clip.cpp 204 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cstdlib>
  16. #include <cstring>
  17. #include <fstream>
  18. #include <map>
  19. #include <regex>
  20. #include <stdexcept>
  21. #include <unordered_set>
  22. #include <vector>
  23. #include <sstream>
  24. #include <cinttypes>
  25. #include <limits>
  26. #include <array>
  27. #include <numeric>
  28. #include <functional>
  29. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  30. enum ffn_op_type {
  31. FFN_GELU,
  32. FFN_GELU_ERF,
  33. FFN_SILU,
  34. FFN_GELU_QUICK,
  35. };
  36. enum norm_type {
  37. NORM_TYPE_NORMAL,
  38. NORM_TYPE_RMS,
  39. };
  40. //#define CLIP_DEBUG_FUNCTIONS
  41. #ifdef CLIP_DEBUG_FUNCTIONS
  42. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. // PPM header: P6 format, width, height, and max color value
  49. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  50. // Write pixel data
  51. for (size_t i = 0; i < img.buf.size(); i += 3) {
  52. // PPM expects binary data in RGB format, which matches our image buffer
  53. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  54. }
  55. file.close();
  56. }
  57. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  58. std::ofstream file(filename, std::ios::binary);
  59. if (!file.is_open()) {
  60. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  61. return;
  62. }
  63. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  64. int bytesPerPixel = 3;
  65. int widthInBytes = img.nx * bytesPerPixel;
  66. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  67. int stride = widthInBytes + paddingAmount;
  68. // Bitmap file header
  69. unsigned char fileHeader[14] = {
  70. 'B','M', // Signature
  71. 0,0,0,0, // Image file size in bytes
  72. 0,0,0,0, // Reserved
  73. 54,0,0,0 // Start of pixel array
  74. };
  75. // Total file size
  76. fileSize = 54 + (stride * img.ny);
  77. fileHeader[2] = (unsigned char)(fileSize);
  78. fileHeader[3] = (unsigned char)(fileSize >> 8);
  79. fileHeader[4] = (unsigned char)(fileSize >> 16);
  80. fileHeader[5] = (unsigned char)(fileSize >> 24);
  81. // Bitmap information header (BITMAPINFOHEADER)
  82. unsigned char infoHeader[40] = {
  83. 40,0,0,0, // Size of this header (40 bytes)
  84. 0,0,0,0, // Image width
  85. 0,0,0,0, // Image height
  86. 1,0, // Number of color planes
  87. 24,0, // Bits per pixel
  88. 0,0,0,0, // No compression
  89. 0,0,0,0, // Image size (can be 0 for no compression)
  90. 0,0,0,0, // X pixels per meter (not specified)
  91. 0,0,0,0, // Y pixels per meter (not specified)
  92. 0,0,0,0, // Total colors (color table not used)
  93. 0,0,0,0 // Important colors (all are important)
  94. };
  95. // Width and height in the information header
  96. infoHeader[4] = (unsigned char)(img.nx);
  97. infoHeader[5] = (unsigned char)(img.nx >> 8);
  98. infoHeader[6] = (unsigned char)(img.nx >> 16);
  99. infoHeader[7] = (unsigned char)(img.nx >> 24);
  100. infoHeader[8] = (unsigned char)(img.ny);
  101. infoHeader[9] = (unsigned char)(img.ny >> 8);
  102. infoHeader[10] = (unsigned char)(img.ny >> 16);
  103. infoHeader[11] = (unsigned char)(img.ny >> 24);
  104. // Write file headers
  105. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  106. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  107. // Pixel data
  108. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  109. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  110. for (int x = 0; x < img.nx; ++x) {
  111. // Each pixel
  112. size_t pixelIndex = (y * img.nx + x) * 3;
  113. unsigned char pixel[3] = {
  114. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  115. img.buf[pixelIndex + 1],
  116. img.buf[pixelIndex]
  117. };
  118. file.write(reinterpret_cast<char*>(pixel), 3);
  119. }
  120. // Write padding for the row
  121. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  122. }
  123. file.close();
  124. }
  125. // debug function to convert f32 to u8
  126. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  127. dst.nx = src.nx;
  128. dst.ny = src.ny;
  129. dst.buf.resize(3 * src.nx * src.ny);
  130. for (size_t i = 0; i < src.buf.size(); ++i) {
  131. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  132. }
  133. }
  134. #endif
  135. //
  136. // clip layers
  137. //
  138. enum patch_merge_type {
  139. PATCH_MERGE_FLAT,
  140. PATCH_MERGE_SPATIAL_UNPAD,
  141. };
  142. struct clip_hparams {
  143. int32_t image_size;
  144. int32_t patch_size;
  145. int32_t n_embd;
  146. int32_t n_ff;
  147. int32_t projection_dim;
  148. int32_t n_head;
  149. int32_t n_layer;
  150. // idefics3
  151. int32_t preproc_image_size = 0; // aka max_dimension
  152. int32_t proj_scale_factor = 0;
  153. float image_mean[3];
  154. float image_std[3];
  155. // for models using dynamic image size, we need to have a smaller image size to warmup
  156. // otherwise, user will get OOM everytime they load the model
  157. int32_t warmup_image_size = 0;
  158. int32_t warmup_audio_size = 3000;
  159. ffn_op_type ffn_op = FFN_GELU;
  160. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  161. float eps = 1e-6;
  162. float rope_theta = 0.0;
  163. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  164. int32_t image_crop_resolution;
  165. std::unordered_set<int32_t> vision_feature_layer;
  166. int32_t attn_window_size = 0;
  167. int32_t n_wa_pattern = 0;
  168. int32_t spatial_merge_size = 0;
  169. // audio
  170. int32_t n_mel_bins = 0; // whisper preprocessor
  171. int32_t proj_stack_factor = 0; // ultravox
  172. // legacy
  173. bool has_llava_projector = false;
  174. int minicpmv_version = 0;
  175. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  176. };
  177. struct clip_layer {
  178. // attention
  179. ggml_tensor * k_w = nullptr;
  180. ggml_tensor * k_b = nullptr;
  181. ggml_tensor * q_w = nullptr;
  182. ggml_tensor * q_b = nullptr;
  183. ggml_tensor * v_w = nullptr;
  184. ggml_tensor * v_b = nullptr;
  185. ggml_tensor * qkv_w = nullptr;
  186. ggml_tensor * qkv_b = nullptr;
  187. ggml_tensor * o_w = nullptr;
  188. ggml_tensor * o_b = nullptr;
  189. ggml_tensor * k_norm = nullptr;
  190. ggml_tensor * q_norm = nullptr;
  191. // layernorm 1
  192. ggml_tensor * ln_1_w = nullptr;
  193. ggml_tensor * ln_1_b = nullptr;
  194. ggml_tensor * ff_up_w = nullptr;
  195. ggml_tensor * ff_up_b = nullptr;
  196. ggml_tensor * ff_gate_w = nullptr;
  197. ggml_tensor * ff_gate_b = nullptr;
  198. ggml_tensor * ff_down_w = nullptr;
  199. ggml_tensor * ff_down_b = nullptr;
  200. // layernorm 2
  201. ggml_tensor * ln_2_w = nullptr;
  202. ggml_tensor * ln_2_b = nullptr;
  203. // layer scale (no bias)
  204. ggml_tensor * ls_1_w = nullptr;
  205. ggml_tensor * ls_2_w = nullptr;
  206. // qwen3vl deepstack merger
  207. ggml_tensor * deepstack_norm_w = nullptr;
  208. ggml_tensor * deepstack_norm_b = nullptr;
  209. ggml_tensor * deepstack_fc1_w = nullptr;
  210. ggml_tensor * deepstack_fc1_b = nullptr;
  211. ggml_tensor * deepstack_fc2_w = nullptr;
  212. ggml_tensor * deepstack_fc2_b = nullptr;
  213. bool has_deepstack() const {
  214. return deepstack_fc1_w != nullptr;
  215. }
  216. };
  217. struct clip_model {
  218. clip_modality modality = CLIP_MODALITY_VISION;
  219. projector_type proj_type = PROJECTOR_TYPE_MLP;
  220. clip_hparams hparams;
  221. // embeddings
  222. ggml_tensor * class_embedding = nullptr;
  223. ggml_tensor * patch_embeddings_0 = nullptr;
  224. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  225. ggml_tensor * patch_bias = nullptr;
  226. ggml_tensor * position_embeddings = nullptr;
  227. ggml_tensor * pre_ln_w = nullptr;
  228. ggml_tensor * pre_ln_b = nullptr;
  229. std::vector<clip_layer> layers;
  230. int32_t n_deepstack_layers = 0; // used by Qwen3-VL, calculated from clip_layer
  231. ggml_tensor * post_ln_w;
  232. ggml_tensor * post_ln_b;
  233. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  234. ggml_tensor * mm_fc_w;
  235. ggml_tensor * mm_fc_b;
  236. // LLaVA projection
  237. ggml_tensor * mm_input_norm_w = nullptr;
  238. ggml_tensor * mm_input_norm_b = nullptr;
  239. ggml_tensor * mm_0_w = nullptr;
  240. ggml_tensor * mm_0_b = nullptr;
  241. ggml_tensor * mm_2_w = nullptr;
  242. ggml_tensor * mm_2_b = nullptr;
  243. ggml_tensor * image_newline = nullptr;
  244. // Yi type models with mlp+normalization projection
  245. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  246. ggml_tensor * mm_1_b = nullptr;
  247. ggml_tensor * mm_3_w = nullptr;
  248. ggml_tensor * mm_3_b = nullptr;
  249. ggml_tensor * mm_4_w = nullptr;
  250. ggml_tensor * mm_4_b = nullptr;
  251. // GLMV-Edge projection
  252. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  253. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  254. // MobileVLM projection
  255. ggml_tensor * mm_model_mlp_1_w = nullptr;
  256. ggml_tensor * mm_model_mlp_1_b = nullptr;
  257. ggml_tensor * mm_model_mlp_3_w = nullptr;
  258. ggml_tensor * mm_model_mlp_3_b = nullptr;
  259. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  260. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  261. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  262. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  263. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  264. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  265. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  266. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  267. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  268. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  269. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  270. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  271. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  272. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  273. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  274. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  275. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  276. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  277. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  278. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  279. // MobileVLM_V2 projection
  280. ggml_tensor * mm_model_mlp_0_w = nullptr;
  281. ggml_tensor * mm_model_mlp_0_b = nullptr;
  282. ggml_tensor * mm_model_mlp_2_w = nullptr;
  283. ggml_tensor * mm_model_mlp_2_b = nullptr;
  284. ggml_tensor * mm_model_peg_0_w = nullptr;
  285. ggml_tensor * mm_model_peg_0_b = nullptr;
  286. // MINICPMV projection
  287. ggml_tensor * mm_model_pos_embed_k = nullptr;
  288. ggml_tensor * mm_model_query = nullptr;
  289. ggml_tensor * mm_model_proj = nullptr;
  290. ggml_tensor * mm_model_kv_proj = nullptr;
  291. ggml_tensor * mm_model_attn_q_w = nullptr;
  292. ggml_tensor * mm_model_attn_q_b = nullptr;
  293. ggml_tensor * mm_model_attn_k_w = nullptr;
  294. ggml_tensor * mm_model_attn_k_b = nullptr;
  295. ggml_tensor * mm_model_attn_v_w = nullptr;
  296. ggml_tensor * mm_model_attn_v_b = nullptr;
  297. ggml_tensor * mm_model_attn_o_w = nullptr;
  298. ggml_tensor * mm_model_attn_o_b = nullptr;
  299. ggml_tensor * mm_model_ln_q_w = nullptr;
  300. ggml_tensor * mm_model_ln_q_b = nullptr;
  301. ggml_tensor * mm_model_ln_kv_w = nullptr;
  302. ggml_tensor * mm_model_ln_kv_b = nullptr;
  303. ggml_tensor * mm_model_ln_post_w = nullptr;
  304. ggml_tensor * mm_model_ln_post_b = nullptr;
  305. // gemma3
  306. ggml_tensor * mm_input_proj_w = nullptr;
  307. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  308. // pixtral
  309. ggml_tensor * token_embd_img_break = nullptr;
  310. ggml_tensor * mm_patch_merger_w = nullptr;
  311. // ultravox / whisper encoder
  312. ggml_tensor * conv1d_1_w = nullptr;
  313. ggml_tensor * conv1d_1_b = nullptr;
  314. ggml_tensor * conv1d_2_w = nullptr;
  315. ggml_tensor * conv1d_2_b = nullptr;
  316. ggml_tensor * mm_norm_pre_w = nullptr;
  317. ggml_tensor * mm_norm_mid_w = nullptr;
  318. // cogvlm
  319. ggml_tensor * mm_post_fc_norm_w = nullptr;
  320. ggml_tensor * mm_post_fc_norm_b = nullptr;
  321. ggml_tensor * mm_h_to_4h_w = nullptr;
  322. ggml_tensor * mm_gate_w = nullptr;
  323. ggml_tensor * mm_4h_to_h_w = nullptr;
  324. ggml_tensor * mm_boi = nullptr;
  325. ggml_tensor * mm_eoi = nullptr;
  326. bool audio_has_avgpool() const {
  327. return proj_type == PROJECTOR_TYPE_QWEN2A
  328. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  329. }
  330. bool audio_has_stack_frames() const {
  331. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  332. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  333. }
  334. };
  335. struct clip_ctx {
  336. clip_model model;
  337. gguf_context_ptr ctx_gguf;
  338. ggml_context_ptr ctx_data;
  339. std::vector<uint8_t> buf_compute_meta;
  340. std::vector<ggml_backend_t> backend_ptrs;
  341. std::vector<ggml_backend_buffer_type_t> backend_buft;
  342. ggml_backend_t backend = nullptr;
  343. ggml_backend_t backend_cpu = nullptr;
  344. ggml_backend_buffer_ptr buf;
  345. int max_nodes = 8192;
  346. ggml_backend_sched_ptr sched;
  347. // for debugging
  348. bool debug_graph = false;
  349. std::vector<ggml_tensor *> debug_print_tensors;
  350. clip_ctx(clip_context_params & ctx_params) {
  351. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  352. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  353. if (!backend_cpu) {
  354. throw std::runtime_error("failed to initialize CPU backend");
  355. }
  356. if (ctx_params.use_gpu) {
  357. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  358. if (backend_name != nullptr) {
  359. backend = ggml_backend_init_by_name(backend_name, nullptr);
  360. if (!backend) {
  361. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  362. }
  363. }
  364. if (!backend) {
  365. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  366. backend = backend ? backend : ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_IGPU, nullptr);
  367. }
  368. }
  369. if (backend) {
  370. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  371. backend_ptrs.push_back(backend);
  372. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  373. } else {
  374. backend = backend_cpu;
  375. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  376. }
  377. backend_ptrs.push_back(backend_cpu);
  378. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  379. sched.reset(
  380. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  381. );
  382. }
  383. ~clip_ctx() {
  384. ggml_backend_free(backend);
  385. if (backend != backend_cpu) {
  386. ggml_backend_free(backend_cpu);
  387. }
  388. }
  389. // this function is added so that we don't change too much of the existing code
  390. projector_type proj_type() const {
  391. return model.proj_type;
  392. }
  393. };
  394. struct clip_graph {
  395. clip_ctx * ctx;
  396. const clip_model & model;
  397. const clip_hparams & hparams;
  398. // we only support single image per batch
  399. const clip_image_f32 & img;
  400. const int patch_size;
  401. const int n_patches_x;
  402. const int n_patches_y;
  403. const int n_patches;
  404. const int n_embd;
  405. const int n_head;
  406. const int d_head;
  407. const int n_layer;
  408. const float eps;
