml_tensor * dst) {
  9524. const struct ggml_tensor * src0 = dst->src[0];
  9525. const struct ggml_tensor * src1 = dst->src[1];
  9526. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9527. return;
  9528. }
  9529. GGML_TENSOR_BINARY_OP_LOCALS
  9530. const int64_t nc = ne00;
  9531. const int64_t nr = ggml_nelements(src1);
  9532. assert(ne0 == nc);
  9533. assert(ne02 == ne11);
  9534. assert(nb00 == sizeof(float));
  9535. assert(ggml_nrows(dst) == nr);
  9536. const int ith = params->ith;
  9537. const int nth = params->nth;
  9538. // rows per thread
  9539. const int dr = (nr + nth - 1)/nth;
  9540. // row range for this thread
  9541. const int ir0 = dr*ith;
  9542. const int ir1 = MIN(ir0 + dr, nr);
  9543. for (int64_t i = ir0; i < ir1; ++i) {
  9544. const int64_t i12 = i/(ne11*ne10);
  9545. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  9546. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  9547. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  9548. ggml_vec_cpy_f32(nc,
  9549. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  9550. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  9551. }
  9552. }
  9553. static void ggml_compute_forward_get_rows(
  9554. const struct ggml_compute_params * params,
  9555. struct ggml_tensor * dst) {
  9556. const struct ggml_tensor * src0 = dst->src[0];
  9557. switch (src0->type) {
  9558. case GGML_TYPE_Q4_0:
  9559. case GGML_TYPE_Q4_1:
  9560. case GGML_TYPE_Q5_0:
  9561. case GGML_TYPE_Q5_1:
  9562. case GGML_TYPE_Q8_0:
  9563. case GGML_TYPE_Q8_1:
  9564. case GGML_TYPE_Q2_K:
  9565. case GGML_TYPE_Q3_K:
  9566. case GGML_TYPE_Q4_K:
  9567. case GGML_TYPE_Q5_K:
  9568. case GGML_TYPE_Q6_K:
  9569. case GGML_TYPE_IQ2_XXS:
  9570. case GGML_TYPE_IQ2_XS:
  9571. case GGML_TYPE_IQ3_XXS:
  9572. case GGML_TYPE_IQ1_S:
  9573. case GGML_TYPE_IQ4_NL:
  9574. case GGML_TYPE_IQ4_XS:
  9575. case GGML_TYPE_IQ3_S:
  9576. case GGML_TYPE_IQ2_S:
  9577. {
  9578. ggml_compute_forward_get_rows_q(params, dst);
  9579. } break;
  9580. case GGML_TYPE_F16:
  9581. {
  9582. ggml_compute_forward_get_rows_f16(params, dst);
  9583. } break;
  9584. case GGML_TYPE_F32:
  9585. case GGML_TYPE_I32:
  9586. {
  9587. ggml_compute_forward_get_rows_f32(params, dst);
  9588. } break;
  9589. default:
  9590. {
  9591. GGML_ASSERT(false);
  9592. } break;
  9593. }
  9594. //static bool first = true;
  9595. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9596. //if (first) {
  9597. // first = false;
  9598. //} else {
  9599. // for (int k = 0; k < dst->ne[1]; ++k) {
  9600. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9601. // for (int i = 0; i < 16; ++i) {
  9602. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9603. // }
  9604. // printf("\n");
  9605. // }
  9606. // printf("\n");
  9607. // }
  9608. // printf("\n");
  9609. // exit(0);
  9610. //}
  9611. }
  9612. // ggml_compute_forward_get_rows_back
  9613. static void ggml_compute_forward_get_rows_back_f32_f16(
  9614. const struct ggml_compute_params * params,
  9615. struct ggml_tensor * dst) {
  9616. const struct ggml_tensor * src0 = dst->src[0];
  9617. const struct ggml_tensor * src1 = dst->src[1];
  9618. GGML_ASSERT(params->ith == 0);
  9619. GGML_ASSERT(ggml_is_contiguous(dst));
  9620. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9621. if (params->type == GGML_TASK_TYPE_INIT) {
  9622. if (params->ith != 0) {
  9623. return;
  9624. }
  9625. memset(dst->data, 0, ggml_nbytes(dst));
  9626. }
  9627. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9628. return;
  9629. }
  9630. const int nc = src0->ne[0];
  9631. const int nr = ggml_nelements(src1);
  9632. GGML_ASSERT( dst->ne[0] == nc);
  9633. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9634. for (int i = 0; i < nr; ++i) {
  9635. const int r = ((int32_t *) src1->data)[i];
  9636. for (int j = 0; j < nc; ++j) {
  9637. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9638. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9639. }
  9640. }
  9641. }
  9642. static void ggml_compute_forward_get_rows_back_f32(
  9643. const struct ggml_compute_params * params,
  9644. struct ggml_tensor * dst) {
  9645. const struct ggml_tensor * src0 = dst->src[0];
  9646. const struct ggml_tensor * src1 = dst->src[1];
  9647. GGML_ASSERT(params->ith == 0);
  9648. GGML_ASSERT(ggml_is_contiguous(dst));
  9649. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9650. if (params->type == GGML_TASK_TYPE_INIT) {
  9651. if (params->ith != 0) {
  9652. return;
  9653. }
  9654. memset(dst->data, 0, ggml_nbytes(dst));
  9655. }
  9656. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9657. return;
  9658. }
  9659. const int nc = src0->ne[0];
  9660. const int nr = ggml_nelements(src1);
  9661. GGML_ASSERT( dst->ne[0] == nc);
  9662. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9663. for (int i = 0; i < nr; ++i) {
  9664. const int r = ((int32_t *) src1->data)[i];
  9665. ggml_vec_add_f32(nc,
  9666. (float *) ((char *) dst->data + r*dst->nb[1]),
  9667. (float *) ((char *) dst->data + r*dst->nb[1]),
  9668. (float *) ((char *) src0->data + i*src0->nb[1]));
  9669. }
  9670. }
  9671. static void ggml_compute_forward_get_rows_back(
  9672. const struct ggml_compute_params * params,
  9673. struct ggml_tensor * dst) {
  9674. const struct ggml_tensor * src0 = dst->src[0];
  9675. switch (src0->type) {
  9676. case GGML_TYPE_F16:
  9677. {
  9678. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  9679. } break;
  9680. case GGML_TYPE_F32:
  9681. {
  9682. ggml_compute_forward_get_rows_back_f32(params, dst);
  9683. } break;
  9684. default:
  9685. {
  9686. GGML_ASSERT(false);
  9687. } break;
  9688. }
  9689. //static bool first = true;
  9690. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9691. //if (first) {
  9692. // first = false;
  9693. //} else {
  9694. // for (int k = 0; k < dst->ne[1]; ++k) {
  9695. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9696. // for (int i = 0; i < 16; ++i) {
  9697. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9698. // }
  9699. // printf("\n");
  9700. // }
  9701. // printf("\n");
  9702. // }
  9703. // printf("\n");
  9704. // exit(0);
  9705. //}
  9706. }
  9707. // ggml_compute_forward_diag
  9708. static void ggml_compute_forward_diag_f32(
  9709. const struct ggml_compute_params * params,
  9710. struct ggml_tensor * dst) {
  9711. const struct ggml_tensor * src0 = dst->src[0];
  9712. GGML_ASSERT(params->ith == 0);
  9713. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9714. return;
  9715. }
  9716. // TODO: handle transposed/permuted matrices
  9717. GGML_TENSOR_UNARY_OP_LOCALS
  9718. GGML_ASSERT(ne00 == ne0);
  9719. GGML_ASSERT(ne00 == ne1);
  9720. GGML_ASSERT(ne01 == 1);
  9721. GGML_ASSERT(ne02 == ne2);
  9722. GGML_ASSERT(ne03 == ne3);
  9723. GGML_ASSERT(nb00 == sizeof(float));
  9724. GGML_ASSERT(nb0 == sizeof(float));
  9725. for (int i3 = 0; i3 < ne3; i3++) {
  9726. for (int i2 = 0; i2 < ne2; i2++) {
  9727. for (int i1 = 0; i1 < ne1; i1++) {
  9728. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9729. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9730. for (int i0 = 0; i0 < i1; i0++) {
  9731. d[i0] = 0;
  9732. }
  9733. d[i1] = s[i1];
  9734. for (int i0 = i1+1; i0 < ne0; i0++) {
  9735. d[i0] = 0;
  9736. }
  9737. }
  9738. }
  9739. }
  9740. }
  9741. static void ggml_compute_forward_diag(
  9742. const struct ggml_compute_params * params,
  9743. struct ggml_tensor * dst) {
  9744. const struct ggml_tensor * src0 = dst->src[0];
  9745. switch (src0->type) {
  9746. case GGML_TYPE_F32:
  9747. {
  9748. ggml_compute_forward_diag_f32(params, dst);
  9749. } break;
  9750. default:
  9751. {
  9752. GGML_ASSERT(false);
  9753. } break;
  9754. }
  9755. }
  9756. // ggml_compute_forward_diag_mask_inf
  9757. static void ggml_compute_forward_diag_mask_f32(
  9758. const struct ggml_compute_params * params,
  9759. struct ggml_tensor * dst,
  9760. const float value) {
  9761. const struct ggml_tensor * src0 = dst->src[0];
  9762. const int ith = params->ith;
  9763. const int nth = params->nth;
  9764. const int n_past = ((int32_t *) dst->op_params)[0];
  9765. const bool inplace = src0->data == dst->data;
  9766. GGML_ASSERT(n_past >= 0);
  9767. if (!inplace && (params->type == GGML_TASK_TYPE_INIT)) {
  9768. if (ith != 0) {
  9769. return;
  9770. }
  9771. // memcpy needs to be synchronized across threads to avoid race conditions.
  9772. // => do it in INIT phase
  9773. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9774. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9775. memcpy(
  9776. ((char *) dst->data),
  9777. ((char *) src0->data),
  9778. ggml_nbytes(dst));
  9779. }
  9780. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9781. return;
  9782. }
  9783. // TODO: handle transposed/permuted matrices
  9784. const int n = ggml_nrows(src0);
  9785. const int nc = src0->ne[0];
  9786. const int nr = src0->ne[1];
  9787. const int nz = n/nr;
  9788. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9789. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9790. for (int k = 0; k < nz; k++) {
  9791. for (int j = ith; j < nr; j += nth) {
  9792. for (int i = n_past; i < nc; i++) {
  9793. if (i > n_past + j) {
  9794. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9795. }
  9796. }
  9797. }
  9798. }
  9799. }
  9800. static void ggml_compute_forward_diag_mask_inf(
  9801. const struct ggml_compute_params * params,
  9802. struct ggml_tensor * dst) {
  9803. const struct ggml_tensor * src0 = dst->src[0];
  9804. switch (src0->type) {
  9805. case GGML_TYPE_F32:
  9806. {
  9807. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  9808. } break;
  9809. default:
  9810. {
  9811. GGML_ASSERT(false);
  9812. } break;
  9813. }
  9814. }
  9815. static void ggml_compute_forward_diag_mask_zero(
  9816. const struct ggml_compute_params * params,
  9817. struct ggml_tensor * dst) {
  9818. const struct ggml_tensor * src0 = dst->src[0];
  9819. switch (src0->type) {
  9820. case GGML_TYPE_F32:
  9821. {
  9822. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  9823. } break;
  9824. default:
  9825. {
  9826. GGML_ASSERT(false);
  9827. } break;
  9828. }
  9829. }
  9830. // ggml_compute_forward_soft_max
  9831. static void ggml_compute_forward_soft_max_f32(
  9832. const struct ggml_compute_params * params,
  9833. struct ggml_tensor * dst) {
  9834. const struct ggml_tensor * src0 = dst->src[0];
  9835. const struct ggml_tensor * src1 = dst->src[1];
  9836. const struct ggml_tensor * src2 = dst->src[2];
  9837. assert(ggml_is_contiguous(dst));
  9838. assert(ggml_are_same_shape(src0, dst));
  9839. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9840. return;
  9841. }
  9842. float scale = 1.0f;
  9843. float max_bias = 0.0f;
  9844. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  9845. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  9846. // TODO: handle transposed/permuted matrices
  9847. const int ith = params->ith;
  9848. const int nth = params->nth;
  9849. GGML_TENSOR_UNARY_OP_LOCALS
  9850. const int64_t ne11 = src1 ? src1->ne[1] : 1;
  9851. // TODO: is this supposed to be ceil instead of floor?
  9852. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  9853. const uint32_t n_head_kv = ne02;
  9854. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head_kv));
  9855. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  9856. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  9857. const int nc = src0->ne[0];
  9858. const int nr = ggml_nrows(src0);
  9859. // rows per thread
  9860. const int dr = (nr + nth - 1)/nth;
  9861. // row range for this thread
  9862. const int ir0 = dr*ith;
  9863. const int ir1 = MIN(ir0 + dr, nr);
  9864. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  9865. // when max_bias <= 0.0f, src2 is not used and we default it to src0 to avoid branching
  9866. float * pos = src2 ? (float *) src2->data : src0->data;
  9867. for (int i1 = ir0; i1 < ir1; i1++) {
  9868. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9869. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9870. // broadcast the mask across rows
  9871. float * mp = src1 ? (float *)((char *) src1->data + (i1%ne11)*src1->nb[1]) : NULL;
  9872. ggml_vec_cpy_f32 (nc, wp, sp);
  9873. ggml_vec_scale_f32(nc, wp, scale);
  9874. if (mp) {
  9875. ggml_vec_acc_f32(nc, wp, mp);
  9876. }
  9877. // ALiBi bias
  9878. if (max_bias > 0.0f) {
  9879. const uint32_t h = (i1/ne01)%ne02; // head
  9880. const float slope = h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1);
  9881. for (int i = 0; i < nc; i++) {
  9882. wp[i] = wp[i] + slope*pos[i];
  9883. }
  9884. }
  9885. #ifndef NDEBUG
  9886. for (int i = 0; i < nc; ++i) {
  9887. //printf("p[%d] = %f\n", i, p[i]);
  9888. assert(!isnan(wp[i]));
  9889. }
  9890. #endif
  9891. float max = -INFINITY;
  9892. ggml_vec_max_f32(nc, &max, wp);
  9893. ggml_float sum = 0.0;
  9894. uint16_t scvt;
  9895. for (int i = 0; i < nc; i++) {
  9896. if (wp[i] == -INFINITY) {
  9897. dp[i] = 0.0f;
  9898. } else {
  9899. // const float val = (wp[i] == -INFINITY) ? 0.0 : exp(wp[i] - max);
  9900. ggml_fp16_t s = GGML_FP32_TO_FP16(wp[i] - max);
  9901. memcpy(&scvt, &s, sizeof(scvt));
  9902. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  9903. sum += (ggml_float)val;
  9904. dp[i] = val;
  9905. }
  9906. }
  9907. assert(sum > 0.0);
  9908. sum = 1.0/sum;
  9909. ggml_vec_scale_f32(nc, dp, sum);
  9910. #ifndef NDEBUG
  9911. for (int i = 0; i < nc; ++i) {
  9912. assert(!isnan(dp[i]));
  9913. assert(!isinf(dp[i]));
  9914. }
  9915. #endif
  9916. }
  9917. }
  9918. static void ggml_compute_forward_soft_max(
  9919. const struct ggml_compute_params * params,
  9920. struct ggml_tensor * dst) {
  9921. const struct ggml_tensor * src0 = dst->src[0];
  9922. switch (src0->type) {
  9923. case GGML_TYPE_F32:
  9924. {
  9925. ggml_compute_forward_soft_max_f32(params, dst);
  9926. } break;
  9927. default:
  9928. {
  9929. GGML_ASSERT(false);
  9930. } break;
  9931. }
  9932. }
  9933. // ggml_compute_forward_soft_max_back
  9934. static void ggml_compute_forward_soft_max_back_f32(
  9935. const struct ggml_compute_params * params,
  9936. struct ggml_tensor * dst) {
  9937. const struct ggml_tensor * src0 = dst->src[0];
  9938. const struct ggml_tensor * src1 = dst->src[1];
  9939. GGML_ASSERT(ggml_is_contiguous(src0));
  9940. GGML_ASSERT(ggml_is_contiguous(src1));
  9941. GGML_ASSERT(ggml_is_contiguous(dst));
  9942. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9943. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9944. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  9945. return;
  9946. }
  9947. // TODO: handle transposed/permuted matrices
  9948. const int ith = params->ith;
  9949. const int nth = params->nth;
  9950. const int nc = src0->ne[0];
  9951. const int nr = ggml_nrows(src0);
  9952. // rows per thread
  9953. const int dr = (nr + nth - 1)/nth;
  9954. // row range for this thread
  9955. const int ir0 = dr*ith;
  9956. const int ir1 = MIN(ir0 + dr, nr);
  9957. for (int i1 = ir0; i1 < ir1; i1++) {
  9958. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9959. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9960. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9961. #ifndef NDEBUG
  9962. for (int i = 0; i < nc; ++i) {
  9963. //printf("p[%d] = %f\n", i, p[i]);
  9964. assert(!isnan(dy[i]));
  9965. assert(!isnan(y[i]));
  9966. }
  9967. #endif
  9968. // Jii = yi - yi*yi
  9969. // Jij = -yi*yj
  9970. // J = diag(y)-y.T*y
  9971. // dx = J * dy
  9972. // dxk = sum_i(Jki * dyi)
  9973. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9974. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  9975. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9976. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9977. // dxk = -yk * dot(y, dy) + yk*dyk
  9978. // dxk = yk * (- dot(y, dy) + dyk)
  9979. // dxk = yk * (dyk - dot(y, dy))
  9980. //
  9981. // post-order:
  9982. // dot_y_dy := dot(y, dy)
  9983. // dx := dy
  9984. // dx := dx - dot_y_dy
  9985. // dx := dx * y
  9986. // linear runtime, no additional memory
  9987. float dot_y_dy = 0;
  9988. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  9989. ggml_vec_cpy_f32 (nc, dx, dy);
  9990. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9991. ggml_vec_mul_f32 (nc, dx, dx, y);
  9992. #ifndef NDEBUG
  9993. for (int i = 0; i < nc; ++i) {
  9994. assert(!isnan(dx[i]));
  9995. assert(!isinf(dx[i]));
  9996. }
  9997. #endif
  9998. }
  9999. }
  10000. static void ggml_compute_forward_soft_max_back(
  10001. const struct ggml_compute_params * params,
  10002. struct ggml_tensor * dst) {
  10003. const struct ggml_tensor * src0 = dst->src[0];
  10004. switch (src0->type) {
  10005. case GGML_TYPE_F32:
  10006. {
  10007. ggml_compute_forward_soft_max_back_f32(params, dst);
  10008. } break;
  10009. default:
  10010. {
  10011. GGML_ASSERT(false);
  10012. } break;
  10013. }
  10014. }
  10015. // ggml_compute_forward_alibi
  10016. static void ggml_compute_forward_alibi_f32(
  10017. const struct ggml_compute_params * params,
  10018. struct ggml_tensor * dst) {
  10019. const struct ggml_tensor * src0 = dst->src[0];
  10020. assert(params->ith == 0);
  10021. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10022. return;
  10023. }
  10024. //const int n_past = ((int32_t *) dst->op_params)[0];
  10025. const int n_head = ((int32_t *) dst->op_params)[1];
  10026. float max_bias;
  10027. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10028. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10029. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10030. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10031. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10032. const int64_t n = ggml_nrows(src0);
  10033. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10034. const size_t nb0 = src0->nb[0];
  10035. const size_t nb1 = src0->nb[1];
  10036. const size_t nb2 = src0->nb[2];
  10037. //const int nb3 = src0->nb[3];
  10038. GGML_ASSERT(nb0 == sizeof(float));
  10039. GGML_ASSERT(n_head == ne2);
  10040. // add alibi to src0 (KQ_scaled)
  10041. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10042. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10043. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10044. for (int64_t k = 0; k < ne2_ne3; k++) {
  10045. // TODO: k*nb2 or k*nb3
  10046. float m_k;
  10047. if (k < n_heads_log2_floor) {
  10048. m_k = powf(m0, k + 1);
  10049. } else {
  10050. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10051. }
  10052. for (int64_t i = 0; i < ne0; i++) {
  10053. for (int64_t j = 0; j < ne1; j++) {
  10054. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10055. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10056. pdst[0] = i * m_k + src[0];
  10057. }
  10058. }
  10059. }
  10060. }
  10061. static void ggml_compute_forward_alibi_f16(
  10062. const struct ggml_compute_params * params,
  10063. struct ggml_tensor * dst) {
  10064. const struct ggml_tensor * src0 = dst->src[0];
  10065. assert(params->ith == 0);
  10066. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10067. return;
  10068. }
  10069. //const int n_past = ((int32_t *) dst->op_params)[0];
  10070. const int n_head = ((int32_t *) dst->op_params)[1];
  10071. float max_bias;
  10072. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10073. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10074. const int ne1 = src0->ne[1]; // seq_len_without_past
  10075. const int ne2 = src0->ne[2]; // n_head -> this is k
  10076. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10077. const int n = ggml_nrows(src0);
  10078. const int ne2_ne3 = n/ne1; // ne2*ne3
  10079. const int nb0 = src0->nb[0];
  10080. const int nb1 = src0->nb[1];
  10081. const int nb2 = src0->nb[2];
  10082. //const int nb3 = src0->nb[3];
  10083. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10084. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10085. GGML_ASSERT(n_head == ne2);
  10086. // add alibi to src0 (KQ_scaled)
  10087. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10088. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10089. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10090. for (int k = 0; k < ne2_ne3; k++) {
  10091. // TODO: k*nb2 or k*nb3
  10092. float m_k;
  10093. if (k < n_heads_log2_floor) {
  10094. m_k = powf(m0, k + 1);
  10095. } else {
  10096. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10097. }
  10098. for (int i = 0; i < ne0; i++) {
  10099. for (int j = 0; j < ne1; j++) {
  10100. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10101. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10102. // we return F32
  10103. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10104. }
  10105. }
  10106. }
  10107. }
  10108. static void ggml_compute_forward_alibi(
  10109. const struct ggml_compute_params * params,
  10110. struct ggml_tensor * dst) {
  10111. const struct ggml_tensor * src0 = dst->src[0];
  10112. switch (src0->type) {
  10113. case GGML_TYPE_F16:
  10114. {
  10115. ggml_compute_forward_alibi_f16(params, dst);
  10116. } break;
  10117. case GGML_TYPE_F32:
  10118. {
  10119. ggml_compute_forward_alibi_f32(params, dst);
  10120. } break;
  10121. case GGML_TYPE_Q4_0:
  10122. case GGML_TYPE_Q4_1:
  10123. case GGML_TYPE_Q5_0:
  10124. case GGML_TYPE_Q5_1:
  10125. case GGML_TYPE_Q8_0:
  10126. case GGML_TYPE_Q8_1:
  10127. case GGML_TYPE_Q2_K:
  10128. case GGML_TYPE_Q3_K:
  10129. case GGML_TYPE_Q4_K:
  10130. case GGML_TYPE_Q5_K:
  10131. case GGML_TYPE_Q6_K:
  10132. case GGML_TYPE_IQ2_XXS:
  10133. case GGML_TYPE_IQ2_XS:
  10134. case GGML_TYPE_IQ3_XXS:
  10135. case GGML_TYPE_IQ1_S:
  10136. case GGML_TYPE_IQ4_NL:
  10137. case GGML_TYPE_IQ4_XS:
  10138. case GGML_TYPE_IQ3_S:
  10139. case GGML_TYPE_IQ2_S:
  10140. case GGML_TYPE_Q8_K:
  10141. case GGML_TYPE_I8:
  10142. case GGML_TYPE_I16:
  10143. case GGML_TYPE_I32:
  10144. case GGML_TYPE_I64:
  10145. case GGML_TYPE_F64:
  10146. case GGML_TYPE_COUNT:
  10147. {
  10148. GGML_ASSERT(false);
  10149. } break;
  10150. }
  10151. }
  10152. // ggml_compute_forward_clamp
  10153. static void ggml_compute_forward_clamp_f32(
  10154. const struct ggml_compute_params * params,
  10155. struct ggml_tensor * dst) {
  10156. const struct ggml_tensor * src0 = dst->src[0];
  10157. assert(params->ith == 0);
  10158. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10159. return;
  10160. }
  10161. float min;
  10162. float max;
  10163. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10164. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10165. const int ith = params->ith;
  10166. const int nth = params->nth;
  10167. const int n = ggml_nrows(src0);
  10168. const int nc = src0->ne[0];
  10169. const size_t nb00 = src0->nb[0];
  10170. const size_t nb01 = src0->nb[1];
  10171. const size_t nb0 = dst->nb[0];
  10172. const size_t nb1 = dst->nb[1];
  10173. GGML_ASSERT( nb0 == sizeof(float));
  10174. GGML_ASSERT(nb00 == sizeof(float));
  10175. for (int j = ith; j < n; j += nth) {
  10176. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10177. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10178. for (int i = 0; i < nc; i++) {
  10179. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10180. }
  10181. }
  10182. }
  10183. static void ggml_compute_forward_clamp(
  10184. const struct ggml_compute_params * params,
  10185. struct ggml_tensor * dst) {
  10186. const struct ggml_tensor * src0 = dst->src[0];
  10187. switch (src0->type) {
  10188. case GGML_TYPE_F32:
  10189. {
  10190. ggml_compute_forward_clamp_f32(params, dst);
  10191. } break;
  10192. case GGML_TYPE_F16:
  10193. case GGML_TYPE_Q4_0:
  10194. case GGML_TYPE_Q4_1:
  10195. case GGML_TYPE_Q5_0:
  10196. case GGML_TYPE_Q5_1:
  10197. case GGML_TYPE_Q8_0:
  10198. case GGML_TYPE_Q8_1:
  10199. case GGML_TYPE_Q2_K:
  10200. case GGML_TYPE_Q3_K:
  10201. case GGML_TYPE_Q4_K:
  10202. case GGML_TYPE_Q5_K:
  10203. case GGML_TYPE_Q6_K:
  10204. case GGML_TYPE_IQ2_XXS:
  10205. case GGML_TYPE_IQ2_XS:
  10206. case GGML_TYPE_IQ3_XXS:
  10207. case GGML_TYPE_IQ1_S:
  10208. case GGML_TYPE_IQ4_NL:
  10209. case GGML_TYPE_IQ4_XS:
  10210. case GGML_TYPE_IQ3_S:
  10211. case GGML_TYPE_IQ2_S:
  10212. case GGML_TYPE_Q8_K:
  10213. case GGML_TYPE_I8:
  10214. case GGML_TYPE_I16:
  10215. case GGML_TYPE_I32:
  10216. case GGML_TYPE_I64:
  10217. case GGML_TYPE_F64:
  10218. case GGML_TYPE_COUNT:
  10219. {
  10220. GGML_ASSERT(false);
  10221. } break;
  10222. }
  10223. }
  10224. // ggml_compute_forward_rope
  10225. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  10226. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  10227. return 1 - MIN(1, MAX(0, y));
  10228. }
  10229. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  10230. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  10231. static void rope_yarn(
  10232. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  10233. float * cos_theta, float * sin_theta
  10234. ) {
  10235. // Get n-d rotational scaling corrected for extrapolation
  10236. float theta_interp = freq_scale * theta_extrap;
  10237. float theta = theta_interp;
  10238. if (ext_factor != 0.0f) {
  10239. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  10240. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  10241. // Get n-d magnitude scaling corrected for interpolation
  10242. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  10243. }
  10244. *cos_theta = cosf(theta) * mscale;
  10245. *sin_theta = sinf(theta) * mscale;
  10246. }
  10247. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  10248. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  10249. static float ggml_rope_yarn_corr_dim(int n_dims, int n_orig_ctx, float n_rot, float base) {
  10250. return n_dims * logf(n_orig_ctx / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  10251. }
  10252. static void ggml_rope_cache_init(
  10253. float theta_base, float freq_scale, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  10254. float * cache, float sin_sign, float theta_scale
  10255. ) {
  10256. float theta = theta_base;
  10257. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10258. rope_yarn(
  10259. theta, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  10260. );
  10261. cache[i0 + 1] *= sin_sign;
  10262. theta *= theta_scale;
  10263. }
  10264. }
  10265. GGML_CALL void ggml_rope_yarn_corr_dims(
  10266. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  10267. ) {
  10268. // start and end correction dims
  10269. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_fast, freq_base));
  10270. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_orig_ctx, beta_slow, freq_base));
  10271. dims[0] = MAX(0, start);
  10272. dims[1] = MIN(n_dims - 1, end);
  10273. }
  10274. static void ggml_compute_forward_rope_f32(
  10275. const struct ggml_compute_params * params,
  10276. struct ggml_tensor * dst,
  10277. const bool forward) {
  10278. const struct ggml_tensor * src0 = dst->src[0];
  10279. const struct ggml_tensor * src1 = dst->src[1];
  10280. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10281. return;
  10282. }
  10283. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10284. // these two only relevant for xPos RoPE:
  10285. float xpos_base;
  10286. bool xpos_down;
  10287. //const int n_past = ((int32_t *) dst->op_params)[0];
  10288. const int n_dims = ((int32_t *) dst->op_params)[1];
  10289. const int mode = ((int32_t *) dst->op_params)[2];
  10290. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10291. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10292. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10293. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10294. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10295. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10296. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10297. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10298. memcpy(&xpos_base, (int32_t *) dst->op_params + 11, sizeof(float));
  10299. memcpy(&xpos_down, (int32_t *) dst->op_params + 12, sizeof(bool));
  10300. GGML_TENSOR_UNARY_OP_LOCALS
  10301. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10302. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10303. GGML_ASSERT(nb00 == sizeof(float));
  10304. const int ith = params->ith;
  10305. const int nth = params->nth;
  10306. const int nr = ggml_nrows(dst);
  10307. GGML_ASSERT(n_dims <= ne0);
  10308. GGML_ASSERT(n_dims % 2 == 0);
  10309. // rows per thread
  10310. const int dr = (nr + nth - 1)/nth;
  10311. // row range for this thread
  10312. const int ir0 = dr*ith;
  10313. const int ir1 = MIN(ir0 + dr, nr);
  10314. // row index used to determine which thread to use
  10315. int ir = 0;
  10316. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10317. const float inv_ndims = -1.f/n_dims;
  10318. float corr_dims[2];
  10319. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10320. const bool is_neox = mode & 2;
  10321. const bool is_glm = mode & 4;
  10322. // backward process uses inverse rotation by cos and sin.
  10323. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10324. // this essentially just switches the sign of sin.
  10325. const float sin_sign = forward ? 1.0f : -1.0f;
  10326. const int32_t * pos = (const int32_t *) src1->data;
  10327. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10328. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10329. const int64_t p = pos[i2];
  10330. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10331. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10332. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10333. }
  10334. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10335. if (ir++ < ir0) continue;
  10336. if (ir > ir1) break;
  10337. float theta_base = (float)p;
  10338. if (is_glm) {
  10339. theta_base = MIN(p, n_ctx - 2);
  10340. float block_theta = MAX(p - (n_ctx - 2), 0);
  10341. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10342. const float cos_theta = cosf(theta_base);
  10343. const float sin_theta = sinf(theta_base) * sin_sign;
  10344. const float cos_block_theta = cosf(block_theta);
  10345. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10346. theta_base *= theta_scale;
  10347. block_theta *= theta_scale;
  10348. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10349. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10350. const float x0 = src[0];
  10351. const float x1 = src[n_dims/2];
  10352. const float x2 = src[n_dims];
  10353. const float x3 = src[n_dims/2*3];
  10354. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10355. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10356. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10357. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10358. }
  10359. } else if (!is_neox) {
  10360. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10361. const float cos_theta = cache[i0 + 0];
  10362. const float sin_theta = cache[i0 + 1];
  10363. // zeta scaling for xPos only:
  10364. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10365. if (xpos_down) zeta = 1.0f / zeta;
  10366. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10367. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10368. const float x0 = src[0];
  10369. const float x1 = src[1];
  10370. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10371. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10372. }
  10373. } else {
  10374. // TODO: this might be wrong for ne0 != n_dims - need double check
  10375. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10376. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10377. theta_base *= freq_scale;
  10378. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10379. if (ic < n_dims) {
  10380. const int64_t ib = 0;
  10381. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10382. float cur_rot = inv_ndims * ic - ib;
  10383. float cos_theta, sin_theta;
  10384. rope_yarn(
  10385. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10386. &cos_theta, &sin_theta
  10387. );
  10388. sin_theta *= sin_sign;
  10389. theta_base *= theta_scale;
  10390. const int64_t i0 = ib*n_dims + ic/2;
  10391. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10392. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10393. const float x0 = src[0];
  10394. const float x1 = src[n_dims/2];
  10395. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10396. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10397. } else {
  10398. const int64_t i0 = ic;
  10399. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10400. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10401. dst_data[0] = src[0];
  10402. dst_data[1] = src[1];
  10403. }
  10404. }
  10405. }
  10406. }
  10407. }
  10408. }
  10409. }
  10410. static void ggml_compute_forward_rope_f16(
  10411. const struct ggml_compute_params * params,
  10412. struct ggml_tensor * dst,
  10413. const bool forward) {
  10414. const struct ggml_tensor * src0 = dst->src[0];
  10415. const struct ggml_tensor * src1 = dst->src[1];
  10416. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  10417. return;
  10418. }
  10419. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  10420. //const int n_past = ((int32_t *) dst->op_params)[0];
  10421. const int n_dims = ((int32_t *) dst->op_params)[1];
  10422. const int mode = ((int32_t *) dst->op_params)[2];
  10423. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10424. const int n_orig_ctx = ((int32_t *) dst->op_params)[4];
  10425. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  10426. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  10427. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  10428. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  10429. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  10430. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  10431. GGML_TENSOR_UNARY_OP_LOCALS
  10432. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10433. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10434. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10435. const int ith = params->ith;
  10436. const int nth = params->nth;
  10437. const int nr = ggml_nrows(dst);
  10438. GGML_ASSERT(n_dims <= ne0);
  10439. GGML_ASSERT(n_dims % 2 == 0);
  10440. // rows per thread
  10441. const int dr = (nr + nth - 1)/nth;
  10442. // row range for this thread
  10443. const int ir0 = dr*ith;
  10444. const int ir1 = MIN(ir0 + dr, nr);
  10445. // row index used to determine which thread to use
  10446. int ir = 0;
  10447. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10448. const float inv_ndims = -1.f/n_dims;
  10449. float corr_dims[2];
  10450. ggml_rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  10451. const bool is_neox = mode & 2;
  10452. const bool is_glm = mode & 4;
  10453. // backward process uses inverse rotation by cos and sin.
  10454. // cos and sin build a rotation matrix, where the inverse is the transpose.
  10455. // this essentially just switches the sign of sin.