  409. const float kq_scale;
  410. ggml_context_ptr ctx0_ptr;
  411. ggml_context * ctx0;
  412. ggml_cgraph * gf;
  413. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  414. ctx(ctx),
  415. model(ctx->model),
  416. hparams(model.hparams),
  417. img(img),
  418. patch_size(hparams.patch_size),
  419. n_patches_x(img.nx / patch_size),
  420. n_patches_y(img.ny / patch_size),
  421. n_patches(n_patches_x * n_patches_y),
  422. n_embd(hparams.n_embd),
  423. n_head(hparams.n_head),
  424. d_head(n_embd / n_head),
  425. n_layer(hparams.n_layer),
  426. eps(hparams.eps),
  427. kq_scale(1.0f / sqrtf((float)d_head)) {
  428. struct ggml_init_params params = {
  429. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  430. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  431. /*.no_alloc =*/ true,
  432. };
  433. ctx0_ptr.reset(ggml_init(params));
  434. ctx0 = ctx0_ptr.get();
  435. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  436. }
  437. ggml_cgraph * build_siglip() {
  438. ggml_tensor * inp = build_inp();
  439. ggml_tensor * learned_pos_embd = model.position_embeddings;
  440. if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  441. learned_pos_embd = resize_position_embeddings();
  442. }
  443. ggml_tensor * cur = build_vit(
  444. inp, n_patches,
  445. NORM_TYPE_NORMAL,
  446. hparams.ffn_op,
  447. learned_pos_embd,
  448. nullptr);
  449. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  450. const int batch_size = 1;
  451. GGML_ASSERT(n_patches_x == n_patches_y);
  452. const int patches_per_image = n_patches_x;
  453. const int kernel_size = hparams.proj_scale_factor;
  454. cur = ggml_transpose(ctx0, cur);
  455. cur = ggml_cont_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  456. // doing a pool2d to reduce the number of output tokens
  457. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  458. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  459. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  460. // apply norm before projection
  461. cur = ggml_rms_norm(ctx0, cur, eps);
  462. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  463. // apply projection
  464. cur = ggml_mul_mat(ctx0,
  465. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  466. cur);
  467. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  468. // pixel_shuffle
  469. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  470. const int scale_factor = model.hparams.proj_scale_factor;
  471. cur = build_patch_merge_permute(cur, scale_factor);
  472. cur = ggml_mul_mat(ctx0, model.projection, cur);
  473. } else if (ctx->proj_type() == PROJECTOR_TYPE_LFM2) {
  474. // pixel unshuffle block
  475. const int scale_factor = model.hparams.proj_scale_factor;
  476. cur = build_patch_merge_permute(cur, scale_factor);
  477. // projection
  478. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  479. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  480. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  481. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  482. cur = ggml_add(ctx0, cur, model.mm_1_b);
  483. cur = ggml_gelu(ctx0, cur);
  484. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  485. cur = ggml_add(ctx0, cur, model.mm_2_b);
  486. } else {
  487. GGML_ABORT("SigLIP: Unsupported projector type");
  488. }
  489. // build the graph
  490. ggml_build_forward_expand(gf, cur);
  491. return gf;
  492. }
  493. ggml_cgraph * build_pixtral() {
  494. const int n_merge = hparams.spatial_merge_size;
  495. // 2D input positions
  496. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  497. ggml_set_name(pos_h, "pos_h");
  498. ggml_set_input(pos_h);
  499. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  500. ggml_set_name(pos_w, "pos_w");
  501. ggml_set_input(pos_w);
  502. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  503. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  504. };
  505. ggml_tensor * inp = build_inp();
  506. ggml_tensor * cur = build_vit(
  507. inp, n_patches,
  508. NORM_TYPE_RMS,
  509. hparams.ffn_op,
  510. nullptr, // no learned pos embd
  511. add_pos);
  512. // mistral small 3.1 patch merger
  513. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  514. if (model.mm_patch_merger_w) {
  515. GGML_ASSERT(hparams.spatial_merge_size > 0);
  516. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  517. // reshape image tokens to 2D grid
  518. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  519. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  520. cur = ggml_cont(ctx0, cur);
  521. // torch.nn.functional.unfold is just an im2col under the hood
  522. // we just need a dummy kernel to make it work
  523. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  524. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  525. // project to n_embd
  526. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  527. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  528. }
  529. // LlavaMultiModalProjector (always using GELU activation)
  530. {
  531. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  532. if (model.mm_1_b) {
  533. cur = ggml_add(ctx0, cur, model.mm_1_b);
  534. }
  535. cur = ggml_gelu(ctx0, cur);
  536. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  537. if (model.mm_2_b) {
  538. cur = ggml_add(ctx0, cur, model.mm_2_b);
  539. }
  540. }
  541. // arrangement of the [IMG_BREAK] token
  542. if (model.token_embd_img_break) {
  543. // not efficient, but works
  544. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  545. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  546. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  547. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  548. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  549. const int p_total = p_x * p_y;
  550. const int n_embd_text = cur->ne[0];
  551. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  552. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  553. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  554. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  555. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  556. tmp = ggml_concat(ctx0, tmp, tok, 1);
  557. cur = ggml_view_2d(ctx0, tmp,
  558. n_embd_text, n_tokens_output,
  559. ggml_row_size(tmp->type, n_embd_text), 0);
  560. }
  561. // build the graph
  562. ggml_build_forward_expand(gf, cur);
  563. return gf;
  564. }
  565. // Qwen2VL and Qwen2.5VL use M-RoPE
  566. ggml_cgraph * build_qwen2vl() {
  567. GGML_ASSERT(model.patch_bias == nullptr);
  568. GGML_ASSERT(model.class_embedding == nullptr);
  569. const int batch_size = 1;
  570. const bool use_window_attn = hparams.n_wa_pattern > 0;
  571. const int n_wa_pattern = hparams.n_wa_pattern;
  572. const int n_pos = n_patches;
  573. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  574. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  575. ? NORM_TYPE_RMS // qwen 2.5 vl
  576. : NORM_TYPE_NORMAL; // qwen 2 vl
  577. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  578. ggml_tensor * inp_raw = build_inp_raw();
  579. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  580. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  581. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  582. // second conv dimension
  583. {
  584. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  585. inp = ggml_add(ctx0, inp, inp_1);
  586. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  587. inp = ggml_cont_4d(
  588. ctx0, inp,
  589. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  590. inp = ggml_reshape_4d(
  591. ctx0, inp,
  592. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  593. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  594. inp = ggml_cont_3d(
  595. ctx0, inp,
  596. n_embd, n_patches_x * n_patches_y, batch_size);
  597. }
  598. ggml_tensor * inpL = inp;
  599. ggml_tensor * window_mask = nullptr;
  600. ggml_tensor * window_idx = nullptr;
  601. ggml_tensor * inv_window_idx = nullptr;
  602. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  603. ggml_set_name(positions, "positions");
  604. ggml_set_input(positions);
  605. // pre-layernorm
  606. if (model.pre_ln_w) {
  607. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  608. }
  609. if (use_window_attn) {
  610. // handle window attention inputs
  611. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  612. ggml_set_name(inv_window_idx, "inv_window_idx");
  613. ggml_set_input(inv_window_idx);
  614. // mask for window attention
  615. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  616. ggml_set_name(window_mask, "window_mask");
  617. ggml_set_input(window_mask);
  618. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  619. GGML_ASSERT(batch_size == 1);
  620. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  621. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  622. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  623. }
  624. // loop over layers
  625. for (int il = 0; il < n_layer; il++) {
  626. auto & layer = model.layers[il];
  627. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  628. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  629. // layernorm1
  630. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  631. cb(cur, "ln1", il);
  632. // self-attention
  633. {
  634. ggml_tensor * Qcur = ggml_add(ctx0,
  635. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  636. ggml_tensor * Kcur = ggml_add(ctx0,
  637. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  638. ggml_tensor * Vcur = ggml_add(ctx0,
  639. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  640. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  641. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  642. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  643. cb(Qcur, "Qcur", il);
  644. cb(Kcur, "Kcur", il);
  645. cb(Vcur, "Vcur", il);
  646. // apply M-RoPE
  647. Qcur = ggml_rope_multi(
  648. ctx0, Qcur, positions, nullptr,
  649. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  650. Kcur = ggml_rope_multi(
  651. ctx0, Kcur, positions, nullptr,
  652. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  653. cb(Qcur, "Qcur_rope", il);
  654. cb(Kcur, "Kcur_rope", il);
  655. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  656. cur = build_attn(layer.o_w, layer.o_b,
  657. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  658. cb(cur, "attn_out", il);
  659. }
  660. // re-add the layer input, e.g., residual
  661. cur = ggml_add(ctx0, cur, inpL);
  662. inpL = cur; // inpL = residual, cur = hidden_states
  663. cb(cur, "ffn_inp", il);
  664. // layernorm2
  665. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  666. cb(cur, "ffn_inp_normed", il);
  667. // ffn
  668. cur = build_ffn(cur,
  669. layer.ff_up_w, layer.ff_up_b,
  670. layer.ff_gate_w, layer.ff_gate_b,
  671. layer.ff_down_w, layer.ff_down_b,
  672. hparams.ffn_op, il);
  673. cb(cur, "ffn_out", il);
  674. // residual 2
  675. cur = ggml_add(ctx0, inpL, cur);
  676. cb(cur, "layer_out", il);
  677. inpL = cur;
  678. }
  679. // post-layernorm
  680. if (model.post_ln_w) {
  681. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  682. }
  683. // multimodal projection
  684. ggml_tensor * embeddings = inpL;
  685. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  686. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  687. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  688. // GELU activation
  689. embeddings = ggml_gelu(ctx0, embeddings);
  690. // Second linear layer
  691. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  692. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  693. if (use_window_attn) {
  694. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  695. ggml_set_name(window_idx, "window_idx");
  696. ggml_set_input(window_idx);
  697. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  698. GGML_ASSERT(batch_size == 1);
  699. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  700. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  701. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  702. }
  703. // build the graph
  704. ggml_build_forward_expand(gf, embeddings);
  705. return gf;
  706. }
  707. // Qwen3VL
  708. ggml_cgraph * build_qwen3vl() {
  709. GGML_ASSERT(model.patch_bias != nullptr);
  710. GGML_ASSERT(model.position_embeddings != nullptr);
  711. GGML_ASSERT(model.class_embedding == nullptr);
  712. const int batch_size = 1;
  713. const int n_pos = n_patches;
  714. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  715. norm_type norm_t = NORM_TYPE_NORMAL;
  716. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  717. ggml_tensor * inp_raw = build_inp_raw();
  718. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  719. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  720. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  721. // second conv dimension
  722. {
  723. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  724. inp = ggml_add(ctx0, inp, inp_1);
  725. inp = ggml_permute(ctx0, inp, 1, 2, 0, 3); // [w, h, c, b] -> [c, w, h, b]
  726. inp = ggml_cont_4d(
  727. ctx0, inp,
  728. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  729. inp = ggml_reshape_4d(
  730. ctx0, inp,
  731. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  732. inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
  733. inp = ggml_cont_3d(
  734. ctx0, inp,
  735. n_embd, n_patches_x * n_patches_y, batch_size);
  736. }
  737. // add patch bias
  738. if (model.patch_bias != nullptr) {
  739. inp = ggml_add(ctx0, inp, model.patch_bias);
  740. cb(inp, "patch_bias", -1);
  741. }
  742. // calculate absolute position embedding and apply
  743. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  744. learned_pos_embd = ggml_cont_4d(
  745. ctx0, learned_pos_embd,
  746. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  747. learned_pos_embd = ggml_reshape_4d(
  748. ctx0, learned_pos_embd,
  749. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  750. learned_pos_embd = ggml_permute(ctx0, learned_pos_embd, 0, 2, 1, 3);
  751. learned_pos_embd = ggml_cont_3d(
  752. ctx0, learned_pos_embd,
  753. n_embd, n_patches_x * n_patches_y, batch_size);
  754. inp = ggml_add(ctx0, inp, learned_pos_embd);
  755. cb(inp, "inp_pos_emb", -1);
  756. ggml_tensor * inpL = inp;
  757. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  758. ggml_set_name(positions, "positions");
  759. ggml_set_input(positions);
  760. // pre-layernorm
  761. if (model.pre_ln_w) {
  762. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  763. }
  764. // deepstack features (stack along the feature dimension), [n_embd * len(deepstack_layers), n_patches_x * n_patches_y, batch_size]
  765. ggml_tensor * deepstack_features = nullptr;
  766. const int merge_factor = hparams.spatial_merge_size > 0 ? hparams.spatial_merge_size * hparams.spatial_merge_size : 4; // default 2x2=4 for qwen3vl
  767. // loop over layers
  768. for (int il = 0; il < n_layer; il++) {
  769. auto & layer = model.layers[il];
  770. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  771. // layernorm1
  772. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  773. cb(cur, "ln1", il);