  10456. const float sin_sign = forward ? 1.0f : -1.0f;
  10457. const int32_t * pos = (const int32_t *) src1->data;
  10458. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10459. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10460. const int64_t p = pos[i2];
  10461. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  10462. if (!is_glm && !is_neox) { // TODO: cache sin/cos for glm, neox
  10463. ggml_rope_cache_init(p, freq_scale, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  10464. }
  10465. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10466. if (ir++ < ir0) continue;
  10467. if (ir > ir1) break;
  10468. float theta_base = (float)p;
  10469. if (is_glm) {
  10470. theta_base = MIN(p, n_ctx - 2);
  10471. float block_theta = MAX(p - (n_ctx - 2), 0);
  10472. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10473. const float cos_theta = cosf(theta_base);
  10474. const float sin_theta = sinf(theta_base) * sin_sign;
  10475. const float cos_block_theta = cosf(block_theta);
  10476. const float sin_block_theta = sinf(block_theta) * sin_sign;
  10477. theta_base *= theta_scale;
  10478. block_theta *= theta_scale;
  10479. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10480. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10481. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10482. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10483. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10484. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10485. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10486. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10487. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10488. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10489. }
  10490. } else if (!is_neox) {
  10491. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10492. const float cos_theta = cache[i0 + 0];
  10493. const float sin_theta = cache[i0 + 1];
  10494. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10495. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10496. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10497. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10498. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10499. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10500. }
  10501. } else {
  10502. // TODO: this might be wrong for ne0 != n_dims - need double check
  10503. // it seems we have to rope just the first n_dims elements and do nothing with the rest
  10504. // ref: https://github.com/ml-explore/mlx/blob/dc2edc762c797e3b8de50b1dad4dc0a131691033/benchmarks/python/llama_jax_bench.py#L11-L26
  10505. theta_base *= freq_scale;
  10506. for (int64_t ic = 0; ic < ne0; ic += 2) {
  10507. if (ic < n_dims) {
  10508. const int64_t ib = 0;
  10509. // simplified from `(ib * n_dims + ic) * inv_ndims`
  10510. float cur_rot = inv_ndims * ic - ib;
  10511. float cos_theta, sin_theta;
  10512. rope_yarn(
  10513. theta_base, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor,
  10514. &cos_theta, &sin_theta
  10515. );
  10516. sin_theta *= sin_sign;
  10517. theta_base *= theta_scale;
  10518. const int64_t i0 = ib*n_dims + ic/2;
  10519. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10520. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10521. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10522. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10523. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10524. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10525. } else {
  10526. const int64_t i0 = ic;
  10527. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10528. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10529. dst_data[0] = src[0];
  10530. dst_data[1] = src[1];
  10531. }
  10532. }
  10533. }
  10534. }
  10535. }
  10536. }
  10537. }
  10538. static void ggml_compute_forward_rope(
  10539. const struct ggml_compute_params * params,
  10540. struct ggml_tensor * dst) {
  10541. const struct ggml_tensor * src0 = dst->src[0];
  10542. switch (src0->type) {
  10543. case GGML_TYPE_F16:
  10544. {
  10545. ggml_compute_forward_rope_f16(params, dst, true);
  10546. } break;
  10547. case GGML_TYPE_F32:
  10548. {
  10549. ggml_compute_forward_rope_f32(params, dst, true);
  10550. } break;
  10551. default:
  10552. {
  10553. GGML_ASSERT(false);
  10554. } break;
  10555. }
  10556. }
  10557. // ggml_compute_forward_rope_back
  10558. static void ggml_compute_forward_rope_back(
  10559. const struct ggml_compute_params * params,
  10560. struct ggml_tensor * dst) {
  10561. const struct ggml_tensor * src0 = dst->src[0];
  10562. switch (src0->type) {
  10563. case GGML_TYPE_F16:
  10564. {
  10565. ggml_compute_forward_rope_f16(params, dst, false);
  10566. } break;
  10567. case GGML_TYPE_F32:
  10568. {
  10569. ggml_compute_forward_rope_f32(params, dst, false);
  10570. } break;
  10571. default:
  10572. {
  10573. GGML_ASSERT(false);
  10574. } break;
  10575. }
  10576. }
  10577. // ggml_compute_forward_conv_transpose_1d
  10578. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  10579. const struct ggml_compute_params * params,
  10580. struct ggml_tensor * dst) {
  10581. const struct ggml_tensor * src0 = dst->src[0];
  10582. const struct ggml_tensor * src1 = dst->src[1];
  10583. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10584. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10585. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10586. int64_t t0 = ggml_perf_time_us();
  10587. UNUSED(t0);
  10588. GGML_TENSOR_BINARY_OP_LOCALS
  10589. const int ith = params->ith;
  10590. const int nth = params->nth;
  10591. const int nk = ne00*ne01*ne02;
  10592. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10593. GGML_ASSERT(nb10 == sizeof(float));
  10594. if (params->type == GGML_TASK_TYPE_INIT) {
  10595. if (ith != 0) {
  10596. return;
  10597. }
  10598. memset(params->wdata, 0, params->wsize);
  10599. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10600. {
  10601. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10602. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10603. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10604. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10605. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  10606. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10607. dst_data[i00*ne02 + i02] = src[i00];
  10608. }
  10609. }
  10610. }
  10611. }
  10612. // permute source data (src1) from (L x Cin) to (Cin x L)
  10613. {
  10614. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10615. ggml_fp16_t * dst_data = wdata;
  10616. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10617. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10618. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10619. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10620. }
  10621. }
  10622. }
  10623. // need to zero dst since we are accumulating into it
  10624. memset(dst->data, 0, ggml_nbytes(dst));
  10625. return;
  10626. }
  10627. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10628. return;
  10629. }
  10630. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10631. // total rows in dst
  10632. const int nr = ne1;
  10633. // rows per thread
  10634. const int dr = (nr + nth - 1)/nth;
  10635. // row range for this thread
  10636. const int ir0 = dr*ith;
  10637. const int ir1 = MIN(ir0 + dr, nr);
  10638. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10639. ggml_fp16_t * const wdata_src = wdata + nk;
  10640. for (int i1 = ir0; i1 < ir1; i1++) {
  10641. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10642. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  10643. for (int i10 = 0; i10 < ne10; i10++) {
  10644. const int i1n = i10*ne11;
  10645. for (int i00 = 0; i00 < ne00; i00++) {
  10646. float v = 0;
  10647. ggml_vec_dot_f16(ne02, &v, 0,
  10648. (ggml_fp16_t *) wdata_src + i1n, 0,
  10649. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  10650. dst_data[i10*s0 + i00] += v;
  10651. }
  10652. }
  10653. }
  10654. }
  10655. static void ggml_compute_forward_conv_transpose_1d_f32(
  10656. const struct ggml_compute_params * params,
  10657. struct ggml_tensor * dst) {
  10658. const struct ggml_tensor * src0 = dst->src[0];
  10659. const struct ggml_tensor * src1 = dst->src[1];
  10660. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10661. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10662. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10663. int64_t t0 = ggml_perf_time_us();
  10664. UNUSED(t0);
  10665. GGML_TENSOR_BINARY_OP_LOCALS
  10666. const int ith = params->ith;
  10667. const int nth = params->nth;
  10668. const int nk = ne00*ne01*ne02;
  10669. GGML_ASSERT(nb00 == sizeof(float));
  10670. GGML_ASSERT(nb10 == sizeof(float));
  10671. if (params->type == GGML_TASK_TYPE_INIT) {
  10672. if (ith != 0) {
  10673. return;
  10674. }
  10675. memset(params->wdata, 0, params->wsize);
  10676. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  10677. {
  10678. float * const wdata = (float *) params->wdata + 0;
  10679. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10680. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10681. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10682. float * dst_data = wdata + i01*ne00*ne02;
  10683. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10684. dst_data[i00*ne02 + i02] = src[i00];
  10685. }
  10686. }
  10687. }
  10688. }
  10689. // prepare source data (src1)
  10690. {
  10691. float * const wdata = (float *) params->wdata + nk;
  10692. float * dst_data = wdata;
  10693. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10694. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10695. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10696. dst_data[i10*ne11 + i11] = src[i10];
  10697. }
  10698. }
  10699. }
  10700. // need to zero dst since we are accumulating into it
  10701. memset(dst->data, 0, ggml_nbytes(dst));
  10702. return;
  10703. }
  10704. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10705. return;
  10706. }
  10707. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  10708. // total rows in dst
  10709. const int nr = ne1;
  10710. // rows per thread
  10711. const int dr = (nr + nth - 1)/nth;
  10712. // row range for this thread
  10713. const int ir0 = dr*ith;
  10714. const int ir1 = MIN(ir0 + dr, nr);
  10715. float * const wdata = (float *) params->wdata + 0;
  10716. float * const wdata_src = wdata + nk;
  10717. for (int i1 = ir0; i1 < ir1; i1++) {
  10718. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10719. float * wdata_kernel = wdata + i1*ne02*ne00;
  10720. for (int i10 = 0; i10 < ne10; i10++) {
  10721. const int i1n = i10*ne11;
  10722. for (int i00 = 0; i00 < ne00; i00++) {
  10723. float v = 0;
  10724. ggml_vec_dot_f32(ne02, &v, 0,
  10725. wdata_src + i1n, 0,
  10726. wdata_kernel + i00*ne02, 0, 1);
  10727. dst_data[i10*s0 + i00] += v;
  10728. }
  10729. }
  10730. }
  10731. }
  10732. static void ggml_compute_forward_conv_transpose_1d(
  10733. const struct ggml_compute_params * params,
  10734. struct ggml_tensor * dst) {
  10735. const struct ggml_tensor * src0 = dst->src[0];
  10736. switch (src0->type) {
  10737. case GGML_TYPE_F16:
  10738. {
  10739. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  10740. } break;
  10741. case GGML_TYPE_F32:
  10742. {
  10743. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  10744. } break;
  10745. default:
  10746. {
  10747. GGML_ASSERT(false);
  10748. } break;
  10749. }
  10750. }
  10751. // src0: kernel [OC, IC, KH, KW]
  10752. // src1: image [N, IC, IH, IW]
  10753. // dst: result [N, OH, OW, IC*KH*KW]
  10754. static void ggml_compute_forward_im2col_f32(
  10755. const struct ggml_compute_params * params,
  10756. struct ggml_tensor * dst) {
  10757. const struct ggml_tensor * src0 = dst->src[0];
  10758. const struct ggml_tensor * src1 = dst->src[1];
  10759. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10760. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10761. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10762. int64_t t0 = ggml_perf_time_us();
  10763. UNUSED(t0);
  10764. GGML_TENSOR_BINARY_OP_LOCALS;
  10765. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10766. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10767. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10768. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10769. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10770. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10771. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10772. const int ith = params->ith;
  10773. const int nth = params->nth;
  10774. const int64_t N = is_2D ? ne13 : ne12;
  10775. const int64_t IC = is_2D ? ne12 : ne11;
  10776. const int64_t IH = is_2D ? ne11 : 1;
  10777. const int64_t IW = ne10;
  10778. const int64_t KH = is_2D ? ne01 : 1;
  10779. const int64_t KW = ne00;
  10780. const int64_t OH = is_2D ? ne2 : 1;
  10781. const int64_t OW = ne1;
  10782. int ofs0 = is_2D ? nb13 : nb12;
  10783. int ofs1 = is_2D ? nb12 : nb11;
  10784. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10785. GGML_ASSERT(nb10 == sizeof(float));
  10786. if (params->type == GGML_TASK_TYPE_INIT) {
  10787. return;
  10788. }
  10789. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10790. return;
  10791. }
  10792. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10793. {
  10794. float * const wdata = (float *) dst->data;
  10795. for (int64_t in = 0; in < N; in++) {
  10796. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10797. for (int64_t iow = 0; iow < OW; iow++) {
  10798. for (int64_t iic = ith; iic < IC; iic += nth) {
  10799. // micro kernel
  10800. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10801. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10802. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10803. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10804. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10805. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10806. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10807. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10808. } else {
  10809. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  10810. }
  10811. }
  10812. }
  10813. }
  10814. }
  10815. }
  10816. }
  10817. }
  10818. }
  10819. // src0: kernel [OC, IC, KH, KW]
  10820. // src1: image [N, IC, IH, IW]
  10821. // dst: result [N, OH, OW, IC*KH*KW]
  10822. static void ggml_compute_forward_im2col_f16(
  10823. const struct ggml_compute_params * params,
  10824. struct ggml_tensor * dst) {
  10825. const struct ggml_tensor * src0 = dst->src[0];
  10826. const struct ggml_tensor * src1 = dst->src[1];
  10827. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10828. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10829. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  10830. int64_t t0 = ggml_perf_time_us();
  10831. UNUSED(t0);
  10832. GGML_TENSOR_BINARY_OP_LOCALS;
  10833. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  10834. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  10835. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  10836. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  10837. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  10838. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  10839. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  10840. const int ith = params->ith;
  10841. const int nth = params->nth;
  10842. const int64_t N = is_2D ? ne13 : ne12;
  10843. const int64_t IC = is_2D ? ne12 : ne11;
  10844. const int64_t IH = is_2D ? ne11 : 1;
  10845. const int64_t IW = ne10;
  10846. const int64_t KH = is_2D ? ne01 : 1;
  10847. const int64_t KW = ne00;
  10848. const int64_t OH = is_2D ? ne2 : 1;
  10849. const int64_t OW = ne1;
  10850. int ofs0 = is_2D ? nb13 : nb12;
  10851. int ofs1 = is_2D ? nb12 : nb11;
  10852. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10853. GGML_ASSERT(nb10 == sizeof(float));
  10854. if (params->type == GGML_TASK_TYPE_INIT) {
  10855. return;
  10856. }
  10857. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10858. return;
  10859. }
  10860. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  10861. {
  10862. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  10863. for (int64_t in = 0; in < N; in++) {
  10864. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  10865. for (int64_t iow = 0; iow < OW; iow++) {
  10866. for (int64_t iic = ith; iic < IC; iic += nth) {
  10867. // micro kernel
  10868. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  10869. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  10870. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  10871. for (int64_t ikw = 0; ikw < KW; ikw++) {
  10872. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  10873. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  10874. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  10875. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  10876. } else {
  10877. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  10878. }
  10879. }
  10880. }
  10881. }
  10882. }
  10883. }
  10884. }
  10885. }
  10886. }
  10887. static void ggml_compute_forward_im2col(
  10888. const struct ggml_compute_params * params,
  10889. struct ggml_tensor * dst) {
  10890. switch (dst->type) {
  10891. case GGML_TYPE_F16:
  10892. {
  10893. ggml_compute_forward_im2col_f16(params, dst);
  10894. } break;
  10895. case GGML_TYPE_F32:
  10896. {
  10897. ggml_compute_forward_im2col_f32(params, dst);
  10898. } break;
  10899. default:
  10900. {
  10901. GGML_ASSERT(false);
  10902. } break;
  10903. }
  10904. }
  10905. // ggml_compute_forward_conv_transpose_2d
  10906. static void ggml_compute_forward_conv_transpose_2d(
  10907. const struct ggml_compute_params * params,
  10908. struct ggml_tensor * dst) {
  10909. const struct ggml_tensor * src0 = dst->src[0];
  10910. const struct ggml_tensor * src1 = dst->src[1];
  10911. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10912. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10913. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10914. int64_t t0 = ggml_perf_time_us();
  10915. UNUSED(t0);
  10916. GGML_TENSOR_BINARY_OP_LOCALS
  10917. const int ith = params->ith;
  10918. const int nth = params->nth;
  10919. const int nk = ne00*ne01*ne02*ne03;
  10920. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10921. GGML_ASSERT(nb10 == sizeof(float));
  10922. if (params->type == GGML_TASK_TYPE_INIT) {
  10923. if (ith != 0) {
  10924. return;
  10925. }
  10926. memset(params->wdata, 0, params->wsize);
  10927. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  10928. {
  10929. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10930. for (int64_t i03 = 0; i03 < ne03; i03++) {
  10931. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10932. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  10933. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  10934. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10935. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10936. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  10937. }
  10938. }
  10939. }
  10940. }
  10941. }
  10942. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  10943. {
  10944. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  10945. for (int i12 = 0; i12 < ne12; i12++) {
  10946. for (int i11 = 0; i11 < ne11; i11++) {
  10947. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  10948. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  10949. for (int i10 = 0; i10 < ne10; i10++) {
  10950. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  10951. }
  10952. }
  10953. }
  10954. }
  10955. memset(dst->data, 0, ggml_nbytes(dst));
  10956. return;
  10957. }
  10958. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  10959. return;
  10960. }
  10961. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  10962. // total patches in dst
  10963. const int np = ne2;
  10964. // patches per thread
  10965. const int dp = (np + nth - 1)/nth;
  10966. // patch range for this thread
  10967. const int ip0 = dp*ith;
  10968. const int ip1 = MIN(ip0 + dp, np);
  10969. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10970. ggml_fp16_t * const wdata_src = wdata + nk;
  10971. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  10972. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10973. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  10974. for (int i11 = 0; i11 < ne11; i11++) {
  10975. for (int i10 = 0; i10 < ne10; i10++) {
  10976. const int i1n = i11*ne10*ne12 + i10*ne12;
  10977. for (int i01 = 0; i01 < ne01; i01++) {
  10978. for (int i00 = 0; i00 < ne00; i00++) {
  10979. float v = 0;
  10980. ggml_vec_dot_f16(ne03, &v, 0,
  10981. wdata_src + i1n, 0,
  10982. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  10983. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  10984. }
  10985. }
  10986. }
  10987. }
  10988. }
  10989. }
  10990. // ggml_compute_forward_pool_1d_sk_p0
  10991. static void ggml_compute_forward_pool_1d_sk_p0(
  10992. const struct ggml_compute_params * params,
  10993. const enum ggml_op_pool op,
  10994. const int k,
  10995. struct ggml_tensor * dst) {
  10996. const struct ggml_tensor * src = dst->src[0];
  10997. assert(src->type == GGML_TYPE_F32);
  10998. assert(params->ith == 0);
  10999. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11000. return;
  11001. }
  11002. const char * cdata = (const char *)src->data;
  11003. const char * const data_end = cdata + ggml_nbytes(src);
  11004. float * drow = (float *)dst->data;
  11005. const int64_t rs = dst->ne[0];
  11006. while (cdata < data_end) {
  11007. const float * const srow = (const float *)cdata;
  11008. int j = 0;
  11009. for (int64_t i = 0; i < rs; ++i) {
  11010. switch (op) {
  11011. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11012. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11013. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11014. }
  11015. for (int ki = 0; ki < k; ++ki) {
  11016. switch (op) {
  11017. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11018. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11019. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11020. }
  11021. ++j;
  11022. }
  11023. switch (op) {
  11024. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11025. case GGML_OP_POOL_MAX: break;
  11026. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11027. }
  11028. }
  11029. cdata += src->nb[1];
  11030. drow += rs;
  11031. }
  11032. }
  11033. // ggml_compute_forward_pool_1d
  11034. static void ggml_compute_forward_pool_1d(
  11035. const struct ggml_compute_params * params,
  11036. struct ggml_tensor * dst) {
  11037. const int32_t * opts = (const int32_t *)dst->op_params;
  11038. enum ggml_op_pool op = opts[0];
  11039. const int k0 = opts[1];
  11040. const int s0 = opts[2];
  11041. const int p0 = opts[3];
  11042. GGML_ASSERT(p0 == 0); // padding not supported
  11043. GGML_ASSERT(k0 == s0); // only s = k supported
  11044. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11045. }
  11046. // ggml_compute_forward_pool_2d
  11047. static void ggml_compute_forward_pool_2d(
  11048. const struct ggml_compute_params * params,
  11049. struct ggml_tensor * dst) {
  11050. const struct ggml_tensor * src = dst->src[0];
  11051. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11052. GGML_ASSERT(params->ith == 0);
  11053. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11054. return;
  11055. }
  11056. const int32_t * opts = (const int32_t *)dst->op_params;
  11057. enum ggml_op_pool op = opts[0];
  11058. const int k0 = opts[1];
  11059. const int k1 = opts[2];
  11060. const int s0 = opts[3];
  11061. const int s1 = opts[4];
  11062. const int p0 = opts[5];
  11063. const int p1 = opts[6];
  11064. const char * cdata = (const char*)src->data;
  11065. const char * const data_end = cdata + ggml_nbytes(src);
  11066. const int64_t px = dst->ne[0];
  11067. const int64_t py = dst->ne[1];
  11068. const int64_t pa = px * py;
  11069. float * dplane = (float *)dst->data;
  11070. const int ka = k0 * k1;
  11071. const int offset0 = -p0;
  11072. const int offset1 = -p1;
  11073. while (cdata < data_end) {
  11074. for (int oy = 0; oy < py; ++oy) {
  11075. float * const drow = dplane + oy * px;
  11076. for (int ox = 0; ox < px; ++ox) {
  11077. float * const out = drow + ox;
  11078. switch (op) {
  11079. case GGML_OP_POOL_AVG: *out = 0; break;
  11080. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11081. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11082. }
  11083. const int ix = offset0 + ox * s0;
  11084. const int iy = offset1 + oy * s1;
  11085. for (int ky = 0; ky < k1; ++ky) {
  11086. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11087. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11088. for (int kx = 0; kx < k0; ++kx) {
  11089. int j = ix + kx;
  11090. if (j < 0 || j >= src->ne[0]) continue;
  11091. switch (op) {
  11092. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11093. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11094. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11095. }
  11096. }
  11097. }
  11098. switch (op) {
  11099. case GGML_OP_POOL_AVG: *out /= ka; break;
  11100. case GGML_OP_POOL_MAX: break;
  11101. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11102. }
  11103. }
  11104. }
  11105. cdata += src->nb[2];
  11106. dplane += pa;
  11107. }
  11108. }
  11109. // ggml_compute_forward_upscale
  11110. static void ggml_compute_forward_upscale_f32(
  11111. const struct ggml_compute_params * params,
  11112. struct ggml_tensor * dst) {
  11113. const struct ggml_tensor * src0 = dst->src[0];
  11114. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11115. return;
  11116. }
  11117. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11118. const int ith = params->ith;
  11119. const int nth = params->nth;
  11120. GGML_TENSOR_UNARY_OP_LOCALS
  11121. const int scale_factor = dst->op_params[0];
  11122. // TODO: optimize
  11123. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11124. const int64_t i03 = i3;
  11125. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  11126. const int64_t i02 = i2;
  11127. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11128. const int64_t i01 = i1 / scale_factor;
  11129. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11130. const int64_t i00 = i0 / scale_factor;
  11131. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  11132. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  11133. *y = *x;
  11134. }
  11135. }
  11136. }
  11137. }
  11138. }
  11139. static void ggml_compute_forward_upscale(
  11140. const struct ggml_compute_params * params,
  11141. struct ggml_tensor * dst) {
  11142. const struct ggml_tensor * src0 = dst->src[0];
  11143. switch (src0->type) {
  11144. case GGML_TYPE_F32:
  11145. {
  11146. ggml_compute_forward_upscale_f32(params, dst);
  11147. } break;
  11148. default:
  11149. {
  11150. GGML_ASSERT(false);
  11151. } break;
  11152. }
  11153. }
  11154. // ggml_compute_forward_pad
  11155. static void ggml_compute_forward_pad_f32(
  11156. const struct ggml_compute_params * params,
  11157. struct ggml_tensor * dst) {
  11158. const struct ggml_tensor * src0 = dst->src[0];
  11159. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11160. return;
  11161. }
  11162. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11163. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11164. const int ith = params->ith;
  11165. const int nth = params->nth;
  11166. GGML_TENSOR_UNARY_OP_LOCALS
  11167. float * dst_ptr = (float *) dst->data;
  11168. // TODO: optimize
  11169. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11170. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  11171. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11172. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  11173. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  11174. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11175. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  11176. dst_ptr[dst_idx] = *src_ptr;
  11177. } else {
  11178. dst_ptr[dst_idx] = 0;
  11179. }
  11180. }
  11181. }
  11182. }
  11183. }
  11184. }
  11185. static void ggml_compute_forward_pad(
  11186. const struct ggml_compute_params * params,
  11187. struct ggml_tensor * dst) {
  11188. const struct ggml_tensor * src0 = dst->src[0];
  11189. switch (src0->type) {
  11190. case GGML_TYPE_F32:
  11191. {
  11192. ggml_compute_forward_pad_f32(params, dst);
  11193. } break;
  11194. default:
  11195. {
  11196. GGML_ASSERT(false);
  11197. } break;
  11198. }
  11199. }
  11200. // ggml_compute_forward_arange
  11201. static void ggml_compute_forward_arange_f32(
  11202. const struct ggml_compute_params * params,
  11203. struct ggml_tensor * dst) {
  11204. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11205. return;
  11206. }
  11207. GGML_ASSERT(dst->nb[0] == sizeof(float));
  11208. const int ith = params->ith;
  11209. const int nth = params->nth;
  11210. const float start = ggml_get_op_params_f32(dst, 0);
  11211. const float stop = ggml_get_op_params_f32(dst, 1);
  11212. const float step = ggml_get_op_params_f32(dst, 2);
  11213. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  11214. GGML_ASSERT(ggml_nelements(dst) == steps);
  11215. for (int64_t i = ith; i < steps; i+= nth) {
  11216. float value = start + step * i;
  11217. ((float *)dst->data)[i] = value;
  11218. }
  11219. }
  11220. static void ggml_compute_forward_arange(
  11221. const struct ggml_compute_params * params,
  11222. struct ggml_tensor * dst) {
  11223. switch (dst->type) {
  11224. case GGML_TYPE_F32:
  11225. {
  11226. ggml_compute_forward_arange_f32(params, dst);
  11227. } break;
  11228. default:
  11229. {
  11230. GGML_ASSERT(false);
  11231. } break;
  11232. }
  11233. }
  11234. static void ggml_compute_forward_timestep_embedding_f32(
  11235. const struct ggml_compute_params * params,
  11236. struct ggml_tensor * dst) {
  11237. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11238. return;
  11239. }
  11240. const struct ggml_tensor * src0 = dst->src[0];
  11241. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11242. const int ith = params->ith;
  11243. const int nth = params->nth;
  11244. GGML_TENSOR_UNARY_OP_LOCALS
  11245. const int dim = ggml_get_op_params_i32(dst, 0);
  11246. const int max_period = ggml_get_op_params_i32(dst, 1);
  11247. int half = dim / 2;
  11248. for (int64_t i = 0; i < ne00; i++) {
  11249. float * embed_data = (float *)((char *) dst->data + i*nb1);
  11250. for (int64_t j = ith; j < half; j += nth) {
  11251. float timestep = ((float *)src0->data)[i];
  11252. float freq = (float)expf(-logf(max_period) * j / half);
  11253. float arg = timestep * freq;
  11254. embed_data[j] = cosf(arg);
  11255. embed_data[j + half] = sinf(arg);
  11256. }
  11257. if (dim % 2 != 0 && ith == 0) {
  11258. embed_data[dim] = 0.f;
  11259. }
  11260. }
  11261. }
  11262. static void ggml_compute_forward_timestep_embedding(
  11263. const struct ggml_compute_params * params,
  11264. struct ggml_tensor * dst) {
  11265. const struct ggml_tensor * src0 = dst->src[0];
  11266. switch (src0->type) {
  11267. case GGML_TYPE_F32:
  11268. {
  11269. ggml_compute_forward_timestep_embedding_f32(params, dst);
  11270. } break;
  11271. default:
  11272. {
  11273. GGML_ASSERT(false);
  11274. } break;
  11275. }
  11276. }
  11277. // ggml_compute_forward_argsort
  11278. static void ggml_compute_forward_argsort_f32(
  11279. const struct ggml_compute_params * params,
  11280. struct ggml_tensor * dst) {
  11281. const struct ggml_tensor * src0 = dst->src[0];
  11282. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  11283. return;
  11284. }
  11285. GGML_TENSOR_UNARY_OP_LOCALS
  11286. GGML_ASSERT(nb0 == sizeof(float));
  11287. const int ith = params->ith;
  11288. const int nth = params->nth;
  11289. const int64_t nr = ggml_nrows(src0);
  11290. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  11291. for (int64_t i = ith; i < nr; i += nth) {
  11292. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  11293. const float * src_data = (float *)((char *) src0->data + i*nb01);
  11294. for (int64_t j = 0; j < ne0; j++) {
  11295. dst_data[j] = j;
  11296. }
  11297. // C doesn't have a functional sort, so we do a bubble sort instead
  11298. for (int64_t j = 0; j < ne0; j++) {
  11299. for (int64_t k = j + 1; k < ne0; k++) {
  11300. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  11301. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  11302. int32_t tmp = dst_data[j];
  11303. dst_data[j] = dst_data[k];
  11304. dst_data[k] = tmp;
  11305. }
  11306. }
  11307. }
  11308. }
  11309. }
  11310. static void ggml_compute_forward_argsort(
  11311. const struct ggml_compute_params * params,
  11312. struct ggml_tensor * dst) {
  11313. const struct ggml_tensor * src0 = dst->src[0];
  11314. switch (src0->type) {
  11315. case GGML_TYPE_F32:
  11316. {
  11317. ggml_compute_forward_argsort_f32(params, dst);
  11318. } break;
  11319. default:
  11320. {
  11321. GGML_ASSERT(false);
  11322. } break;
  11323. }
  11324. }
  11325. // ggml_compute_forward_flash_attn
  11326. static void ggml_compute_forward_flash_attn_f32(
  11327. const struct ggml_compute_params * params,
  11328. const bool masked,
  11329. struct ggml_tensor * dst) {
  11330. const struct ggml_tensor * q = dst->src[0];
  11331. const struct ggml_tensor * k = dst->src[1];
  11332. const struct ggml_tensor * v = dst->src[2];
  11333. int64_t t0 = ggml_perf_time_us();
  11334. UNUSED(t0);
  11335. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11336. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11337. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11338. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11339. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11340. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11341. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11342. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11343. const int ith = params->ith;
  11344. const int nth = params->nth;
  11345. const int64_t D = neq0;
  11346. const int64_t N = neq1;
  11347. const int64_t P = nek1 - N;
  11348. const int64_t M = P + N;
  11349. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11350. GGML_ASSERT(ne0 == D);
  11351. GGML_ASSERT(ne1 == N);
  11352. GGML_ASSERT(P >= 0);
  11353. GGML_ASSERT(nbq0 == sizeof(float));
  11354. GGML_ASSERT(nbk0 == sizeof(float));
  11355. GGML_ASSERT(nbv0 == sizeof(float));
  11356. GGML_ASSERT(neq0 == D);
  11357. GGML_ASSERT(nek0 == D);
  11358. GGML_ASSERT(nev1 == D);
  11359. GGML_ASSERT(neq1 == N);
  11360. GGML_ASSERT(nek1 == N + P);
  11361. GGML_ASSERT(nev1 == D);