  774. // self-attention
  775. {
  776. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  777. cur = ggml_add(ctx0, cur, layer.qkv_b);
  778. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  779. cur->nb[1], 0);
  780. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  781. cur->nb[1], n_embd * sizeof(float));
  782. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  783. cur->nb[1], 2 * n_embd * sizeof(float));
  784. cb(Qcur, "Qcur", il);
  785. cb(Kcur, "Kcur", il);
  786. cb(Vcur, "Vcur", il);
  787. // apply M-RoPE
  788. Qcur = ggml_rope_multi(
  789. ctx0, Qcur, positions, nullptr,
  790. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  791. Kcur = ggml_rope_multi(
  792. ctx0, Kcur, positions, nullptr,
  793. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  794. cb(Qcur, "Qcur_rope", il);
  795. cb(Kcur, "Kcur_rope", il);
  796. cur = build_attn(layer.o_w, layer.o_b,
  797. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  798. cb(cur, "attn_out", il);
  799. }
  800. // re-add the layer input, e.g., residual
  801. cur = ggml_add(ctx0, cur, inpL);
  802. inpL = cur; // inpL = residual, cur = hidden_states
  803. cb(cur, "ffn_inp", il);
  804. // layernorm2
  805. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  806. cb(cur, "ffn_inp_normed", il);
  807. // ffn
  808. cur = build_ffn(cur,
  809. layer.ff_up_w, layer.ff_up_b,
  810. layer.ff_gate_w, layer.ff_gate_b,
  811. layer.ff_down_w, layer.ff_down_b,
  812. hparams.ffn_op, il);
  813. cb(cur, "ffn_out", il);
  814. // residual 2
  815. cur = ggml_add(ctx0, inpL, cur);
  816. cb(cur, "layer_out", il);
  817. if (layer.has_deepstack()) {
  818. ggml_tensor * feat = ggml_reshape_3d(ctx0, cur, n_embd * merge_factor, n_pos / merge_factor, batch_size);
  819. feat = build_norm(feat, layer.deepstack_norm_w, layer.deepstack_norm_b, norm_t, eps, il);
  820. feat = build_ffn(feat,
  821. layer.deepstack_fc1_w, layer.deepstack_fc1_b,
  822. nullptr, nullptr,
  823. layer.deepstack_fc2_w, layer.deepstack_fc2_b,
  824. ffn_op_type::FFN_GELU, il);
  825. if(!deepstack_features) {
  826. deepstack_features = feat;
  827. } else {
  828. // concat along the feature dimension
  829. deepstack_features = ggml_concat(ctx0, deepstack_features, feat, 0);
  830. }
  831. }
  832. inpL = cur;
  833. }
  834. // post-layernorm
  835. if (model.post_ln_w) {
  836. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  837. }
  838. // multimodal projection
  839. ggml_tensor * embeddings = inpL;
  840. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  841. embeddings = build_ffn(embeddings,
  842. model.mm_0_w, model.mm_0_b,
  843. nullptr, nullptr,
  844. model.mm_1_w, model.mm_1_b,
  845. ffn_op_type::FFN_GELU, -1);
  846. embeddings = ggml_concat(ctx0, embeddings, deepstack_features, 0); // concat along the feature dimension
  847. // build the graph
  848. ggml_build_forward_expand(gf, embeddings);
  849. return gf;
  850. }
  851. ggml_cgraph * build_minicpmv() {
  852. const int batch_size = 1;
  853. GGML_ASSERT(model.class_embedding == nullptr);
  854. const int n_pos = n_patches;
  855. // position embeddings for the projector (not for ViT)
  856. int n_output_dim = clip_n_mmproj_embd(ctx);
  857. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  858. ggml_set_name(pos_embed, "pos_embed");
  859. ggml_set_input(pos_embed);
  860. // for selecting learned pos embd, used by ViT
  861. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  862. ggml_set_name(positions, "positions");
  863. ggml_set_input(positions);
  864. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  865. ggml_tensor * inp = build_inp();
  866. ggml_tensor * embeddings = build_vit(
  867. inp, n_patches,
  868. NORM_TYPE_NORMAL,
  869. hparams.ffn_op,
  870. learned_pos_embd,
  871. nullptr);
  872. // resampler projector (it is just another transformer)
  873. ggml_tensor * q = model.mm_model_query;
  874. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  875. // norm
  876. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  877. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  878. // k = v + pos_embed
  879. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  880. // attention
  881. {
  882. int n_embd = clip_n_mmproj_embd(ctx);
  883. const int d_head = 128;
  884. int n_head = n_embd/d_head;
  885. // Use actual config value if available, otherwise fall back to hardcoded values
  886. int num_query = ctx->model.hparams.minicpmv_query_num;
  887. ggml_tensor * Q = ggml_add(ctx0,
  888. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  889. model.mm_model_attn_q_b);
  890. ggml_tensor * K = ggml_add(ctx0,
  891. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  892. model.mm_model_attn_k_b);
  893. ggml_tensor * V = ggml_add(ctx0,
  894. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  895. model.mm_model_attn_v_b);
  896. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  897. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  898. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  899. cb(Q, "resampler_Q", -1);
  900. cb(K, "resampler_K", -1);
  901. cb(V, "resampler_V", -1);
  902. embeddings = build_attn(
  903. model.mm_model_attn_o_w,
  904. model.mm_model_attn_o_b,
  905. Q, K, V, nullptr, kq_scale, -1);
  906. cb(embeddings, "resampler_attn_out", -1);
  907. }
  908. // layernorm
  909. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  910. // projection
  911. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  912. // build the graph
  913. ggml_build_forward_expand(gf, embeddings);
  914. return gf;
  915. }
  916. ggml_cgraph * build_internvl() {
  917. GGML_ASSERT(model.class_embedding != nullptr);
  918. GGML_ASSERT(model.position_embeddings != nullptr);
  919. const int n_pos = n_patches + 1;
  920. ggml_tensor * inp = build_inp();
  921. // add CLS token
  922. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  923. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  924. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  925. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  926. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  927. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  928. ggml_tensor * cur = build_vit(
  929. inp, n_pos,
  930. norm_t,
  931. hparams.ffn_op,
  932. model.position_embeddings,
  933. nullptr);
  934. // remove CLS token
  935. cur = ggml_view_2d(ctx0, cur,
  936. n_embd, n_patches,
  937. ggml_row_size(cur->type, n_embd), 0);
  938. // pixel shuffle
  939. {
  940. const int scale_factor = model.hparams.proj_scale_factor;
  941. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  942. const int height = n_patches_y;
  943. const int width = n_patches_x;
  944. GGML_ASSERT(scale_factor > 0);
  945. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  946. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  947. cur = ggml_cont_4d(ctx0, cur,
  948. n_embd * scale_factor * scale_factor,
  949. height / scale_factor,
  950. width / scale_factor,
  951. bsz);
  952. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  953. // flatten to 2D
  954. cur = ggml_cont_2d(ctx0, cur,
  955. n_embd * scale_factor * scale_factor,
  956. cur->ne[1] * cur->ne[2]);
  957. }
  958. // projector (always using GELU activation)
  959. {
  960. // projector LayerNorm uses pytorch's default eps = 1e-5
  961. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  962. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  963. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  964. cur = ggml_add(ctx0, cur, model.mm_1_b);
  965. cur = ggml_gelu(ctx0, cur);
  966. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  967. cur = ggml_add(ctx0, cur, model.mm_3_b);
  968. }
  969. // build the graph
  970. ggml_build_forward_expand(gf, cur);
  971. return gf;
  972. }
  973. ggml_cgraph * build_llama4() {
  974. GGML_ASSERT(model.class_embedding != nullptr);
  975. GGML_ASSERT(model.position_embeddings != nullptr);
  976. const int n_pos = n_patches + 1; // +1 for [CLS]
  977. // 2D input positions
  978. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  979. ggml_set_name(pos_h, "pos_h");
  980. ggml_set_input(pos_h);
  981. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  982. ggml_set_name(pos_w, "pos_w");
  983. ggml_set_input(pos_w);
  984. ggml_tensor * inp = build_inp_raw();
  985. // Llama4UnfoldConvolution
  986. {
  987. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  988. patch_size, patch_size, 3, n_embd);
  989. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  990. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  991. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  992. cb(inp, "patch_conv", -1);
  993. }
  994. // add CLS token
  995. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  996. // build ViT with 2D position embeddings
  997. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  998. // first half is X axis and second half is Y axis
  999. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  1000. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  1001. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1002. };
  1003. ggml_tensor * cur = build_vit(
  1004. inp, n_pos,
  1005. NORM_TYPE_NORMAL,
  1006. hparams.ffn_op,
  1007. model.position_embeddings,
  1008. add_pos);
  1009. // remove CLS token
  1010. cur = ggml_view_2d(ctx0, cur,
  1011. n_embd, n_patches,
  1012. ggml_row_size(cur->type, n_embd), 0);
  1013. // pixel shuffle
  1014. // based on Llama4VisionPixelShuffleMLP
  1015. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  1016. {
  1017. const int scale_factor = model.hparams.proj_scale_factor;
  1018. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  1019. GGML_ASSERT(scale_factor > 0);
  1020. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  1021. cur = ggml_reshape_4d(ctx0, cur,
  1022. n_embd * scale_factor,
  1023. n_patches_x / scale_factor,
  1024. n_patches_y,
  1025. bsz);
  1026. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1027. cur = ggml_cont_4d(ctx0, cur,
  1028. n_embd * scale_factor * scale_factor,
  1029. n_patches_x / scale_factor,
  1030. n_patches_y / scale_factor,
  1031. bsz);
  1032. //cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1033. // flatten to 2D
  1034. cur = ggml_cont_2d(ctx0, cur,
  1035. n_embd * scale_factor * scale_factor,
  1036. n_patches / scale_factor / scale_factor);
  1037. cb(cur, "pixel_shuffle", -1);
  1038. }
  1039. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  1040. {
  1041. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  1042. cur = ggml_gelu(ctx0, cur);
  1043. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  1044. cur = ggml_gelu(ctx0, cur);
  1045. cb(cur, "adapter_mlp", -1);
  1046. }
  1047. // Llama4MultiModalProjector
  1048. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1049. cb(cur, "projected", -1);
  1050. // build the graph
  1051. ggml_build_forward_expand(gf, cur);
  1052. return gf;
  1053. }
  1054. ggml_cgraph * build_kimivl() {
  1055. // 2D input positions
  1056. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1057. ggml_set_name(pos_h, "pos_h");
  1058. ggml_set_input(pos_h);
  1059. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1060. ggml_set_name(pos_w, "pos_w");
  1061. ggml_set_input(pos_w);
  1062. ggml_tensor * learned_pos_embd = resize_position_embeddings();
  1063. // build ViT with 2D position embeddings
  1064. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  1065. // first half is X axis and second half is Y axis
  1066. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  1067. };
  1068. ggml_tensor * inp = build_inp();
  1069. ggml_tensor * cur = build_vit(
  1070. inp, n_patches,
  1071. NORM_TYPE_NORMAL,
  1072. hparams.ffn_op,
  1073. learned_pos_embd,
  1074. add_pos);
  1075. cb(cur, "vit_out", -1);
  1076. {
  1077. // patch_merger
  1078. const int scale_factor = model.hparams.proj_scale_factor;
  1079. cur = build_patch_merge_permute(cur, scale_factor);
  1080. // projection norm
  1081. int proj_inp_dim = cur->ne[0];
  1082. cur = ggml_view_2d(ctx0, cur,
  1083. n_embd, cur->ne[1] * scale_factor * scale_factor,
  1084. ggml_row_size(cur->type, n_embd), 0);
  1085. cur = ggml_norm(ctx0, cur, 1e-5); // default nn.LayerNorm
  1086. cur = ggml_mul(ctx0, cur, model.mm_input_norm_w);
  1087. cur = ggml_add(ctx0, cur, model.mm_input_norm_b);
  1088. cur = ggml_view_2d(ctx0, cur,
  1089. proj_inp_dim, cur->ne[1] / scale_factor / scale_factor,
  1090. ggml_row_size(cur->type, proj_inp_dim), 0);
  1091. cb(cur, "proj_inp_normed", -1);
  1092. // projection mlp
  1093. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1094. cur = ggml_add(ctx0, cur, model.mm_1_b);
  1095. cur = ggml_gelu(ctx0, cur);
  1096. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1097. cur = ggml_add(ctx0, cur, model.mm_2_b);
  1098. cb(cur, "proj_out", -1);
  1099. }
  1100. // build the graph
  1101. ggml_build_forward_expand(gf, cur);
  1102. return gf;
  1103. }
  1104. // this graph is used by llava, granite and glm
  1105. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  1106. ggml_cgraph * build_llava() {
  1107. const int batch_size = 1;
  1108. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  1109. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  1110. // Calculate the deepest feature layer based on hparams and projector type
  1111. int max_feature_layer = n_layer;
  1112. {
  1113. // Get the index of the second to last layer; this is the default for models that have a llava projector
  1114. int il_last = hparams.n_layer - 1;
  1115. int deepest_feature_layer = -1;
  1116. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1117. il_last += 1;
  1118. }
  1119. // If we set explicit vision feature layers, only go up to the deepest one
  1120. // NOTE: only used by granite-vision models for now
  1121. for (const auto & feature_layer : hparams.vision_feature_layer) {
  1122. if (feature_layer > deepest_feature_layer) {
  1123. deepest_feature_layer = feature_layer;
  1124. }
  1125. }
  1126. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  1127. }
  1128. ggml_tensor * inp = build_inp();
  1129. // concat class_embeddings and patch_embeddings
  1130. if (model.class_embedding) {
  1131. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1132. }
  1133. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  1134. ggml_set_name(positions, "positions");
  1135. ggml_set_input(positions);
  1136. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  1137. ggml_tensor * inpL = inp;
  1138. // pre-layernorm
  1139. if (model.pre_ln_w) {
  1140. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1141. cb(inpL, "pre_ln", -1);
  1142. }
  1143. std::vector<ggml_tensor *> embedding_stack;
  1144. const auto & vision_feature_layer = hparams.vision_feature_layer;
  1145. // loop over layers
  1146. for (int il = 0; il < max_feature_layer; il++) {
  1147. auto & layer = model.layers[il];
  1148. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1149. // If this is an embedding feature layer, save the output.
  1150. // NOTE: 0 index here refers to the input to the encoder.
  1151. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  1152. embedding_stack.push_back(cur);
  1153. }
  1154. // layernorm1
  1155. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1156. cb(cur, "layer_inp_normed", il);
  1157. // self-attention
  1158. {
  1159. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1160. if (layer.q_b) {
  1161. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1162. }
  1163. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1164. if (layer.k_b) {
  1165. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1166. }
  1167. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1168. if (layer.v_b) {
  1169. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1170. }
  1171. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1172. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1173. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1174. cb(Qcur, "Qcur", il);
  1175. cb(Kcur, "Kcur", il);
  1176. cb(Vcur, "Vcur", il);
  1177. cur = build_attn(layer.o_w, layer.o_b,
  1178. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1179. cb(cur, "attn_out", il);
  1180. }
  1181. // re-add the layer input, e.g., residual
  1182. cur = ggml_add(ctx0, cur, inpL);
  1183. inpL = cur; // inpL = residual, cur = hidden_states
  1184. cb(cur, "ffn_inp", il);
  1185. // layernorm2
  1186. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1187. cb(cur, "ffn_inp_normed", il);
  1188. // ffn
  1189. cur = build_ffn(cur,
  1190. layer.ff_up_w, layer.ff_up_b,
  1191. layer.ff_gate_w, layer.ff_gate_b,
  1192. layer.ff_down_w, layer.ff_down_b,
  1193. hparams.ffn_op, il);
  1194. cb(cur, "ffn_out", il);
  1195. // residual 2
  1196. cur = ggml_add(ctx0, inpL, cur);
  1197. cb(cur, "layer_out", il);
  1198. inpL = cur;
  1199. }
  1200. // post-layernorm
  1201. if (model.post_ln_w) {
  1202. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  1203. }
  1204. ggml_tensor * embeddings = inpL;
  1205. // process vision feature layers (used by granite)
  1206. {
  1207. // final layer is a vision feature layer
  1208. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  1209. embedding_stack.push_back(inpL);
  1210. }
  1211. // If feature layers are explicitly set, stack them (if we have multiple)
  1212. if (!embedding_stack.empty()) {
  1213. embeddings = embedding_stack[0];
  1214. for (size_t i = 1; i < embedding_stack.size(); i++) {
  1215. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  1216. }
  1217. }
  1218. }
  1219. // llava projector (also used by granite)
  1220. if (ctx->model.hparams.has_llava_projector) {
  1221. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1222. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1223. ggml_set_name(patches, "patches");
  1224. ggml_set_input(patches);
  1225. // shape [1, 576, 1024]
  1226. // ne is whcn, ne = [1024, 576, 1, 1]
  1227. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1228. // print_tensor_info(embeddings, "embeddings");
  1229. // llava projector
  1230. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1231. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1232. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1233. embeddings = ggml_gelu(ctx0, embeddings);
  1234. if (model.mm_2_w) {
  1235. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1236. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1237. }
  1238. }
  1239. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1240. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1241. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1242. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1243. // First LayerNorm
  1244. embeddings = ggml_norm(ctx0, embeddings, eps);
  1245. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1246. model.mm_1_b);
  1247. // GELU activation
  1248. embeddings = ggml_gelu(ctx0, embeddings);
  1249. // Second linear layer
  1250. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1251. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1252. // Second LayerNorm
  1253. embeddings = ggml_norm(ctx0, embeddings, eps);
  1254. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1255. model.mm_4_b);
  1256. }
  1257. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1258. // MobileVLM projector
  1259. int n_patch = 24;
  1260. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1261. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1262. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1263. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1264. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1265. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1266. // block 1
  1267. ggml_tensor * block_1 = nullptr;
  1268. {
  1269. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1270. mlp_3 = ggml_permute(ctx0, mlp_3, 1, 0, 2, 3);
  1271. mlp_3 = ggml_cont_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1272. // stride = 1, padding = 1, bias is nullptr
  1273. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1274. // layer norm
  1275. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1276. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1277. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1278. block_1 = ggml_norm(ctx0, block_1, eps);
  1279. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1280. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1281. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1282. // hardswish
  1283. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1284. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1285. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1286. // pointwise conv
  1287. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1288. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1289. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1290. block_1 = ggml_relu(ctx0, block_1);
  1291. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1292. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1293. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1294. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1295. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1296. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1297. int w = block_1->ne[0], h = block_1->ne[1];
  1298. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1299. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1300. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1301. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1302. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1303. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1304. block_1 = ggml_norm(ctx0, block_1, eps);
  1305. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1306. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1307. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1308. // residual
  1309. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1310. }
  1311. // block_2
  1312. {
  1313. // stride = 2
  1314. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1315. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1316. // layer norm
  1317. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1318. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1319. block_1 = ggml_norm(ctx0, block_1, eps);
  1320. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1321. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1322. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1323. // hardswish
  1324. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1325. // not sure the parameters is right for globalAvgPooling
  1326. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1327. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1328. // pointwise conv
  1329. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1330. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1331. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1332. block_1 = ggml_relu(ctx0, block_1);
  1333. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1334. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1335. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1336. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1337. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1338. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1339. int w = block_1->ne[0], h = block_1->ne[1];
  1340. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1341. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1342. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1343. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1344. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1345. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1346. block_1 = ggml_norm(ctx0, block_1, eps);
  1347. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1348. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1349. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1350. }
  1351. embeddings = block_1;
  1352. }
  1353. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1354. {
  1355. int n_patch = 24;
  1356. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1357. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1358. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1359. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1360. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1361. // mlp_2 ne = [2048, 576, 1, 1]
  1362. // // AVG Pool Layer 2*2, strides = 2
  1363. mlp_2 = ggml_permute(ctx0, mlp_2, 1, 0, 2, 3);
  1364. // mlp_2 ne = [576, 2048, 1, 1]
  1365. mlp_2 = ggml_cont_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1366. // mlp_2 ne [24, 24, 2048, 1]
  1367. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1368. // weight ne = [3, 3, 2048, 1]
  1369. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1370. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1371. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1372. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1373. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1374. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1375. embeddings = peg_0;
  1376. }
  1377. else {
  1378. GGML_ABORT("fatal error");
  1379. }
  1380. }
  1381. // glm projector
  1382. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1383. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1384. embeddings = ggml_permute(ctx0,embeddings,1,0,2,3);
  1385. embeddings = ggml_cont_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1386. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1387. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1388. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1389. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1390. // GLU
  1391. {
  1392. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1393. embeddings = ggml_norm(ctx0, embeddings, eps);
  1394. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1395. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1396. ggml_tensor * x = embeddings;
  1397. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1398. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1399. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1400. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1401. }
  1402. // arrangement of BOI/EOI token embeddings
  1403. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1404. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1405. {
  1406. embeddings = ggml_concat(ctx0, model.mm_boi, embeddings, 1); // BOI
  1407. embeddings = ggml_concat(ctx0, embeddings, model.mm_eoi, 1); // EOI
  1408. }
  1409. }
  1410. else {
  1411. GGML_ABORT("llava: unknown projector type");
  1412. }
  1413. // build the graph
  1414. ggml_build_forward_expand(gf, embeddings);
  1415. return gf;
  1416. }
  1417. // whisper encoder with custom projector
  1418. ggml_cgraph * build_whisper_enc() {
  1419. const int n_frames = img.nx;
  1420. const int n_pos = n_frames / 2;
  1421. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1422. ggml_tensor * inp = build_inp_raw(1);
  1423. // conv1d block
  1424. {
  1425. // convolution + gelu
  1426. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1427. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1428. cur = ggml_gelu_erf(ctx0, cur);
  1429. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1430. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1431. cur = ggml_gelu_erf(ctx0, cur);
  1432. // transpose
  1433. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1434. cb(inp, "after_conv1d", -1);
  1435. }
  1436. // sanity check (only check one layer, but it should be the same for all)
  1437. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1438. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1439. GGML_ASSERT(model.layers[0].q_b);
  1440. GGML_ASSERT(model.layers[0].v_b);
  1441. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1442. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1443. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1444. ctx0, model.position_embeddings,
  1445. model.position_embeddings->ne[0], n_pos,
  1446. model.position_embeddings->nb[1], 0
  1447. );
  1448. ggml_tensor * cur = build_vit(
  1449. inp, n_pos,
  1450. NORM_TYPE_NORMAL,
  1451. hparams.ffn_op,
  1452. pos_embd_selected,
  1453. nullptr);
  1454. cb(cur, "after_transformer", -1);
  1455. if (model.audio_has_stack_frames()) {
  1456. // StackAudioFrames
  1457. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1458. int64_t stride = n_embd * hparams.proj_stack_factor;
  1459. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1460. int64_t pad = padded_len - ggml_nelements(cur);
  1461. if (pad > 0) {
  1462. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1463. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1464. }
  1465. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1466. ggml_row_size(cur->type, stride), 0);
  1467. cb(cur, "after_stacked", -1);
  1468. }
  1469. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1470. // UltravoxProjector
  1471. // pre-norm
  1472. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1473. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1474. // ffn in
  1475. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1476. // swiglu
  1477. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1478. cur = ggml_swiglu_swapped(ctx0, cur);
  1479. // mid-norm
  1480. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1481. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1482. // ffn out
  1483. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1484. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1485. // projector
  1486. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1487. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1488. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1489. // projector
  1490. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1491. cur = ggml_gelu_erf(ctx0, cur);
  1492. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1493. } else {
  1494. GGML_ABORT("%s: unknown projector type", __func__);
  1495. }
  1496. cb(cur, "projected", -1);
  1497. ggml_build_forward_expand(gf, cur);
  1498. return gf;
  1499. }
  1500. // cogvlm vision encoder
  1501. ggml_cgraph * build_cogvlm() {
  1502. GGML_ASSERT(model.class_embedding != nullptr);
  1503. GGML_ASSERT(model.position_embeddings != nullptr);
  1504. const int n_pos = n_patches + 1; // +1 for [CLS]
  1505. // build input and concatenate class embedding
  1506. ggml_tensor * inp = build_inp();
  1507. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  1508. inp = ggml_add(ctx0, inp, model.position_embeddings);
  1509. cb(inp, "inp_pos", -1);
  1510. ggml_tensor * inpL = inp;
  1511. for (int il = 0; il < n_layer; il++) {
  1512. auto & layer = model.layers[il];
  1513. ggml_tensor * cur = inpL;
  1514. cur = ggml_mul_mat(ctx0, layer.qkv_w, cur);
  1515. cur = ggml_add(ctx0, cur, layer.qkv_b);
  1516. ggml_tensor * Qcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1517. cur->nb[1], 0);
  1518. ggml_tensor * Kcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1519. cur->nb[1], n_embd * sizeof(float));
  1520. ggml_tensor * Vcur = ggml_view_3d(ctx0, cur, d_head, n_head, n_pos, d_head*sizeof(float),
  1521. cur->nb[1], 2 * n_embd * sizeof(float));
  1522. cb(Qcur, "Qcur", il);
  1523. cb(Kcur, "Kcur", il);
  1524. cb(Vcur, "Vcur", il);
  1525. cur = build_attn(layer.o_w, layer.o_b,
  1526. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1527. cb(cur, "attn_out", il);
  1528. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  1529. cb(cur, "attn_post_norm", il);
  1530. cur = ggml_add(ctx0, cur, inpL);
  1531. inpL = cur;
  1532. cur = build_ffn(cur,
  1533. layer.ff_up_w, layer.ff_up_b,
  1534. layer.ff_gate_w, layer.ff_gate_b,
  1535. layer.ff_down_w, layer.ff_down_b,
  1536. hparams.ffn_op, il);
  1537. cb(cur, "ffn_out", il);
  1538. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  1539. cb(cur, "ffn_post_norm", il);
  1540. cur = ggml_add(ctx0, cur, inpL);
  1541. cb(cur, "layer_out", il);
  1542. inpL = cur;
  1543. }
  1544. // remove CLS token (like build_llama4 does)
  1545. ggml_tensor * cur = ggml_view_2d(ctx0, inpL,
  1546. n_embd, n_patches,
  1547. ggml_row_size(inpL->type, n_embd), 0);
  1548. // Multiply with mm_model_proj
  1549. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  1550. // Apply layernorm, weight, bias
  1551. cur = build_norm(cur, model.mm_post_fc_norm_w, model.mm_post_fc_norm_b, NORM_TYPE_NORMAL, 1e-5, -1);
  1552. // Apply GELU
  1553. cur = ggml_gelu_inplace(ctx0, cur);
  1554. // Branch 1: multiply with mm_h_to_4h_w
  1555. ggml_tensor * h_to_4h = ggml_mul_mat(ctx0, model.mm_h_to_4h_w, cur);
  1556. // Branch 2: multiply with mm_gate_w
  1557. ggml_tensor * gate = ggml_mul_mat(ctx0, model.mm_gate_w, cur);
  1558. // Apply silu
  1559. gate = ggml_swiglu_split(ctx0, gate, h_to_4h);
  1560. // Apply mm_4h_to_h_w
  1561. cur = ggml_mul_mat(ctx0, model.mm_4h_to_h_w, gate);
  1562. // Concatenate with boi and eoi
  1563. cur = ggml_concat(ctx0, model.mm_boi, cur, 1);
  1564. cur = ggml_concat(ctx0, cur, model.mm_eoi, 1);
  1565. // build the graph
  1566. ggml_build_forward_expand(gf, cur);
  1567. return gf;
  1568. }
  1569. private:
  1570. //
  1571. // utility functions
  1572. //