  11362. // dst cannot be transposed or permuted
  11363. GGML_ASSERT(nb0 == sizeof(float));
  11364. GGML_ASSERT(nb0 <= nb1);
  11365. GGML_ASSERT(nb1 <= nb2);
  11366. GGML_ASSERT(nb2 <= nb3);
  11367. if (params->type == GGML_TASK_TYPE_INIT) {
  11368. return;
  11369. }
  11370. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11371. return;
  11372. }
  11373. // parallelize by q rows using ggml_vec_dot_f32
  11374. // total rows in q
  11375. const int nr = neq1*neq2*neq3;
  11376. // rows per thread
  11377. const int dr = (nr + nth - 1)/nth;
  11378. // row range for this thread
  11379. const int ir0 = dr*ith;
  11380. const int ir1 = MIN(ir0 + dr, nr);
  11381. const float scale = 1.0f/sqrtf(D);
  11382. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11383. for (int ir = ir0; ir < ir1; ++ir) {
  11384. // q indices
  11385. const int iq3 = ir/(neq2*neq1);
  11386. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11387. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11388. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11389. for (int i = M; i < Mup; ++i) {
  11390. S[i] = -INFINITY;
  11391. }
  11392. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11393. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11394. // k indices
  11395. const int ik3 = iq3;
  11396. const int ik2 = iq2 % nek2;
  11397. const int ik1 = ic;
  11398. // S indices
  11399. const int i1 = ik1;
  11400. ggml_vec_dot_f32(neq0,
  11401. S + i1, 0,
  11402. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11403. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11404. }
  11405. // scale
  11406. ggml_vec_scale_f32(masked_begin, S, scale);
  11407. for (int64_t i = masked_begin; i < M; i++) {
  11408. S[i] = -INFINITY;
  11409. }
  11410. // softmax
  11411. // exclude known -INF S[..] values from max and loop
  11412. // dont forget to set their SW values to zero
  11413. {
  11414. float max = -INFINITY;
  11415. ggml_vec_max_f32(masked_begin, &max, S);
  11416. ggml_float sum = 0.0;
  11417. {
  11418. #ifdef GGML_SOFT_MAX_ACCELERATE
  11419. max = -max;
  11420. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11421. vvexpf(S, S, &Mup);
  11422. ggml_vec_sum_f32(Mup, &sum, S);
  11423. #else
  11424. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11425. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11426. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11427. if (i >= masked_begin) {
  11428. break;
  11429. }
  11430. float * SS = S + i;
  11431. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11432. if (i + j >= masked_begin) {
  11433. break;
  11434. } else if (SS[j] == -INFINITY) {
  11435. SS[j] = 0.0f;
  11436. } else {
  11437. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11438. const float val = expf(SS[j] - max);
  11439. #else
  11440. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11441. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11442. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11443. #endif
  11444. sump[j] += (ggml_float)val;
  11445. SS[j] = val;
  11446. }
  11447. }
  11448. }
  11449. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11450. sum += sump[i];
  11451. }
  11452. #endif
  11453. }
  11454. assert(sum > 0.0);
  11455. sum = 1.0/sum;
  11456. ggml_vec_scale_f32(masked_begin, S, sum);
  11457. #ifndef NDEBUG
  11458. for (int i = 0; i < masked_begin; ++i) {
  11459. assert(!isnan(S[i]));
  11460. assert(!isinf(S[i]));
  11461. }
  11462. #endif
  11463. }
  11464. for (int64_t ic = 0; ic < nev1; ++ic) {
  11465. // dst indices
  11466. const int i1 = iq1;
  11467. const int i2 = iq2;
  11468. const int i3 = iq3;
  11469. // v indices
  11470. const int iv2 = iq2 % nev2;
  11471. const int iv3 = iq3;
  11472. ggml_vec_dot_f32(masked_begin,
  11473. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11474. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11475. S, 0, 1);
  11476. }
  11477. }
  11478. }
  11479. static void ggml_compute_forward_flash_attn_f16(
  11480. const struct ggml_compute_params * params,
  11481. const bool masked,
  11482. struct ggml_tensor * dst) {
  11483. const struct ggml_tensor * q = dst->src[0];
  11484. const struct ggml_tensor * k = dst->src[1];
  11485. const struct ggml_tensor * v = dst->src[2];
  11486. int64_t t0 = ggml_perf_time_us();
  11487. UNUSED(t0);
  11488. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11489. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11490. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11491. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11492. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11493. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11494. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11495. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11496. const int ith = params->ith;
  11497. const int nth = params->nth;
  11498. const int64_t D = neq0;
  11499. const int64_t N = neq1;
  11500. const int64_t P = nek1 - N;
  11501. const int64_t M = P + N;
  11502. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11503. GGML_ASSERT(ne0 == D);
  11504. GGML_ASSERT(ne1 == N);
  11505. GGML_ASSERT(P >= 0);
  11506. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11507. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11508. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11509. GGML_ASSERT(neq0 == D);
  11510. GGML_ASSERT(nek0 == D);
  11511. GGML_ASSERT(nev1 == D);
  11512. GGML_ASSERT(neq1 == N);
  11513. GGML_ASSERT(nek1 == N + P);
  11514. GGML_ASSERT(nev1 == D);
  11515. // dst cannot be transposed or permuted
  11516. GGML_ASSERT(nb0 == sizeof(float));
  11517. GGML_ASSERT(nb0 <= nb1);
  11518. GGML_ASSERT(nb1 <= nb2);
  11519. GGML_ASSERT(nb2 <= nb3);
  11520. if (params->type == GGML_TASK_TYPE_INIT) {
  11521. return;
  11522. }
  11523. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11524. return;
  11525. }
  11526. // parallelize by q rows using ggml_vec_dot_f32
  11527. // total rows in q
  11528. const int nr = neq1*neq2*neq3;
  11529. // rows per thread
  11530. const int dr = (nr + nth - 1)/nth;
  11531. // row range for this thread
  11532. const int ir0 = dr*ith;
  11533. const int ir1 = MIN(ir0 + dr, nr);
  11534. const float scale = 1.0f/sqrtf(D);
  11535. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11536. for (int ir = ir0; ir < ir1; ++ir) {
  11537. // q indices
  11538. const int iq3 = ir/(neq2*neq1);
  11539. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11540. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11541. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11542. for (int i = M; i < Mup; ++i) {
  11543. S[i] = -INFINITY;
  11544. }
  11545. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11546. for (int64_t ic = 0; ic < nek1; ++ic) {
  11547. // k indices
  11548. const int ik3 = iq3;
  11549. const int ik2 = iq2 % nek2;
  11550. const int ik1 = ic;
  11551. // S indices
  11552. const int i1 = ik1;
  11553. ggml_vec_dot_f16(neq0,
  11554. S + i1, 0,
  11555. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11556. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11557. }
  11558. } else {
  11559. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11560. // k indices
  11561. const int ik3 = iq3;
  11562. const int ik2 = iq2 % nek2;
  11563. const int ik1 = ic;
  11564. // S indices
  11565. const int i1 = ik1;
  11566. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11567. S + i1,
  11568. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11569. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11570. }
  11571. }
  11572. // scale
  11573. ggml_vec_scale_f32(nek1, S, scale);
  11574. if (masked) {
  11575. for (int64_t i = P; i < M; i++) {
  11576. if (i > P + iq1) {
  11577. S[i] = -INFINITY;
  11578. }
  11579. }
  11580. }
  11581. // softmax
  11582. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  11583. // dont forget to set their S values to zero
  11584. {
  11585. float max = -INFINITY;
  11586. ggml_vec_max_f32(M, &max, S);
  11587. ggml_float sum = 0.0;
  11588. {
  11589. #ifdef GGML_SOFT_MAX_ACCELERATE
  11590. max = -max;
  11591. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11592. vvexpf(S, S, &Mup);
  11593. ggml_vec_sum_f32(Mup, &sum, S);
  11594. #else
  11595. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11596. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11597. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11598. float * SS = S + i;
  11599. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11600. if (SS[j] == -INFINITY) {
  11601. SS[j] = 0.0f;
  11602. } else {
  11603. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11604. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11605. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11606. sump[j] += (ggml_float)val;
  11607. SS[j] = val;
  11608. }
  11609. }
  11610. }
  11611. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11612. sum += sump[i];
  11613. }
  11614. #endif
  11615. }
  11616. assert(sum > 0.0);
  11617. sum = 1.0/sum;
  11618. ggml_vec_scale_f32(M, S, sum);
  11619. #ifndef NDEBUG
  11620. for (int i = 0; i < M; ++i) {
  11621. assert(!isnan(S[i]));
  11622. assert(!isinf(S[i]));
  11623. }
  11624. #endif
  11625. }
  11626. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11627. for (int64_t i = 0; i < M; i++) {
  11628. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11629. }
  11630. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  11631. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11632. for (int64_t ic = 0; ic < nev1; ++ic) {
  11633. // dst indices
  11634. const int i1 = iq1;
  11635. const int i2 = iq2;
  11636. const int i3 = iq3;
  11637. // v indices
  11638. const int iv2 = iq2 % nev2;
  11639. const int iv3 = iq3;
  11640. ggml_vec_dot_f16(nev0,
  11641. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11642. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
  11643. S16, 0, 1);
  11644. }
  11645. } else {
  11646. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11647. // dst indices
  11648. const int i1 = iq1;
  11649. const int i2 = iq2;
  11650. const int i3 = iq3;
  11651. // v indices
  11652. const int iv2 = iq2 % nev2;
  11653. const int iv3 = iq3;
  11654. ggml_vec_dot_f16_unroll(nev0, nbv1,
  11655. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11656. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  11657. S16);
  11658. }
  11659. }
  11660. }
  11661. }
  11662. static void ggml_compute_forward_flash_attn(
  11663. const struct ggml_compute_params * params,
  11664. const bool masked,
  11665. struct ggml_tensor * dst) {
  11666. const struct ggml_tensor * q = dst->src[0];
  11667. switch (q->type) {
  11668. case GGML_TYPE_F16:
  11669. {
  11670. ggml_compute_forward_flash_attn_f16(params, masked, dst);
  11671. } break;
  11672. case GGML_TYPE_F32:
  11673. {
  11674. ggml_compute_forward_flash_attn_f32(params, masked, dst);
  11675. } break;
  11676. default:
  11677. {
  11678. GGML_ASSERT(false);
  11679. } break;
  11680. }
  11681. }
  11682. // ggml_compute_forward_flash_ff
  11683. static void ggml_compute_forward_flash_ff_f16(
  11684. const struct ggml_compute_params * params,
  11685. struct ggml_tensor * dst) {
  11686. const struct ggml_tensor * a = dst->src[0]; // F16
  11687. const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
  11688. const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
  11689. const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
  11690. const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
  11691. int64_t t0 = ggml_perf_time_us();
  11692. UNUSED(t0);
  11693. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  11694. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  11695. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  11696. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  11697. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  11698. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  11699. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  11700. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  11701. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  11702. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  11703. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11704. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11705. const int ith = params->ith;
  11706. const int nth = params->nth;
  11707. const int64_t D = nea0;
  11708. //const int64_t N = nea1;
  11709. const int64_t M = neb01;
  11710. GGML_ASSERT(ne0 == nea0);
  11711. GGML_ASSERT(ne1 == nea1);
  11712. GGML_ASSERT(ne2 == nea2);
  11713. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11714. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11715. GGML_ASSERT(nbb10 == sizeof(float));
  11716. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11717. GGML_ASSERT(nbc10 == sizeof(float));
  11718. GGML_ASSERT(neb00 == D);
  11719. GGML_ASSERT(neb01 == M);
  11720. GGML_ASSERT(neb10 == M);
  11721. GGML_ASSERT(neb11 == 1);
  11722. GGML_ASSERT(nec00 == M);
  11723. GGML_ASSERT(nec01 == D);
  11724. GGML_ASSERT(nec10 == D);
  11725. GGML_ASSERT(nec11 == 1);
  11726. // dst cannot be transposed or permuted
  11727. GGML_ASSERT(nb0 == sizeof(float));
  11728. GGML_ASSERT(nb0 <= nb1);
  11729. GGML_ASSERT(nb1 <= nb2);
  11730. GGML_ASSERT(nb2 <= nb3);
  11731. if (params->type == GGML_TASK_TYPE_INIT) {
  11732. return;
  11733. }
  11734. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11735. return;
  11736. }
  11737. // parallelize by a rows using ggml_vec_dot_f32
  11738. // total rows in a
  11739. const int nr = nea1*nea2*nea3;
  11740. // rows per thread
  11741. const int dr = (nr + nth - 1)/nth;
  11742. // row range for this thread
  11743. const int ir0 = dr*ith;
  11744. const int ir1 = MIN(ir0 + dr, nr);
  11745. for (int ir = ir0; ir < ir1; ++ir) {
  11746. // a indices
  11747. const int ia3 = ir/(nea2*nea1);
  11748. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11749. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11750. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11751. for (int64_t ic = 0; ic < neb01; ++ic) {
  11752. // b0 indices
  11753. const int ib03 = ia3;
  11754. const int ib02 = ia2;
  11755. const int ib01 = ic;
  11756. // S indices
  11757. const int i1 = ib01;
  11758. ggml_vec_dot_f16(nea0,
  11759. S + i1, 0,
  11760. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
  11761. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
  11762. }
  11763. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11764. //ggml_vec_gelu_f32(neb01, S, S);
  11765. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11766. for (int64_t i = 0; i < M; i++) {
  11767. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11768. }
  11769. ggml_vec_gelu_f16(neb01, S16, S16);
  11770. {
  11771. // dst indices
  11772. const int i1 = ia1;
  11773. const int i2 = ia2;
  11774. const int i3 = ia3;
  11775. for (int64_t ic = 0; ic < nec01; ++ic) {
  11776. ggml_vec_dot_f16(neb01,
  11777. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
  11778. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
  11779. S16, 0, 1);
  11780. }
  11781. ggml_vec_add_f32(nec01,
  11782. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11783. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11784. (float *) c1->data);
  11785. }
  11786. }
  11787. }
  11788. static void ggml_compute_forward_flash_ff(
  11789. const struct ggml_compute_params * params,
  11790. struct ggml_tensor * dst) {
  11791. const struct ggml_tensor * b0 = dst->src[1];
  11792. switch (b0->type) {
  11793. case GGML_TYPE_F16:
  11794. {
  11795. ggml_compute_forward_flash_ff_f16(params, dst);
  11796. } break;
  11797. case GGML_TYPE_F32:
  11798. {
  11799. GGML_ASSERT(false); // TODO
  11800. } break;
  11801. default:
  11802. {
  11803. GGML_ASSERT(false);
  11804. } break;
  11805. }
  11806. }
  11807. // ggml_compute_forward_flash_attn_back
  11808. static void ggml_compute_forward_flash_attn_back_f32(
  11809. const struct ggml_compute_params * params,
  11810. const bool masked,
  11811. struct ggml_tensor * dst) {
  11812. const struct ggml_tensor * q = dst->src[0];
  11813. const struct ggml_tensor * k = dst->src[1];
  11814. const struct ggml_tensor * v = dst->src[2];
  11815. const struct ggml_tensor * d = dst->src[3];
  11816. int64_t t0 = ggml_perf_time_us();
  11817. UNUSED(t0);
  11818. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  11819. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  11820. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  11821. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  11822. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  11823. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  11824. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  11825. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  11826. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  11827. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  11828. const int ith = params->ith;
  11829. const int nth = params->nth;
  11830. const int64_t D = neq0;
  11831. const int64_t N = neq1;
  11832. const int64_t P = nek1 - N;
  11833. const int64_t M = P + N;
  11834. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11835. const int mxDM = MAX(D, Mup);
  11836. // GGML_ASSERT(ne0 == D);
  11837. // GGML_ASSERT(ne1 == N);
  11838. GGML_ASSERT(P >= 0);
  11839. GGML_ASSERT(nbq0 == sizeof(float));
  11840. GGML_ASSERT(nbk0 == sizeof(float));
  11841. GGML_ASSERT(nbv0 == sizeof(float));
  11842. GGML_ASSERT(neq0 == D);
  11843. GGML_ASSERT(nek0 == D);
  11844. GGML_ASSERT(nev1 == D);
  11845. GGML_ASSERT(ned0 == D);
  11846. GGML_ASSERT(neq1 == N);
  11847. GGML_ASSERT(nek1 == N + P);
  11848. GGML_ASSERT(nev1 == D);
  11849. GGML_ASSERT(ned1 == N);
  11850. // dst cannot be transposed or permuted
  11851. GGML_ASSERT(nb0 == sizeof(float));
  11852. GGML_ASSERT(nb0 <= nb1);
  11853. GGML_ASSERT(nb1 <= nb2);
  11854. GGML_ASSERT(nb2 <= nb3);
  11855. if (params->type == GGML_TASK_TYPE_INIT) {
  11856. if (ith == 0) {
  11857. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11858. }
  11859. return;
  11860. }
  11861. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  11862. return;
  11863. }
  11864. const int64_t elem_q = ggml_nelements(q);
  11865. const int64_t elem_k = ggml_nelements(k);
  11866. enum ggml_type result_type = dst->type;
  11867. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  11868. const size_t tsize = ggml_type_size(result_type);
  11869. const size_t offs_q = 0;
  11870. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  11871. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  11872. void * grad_q = (char *) dst->data;
  11873. void * grad_k = (char *) dst->data + offs_k;
  11874. void * grad_v = (char *) dst->data + offs_v;
  11875. const size_t nbgq1 = nb0*neq0;
  11876. const size_t nbgq2 = nb0*neq0*neq1;
  11877. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11878. const size_t nbgk1 = nb0*nek0;
  11879. const size_t nbgk2 = nb0*nek0*nek1;
  11880. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11881. const size_t nbgv1 = nb0*nev0;
  11882. const size_t nbgv2 = nb0*nev0*nev1;
  11883. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11884. // parallelize by k rows using ggml_vec_dot_f32
  11885. // total rows in k
  11886. const int nr = nek2*nek3;
  11887. // rows per thread
  11888. const int dr = (nr + nth - 1)/nth;
  11889. // row range for this thread
  11890. const int ir0 = dr*ith;
  11891. const int ir1 = MIN(ir0 + dr, nr);
  11892. const float scale = 1.0f/sqrtf(D);
  11893. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11894. // how often k2 (and v2) is repeated in q2
  11895. int nrep = neq2/nek2;
  11896. for (int ir = ir0; ir < ir1; ++ir) {
  11897. // q indices
  11898. const int ik3 = ir/(nek2);
  11899. const int ik2 = ir - ik3*nek2;
  11900. const int iq3 = ik3;
  11901. const int id3 = ik3;
  11902. const int iv3 = ik3;
  11903. const int iv2 = ik2;
  11904. for (int irep = 0; irep < nrep; ++irep) {
  11905. const int iq2 = ik2 + irep*nek2;
  11906. const int id2 = iq2;
  11907. // (ik2 + irep*nek2) % nek2 == ik2
  11908. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  11909. const int id1 = iq1;
  11910. // not sure about CACHE_LINE_SIZE_F32..
  11911. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11912. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11913. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11914. for (int i = M; i < Mup; ++i) {
  11915. S[i] = -INFINITY;
  11916. }
  11917. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  11918. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  11919. // k indices
  11920. const int ik1 = ic;
  11921. // S indices
  11922. const int i1 = ik1;
  11923. ggml_vec_dot_f32(neq0,
  11924. S + i1, 0,
  11925. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  11926. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  11927. }
  11928. // scale
  11929. ggml_vec_scale_f32(masked_begin, S, scale);
  11930. for (int64_t i = masked_begin; i < M; i++) {
  11931. S[i] = -INFINITY;
  11932. }
  11933. // softmax
  11934. // exclude known -INF S[..] values from max and loop
  11935. // dont forget to set their SM values to zero
  11936. {
  11937. float max = -INFINITY;
  11938. ggml_vec_max_f32(masked_begin, &max, S);
  11939. ggml_float sum = 0.0;
  11940. {
  11941. #ifdef GGML_SOFT_MAX_ACCELERATE
  11942. max = -max;
  11943. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11944. vvexpf(SM, SM, &Mup);
  11945. ggml_vec_sum_f32(Mup, &sum, SM);
  11946. #else
  11947. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  11948. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11949. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11950. if (i >= masked_begin) {
  11951. break;
  11952. }
  11953. float * SR = S + i;
  11954. float * SW = SM + i;
  11955. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11956. if (i + j >= masked_begin) {
  11957. break;
  11958. } else if (SR[j] == -INFINITY) {
  11959. SW[j] = 0.0f;
  11960. } else {
  11961. #ifndef GGML_FLASH_ATTN_EXP_FP16
  11962. const float val = expf(SR[j] - max);
  11963. #else
  11964. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11965. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11966. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt[j]]);
  11967. #endif
  11968. sump[j] += (ggml_float)val;
  11969. SW[j] = val;
  11970. }
  11971. }
  11972. }
  11973. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11974. sum += sump[i];
  11975. }
  11976. #endif
  11977. }
  11978. assert(sum > 0.0);
  11979. sum = 1.0/sum;
  11980. ggml_vec_scale_f32(masked_begin, SM, sum);
  11981. }
  11982. // step-by-step explanation
  11983. {
  11984. // forward-process shape grads from backward process
  11985. // parallel_for ik2,ik3:
  11986. // for irep:
  11987. // iq2 = ik2 + irep*nek2
  11988. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  11989. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11990. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  11991. // for iq1:
  11992. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11993. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11994. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11995. // S0 = -Inf [D,1,1,1]
  11996. // ~S1[i] = dot(kcur[:D,i], qcur)
  11997. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11998. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11999. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12000. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12001. // ~S5[i] = dot(vcur[:,i], S4)
  12002. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12003. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12004. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12005. // dst backward-/ grad[dst] = d
  12006. //
  12007. // output gradients with their dependencies:
  12008. //
  12009. // grad[kcur] = grad[S1].T @ qcur
  12010. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12011. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12012. // grad[S4] = grad[S5] @ vcur
  12013. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12014. // grad[qcur] = grad[S1] @ kcur
  12015. // grad[vcur] = grad[S5].T @ S4
  12016. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12017. //
  12018. // in post-order:
  12019. //
  12020. // S1 = qcur @ kcur.T
  12021. // S2 = S1 * scale
  12022. // S3 = diag_mask_inf(S2, P)
  12023. // S4 = softmax(S3)
  12024. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12025. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12026. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12027. // grad[qcur] = grad[S1] @ kcur
  12028. // grad[kcur] = grad[S1].T @ qcur
  12029. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12030. //
  12031. // using less variables (SM=S4):
  12032. //
  12033. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12034. // SM = softmax(S)
  12035. // S = d[:D,iq1,iq2,iq3] @ vcur
  12036. // dot_SM_gradSM = dot(SM, S)
  12037. // S = SM * (S - dot(SM, S))
  12038. // S = diag_mask_zero(S, P) * scale
  12039. //
  12040. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12041. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12042. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12043. }
  12044. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12045. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12046. // for ic:
  12047. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12048. // exclude known future zero S[..] values from operation
  12049. ggml_vec_set_f32(masked_begin, S, 0);
  12050. for (int64_t ic = 0; ic < D; ++ic) {
  12051. ggml_vec_mad_f32(masked_begin,
  12052. S,
  12053. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12054. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12055. }
  12056. // S = SM * (S - dot(SM, S))
  12057. float dot_SM_gradSM = 0;
  12058. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12059. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12060. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12061. // S = diag_mask_zero(S, P) * scale
  12062. // already done by above ggml_vec_set_f32
  12063. // exclude known zero S[..] values from operation
  12064. ggml_vec_scale_f32(masked_begin, S, scale);
  12065. // S shape [M,1]
  12066. // SM shape [M,1]
  12067. // kcur shape [D,M]
  12068. // qcur shape [D,1]
  12069. // vcur shape [M,D]
  12070. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12071. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12072. // for ic:
  12073. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12074. // exclude known zero S[..] values from loop
  12075. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12076. ggml_vec_mad_f32(D,
  12077. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12078. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12079. S[ic]);
  12080. }
  12081. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12082. // for ic:
  12083. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12084. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12085. // exclude known zero S[..] values from loop
  12086. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12087. ggml_vec_mad_f32(D,
  12088. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12089. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12090. S[ic]);
  12091. }
  12092. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12093. // for ic:
  12094. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12095. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12096. // exclude known zero SM[..] values from mad
  12097. for (int64_t ic = 0; ic < D; ++ic) {
  12098. ggml_vec_mad_f32(masked_begin,
  12099. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12100. SM,
  12101. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12102. }
  12103. }
  12104. }
  12105. }
  12106. }
  12107. static void ggml_compute_forward_flash_attn_back(
  12108. const struct ggml_compute_params * params,
  12109. const bool masked,
  12110. struct ggml_tensor * dst) {
  12111. const struct ggml_tensor * q = dst->src[0];
  12112. switch (q->type) {
  12113. case GGML_TYPE_F32:
  12114. {
  12115. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12116. } break;
  12117. default:
  12118. {
  12119. GGML_ASSERT(false);
  12120. } break;
  12121. }
  12122. }
  12123. // ggml_compute_forward_ssm_conv
  12124. static void ggml_compute_forward_ssm_conv_f32(
  12125. const struct ggml_compute_params * params,
  12126. struct ggml_tensor * dst) {
  12127. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12128. return;
  12129. }
  12130. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12131. const struct ggml_tensor * src1 = dst->src[1]; // x
  12132. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12133. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12134. const int ith = params->ith;
  12135. const int nth = params->nth;
  12136. const int nc = src2->ne[0]; // d_conv
  12137. const int nr = src0->ne[1]; // d_inner
  12138. const int n_t = src1->ne[1]; // n_tokens
  12139. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12140. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12141. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12142. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12143. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12144. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12145. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12146. // for use with the destination state offset between sequences
  12147. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12148. // rows per thread
  12149. const int dr = (nr + nth - 1)/nth;
  12150. // row range for this thread
  12151. const int ir0 = dr*ith;
  12152. const int ir1 = MIN(ir0 + dr, nr);
  12153. const int ir = ir1 - ir0;
  12154. if (n_kv > 1) {
  12155. // multiple sequences means it's hard to know when it's the first time a state is read,
  12156. // so copy them all over to the destination, just to be sure.
  12157. for (int i3 = 0; i3 < n_kv; ++i3) {
  12158. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12159. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12160. // can't use memcpy because of d_conv vs d_conv - 1
  12161. for (int i1 = 0; i1 < ir; ++i1) {
  12162. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12163. // copy s0 to last (d_conv - 1) columns of s
  12164. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12165. }
  12166. }
  12167. }
  12168. }
  12169. for (int i2 = 0; i2 < n_t; ++i2) {
  12170. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12171. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12172. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12173. float * s0; // {d_conv - 1, d_inner, n_kv}
  12174. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12175. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12176. int ne0s0;
  12177. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12178. // avoid needing to copy the state for the first token
  12179. if (i2 == 0) {
  12180. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12181. ne0s0 = src0->ne[0];
  12182. } else {
  12183. // the source is the last (d_conv - 1) columns of the destination
  12184. s0 = s + 1;
  12185. ne0s0 = nc;
  12186. }
  12187. // d_inner
  12188. for (int i1 = 0; i1 < ir; ++i1) {
  12189. // shift state left
  12190. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12191. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12192. }
  12193. // insert x on the last column
  12194. s[(nc - 1) + i1*nc] = x0[i1];
  12195. }
  12196. // handle copies when there are multiple output states
  12197. for (int i3 = 1; i3 < n_kv; ++i3) {
  12198. int32_t seq = sq[i3];
  12199. if (0 <= seq && seq < n_kv) {
  12200. float * s1 = s + (seq - sq[0])*nc*nr;
  12201. memcpy(s1, s, nc*ir*sizeof(float));
  12202. } else {
  12203. // stop at negative or too big seq_ids
  12204. break;
  12205. }
  12206. }
  12207. // it seems a little faster when this is separate from the state shift
  12208. for (int i1 = 0; i1 < ir; ++i1) {
  12209. // rowwise dot product
  12210. float sumf = 0.0f;
  12211. for (int i0 = 0; i0 < nc; ++i0) {
  12212. int i = i0 + i1*nc;
  12213. sumf += s[i] * c[i];
  12214. }
  12215. x[i1] = sumf;
  12216. }
  12217. }
  12218. }
  12219. static void ggml_compute_forward_ssm_conv(
  12220. const struct ggml_compute_params * params,
  12221. struct ggml_tensor * dst) {
  12222. switch (dst->src[0]->type) {
  12223. case GGML_TYPE_F32:
  12224. {
  12225. ggml_compute_forward_ssm_conv_f32(params, dst);
  12226. } break;
  12227. default:
  12228. {
  12229. GGML_ASSERT(false);
  12230. } break;
  12231. }
  12232. }
  12233. // ggml_compute_forward_ssm_scan
  12234. static void ggml_compute_forward_ssm_scan_f32(
  12235. const struct ggml_compute_params * params,
  12236. struct ggml_tensor * dst) {
  12237. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12238. return;
  12239. }
  12240. const struct ggml_tensor * src0 = dst->src[0]; // s
  12241. const struct ggml_tensor * src1 = dst->src[1]; // x
  12242. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12243. const struct ggml_tensor * src3 = dst->src[3]; // A
  12244. const struct ggml_tensor * src4 = dst->src[4]; // B
  12245. const struct ggml_tensor * src5 = dst->src[5]; // C
  12246. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12247. const int ith = params->ith;
  12248. const int nth = params->nth;
  12249. const int64_t nc = src0->ne[0]; // d_state
  12250. const int64_t nr = src0->ne[1]; // d_inner
  12251. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12252. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12253. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12254. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12255. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12256. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12257. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12258. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12259. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12260. // required for the dot product between s and C, and when copying the states
  12261. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12262. // required for per-sequence offsets for states
  12263. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12264. // required to get correct offset for state destination (i.e. src1->nb[2])
  12265. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12266. // rows per thread
  12267. const int dr = (nr + nth - 1)/nth;
  12268. // row range for this thread
  12269. const int ir0 = dr*ith;
  12270. const int ir1 = MIN(ir0 + dr, nr);
  12271. const int ir = ir1 - ir0;
  12272. if (n_kv > 1) {
  12273. // it's hard to know if the source states have already been copied
  12274. // when there are multiple, so copy them already.