  1573. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1574. if (ctx->debug_graph) {
  1575. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1576. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1577. ggml_set_name(cur, cur_name.c_str());
  1578. ggml_set_output(cur);
  1579. ggml_build_forward_expand(gf, cur);
  1580. ctx->debug_print_tensors.push_back(cur);
  1581. }
  1582. }
  1583. // siglip2 naflex
  1584. ggml_tensor * resize_position_embeddings() {
  1585. ggml_tensor * pos_embd = model.position_embeddings;
  1586. const int height = img.ny / patch_size;
  1587. const int width = img.nx / patch_size;
  1588. const uint32_t mode = GGML_SCALE_MODE_BILINEAR;
  1589. const int n_per_side = (int)std::sqrt(pos_embd->ne[1]);
  1590. GGML_ASSERT(pos_embd);
  1591. if (height == n_per_side && width == n_per_side) {
  1592. return pos_embd;
  1593. }
  1594. pos_embd = ggml_reshape_3d(ctx0, pos_embd, n_embd, n_per_side, n_per_side); // -> (n_embd, n_per_side, n_per_side)
  1595. pos_embd = ggml_permute(ctx0, pos_embd, 2, 0, 1, 3); // -> (n_per_side, n_per_side, n_embd)
  1596. pos_embd = ggml_interpolate(ctx0, pos_embd, width, height, n_embd, 1, mode); // -> (width, height, n_embd)
  1597. pos_embd = ggml_permute(ctx0, pos_embd, 1, 2, 0, 3); // -> (n_embd, width, height)
  1598. pos_embd = ggml_cont_2d(ctx0, pos_embd, n_embd, width * height); // -> (n_embd, width * height)
  1599. return pos_embd;
  1600. }
  1601. // build vision transformer (ViT) cgraph
  1602. // this function should cover most of the models
  1603. // if your model has specific features, you should probably duplicate this function
  1604. ggml_tensor * build_vit(
  1605. ggml_tensor * inp,
  1606. int64_t n_pos,
  1607. norm_type norm_t,
  1608. ffn_op_type ffn_t,
  1609. ggml_tensor * learned_pos_embd,
  1610. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1611. ) {
  1612. if (learned_pos_embd) {
  1613. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1614. cb(inp, "pos_embed", -1);
  1615. }
  1616. ggml_tensor * inpL = inp;
  1617. // pre-layernorm
  1618. if (model.pre_ln_w) {
  1619. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1620. cb(inpL, "pre_ln", -1);
  1621. }
  1622. // loop over layers
  1623. for (int il = 0; il < n_layer; il++) {
  1624. auto & layer = model.layers[il];
  1625. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1626. // layernorm1
  1627. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1628. cb(cur, "layer_inp_normed", il);
  1629. // self-attention
  1630. {
  1631. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1632. if (layer.q_b) {
  1633. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1634. }
  1635. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1636. if (layer.k_b) {
  1637. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1638. }
  1639. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1640. if (layer.v_b) {
  1641. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1642. }
  1643. if (layer.q_norm) {
  1644. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1645. cb(Qcur, "Qcur_norm", il);
  1646. }
  1647. if (layer.k_norm) {
  1648. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1649. cb(Kcur, "Kcur_norm", il);
  1650. }
  1651. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1652. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1653. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1654. cb(Qcur, "Qcur", il);
  1655. cb(Kcur, "Kcur", il);
  1656. cb(Vcur, "Vcur", il);
  1657. if (add_pos) {
  1658. Qcur = add_pos(Qcur, layer);
  1659. Kcur = add_pos(Kcur, layer);
  1660. cb(Qcur, "Qcur_pos", il);
  1661. cb(Kcur, "Kcur_pos", il);
  1662. }
  1663. cur = build_attn(layer.o_w, layer.o_b,
  1664. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1665. cb(cur, "attn_out", il);
  1666. }
  1667. if (layer.ls_1_w) {
  1668. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1669. cb(cur, "attn_out_scaled", il);
  1670. }
  1671. // re-add the layer input, e.g., residual
  1672. cur = ggml_add(ctx0, cur, inpL);
  1673. inpL = cur; // inpL = residual, cur = hidden_states
  1674. cb(cur, "ffn_inp", il);
  1675. // layernorm2
  1676. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1677. cb(cur, "ffn_inp_normed", il);
  1678. // ffn
  1679. cur = build_ffn(cur,
  1680. layer.ff_up_w, layer.ff_up_b,
  1681. layer.ff_gate_w, layer.ff_gate_b,
  1682. layer.ff_down_w, layer.ff_down_b,
  1683. ffn_t, il);
  1684. cb(cur, "ffn_out", il);
  1685. if (layer.ls_2_w) {
  1686. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1687. cb(cur, "ffn_out_scaled", il);
  1688. }
  1689. // residual 2
  1690. cur = ggml_add(ctx0, inpL, cur);
  1691. cb(cur, "layer_out", il);
  1692. inpL = cur;
  1693. }
  1694. if (ctx->model.audio_has_avgpool()) {
  1695. ggml_tensor * cur = inpL;
  1696. cur = ggml_transpose(ctx0, cur);
  1697. cur = ggml_cont(ctx0, cur);
  1698. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1699. cur = ggml_transpose(ctx0, cur);
  1700. cur = ggml_cont(ctx0, cur);
  1701. inpL = cur;
  1702. }
  1703. // post-layernorm
  1704. if (model.post_ln_w) {
  1705. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1706. }
  1707. return inpL;
  1708. }
  1709. // build the input after conv2d (inp_raw --> patches)
  1710. // returns tensor with shape [n_embd, n_patches]
  1711. ggml_tensor * build_inp() {
  1712. ggml_tensor * inp_raw = build_inp_raw();
  1713. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1714. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1715. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1716. if (model.patch_bias) {
  1717. inp = ggml_add(ctx0, inp, model.patch_bias);
  1718. cb(inp, "patch_bias", -1);
  1719. }
  1720. return inp;
  1721. }
  1722. ggml_tensor * build_inp_raw(int channels = 3) {
  1723. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1724. ggml_set_name(inp_raw, "inp_raw");
  1725. ggml_set_input(inp_raw);
  1726. return inp_raw;
  1727. }
  1728. ggml_tensor * build_norm(
  1729. ggml_tensor * cur,
  1730. ggml_tensor * mw,
  1731. ggml_tensor * mb,
  1732. norm_type type,
  1733. float norm_eps,
  1734. int il) const {
  1735. cur = type == NORM_TYPE_RMS
  1736. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1737. : ggml_norm(ctx0, cur, norm_eps);
  1738. if (mw || mb) {
  1739. cb(cur, "norm", il);
  1740. }
  1741. if (mw) {
  1742. cur = ggml_mul(ctx0, cur, mw);
  1743. if (mb) {
  1744. cb(cur, "norm_w", il);
  1745. }
  1746. }
  1747. if (mb) {
  1748. cur = ggml_add(ctx0, cur, mb);
  1749. }
  1750. return cur;
  1751. }
  1752. ggml_tensor * build_ffn(
  1753. ggml_tensor * cur,
  1754. ggml_tensor * up,
  1755. ggml_tensor * up_b,
  1756. ggml_tensor * gate,
  1757. ggml_tensor * gate_b,
  1758. ggml_tensor * down,
  1759. ggml_tensor * down_b,
  1760. ffn_op_type type_op,
  1761. int il) const {
  1762. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1763. cb(tmp, "ffn_up", il);
  1764. if (up_b) {
  1765. tmp = ggml_add(ctx0, tmp, up_b);
  1766. cb(tmp, "ffn_up_b", il);
  1767. }
  1768. if (gate) {
  1769. cur = ggml_mul_mat(ctx0, gate, cur);
  1770. cb(cur, "ffn_gate", il);
  1771. if (gate_b) {
  1772. cur = ggml_add(ctx0, cur, gate_b);
  1773. cb(cur, "ffn_gate_b", il);
  1774. }
  1775. } else {
  1776. cur = tmp;
  1777. }
  1778. // we only support parallel ffn for now
  1779. switch (type_op) {
  1780. case FFN_SILU:
  1781. if (gate) {
  1782. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1783. cb(cur, "ffn_swiglu", il);
  1784. } else {
  1785. cur = ggml_silu(ctx0, cur);
  1786. cb(cur, "ffn_silu", il);
  1787. } break;
  1788. case FFN_GELU:
  1789. if (gate) {
  1790. cur = ggml_geglu_split(ctx0, cur, tmp);
  1791. cb(cur, "ffn_geglu", il);
  1792. } else {
  1793. cur = ggml_gelu(ctx0, cur);
  1794. cb(cur, "ffn_gelu", il);
  1795. } break;
  1796. case FFN_GELU_ERF:
  1797. if (gate) {
  1798. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1799. cb(cur, "ffn_geglu_erf", il);
  1800. } else {
  1801. cur = ggml_gelu_erf(ctx0, cur);
  1802. cb(cur, "ffn_gelu_erf", il);
  1803. } break;
  1804. case FFN_GELU_QUICK:
  1805. if (gate) {
  1806. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1807. cb(cur, "ffn_geglu_quick", il);
  1808. } else {
  1809. cur = ggml_gelu_quick(ctx0, cur);
  1810. cb(cur, "ffn_gelu_quick", il);
  1811. } break;
  1812. }
  1813. if (down) {
  1814. cur = ggml_mul_mat(ctx0, down, cur);
  1815. }
  1816. if (down_b) {
  1817. cb(cur, "ffn_down", il);
  1818. }
  1819. if (down_b) {
  1820. cur = ggml_add(ctx0, cur, down_b);
  1821. }
  1822. return cur;
  1823. }
  1824. ggml_tensor * build_attn(
  1825. ggml_tensor * wo,
  1826. ggml_tensor * wo_b,
  1827. ggml_tensor * q_cur,
  1828. ggml_tensor * k_cur,
  1829. ggml_tensor * v_cur,
  1830. ggml_tensor * kq_mask,
  1831. float kq_scale,
  1832. int il) const {
  1833. // these nodes are added to the graph together so that they are not reordered
  1834. // by doing so, the number of splits in the graph is reduced
  1835. ggml_build_forward_expand(gf, q_cur);
  1836. ggml_build_forward_expand(gf, k_cur);
  1837. ggml_build_forward_expand(gf, v_cur);
  1838. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1839. //cb(q, "q", il);
  1840. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1841. //cb(k, "k", il);
  1842. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1843. v = ggml_cont(ctx0, v);
  1844. //cb(k, "v", il);
  1845. ggml_tensor * cur;
  1846. // TODO @ngxson : support flash attention
  1847. {
  1848. const auto n_tokens = q->ne[1];
  1849. const auto n_head = q->ne[2];
  1850. // const auto n_kv = k->ne[1]; // for flash attention
  1851. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1852. // F32 may not needed for vision encoders?
  1853. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1854. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1855. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1856. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1857. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1858. }
  1859. cb(cur, "kqv_out", il);
  1860. if (wo) {
  1861. cur = ggml_mul_mat(ctx0, wo, cur);
  1862. }
  1863. if (wo_b) {
  1864. cur = ggml_add(ctx0, cur, wo_b);
  1865. }
  1866. return cur;
  1867. }
  1868. // implementation of the 2D RoPE without adding a new op in ggml
  1869. // this is not efficient (use double the memory), but works on all backends
  1870. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1871. static ggml_tensor * build_rope_2d(
  1872. ggml_context * ctx0,
  1873. ggml_tensor * cur,
  1874. ggml_tensor * pos_a, // first half
  1875. ggml_tensor * pos_b, // second half
  1876. const float freq_base,
  1877. const bool interleave_freq
  1878. ) {
  1879. const int64_t n_dim = cur->ne[0];
  1880. const int64_t n_head = cur->ne[1];
  1881. const int64_t n_pos = cur->ne[2];
  1882. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1883. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1884. // first half of cur will use 1e-0, 1e-2 (even)
  1885. // second half of cur will use 1e-1, 1e-3 (odd)
  1886. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1887. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1888. // then for the second half, we use freq_scale to shift the inv_freq
  1889. // ^ why? replace (2i) with (2i+1) in the above equation
  1890. const float freq_scale_odd = interleave_freq
  1891. ? std::pow(freq_base, (float)-2/n_dim)
  1892. : 1.0;
  1893. // first half
  1894. ggml_tensor * first;
  1895. {
  1896. first = ggml_view_3d(ctx0, cur,
  1897. n_dim/2, n_head, n_pos,
  1898. ggml_row_size(cur->type, n_dim),
  1899. ggml_row_size(cur->type, n_dim*n_head),
  1900. 0);
  1901. first = ggml_rope_ext(
  1902. ctx0,
  1903. first,
  1904. pos_a, // positions
  1905. nullptr, // freq factors
  1906. n_dim/2, // n_dims
  1907. 0, 0, freq_base,
  1908. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1909. );
  1910. }
  1911. // second half
  1912. ggml_tensor * second;
  1913. {
  1914. second = ggml_view_3d(ctx0, cur,
  1915. n_dim/2, n_head, n_pos,
  1916. ggml_row_size(cur->type, n_dim),
  1917. ggml_row_size(cur->type, n_dim*n_head),
  1918. n_dim/2 * ggml_element_size(cur));
  1919. second = ggml_rope_ext(
  1920. ctx0,
  1921. second,
  1922. pos_b, // positions
  1923. nullptr, // freq factors
  1924. n_dim/2, // n_dims
  1925. 0, 0, freq_base,
  1926. freq_scale_odd,
  1927. 0.0f, 1.0f, 0.0f, 0.0f
  1928. );
  1929. }
  1930. cur = ggml_concat(ctx0, first, second, 0);
  1931. return cur;
  1932. }
  1933. // aka pixel_shuffle / pixel_unshuffle / patch_merger (Kimi-VL)
  1934. // support dynamic resolution
  1935. ggml_tensor * build_patch_merge_permute(ggml_tensor * cur, int scale_factor) {
  1936. GGML_ASSERT(scale_factor > 1);
  1937. const int n_embd = cur->ne[0];
  1938. int width = img.nx / patch_size;
  1939. int height = img.ny / patch_size;
  1940. // pad width and height to factor
  1941. const int64_t pad_width = CLIP_ALIGN(width, scale_factor) - width;
  1942. const int64_t pad_height = CLIP_ALIGN(height, scale_factor) - height;
  1943. cur = ggml_reshape_3d(ctx0, cur, n_embd, width, height);
  1944. if (pad_width || pad_height) {
  1945. cur = ggml_pad(ctx0, cur, 0, pad_width, pad_height, 0);
  1946. width += pad_width;
  1947. height += pad_height;
  1948. }
  1949. // unshuffle h
  1950. cur = ggml_reshape_3d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height);
  1951. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1952. // unshuffle w
  1953. cur = ggml_cont_3d(ctx0, cur, n_embd * scale_factor * scale_factor, height / scale_factor, width / scale_factor);
  1954. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  1955. cur = ggml_cont_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  1956. cb(cur, "pixel_shuffle", -1);
  1957. return cur;
  1958. }
  1959. };
  1960. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1961. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1962. clip_graph graph(ctx, *imgs.entries[0]);
  1963. ggml_cgraph * res;
  1964. switch (ctx->proj_type()) {
  1965. case PROJECTOR_TYPE_GEMMA3:
  1966. case PROJECTOR_TYPE_IDEFICS3:
  1967. case PROJECTOR_TYPE_LFM2:
  1968. {
  1969. res = graph.build_siglip();
  1970. } break;
  1971. case PROJECTOR_TYPE_PIXTRAL:
  1972. case PROJECTOR_TYPE_LIGHTONOCR:
  1973. {
  1974. res = graph.build_pixtral();
  1975. } break;
  1976. case PROJECTOR_TYPE_QWEN2VL:
  1977. case PROJECTOR_TYPE_QWEN25VL:
  1978. {
  1979. res = graph.build_qwen2vl();
  1980. } break;
  1981. case PROJECTOR_TYPE_QWEN3VL:
  1982. {
  1983. res = graph.build_qwen3vl();
  1984. } break;
  1985. case PROJECTOR_TYPE_MINICPMV:
  1986. {
  1987. res = graph.build_minicpmv();
  1988. } break;
  1989. case PROJECTOR_TYPE_INTERNVL:
  1990. {
  1991. res = graph.build_internvl();
  1992. } break;
  1993. case PROJECTOR_TYPE_LLAMA4:
  1994. {
  1995. res = graph.build_llama4();
  1996. } break;
  1997. case PROJECTOR_TYPE_ULTRAVOX:
  1998. case PROJECTOR_TYPE_VOXTRAL:
  1999. case PROJECTOR_TYPE_QWEN2A:
  2000. {
  2001. res = graph.build_whisper_enc();
  2002. } break;
  2003. case PROJECTOR_TYPE_KIMIVL:
  2004. {
  2005. res = graph.build_kimivl();
  2006. } break;
  2007. case PROJECTOR_TYPE_COGVLM:
  2008. {
  2009. res = graph.build_cogvlm();
  2010. } break;
  2011. default:
  2012. {
  2013. res = graph.build_llava();
  2014. } break;
  2015. }
  2016. return res;
  2017. }
  2018. struct clip_model_loader {
  2019. ggml_context_ptr ctx_meta;
  2020. gguf_context_ptr ctx_gguf;
  2021. std::string fname;
  2022. size_t model_size = 0; // in bytes
  2023. bool has_vision = false;
  2024. bool has_audio = false;
  2025. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  2026. clip_model_loader(const char * fname) : fname(fname) {
  2027. struct ggml_context * meta = nullptr;
  2028. struct gguf_init_params params = {
  2029. /*.no_alloc = */ true,
  2030. /*.ctx = */ &meta,
  2031. };
  2032. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  2033. if (!ctx_gguf.get()) {
  2034. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  2035. }
  2036. ctx_meta.reset(meta);
  2037. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  2038. // print gguf info
  2039. {
  2040. std::string name;
  2041. get_string(KEY_NAME, name, false);
  2042. std::string description;
  2043. get_string(KEY_DESCRIPTION, description, false);
  2044. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  2045. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  2046. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  2047. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  2048. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  2049. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  2050. LOG_INF("\n");
  2051. }
  2052. // modalities
  2053. {
  2054. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  2055. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  2056. if (has_vision) {
  2057. LOG_INF("%s: has vision encoder\n", __func__);
  2058. }
  2059. if (has_audio) {
  2060. LOG_INF("%s: has audio encoder\n", __func__);
  2061. }
  2062. }
  2063. // tensors
  2064. {
  2065. for (int i = 0; i < n_tensors; ++i) {
  2066. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2067. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  2068. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  2069. ggml_tensor * cur = ggml_get_tensor(meta, name);
  2070. size_t tensor_size = ggml_nbytes(cur);
  2071. model_size += tensor_size;
  2072. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  2073. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  2074. }
  2075. }
  2076. }
  2077. void load_hparams(clip_model & model, clip_modality modality) {
  2078. auto & hparams = model.hparams;
  2079. std::string log_ffn_op; // for logging
  2080. // sanity check
  2081. if (modality == CLIP_MODALITY_VISION) {
  2082. GGML_ASSERT(has_vision);
  2083. } else if (modality == CLIP_MODALITY_AUDIO) {
  2084. GGML_ASSERT(has_audio);
  2085. }
  2086. model.modality = modality;
  2087. // projector type
  2088. std::string proj_type;
  2089. {
  2090. // default key
  2091. get_string(KEY_PROJ_TYPE, proj_type, false);
  2092. // for models with mixed modalities
  2093. if (proj_type.empty()) {