  12275. for (int i3 = 0; i3 < n_kv; ++i3) {
  12276. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12277. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12278. memcpy(s, s0, nc*ir*sizeof(float));
  12279. }
  12280. }
  12281. for (int i2 = 0; i2 < n_t; ++i2) {
  12282. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12283. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12284. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12285. float * s0;
  12286. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12287. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12288. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12289. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12290. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12291. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12292. // avoid needing to copy the state for the first token
  12293. if (i2 == 0) {
  12294. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12295. } else {
  12296. // otherwise the source is the same as the destination
  12297. s0 = s;
  12298. }
  12299. // d_inner
  12300. for (int i1 = 0; i1 < ir; ++i1) {
  12301. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12302. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12303. float x_dt = x[i1] * dt_soft_plus;
  12304. float sumf = 0.0f;
  12305. // d_state
  12306. for (int i0 = 0; i0 < nc; ++i0) {
  12307. int i = i0 + i1*nc;
  12308. // state = prev_state * dA + dB * x
  12309. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12310. // y = rowwise_dotprod(state, C)
  12311. sumf += state * C[i0];
  12312. s[i] = state;
  12313. }
  12314. y[i1] = sumf;
  12315. }
  12316. // handle copies when there are multiple output states
  12317. for (int i3 = 1; i3 < n_kv; ++i3) {
  12318. int32_t seq = sq[i3];
  12319. if (0 <= seq && seq < n_kv) {
  12320. float * s1 = s + (seq - sq[0])*nc*nr;
  12321. memcpy(s1, s, nc*ir*sizeof(float));
  12322. } else {
  12323. // stop at negative or too big seq_ids
  12324. break;
  12325. }
  12326. }
  12327. }
  12328. }
  12329. static void ggml_compute_forward_ssm_scan(
  12330. const struct ggml_compute_params * params,
  12331. struct ggml_tensor * dst) {
  12332. switch (dst->src[0]->type) {
  12333. case GGML_TYPE_F32:
  12334. {
  12335. ggml_compute_forward_ssm_scan_f32(params, dst);
  12336. } break;
  12337. default:
  12338. {
  12339. GGML_ASSERT(false);
  12340. } break;
  12341. }
  12342. }
  12343. // ggml_compute_forward_win_part
  12344. static void ggml_compute_forward_win_part_f32(
  12345. const struct ggml_compute_params * params,
  12346. struct ggml_tensor * dst) {
  12347. const struct ggml_tensor * src0 = dst->src[0];
  12348. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12349. return;
  12350. }
  12351. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12352. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12353. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12354. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12355. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12356. assert(ne00 == ne0);
  12357. assert(ne3 == nep0*nep1);
  12358. // TODO: optimize / multi-thread
  12359. for (int py = 0; py < nep1; ++py) {
  12360. for (int px = 0; px < nep0; ++px) {
  12361. const int64_t i3 = py*nep0 + px;
  12362. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12363. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12364. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12365. const int64_t i02 = py*w + i2;
  12366. const int64_t i01 = px*w + i1;
  12367. const int64_t i00 = i0;
  12368. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12369. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12370. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12371. ((float *) dst->data)[i] = 0.0f;
  12372. } else {
  12373. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12374. }
  12375. }
  12376. }
  12377. }
  12378. }
  12379. }
  12380. }
  12381. static void ggml_compute_forward_win_part(
  12382. const struct ggml_compute_params * params,
  12383. struct ggml_tensor * dst) {
  12384. const struct ggml_tensor * src0 = dst->src[0];
  12385. switch (src0->type) {
  12386. case GGML_TYPE_F32:
  12387. {
  12388. ggml_compute_forward_win_part_f32(params, dst);
  12389. } break;
  12390. default:
  12391. {
  12392. GGML_ASSERT(false);
  12393. } break;
  12394. }
  12395. }
  12396. // ggml_compute_forward_win_unpart
  12397. static void ggml_compute_forward_win_unpart_f32(
  12398. const struct ggml_compute_params * params,
  12399. struct ggml_tensor * dst) {
  12400. const struct ggml_tensor * src0 = dst->src[0];
  12401. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12402. return;
  12403. }
  12404. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12405. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12406. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12407. // padding
  12408. const int px = (w - ne1%w)%w;
  12409. //const int py = (w - ne2%w)%w;
  12410. const int npx = (px + ne1)/w;
  12411. //const int npy = (py + ne2)/w;
  12412. assert(ne0 == ne00);
  12413. // TODO: optimize / multi-thread
  12414. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12415. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12416. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12417. const int ip2 = i2/w;
  12418. const int ip1 = i1/w;
  12419. const int64_t i02 = i2%w;
  12420. const int64_t i01 = i1%w;
  12421. const int64_t i00 = i0;
  12422. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12423. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12424. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12425. }
  12426. }
  12427. }
  12428. }
  12429. static void ggml_compute_forward_win_unpart(
  12430. const struct ggml_compute_params * params,
  12431. struct ggml_tensor * dst) {
  12432. const struct ggml_tensor * src0 = dst->src[0];
  12433. switch (src0->type) {
  12434. case GGML_TYPE_F32:
  12435. {
  12436. ggml_compute_forward_win_unpart_f32(params, dst);
  12437. } break;
  12438. default:
  12439. {
  12440. GGML_ASSERT(false);
  12441. } break;
  12442. }
  12443. }
  12444. //gmml_compute_forward_unary
  12445. static void ggml_compute_forward_unary(
  12446. const struct ggml_compute_params * params,
  12447. struct ggml_tensor * dst) {
  12448. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12449. switch (op) {
  12450. case GGML_UNARY_OP_ABS:
  12451. {
  12452. ggml_compute_forward_abs(params, dst);
  12453. } break;
  12454. case GGML_UNARY_OP_SGN:
  12455. {
  12456. ggml_compute_forward_sgn(params, dst);
  12457. } break;
  12458. case GGML_UNARY_OP_NEG:
  12459. {
  12460. ggml_compute_forward_neg(params, dst);
  12461. } break;
  12462. case GGML_UNARY_OP_STEP:
  12463. {
  12464. ggml_compute_forward_step(params, dst);
  12465. } break;
  12466. case GGML_UNARY_OP_TANH:
  12467. {
  12468. ggml_compute_forward_tanh(params, dst);
  12469. } break;
  12470. case GGML_UNARY_OP_ELU:
  12471. {
  12472. ggml_compute_forward_elu(params, dst);
  12473. } break;
  12474. case GGML_UNARY_OP_RELU:
  12475. {
  12476. ggml_compute_forward_relu(params, dst);
  12477. } break;
  12478. case GGML_UNARY_OP_GELU:
  12479. {
  12480. ggml_compute_forward_gelu(params, dst);
  12481. } break;
  12482. case GGML_UNARY_OP_GELU_QUICK:
  12483. {
  12484. ggml_compute_forward_gelu_quick(params, dst);
  12485. } break;
  12486. case GGML_UNARY_OP_SILU:
  12487. {
  12488. ggml_compute_forward_silu(params, dst);
  12489. } break;
  12490. case GGML_UNARY_OP_HARDSWISH:
  12491. {
  12492. ggml_compute_forward_hardswish(params, dst);
  12493. } break;
  12494. case GGML_UNARY_OP_HARDSIGMOID:
  12495. {
  12496. ggml_compute_forward_hardsigmoid(params, dst);
  12497. } break;
  12498. default:
  12499. {
  12500. GGML_ASSERT(false);
  12501. } break;
  12502. }
  12503. }
  12504. // ggml_compute_forward_get_rel_pos
  12505. static void ggml_compute_forward_get_rel_pos_f16(
  12506. const struct ggml_compute_params * params,
  12507. struct ggml_tensor * dst) {
  12508. const struct ggml_tensor * src0 = dst->src[0];
  12509. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12510. return;
  12511. }
  12512. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  12513. GGML_TENSOR_UNARY_OP_LOCALS
  12514. const int64_t w = ne1;
  12515. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  12516. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  12517. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12518. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12519. const int64_t pos = (w - i1 - 1) + i2;
  12520. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12521. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  12522. }
  12523. }
  12524. }
  12525. }
  12526. static void ggml_compute_forward_get_rel_pos(
  12527. const struct ggml_compute_params * params,
  12528. struct ggml_tensor * dst) {
  12529. const struct ggml_tensor * src0 = dst->src[0];
  12530. switch (src0->type) {
  12531. case GGML_TYPE_F16:
  12532. {
  12533. ggml_compute_forward_get_rel_pos_f16(params, dst);
  12534. } break;
  12535. default:
  12536. {
  12537. GGML_ASSERT(false);
  12538. } break;
  12539. }
  12540. }
  12541. // ggml_compute_forward_add_rel_pos
  12542. static void ggml_compute_forward_add_rel_pos_f32(
  12543. const struct ggml_compute_params * params,
  12544. struct ggml_tensor * dst) {
  12545. const struct ggml_tensor * src0 = dst->src[0];
  12546. const struct ggml_tensor * src1 = dst->src[1];
  12547. const struct ggml_tensor * src2 = dst->src[2];
  12548. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  12549. if (!inplace && params->type == GGML_TASK_TYPE_INIT) {
  12550. if (params->ith != 0) {
  12551. return;
  12552. }
  12553. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  12554. return;
  12555. }
  12556. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12557. return;
  12558. }
  12559. int64_t t0 = ggml_perf_time_us();
  12560. UNUSED(t0);
  12561. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  12562. float * src1_data = (float *) src1->data;
  12563. float * src2_data = (float *) src2->data;
  12564. float * dst_data = (float *) dst->data;
  12565. const int64_t ne10 = src1->ne[0];
  12566. const int64_t ne11 = src1->ne[1];
  12567. const int64_t ne12 = src1->ne[2];
  12568. const int64_t ne13 = src1->ne[3];
  12569. const int ith = params->ith;
  12570. const int nth = params->nth;
  12571. // total patches in dst
  12572. const int np = ne13;
  12573. // patches per thread
  12574. const int dp = (np + nth - 1)/nth;
  12575. // patch range for this thread
  12576. const int ip0 = dp*ith;
  12577. const int ip1 = MIN(ip0 + dp, np);
  12578. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  12579. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  12580. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  12581. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  12582. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  12583. const int64_t jp0 = jp1 + i10;
  12584. const float src1_e = src1_data[jp0];
  12585. const float src2_e = src2_data[jp0];
  12586. const int64_t jdh = jp0 * ne10;
  12587. const int64_t jdw = jdh - (ne10 - 1) * i10;
  12588. for (int64_t j = 0; j < ne10; ++j) {
  12589. dst_data[jdh + j ] += src2_e;
  12590. dst_data[jdw + j*ne10] += src1_e;
  12591. }
  12592. }
  12593. }
  12594. }
  12595. }
  12596. }
  12597. static void ggml_compute_forward_add_rel_pos(
  12598. const struct ggml_compute_params * params,
  12599. struct ggml_tensor * dst) {
  12600. const struct ggml_tensor * src0 = dst->src[0];
  12601. switch (src0->type) {
  12602. case GGML_TYPE_F32:
  12603. {
  12604. ggml_compute_forward_add_rel_pos_f32(params, dst);
  12605. } break;
  12606. default:
  12607. {
  12608. GGML_ASSERT(false);
  12609. } break;
  12610. }
  12611. }
  12612. // ggml_compute_forward_map_unary
  12613. static void ggml_compute_forward_map_unary_f32(
  12614. const struct ggml_compute_params * params,
  12615. struct ggml_tensor * dst,
  12616. const ggml_unary_op_f32_t fun) {
  12617. const struct ggml_tensor * src0 = dst->src[0];
  12618. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12619. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12620. return;
  12621. }
  12622. const int n = ggml_nrows(src0);
  12623. const int nc = src0->ne[0];
  12624. assert( dst->nb[0] == sizeof(float));
  12625. assert(src0->nb[0] == sizeof(float));
  12626. for (int i = 0; i < n; i++) {
  12627. fun(nc,
  12628. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12629. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12630. }
  12631. }
  12632. static void ggml_compute_forward_map_unary(
  12633. const struct ggml_compute_params * params,
  12634. struct ggml_tensor * dst,
  12635. const ggml_unary_op_f32_t fun) {
  12636. const struct ggml_tensor * src0 = dst->src[0];
  12637. switch (src0->type) {
  12638. case GGML_TYPE_F32:
  12639. {
  12640. ggml_compute_forward_map_unary_f32(params, dst, fun);
  12641. } break;
  12642. default:
  12643. {
  12644. GGML_ASSERT(false);
  12645. } break;
  12646. }
  12647. }
  12648. // ggml_compute_forward_map_binary
  12649. static void ggml_compute_forward_map_binary_f32(
  12650. const struct ggml_compute_params * params,
  12651. struct ggml_tensor * dst,
  12652. const ggml_binary_op_f32_t fun) {
  12653. const struct ggml_tensor * src0 = dst->src[0];
  12654. const struct ggml_tensor * src1 = dst->src[1];
  12655. assert(params->ith == 0);
  12656. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12657. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12658. return;
  12659. }
  12660. const int n = ggml_nrows(src0);
  12661. const int nc = src0->ne[0];
  12662. assert( dst->nb[0] == sizeof(float));
  12663. assert(src0->nb[0] == sizeof(float));
  12664. assert(src1->nb[0] == sizeof(float));
  12665. for (int i = 0; i < n; i++) {
  12666. fun(nc,
  12667. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12668. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12669. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12670. }
  12671. }
  12672. static void ggml_compute_forward_map_binary(
  12673. const struct ggml_compute_params * params,
  12674. struct ggml_tensor * dst,
  12675. const ggml_binary_op_f32_t fun) {
  12676. const struct ggml_tensor * src0 = dst->src[0];
  12677. switch (src0->type) {
  12678. case GGML_TYPE_F32:
  12679. {
  12680. ggml_compute_forward_map_binary_f32(params, dst, fun);
  12681. } break;
  12682. default:
  12683. {
  12684. GGML_ASSERT(false);
  12685. } break;
  12686. }
  12687. }
  12688. // ggml_compute_forward_map_custom1
  12689. static void ggml_compute_forward_map_custom1_f32(
  12690. const struct ggml_compute_params * params,
  12691. struct ggml_tensor * dst,
  12692. const ggml_custom1_op_f32_t fun) {
  12693. const struct ggml_tensor * a = dst->src[0];
  12694. assert(params->ith == 0);
  12695. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12696. return;
  12697. }
  12698. fun(dst, a);
  12699. }
  12700. // ggml_compute_forward_map_custom2
  12701. static void ggml_compute_forward_map_custom2_f32(
  12702. const struct ggml_compute_params * params,
  12703. struct ggml_tensor * dst,
  12704. const ggml_custom2_op_f32_t fun) {
  12705. const struct ggml_tensor * a = dst->src[0];
  12706. const struct ggml_tensor * b = dst->src[1];
  12707. assert(params->ith == 0);
  12708. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12709. return;
  12710. }
  12711. fun(dst, a, b);
  12712. }
  12713. // ggml_compute_forward_map_custom3
  12714. static void ggml_compute_forward_map_custom3_f32(
  12715. const struct ggml_compute_params * params,
  12716. struct ggml_tensor * dst,
  12717. const ggml_custom3_op_f32_t fun) {
  12718. const struct ggml_tensor * a = dst->src[0];
  12719. const struct ggml_tensor * b = dst->src[1];
  12720. const struct ggml_tensor * c = dst->src[1];
  12721. assert(params->ith == 0);
  12722. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12723. return;
  12724. }
  12725. fun(dst, a, b, c);
  12726. }
  12727. // ggml_compute_forward_map_custom1
  12728. static void ggml_compute_forward_map_custom1(
  12729. const struct ggml_compute_params * params,
  12730. struct ggml_tensor * dst) {
  12731. const struct ggml_tensor * a = dst->src[0];
  12732. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12733. return;
  12734. }
  12735. struct ggml_map_custom1_op_params p;
  12736. memcpy(&p, dst->op_params, sizeof(p));
  12737. p.fun(dst, a, params->ith, params->nth, p.userdata);
  12738. }
  12739. // ggml_compute_forward_map_custom2
  12740. static void ggml_compute_forward_map_custom2(
  12741. const struct ggml_compute_params * params,
  12742. struct ggml_tensor * dst) {
  12743. const struct ggml_tensor * a = dst->src[0];
  12744. const struct ggml_tensor * b = dst->src[1];
  12745. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12746. return;
  12747. }
  12748. struct ggml_map_custom2_op_params p;
  12749. memcpy(&p, dst->op_params, sizeof(p));
  12750. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  12751. }
  12752. // ggml_compute_forward_map_custom3
  12753. static void ggml_compute_forward_map_custom3(
  12754. const struct ggml_compute_params * params,
  12755. struct ggml_tensor * dst) {
  12756. const struct ggml_tensor * a = dst->src[0];
  12757. const struct ggml_tensor * b = dst->src[1];
  12758. const struct ggml_tensor * c = dst->src[2];
  12759. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12760. return;
  12761. }
  12762. struct ggml_map_custom3_op_params p;
  12763. memcpy(&p, dst->op_params, sizeof(p));
  12764. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  12765. }
  12766. // ggml_compute_forward_cross_entropy_loss
  12767. static void ggml_compute_forward_cross_entropy_loss_f32(
  12768. const struct ggml_compute_params * params,
  12769. struct ggml_tensor * dst) {
  12770. const struct ggml_tensor * src0 = dst->src[0];
  12771. const struct ggml_tensor * src1 = dst->src[1];
  12772. GGML_ASSERT(ggml_is_contiguous(src0));
  12773. GGML_ASSERT(ggml_is_contiguous(src1));
  12774. GGML_ASSERT(ggml_is_scalar(dst));
  12775. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12776. const int ith = params->ith;
  12777. const int nth = params->nth;
  12778. float * sums = (float *) params->wdata;
  12779. // TODO: handle transposed/permuted matrices
  12780. const int nc = src0->ne[0];
  12781. const int nr = ggml_nrows(src0);
  12782. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  12783. if (params->type == GGML_TASK_TYPE_INIT) {
  12784. if (ith == 0) {
  12785. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12786. }
  12787. return;
  12788. }
  12789. if (params->type == GGML_TASK_TYPE_FINALIZE) {
  12790. if (ith == 0) {
  12791. float * dp = (float *) dst->data;
  12792. ggml_vec_sum_f32(nth, dp, sums);
  12793. dp[0] *= -1.0f / (float) nr;
  12794. }
  12795. return;
  12796. }
  12797. const double eps = 1e-9;
  12798. // rows per thread
  12799. const int dr = (nr + nth - 1)/nth;
  12800. // row range for this thread
  12801. const int ir0 = dr*ith;
  12802. const int ir1 = MIN(ir0 + dr, nr);
  12803. for (int i1 = ir0; i1 < ir1; i1++) {
  12804. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12805. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12806. float * st = ((float *) params->wdata) + nth + ith*nc;
  12807. #ifndef NDEBUG
  12808. for (int i = 0; i < nc; ++i) {
  12809. //printf("p[%d] = %f\n", i, p[i]);
  12810. assert(!isnan(s0[i]));
  12811. assert(!isnan(s1[i]));
  12812. }
  12813. #endif
  12814. // soft_max
  12815. ggml_float sum = 0.0;
  12816. {
  12817. float max = -INFINITY;
  12818. ggml_vec_max_f32(nc, &max, s0);
  12819. uint16_t scvt; UNUSED(scvt);
  12820. for (int i = 0; i < nc; i++) {
  12821. if (s0[i] == -INFINITY) {
  12822. st[i] = 0.0f;
  12823. } else {
  12824. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12825. const float s = s0[i] - max;
  12826. const float val = expf(s);
  12827. #else
  12828. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12829. memcpy(&scvt, &s, sizeof(scvt));
  12830. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12831. #endif
  12832. sum += (ggml_float)val;
  12833. st[i] = val;
  12834. }
  12835. }
  12836. assert(sum > 0.0);
  12837. // sum = 1.0/sum;
  12838. }
  12839. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12840. sum = (1.0 - eps) / sum;
  12841. ggml_vec_scale_f32(nc, st, sum);
  12842. ggml_vec_add1_f32(nc, st, st, eps);
  12843. ggml_vec_log_f32(nc, st, st);
  12844. ggml_vec_mul_f32(nc, st, st, s1);
  12845. float st_sum = 0;
  12846. ggml_vec_sum_f32(nc, &st_sum, st);
  12847. sums[ith] += st_sum;
  12848. #ifndef NDEBUG
  12849. for (int i = 0; i < nc; ++i) {
  12850. assert(!isnan(st[i]));
  12851. assert(!isinf(st[i]));
  12852. }
  12853. #endif
  12854. }
  12855. }
  12856. static void ggml_compute_forward_cross_entropy_loss(
  12857. const struct ggml_compute_params * params,
  12858. struct ggml_tensor * dst) {
  12859. const struct ggml_tensor * src0 = dst->src[0];
  12860. switch (src0->type) {
  12861. case GGML_TYPE_F32:
  12862. {
  12863. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  12864. } break;
  12865. default:
  12866. {
  12867. GGML_ASSERT(false);
  12868. } break;
  12869. }
  12870. }
  12871. // ggml_compute_forward_cross_entropy_loss_back
  12872. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12873. const struct ggml_compute_params * params,
  12874. struct ggml_tensor * dst) {
  12875. const struct ggml_tensor * src0 = dst->src[0];
  12876. const struct ggml_tensor * src1 = dst->src[1];
  12877. const struct ggml_tensor * opt0 = dst->src[2];
  12878. GGML_ASSERT(ggml_is_contiguous(dst));
  12879. GGML_ASSERT(ggml_is_contiguous(src0));
  12880. GGML_ASSERT(ggml_is_contiguous(src1));
  12881. GGML_ASSERT(ggml_is_contiguous(opt0));
  12882. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12883. const int64_t ith = params->ith;
  12884. const int64_t nth = params->nth;
  12885. if (params->type == GGML_TASK_TYPE_INIT || params->type == GGML_TASK_TYPE_FINALIZE) {
  12886. return;
  12887. }
  12888. const double eps = 1e-9;
  12889. // TODO: handle transposed/permuted matrices
  12890. const int64_t nc = src0->ne[0];
  12891. const int64_t nr = ggml_nrows(src0);
  12892. // rows per thread
  12893. const int64_t dr = (nr + nth - 1)/nth;
  12894. // row range for this thread
  12895. const int64_t ir0 = dr*ith;
  12896. const int64_t ir1 = MIN(ir0 + dr, nr);
  12897. float * d = (float *) opt0->data;
  12898. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12899. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12900. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12901. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12902. #ifndef NDEBUG
  12903. for (int i = 0; i < nc; ++i) {
  12904. //printf("p[%d] = %f\n", i, p[i]);
  12905. assert(!isnan(s0[i]));
  12906. assert(!isnan(s1[i]));
  12907. }
  12908. #endif
  12909. // soft_max
  12910. ggml_float sum = 0.0;
  12911. {
  12912. float max = -INFINITY;
  12913. ggml_vec_max_f32(nc, &max, s0);
  12914. uint16_t scvt; UNUSED(scvt);
  12915. for (int i = 0; i < nc; i++) {
  12916. if (s0[i] == -INFINITY) {
  12917. ds0[i] = 0.0f;
  12918. } else {
  12919. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  12920. const float s = s0[i] - max;
  12921. const float val = expf(s);
  12922. #else
  12923. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12924. memcpy(&scvt, &s, sizeof(scvt));
  12925. const float val = GGML_FP16_TO_FP32(ggml_table_exp_f16[scvt]);
  12926. #endif
  12927. sum += (ggml_float)val;
  12928. ds0[i] = val;
  12929. }
  12930. }
  12931. assert(sum > 0.0);
  12932. sum = (1.0 - eps)/sum;
  12933. }
  12934. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  12935. ggml_vec_scale_f32(nc, ds0, sum);
  12936. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  12937. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  12938. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  12939. #ifndef NDEBUG
  12940. for (int i = 0; i < nc; ++i) {
  12941. assert(!isnan(ds0[i]));
  12942. assert(!isinf(ds0[i]));
  12943. }
  12944. #endif
  12945. }
  12946. }
  12947. static void ggml_compute_forward_cross_entropy_loss_back(
  12948. const struct ggml_compute_params * params,
  12949. struct ggml_tensor * dst) {
  12950. const struct ggml_tensor * src0 = dst->src[0];
  12951. switch (src0->type) {
  12952. case GGML_TYPE_F32:
  12953. {
  12954. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  12955. } break;
  12956. default:
  12957. {
  12958. GGML_ASSERT(false);
  12959. } break;
  12960. }
  12961. }
  12962. /////////////////////////////////
  12963. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12964. GGML_ASSERT(params);
  12965. if (tensor->op == GGML_OP_NONE) {
  12966. return;
  12967. }
  12968. #ifdef GGML_USE_CUBLAS
  12969. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12970. if (skip_cpu) {
  12971. return;
  12972. }
  12973. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12974. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12975. #elif defined(GGML_USE_VULKAN)
  12976. const bool skip_cpu = ggml_vk_compute_forward_cpu_assist(params, tensor);
  12977. #ifdef GGML_VULKAN_CHECK_RESULTS
  12978. if (skip_cpu) {
  12979. ggml_vk_check_results_1_cpu_assist(params, tensor);
  12980. }
  12981. #endif
  12982. if (skip_cpu) {
  12983. return;
  12984. }
  12985. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_TYPE_CPU);
  12986. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_TYPE_CPU);
  12987. #endif // GGML_USE_CUBLAS
  12988. #ifdef GGML_USE_SYCL
  12989. bool skip_cpu = ggml_sycl_compute_forward(params, tensor);
  12990. if (skip_cpu) {
  12991. return;
  12992. }
  12993. #endif // GGML_USE_SYCL
  12994. switch (tensor->op) {
  12995. case GGML_OP_DUP:
  12996. {
  12997. ggml_compute_forward_dup(params, tensor);
  12998. } break;
  12999. case GGML_OP_ADD:
  13000. {
  13001. ggml_compute_forward_add(params, tensor);
  13002. } break;
  13003. case GGML_OP_ADD1:
  13004. {
  13005. ggml_compute_forward_add1(params, tensor);
  13006. } break;
  13007. case GGML_OP_ACC:
  13008. {
  13009. ggml_compute_forward_acc(params, tensor);
  13010. } break;
  13011. case GGML_OP_SUB:
  13012. {
  13013. ggml_compute_forward_sub(params, tensor);
  13014. } break;
  13015. case GGML_OP_MUL:
  13016. {
  13017. ggml_compute_forward_mul(params, tensor);
  13018. } break;
  13019. case GGML_OP_DIV:
  13020. {
  13021. ggml_compute_forward_div(params, tensor);
  13022. } break;
  13023. case GGML_OP_SQR:
  13024. {
  13025. ggml_compute_forward_sqr(params, tensor);
  13026. } break;
  13027. case GGML_OP_SQRT:
  13028. {
  13029. ggml_compute_forward_sqrt(params, tensor);
  13030. } break;
  13031. case GGML_OP_LOG:
  13032. {
  13033. ggml_compute_forward_log(params, tensor);
  13034. } break;
  13035. case GGML_OP_SUM:
  13036. {
  13037. ggml_compute_forward_sum(params, tensor);
  13038. } break;
  13039. case GGML_OP_SUM_ROWS:
  13040. {
  13041. ggml_compute_forward_sum_rows(params, tensor);
  13042. } break;
  13043. case GGML_OP_MEAN:
  13044. {
  13045. ggml_compute_forward_mean(params, tensor);
  13046. } break;
  13047. case GGML_OP_ARGMAX:
  13048. {
  13049. ggml_compute_forward_argmax(params, tensor);
  13050. } break;
  13051. case GGML_OP_REPEAT:
  13052. {
  13053. ggml_compute_forward_repeat(params, tensor);
  13054. } break;
  13055. case GGML_OP_REPEAT_BACK:
  13056. {
  13057. ggml_compute_forward_repeat_back(params, tensor);
  13058. } break;
  13059. case GGML_OP_CONCAT:
  13060. {
  13061. ggml_compute_forward_concat(params, tensor);
  13062. } break;
  13063. case GGML_OP_SILU_BACK:
  13064. {
  13065. ggml_compute_forward_silu_back(params, tensor);
  13066. } break;
  13067. case GGML_OP_NORM:
  13068. {
  13069. ggml_compute_forward_norm(params, tensor);
  13070. } break;
  13071. case GGML_OP_RMS_NORM:
  13072. {
  13073. ggml_compute_forward_rms_norm(params, tensor);
  13074. } break;
  13075. case GGML_OP_RMS_NORM_BACK:
  13076. {
  13077. ggml_compute_forward_rms_norm_back(params, tensor);
  13078. } break;
  13079. case GGML_OP_GROUP_NORM:
  13080. {
  13081. ggml_compute_forward_group_norm(params, tensor);
  13082. } break;
  13083. case GGML_OP_MUL_MAT:
  13084. {
  13085. ggml_compute_forward_mul_mat(params, tensor);
  13086. } break;
  13087. case GGML_OP_MUL_MAT_ID:
  13088. {
  13089. ggml_compute_forward_mul_mat_id(params, tensor);
  13090. } break;
  13091. case GGML_OP_OUT_PROD:
  13092. {
  13093. ggml_compute_forward_out_prod(params, tensor);
  13094. } break;
  13095. case GGML_OP_SCALE:
  13096. {
  13097. ggml_compute_forward_scale(params, tensor);
  13098. } break;
  13099. case GGML_OP_SET:
  13100. {
  13101. ggml_compute_forward_set(params, tensor);
  13102. } break;
  13103. case GGML_OP_CPY:
  13104. {
  13105. ggml_compute_forward_cpy(params, tensor);
  13106. } break;
  13107. case GGML_OP_CONT:
  13108. {
  13109. ggml_compute_forward_cont(params, tensor);
  13110. } break;
  13111. case GGML_OP_RESHAPE:
  13112. {
  13113. ggml_compute_forward_reshape(params, tensor);
  13114. } break;
  13115. case GGML_OP_VIEW:
  13116. {
  13117. ggml_compute_forward_view(params, tensor);
  13118. } break;
  13119. case GGML_OP_PERMUTE:
  13120. {
  13121. ggml_compute_forward_permute(params, tensor);
  13122. } break;
  13123. case GGML_OP_TRANSPOSE:
  13124. {
  13125. ggml_compute_forward_transpose(params, tensor);
  13126. } break;
  13127. case GGML_OP_GET_ROWS:
  13128. {
  13129. ggml_compute_forward_get_rows(params, tensor);
  13130. } break;
  13131. case GGML_OP_GET_ROWS_BACK:
  13132. {
  13133. ggml_compute_forward_get_rows_back(params, tensor);
  13134. } break;
  13135. case GGML_OP_DIAG:
  13136. {
  13137. ggml_compute_forward_diag(params, tensor);
  13138. } break;
  13139. case GGML_OP_DIAG_MASK_INF:
  13140. {
  13141. ggml_compute_forward_diag_mask_inf(params, tensor);
  13142. } break;
  13143. case GGML_OP_DIAG_MASK_ZERO:
  13144. {
  13145. ggml_compute_forward_diag_mask_zero(params, tensor);
  13146. } break;
  13147. case GGML_OP_SOFT_MAX:
  13148. {
  13149. ggml_compute_forward_soft_max(params, tensor);
  13150. } break;
  13151. case GGML_OP_SOFT_MAX_BACK:
  13152. {
  13153. ggml_compute_forward_soft_max_back(params, tensor);
  13154. } break;
  13155. case GGML_OP_ROPE:
  13156. {
  13157. ggml_compute_forward_rope(params, tensor);
  13158. } break;
  13159. case GGML_OP_ROPE_BACK:
  13160. {
  13161. ggml_compute_forward_rope_back(params, tensor);
  13162. } break;
  13163. case GGML_OP_ALIBI:
  13164. {
  13165. ggml_compute_forward_alibi(params, tensor);
  13166. } break;
  13167. case GGML_OP_CLAMP:
  13168. {
  13169. ggml_compute_forward_clamp(params, tensor);
  13170. } break;
  13171. case GGML_OP_CONV_TRANSPOSE_1D:
  13172. {
  13173. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13174. } break;
  13175. case GGML_OP_IM2COL:
  13176. {
  13177. ggml_compute_forward_im2col(params, tensor);
  13178. } break;
  13179. case GGML_OP_CONV_TRANSPOSE_2D:
  13180. {
  13181. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13182. } break;
  13183. case GGML_OP_POOL_1D:
  13184. {
  13185. ggml_compute_forward_pool_1d(params, tensor);
  13186. } break;
  13187. case GGML_OP_POOL_2D:
  13188. {
  13189. ggml_compute_forward_pool_2d(params, tensor);
  13190. } break;
  13191. case GGML_OP_UPSCALE:
  13192. {
  13193. ggml_compute_forward_upscale(params, tensor);
  13194. } break;
  13195. case GGML_OP_PAD:
  13196. {
  13197. ggml_compute_forward_pad(params, tensor);
  13198. } break;
  13199. case GGML_OP_ARANGE:
  13200. {
  13201. ggml_compute_forward_arange(params, tensor);
  13202. } break;
  13203. case GGML_OP_TIMESTEP_EMBEDDING:
  13204. {
  13205. ggml_compute_forward_timestep_embedding(params, tensor);
  13206. } break;
  13207. case GGML_OP_ARGSORT:
  13208. {
  13209. ggml_compute_forward_argsort(params, tensor);
  13210. } break;
  13211. case GGML_OP_LEAKY_RELU:
  13212. {
  13213. ggml_compute_forward_leaky_relu(params, tensor);
  13214. } break;
  13215. case GGML_OP_FLASH_ATTN:
  13216. {
  13217. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13218. GGML_ASSERT(t == 0 || t == 1);
  13219. const bool masked = t != 0;
  13220. ggml_compute_forward_flash_attn(params, masked, tensor);
  13221. } break;
  13222. case GGML_OP_FLASH_FF:
  13223. {
  13224. ggml_compute_forward_flash_ff(params, tensor);
  13225. } break;
  13226. case GGML_OP_FLASH_ATTN_BACK:
  13227. {
  13228. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13229. GGML_ASSERT(t == 0 || t == 1);
  13230. bool masked = t != 0;
  13231. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13232. } break;
  13233. case GGML_OP_SSM_CONV:
  13234. {
  13235. ggml_compute_forward_ssm_conv(params, tensor);
  13236. } break;
  13237. case GGML_OP_SSM_SCAN:
  13238. {
  13239. ggml_compute_forward_ssm_scan(params, tensor);
  13240. } break;
  13241. case GGML_OP_WIN_PART:
  13242. {
  13243. ggml_compute_forward_win_part(params, tensor);
  13244. } break;
  13245. case GGML_OP_WIN_UNPART:
  13246. {
  13247. ggml_compute_forward_win_unpart(params, tensor);
  13248. } break;
  13249. case GGML_OP_UNARY:
  13250. {
  13251. ggml_compute_forward_unary(params, tensor);
  13252. } break;
  13253. case GGML_OP_GET_REL_POS:
  13254. {
  13255. ggml_compute_forward_get_rel_pos(params, tensor);
  13256. } break;
  13257. case GGML_OP_ADD_REL_POS:
  13258. {
  13259. ggml_compute_forward_add_rel_pos(params, tensor);
  13260. } break;
  13261. case GGML_OP_MAP_UNARY:
  13262. {
  13263. ggml_unary_op_f32_t fun;
  13264. memcpy(&fun, tensor->op_params, sizeof(fun));
  13265. ggml_compute_forward_map_unary(params, tensor, fun);
  13266. }
  13267. break;
  13268. case GGML_OP_MAP_BINARY:
  13269. {
  13270. ggml_binary_op_f32_t fun;
  13271. memcpy(&fun, tensor->op_params, sizeof(fun));
  13272. ggml_compute_forward_map_binary(params, tensor, fun);
  13273. }
  13274. break;
  13275. case GGML_OP_MAP_CUSTOM1_F32:
  13276. {
  13277. ggml_custom1_op_f32_t fun;
  13278. memcpy(&fun, tensor->op_params, sizeof(fun));
  13279. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13280. }
  13281. break;
  13282. case GGML_OP_MAP_CUSTOM2_F32:
  13283. {
  13284. ggml_custom2_op_f32_t fun;
  13285. memcpy(&fun, tensor->op_params, sizeof(fun));
  13286. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13287. }
  13288. break;
  13289. case GGML_OP_MAP_CUSTOM3_F32:
  13290. {
  13291. ggml_custom3_op_f32_t fun;
  13292. memcpy(&fun, tensor->op_params, sizeof(fun));
  13293. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13294. }
  13295. break;
  13296. case GGML_OP_MAP_CUSTOM1:
  13297. {
  13298. ggml_compute_forward_map_custom1(params, tensor);
  13299. }
  13300. break;
  13301. case GGML_OP_MAP_CUSTOM2:
  13302. {
  13303. ggml_compute_forward_map_custom2(params, tensor);
  13304. }
  13305. break;
  13306. case GGML_OP_MAP_CUSTOM3:
  13307. {
  13308. ggml_compute_forward_map_custom3(params, tensor);
  13309. }
  13310. break;
  13311. case GGML_OP_CROSS_ENTROPY_LOSS:
  13312. {
  13313. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13314. }
  13315. break;
  13316. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13317. {
  13318. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13319. }
  13320. break;
  13321. case GGML_OP_NONE:
  13322. {
  13323. // nop
  13324. } break;
  13325. case GGML_OP_COUNT:
  13326. {
  13327. GGML_ASSERT(false);
  13328. } break;
  13329. }
  13330. }
  13331. ////////////////////////////////////////////////////////////////////////////////
  13332. static size_t ggml_hash_size(size_t min_sz) {
  13333. // next primes after powers of two
  13334. static const size_t primes[] = {
  13335. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13336. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13337. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13338. 16777259, 33554467, 67108879, 134217757, 268435459,
  13339. 536870923, 1073741827, 2147483659
  13340. };
  13341. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13342. // find the smallest prime that is larger or equal to min_sz
  13343. size_t l = 0;
  13344. size_t r = n_primes;
  13345. while (l < r) {
  13346. size_t m = (l + r)/2;
  13347. if (primes[m] < min_sz) {
  13348. l = m + 1;
  13349. } else {
  13350. r = m;
  13351. }
  13352. }
  13353. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13354. return sz;
  13355. }
  13356. static size_t ggml_hash(const void * p) {
  13357. return (size_t)p;
  13358. }
  13359. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13360. size_t h = ggml_hash(key) % hash_set.size;
  13361. // linear probing
  13362. size_t i = h;
  13363. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13364. i = (i + 1) % hash_set.size;
  13365. if (i == h) {
  13366. // visited all hash table entries -> not found
  13367. return GGML_HASHTABLE_FULL;
  13368. }
  13369. }
  13370. return i;
  13371. }
  13372. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13373. size_t i = ggml_hash_find(hash_set, key);
  13374. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13375. }
  13376. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13377. size_t i = ggml_hash_find(hash_set, key);
  13378. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13379. if (hash_set.keys[i] == key) {
  13380. return GGML_HASHTABLE_ALREADY_EXISTS;
  13381. }
  13382. // insert
  13383. GGML_ASSERT(hash_set.keys[i] == NULL);
  13384. hash_set.keys[i] = key;
  13385. return i;
  13386. }
  13387. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13388. size_t i = ggml_hash_find(hash_set, key);
  13389. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13390. hash_set.keys[i] = key;
  13391. return i;
  13392. }
  13393. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13394. size = ggml_hash_size(size);
  13395. struct ggml_hash_set result;
  13396. result.size = size;
  13397. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13398. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13399. return result;
  13400. }
  13401. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13402. GGML_FREE(hash_set.keys);
  13403. }
  13404. struct hash_map {
  13405. struct ggml_hash_set set;
  13406. struct ggml_tensor ** vals;
  13407. };
  13408. static struct hash_map * ggml_new_hash_map(size_t size) {
  13409. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13410. result->set = ggml_hash_set_new(size);
  13411. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13412. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13413. return result;
  13414. }
  13415. static void ggml_hash_map_free(struct hash_map * map) {
  13416. ggml_hash_set_free(map->set);
  13417. GGML_FREE(map->vals);
  13418. GGML_FREE(map);
  13419. }
  13420. // gradient checkpointing
  13421. static struct ggml_tensor * ggml_recompute_graph_node(
  13422. struct ggml_context * ctx,
  13423. struct ggml_cgraph * graph,
  13424. struct hash_map * replacements,
  13425. struct ggml_tensor * node) {
  13426. if (node == NULL) {
  13427. return NULL;
  13428. }
  13429. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13430. return node;
  13431. }
  13432. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13433. return node;
  13434. }
  13435. int count_children = 0;
  13436. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13437. if (node->src[k]) {
  13438. ++count_children;
  13439. }
  13440. }
  13441. if (count_children == 0) {
  13442. return node;
  13443. }
  13444. size_t i = ggml_hash_find(replacements->set, node);
  13445. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13446. if (replacements->set.keys[i] == node) {