  2094. if (modality == CLIP_MODALITY_VISION) {
  2095. get_string(KEY_VISION_PROJ_TYPE, proj_type, false);
  2096. } else if (modality == CLIP_MODALITY_AUDIO) {
  2097. get_string(KEY_AUDIO_PROJ_TYPE, proj_type, false);
  2098. } else {
  2099. GGML_ABORT("unknown modality");
  2100. }
  2101. }
  2102. model.proj_type = clip_projector_type_from_string(proj_type);
  2103. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  2104. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  2105. }
  2106. // correct arch for multimodal models (legacy method)
  2107. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  2108. model.proj_type = modality == CLIP_MODALITY_VISION
  2109. ? PROJECTOR_TYPE_QWEN25VL
  2110. : PROJECTOR_TYPE_QWEN2A;
  2111. }
  2112. }
  2113. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  2114. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  2115. // other hparams
  2116. {
  2117. const char * prefix = is_vision ? "vision" : "audio";
  2118. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  2119. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  2120. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  2121. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  2122. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  2123. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  2124. if (is_vision) {
  2125. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  2126. get_u32(KEY_PREPROC_IMAGE_SIZE, hparams.preproc_image_size, false);
  2127. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  2128. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  2129. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  2130. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  2131. if (hparams.minicpmv_query_num == 0) {
  2132. // Fallback to hardcoded values for legacy models
  2133. if (hparams.minicpmv_version == 3) {
  2134. hparams.minicpmv_query_num = 64;
  2135. } else if (hparams.minicpmv_version == 4) {
  2136. hparams.minicpmv_query_num = 64;
  2137. } else if (hparams.minicpmv_version == 5) {
  2138. hparams.minicpmv_query_num = 64;
  2139. } else if (hparams.minicpmv_version == 6) {
  2140. hparams.minicpmv_query_num = 64;
  2141. } else {
  2142. hparams.minicpmv_query_num = 96;
  2143. }
  2144. }
  2145. } else if (is_audio) {
  2146. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  2147. } else {
  2148. GGML_ASSERT(false && "unknown modality");
  2149. }
  2150. // for pinpoints, we need to convert it into a list of resolution candidates
  2151. {
  2152. std::vector<int> pinpoints;
  2153. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  2154. if (!pinpoints.empty()) {
  2155. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  2156. hparams.image_res_candidates.push_back({
  2157. pinpoints[i],
  2158. pinpoints[i+1],
  2159. });
  2160. }
  2161. }
  2162. }
  2163. // default warmup value
  2164. hparams.warmup_image_size = hparams.image_size;
  2165. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  2166. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2167. || model.proj_type == PROJECTOR_TYPE_LDP
  2168. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  2169. {
  2170. bool use_gelu = false;
  2171. bool use_silu = false;
  2172. get_bool(KEY_USE_GELU, use_gelu, false);
  2173. get_bool(KEY_USE_SILU, use_silu, false);
  2174. if (use_gelu && use_silu) {
  2175. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  2176. }
  2177. if (use_gelu) {
  2178. hparams.ffn_op = FFN_GELU;
  2179. log_ffn_op = "gelu";
  2180. } else if (use_silu) {
  2181. hparams.ffn_op = FFN_SILU;
  2182. log_ffn_op = "silu";
  2183. } else {
  2184. hparams.ffn_op = FFN_GELU_QUICK;
  2185. log_ffn_op = "gelu_quick";
  2186. }
  2187. }
  2188. {
  2189. std::string mm_patch_merge_type;
  2190. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  2191. if (mm_patch_merge_type == "spatial_unpad") {
  2192. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  2193. }
  2194. }
  2195. if (is_vision) {
  2196. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  2197. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  2198. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  2199. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  2200. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  2201. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  2202. for (int i = 0; i < 3; ++i) {
  2203. hparams.image_mean[i] = mean_data[i];
  2204. hparams.image_std[i] = std_data[i];
  2205. }
  2206. }
  2207. // Load the vision feature layer indices if they are explicitly provided;
  2208. // if multiple vision feature layers are present, the values will be concatenated
  2209. // to form the final visual features.
  2210. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  2211. // be non-negative, since we use -1 to mark values as unset here.
  2212. std::vector<int> vision_feature_layer;
  2213. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  2214. // convert std::vector to std::unordered_set
  2215. for (auto & layer : vision_feature_layer) {
  2216. hparams.vision_feature_layer.insert(layer);
  2217. }
  2218. // model-specific params
  2219. switch (model.proj_type) {
  2220. case PROJECTOR_TYPE_MINICPMV:
  2221. {
  2222. if (hparams.minicpmv_version == 0) {
  2223. hparams.minicpmv_version = 2; // default to 2 if not set
  2224. }
  2225. } break;
  2226. case PROJECTOR_TYPE_IDEFICS3:
  2227. case PROJECTOR_TYPE_LFM2:
  2228. case PROJECTOR_TYPE_INTERNVL:
  2229. {
  2230. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  2231. } break;
  2232. case PROJECTOR_TYPE_PIXTRAL:
  2233. case PROJECTOR_TYPE_LIGHTONOCR:
  2234. {
  2235. hparams.rope_theta = 10000.0f;
  2236. hparams.warmup_image_size = hparams.patch_size * 8;
  2237. // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
  2238. // ref: https://github.com/ggml-org/llama.cpp/issues/14310
  2239. hparams.image_size = 1024;
  2240. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  2241. } break;
  2242. case PROJECTOR_TYPE_KIMIVL:
  2243. {
  2244. hparams.rope_theta = 10000.0f;
  2245. hparams.warmup_image_size = hparams.patch_size * 8;
  2246. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  2247. } break;
  2248. case PROJECTOR_TYPE_GEMMA3:
  2249. {
  2250. // default value (used by all model sizes in gemma 3 family)
  2251. // number of patches for each **side** is reduced by a factor of 4
  2252. hparams.proj_scale_factor = 4;
  2253. // test model (tinygemma3) has a different value, we optionally read it
  2254. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  2255. } break;
  2256. case PROJECTOR_TYPE_QWEN2VL:
  2257. {
  2258. // max image size = sqrt(max_pixels) = 3584
  2259. // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  2260. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  2261. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  2262. hparams.image_size = 1024;
  2263. hparams.warmup_image_size = hparams.patch_size * 8;
  2264. } break;
  2265. case PROJECTOR_TYPE_QWEN25VL:
  2266. {
  2267. // max image size = sqrt(max_pixels)
  2268. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  2269. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  2270. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  2271. hparams.image_size = 1024;
  2272. hparams.warmup_image_size = hparams.patch_size * 8;
  2273. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  2274. } break;
  2275. case PROJECTOR_TYPE_QWEN3VL:
  2276. {
  2277. hparams.image_size = 1024; // still need this?
  2278. hparams.warmup_image_size = hparams.patch_size * 8;
  2279. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  2280. } break;
  2281. case PROJECTOR_TYPE_LLAMA4:
  2282. {
  2283. hparams.rope_theta = 10000.0f;
  2284. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
  2285. set_llava_uhd_res_candidates(model, 3);
  2286. } break;
  2287. case PROJECTOR_TYPE_ULTRAVOX:
  2288. case PROJECTOR_TYPE_QWEN2A:
  2289. case PROJECTOR_TYPE_VOXTRAL:
  2290. {
  2291. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  2292. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  2293. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  2294. if (hparams.n_mel_bins != 128) {
  2295. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  2296. }
  2297. hparams.ffn_op = FFN_GELU_ERF;
  2298. log_ffn_op = "gelu_erf"; // temporary solution for logging
  2299. } break;
  2300. default:
  2301. break;
  2302. }
  2303. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  2304. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  2305. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  2306. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  2307. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  2308. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  2309. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  2310. if (is_vision) {
  2311. LOG_INF("\n--- vision hparams ---\n");
  2312. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  2313. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  2314. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  2315. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  2316. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  2317. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  2318. if (hparams.spatial_merge_size > 0) {
  2319. LOG_INF("%s: spatial_merge_size: %d\n", __func__, hparams.spatial_merge_size);
  2320. }
  2321. } else if (is_audio) {
  2322. LOG_INF("\n--- audio hparams ---\n");
  2323. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  2324. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  2325. }
  2326. LOG_INF("\n");
  2327. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  2328. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  2329. }
  2330. }
  2331. void load_tensors(clip_ctx & ctx_clip) {
  2332. auto & model = ctx_clip.model;
  2333. auto & hparams = model.hparams;
  2334. std::map<std::string, size_t> tensor_offset;
  2335. std::vector<ggml_tensor *> tensors_to_load;
  2336. // TODO @ngxson : support both audio and video in the future
  2337. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  2338. // get offsets
  2339. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  2340. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  2341. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  2342. }
  2343. // create data context
  2344. struct ggml_init_params params = {
  2345. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  2346. /*.mem_buffer =*/ NULL,
  2347. /*.no_alloc =*/ true,
  2348. };
  2349. ctx_clip.ctx_data.reset(ggml_init(params));
  2350. if (!ctx_clip.ctx_data) {
  2351. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  2352. }
  2353. // helper function
  2354. auto get_tensor = [&](const std::string & name, bool required = true) {
  2355. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  2356. if (!cur && required) {
  2357. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  2358. }
  2359. if (cur) {
  2360. tensors_to_load.push_back(cur);
  2361. // add tensors to context
  2362. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  2363. ggml_set_name(data_tensor, cur->name);
  2364. cur = data_tensor;
  2365. }
  2366. return cur;
  2367. };
  2368. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  2369. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  2370. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  2371. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  2372. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2373. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2374. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2375. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2376. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2377. // layers
  2378. model.layers.resize(hparams.n_layer);
  2379. for (int il = 0; il < hparams.n_layer; ++il) {
  2380. auto & layer = model.layers[il];
  2381. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"), false);
  2382. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"), false);
  2383. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"), false);
  2384. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2385. layer.qkv_w = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "weight"), false);
  2386. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2387. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2388. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2389. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2390. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2391. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2392. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2393. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2394. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2395. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2396. layer.qkv_b = get_tensor(string_format(TN_ATTN_QKV, prefix, il, "bias"), false);
  2397. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2398. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2399. // ffn
  2400. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2401. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2402. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2403. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2404. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2405. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2406. // qwen3vl deepstack layer
  2407. layer.deepstack_norm_w = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "weight"), false);
  2408. layer.deepstack_norm_b = get_tensor(string_format(TN_DEEPSTACK_NORM, il, "bias"), false);
  2409. layer.deepstack_fc1_w = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "weight"), false);
  2410. layer.deepstack_fc1_b = get_tensor(string_format(TN_DEEPSTACK_FC1, il, "bias"), false);
  2411. layer.deepstack_fc2_w = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "weight"), false);
  2412. layer.deepstack_fc2_b = get_tensor(string_format(TN_DEEPSTACK_FC2, il, "bias"), false);
  2413. if (layer.has_deepstack()) {
  2414. model.n_deepstack_layers++;
  2415. }
  2416. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2417. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2418. bool is_ffn_swapped = (
  2419. // only old models need this fix
  2420. model.proj_type == PROJECTOR_TYPE_MLP
  2421. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  2422. || model.proj_type == PROJECTOR_TYPE_LDP
  2423. || model.proj_type == PROJECTOR_TYPE_LDPV2
  2424. || model.proj_type == PROJECTOR_TYPE_QWEN2VL
  2425. || model.proj_type == PROJECTOR_TYPE_QWEN25VL
  2426. || model.proj_type == PROJECTOR_TYPE_GLM_EDGE
  2427. || model.proj_type == PROJECTOR_TYPE_GEMMA3
  2428. || model.proj_type == PROJECTOR_TYPE_IDEFICS3
  2429. || model.proj_type == PROJECTOR_TYPE_MINICPMV
  2430. ) && layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd;
  2431. if (is_ffn_swapped) {
  2432. // swap up and down weights
  2433. ggml_tensor * tmp = layer.ff_up_w;
  2434. layer.ff_up_w = layer.ff_down_w;
  2435. layer.ff_down_w = tmp;
  2436. // swap up and down biases
  2437. tmp = layer.ff_up_b;
  2438. layer.ff_up_b = layer.ff_down_b;
  2439. layer.ff_down_b = tmp;
  2440. if (il == 0) {
  2441. LOG_WRN("%s: ffn up/down are swapped\n", __func__);
  2442. }
  2443. }
  2444. }
  2445. switch (model.proj_type) {
  2446. case PROJECTOR_TYPE_MLP:
  2447. case PROJECTOR_TYPE_MLP_NORM:
  2448. {
  2449. // LLaVA projection
  2450. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2451. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2452. // Yi-type llava
  2453. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2454. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2455. // missing in Yi-type llava
  2456. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2457. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2458. // Yi-type llava
  2459. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2460. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2461. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2462. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2463. if (model.mm_3_w) {
  2464. // TODO: this is a hack to support Yi-type llava
  2465. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2466. }
  2467. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2468. } break;
  2469. case PROJECTOR_TYPE_LDP:
  2470. {
  2471. // MobileVLM projection
  2472. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2473. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2474. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2475. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2476. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2477. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2478. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2479. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2480. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2481. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2482. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2483. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2484. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2485. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2486. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2487. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2488. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2489. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2490. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2491. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2492. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2493. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2494. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2495. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2496. } break;
  2497. case PROJECTOR_TYPE_LDPV2:
  2498. {
  2499. // MobilVLM_V2 projection
  2500. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2501. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2502. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2503. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2504. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2505. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2506. } break;
  2507. case PROJECTOR_TYPE_MINICPMV:
  2508. {
  2509. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2510. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2511. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2512. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2513. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2514. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2515. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2516. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2517. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2518. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2519. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2520. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2521. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2522. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2523. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2524. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2525. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2526. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2527. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2528. } break;
  2529. case PROJECTOR_TYPE_GLM_EDGE:
  2530. {
  2531. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2532. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2533. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2534. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2535. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2536. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2537. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2538. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2539. model.mm_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2540. model.mm_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2541. } break;
  2542. case PROJECTOR_TYPE_QWEN2VL:
  2543. case PROJECTOR_TYPE_QWEN25VL:
  2544. {
  2545. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2546. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2547. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2548. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2549. } break;
  2550. case PROJECTOR_TYPE_QWEN3VL:
  2551. {
  2552. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2553. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2554. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2555. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2556. } break;
  2557. case PROJECTOR_TYPE_GEMMA3:
  2558. {
  2559. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2560. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2561. } break;
  2562. case PROJECTOR_TYPE_IDEFICS3:
  2563. {
  2564. model.projection = get_tensor(TN_MM_PROJECTOR);
  2565. } break;
  2566. case PROJECTOR_TYPE_LFM2:
  2567. case PROJECTOR_TYPE_KIMIVL:
  2568. {
  2569. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM);
  2570. model.mm_input_norm_b = get_tensor(TN_MM_INP_NORM_B);
  2571. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2572. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"));
  2573. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2574. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2575. } break;
  2576. case PROJECTOR_TYPE_PIXTRAL:
  2577. {
  2578. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2579. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2580. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2581. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2582. // [IMG_BREAK] token embedding
  2583. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2584. // for mistral small 3.1
  2585. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2586. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2587. } break;
  2588. case PROJECTOR_TYPE_LIGHTONOCR:
  2589. {
  2590. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2591. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2592. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2593. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2594. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2595. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2596. } break;
  2597. case PROJECTOR_TYPE_ULTRAVOX:
  2598. {
  2599. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2600. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2601. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2602. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2603. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2604. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2605. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2606. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2607. } break;
  2608. case PROJECTOR_TYPE_QWEN2A:
  2609. {
  2610. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2611. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2612. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2613. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2614. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2615. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2616. } break;
  2617. case PROJECTOR_TYPE_VOXTRAL:
  2618. {
  2619. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2620. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2621. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2622. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2623. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2624. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2625. } break;
  2626. case PROJECTOR_TYPE_INTERNVL:
  2627. {
  2628. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2629. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2630. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2631. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2632. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2633. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2634. } break;
  2635. case PROJECTOR_TYPE_LLAMA4:
  2636. {
  2637. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2638. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2639. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2640. } break;
  2641. case PROJECTOR_TYPE_COGVLM:
  2642. {
  2643. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2644. model.mm_post_fc_norm_w = get_tensor(string_format(TN_MM_POST_FC_NORM, "weight"));
  2645. model.mm_post_fc_norm_b = get_tensor(string_format(TN_MM_POST_FC_NORM, "bias"));
  2646. model.mm_h_to_4h_w = get_tensor(string_format(TN_MM_H_TO_4H, "weight"));
  2647. model.mm_gate_w = get_tensor(string_format(TN_MM_GATE, "weight"));
  2648. model.mm_4h_to_h_w = get_tensor(string_format(TN_MM_4H_TO_H, "weight"));
  2649. model.mm_boi = get_tensor(TN_TOK_BOI);
  2650. model.mm_eoi = get_tensor(TN_TOK_EOI);
  2651. } break;
  2652. default:
  2653. GGML_ASSERT(false && "unknown projector type");
  2654. }
  2655. // load data
  2656. {
  2657. std::vector<uint8_t> read_buf;
  2658. auto fin = std::ifstream(fname, std::ios::binary);
  2659. if (!fin) {
  2660. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2661. }
  2662. // alloc memory and offload data
  2663. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2664. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2665. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2666. for (auto & t : tensors_to_load) {
  2667. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2668. const size_t offset = tensor_offset[t->name];
  2669. fin.seekg(offset, std::ios::beg);
  2670. if (!fin) {
  2671. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2672. }
  2673. size_t num_bytes = ggml_nbytes(cur);
  2674. if (ggml_backend_buft_is_host(buft)) {
  2675. // for the CPU and Metal backend, we can read directly into the tensor
  2676. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2677. } else {
  2678. // read into a temporary buffer first, then copy to device memory
  2679. read_buf.resize(num_bytes);
  2680. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2681. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2682. }
  2683. }
  2684. fin.close();
  2685. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2686. }
  2687. }
  2688. void alloc_compute_meta(clip_ctx & ctx_clip) {
  2689. const auto & hparams = ctx_clip.model.hparams;
  2690. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2691. // create a fake batch
  2692. clip_image_f32_batch batch;
  2693. clip_image_f32_ptr img(clip_image_f32_init());
  2694. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2695. img->nx = hparams.warmup_image_size;
  2696. img->ny = hparams.warmup_image_size;
  2697. } else {
  2698. img->nx = hparams.warmup_audio_size;
  2699. img->ny = hparams.n_mel_bins;
  2700. }
  2701. batch.entries.push_back(std::move(img));
  2702. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2703. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2704. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2705. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2706. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2707. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2708. if (size > 1) {
  2709. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2710. ggml_backend_buft_name(buft),
  2711. size / 1024.0 / 1024.0);
  2712. }
  2713. }
  2714. }
  2715. void get_bool(const std::string & key, bool & output, bool required = true) {
  2716. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2717. if (i < 0) {
  2718. if (required) throw std::runtime_error("Key not found: " + key);
  2719. return;
  2720. }
  2721. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2722. }
  2723. void get_i32(const std::string & key, int & output, bool required = true) {
  2724. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2725. if (i < 0) {
  2726. if (required) throw std::runtime_error("Key not found: " + key);
  2727. return;
  2728. }
  2729. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2730. }
  2731. void get_u32(const std::string & key, int & output, bool required = true) {
  2732. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2733. if (i < 0) {
  2734. if (required) throw std::runtime_error("Key not found: " + key);
  2735. return;
  2736. }
  2737. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2738. }
  2739. void get_f32(const std::string & key, float & output, bool required = true) {
  2740. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2741. if (i < 0) {
  2742. if (required) throw std::runtime_error("Key not found: " + key);
  2743. return;
  2744. }
  2745. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2746. }
  2747. void get_string(const std::string & key, std::string & output, bool required = true) {
  2748. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2749. if (i < 0) {
  2750. if (required) throw std::runtime_error("Key not found: " + key);
  2751. return;
  2752. }
  2753. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2754. }
  2755. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2756. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2757. if (i < 0) {
  2758. if (required) throw std::runtime_error("Key not found: " + key);
  2759. return;
  2760. }
  2761. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2762. output.resize(n);
  2763. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2764. for (int i = 0; i < n; ++i) {
  2765. output[i] = values[i];
  2766. }
  2767. }
  2768. void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2769. auto & hparams = model.hparams;
  2770. for (int x = 1; x <= max_patches_per_side; x++) {
  2771. for (int y = 1; y <= max_patches_per_side; y++) {
  2772. if (x == 1 && y == 1) {
  2773. continue; // skip the first point
  2774. }
  2775. hparams.image_res_candidates.push_back(clip_image_size{
  2776. x*hparams.image_size,
  2777. y*hparams.image_size,
  2778. });
  2779. }
  2780. }
  2781. }
  2782. };
  2783. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2784. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2785. clip_ctx * ctx_vision = nullptr;
  2786. clip_ctx * ctx_audio = nullptr;
  2787. try {
  2788. clip_model_loader loader(fname);
  2789. if (loader.has_vision) {
  2790. ctx_vision = new clip_ctx(ctx_params);
  2791. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2792. loader.load_tensors(*ctx_vision);
  2793. loader.alloc_compute_meta(*ctx_vision);
  2794. }
  2795. if (loader.has_audio) {
  2796. ctx_audio = new clip_ctx(ctx_params);
  2797. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2798. loader.load_tensors(*ctx_audio);
  2799. loader.alloc_compute_meta(*ctx_audio);
  2800. }
  2801. } catch (const std::exception & e) {
  2802. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2803. if (ctx_vision) {
  2804. delete ctx_vision;
  2805. }
  2806. if (ctx_audio) {
  2807. delete ctx_audio;
  2808. }
  2809. return {nullptr, nullptr};
  2810. }
  2811. return {ctx_vision, ctx_audio};
  2812. }
  2813. struct clip_image_size * clip_image_size_init() {
  2814. struct clip_image_size * load_image_size = new struct clip_image_size();
  2815. load_image_size->width = 448;
  2816. load_image_size->height = 448;
  2817. return load_image_size;
  2818. }
  2819. struct clip_image_u8 * clip_image_u8_init() {
  2820. return new clip_image_u8();
  2821. }
  2822. struct clip_image_f32 * clip_image_f32_init() {
  2823. return new clip_image_f32();
  2824. }
  2825. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2826. return new clip_image_f32_batch();
  2827. }
  2828. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2829. if (nx) *nx = img->nx;
  2830. if (ny) *ny = img->ny;
  2831. return img->buf.data();
  2832. }
  2833. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2834. if (load_image_size == nullptr) {
  2835. return;
  2836. }
  2837. delete load_image_size;
  2838. }
  2839. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2840. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2841. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2842. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2843. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2844. return batch->entries.size();
  2845. }
  2846. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2847. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2848. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2849. return 0;
  2850. }
  2851. return batch->entries[idx]->nx;
  2852. }
  2853. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2854. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2855. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2856. return 0;
  2857. }
  2858. return batch->entries[idx]->ny;
  2859. }
  2860. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2861. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2862. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2863. return nullptr;
  2864. }
  2865. return batch->entries[idx].get();
  2866. }
  2867. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2868. img->nx = nx;
  2869. img->ny = ny;
  2870. img->buf.resize(3 * nx * ny);
  2871. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2872. }
  2873. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2874. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2875. dst.nx = src.nx;
  2876. dst.ny = src.ny;
  2877. dst.buf.resize(src.buf.size());
  2878. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2879. for (size_t i = 0; i < src.buf.size(); ++i) {
  2880. int c = i % 3; // rgb
  2881. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2882. }
  2883. }
  2884. // set of tools to manupulate images
  2885. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2886. struct image_manipulation {
  2887. // Bilinear resize function
  2888. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2889. dst.nx = target_width;
  2890. dst.ny = target_height;
  2891. dst.buf.resize(3 * target_width * target_height);
  2892. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2893. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2894. for (int y = 0; y < target_height; y++) {
  2895. for (int x = 0; x < target_width; x++) {
  2896. float px = x_ratio * x;
  2897. float py = y_ratio * y;
  2898. int x_floor = static_cast<int>(px);
  2899. int y_floor = static_cast<int>(py);
  2900. float x_lerp = px - x_floor;
  2901. float y_lerp = py - y_floor;
  2902. for (int c = 0; c < 3; c++) {
  2903. float top = lerp(
  2904. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2905. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2906. x_lerp
  2907. );
  2908. float bottom = lerp(
  2909. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2910. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2911. x_lerp
  2912. );
  2913. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2914. }
  2915. }
  2916. }
  2917. }
  2918. // Bicubic resize function
  2919. // part of image will be cropped if the aspect ratio is different
  2920. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2921. const int nx = img.nx;
  2922. const int ny = img.ny;
  2923. dst.nx = target_width;
  2924. dst.ny = target_height;
  2925. dst.buf.resize(3 * target_width * target_height);
  2926. float Cc;
  2927. float C[5] = {};
  2928. float d0, d2, d3, a0, a1, a2, a3;
  2929. int i, j, k, jj;
  2930. int x, y;
  2931. float dx, dy;
  2932. float tx, ty;
  2933. tx = (float)nx / (float)target_width;
  2934. ty = (float)ny / (float)target_height;
  2935. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2936. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2937. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2938. for (i = 0; i < target_height; i++) {
  2939. for (j = 0; j < target_width; j++) {
  2940. x = (int)(tx * j);
  2941. y = (int)(ty * i);
  2942. dx = tx * j - x;
  2943. dy = ty * i - y;
  2944. for (k = 0; k < 3; k++) {
  2945. for (jj = 0; jj <= 3; jj++) {
  2946. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2947. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2948. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2949. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2950. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2951. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2952. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2953. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2954. d0 = C[0] - C[1];