  13447. return replacements->vals[i];
  13448. }
  13449. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13450. // insert clone into replacements
  13451. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13452. replacements->set.keys[i] = node;
  13453. replacements->vals[i] = clone;
  13454. clone->op = node->op;
  13455. clone->grad = node->grad;
  13456. clone->flags = node->flags;
  13457. clone->extra = node->extra;
  13458. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13459. clone->nb[k] = node->nb[k];
  13460. }
  13461. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13462. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13463. }
  13464. if (node->view_src != NULL) {
  13465. clone->data = (node->view_src->data == NULL)
  13466. ? NULL // view_src not yet allocated
  13467. : (char *) node->view_src->data // view_src already allocated
  13468. + node->view_offs;
  13469. clone->view_src = node->view_src;
  13470. clone->view_offs = node->view_offs;
  13471. }
  13472. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13473. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13474. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13475. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13476. return clone;
  13477. }
  13478. void ggml_build_backward_gradient_checkpointing(
  13479. struct ggml_context * ctx,
  13480. struct ggml_cgraph * gf,
  13481. struct ggml_cgraph * gb,
  13482. struct ggml_cgraph * gb_tmp,
  13483. struct ggml_tensor * * checkpoints,
  13484. int n_checkpoints) {
  13485. ggml_graph_cpy(gf, gb_tmp);
  13486. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13487. if (n_checkpoints <= 0) {
  13488. ggml_graph_cpy(gb_tmp, gb);
  13489. return;
  13490. }
  13491. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13492. // insert checkpoints in replacements
  13493. for (int i = 0; i < n_checkpoints; ++i) {
  13494. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13495. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13496. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13497. replacements->set.keys[k] = checkpoints[i];
  13498. replacements->vals[k] = checkpoints[i];
  13499. }
  13500. ggml_graph_cpy(gf, gb);
  13501. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13502. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13503. // by recomputing them from checkpoints
  13504. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13505. struct ggml_tensor * node = gb_tmp->nodes[i];
  13506. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13507. // insert new tensors recomputing src, reusing already made replacements,
  13508. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13509. // recurse for input tensors,
  13510. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13511. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13512. }
  13513. // insert rewritten backward node with replacements made into resulting backward graph gb
  13514. ggml_build_forward_expand(gb, node);
  13515. }
  13516. ggml_hash_map_free(replacements);
  13517. }
  13518. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13519. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13520. if (ggml_hash_contains(zero_table, a)) {
  13521. return b;
  13522. } else {
  13523. return ggml_add_impl(ctx, a, b, false);
  13524. }
  13525. }
  13526. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13527. if (ggml_hash_contains(zero_table, a)) {
  13528. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13529. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13530. } else {
  13531. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13532. }
  13533. }
  13534. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13535. if (ggml_hash_contains(zero_table, a)) {
  13536. return ggml_repeat(ctx, b, a);
  13537. } else {
  13538. return ggml_add1_impl(ctx, a, b, false);
  13539. }
  13540. }
  13541. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13542. if (ggml_hash_contains(zero_table, a)) {
  13543. return ggml_neg(ctx, b);
  13544. } else {
  13545. return ggml_sub_impl(ctx, a, b, false);
  13546. }
  13547. }
  13548. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13549. struct ggml_tensor * src0 = tensor->src[0];
  13550. struct ggml_tensor * src1 = tensor->src[1];
  13551. switch (tensor->op) {
  13552. case GGML_OP_DUP:
  13553. {
  13554. if (src0->grad) {
  13555. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13556. }
  13557. } break;
  13558. case GGML_OP_ADD:
  13559. {
  13560. if (src0->grad) {
  13561. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13562. }
  13563. if (src1->grad) {
  13564. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13565. }
  13566. } break;
  13567. case GGML_OP_ADD1:
  13568. {
  13569. if (src0->grad) {
  13570. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13571. }
  13572. if (src1->grad) {
  13573. src1->grad = ggml_add_or_set(ctx,
  13574. src1->grad,
  13575. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13576. zero_table);
  13577. }
  13578. } break;
  13579. case GGML_OP_ACC:
  13580. {
  13581. if (src0->grad) {
  13582. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13583. }
  13584. if (src1->grad) {
  13585. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13586. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13587. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13588. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13589. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  13590. tensor->grad,
  13591. src1->grad->ne[0],
  13592. src1->grad->ne[1],
  13593. src1->grad->ne[2],
  13594. src1->grad->ne[3],
  13595. nb1, nb2, nb3, offset);
  13596. src1->grad =
  13597. ggml_add_or_set(ctx,
  13598. src1->grad,
  13599. ggml_reshape(ctx,
  13600. ggml_cont(ctx, tensor_grad_view),
  13601. src1->grad),
  13602. zero_table);
  13603. }
  13604. } break;
  13605. case GGML_OP_SUB:
  13606. {
  13607. if (src0->grad) {
  13608. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13609. }
  13610. if (src1->grad) {
  13611. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13612. }
  13613. } break;
  13614. case GGML_OP_MUL:
  13615. {
  13616. if (src0->grad) {
  13617. src0->grad =
  13618. ggml_add_or_set(ctx,
  13619. src0->grad,
  13620. ggml_mul(ctx, src1, tensor->grad),
  13621. zero_table);
  13622. }
  13623. if (src1->grad) {
  13624. src1->grad =
  13625. ggml_add_or_set(ctx,
  13626. src1->grad,
  13627. ggml_mul(ctx, src0, tensor->grad),
  13628. zero_table);
  13629. }
  13630. } break;
  13631. case GGML_OP_DIV:
  13632. {
  13633. if (src0->grad) {
  13634. src0->grad =
  13635. ggml_add_or_set(ctx,
  13636. src0->grad,
  13637. ggml_div(ctx, tensor->grad, src1),
  13638. zero_table);
  13639. }
  13640. if (src1->grad) {
  13641. src1->grad =
  13642. ggml_sub_or_set(ctx,
  13643. src1->grad,
  13644. ggml_mul(ctx,
  13645. tensor->grad,
  13646. ggml_div(ctx, tensor, src1)),
  13647. zero_table);
  13648. }
  13649. } break;
  13650. case GGML_OP_SQR:
  13651. {
  13652. if (src0->grad) {
  13653. src0->grad =
  13654. ggml_add_or_set(ctx,
  13655. src0->grad,
  13656. ggml_scale(ctx,
  13657. ggml_mul(ctx, src0, tensor->grad),
  13658. 2.0f),
  13659. zero_table);
  13660. }
  13661. } break;
  13662. case GGML_OP_SQRT:
  13663. {
  13664. if (src0->grad) {
  13665. src0->grad =
  13666. ggml_add_or_set(ctx,
  13667. src0->grad,
  13668. ggml_scale(ctx,
  13669. ggml_div(ctx,
  13670. tensor->grad,
  13671. tensor),
  13672. 0.5f),
  13673. zero_table);
  13674. }
  13675. } break;
  13676. case GGML_OP_LOG:
  13677. {
  13678. if (src0->grad) {
  13679. src0->grad =
  13680. ggml_add_or_set(ctx,
  13681. src0->grad,
  13682. ggml_div(ctx,
  13683. tensor->grad,
  13684. src0),
  13685. zero_table);
  13686. }
  13687. } break;
  13688. case GGML_OP_SUM:
  13689. {
  13690. if (src0->grad) {
  13691. src0->grad =
  13692. ggml_add1_or_set(ctx,
  13693. src0->grad,
  13694. tensor->grad,
  13695. zero_table);
  13696. }
  13697. } break;
  13698. case GGML_OP_SUM_ROWS:
  13699. {
  13700. if (src0->grad) {
  13701. src0->grad =
  13702. ggml_add_or_set(ctx,
  13703. src0->grad,
  13704. ggml_repeat(ctx,
  13705. tensor->grad,
  13706. src0->grad),
  13707. zero_table);
  13708. }
  13709. } break;
  13710. case GGML_OP_MEAN:
  13711. case GGML_OP_ARGMAX:
  13712. {
  13713. GGML_ASSERT(false); // TODO: implement
  13714. } break;
  13715. case GGML_OP_REPEAT:
  13716. {
  13717. // necessary for llama
  13718. if (src0->grad) {
  13719. src0->grad = ggml_add_or_set(ctx,
  13720. src0->grad,
  13721. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  13722. zero_table);
  13723. }
  13724. } break;
  13725. case GGML_OP_REPEAT_BACK:
  13726. {
  13727. if (src0->grad) {
  13728. // TODO: test this
  13729. src0->grad = ggml_add_or_set(ctx,
  13730. src0->grad,
  13731. ggml_repeat(ctx, tensor->grad, src0->grad),
  13732. zero_table);
  13733. }
  13734. } break;
  13735. case GGML_OP_CONCAT:
  13736. {
  13737. GGML_ASSERT(false); // TODO: implement
  13738. } break;
  13739. case GGML_OP_SILU_BACK:
  13740. {
  13741. GGML_ASSERT(false); // TODO: not implemented
  13742. } break;
  13743. case GGML_OP_NORM:
  13744. {
  13745. GGML_ASSERT(false); // TODO: not implemented
  13746. } break;
  13747. case GGML_OP_RMS_NORM:
  13748. {
  13749. // necessary for llama
  13750. if (src0->grad) {
  13751. float eps;
  13752. memcpy(&eps, tensor->op_params, sizeof(float));
  13753. src0->grad = ggml_add_or_set(ctx,
  13754. src0->grad,
  13755. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  13756. zero_table);
  13757. }
  13758. } break;
  13759. case GGML_OP_RMS_NORM_BACK:
  13760. {
  13761. GGML_ASSERT(false); // TODO: not implemented
  13762. } break;
  13763. case GGML_OP_GROUP_NORM:
  13764. {
  13765. GGML_ASSERT(false); // TODO: not implemented
  13766. } break;
  13767. case GGML_OP_MUL_MAT:
  13768. {
  13769. // https://cs231n.github.io/optimization-2/#staged
  13770. // # forward pass
  13771. // s0 = np.random.randn(5, 10)
  13772. // s1 = np.random.randn(10, 3)
  13773. // t = s0.dot(s1)
  13774. // # now suppose we had the gradient on t from above in the circuit
  13775. // dt = np.random.randn(*t.shape) # same shape as t
  13776. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13777. // ds1 = t.T.dot(dt)
  13778. // tensor.shape [m,p,qq,rr]
  13779. // src0.shape [n,m,q1,r1]
  13780. // src1.shape [n,p,qq,rr]
  13781. // necessary for llama
  13782. if (src0->grad) {
  13783. struct ggml_tensor * s1_tg =
  13784. ggml_out_prod(ctx, // [n,m,qq,rr]
  13785. src1, // [n,p,qq,rr]
  13786. tensor->grad); // [m,p,qq,rr]
  13787. const int64_t qq = s1_tg->ne[2];
  13788. const int64_t rr = s1_tg->ne[3];
  13789. const int64_t q1 = src0->ne[2];
  13790. const int64_t r1 = src0->ne[3];
  13791. const bool ne2_broadcasted = qq > q1;
  13792. const bool ne3_broadcasted = rr > r1;
  13793. if (ne2_broadcasted || ne3_broadcasted) {
  13794. // sum broadcast repetitions of s1_tg into shape of src0
  13795. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  13796. }
  13797. src0->grad =
  13798. ggml_add_or_set(ctx,
  13799. src0->grad, // [n,m,q1,r1]
  13800. s1_tg, // [n,m,q1,r1]
  13801. zero_table);
  13802. }
  13803. if (src1->grad) {
  13804. src1->grad =
  13805. ggml_add_or_set(ctx,
  13806. src1->grad, // [n,p,qq,rr]
  13807. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  13808. // ggml_cont(ctx, // [m,n,q1,r1]
  13809. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  13810. // tensor->grad), // [m,p,qq,rr]
  13811. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13812. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13813. // // and then use ggml_out_prod
  13814. ggml_out_prod(ctx, // [n,p,qq,rr]
  13815. src0, // [n,m,q1,r1]
  13816. ggml_transpose(ctx, // [p,m,qq,rr]
  13817. tensor->grad)), // [m,p,qq,rr]
  13818. zero_table);
  13819. }
  13820. } break;
  13821. case GGML_OP_MUL_MAT_ID:
  13822. {
  13823. GGML_ASSERT(false); // TODO: not implemented
  13824. } break;
  13825. case GGML_OP_OUT_PROD:
  13826. {
  13827. GGML_ASSERT(false); // TODO: not implemented
  13828. } break;
  13829. case GGML_OP_SCALE:
  13830. {
  13831. // necessary for llama
  13832. if (src0->grad) {
  13833. float s;
  13834. memcpy(&s, tensor->op_params, sizeof(float));
  13835. src0->grad =
  13836. ggml_add_or_set(ctx,
  13837. src0->grad,
  13838. ggml_scale_impl(ctx, tensor->grad, s, false),
  13839. zero_table);
  13840. }
  13841. } break;
  13842. case GGML_OP_SET:
  13843. {
  13844. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13845. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13846. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  13847. const size_t offset = ((int32_t *) tensor->op_params)[3];
  13848. struct ggml_tensor * tensor_grad_view = NULL;
  13849. if (src0->grad || src1->grad) {
  13850. GGML_ASSERT(src0->type == tensor->type);
  13851. GGML_ASSERT(tensor->grad->type == tensor->type);
  13852. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13853. tensor_grad_view = ggml_view_4d(ctx,
  13854. tensor->grad,
  13855. src1->grad->ne[0],
  13856. src1->grad->ne[1],
  13857. src1->grad->ne[2],
  13858. src1->grad->ne[3],
  13859. nb1, nb2, nb3, offset);
  13860. }
  13861. if (src0->grad) {
  13862. src0->grad = ggml_add_or_set(ctx,
  13863. src0->grad,
  13864. ggml_acc_impl(ctx,
  13865. tensor->grad,
  13866. ggml_neg(ctx, tensor_grad_view),
  13867. nb1, nb2, nb3, offset, false),
  13868. zero_table);
  13869. }
  13870. if (src1->grad) {
  13871. src1->grad =
  13872. ggml_add_or_set(ctx,
  13873. src1->grad,
  13874. ggml_reshape(ctx,
  13875. ggml_cont(ctx, tensor_grad_view),
  13876. src1->grad),
  13877. zero_table);
  13878. }
  13879. } break;
  13880. case GGML_OP_CPY:
  13881. {
  13882. // necessary for llama
  13883. // cpy overwrites value of src1 by src0 and returns view(src1)
  13884. // the overwriting is mathematically equivalent to:
  13885. // tensor = src0 * 1 + src1 * 0
  13886. if (src0->grad) {
  13887. // dsrc0 = dtensor * 1
  13888. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13889. }
  13890. if (src1->grad) {
  13891. // dsrc1 = dtensor * 0 -> noop
  13892. }
  13893. } break;
  13894. case GGML_OP_CONT:
  13895. {
  13896. // same as cpy
  13897. if (src0->grad) {
  13898. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13899. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13900. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13901. }
  13902. } break;
  13903. case GGML_OP_RESHAPE:
  13904. {
  13905. // necessary for llama
  13906. if (src0->grad) {
  13907. src0->grad =
  13908. ggml_add_or_set(ctx, src0->grad,
  13909. ggml_reshape(ctx,
  13910. ggml_is_contiguous(tensor->grad)
  13911. ? tensor->grad
  13912. : ggml_cont(ctx, tensor->grad),
  13913. src0->grad),
  13914. zero_table);
  13915. }
  13916. } break;
  13917. case GGML_OP_VIEW:
  13918. {
  13919. // necessary for llama
  13920. if (src0->grad) {
  13921. size_t offset;
  13922. memcpy(&offset, tensor->op_params, sizeof(offset));
  13923. size_t nb1 = tensor->nb[1];
  13924. size_t nb2 = tensor->nb[2];
  13925. size_t nb3 = tensor->nb[3];
  13926. if (src0->type != src0->grad->type) {
  13927. // gradient is typically F32, but src0 could be other type
  13928. size_t ng = ggml_element_size(src0->grad);
  13929. size_t n0 = ggml_element_size(src0);
  13930. GGML_ASSERT(offset % n0 == 0);
  13931. GGML_ASSERT(nb1 % n0 == 0);
  13932. GGML_ASSERT(nb2 % n0 == 0);
  13933. GGML_ASSERT(nb3 % n0 == 0);
  13934. offset = (offset / n0) * ng;
  13935. nb1 = (nb1 / n0) * ng;
  13936. nb2 = (nb2 / n0) * ng;
  13937. nb3 = (nb3 / n0) * ng;
  13938. }
  13939. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  13940. }
  13941. } break;
  13942. case GGML_OP_PERMUTE:
  13943. {
  13944. // necessary for llama
  13945. if (src0->grad) {
  13946. int32_t * axes = (int32_t *) tensor->op_params;
  13947. int axis0 = axes[0] & 0x3;
  13948. int axis1 = axes[1] & 0x3;
  13949. int axis2 = axes[2] & 0x3;
  13950. int axis3 = axes[3] & 0x3;
  13951. int axes_backward[4] = {0,0,0,0};
  13952. axes_backward[axis0] = 0;
  13953. axes_backward[axis1] = 1;
  13954. axes_backward[axis2] = 2;
  13955. axes_backward[axis3] = 3;
  13956. src0->grad =
  13957. ggml_add_or_set(ctx, src0->grad,
  13958. ggml_permute(ctx,
  13959. tensor->grad,
  13960. axes_backward[0],
  13961. axes_backward[1],
  13962. axes_backward[2],
  13963. axes_backward[3]),
  13964. zero_table);
  13965. }
  13966. } break;
  13967. case GGML_OP_TRANSPOSE:
  13968. {
  13969. // necessary for llama
  13970. if (src0->grad) {
  13971. src0->grad =
  13972. ggml_add_or_set(ctx, src0->grad,
  13973. ggml_transpose(ctx, tensor->grad),
  13974. zero_table);
  13975. }
  13976. } break;
  13977. case GGML_OP_GET_ROWS:
  13978. {
  13979. // necessary for llama (only for tokenizer)
  13980. if (src0->grad) {
  13981. src0->grad =
  13982. ggml_add_or_set(ctx, src0->grad,
  13983. // last ggml_get_rows_back argument src0->grad is only
  13984. // necessary to setup correct output shape
  13985. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13986. zero_table);
  13987. }
  13988. if (src1->grad) {
  13989. // noop
  13990. }
  13991. } break;
  13992. case GGML_OP_GET_ROWS_BACK:
  13993. {
  13994. GGML_ASSERT(false); // TODO: not implemented
  13995. } break;
  13996. case GGML_OP_DIAG:
  13997. {
  13998. GGML_ASSERT(false); // TODO: not implemented
  13999. } break;
  14000. case GGML_OP_DIAG_MASK_INF:
  14001. {
  14002. // necessary for llama
  14003. if (src0->grad) {
  14004. const int n_past = ((int32_t *) tensor->op_params)[0];
  14005. src0->grad =
  14006. ggml_add_or_set(ctx, src0->grad,
  14007. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14008. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14009. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14010. zero_table);
  14011. }
  14012. } break;
  14013. case GGML_OP_DIAG_MASK_ZERO:
  14014. {
  14015. // necessary for llama
  14016. if (src0->grad) {
  14017. const int n_past = ((int32_t *) tensor->op_params)[0];
  14018. src0->grad =
  14019. ggml_add_or_set(ctx, src0->grad,
  14020. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14021. zero_table);
  14022. }
  14023. } break;
  14024. case GGML_OP_SOFT_MAX:
  14025. {
  14026. // necessary for llama
  14027. if (src0->grad) {
  14028. src0->grad =
  14029. ggml_add_or_set(ctx, src0->grad,
  14030. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14031. zero_table);
  14032. }
  14033. } break;
  14034. case GGML_OP_SOFT_MAX_BACK:
  14035. {
  14036. GGML_ASSERT(false); // TODO: not implemented
  14037. } break;
  14038. case GGML_OP_ROPE:
  14039. {
  14040. // necessary for llama
  14041. if (src0->grad) {
  14042. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14043. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14044. const int mode = ((int32_t *) tensor->op_params)[2];
  14045. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14046. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14047. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14048. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14049. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14050. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14051. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14052. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14053. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14054. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14055. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14056. src0->grad = ggml_add_or_set(ctx,
  14057. src0->grad,
  14058. ggml_rope_back(ctx,
  14059. tensor->grad,
  14060. src1,
  14061. n_dims,
  14062. mode,
  14063. n_ctx,
  14064. n_orig_ctx,
  14065. freq_base,
  14066. freq_scale,
  14067. ext_factor,
  14068. attn_factor,
  14069. beta_fast,
  14070. beta_slow,
  14071. xpos_base,
  14072. xpos_down),
  14073. zero_table);
  14074. }
  14075. } break;
  14076. case GGML_OP_ROPE_BACK:
  14077. {
  14078. if (src0->grad) {
  14079. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14080. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14081. const int mode = ((int32_t *) tensor->op_params)[2];
  14082. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14083. const int n_orig_ctx = ((int32_t *) tensor->op_params)[4];
  14084. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow, xpos_base, xpos_down;
  14085. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14086. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14087. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14088. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14089. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14090. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14091. memcpy(&xpos_base, (int32_t *) tensor->op_params + 11, sizeof(float));
  14092. memcpy(&xpos_down, (int32_t *) tensor->op_params + 12, sizeof(bool));
  14093. src0->grad = ggml_add_or_set(ctx,
  14094. src0->grad,
  14095. ggml_rope_impl(ctx,
  14096. tensor->grad,
  14097. src1,
  14098. n_dims,
  14099. mode,
  14100. n_ctx,
  14101. n_orig_ctx,
  14102. freq_base,
  14103. freq_scale,
  14104. ext_factor,
  14105. attn_factor,
  14106. beta_fast,
  14107. beta_slow,
  14108. xpos_base,
  14109. xpos_down,
  14110. false),
  14111. zero_table);
  14112. }
  14113. } break;
  14114. case GGML_OP_ALIBI:
  14115. {
  14116. GGML_ASSERT(false); // TODO: not implemented
  14117. } break;
  14118. case GGML_OP_CLAMP:
  14119. {
  14120. GGML_ASSERT(false); // TODO: not implemented
  14121. } break;
  14122. case GGML_OP_CONV_TRANSPOSE_1D:
  14123. {
  14124. GGML_ASSERT(false); // TODO: not implemented
  14125. } break;
  14126. case GGML_OP_IM2COL:
  14127. {
  14128. GGML_ASSERT(false); // TODO: not implemented
  14129. } break;
  14130. case GGML_OP_CONV_TRANSPOSE_2D:
  14131. {
  14132. GGML_ASSERT(false); // TODO: not implemented
  14133. } break;
  14134. case GGML_OP_POOL_1D:
  14135. {
  14136. GGML_ASSERT(false); // TODO: not implemented
  14137. } break;
  14138. case GGML_OP_POOL_2D:
  14139. {
  14140. GGML_ASSERT(false); // TODO: not implemented
  14141. } break;
  14142. case GGML_OP_UPSCALE:
  14143. {
  14144. GGML_ASSERT(false); // TODO: not implemented
  14145. } break;
  14146. case GGML_OP_PAD:
  14147. {
  14148. GGML_ASSERT(false); // TODO: not implemented
  14149. } break;
  14150. case GGML_OP_ARANGE:
  14151. {
  14152. GGML_ASSERT(false); // TODO: not implemented
  14153. } break;
  14154. case GGML_OP_TIMESTEP_EMBEDDING:
  14155. {
  14156. GGML_ASSERT(false); // TODO: not implemented
  14157. } break;
  14158. case GGML_OP_ARGSORT:
  14159. {
  14160. GGML_ASSERT(false); // TODO: not implemented
  14161. } break;
  14162. case GGML_OP_LEAKY_RELU:
  14163. {
  14164. GGML_ASSERT(false); // TODO: not implemented
  14165. } break;
  14166. case GGML_OP_FLASH_ATTN:
  14167. {
  14168. struct ggml_tensor * flash_grad = NULL;
  14169. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14170. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14171. GGML_ASSERT(t == 0 || t == 1);
  14172. bool masked = t != 0;
  14173. flash_grad =
  14174. ggml_flash_attn_back(ctx,
  14175. src0,
  14176. src1,
  14177. tensor->src[2],
  14178. tensor->grad,
  14179. masked);
  14180. }
  14181. struct ggml_tensor * src2 = tensor->src[2];
  14182. const int64_t elem_q = ggml_nelements(src0);
  14183. const int64_t elem_k = ggml_nelements(src1);
  14184. const int64_t elem_v = ggml_nelements(src2);
  14185. enum ggml_type result_type = flash_grad->type;
  14186. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14187. const size_t tsize = ggml_type_size(result_type);
  14188. const size_t offs_q = 0;
  14189. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14190. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14191. if (src0->grad) {
  14192. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14193. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14194. src0->grad = ggml_add_or_set(ctx,
  14195. src0->grad,
  14196. grad_q,
  14197. zero_table);
  14198. }
  14199. if (src1->grad) {
  14200. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14201. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14202. src1->grad = ggml_add_or_set(ctx,
  14203. src1->grad,
  14204. grad_k,
  14205. zero_table);
  14206. }
  14207. if (src2->grad) {
  14208. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14209. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14210. src2->grad = ggml_add_or_set(ctx,
  14211. src2->grad,
  14212. grad_v,
  14213. zero_table);
  14214. }
  14215. } break;
  14216. case GGML_OP_FLASH_FF:
  14217. {
  14218. GGML_ASSERT(false); // not supported
  14219. } break;
  14220. case GGML_OP_FLASH_ATTN_BACK:
  14221. {
  14222. GGML_ASSERT(false); // not supported
  14223. } break;
  14224. case GGML_OP_SSM_CONV:
  14225. case GGML_OP_SSM_SCAN:
  14226. {
  14227. GGML_ASSERT(false); // TODO: not implemented
  14228. } break;
  14229. case GGML_OP_WIN_PART:
  14230. case GGML_OP_WIN_UNPART:
  14231. case GGML_OP_UNARY:
  14232. {
  14233. switch (ggml_get_unary_op(tensor)) {
  14234. case GGML_UNARY_OP_ABS:
  14235. {
  14236. if (src0->grad) {
  14237. src0->grad =
  14238. ggml_add_or_set(ctx,
  14239. src0->grad,
  14240. ggml_mul(ctx,
  14241. ggml_sgn(ctx, src0),
  14242. tensor->grad),
  14243. zero_table);
  14244. }
  14245. } break;
  14246. case GGML_UNARY_OP_SGN:
  14247. {
  14248. if (src0->grad) {
  14249. // noop
  14250. }
  14251. } break;
  14252. case GGML_UNARY_OP_NEG:
  14253. {
  14254. if (src0->grad) {
  14255. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14256. }
  14257. } break;
  14258. case GGML_UNARY_OP_STEP:
  14259. {
  14260. if (src0->grad) {
  14261. // noop
  14262. }
  14263. } break;
  14264. case GGML_UNARY_OP_TANH:
  14265. {
  14266. GGML_ASSERT(false); // TODO: not implemented
  14267. } break;
  14268. case GGML_UNARY_OP_ELU:
  14269. {
  14270. GGML_ASSERT(false); // TODO: not implemented
  14271. } break;
  14272. case GGML_UNARY_OP_RELU:
  14273. {
  14274. if (src0->grad) {
  14275. src0->grad = ggml_add_or_set(ctx,
  14276. src0->grad,
  14277. ggml_mul(ctx,
  14278. ggml_step(ctx, src0),
  14279. tensor->grad),
  14280. zero_table);
  14281. }
  14282. } break;
  14283. case GGML_UNARY_OP_GELU:
  14284. {
  14285. GGML_ASSERT(false); // TODO: not implemented
  14286. } break;
  14287. case GGML_UNARY_OP_GELU_QUICK:
  14288. {
  14289. GGML_ASSERT(false); // TODO: not implemented
  14290. } break;
  14291. case GGML_UNARY_OP_SILU:
  14292. {
  14293. // necessary for llama
  14294. if (src0->grad) {
  14295. src0->grad = ggml_add_or_set(ctx,
  14296. src0->grad,
  14297. ggml_silu_back(ctx, src0, tensor->grad),
  14298. zero_table);
  14299. }
  14300. } break;
  14301. default:
  14302. GGML_ASSERT(false);
  14303. }
  14304. } break;
  14305. case GGML_OP_GET_REL_POS:
  14306. case GGML_OP_ADD_REL_POS:
  14307. case GGML_OP_MAP_UNARY:
  14308. case GGML_OP_MAP_BINARY:
  14309. case GGML_OP_MAP_CUSTOM1_F32:
  14310. case GGML_OP_MAP_CUSTOM2_F32:
  14311. case GGML_OP_MAP_CUSTOM3_F32:
  14312. case GGML_OP_MAP_CUSTOM1:
  14313. case GGML_OP_MAP_CUSTOM2:
  14314. case GGML_OP_MAP_CUSTOM3:
  14315. {
  14316. GGML_ASSERT(false); // not supported
  14317. } break;
  14318. case GGML_OP_CROSS_ENTROPY_LOSS:
  14319. {
  14320. if (src0->grad) {
  14321. src0->grad = ggml_add_or_set(ctx,
  14322. src0->grad,
  14323. ggml_cross_entropy_loss_back(ctx,
  14324. src0,
  14325. src1,
  14326. tensor->grad),
  14327. zero_table);
  14328. }
  14329. } break;
  14330. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14331. {
  14332. GGML_ASSERT(false); // not supported
  14333. } break;
  14334. case GGML_OP_NONE:
  14335. {
  14336. // nop
  14337. } break;
  14338. case GGML_OP_COUNT:
  14339. {
  14340. GGML_ASSERT(false);
  14341. } break;
  14342. }
  14343. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14344. if (tensor->src[i] && tensor->src[i]->grad) {
  14345. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14346. }
  14347. }
  14348. }
  14349. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14350. if (node->grad == NULL) {
  14351. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14352. // it can also happen during forward pass, if the user performs computations with constants
  14353. if (node->op != GGML_OP_NONE) {
  14354. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14355. }
  14356. }
  14357. // check if already visited
  14358. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14359. return;
  14360. }
  14361. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14362. const int k =
  14363. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14364. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14365. /* unknown order, just fall back to using i*/ i;
  14366. if (node->src[k]) {
  14367. ggml_visit_parents(cgraph, node->src[k]);
  14368. }
  14369. }
  14370. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14371. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14372. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14373. if (strlen(node->name) == 0) {
  14374. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14375. }
  14376. cgraph->leafs[cgraph->n_leafs] = node;
  14377. cgraph->n_leafs++;
  14378. } else {
  14379. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14380. if (strlen(node->name) == 0) {
  14381. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14382. }
  14383. cgraph->nodes[cgraph->n_nodes] = node;
  14384. if (cgraph->grads) {
  14385. cgraph->grads[cgraph->n_nodes] = node->grad;
  14386. }
  14387. cgraph->n_nodes++;
  14388. }
  14389. }
  14390. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14391. if (!expand) {
  14392. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14393. ggml_graph_clear(cgraph);
  14394. }
  14395. const int n0 = cgraph->n_nodes;
  14396. UNUSED(n0);
  14397. ggml_visit_parents(cgraph, tensor);
  14398. const int n_new = cgraph->n_nodes - n0;
  14399. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14400. if (n_new > 0) {
  14401. // the last added node should always be starting point
  14402. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14403. }
  14404. }
  14405. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14406. ggml_build_forward_impl(cgraph, tensor, true);
  14407. }
  14408. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14409. GGML_ASSERT(gf->n_nodes > 0);
  14410. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14411. if (keep) {
  14412. for (int i = 0; i < gf->n_nodes; i++) {
  14413. struct ggml_tensor * node = gf->nodes[i];
  14414. if (node->grad) {
  14415. node->grad = ggml_dup_tensor(ctx, node);
  14416. gf->grads[i] = node->grad;
  14417. }
  14418. }
  14419. }
  14420. // remember original gradients which start with zero values
  14421. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14422. for (int i = 0; i < gf->n_nodes; i++) {
  14423. if (gf->grads[i]) {
  14424. ggml_hash_insert(zero_table, gf->grads[i]);
  14425. }
  14426. }
  14427. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14428. struct ggml_tensor * node = gf->nodes[i];
  14429. // inplace operations to add gradients are not created by ggml_compute_backward
  14430. // use allocator to automatically make inplace operations
  14431. if (node->grad) {
  14432. ggml_compute_backward(ctx, node, zero_table);
  14433. }
  14434. }
  14435. for (int i = 0; i < gf->n_nodes; i++) {
  14436. struct ggml_tensor * node = gf->nodes[i];
  14437. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14438. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14439. ggml_build_forward_expand(gb, node->grad);
  14440. }
  14441. }
  14442. ggml_hash_set_free(zero_table);
  14443. }
  14444. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14445. size_t nbytes = sizeof(struct ggml_cgraph);
  14446. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14447. if (grads) {
  14448. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14449. }
  14450. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14451. return nbytes;
  14452. }
  14453. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14454. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14455. }
  14456. size_t ggml_graph_overhead(void) {
  14457. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14458. }
  14459. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14460. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14461. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14462. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14463. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14464. size_t hash_size = ggml_hash_size(size * 2);
  14465. struct ggml_tensor ** nodes_ptr = data_start;
  14466. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14467. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14468. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14469. // check that we allocated the correct amount of memory
  14470. assert(obj_size == (size_t) (
  14471. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14472. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14473. *cgraph = (struct ggml_cgraph) {
  14474. /*.size =*/ size,
  14475. /*.n_nodes =*/ 0,
  14476. /*.n_leafs =*/ 0,
  14477. /*.nodes =*/ nodes_ptr,
  14478. /*.grads =*/ grads_ptr,
  14479. /*.leafs =*/ leafs_ptr,
  14480. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14481. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14482. /*.perf_runs =*/ 0,
  14483. /*.perf_cycles =*/ 0,
  14484. /*.perf_time_us =*/ 0,
  14485. };
  14486. return cgraph;
  14487. }
  14488. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14489. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14490. }
  14491. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14492. struct ggml_cgraph cgraph = {
  14493. /*.size =*/ 0,
  14494. /*.n_nodes =*/ i1 - i0,
  14495. /*.n_leafs =*/ 0,
  14496. /*.nodes =*/ cgraph0->nodes + i0,
  14497. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14498. /*.leafs =*/ NULL,
  14499. /*.hash_table =*/ { 0, NULL },
  14500. /*.order =*/ cgraph0->order,
  14501. /*.perf_runs =*/ 0,
  14502. /*.perf_cycles =*/ 0,
  14503. /*.perf_time_us =*/ 0,
  14504. };
  14505. return cgraph;
  14506. }
  14507. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14508. GGML_ASSERT(dst->size >= src->n_leafs);
  14509. GGML_ASSERT(dst->size >= src->n_nodes);
  14510. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14511. dst->n_leafs = src->n_leafs;
  14512. dst->n_nodes = src->n_nodes;
  14513. dst->order = src->order;
  14514. for (int i = 0; i < src->n_leafs; ++i) {
  14515. dst->leafs[i] = src->leafs[i];
  14516. }
  14517. for (int i = 0; i < src->n_nodes; ++i) {
  14518. dst->nodes[i] = src->nodes[i];
  14519. }
  14520. if (src->grads) {
  14521. GGML_ASSERT(dst->grads != NULL);
  14522. for (int i = 0; i < src->n_nodes; ++i) {
  14523. dst->grads[i] = src->grads[i];
  14524. }
  14525. }
  14526. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14527. if (src->visited_hash_table.keys[i]) {
  14528. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14529. }
  14530. }
  14531. }
  14532. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14533. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14534. ggml_graph_cpy(cgraph, result);
  14535. return result;
  14536. }
  14537. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14538. GGML_ASSERT(cgraph->grads != NULL);
  14539. for (int i = 0; i < cgraph->n_nodes; i++) {
  14540. struct ggml_tensor * grad = cgraph->grads[i];
  14541. if (grad) {
  14542. ggml_set_zero(grad);
  14543. }
  14544. }
  14545. }
  14546. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14547. cgraph->n_leafs = 0;
  14548. cgraph->n_nodes = 0;
  14549. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14550. }
  14551. //
  14552. // thread data
  14553. //
  14554. // synchronization is done via busy loops
  14555. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14556. //
  14557. #ifdef __APPLE__
  14558. //#include <os/lock.h>
  14559. //
  14560. //typedef os_unfair_lock ggml_lock_t;
  14561. //
  14562. //#define ggml_lock_init(x) UNUSED(x)
  14563. //#define ggml_lock_destroy(x) UNUSED(x)
  14564. //#define ggml_lock_lock os_unfair_lock_lock
  14565. //#define ggml_lock_unlock os_unfair_lock_unlock
  14566. //
  14567. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14568. typedef int ggml_lock_t;
  14569. #define ggml_lock_init(x) UNUSED(x)
  14570. #define ggml_lock_destroy(x) UNUSED(x)
  14571. #define ggml_lock_lock(x) UNUSED(x)
  14572. #define ggml_lock_unlock(x) UNUSED(x)
  14573. #define GGML_LOCK_INITIALIZER 0
  14574. typedef pthread_t ggml_thread_t;
  14575. #define ggml_thread_create pthread_create
  14576. #define ggml_thread_join pthread_join
  14577. #else
  14578. //typedef pthread_spinlock_t ggml_lock_t;
  14579. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14580. //#define ggml_lock_destroy pthread_spin_destroy
  14581. //#define ggml_lock_lock pthread_spin_lock
  14582. //#define ggml_lock_unlock pthread_spin_unlock
  14583. typedef int ggml_lock_t;
  14584. #define ggml_lock_init(x) UNUSED(x)
  14585. #define ggml_lock_destroy(x) UNUSED(x)
  14586. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14587. #define ggml_lock_lock(x) _mm_pause()
  14588. #else
  14589. #define ggml_lock_lock(x) UNUSED(x)
  14590. #endif
  14591. #define ggml_lock_unlock(x) UNUSED(x)
  14592. #define GGML_LOCK_INITIALIZER 0
  14593. typedef pthread_t ggml_thread_t;
  14594. #define ggml_thread_create pthread_create
  14595. #define ggml_thread_join pthread_join
  14596. #endif
  14597. // Android's libc implementation "bionic" does not support setting affinity
  14598. #if defined(__gnu_linux__)
  14599. static void set_numa_thread_affinity(int thread_n) {
  14600. if (!ggml_is_numa()) {
  14601. return;
  14602. }
  14603. int node_num;
  14604. int rv;
  14605. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14606. switch(g_state.numa.numa_strategy) {
  14607. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  14608. // run thread on node_num thread_n / (threads per node)
  14609. node_num = thread_n % g_state.numa.n_nodes;
  14610. break;
  14611. case GGML_NUMA_STRATEGY_ISOLATE:
  14612. // run thread on current_node
  14613. node_num = g_state.numa.current_node;
  14614. break;
  14615. case GGML_NUMA_STRATEGY_NUMACTL:
  14616. // use the cpuset that numactl gave us
  14617. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  14618. if (rv) {
  14619. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  14620. }
  14621. return;
  14622. default:
  14623. return;
  14624. }
  14625. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14626. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14627. CPU_ZERO_S(setsize, cpus);
  14628. for (size_t i = 0; i < node->n_cpus; ++i) {
  14629. CPU_SET_S(node->cpus[i], setsize, cpus);
  14630. }
  14631. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14632. if (rv) {
  14633. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14634. }
  14635. CPU_FREE(cpus);
  14636. }
  14637. static void clear_numa_thread_affinity(void) {
  14638. if (!ggml_is_numa()) {
  14639. return;
  14640. }
  14641. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14642. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14643. CPU_ZERO_S(setsize, cpus);
  14644. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14645. CPU_SET_S(i, setsize, cpus);
  14646. }
  14647. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14648. if (rv) {
  14649. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  14650. }
  14651. CPU_FREE(cpus);
  14652. }
  14653. #else
  14654. // TODO: Windows etc.
  14655. // (the linux implementation may also work on BSD, someone should test)
  14656. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  14657. static void clear_numa_thread_affinity(void) {}
  14658. #endif
  14659. struct ggml_compute_state_shared {
  14660. const struct ggml_cgraph * cgraph;
  14661. const struct ggml_cplan * cplan;
  14662. int64_t perf_node_start_cycles;
  14663. int64_t perf_node_start_time_us;
  14664. const int n_threads;
  14665. // synchronization primitives
  14666. atomic_int n_active; // num active threads
  14667. atomic_int node_n; // active graph node
  14668. atomic_int node_task; // active graph node task phase
  14669. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  14670. void * abort_callback_data;
  14671. };
  14672. struct ggml_compute_state {
  14673. ggml_thread_t thrd;
  14674. int ith;
  14675. struct ggml_compute_state_shared * shared;
  14676. enum ggml_status ec;
  14677. };
  14678. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14679. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14680. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14681. node->perf_runs++;
  14682. node->perf_cycles += cycles_cur;
  14683. node->perf_time_us += time_us_cur;
  14684. }
  14685. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_threads) {
  14686. int n_tasks = 0;
  14687. switch (node->op) {
  14688. case GGML_OP_CPY:
  14689. case GGML_OP_DUP:
  14690. case GGML_OP_ADD:
  14691. case GGML_OP_ADD1:
  14692. case GGML_OP_ACC:
  14693. {
  14694. n_tasks = n_threads;
  14695. } break;
  14696. case GGML_OP_SUB:
  14697. case GGML_OP_SQR:
  14698. case GGML_OP_SQRT:
  14699. case GGML_OP_LOG:
  14700. case GGML_OP_SUM:
  14701. case GGML_OP_SUM_ROWS:
  14702. case GGML_OP_MEAN:
  14703. case GGML_OP_ARGMAX:
  14704. case GGML_OP_REPEAT:
  14705. case GGML_OP_REPEAT_BACK:
  14706. case GGML_OP_LEAKY_RELU:
  14707. {
  14708. n_tasks = 1;
  14709. } break;
  14710. case GGML_OP_UNARY:
  14711. switch (ggml_get_unary_op(node)) {
  14712. case GGML_UNARY_OP_ABS:
  14713. case GGML_UNARY_OP_SGN:
  14714. case GGML_UNARY_OP_NEG:
  14715. case GGML_UNARY_OP_STEP:
  14716. case GGML_UNARY_OP_TANH:
  14717. case GGML_UNARY_OP_ELU:
  14718. case GGML_UNARY_OP_RELU:
  14719. case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads
  14720. case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads
  14721. {
  14722. n_tasks = 1;
  14723. } break;
  14724. case GGML_UNARY_OP_GELU:
  14725. case GGML_UNARY_OP_GELU_QUICK:
  14726. case GGML_UNARY_OP_SILU:
  14727. {
  14728. n_tasks = n_threads;
  14729. } break;
  14730. default:
  14731. GGML_ASSERT(false);
  14732. }
  14733. break;
  14734. case GGML_OP_SILU_BACK:
  14735. case GGML_OP_MUL:
  14736. case GGML_OP_DIV:
  14737. case GGML_OP_NORM:
  14738. case GGML_OP_RMS_NORM:
  14739. case GGML_OP_RMS_NORM_BACK:
  14740. case GGML_OP_GROUP_NORM:
  14741. case GGML_OP_CONCAT:
  14742. {
  14743. n_tasks = n_threads;
  14744. } break;
  14745. case GGML_OP_MUL_MAT:
  14746. {
  14747. n_tasks = n_threads;
  14748. // TODO: use different scheduling for different matrix sizes
  14749. //const int nr0 = ggml_nrows(node->src[0]);
  14750. //const int nr1 = ggml_nrows(node->src[1]);
  14751. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  14752. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  14753. } break;
  14754. case GGML_OP_MUL_MAT_ID:
  14755. {
  14756. n_tasks = n_threads;
  14757. } break;
  14758. case GGML_OP_OUT_PROD:
  14759. {
  14760. n_tasks = n_threads;
  14761. } break;
  14762. case GGML_OP_GET_ROWS:
  14763. {
  14764. // FIXME: the cost of launching additional threads decreases performance with GPU offloading
  14765. //n_tasks = MIN(n_threads, ggml_nelements(node->src[1]));
  14766. n_tasks = MIN(n_cur_threads, ggml_nelements(node->src[1]));
  14767. } break;
  14768. case GGML_OP_SCALE:
  14769. case GGML_OP_SET:
  14770. case GGML_OP_CONT:
  14771. case GGML_OP_RESHAPE:
  14772. case GGML_OP_VIEW:
  14773. case GGML_OP_PERMUTE:
  14774. case GGML_OP_TRANSPOSE:
  14775. case GGML_OP_GET_ROWS_BACK:
  14776. case GGML_OP_DIAG:
  14777. {
  14778. n_tasks = 1;
  14779. } break;
  14780. case GGML_OP_DIAG_MASK_ZERO:
  14781. case GGML_OP_DIAG_MASK_INF:
  14782. case GGML_OP_SOFT_MAX_BACK:
  14783. case GGML_OP_ROPE:
  14784. case GGML_OP_ROPE_BACK:
  14785. case GGML_OP_ADD_REL_POS:
  14786. {
  14787. n_tasks = n_threads;
  14788. } break;
  14789. case GGML_OP_ALIBI:
  14790. {
  14791. n_tasks = 1; //TODO
  14792. } break;
  14793. case GGML_OP_CLAMP:
  14794. {
  14795. n_tasks = 1; //TODO
  14796. } break;
  14797. case GGML_OP_SOFT_MAX:
  14798. {
  14799. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  14800. } break;
  14801. case GGML_OP_CONV_TRANSPOSE_1D:
  14802. {
  14803. n_tasks = n_threads;
  14804. } break;
  14805. case GGML_OP_IM2COL:
  14806. {
  14807. n_tasks = n_threads;
  14808. } break;
  14809. case GGML_OP_CONV_TRANSPOSE_2D:
  14810. {
  14811. n_tasks = n_threads;
  14812. } break;
  14813. case GGML_OP_POOL_1D:
  14814. case GGML_OP_POOL_2D:
  14815. {
  14816. n_tasks = 1;
  14817. } break;
  14818. case GGML_OP_UPSCALE:
  14819. {
  14820. n_tasks = n_threads;
  14821. } break;
  14822. case GGML_OP_PAD:
  14823. {
  14824. n_tasks = n_threads;
  14825. } break;
  14826. case GGML_OP_ARANGE:
  14827. {
  14828. n_tasks = n_threads;
  14829. } break;
  14830. case GGML_OP_TIMESTEP_EMBEDDING:
  14831. {
  14832. n_tasks = n_threads;
  14833. } break;
  14834. case GGML_OP_ARGSORT:
  14835. {
  14836. n_tasks = n_threads;
  14837. } break;
  14838. case GGML_OP_FLASH_ATTN:
  14839. {
  14840. n_tasks = n_threads;
  14841. } break;
  14842. case GGML_OP_FLASH_FF:
  14843. {
  14844. n_tasks = n_threads;
  14845. } break;
  14846. case GGML_OP_FLASH_ATTN_BACK:
  14847. {
  14848. n_tasks = n_threads;
  14849. } break;
  14850. case GGML_OP_SSM_CONV:
  14851. case GGML_OP_SSM_SCAN:
  14852. {
  14853. n_tasks = n_threads;
  14854. } break;
  14855. case GGML_OP_WIN_PART:
  14856. case GGML_OP_WIN_UNPART:
  14857. case GGML_OP_GET_REL_POS:
  14858. case GGML_OP_MAP_UNARY:
  14859. case GGML_OP_MAP_BINARY:
  14860. case GGML_OP_MAP_CUSTOM1_F32:
  14861. case GGML_OP_MAP_CUSTOM2_F32:
  14862. case GGML_OP_MAP_CUSTOM3_F32:
  14863. {
  14864. n_tasks = 1;
  14865. } break;
  14866. case GGML_OP_MAP_CUSTOM1:
  14867. {
  14868. struct ggml_map_custom1_op_params p;
  14869. memcpy(&p, node->op_params, sizeof(p));
  14870. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14871. n_tasks = n_threads;
  14872. } else {
  14873. n_tasks = MIN(p.n_tasks, n_threads);
  14874. }
  14875. } break;
  14876. case GGML_OP_MAP_CUSTOM2:
  14877. {
  14878. struct ggml_map_custom2_op_params p;
  14879. memcpy(&p, node->op_params, sizeof(p));
  14880. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14881. n_tasks = n_threads;
  14882. } else {
  14883. n_tasks = MIN(p.n_tasks, n_threads);
  14884. }
  14885. } break;
  14886. case GGML_OP_MAP_CUSTOM3:
  14887. {
  14888. struct ggml_map_custom3_op_params p;
  14889. memcpy(&p, node->op_params, sizeof(p));
  14890. if (p.n_tasks == GGML_N_TASKS_MAX) {
  14891. n_tasks = n_threads;
  14892. } else {
  14893. n_tasks = MIN(p.n_tasks, n_threads);
  14894. }
  14895. } break;
  14896. case GGML_OP_CROSS_ENTROPY_LOSS:
  14897. {
  14898. n_tasks = n_threads;
  14899. } break;
  14900. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14901. {
  14902. n_tasks = n_threads;
  14903. } break;
  14904. case GGML_OP_NONE:
  14905. {
  14906. n_tasks = 1;
  14907. } break;
  14908. case GGML_OP_COUNT:
  14909. {
  14910. GGML_ASSERT(false);
  14911. } break;
  14912. default:
  14913. {
  14914. fprintf(stderr, "%s: op not implemented: ", __func__);
  14915. if (node->op < GGML_OP_COUNT) {
  14916. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  14917. } else {
  14918. fprintf(stderr, "%d\n", node->op);
  14919. }
  14920. GGML_ASSERT(false);
  14921. } break;
  14922. }
  14923. assert(n_tasks > 0);
  14924. return n_tasks;
  14925. }
  14926. static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) {
  14927. // wait for other threads to finish
  14928. const int last_node_n = * node_n;
  14929. while (true) {
  14930. if (do_yield) {
  14931. sched_yield();
  14932. }
  14933. * node_n = atomic_load(&state->shared->node_n);
  14934. if (* node_n != last_node_n) break;
  14935. }
  14936. }
  14937. static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) {
  14938. // wait for other threads to finish
  14939. const int last_task_phase = * task_phase;
  14940. while (true) {
  14941. if (do_yield) {
  14942. sched_yield();
  14943. }
  14944. * task_phase = atomic_load(&state->shared->node_task);
  14945. if (* task_phase != last_task_phase) break;
  14946. }
  14947. }
  14948. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14949. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14950. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14951. const struct ggml_cplan * cplan = state->shared->cplan;
  14952. const int n_threads = state->shared->n_threads;
  14953. set_numa_thread_affinity(state->ith);
  14954. int node_n = -1;
  14955. int task_phase = GGML_TASK_TYPE_FINALIZE;
  14956. while (true) {
  14957. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14958. state->shared->node_n += 1;
  14959. state->ec = GGML_STATUS_ABORTED;
  14960. return 0;
  14961. }
  14962. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  14963. // all other threads are finished and spinning
  14964. // do finalize and init here so we don't have synchronize again
  14965. struct ggml_compute_params params = {
  14966. /*.type =*/ GGML_TASK_TYPE_FINALIZE,
  14967. /*.ith =*/ 0,
  14968. /*.nth =*/ 0,
  14969. /*.wsize =*/ cplan->work_size,
  14970. /*.wdata =*/ cplan->work_data,
  14971. };
  14972. if (node_n != -1) {
  14973. /* FINALIZE */
  14974. struct ggml_tensor * node = cgraph->nodes[node_n];
  14975. if (GGML_OP_HAS_FINALIZE[node->op]) {
  14976. params.nth = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14977. ggml_compute_forward(&params, node);
  14978. }
  14979. ggml_graph_compute_perf_stats_node(node, state->shared);
  14980. }
  14981. // distribute new work or execute it direct if 1T
  14982. while (++node_n < cgraph->n_nodes) {
  14983. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  14984. struct ggml_tensor * node = cgraph->nodes[node_n];
  14985. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  14986. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  14987. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  14988. params.nth = n_tasks;
  14989. if (n_tasks == 1) {
  14990. /* INIT */
  14991. if (GGML_OP_HAS_INIT[node->op]) {
  14992. params.type = GGML_TASK_TYPE_INIT;
  14993. ggml_compute_forward(&params, node);
  14994. }
  14995. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  14996. // they do something more efficient than spinning (?)
  14997. params.type = GGML_TASK_TYPE_COMPUTE;
  14998. ggml_compute_forward(&params, node);
  14999. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15000. params.type = GGML_TASK_TYPE_FINALIZE;
  15001. ggml_compute_forward(&params, node);
  15002. }
  15003. ggml_graph_compute_perf_stats_node(node, state->shared);
  15004. } else {
  15005. break;
  15006. }
  15007. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15008. break;
  15009. }
  15010. }
  15011. task_phase = GGML_TASK_TYPE_INIT;
  15012. atomic_store(&state->shared->n_active, n_threads);
  15013. atomic_store(&state->shared->node_n, node_n);
  15014. atomic_store(&state->shared->node_task, task_phase);
  15015. } else {
  15016. ggml_graph_compute_thread_sync_node(&node_n, state, false);
  15017. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15018. }
  15019. // check if we should stop
  15020. if (node_n >= cgraph->n_nodes) break;
  15021. /* INIT & COMPUTE */
  15022. struct ggml_tensor * node = cgraph->nodes[node_n];
  15023. const int n_tasks = ggml_get_n_tasks(node, n_threads, state->shared->n_threads);
  15024. struct ggml_compute_params params = {
  15025. /*.type =*/ GGML_TASK_TYPE_INIT,
  15026. /*.ith =*/ state->ith,
  15027. /*.nth =*/ n_tasks,
  15028. /*.wsize =*/ cplan->work_size,
  15029. /*.wdata =*/ cplan->work_data,
  15030. };
  15031. if (state->ith < n_tasks) {
  15032. if (GGML_OP_HAS_INIT[node->op]) {
  15033. ggml_compute_forward(&params, node);
  15034. }
  15035. }
  15036. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15037. task_phase = GGML_TASK_TYPE_COMPUTE;
  15038. atomic_store(&state->shared->n_active, n_threads);
  15039. atomic_store(&state->shared->node_task, task_phase);
  15040. }
  15041. else {
  15042. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15043. // depending on the workload and the operating system.
  15044. // since it is not clear what is the best approach, it should potentially become user-configurable
  15045. // ref: https://github.com/ggerganov/ggml/issues/291
  15046. // UPD: adding the do_yield flag seems to resolve the issue universally
  15047. const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT;
  15048. ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield);
  15049. }
  15050. if (state->ith < n_tasks) {
  15051. params.type = GGML_TASK_TYPE_COMPUTE;
  15052. ggml_compute_forward(&params, node);
  15053. }
  15054. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15055. task_phase = GGML_TASK_TYPE_FINALIZE;
  15056. atomic_store(&state->shared->n_active, n_threads);
  15057. atomic_store(&state->shared->node_task, task_phase);
  15058. }
  15059. else {
  15060. ggml_graph_compute_thread_sync_task(&task_phase, state, false);
  15061. }
  15062. }
  15063. return 0;
  15064. }
  15065. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15066. if (n_threads <= 0) {
  15067. n_threads = GGML_DEFAULT_N_THREADS;
  15068. }
  15069. size_t work_size = 0;
  15070. struct ggml_cplan cplan;
  15071. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15072. int max_tasks = 1;
  15073. // thread scheduling for the different operations + work buffer size estimation
  15074. for (int i = 0; i < cgraph->n_nodes; i++) {
  15075. struct ggml_tensor * node = cgraph->nodes[i];
  15076. const int n_tasks = ggml_get_n_tasks(node, n_threads, 1);
  15077. max_tasks = MAX(max_tasks, n_tasks);
  15078. size_t cur = 0;
  15079. switch (node->op) {
  15080. case GGML_OP_CPY:
  15081. case GGML_OP_DUP:
  15082. {
  15083. if (ggml_is_quantized(node->type)) {
  15084. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15085. }
  15086. } break;
  15087. case GGML_OP_ADD:
  15088. case GGML_OP_ADD1:
  15089. {
  15090. if (ggml_is_quantized(node->src[0]->type)) {
  15091. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15092. }
  15093. } break;
  15094. case GGML_OP_ACC:
  15095. {
  15096. if (ggml_is_quantized(node->src[0]->type)) {
  15097. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15098. }
  15099. } break;
  15100. case GGML_OP_MUL_MAT:
  15101. {
  15102. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15103. #if defined(GGML_USE_CLBLAST)
  15104. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15105. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15106. } else
  15107. #endif
  15108. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15109. if (ggml_compute_forward_mul_mat_use_blas(node)) {
  15110. if (node->src[0]->type != GGML_TYPE_F32) {
  15111. // here we need memory for fully dequantized matrix from src0
  15112. // take into account that src0 can be broadcasted into src1[2,3]
  15113. cur = ggml_type_size(GGML_TYPE_F32)
  15114. * node->src[0]->ne[0]*node->src[0]->ne[1]
  15115. * node->src[1]->ne[2]*node->src[1]->ne[3];
  15116. }
  15117. } else
  15118. #endif
  15119. if (node->src[1]->type != vec_dot_type) {
  15120. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15121. }
  15122. } break;
  15123. case GGML_OP_MUL_MAT_ID:
  15124. {
  15125. cur = 0;
  15126. const struct ggml_tensor * src0 = node->src[2];
  15127. const struct ggml_tensor * src1 = node->src[1];
  15128. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15129. if (src1->type != vec_dot_type) {
  15130. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15131. }
  15132. const int n_as = ggml_get_op_params_i32(node, 1);
  15133. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15134. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15135. cur += n_as * src1->ne[1] * sizeof(int64_t); // matrix_rows
  15136. } break;
  15137. case GGML_OP_OUT_PROD:
  15138. {
  15139. if (ggml_is_quantized(node->src[0]->type)) {
  15140. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15141. }
  15142. } break;
  15143. case GGML_OP_SOFT_MAX:
  15144. case GGML_OP_ROPE:
  15145. {
  15146. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15147. } break;
  15148. case GGML_OP_CONV_TRANSPOSE_1D:
  15149. {
  15150. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15151. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15152. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15153. const int64_t ne00 = node->src[0]->ne[0]; // K
  15154. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15155. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15156. const int64_t ne10 = node->src[1]->ne[0]; // L
  15157. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15158. if (node->src[0]->type == GGML_TYPE_F16 &&
  15159. node->src[1]->type == GGML_TYPE_F32) {
  15160. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15161. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15162. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15163. node->src[1]->type == GGML_TYPE_F32) {
  15164. cur += sizeof(float)*ne00*ne01*ne02;
  15165. cur += sizeof(float)*ne10*ne11;
  15166. } else {
  15167. GGML_ASSERT(false);
  15168. }
  15169. } break;
  15170. case GGML_OP_CONV_TRANSPOSE_2D:
  15171. {
  15172. const int64_t ne00 = node->src[0]->ne[0]; // W
  15173. const int64_t ne01 = node->src[0]->ne[1]; // H
  15174. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15175. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15176. const int64_t ne10 = node->src[1]->ne[0]; // W
  15177. const int64_t ne11 = node->src[1]->ne[1]; // H
  15178. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15179. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15180. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15181. } break;
  15182. case GGML_OP_FLASH_ATTN:
  15183. {
  15184. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15185. if (node->src[1]->type == GGML_TYPE_F32) {
  15186. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15187. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15188. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15189. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15190. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15191. }
  15192. } break;
  15193. case GGML_OP_FLASH_FF:
  15194. {
  15195. if (node->src[1]->type == GGML_TYPE_F32) {
  15196. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15197. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15198. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15199. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15200. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15201. }
  15202. } break;
  15203. case GGML_OP_FLASH_ATTN_BACK:
  15204. {
  15205. const int64_t D = node->src[0]->ne[0];
  15206. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15207. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15208. if (node->src[1]->type == GGML_TYPE_F32) {
  15209. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15210. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15211. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15212. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15213. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15214. }
  15215. } break;
  15216. case GGML_OP_CROSS_ENTROPY_LOSS:
  15217. {
  15218. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15219. } break;
  15220. case GGML_OP_COUNT:
  15221. {
  15222. GGML_ASSERT(false);
  15223. } break;
  15224. default:
  15225. break;
  15226. }
  15227. work_size = MAX(work_size, cur);
  15228. }
  15229. if (work_size > 0) {
  15230. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15231. }
  15232. cplan.n_threads = MIN(max_tasks, n_threads);
  15233. cplan.work_size = work_size;
  15234. cplan.work_data = NULL;
  15235. return cplan;
  15236. }
  15237. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15238. {
  15239. GGML_ASSERT(cplan);
  15240. GGML_ASSERT(cplan->n_threads > 0);
  15241. if (cplan->work_size > 0) {
  15242. GGML_ASSERT(cplan->work_data);
  15243. }
  15244. }
  15245. #ifdef GGML_USE_VULKAN
  15246. for (int i = 0; i < cgraph->n_nodes; i++) {
  15247. ggml_vk_preallocate_buffers_graph_cpu_assist(cgraph->nodes[i]);
  15248. }
  15249. ggml_vk_preallocate_buffers_cpu_assist();
  15250. for (int i = 0; i < cgraph->n_nodes; i++) {
  15251. ggml_vk_build_graph_cpu_assist(cgraph->nodes[i], i == cgraph->n_nodes - 1);
  15252. }
  15253. #endif
  15254. const int n_threads = cplan->n_threads;
  15255. struct ggml_compute_state_shared state_shared = {
  15256. /*.cgraph =*/ cgraph,
  15257. /*.cgraph_plan =*/ cplan,
  15258. /*.perf_node_start_cycles =*/ 0,
  15259. /*.perf_node_start_time_us =*/ 0,
  15260. /*.n_threads =*/ n_threads,
  15261. /*.n_active =*/ n_threads,
  15262. /*.node_n =*/ -1,
  15263. /*.node_task =*/ GGML_TASK_TYPE_FINALIZE,
  15264. /*.abort_callback =*/ NULL,
  15265. /*.abort_callback_data =*/ NULL,
  15266. };
  15267. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15268. // create thread pool
  15269. if (n_threads > 1) {
  15270. for (int j = 1; j < n_threads; ++j) {
  15271. workers[j] = (struct ggml_compute_state) {
  15272. .thrd = 0,
  15273. .ith = j,
  15274. .shared = &state_shared,
  15275. .ec = GGML_STATUS_SUCCESS,
  15276. };
  15277. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15278. GGML_ASSERT(rc == 0);
  15279. UNUSED(rc);
  15280. }
  15281. }
  15282. workers[0].ith = 0;
  15283. workers[0].shared = &state_shared;
  15284. workers[0].ec = GGML_STATUS_SUCCESS;
  15285. const int64_t perf_start_cycles = ggml_perf_cycles();
  15286. const int64_t perf_start_time_us = ggml_perf_time_us();
  15287. // this is a work thread too
  15288. ggml_graph_compute_thread(&workers[0]);
  15289. enum ggml_status compute_status = workers[0].ec;
  15290. // don't leave affinity set on the main thread
  15291. clear_numa_thread_affinity();
  15292. // join or kill thread pool
  15293. if (n_threads > 1) {
  15294. for (int j = 1; j < n_threads; j++) {
  15295. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15296. GGML_ASSERT(rc == 0);
  15297. if (workers[j].ec != GGML_STATUS_SUCCESS)
  15298. compute_status = workers[j].ec;
  15299. }
  15300. }
  15301. #ifdef GGML_USE_VULKAN
  15302. ggml_vk_graph_cleanup_cpu_assist();
  15303. #endif
  15304. // performance stats (graph)
  15305. {
  15306. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15307. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15308. cgraph->perf_runs++;
  15309. cgraph->perf_cycles += perf_cycles_cur;
  15310. cgraph->perf_time_us += perf_time_us_cur;
  15311. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15312. __func__, cgraph->perf_runs,
  15313. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15314. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15315. (double) perf_time_us_cur / 1000.0,
  15316. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15317. }
  15318. return compute_status;
  15319. }
  15320. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15321. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15322. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15323. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15324. return ggml_graph_compute(cgraph, &cplan);
  15325. }
  15326. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15327. for (int i = 0; i < cgraph->n_leafs; i++) {
  15328. struct ggml_tensor * leaf = cgraph->leafs[i];
  15329. if (strcmp(leaf->name, name) == 0) {
  15330. return leaf;
  15331. }
  15332. }
  15333. for (int i = 0; i < cgraph->n_nodes; i++) {
  15334. struct ggml_tensor * node = cgraph->nodes[i];
  15335. if (strcmp(node->name, name) == 0) {
  15336. return node;
  15337. }
  15338. }
  15339. return NULL;
  15340. }
  15341. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15342. const int64_t * ne = tensor->ne;
  15343. const size_t * nb = tensor->nb;
  15344. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15345. ggml_type_name(tensor->type),
  15346. ggml_op_name (tensor->op),
  15347. ggml_n_dims(tensor),
  15348. ne[0], ne[1], ne[2], ne[3],
  15349. nb[0], nb[1], nb[2], nb[3],
  15350. tensor->data,
  15351. tensor->name);
  15352. }
  15353. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15354. const int64_t * ne = tensor->ne;
  15355. const size_t * nb = tensor->nb;
  15356. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15357. arg,
  15358. ggml_type_name(tensor->type),
  15359. ggml_op_name (tensor->op),
  15360. ggml_n_dims(tensor),
  15361. ne[0], ne[1], ne[2], ne[3],
  15362. nb[0], nb[1], nb[2], nb[3],
  15363. tensor->data,
  15364. tensor->name);
  15365. }
  15366. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15367. uint64_t size_eval = 0;
  15368. // compute size of intermediate results
  15369. // TODO: does not take into account scratch buffers !!!!
  15370. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15371. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15372. }
  15373. // print
  15374. {
  15375. FILE * fout = stdout;
  15376. fprintf(fout, "\n");
  15377. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15378. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15379. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15380. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15381. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15382. // header
  15383. fprintf(fout, "\n");
  15384. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15385. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15386. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15387. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15388. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15389. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15390. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15391. }
  15392. // header
  15393. fprintf(fout, "\n");
  15394. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15395. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15396. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15397. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15398. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15399. if (cgraph->nodes[i]->src[j]) {
  15400. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15401. }
  15402. }
  15403. fprintf(fout, "\n");
  15404. }
  15405. fprintf(fout, "\n");
  15406. }
  15407. // write binary data
  15408. {
  15409. FILE * fout = fopen(fname, "wb");
  15410. if (!fout) {
  15411. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15412. return;
  15413. }
  15414. // header
  15415. {
  15416. const uint32_t magic = GGML_FILE_MAGIC;
  15417. const uint32_t version = GGML_FILE_VERSION;
  15418. const uint32_t n_leafs = cgraph->n_leafs;
  15419. const uint32_t n_nodes = cgraph->n_nodes;
  15420. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15421. fwrite(&version, sizeof(uint32_t), 1, fout);
  15422. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15423. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15424. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15425. }
  15426. // leafs
  15427. {
  15428. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15429. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15430. const uint32_t type = tensor->type;
  15431. const uint32_t op = tensor->op;
  15432. fwrite(&type, sizeof(uint32_t), 1, fout);
  15433. fwrite(&op, sizeof(uint32_t), 1, fout);
  15434. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15435. const uint64_t ne = tensor->ne[j];
  15436. const uint64_t nb = tensor->nb[j];
  15437. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15438. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15439. }
  15440. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15441. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15442. // dump the data
  15443. // TODO: pad this to 32 byte boundary
  15444. {
  15445. const size_t size = ggml_nbytes(tensor);
  15446. fwrite(tensor->data, sizeof(char), size, fout);
  15447. }
  15448. }
  15449. }
  15450. // nodes
  15451. {
  15452. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15453. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15454. const uint32_t type = tensor->type;
  15455. const uint32_t op = tensor->op;
  15456. fwrite(&type, sizeof(uint32_t), 1, fout);
  15457. fwrite(&op, sizeof(uint32_t), 1, fout);
  15458. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15459. const uint64_t ne = tensor->ne[j];
  15460. const uint64_t nb = tensor->nb[j];
  15461. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15462. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15463. }
  15464. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15465. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15466. // output the op arguments
  15467. {
  15468. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15469. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15470. args[j] = tensor->src[j];
  15471. }
  15472. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15473. if (args[j]) {
  15474. int32_t idx = -1;
  15475. // check if leaf
  15476. {
  15477. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15478. if (args[j] == cgraph->leafs[k]) {
  15479. idx = k;
  15480. break;
  15481. }
  15482. }
  15483. }
  15484. // check if node
  15485. if (idx == -1) {
  15486. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15487. if (args[j] == cgraph->nodes[k]) {
  15488. idx = cgraph->n_leafs + k;
  15489. break;
  15490. }
  15491. }
  15492. }
  15493. if (idx == -1) {
  15494. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15495. fclose(fout);
  15496. return;
  15497. }
  15498. fwrite(&idx, sizeof(int32_t), 1, fout);
  15499. } else {
  15500. const int32_t nul = -1;
  15501. fwrite(&nul, sizeof(int32_t), 1, fout);
  15502. }
  15503. }
  15504. }
  15505. }
  15506. }
  15507. fclose(fout);
  15508. }
  15509. }
  15510. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15511. assert(*ctx_data == NULL);
  15512. assert(*ctx_eval == NULL);
  15513. struct ggml_cgraph * result = NULL;
  15514. struct ggml_tensor * data = NULL;
  15515. // read file into data
  15516. {
  15517. FILE * fin = fopen(fname, "rb");
  15518. if (!fin) {
  15519. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15520. return result;
  15521. }
  15522. size_t fsize = 0;
  15523. fseek(fin, 0, SEEK_END);
  15524. fsize = ftell(fin);
  15525. fseek(fin, 0, SEEK_SET);
  15526. // create the data context
  15527. {
  15528. const size_t overhead = 1*ggml_tensor_overhead();
  15529. struct ggml_init_params params = {
  15530. .mem_size = fsize + overhead,
  15531. .mem_buffer = NULL,
  15532. .no_alloc = false,
  15533. };
  15534. *ctx_data = ggml_init(params);
  15535. if (!*ctx_data) {
  15536. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15537. fclose(fin);
  15538. return result;
  15539. }
  15540. }
  15541. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15542. {
  15543. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15544. if (ret != fsize) {
  15545. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15546. fclose(fin);
  15547. return result;
  15548. }
  15549. }
  15550. fclose(fin);
  15551. }
  15552. // populate result
  15553. {
  15554. char * ptr = (char *) data->data;
  15555. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15556. if (magic != GGML_FILE_MAGIC) {
  15557. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15558. return result;
  15559. }
  15560. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15561. if (version != GGML_FILE_VERSION) {
  15562. fprintf(stderr, "%s: invalid version number\n", __func__);
  15563. return result;
  15564. }
  15565. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15566. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15567. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15568. const int graph_size = MAX(n_leafs, n_nodes);
  15569. // create the data context
  15570. {
  15571. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15572. struct ggml_init_params params = {
  15573. .mem_size = size_eval + overhead,
  15574. .mem_buffer = NULL,
  15575. .no_alloc = true,
  15576. };
  15577. *ctx_eval = ggml_init(params);
  15578. if (!*ctx_eval) {
  15579. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15580. return result;
  15581. }
  15582. }
  15583. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15584. result->n_leafs = n_leafs;
  15585. result->n_nodes = n_nodes;
  15586. // leafs
  15587. {
  15588. uint32_t type;
  15589. uint32_t op;
  15590. for (uint32_t i = 0; i < n_leafs; ++i) {
  15591. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15592. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15593. int64_t ne[GGML_MAX_DIMS];
  15594. size_t nb[GGML_MAX_DIMS];
  15595. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15596. uint64_t ne_cur;
  15597. uint64_t nb_cur;
  15598. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15599. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15600. ne[j] = ne_cur;
  15601. nb[j] = nb_cur;
  15602. }
  15603. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15604. tensor->op = (enum ggml_op) op;
  15605. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15606. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15607. tensor->data = (void *) ptr;
  15608. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15609. tensor->nb[j] = nb[j];
  15610. }
  15611. result->leafs[i] = tensor;
  15612. ptr += ggml_nbytes(tensor);
  15613. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15614. }
  15615. }
  15616. ggml_set_no_alloc(*ctx_eval, false);
  15617. // nodes
  15618. {
  15619. uint32_t type;
  15620. uint32_t op;
  15621. for (uint32_t i = 0; i < n_nodes; ++i) {
  15622. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15623. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15624. enum ggml_op eop = (enum ggml_op) op;
  15625. int64_t ne[GGML_MAX_DIMS];
  15626. size_t nb[GGML_MAX_DIMS];
  15627. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15628. uint64_t ne_cur;
  15629. uint64_t nb_cur;
  15630. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15631. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15632. ne[j] = ne_cur;
  15633. nb[j] = nb_cur;
  15634. }
  15635. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15636. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15637. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15638. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15639. // parse args
  15640. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15641. const int32_t arg_idx = ptr_arg_idx[j];
  15642. if (arg_idx == -1) {
  15643. continue;
  15644. }
  15645. if (arg_idx < result->n_leafs) {
  15646. args[j] = result->leafs[arg_idx];
  15647. } else {
  15648. args[j] = result->nodes[arg_idx - result->n_leafs];
  15649. }
  15650. }
  15651. // create the tensor
  15652. // "view" operations are handled differently
  15653. // TODO: handle inplace ops - currently a copy is always made
  15654. struct ggml_tensor * tensor = NULL;
  15655. switch (eop) {
  15656. // TODO: implement other view ops
  15657. case GGML_OP_RESHAPE:
  15658. {
  15659. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15660. } break;
  15661. case GGML_OP_VIEW:
  15662. {
  15663. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15664. size_t offs;
  15665. memcpy(&offs, ptr_op_params, sizeof(offs));
  15666. tensor->data = ((char *) tensor->data) + offs;
  15667. } break;
  15668. case GGML_OP_TRANSPOSE:
  15669. {
  15670. tensor = ggml_transpose(*ctx_eval, args[0]);
  15671. } break;
  15672. case GGML_OP_PERMUTE:
  15673. {
  15674. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15675. } break;
  15676. default:
  15677. {
  15678. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15679. tensor->op = eop;
  15680. } break;
  15681. }
  15682. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15683. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15684. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15685. tensor->nb[j] = nb[j];
  15686. }
  15687. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15688. tensor->src[j] = args[j];
  15689. }
  15690. result->nodes[i] = tensor;
  15691. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15692. }
  15693. }
  15694. }
  15695. return result;
  15696. }
  15697. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15698. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15699. GGML_PRINT("=== GRAPH ===\n");
  15700. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15701. for (int i = 0; i < cgraph->n_nodes; i++) {
  15702. struct ggml_tensor * node = cgraph->nodes[i];
  15703. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15704. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15705. i,
  15706. node->ne[0], node->ne[1], node->ne[2],
  15707. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15708. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15709. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15710. (double) node->perf_time_us / 1000.0,
  15711. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15712. }
  15713. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15714. for (int i = 0; i < cgraph->n_leafs; i++) {
  15715. struct ggml_tensor * node = cgraph->leafs[i];
  15716. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15717. i,
  15718. node->ne[0], node->ne[1],
  15719. ggml_op_name(node->op),
  15720. ggml_get_name(node));
  15721. }
  15722. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15723. if (perf_total_per_op_us[i] == 0) {
  15724. continue;
  15725. }
  15726. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15727. }
  15728. GGML_PRINT("========================================\n");
  15729. }
  15730. // check if node is part of the graph
  15731. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15732. if (cgraph == NULL) {
  15733. return true;
  15734. }
  15735. for (int i = 0; i < cgraph->n_nodes; i++) {
  15736. if (cgraph->nodes[i] == node) {
  15737. return true;
  15738. }
  15739. }
  15740. return false;
  15741. }
  15742. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15743. for (int i = 0; i < cgraph->n_nodes; i++) {
  15744. struct ggml_tensor * parent = cgraph->nodes[i];
  15745. if (parent->grad == node) {
  15746. return parent;
  15747. }
  15748. }
  15749. return NULL;
  15750. }
  15751. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15752. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15753. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15754. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15755. gparent0 ? (void *) gparent0 : (void *) parent,
  15756. gparent0 ? "g" : "x",
  15757. gparent ? (void *) gparent : (void *) node,
  15758. gparent ? "g" : "x",
  15759. gparent ? "empty" : "vee",
  15760. gparent ? "dashed" : "solid",
  15761. label);
  15762. }
  15763. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15764. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15765. (void *) parent, "x",
  15766. (void *) node, "x",
  15767. label);
  15768. }
  15769. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15770. char color[16];
  15771. FILE * fp = fopen(filename, "w");
  15772. GGML_ASSERT(fp);
  15773. fprintf(fp, "digraph G {\n");
  15774. fprintf(fp, " newrank = true;\n");
  15775. fprintf(fp, " rankdir = LR;\n");
  15776. for (int i = 0; i < gb->n_nodes; i++) {
  15777. struct ggml_tensor * node = gb->nodes[i];
  15778. if (ggml_graph_get_parent(gb, node) != NULL) {
  15779. continue;
  15780. }
  15781. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15782. snprintf(color, sizeof(color), "yellow");
  15783. } else if (node->grad) {
  15784. if (ggml_graph_find(gf, node)) {
  15785. snprintf(color, sizeof(color), "green");
  15786. } else {
  15787. snprintf(color, sizeof(color), "lightblue");
  15788. }
  15789. } else {
  15790. snprintf(color, sizeof(color), "white");
  15791. }
  15792. fprintf(fp, " \"%p\" [ "
  15793. "style = filled; fillcolor = %s; shape = record; "
  15794. "label=\"",
  15795. (void *) node, color);
  15796. if (strlen(node->name) > 0) {
  15797. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15798. } else {
  15799. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15800. }
  15801. if (ggml_is_matrix(node)) {
  15802. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15803. } else {
  15804. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15805. }
  15806. if (node->grad) {
  15807. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15808. } else {
  15809. fprintf(fp, "\"; ]\n");
  15810. }
  15811. }
  15812. for (int i = 0; i < gb->n_leafs; i++) {
  15813. struct ggml_tensor * node = gb->leafs[i];
  15814. snprintf(color, sizeof(color), "pink");
  15815. fprintf(fp, " \"%p\" [ "
  15816. "style = filled; fillcolor = %s; shape = record; "
  15817. "label=\"<x>",
  15818. (void *) node, color);
  15819. if (strlen(node->name) > 0) {
  15820. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15821. } else {
  15822. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15823. }
  15824. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15825. if (ggml_nelements(node) < 5) {
  15826. fprintf(fp, " | (");
  15827. for (int j = 0; j < ggml_nelements(node); j++) {
  15828. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15829. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15830. }
  15831. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  15832. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15833. }
  15834. else {
  15835. fprintf(fp, "#");
  15836. }
  15837. if (j < ggml_nelements(node) - 1) {
  15838. fprintf(fp, ", ");
  15839. }
  15840. }
  15841. fprintf(fp, ")");
  15842. }
  15843. fprintf(fp, "\"; ]\n");
  15844. }
  15845. for (int i = 0; i < gb->n_nodes; i++) {
  15846. struct ggml_tensor * node = gb->nodes[i];
  15847. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15848. if (node->src[j]) {
  15849. char label[16];
  15850. snprintf(label, sizeof(label), "src %d", j);
  15851. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  15852. }
  15853. }
  15854. }
  15855. for (int i = 0; i < gb->n_leafs; i++) {
  15856. struct ggml_tensor * node = gb->leafs[i];
  15857. for (int j = 0; j < GGML_MAX_SRC; j++) {
  15858. if (node->src[j]) {
  15859. char label[16];
  15860. snprintf(label, sizeof(label), "src %d", j);
  15861. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  15862. }
  15863. }
  15864. }
  15865. fprintf(fp, "}\n");
  15866. fclose(fp);
  15867. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  15868. }
  15869. ////////////////////////////////////////////////////////////////////////////////
  15870. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  15871. int i = 0;
  15872. for (int p = 0; p < np; ++p) {
  15873. const int64_t ne = ggml_nelements(ps[p]) ;
  15874. // TODO: add function to set tensor from array
  15875. for (int64_t j = 0; j < ne; ++j) {
  15876. ggml_set_f32_1d(ps[p], j, x[i++]);
  15877. }
  15878. }
  15879. }
  15880. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  15881. int i = 0;
  15882. for (int p = 0; p < np; ++p) {
  15883. const int64_t ne = ggml_nelements(ps[p]) ;
  15884. // TODO: add function to get all elements at once
  15885. for (int64_t j = 0; j < ne; ++j) {
  15886. x[i++] = ggml_get_f32_1d(ps[p], j);
  15887. }
  15888. }
  15889. }
  15890. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  15891. int64_t i = 0;
  15892. for (int p = 0; p < np; ++p) {
  15893. const int64_t ne = ggml_nelements(ps[p]) ;
  15894. // TODO: add function to get all elements at once
  15895. for (int64_t j = 0; j < ne; ++j) {
  15896. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  15897. }
  15898. }
  15899. }
  15900. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  15901. int64_t i = 0;
  15902. for (int p = 0; p < np; ++p) {
  15903. const int64_t ne = ggml_nelements(ps[p]) ;
  15904. // TODO: add function to get all elements at once
  15905. for (int64_t j = 0; j < ne; ++j) {
  15906. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  15907. }
  15908. }
  15909. }
  15910. //
  15911. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  15912. //
  15913. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  15914. //
  15915. static enum ggml_opt_result ggml_opt_adam(
  15916. struct ggml_context * ctx,
  15917. struct ggml_opt_context * opt,
  15918. struct ggml_opt_params params,
  15919. struct ggml_tensor * f,
  15920. struct ggml_cgraph * gf,
  15921. struct ggml_cgraph * gb,
  15922. ggml_opt_callback callback,
  15923. void * callback_data) {
  15924. GGML_ASSERT(ggml_is_scalar(f));
  15925. // these will store the parameters we want to optimize
  15926. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15927. int np = 0;
  15928. int64_t nx = 0;
  15929. for (int i = 0; i < gf->n_nodes; ++i) {
  15930. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  15931. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15932. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15933. ps[np++] = gf->nodes[i];
  15934. nx += ggml_nelements(gf->nodes[i]);
  15935. }
  15936. }
  15937. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  15938. int iter = opt->iter;
  15939. ggml_opt_init(opt->ctx, opt, params, nx);
  15940. opt->iter = iter;
  15941. }
  15942. // constants
  15943. float sched = params.adam.sched;
  15944. const float alpha = params.adam.alpha;
  15945. const float decay = params.adam.decay * alpha;
  15946. const float beta1 = params.adam.beta1;
  15947. const float beta2 = params.adam.beta2;
  15948. const float eps = params.adam.eps;
  15949. const float gclip = params.adam.gclip;
  15950. const int decay_min_ndim = params.adam.decay_min_ndim;
  15951. const int n_accum = MAX(1, params.n_gradient_accumulation);
  15952. const float accum_norm = 1.0f / (float) n_accum;
  15953. float * g = opt->adam.g->data; // gradients
  15954. float * m = opt->adam.m->data; // first moment
  15955. float * v = opt->adam.v->data; // second moment
  15956. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  15957. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  15958. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15959. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15960. bool cancel = false;
  15961. // compute the function value
  15962. float fx = 0;
  15963. ggml_set_zero(opt->adam.g);
  15964. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  15965. if (callback) {
  15966. callback(callback_data, accum_step, &sched, &cancel);
  15967. if (cancel) {
  15968. return GGML_OPT_RESULT_CANCEL;
  15969. }
  15970. }
  15971. // ggml_graph_reset (gf);
  15972. ggml_set_f32 (f->grad, 1.0f);
  15973. ggml_graph_compute(gb, &cplan);
  15974. ggml_opt_acc_grad(np, ps, g, accum_norm);
  15975. fx += ggml_get_f32_1d(f, 0);
  15976. }
  15977. fx *= accum_norm;
  15978. opt->adam.fx_prev = fx;
  15979. opt->adam.fx_best = opt->adam.fx_prev;
  15980. if (pf) {
  15981. pf[opt->iter % params.past] = opt->adam.fx_prev;
  15982. }
  15983. opt->loss_before = opt->adam.fx_prev;
  15984. opt->loss_after = opt->adam.fx_prev;
  15985. // initialize
  15986. if (opt->just_initialized) {
  15987. opt->adam.n_no_improvement = 0;
  15988. opt->just_initialized = false;
  15989. }
  15990. float * fx_best = &opt->adam.fx_best;
  15991. float * fx_prev = &opt->adam.fx_prev;
  15992. int * n_no_improvement = &opt->adam.n_no_improvement;
  15993. int iter0 = opt->iter;
  15994. // run the optimizer
  15995. for (int t = 0; t < params.adam.n_iter; ++t) {
  15996. opt->iter = iter0 + t + 1;
  15997. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  15998. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15999. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16000. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16001. for (int i = 0; i < np; ++i) {
  16002. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16003. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16004. }
  16005. const int64_t t_start_wall = ggml_time_us();
  16006. const int64_t t_start_cpu = ggml_cycles();
  16007. UNUSED(t_start_wall);
  16008. UNUSED(t_start_cpu);
  16009. {
  16010. float gnorm = 1.0f;
  16011. if (gclip > 0.0f) {
  16012. // gradient clipping
  16013. ggml_float sum = 0.0;
  16014. for (int64_t i = 0; i < nx; ++i) {
  16015. sum += (ggml_float)(g[i]*g[i]);
  16016. }
  16017. ggml_float norm = sqrt(sum);
  16018. if (norm > (ggml_float) gclip) {
  16019. gnorm = (float) ((ggml_float) gclip / norm);
  16020. }
  16021. }
  16022. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16023. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16024. int64_t i = 0;
  16025. for (int p = 0; p < np; ++p) {
  16026. const int64_t ne = ggml_nelements(ps[p]);
  16027. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16028. for (int64_t j = 0; j < ne; ++j) {
  16029. float x = ggml_get_f32_1d(ps[p], j);
  16030. float g_ = g[i]*gnorm;
  16031. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16032. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16033. float mh = m[i]*beta1h;
  16034. float vh = v[i]*beta2h;
  16035. vh = sqrtf(vh) + eps;
  16036. x = x*(1.0f - p_decay) - mh/vh;
  16037. ggml_set_f32_1d(ps[p], j, x);
  16038. ++i;
  16039. }
  16040. }
  16041. }
  16042. fx = 0;
  16043. ggml_set_zero(opt->adam.g);
  16044. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16045. if (callback) {
  16046. callback(callback_data, accum_step, &sched, &cancel);
  16047. if (cancel) {
  16048. return GGML_OPT_RESULT_CANCEL;;
  16049. }
  16050. }
  16051. // ggml_graph_reset (gf);
  16052. ggml_set_f32 (f->grad, 1.0f);
  16053. ggml_graph_compute(gb, &cplan);
  16054. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16055. fx += ggml_get_f32_1d(f, 0);
  16056. }
  16057. fx *= accum_norm;
  16058. opt->loss_after = fx;
  16059. // check convergence
  16060. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16061. GGML_PRINT_DEBUG("converged\n");
  16062. return GGML_OPT_RESULT_OK;
  16063. }
  16064. // delta-based convergence test
  16065. if (pf != NULL) {
  16066. // need at least params.past iterations to start checking for convergence
  16067. if (params.past <= iter0 + t) {
  16068. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16069. if (fabsf(rate) < params.delta) {
  16070. return GGML_OPT_RESULT_OK;
  16071. }
  16072. }
  16073. pf[(iter0 + t)%params.past] = fx;
  16074. }
  16075. // check for improvement
  16076. if (params.max_no_improvement > 0) {
  16077. if (fx_best[0] > fx) {
  16078. fx_best[0] = fx;
  16079. n_no_improvement[0] = 0;
  16080. } else {
  16081. ++n_no_improvement[0];
  16082. if (n_no_improvement[0] >= params.max_no_improvement) {
  16083. return GGML_OPT_RESULT_OK;
  16084. }
  16085. }
  16086. }
  16087. fx_prev[0] = fx;
  16088. {
  16089. const int64_t t_end_cpu = ggml_cycles();
  16090. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16091. UNUSED(t_end_cpu);
  16092. const int64_t t_end_wall = ggml_time_us();
  16093. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16094. UNUSED(t_end_wall);
  16095. }
  16096. }
  16097. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16098. }
  16099. //
  16100. // L-BFGS
  16101. //
  16102. // the L-BFGS implementation below is based on the following implementation:
  16103. //
  16104. // https://github.com/chokkan/liblbfgs
  16105. //
  16106. struct ggml_lbfgs_iteration_data {
  16107. float alpha;
  16108. float ys;
  16109. float * s;
  16110. float * y;
  16111. };
  16112. static enum ggml_opt_result linesearch_backtracking(
  16113. const struct ggml_opt_params * params,
  16114. int nx,
  16115. float * x,
  16116. float * fx,
  16117. float * g,
  16118. float * d,
  16119. float * step,
  16120. const float * xp,
  16121. struct ggml_tensor * f,
  16122. struct ggml_cgraph * gb,
  16123. struct ggml_cplan * cplan,
  16124. const int np,
  16125. struct ggml_tensor * ps[],
  16126. bool * cancel,
  16127. ggml_opt_callback callback,
  16128. void * callback_data) {
  16129. int count = 0;
  16130. float width = 0.0f;
  16131. float dg = 0.0f;
  16132. float finit = 0.0f;
  16133. float dginit = 0.0f;
  16134. float dgtest = 0.0f;
  16135. const float dec = 0.5f;
  16136. const float inc = 2.1f;
  16137. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16138. const float accum_norm = 1.0f / (float) n_accum;
  16139. if (*step <= 0.f) {
  16140. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16141. }
  16142. // compute the initial gradient in the search direction
  16143. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16144. // make sure that d points to a descent direction
  16145. if (0 < dginit) {
  16146. return GGML_LINESEARCH_FAIL;
  16147. }
  16148. // initialize local variables
  16149. finit = *fx;
  16150. dgtest = params->lbfgs.ftol*dginit;
  16151. while (true) {
  16152. ggml_vec_cpy_f32(nx, x, xp);
  16153. ggml_vec_mad_f32(nx, x, d, *step);
  16154. // evaluate the function and gradient values
  16155. {
  16156. ggml_opt_set_params(np, ps, x);
  16157. *fx = 0;
  16158. memset(g, 0, sizeof(float)*nx);
  16159. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16160. if (callback) {
  16161. // LBFG-S does not support learning rate -> ignore learning schedule
  16162. float sched = 0;
  16163. callback(callback_data, accum_step, &sched, cancel);
  16164. if (*cancel) {
  16165. return GGML_OPT_RESULT_CANCEL;
  16166. }
  16167. }
  16168. // ggml_graph_reset (gf);
  16169. ggml_set_f32 (f->grad, 1.0f);
  16170. ggml_graph_compute(gb, cplan);
  16171. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16172. *fx += ggml_get_f32_1d(f, 0);
  16173. }
  16174. *fx *= accum_norm;
  16175. }
  16176. ++count;
  16177. if (*fx > finit + (*step)*dgtest) {
  16178. width = dec;
  16179. } else {
  16180. // Armijo condition is satisfied
  16181. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16182. return count;
  16183. }
  16184. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16185. // check the Wolfe condition
  16186. if (dg < params->lbfgs.wolfe * dginit) {
  16187. width = inc;
  16188. } else {
  16189. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16190. // regular Wolfe conditions
  16191. return count;
  16192. }
  16193. if(dg > -params->lbfgs.wolfe*dginit) {
  16194. width = dec;
  16195. } else {
  16196. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16197. return count;
  16198. }
  16199. }
  16200. }
  16201. if (*step < params->lbfgs.min_step) {
  16202. return GGML_LINESEARCH_MINIMUM_STEP;
  16203. }
  16204. if (*step > params->lbfgs.max_step) {
  16205. return GGML_LINESEARCH_MAXIMUM_STEP;
  16206. }
  16207. if (params->lbfgs.max_linesearch <= count) {
  16208. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16209. }
  16210. (*step) *= width;
  16211. }
  16212. GGML_ASSERT(false && "line search failed");
  16213. return GGML_LINESEARCH_FAIL;
  16214. }
  16215. static enum ggml_opt_result ggml_opt_lbfgs(
  16216. struct ggml_context * ctx,
  16217. struct ggml_opt_context * opt,
  16218. struct ggml_opt_params params,
  16219. struct ggml_tensor * f,
  16220. struct ggml_cgraph * gf,
  16221. struct ggml_cgraph * gb,
  16222. ggml_opt_callback callback,
  16223. void * callback_data) {
  16224. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16225. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16226. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16227. return GGML_OPT_RESULT_INVALID_WOLFE;
  16228. }
  16229. }
  16230. const int m = params.lbfgs.m;
  16231. // these will store the parameters we want to optimize
  16232. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16233. int np = 0;
  16234. int nx = 0;
  16235. for (int i = 0; i < gf->n_nodes; ++i) {
  16236. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16237. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16238. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16239. ps[np++] = gf->nodes[i];
  16240. nx += ggml_nelements(gf->nodes[i]);
  16241. }
  16242. }
  16243. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16244. int iter = opt->iter;
  16245. ggml_opt_init(ctx, opt, params, nx);
  16246. opt->iter = iter;
  16247. }
  16248. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16249. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16250. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16251. float * x = opt->lbfgs.x->data; // current parameters
  16252. float * xp = opt->lbfgs.xp->data; // previous parameters
  16253. float * g = opt->lbfgs.g->data; // current gradient
  16254. float * gp = opt->lbfgs.gp->data; // previous gradient
  16255. float * d = opt->lbfgs.d->data; // search direction
  16256. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16257. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16258. const float accum_norm = 1.0f / (float) n_accum;
  16259. float fx = 0.0f; // cost function value
  16260. float xnorm = 0.0f; // ||x||
  16261. float gnorm = 0.0f; // ||g||
  16262. // initialize x from the graph nodes
  16263. ggml_opt_get_params(np, ps, x);
  16264. // the L-BFGS memory
  16265. float * lm_alpha = opt->lbfgs.lmal->data;
  16266. float * lm_ys = opt->lbfgs.lmys->data;
  16267. float * lm_s = opt->lbfgs.lms->data;
  16268. float * lm_y = opt->lbfgs.lmy->data;
  16269. bool cancel = false;
  16270. // evaluate the function value and its gradient
  16271. {
  16272. ggml_opt_set_params(np, ps, x);
  16273. fx = 0;
  16274. memset(g, 0, sizeof(float)*nx);
  16275. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16276. if (callback) {
  16277. // LBFG-S does not support learning rate -> ignore learning schedule
  16278. float sched = 0;
  16279. callback(callback_data, accum_step, &sched, &cancel);
  16280. if (cancel) {
  16281. return GGML_OPT_RESULT_CANCEL;
  16282. }
  16283. }
  16284. // ggml_graph_reset (gf);
  16285. ggml_set_f32 (f->grad, 1.0f);
  16286. ggml_graph_compute(gb, &cplan);
  16287. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16288. fx += ggml_get_f32_1d(f, 0);
  16289. }
  16290. fx *= accum_norm;
  16291. opt->loss_before = fx;
  16292. opt->loss_after = fx;
  16293. }
  16294. // search direction = -gradient
  16295. ggml_vec_neg_f32(nx, d, g);
  16296. // ||x||, ||g||
  16297. ggml_vec_norm_f32(nx, &xnorm, x);
  16298. ggml_vec_norm_f32(nx, &gnorm, g);
  16299. if (xnorm < 1.0f) {
  16300. xnorm = 1.0f;
  16301. }
  16302. // already optimized
  16303. if (gnorm/xnorm <= params.lbfgs.eps) {
  16304. return GGML_OPT_RESULT_OK;
  16305. }
  16306. if (opt->just_initialized) {
  16307. if (pf) {
  16308. pf[0] = fx;
  16309. }
  16310. opt->lbfgs.fx_best = fx;
  16311. // initial step
  16312. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16313. opt->lbfgs.j = 0;
  16314. opt->lbfgs.k = 1;
  16315. opt->lbfgs.end = 0;
  16316. opt->lbfgs.n_no_improvement = 0;
  16317. opt->just_initialized = false;
  16318. }
  16319. float * fx_best = &opt->lbfgs.fx_best;
  16320. float * step = &opt->lbfgs.step;
  16321. int * j = &opt->lbfgs.j;
  16322. int * k = &opt->lbfgs.k;
  16323. int * end = &opt->lbfgs.end;
  16324. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16325. int ls = 0;
  16326. int bound = 0;
  16327. float ys = 0.0f;
  16328. float yy = 0.0f;
  16329. float beta = 0.0f;
  16330. int it = 0;
  16331. while (true) {
  16332. // store the current position and gradient vectors
  16333. ggml_vec_cpy_f32(nx, xp, x);
  16334. ggml_vec_cpy_f32(nx, gp, g);
  16335. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16336. // to determine if the optimization should be cancelled
  16337. // this is a simple change, but not doing this atm, since I don't have a nice
  16338. // way to test and don't want to break something with so many changes lined up
  16339. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16340. if (cancel) {
  16341. return GGML_OPT_RESULT_CANCEL;
  16342. }
  16343. if (ls < 0) {
  16344. // linesearch failed - go back to the previous point and return
  16345. ggml_vec_cpy_f32(nx, x, xp);
  16346. ggml_vec_cpy_f32(nx, g, gp);
  16347. return ls;
  16348. }
  16349. opt->loss_after = fx;
  16350. ggml_vec_norm_f32(nx, &xnorm, x);
  16351. ggml_vec_norm_f32(nx, &gnorm, g);
  16352. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16353. if (xnorm < 1.0f) {
  16354. xnorm = 1.0f;
  16355. }
  16356. if (gnorm/xnorm <= params.lbfgs.eps) {
  16357. // converged
  16358. return GGML_OPT_RESULT_OK;
  16359. }
  16360. // delta-based convergence test
  16361. if (pf != NULL) {
  16362. // need at least params.past iterations to start checking for convergence
  16363. if (params.past <= k[0]) {
  16364. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16365. if (fabsf(rate) < params.delta) {
  16366. return GGML_OPT_RESULT_OK;
  16367. }
  16368. }
  16369. pf[k[0]%params.past] = fx;
  16370. }
  16371. // check for improvement
  16372. if (params.max_no_improvement > 0) {
  16373. if (fx < fx_best[0]) {
  16374. fx_best[0] = fx;
  16375. n_no_improvement[0] = 0;
  16376. } else {
  16377. n_no_improvement[0]++;
  16378. if (n_no_improvement[0] >= params.max_no_improvement) {
  16379. return GGML_OPT_RESULT_OK;
  16380. }
  16381. }
  16382. }
  16383. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16384. // reached the maximum number of iterations
  16385. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16386. }
  16387. // update vectors s and y:
  16388. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16389. // y_{k+1} = g_{k+1} - g_{k}.
  16390. //
  16391. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16392. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16393. // compute scalars ys and yy:
  16394. // ys = y^t \cdot s -> 1 / \rho.
  16395. // yy = y^t \cdot y.
  16396. //
  16397. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16398. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16399. lm_ys[end[0]] = ys;
  16400. // find new search direction
  16401. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16402. bound = (m <= k[0]) ? m : k[0];
  16403. k[0]++;
  16404. it++;
  16405. end[0] = (end[0] + 1)%m;
  16406. // initialize search direction with -g
  16407. ggml_vec_neg_f32(nx, d, g);
  16408. j[0] = end[0];
  16409. for (int i = 0; i < bound; ++i) {
  16410. j[0] = (j[0] + m - 1) % m;
  16411. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16412. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16413. lm_alpha[j[0]] /= lm_ys[j[0]];
  16414. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16415. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16416. }
  16417. ggml_vec_scale_f32(nx, d, ys/yy);
  16418. for (int i = 0; i < bound; ++i) {
  16419. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16420. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16421. beta /= lm_ys[j[0]];
  16422. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16423. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16424. j[0] = (j[0] + 1)%m;
  16425. }
  16426. step[0] = 1.0;
  16427. }
  16428. GGML_ASSERT(false && "lbfgs failed");
  16429. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16430. }
  16431. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16432. struct ggml_opt_params result;
  16433. switch (type) {
  16434. case GGML_OPT_TYPE_ADAM:
  16435. {
  16436. result = (struct ggml_opt_params) {
  16437. .type = GGML_OPT_TYPE_ADAM,
  16438. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16439. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16440. .past = 0,
  16441. .delta = 1e-5f,
  16442. .max_no_improvement = 100,
  16443. .print_forward_graph = true,
  16444. .print_backward_graph = true,
  16445. .n_gradient_accumulation = 1,
  16446. .adam = {
  16447. .n_iter = 10000,
  16448. .sched = 1.000f,
  16449. .decay = 0.0f,
  16450. .decay_min_ndim = 2,
  16451. .alpha = 0.001f,
  16452. .beta1 = 0.9f,
  16453. .beta2 = 0.999f,
  16454. .eps = 1e-8f,
  16455. .eps_f = 1e-5f,
  16456. .eps_g = 1e-3f,
  16457. .gclip = 0.0f,
  16458. },
  16459. };
  16460. } break;
  16461. case GGML_OPT_TYPE_LBFGS:
  16462. {
  16463. result = (struct ggml_opt_params) {
  16464. .type = GGML_OPT_TYPE_LBFGS,
  16465. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16466. .n_threads = 1,
  16467. .past = 0,
  16468. .delta = 1e-5f,
  16469. .max_no_improvement = 0,
  16470. .print_forward_graph = true,
  16471. .print_backward_graph = true,
  16472. .n_gradient_accumulation = 1,
  16473. .lbfgs = {
  16474. .m = 6,
  16475. .n_iter = 100,
  16476. .max_linesearch = 20,
  16477. .eps = 1e-5f,
  16478. .ftol = 1e-4f,
  16479. .wolfe = 0.9f,
  16480. .min_step = 1e-20f,
  16481. .max_step = 1e+20f,
  16482. .linesearch = GGML_LINESEARCH_DEFAULT,
  16483. },
  16484. };
  16485. } break;
  16486. }
  16487. return result;
  16488. }
  16489. GGML_API void ggml_opt_init(
  16490. struct ggml_context * ctx,
  16491. struct ggml_opt_context * opt,
  16492. struct ggml_opt_params params,
  16493. int64_t nx) {
  16494. opt->ctx = ctx;
  16495. opt->params = params;
  16496. opt->iter = 0;
  16497. opt->nx = nx;
  16498. opt->just_initialized = true;
  16499. if (opt->ctx == NULL) {
  16500. struct ggml_init_params ctx_opt_params;
  16501. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16502. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16503. if (opt->params.past > 0) {
  16504. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16505. }
  16506. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16507. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16508. if (opt->params.past > 0) {
  16509. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16510. }
  16511. }
  16512. ctx_opt_params.mem_buffer = NULL;
  16513. ctx_opt_params.no_alloc = false;
  16514. opt->ctx = ggml_init(ctx_opt_params);
  16515. }
  16516. switch (opt->params.type) {
  16517. case GGML_OPT_TYPE_ADAM:
  16518. {
  16519. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16520. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16521. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16522. opt->adam.pf = params.past > 0
  16523. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16524. : NULL;
  16525. ggml_set_zero(opt->adam.m);
  16526. ggml_set_zero(opt->adam.v);
  16527. if (opt->adam.pf) {
  16528. ggml_set_zero(opt->adam.pf);
  16529. }
  16530. } break;
  16531. case GGML_OPT_TYPE_LBFGS:
  16532. {
  16533. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16534. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16535. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16536. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16537. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16538. opt->lbfgs.pf = params.past > 0
  16539. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16540. : NULL;
  16541. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16542. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16543. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16544. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16545. ggml_set_zero(opt->lbfgs.x);
  16546. ggml_set_zero(opt->lbfgs.xp);
  16547. ggml_set_zero(opt->lbfgs.g);
  16548. ggml_set_zero(opt->lbfgs.gp);
  16549. ggml_set_zero(opt->lbfgs.d);
  16550. if (opt->lbfgs.pf) {
  16551. ggml_set_zero(opt->lbfgs.pf);
  16552. }
  16553. ggml_set_zero(opt->lbfgs.lmal);
  16554. ggml_set_zero(opt->lbfgs.lmys);
  16555. ggml_set_zero(opt->lbfgs.lms);
  16556. ggml_set_zero(opt->lbfgs.lmy);
  16557. } break;
  16558. }
  16559. }
  16560. enum ggml_opt_result ggml_opt(
  16561. struct ggml_context * ctx,
  16562. struct ggml_opt_params params,
  16563. struct ggml_tensor * f) {
  16564. bool free_ctx = false;
  16565. if (ctx == NULL) {
  16566. struct ggml_init_params params_ctx = {
  16567. .mem_size = 16*1024*1024,
  16568. .mem_buffer = NULL,
  16569. .no_alloc = false,
  16570. };
  16571. ctx = ggml_init(params_ctx);
  16572. if (ctx == NULL) {
  16573. return GGML_OPT_RESULT_NO_CONTEXT;
  16574. }
  16575. free_ctx = true;
  16576. }
  16577. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16578. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16579. ggml_opt_init(ctx, opt, params, 0);
  16580. result = ggml_opt_resume(ctx, opt, f);
  16581. if (free_ctx) {
  16582. ggml_free(ctx);
  16583. }
  16584. return result;
  16585. }
  16586. enum ggml_opt_result ggml_opt_resume(
  16587. struct ggml_context * ctx,
  16588. struct ggml_opt_context * opt,
  16589. struct ggml_tensor * f) {
  16590. // build forward + backward compute graphs
  16591. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16592. ggml_build_forward_expand(gf, f);
  16593. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16594. ggml_build_backward_expand(ctx, gf, gb, true);
  16595. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16596. }
  16597. enum ggml_opt_result ggml_opt_resume_g(
  16598. struct ggml_context * ctx,
  16599. struct ggml_opt_context * opt,
  16600. struct ggml_tensor * f,
  16601. struct ggml_cgraph * gf,
  16602. struct ggml_cgraph * gb,
  16603. ggml_opt_callback callback,
  16604. void * callback_data) {
  16605. // build forward + backward compute graphs
  16606. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16607. switch (opt->params.type) {
  16608. case GGML_OPT_TYPE_ADAM:
  16609. {
  16610. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16611. } break;
  16612. case GGML_OPT_TYPE_LBFGS:
  16613. {
  16614. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16615. } break;
  16616. }
  16617. if (opt->params.print_forward_graph) {
  16618. ggml_graph_print (gf);
  16619. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16620. }
  16621. if (opt->params.print_backward_graph) {
  16622. ggml_graph_print (gb);
  16623. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16624. }
  16625. return result;
  16626. }
  16627. ////////////////////////////////////////////////////////////////////////////////
  16628. void ggml_set_input(struct ggml_tensor * tensor) {
  16629. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16630. }
  16631. void ggml_set_output(struct ggml_tensor * tensor) {
  16632. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16633. }
  16634. ////////////////////////////////////////////////////////////////////////////////
  16635. void ggml_quantize_init(enum ggml_type type) {
  16636. ggml_critical_section_start();
  16637. switch (type) {
  16638. case GGML_TYPE_IQ2_XXS:
  16639. case GGML_TYPE_IQ2_XS:
  16640. case GGML_TYPE_IQ2_S:
  16641. case GGML_TYPE_IQ1_S: iq2xs_init_impl(type); break;
  16642. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16643. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16644. default: // nothing
  16645. break;
  16646. }
  16647. ggml_critical_section_end();
  16648. }
  16649. void ggml_quantize_free(void) {
  16650. ggml_critical_section_start();
  16651. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16652. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16653. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16654. iq3xs_free_impl(256);
  16655. ggml_critical_section_end();
  16656. }
  16657. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16658. return
  16659. type == GGML_TYPE_IQ2_XXS ||
  16660. type == GGML_TYPE_IQ2_XS ||
  16661. type == GGML_TYPE_IQ1_S;
  16662. }
  16663. size_t ggml_quantize_chunk(
  16664. enum ggml_type type,
  16665. const float * src,
  16666. void * dst,
  16667. int start,
  16668. int nrows,
  16669. int n_per_row,
  16670. const float * imatrix) {
  16671. const int n = nrows * n_per_row;
  16672. if (ggml_quantize_requires_imatrix(type)) {
  16673. GGML_ASSERT(imatrix != NULL);
  16674. }
  16675. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16676. GGML_ASSERT(start % n_per_row == 0);
  16677. ggml_quantize_init(type); // this is noop if already initialized
  16678. const size_t start_row = start / n_per_row;
  16679. const size_t row_size = ggml_row_size(type, n_per_row);
  16680. size_t result = 0;
  16681. switch (type) {
  16682. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16683. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16684. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16685. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16686. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16687. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16688. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16689. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16690. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16691. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16692. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16693. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16694. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16695. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16696. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16697. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16698. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16699. #if QK_K == 64
  16700. case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16701. #else
  16702. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16703. #endif
  16704. case GGML_TYPE_F16:
  16705. {
  16706. size_t elemsize = sizeof(ggml_fp16_t);
  16707. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16708. result = n * elemsize;
  16709. } break;
  16710. case GGML_TYPE_F32:
  16711. {
  16712. size_t elemsize = sizeof(float);
  16713. result = n * elemsize;
  16714. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16715. } break;
  16716. default:
  16717. assert(false);
  16718. }
  16719. GGML_ASSERT(result == nrows * row_size);
  16720. return result;
  16721. }
  16722. ////////////////////////////////////////////////////////////////////////////////
  16723. struct gguf_str {
  16724. uint64_t n; // GGUFv2
  16725. char * data;
  16726. };
  16727. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16728. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16729. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16730. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16731. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16732. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16733. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16734. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16735. [GGUF_TYPE_BOOL] = sizeof(bool),
  16736. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16737. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16738. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16739. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16740. [GGUF_TYPE_ARRAY] = 0, // undefined
  16741. };
  16742. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16743. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16744. [GGUF_TYPE_UINT8] = "u8",
  16745. [GGUF_TYPE_INT8] = "i8",
  16746. [GGUF_TYPE_UINT16] = "u16",
  16747. [GGUF_TYPE_INT16] = "i16",
  16748. [GGUF_TYPE_UINT32] = "u32",
  16749. [GGUF_TYPE_INT32] = "i32",
  16750. [GGUF_TYPE_FLOAT32] = "f32",
  16751. [GGUF_TYPE_BOOL] = "bool",
  16752. [GGUF_TYPE_STRING] = "str",
  16753. [GGUF_TYPE_ARRAY] = "arr",
  16754. [GGUF_TYPE_UINT64] = "u64",
  16755. [GGUF_TYPE_INT64] = "i64",
  16756. [GGUF_TYPE_FLOAT64] = "f64",
  16757. };
  16758. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16759. union gguf_value {
  16760. uint8_t uint8;
  16761. int8_t int8;
  16762. uint16_t uint16;
  16763. int16_t int16;
  16764. uint32_t uint32;
  16765. int32_t int32;
  16766. float float32;
  16767. uint64_t uint64;
  16768. int64_t int64;
  16769. double float64;
  16770. bool bool_;
  16771. struct gguf_str str;
  16772. struct {
  16773. enum gguf_type type;
  16774. uint64_t n; // GGUFv2
  16775. void * data;
  16776. } arr;
  16777. };
  16778. struct gguf_kv {
  16779. struct gguf_str key;
  16780. enum gguf_type type;
  16781. union gguf_value value;
  16782. };
  16783. struct gguf_header {
  16784. char magic[4];
  16785. uint32_t version;
  16786. uint64_t n_tensors; // GGUFv2
  16787. uint64_t n_kv; // GGUFv2
  16788. };
  16789. struct gguf_tensor_info {
  16790. struct gguf_str name;
  16791. uint32_t n_dims;
  16792. uint64_t ne[GGML_MAX_DIMS];
  16793. enum ggml_type type;
  16794. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16795. // for writing API
  16796. const void * data;
  16797. size_t size;
  16798. };
  16799. struct gguf_context {
  16800. struct gguf_header header;
  16801. struct gguf_kv * kv;
  16802. struct gguf_tensor_info * infos;
  16803. size_t alignment;
  16804. size_t offset; // offset of `data` from beginning of file
  16805. size_t size; // size of `data` in bytes
  16806. //uint8_t * padding;
  16807. void * data;
  16808. };
  16809. static size_t gguf_type_size(enum gguf_type type) {
  16810. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16811. return GGUF_TYPE_SIZE[type];
  16812. }
  16813. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16814. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16815. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16816. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16817. GGML_ASSERT(info->ne[i] > 0);
  16818. }
  16819. // prevent overflow for total number of elements
  16820. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16821. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16822. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16823. }
  16824. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16825. const size_t n = fread(dst, 1, size, file);
  16826. *offset += n;
  16827. return n == size;
  16828. }
  16829. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16830. p->n = 0;
  16831. p->data = NULL;
  16832. bool ok = true;
  16833. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  16834. // early exit if string length is invalid, prevents from integer overflow
  16835. if (p->n == SIZE_MAX) {
  16836. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  16837. return false;
  16838. }
  16839. p->data = GGML_CALLOC(p->n + 1, 1);
  16840. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  16841. return ok;
  16842. }
  16843. struct gguf_context * gguf_init_empty(void) {
  16844. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16845. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  16846. ctx->header.version = GGUF_VERSION;
  16847. ctx->header.n_tensors = 0;
  16848. ctx->header.n_kv = 0;
  16849. ctx->kv = NULL;
  16850. ctx->infos = NULL;
  16851. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  16852. ctx->offset = 0;
  16853. ctx->size = 0;
  16854. ctx->data = NULL;
  16855. return ctx;
  16856. }
  16857. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  16858. FILE * file = fopen(fname, "rb");
  16859. if (!file) {
  16860. return NULL;
  16861. }
  16862. // offset from start of file
  16863. size_t offset = 0;
  16864. char magic[4];
  16865. // check the magic before making allocations
  16866. {
  16867. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  16868. for (uint32_t i = 0; i < sizeof(magic); i++) {
  16869. if (magic[i] != GGUF_MAGIC[i]) {
  16870. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  16871. fclose(file);
  16872. return NULL;
  16873. }
  16874. }
  16875. }
  16876. bool ok = true;
  16877. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  16878. // read the header
  16879. {
  16880. strncpy(ctx->header.magic, magic, 4);
  16881. ctx->kv = NULL;
  16882. ctx->infos = NULL;
  16883. ctx->data = NULL;
  16884. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  16885. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  16886. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  16887. if (ctx->header.version == 1) {
  16888. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  16889. fclose(file);
  16890. gguf_free(ctx);
  16891. return NULL;
  16892. }
  16893. // sanity-checks to prevent from integer/buffer overflows
  16894. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  16895. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  16896. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  16897. if (!ok) {
  16898. fprintf(stderr, "%s: failed to read header\n", __func__);
  16899. fclose(file);
  16900. gguf_free(ctx);
  16901. return NULL;
  16902. }
  16903. }
  16904. // read the kv pairs
  16905. {
  16906. ctx->kv = GGML_MALLOC(ctx->header.n_kv * sizeof(struct gguf_kv));
  16907. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  16908. struct gguf_kv * kv = &ctx->kv[i];
  16909. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  16910. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  16911. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  16912. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  16913. switch (kv->type) {
  16914. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  16915. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  16916. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  16917. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  16918. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  16919. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  16920. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  16921. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  16922. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  16923. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  16924. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  16925. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  16926. case GGUF_TYPE_ARRAY:
  16927. {
  16928. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  16929. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  16930. switch (kv->value.arr.type) {
  16931. case GGUF_TYPE_UINT8:
  16932. case GGUF_TYPE_INT8:
  16933. case GGUF_TYPE_UINT16:
  16934. case GGUF_TYPE_INT16:
  16935. case GGUF_TYPE_UINT32:
  16936. case GGUF_TYPE_INT32:
  16937. case GGUF_TYPE_FLOAT32:
  16938. case GGUF_TYPE_UINT64:
  16939. case GGUF_TYPE_INT64:
  16940. case GGUF_TYPE_FLOAT64:
  16941. case GGUF_TYPE_BOOL:
  16942. {
  16943. // prevent from integer overflow in the malloc below
  16944. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  16945. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16946. fclose(file);
  16947. gguf_free(ctx);
  16948. return NULL;
  16949. }
  16950. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  16951. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  16952. } break;
  16953. case GGUF_TYPE_STRING:
  16954. {
  16955. // prevent from integer overflow in the malloc below
  16956. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  16957. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  16958. fclose(file);
  16959. gguf_free(ctx);
  16960. return NULL;
  16961. }
  16962. kv->value.arr.data = GGML_MALLOC(kv->value.arr.n * sizeof(struct gguf_str));
  16963. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  16964. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  16965. }
  16966. } break;
  16967. case GGUF_TYPE_ARRAY:
  16968. default: GGML_ASSERT(false && "invalid type"); break;
  16969. }
  16970. } break;
  16971. default: GGML_ASSERT(false && "invalid type");
  16972. }
  16973. if (!ok) {
  16974. break;
  16975. }
  16976. }
  16977. if (!ok) {
  16978. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  16979. fclose(file);
  16980. gguf_free(ctx);
  16981. return NULL;
  16982. }
  16983. }
  16984. // read the tensor infos
  16985. {
  16986. ctx->infos = GGML_MALLOC(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  16987. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  16988. struct gguf_tensor_info * info = &ctx->infos[i];
  16989. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16990. info->ne[j] = 1;
  16991. }
  16992. ok = ok && gguf_fread_str(file, &info->name, &offset);
  16993. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  16994. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  16995. for (uint32_t j = 0; j < info->n_dims; ++j) {
  16996. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  16997. }
  16998. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  16999. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17000. gguf_tensor_info_sanitize(info);
  17001. if (!ok) {
  17002. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17003. fclose(file);
  17004. gguf_free(ctx);
  17005. return NULL;
  17006. }
  17007. }
  17008. }
  17009. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17010. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17011. if (alignment_idx != -1) {
  17012. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17013. }
  17014. // we require the data section to be aligned, so take into account any padding
  17015. {
  17016. const size_t offset_pad = offset % ctx->alignment;
  17017. if (offset_pad != 0) {
  17018. offset += ctx->alignment - offset_pad;
  17019. fseek(file, offset, SEEK_SET);
  17020. }
  17021. }
  17022. // store the current file offset - this is where the data section starts
  17023. ctx->offset = offset;
  17024. // compute the total size of the data section, taking into account the alignment
  17025. {
  17026. ctx->size = 0;
  17027. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17028. struct gguf_tensor_info * info = &ctx->infos[i];
  17029. const int64_t ne =
  17030. (int64_t) info->ne[0] *
  17031. (int64_t) info->ne[1] *
  17032. (int64_t) info->ne[2] *
  17033. (int64_t) info->ne[3];
  17034. if (ne % ggml_blck_size(info->type) != 0) {
  17035. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17036. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17037. fclose(file);
  17038. gguf_free(ctx);
  17039. return NULL;
  17040. }
  17041. const size_t size_cur = ggml_row_size(info->type, ne);
  17042. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17043. }
  17044. }
  17045. // load the tensor data only if requested
  17046. if (params.ctx != NULL) {
  17047. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17048. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17049. // the ggml_tensor structs to the appropriate locations in the binary blob
  17050. // compute the exact size needed for the new ggml_context
  17051. const size_t mem_size =
  17052. params.no_alloc ?
  17053. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17054. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17055. struct ggml_init_params pdata = {
  17056. .mem_size = mem_size,
  17057. .mem_buffer = NULL,
  17058. .no_alloc = params.no_alloc,
  17059. };
  17060. *params.ctx = ggml_init(pdata);
  17061. struct ggml_context * ctx_data = *params.ctx;
  17062. struct ggml_tensor * data = NULL;
  17063. if (!params.no_alloc) {
  17064. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17065. ok = ok && data != NULL;
  17066. // read the binary blob with the tensor data
  17067. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17068. if (!ok) {
  17069. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17070. fclose(file);
  17071. ggml_free(ctx_data);
  17072. gguf_free(ctx);
  17073. return NULL;
  17074. }
  17075. ctx->data = data->data;
  17076. }
  17077. ggml_set_no_alloc(ctx_data, true);
  17078. // create the tensors
  17079. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17080. const int64_t ne[GGML_MAX_DIMS] = {
  17081. ctx->infos[i].ne[0],
  17082. ctx->infos[i].ne[1],
  17083. ctx->infos[i].ne[2],
  17084. ctx->infos[i].ne[3],
  17085. };
  17086. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17087. ok = ok && cur != NULL;
  17088. ggml_set_name(cur, ctx->infos[i].name.data);
  17089. if (!ok) {
  17090. break;
  17091. }
  17092. // point the data member to the appropriate location in the binary blob using the tensor infos
  17093. if (!params.no_alloc) {
  17094. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17095. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17096. }
  17097. }
  17098. if (!ok) {
  17099. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17100. fclose(file);
  17101. ggml_free(ctx_data);
  17102. gguf_free(ctx);
  17103. return NULL;
  17104. }
  17105. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17106. }
  17107. fclose(file);
  17108. return ctx;
  17109. }
  17110. void gguf_free(struct gguf_context * ctx) {
  17111. if (ctx == NULL) {
  17112. return;
  17113. }
  17114. if (ctx->kv) {
  17115. // free string memory - not great..
  17116. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17117. struct gguf_kv * kv = &ctx->kv[i];
  17118. if (kv->key.data) {
  17119. GGML_FREE(kv->key.data);
  17120. }
  17121. if (kv->type == GGUF_TYPE_STRING) {
  17122. if (kv->value.str.data) {
  17123. GGML_FREE(kv->value.str.data);
  17124. }
  17125. }
  17126. if (kv->type == GGUF_TYPE_ARRAY) {
  17127. if (kv->value.arr.data) {
  17128. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17129. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17130. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17131. if (str->data) {
  17132. GGML_FREE(str->data);
  17133. }
  17134. }
  17135. }
  17136. GGML_FREE(kv->value.arr.data);
  17137. }
  17138. }
  17139. }
  17140. GGML_FREE(ctx->kv);
  17141. }
  17142. if (ctx->infos) {
  17143. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17144. struct gguf_tensor_info * info = &ctx->infos[i];
  17145. if (info->name.data) {
  17146. GGML_FREE(info->name.data);
  17147. }
  17148. }
  17149. GGML_FREE(ctx->infos);
  17150. }
  17151. GGML_ALIGNED_FREE(ctx);
  17152. }
  17153. const char * gguf_type_name(enum gguf_type type) {
  17154. return GGUF_TYPE_NAME[type];
  17155. }
  17156. int gguf_get_version(const struct gguf_context * ctx) {
  17157. return ctx->header.version;
  17158. }
  17159. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17160. return ctx->alignment;
  17161. }
  17162. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17163. return ctx->offset;
  17164. }
  17165. void * gguf_get_data(const struct gguf_context * ctx) {
  17166. return ctx->data;
  17167. }
  17168. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17169. return ctx->header.n_kv;
  17170. }
  17171. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17172. // return -1 if key not found
  17173. int keyfound = -1;
  17174. const int n_kv = gguf_get_n_kv(ctx);
  17175. for (int i = 0; i < n_kv; ++i) {
  17176. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17177. keyfound = i;
  17178. break;
  17179. }
  17180. }
  17181. return keyfound;
  17182. }
  17183. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17184. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17185. return ctx->kv[key_id].key.data;
  17186. }
  17187. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17188. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17189. return ctx->kv[key_id].type;
  17190. }
  17191. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17192. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17193. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17194. return ctx->kv[key_id].value.arr.type;
  17195. }
  17196. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17197. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17198. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17199. return ctx->kv[key_id].value.arr.data;
  17200. }
  17201. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17202. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17203. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17204. struct gguf_kv * kv = &ctx->kv[key_id];
  17205. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17206. return str->data;
  17207. }
  17208. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17209. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17210. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17211. return ctx->kv[key_id].value.arr.n;
  17212. }
  17213. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17214. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17215. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17216. return ctx->kv[key_id].value.uint8;
  17217. }
  17218. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17219. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17220. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17221. return ctx->kv[key_id].value.int8;
  17222. }
  17223. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17224. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17225. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17226. return ctx->kv[key_id].value.uint16;
  17227. }
  17228. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17229. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17230. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17231. return ctx->kv[key_id].value.int16;
  17232. }
  17233. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17234. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17235. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17236. return ctx->kv[key_id].value.uint32;
  17237. }
  17238. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17239. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17240. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17241. return ctx->kv[key_id].value.int32;
  17242. }
  17243. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17244. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17245. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17246. return ctx->kv[key_id].value.float32;
  17247. }
  17248. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17249. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17250. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17251. return ctx->kv[key_id].value.uint64;
  17252. }
  17253. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17254. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17255. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17256. return ctx->kv[key_id].value.int64;
  17257. }
  17258. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17259. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17260. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17261. return ctx->kv[key_id].value.float64;
  17262. }
  17263. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17264. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17265. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17266. return ctx->kv[key_id].value.bool_;
  17267. }
  17268. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17269. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17270. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17271. return ctx->kv[key_id].value.str.data;
  17272. }
  17273. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17274. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17275. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17276. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17277. return &ctx->kv[key_id].value;
  17278. }
  17279. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17280. return ctx->header.n_tensors;
  17281. }
  17282. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17283. // return -1 if tensor not found
  17284. int tensorfound = -1;
  17285. const int n_tensors = gguf_get_n_tensors(ctx);
  17286. for (int i = 0; i < n_tensors; ++i) {
  17287. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17288. tensorfound = i;
  17289. break;
  17290. }
  17291. }
  17292. return tensorfound;
  17293. }
  17294. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17295. return ctx->infos[i].offset;
  17296. }
  17297. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17298. return ctx->infos[i].name.data;
  17299. }
  17300. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17301. return ctx->infos[i].type;
  17302. }
  17303. // returns the index
  17304. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17305. const int idx = gguf_find_key(ctx, key);
  17306. if (idx >= 0) {
  17307. return idx;
  17308. }
  17309. const int n_kv = gguf_get_n_kv(ctx);
  17310. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17311. ctx->kv[n_kv].key.n = strlen(key);
  17312. ctx->kv[n_kv].key.data = strdup(key);
  17313. ctx->header.n_kv++;
  17314. return n_kv;
  17315. }
  17316. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17317. const int idx = gguf_get_or_add_key(ctx, key);
  17318. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17319. ctx->kv[idx].value.uint8 = val;
  17320. }
  17321. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17322. const int idx = gguf_get_or_add_key(ctx, key);
  17323. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17324. ctx->kv[idx].value.int8 = val;
  17325. }
  17326. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17327. const int idx = gguf_get_or_add_key(ctx, key);
  17328. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17329. ctx->kv[idx].value.uint16 = val;
  17330. }
  17331. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17332. const int idx = gguf_get_or_add_key(ctx, key);
  17333. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17334. ctx->kv[idx].value.int16 = val;
  17335. }
  17336. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17337. const int idx = gguf_get_or_add_key(ctx, key);
  17338. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17339. ctx->kv[idx].value.uint32 = val;
  17340. }
  17341. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17342. const int idx = gguf_get_or_add_key(ctx, key);
  17343. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17344. ctx->kv[idx].value.int32 = val;
  17345. }
  17346. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17347. const int idx = gguf_get_or_add_key(ctx, key);
  17348. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17349. ctx->kv[idx].value.float32 = val;
  17350. }
  17351. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17352. const int idx = gguf_get_or_add_key(ctx, key);
  17353. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17354. ctx->kv[idx].value.uint64 = val;
  17355. }
  17356. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17357. const int idx = gguf_get_or_add_key(ctx, key);
  17358. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17359. ctx->kv[idx].value.int64 = val;
  17360. }
  17361. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17362. const int idx = gguf_get_or_add_key(ctx, key);
  17363. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17364. ctx->kv[idx].value.float64 = val;
  17365. }
  17366. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17367. const int idx = gguf_get_or_add_key(ctx, key);
  17368. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17369. ctx->kv[idx].value.bool_ = val;
  17370. }
  17371. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17372. const int idx = gguf_get_or_add_key(ctx, key);
  17373. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17374. ctx->kv[idx].value.str.n = strlen(val);
  17375. ctx->kv[idx].value.str.data = strdup(val);
  17376. }
  17377. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17378. const int idx = gguf_get_or_add_key(ctx, key);
  17379. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17380. ctx->kv[idx].value.arr.type = type;
  17381. ctx->kv[idx].value.arr.n = n;
  17382. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*gguf_type_size(type));
  17383. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17384. }
  17385. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17386. const int idx = gguf_get_or_add_key(ctx, key);
  17387. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17388. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17389. ctx->kv[idx].value.arr.n = n;
  17390. ctx->kv[idx].value.arr.data = GGML_MALLOC(n*sizeof(struct gguf_str));
  17391. for (int i = 0; i < n; i++) {
  17392. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17393. str->n = strlen(data[i]);
  17394. str->data = strdup(data[i]);
  17395. }
  17396. }
  17397. // set or add KV pairs from another context
  17398. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17399. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17400. switch (src->kv[i].type) {
  17401. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17402. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17403. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17404. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17405. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17406. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17407. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17408. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17409. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17410. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17411. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17412. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17413. case GGUF_TYPE_ARRAY:
  17414. {
  17415. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17416. const char ** data = GGML_MALLOC(src->kv[i].value.arr.n*sizeof(char *));
  17417. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17418. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17419. }
  17420. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17421. GGML_FREE((void *)data);
  17422. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17423. GGML_ASSERT(false && "nested arrays not supported");
  17424. } else {
  17425. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17426. }
  17427. } break;
  17428. default: GGML_ASSERT(false && "invalid type"); break;
  17429. }
  17430. }
  17431. }
  17432. void gguf_add_tensor(
  17433. struct gguf_context * ctx,
  17434. const struct ggml_tensor * tensor) {
  17435. const int idx = ctx->header.n_tensors;
  17436. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17437. ctx->infos[idx].name.n = strlen(tensor->name);
  17438. ctx->infos[idx].name.data = strdup(tensor->name);
  17439. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17440. ctx->infos[idx].ne[i] = 1;
  17441. }
  17442. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17443. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17444. ctx->infos[idx].ne[i] = tensor->ne[i];
  17445. }
  17446. ctx->infos[idx].type = tensor->type;
  17447. ctx->infos[idx].offset = 0;
  17448. ctx->infos[idx].data = tensor->data;
  17449. ctx->infos[idx].size = ggml_nbytes(tensor);
  17450. if (ctx->header.n_tensors > 0) {
  17451. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17452. }
  17453. ctx->header.n_tensors++;
  17454. }
  17455. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17456. const int idx = gguf_find_tensor(ctx, name);
  17457. if (idx < 0) {
  17458. GGML_ASSERT(false && "tensor not found");
  17459. }
  17460. ctx->infos[idx].type = type;
  17461. }
  17462. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17463. const int idx = gguf_find_tensor(ctx, name);
  17464. if (idx < 0) {
  17465. GGML_ASSERT(false && "tensor not found");
  17466. }
  17467. ctx->infos[idx].data = data;
  17468. ctx->infos[idx].size = size;
  17469. // update offsets
  17470. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17471. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17472. }
  17473. }
  17474. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17475. // fwrite(&val->n, sizeof(val->n), 1, file);
  17476. // fwrite(val->data, sizeof(char), val->n, file);
  17477. //}
  17478. //
  17479. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17480. // fwrite(val, sizeof(char), size, file);
  17481. //}
  17482. struct gguf_buf {
  17483. void * data;
  17484. size_t size;
  17485. size_t offset;
  17486. };
  17487. static struct gguf_buf gguf_buf_init(size_t size) {
  17488. struct gguf_buf buf = {
  17489. /*buf.data =*/ size == 0 ? NULL : GGML_MALLOC(size),
  17490. /*buf.size =*/ size,
  17491. /*buf.offset =*/ 0,
  17492. };
  17493. return buf;
  17494. }
  17495. static void gguf_buf_free(struct gguf_buf buf) {
  17496. if (buf.data) {
  17497. GGML_FREE(buf.data);
  17498. }
  17499. }
  17500. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17501. if (buf->offset + size > buf->size) {
  17502. buf->size = 1.5*(buf->offset + size);
  17503. if (buf->data) {
  17504. buf->data = realloc(buf->data, buf->size);
  17505. }
  17506. }
  17507. }
  17508. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17509. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17510. if (buf->data) {
  17511. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17512. }
  17513. buf->offset += sizeof(val->n);
  17514. if (buf->data) {
  17515. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17516. }
  17517. buf->offset += val->n;
  17518. }
  17519. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17520. gguf_buf_grow(buf, el_size);
  17521. if (buf->data) {
  17522. memcpy((char *) buf->data + buf->offset, val, el_size);
  17523. }
  17524. buf->offset += el_size;
  17525. }
  17526. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17527. // write header
  17528. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17529. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17530. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17531. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17532. // write key-value pairs
  17533. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17534. struct gguf_kv * kv = &ctx->kv[i];
  17535. gguf_bwrite_str(buf, &kv->key);
  17536. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17537. switch (kv->type) {
  17538. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17539. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17540. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17541. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17542. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17543. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17544. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17545. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17546. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17547. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17548. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17549. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17550. case GGUF_TYPE_ARRAY:
  17551. {
  17552. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17553. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17554. switch (kv->value.arr.type) {
  17555. case GGUF_TYPE_UINT8:
  17556. case GGUF_TYPE_INT8:
  17557. case GGUF_TYPE_UINT16:
  17558. case GGUF_TYPE_INT16:
  17559. case GGUF_TYPE_UINT32:
  17560. case GGUF_TYPE_INT32:
  17561. case GGUF_TYPE_FLOAT32:
  17562. case GGUF_TYPE_UINT64:
  17563. case GGUF_TYPE_INT64:
  17564. case GGUF_TYPE_FLOAT64:
  17565. case GGUF_TYPE_BOOL:
  17566. {
  17567. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17568. } break;
  17569. case GGUF_TYPE_STRING:
  17570. {
  17571. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17572. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17573. }
  17574. } break;
  17575. case GGUF_TYPE_ARRAY:
  17576. default: GGML_ASSERT(false && "invalid type"); break;
  17577. }
  17578. } break;
  17579. default: GGML_ASSERT(false && "invalid type");
  17580. }
  17581. }
  17582. // write tensor infos
  17583. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17584. struct gguf_tensor_info * info = &ctx->infos[i];
  17585. gguf_bwrite_str(buf, &info->name);
  17586. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17587. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17588. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17589. }
  17590. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17591. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17592. }
  17593. // we require the data section to be aligned, so take into account any padding
  17594. {
  17595. const size_t offset = buf->offset;
  17596. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17597. if (offset_pad != offset) {
  17598. uint8_t pad = 0;
  17599. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17600. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17601. }
  17602. }
  17603. }
  17604. if (only_meta) {
  17605. return;
  17606. }
  17607. size_t offset = 0;
  17608. // write tensor data
  17609. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17610. struct gguf_tensor_info * info = &ctx->infos[i];
  17611. const size_t size = info->size;
  17612. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17613. gguf_bwrite_el(buf, info->data, size);
  17614. if (size_pad != size) {
  17615. uint8_t pad = 0;
  17616. for (size_t j = 0; j < size_pad - size; ++j) {
  17617. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17618. }
  17619. }
  17620. GGML_ASSERT(offset == info->offset);
  17621. offset += size_pad;
  17622. }
  17623. }
  17624. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17625. FILE * file = fopen(fname, "wb");
  17626. if (!file) {
  17627. GGML_ASSERT(false && "failed to open file for writing");
  17628. }
  17629. struct gguf_buf buf = gguf_buf_init(16*1024);
  17630. gguf_write_to_buf(ctx, &buf, only_meta);
  17631. fwrite(buf.data, 1, buf.offset, file);
  17632. gguf_buf_free(buf);
  17633. fclose(file);
  17634. }
  17635. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17636. // no allocs - only compute size
  17637. struct gguf_buf buf = gguf_buf_init(0);
  17638. gguf_write_to_buf(ctx, &buf, true);
  17639. return buf.offset;
  17640. }
  17641. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17642. struct gguf_buf buf = gguf_buf_init(16*1024);
  17643. gguf_write_to_buf(ctx, &buf, true);
  17644. memcpy(data, buf.data, buf.offset);
  17645. gguf_buf_free(buf);
  17646. }
  17647. ////////////////////////////////////////////////////////////////////////////////
  17648. int ggml_cpu_has_avx(void) {
  17649. #if defined(__AVX__)
  17650. return 1;
  17651. #else
  17652. return 0;
  17653. #endif
  17654. }
  17655. int ggml_cpu_has_avx_vnni(void) {
  17656. #if defined(__AVXVNNI__)
  17657. return 1;
  17658. #else
  17659. return 0;
  17660. #endif
  17661. }
  17662. int ggml_cpu_has_avx2(void) {
  17663. #if defined(__AVX2__)
  17664. return 1;
  17665. #else
  17666. return 0;
  17667. #endif
  17668. }
  17669. int ggml_cpu_has_avx512(void) {
  17670. #if defined(__AVX512F__)
  17671. return 1;
  17672. #else
  17673. return 0;
  17674. #endif
  17675. }
  17676. int ggml_cpu_has_avx512_vbmi(void) {
  17677. #if defined(__AVX512VBMI__)
  17678. return 1;
  17679. #else
  17680. return 0;
  17681. #endif
  17682. }
  17683. int ggml_cpu_has_avx512_vnni(void) {
  17684. #if defined(__AVX512VNNI__)
  17685. return 1;
  17686. #else
  17687. return 0;
  17688. #endif
  17689. }
  17690. int ggml_cpu_has_fma(void) {
  17691. #if defined(__FMA__)
  17692. return 1;
  17693. #else
  17694. return 0;
  17695. #endif
  17696. }
  17697. int ggml_cpu_has_neon(void) {
  17698. #if defined(__ARM_NEON)
  17699. return 1;
  17700. #else
  17701. return 0;
  17702. #endif
  17703. }
  17704. int ggml_cpu_has_arm_fma(void) {
  17705. #if defined(__ARM_FEATURE_FMA)
  17706. return 1;
  17707. #else
  17708. return 0;
  17709. #endif
  17710. }
  17711. int ggml_cpu_has_metal(void) {
  17712. #if defined(GGML_USE_METAL)
  17713. return 1;
  17714. #else
  17715. return 0;
  17716. #endif
  17717. }
  17718. int ggml_cpu_has_f16c(void) {
  17719. #if defined(__F16C__)
  17720. return 1;
  17721. #else
  17722. return 0;
  17723. #endif
  17724. }
  17725. int ggml_cpu_has_fp16_va(void) {
  17726. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17727. return 1;
  17728. #else
  17729. return 0;
  17730. #endif
  17731. }
  17732. int ggml_cpu_has_wasm_simd(void) {
  17733. #if defined(__wasm_simd128__)
  17734. return 1;
  17735. #else
  17736. return 0;
  17737. #endif
  17738. }
  17739. int ggml_cpu_has_blas(void) {
  17740. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_VULKAN) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_SYCL)
  17741. return 1;
  17742. #else
  17743. return 0;
  17744. #endif
  17745. }
  17746. int ggml_cpu_has_cublas(void) {
  17747. #if defined(GGML_USE_CUBLAS)
  17748. return 1;
  17749. #else
  17750. return 0;
  17751. #endif
  17752. }
  17753. int ggml_cpu_has_clblast(void) {
  17754. #if defined(GGML_USE_CLBLAST)
  17755. return 1;
  17756. #else
  17757. return 0;
  17758. #endif
  17759. }
  17760. int ggml_cpu_has_vulkan(void) {
  17761. #if defined(GGML_USE_VULKAN)
  17762. return 1;
  17763. #else
  17764. return 0;
  17765. #endif
  17766. }
  17767. int ggml_cpu_has_kompute(void) {
  17768. #if defined(GGML_USE_KOMPUTE)
  17769. return 1;
  17770. #else
  17771. return 0;
  17772. #endif
  17773. }
  17774. int ggml_cpu_has_sycl(void) {
  17775. #if defined(GGML_USE_SYCL)
  17776. return 1;
  17777. #else
  17778. return 0;
  17779. #endif
  17780. }
  17781. int ggml_cpu_has_gpublas(void) {
  17782. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() ||
  17783. ggml_cpu_has_sycl();
  17784. }
  17785. int ggml_cpu_has_sse3(void) {
  17786. #if defined(__SSE3__)
  17787. return 1;
  17788. #else
  17789. return 0;
  17790. #endif
  17791. }
  17792. int ggml_cpu_has_ssse3(void) {
  17793. #if defined(__SSSE3__)
  17794. return 1;
  17795. #else
  17796. return 0;
  17797. #endif
  17798. }
  17799. int ggml_cpu_has_vsx(void) {
  17800. #if defined(__POWER9_VECTOR__)
  17801. return 1;
  17802. #else
  17803. return 0;
  17804. #endif
  17805. }
  17806. int ggml_cpu_has_matmul_int8(void) {
  17807. #if defined(__ARM_FEATURE_MATMUL_INT8)
  17808. return 1;
  17809. #else
  17810. return 0;
  17811. #endif
  17812. }
  17813. ////////////////////////////////////////////////////////////////////////////////