  2955. d2 = C[2] - C[1];
  2956. d3 = C[3] - C[1];
  2957. a0 = C[1];
  2958. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2959. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2960. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2961. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2962. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2963. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2964. }
  2965. }
  2966. }
  2967. }
  2968. return true;
  2969. }
  2970. // llava-1.6 type of resize_and_pad
  2971. // if the ratio is not 1:1, padding with pad_color will be applied
  2972. // pad_color is single channel, default is 0 (black)
  2973. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2974. int target_width = target_resolution.width;
  2975. int target_height = target_resolution.height;
  2976. float scale_w = static_cast<float>(target_width) / image.nx;
  2977. float scale_h = static_cast<float>(target_height) / image.ny;
  2978. int new_width, new_height;
  2979. if (scale_w < scale_h) {
  2980. new_width = target_width;
  2981. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2982. } else {
  2983. new_height = target_height;
  2984. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2985. }
  2986. clip_image_u8 resized_image;
  2987. bicubic_resize(image, resized_image, new_width, new_height);
  2988. clip_image_u8 padded_image;
  2989. padded_image.nx = target_width;
  2990. padded_image.ny = target_height;
  2991. padded_image.buf.resize(3 * target_width * target_height);
  2992. // Fill the padded image with the fill color
  2993. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2994. padded_image.buf[i] = pad_color[0];
  2995. padded_image.buf[i + 1] = pad_color[1];
  2996. padded_image.buf[i + 2] = pad_color[2];
  2997. }
  2998. // Calculate padding offsets
  2999. int pad_x = (target_width - new_width) / 2;
  3000. int pad_y = (target_height - new_height) / 2;
  3001. // Copy the resized image into the center of the padded buffer
  3002. for (int y = 0; y < new_height; ++y) {
  3003. for (int x = 0; x < new_width; ++x) {
  3004. for (int c = 0; c < 3; ++c) {
  3005. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  3006. }
  3007. }
  3008. }
  3009. dst = std::move(padded_image);
  3010. }
  3011. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  3012. dst.nx = w;
  3013. dst.ny = h;
  3014. dst.buf.resize(3 * w * h);
  3015. for (int i = 0; i < h; ++i) {
  3016. for (int j = 0; j < w; ++j) {
  3017. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  3018. int dst_idx = 3 * (i*w + j);
  3019. dst.buf[dst_idx] = image.buf[src_idx];
  3020. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  3021. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  3022. }
  3023. }
  3024. }
  3025. // calculate the size of the **resized** image, while preserving the aspect ratio
  3026. // the calculated size will be aligned to the nearest multiple of align_size
  3027. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  3028. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  3029. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  3030. return {0, 0};
  3031. }
  3032. float scale = std::min(static_cast<float>(max_dimension) / inp_size.width,
  3033. static_cast<float>(max_dimension) / inp_size.height);
  3034. float target_width_f = static_cast<float>(inp_size.width) * scale;
  3035. float target_height_f = static_cast<float>(inp_size.height) * scale;
  3036. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  3037. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  3038. return {aligned_width, aligned_height};
  3039. }
  3040. private:
  3041. static inline int clip(int x, int lower, int upper) {
  3042. return std::max(lower, std::min(x, upper));
  3043. }
  3044. // Linear interpolation between two points
  3045. static inline float lerp(float s, float e, float t) {
  3046. return s + (e - s) * t;
  3047. }
  3048. };
  3049. /**
  3050. * implementation of LLaVA-UHD:
  3051. * - https://arxiv.org/pdf/2403.11703
  3052. * - https://github.com/thunlp/LLaVA-UHD
  3053. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  3054. *
  3055. * overview:
  3056. * - an image always have a single overview (downscaled image)
  3057. * - an image can have 0 or multiple slices, depending on the image size
  3058. * - each slice can then be considered as a separate image
  3059. *
  3060. * for example:
  3061. *
  3062. * [overview] --> [slice 1] --> [slice 2]
  3063. * | |
  3064. * +--> [slice 3] --> [slice 4]
  3065. */
  3066. struct llava_uhd {
  3067. struct slice_coordinates {
  3068. int x;
  3069. int y;
  3070. clip_image_size size;
  3071. };
  3072. struct slice_instructions {
  3073. clip_image_size overview_size; // size of downscaled image
  3074. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  3075. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  3076. std::vector<slice_coordinates> slices;
  3077. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  3078. };
  3079. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  3080. slice_instructions res;
  3081. const int patch_size = clip_get_patch_size(ctx);
  3082. const int slice_size = clip_get_image_size(ctx);
  3083. const int original_width = original_size.width;
  3084. const int original_height = original_size.height;
  3085. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  3086. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  3087. if (!has_slices) {
  3088. // skip slicing logic
  3089. res.overview_size = clip_image_size{slice_size, slice_size};
  3090. res.refined_size = clip_image_size{0, 0};
  3091. res.grid_size = clip_image_size{0, 0};
  3092. return res;
  3093. }
  3094. if (has_pinpoints) {
  3095. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  3096. auto refine_size = llava_uhd::select_best_resolution(
  3097. original_size,
  3098. ctx->model.hparams.image_res_candidates);
  3099. res.overview_size = clip_image_size{slice_size, slice_size};
  3100. res.refined_size = refine_size;
  3101. res.grid_size = clip_image_size{0, 0};
  3102. res.padding_refined = true;
  3103. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  3104. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  3105. __func__, original_width, original_height,
  3106. res.overview_size.width, res.overview_size.height,
  3107. res.refined_size.width, res.refined_size.height);
  3108. for (int y = 0; y < refine_size.height; y += slice_size) {
  3109. for (int x = 0; x < refine_size.width; x += slice_size) {
  3110. slice_coordinates slice;
  3111. slice.x = x;
  3112. slice.y = y;
  3113. slice.size.width = std::min(slice_size, refine_size.width - x);
  3114. slice.size.height = std::min(slice_size, refine_size.height - y);
  3115. res.slices.push_back(slice);
  3116. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3117. __func__, (int)res.slices.size() - 1,
  3118. slice.x, slice.y, slice.size.width, slice.size.height);
  3119. }
  3120. }
  3121. res.grid_size.height = refine_size.height / slice_size;
  3122. res.grid_size.width = refine_size.width / slice_size;
  3123. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  3124. return res;
  3125. }
  3126. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  3127. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  3128. res.overview_size = best_size;
  3129. {
  3130. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  3131. const float log_ratio = log((float)original_width / original_height);
  3132. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  3133. const int multiple = fmin(ceil(ratio), max_slice_nums);
  3134. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  3135. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  3136. res.grid_size = best_grid;
  3137. res.refined_size = refine_size;
  3138. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  3139. __func__, original_width, original_height,
  3140. res.overview_size.width, res.overview_size.height,
  3141. res.refined_size.width, res.refined_size.height,
  3142. res.grid_size.width, res.grid_size.height);
  3143. int width = refine_size.width;
  3144. int height = refine_size.height;
  3145. int grid_x = int(width / best_grid.width);
  3146. int grid_y = int(height / best_grid.height);
  3147. for (int patches_y = 0, ic = 0;
  3148. patches_y < refine_size.height && ic < best_grid.height;
  3149. patches_y += grid_y, ic += 1) {
  3150. for (int patches_x = 0, jc = 0;
  3151. patches_x < refine_size.width && jc < best_grid.width;
  3152. patches_x += grid_x, jc += 1) {
  3153. slice_coordinates slice;
  3154. slice.x = patches_x;
  3155. slice.y = patches_y;
  3156. slice.size.width = grid_x;
  3157. slice.size.height = grid_y;
  3158. res.slices.push_back(slice);
  3159. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  3160. __func__, (int)res.slices.size() - 1,
  3161. slice.x, slice.y, slice.size.width, slice.size.height);
  3162. }
  3163. }
  3164. }
  3165. return res;
  3166. }
  3167. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  3168. std::vector<clip_image_u8_ptr> output;
  3169. // resize to overview size
  3170. clip_image_u8_ptr resized_img(clip_image_u8_init());
  3171. image_manipulation::resize_and_pad_image(*img, *resized_img, inst.overview_size);
  3172. output.push_back(std::move(resized_img));
  3173. if (inst.slices.empty()) {
  3174. // no slices, just return the resized image
  3175. return output;
  3176. }
  3177. // resize to refined size
  3178. clip_image_u8_ptr refined_img(clip_image_u8_init());
  3179. if (inst.padding_refined) {
  3180. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  3181. } else {
  3182. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  3183. }
  3184. // create slices
  3185. for (const auto & slice : inst.slices) {
  3186. int x = slice.x;
  3187. int y = slice.y;
  3188. int w = slice.size.width;
  3189. int h = slice.size.height;
  3190. clip_image_u8_ptr img_slice(clip_image_u8_init());
  3191. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  3192. output.push_back(std::move(img_slice));
  3193. }
  3194. return output;
  3195. }
  3196. private:
  3197. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3198. int width = original_size.width;
  3199. int height = original_size.height;
  3200. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  3201. float r = static_cast<float>(width) / height;
  3202. height = static_cast<int>(scale_resolution / std::sqrt(r));
  3203. width = static_cast<int>(height * r);
  3204. }
  3205. clip_image_size res;
  3206. res.width = ensure_divide(width, patch_size);
  3207. res.height = ensure_divide(height, patch_size);
  3208. return res;
  3209. }
  3210. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  3211. float scale_width = static_cast<float>(target_max.width) / orig.width;
  3212. float scale_height = static_cast<float>(target_max.height) / orig.height;
  3213. float scale = std::min(scale_width, scale_height);
  3214. return clip_image_size{
  3215. static_cast<int>(orig.width * scale),
  3216. static_cast<int>(orig.height * scale),
  3217. };
  3218. }
  3219. /**
  3220. * Selects the best resolution from a list of possible resolutions based on the original size.
  3221. *
  3222. * For example, when given a list of resolutions:
  3223. * - 100x100
  3224. * - 200x100
  3225. * - 100x200
  3226. * - 200x200
  3227. *
  3228. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  3229. *
  3230. * @param original_size The original size of the image
  3231. * @param possible_resolutions A list of possible resolutions
  3232. * @return The best fit resolution
  3233. */
  3234. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  3235. clip_image_size best_fit;
  3236. int min_wasted_area = std::numeric_limits<int>::max();
  3237. int max_effective_resolution = 0;
  3238. for (const clip_image_size & candidate : possible_resolutions) {
  3239. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  3240. int effective_resolution = std::min(
  3241. target_size.width * target_size.height,
  3242. original_size.width * original_size.height);
  3243. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  3244. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  3245. max_effective_resolution = effective_resolution;
  3246. min_wasted_area = wasted_area;
  3247. best_fit = candidate;
  3248. }
  3249. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  3250. }
  3251. return best_fit;
  3252. }
  3253. static int ensure_divide(int length, int patch_size) {
  3254. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  3255. }
  3256. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  3257. int width = original_size.width;
  3258. int height = original_size.height;
  3259. int grid_x = grid.width;
  3260. int grid_y = grid.height;
  3261. int refine_width = ensure_divide(width, grid_x);
  3262. int refine_height = ensure_divide(height, grid_y);
  3263. clip_image_size grid_size;
  3264. grid_size.width = refine_width / grid_x;
  3265. grid_size.height = refine_height / grid_y;
  3266. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  3267. int best_grid_width = best_grid_size.width;
  3268. int best_grid_height = best_grid_size.height;
  3269. clip_image_size refine_size;
  3270. refine_size.width = best_grid_width * grid_x;
  3271. refine_size.height = best_grid_height * grid_y;
  3272. return refine_size;
  3273. }
  3274. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  3275. std::vector<int> candidate_split_grids_nums;
  3276. for (int i : {multiple - 1, multiple, multiple + 1}) {
  3277. if (i == 1 || i > max_slice_nums) {
  3278. continue;
  3279. }
  3280. candidate_split_grids_nums.push_back(i);
  3281. }
  3282. std::vector<clip_image_size> candidate_grids;
  3283. for (int split_grids_nums : candidate_split_grids_nums) {
  3284. int m = 1;
  3285. while (m <= split_grids_nums) {
  3286. if (split_grids_nums % m == 0) {
  3287. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  3288. }
  3289. ++m;
  3290. }
  3291. }
  3292. clip_image_size best_grid{1, 1};
  3293. float min_error = std::numeric_limits<float>::infinity();
  3294. for (const auto& grid : candidate_grids) {
  3295. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  3296. if (error < min_error) {
  3297. best_grid = grid;
  3298. min_error = error;
  3299. }
  3300. }
  3301. return best_grid;
  3302. }
  3303. };
  3304. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  3305. // res_imgs memory is being allocated here, previous allocations will be freed if found
  3306. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  3307. clip_image_size original_size{img->nx, img->ny};
  3308. bool pad_to_square = true;
  3309. auto & params = ctx->model.hparams;
  3310. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  3311. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  3312. pad_to_square = false;
  3313. }
  3314. if (clip_is_minicpmv(ctx)) {
  3315. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3316. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3317. for (size_t i = 0; i < imgs.size(); ++i) {
  3318. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3319. clip_image_f32_ptr res(clip_image_f32_init());
  3320. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3321. res_imgs->entries.push_back(std::move(res));
  3322. }
  3323. res_imgs->grid_x = inst.grid_size.width;
  3324. res_imgs->grid_y = inst.grid_size.height;
  3325. return true;
  3326. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3327. clip_image_u8 resized;
  3328. auto patch_size = params.patch_size * 2;
  3329. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  3330. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  3331. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3332. // clip_image_f32_ptr res(clip_image_f32_init());
  3333. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  3334. // res_imgs->data[0] = *res;
  3335. res_imgs->entries.push_back(std::move(img_f32));
  3336. return true;
  3337. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  3338. // The refined size has two steps:
  3339. // 1. Resize w/ aspect-ratio preserving such that the longer side is
  3340. // the preprocessor longest size
  3341. // 2. Resize w/out preserving aspect ratio such that both sides are
  3342. // multiples of image_size (always rounding up)
  3343. //
  3344. // CITE: https://github.com/huggingface/transformers/blob/main/src/transformers/models/idefics3/image_processing_idefics3.py#L737
  3345. const clip_image_size refined_size = image_manipulation::calc_size_preserved_ratio(
  3346. original_size, params.image_size, params.preproc_image_size);
  3347. // LOG_INF("%s: original size: %d x %d, refined size: %d x %d\n",
  3348. // __func__, original_size.width, original_size.height,
  3349. // refined_size.width, refined_size.height);
  3350. llava_uhd::slice_instructions instructions;
  3351. instructions.overview_size = clip_image_size{params.image_size, params.image_size};
  3352. instructions.refined_size = refined_size;
  3353. instructions.grid_size = clip_image_size{
  3354. static_cast<int>(std::ceil(static_cast<float>(refined_size.width) / params.image_size)),
  3355. static_cast<int>(std::ceil(static_cast<float>(refined_size.height) / params.image_size)),
  3356. };
  3357. for (int y = 0; y < refined_size.height; y += params.image_size) {
  3358. for (int x = 0; x < refined_size.width; x += params.image_size) {
  3359. // LOG_INF("%s: adding slice at x=%d, y=%d\n", __func__, x, y);
  3360. instructions.slices.push_back(llava_uhd::slice_coordinates{
  3361. /* x */x,
  3362. /* y */y,
  3363. /* size */clip_image_size{
  3364. std::min(params.image_size, refined_size.width - x),
  3365. std::min(params.image_size, refined_size.height - y)
  3366. }
  3367. });
  3368. }
  3369. }
  3370. auto imgs = llava_uhd::slice_image(img, instructions);
  3371. // cast and normalize to f32
  3372. for (size_t i = 0; i < imgs.size(); ++i) {
  3373. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3374. clip_image_f32_ptr res(clip_image_f32_init());
  3375. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3376. res_imgs->entries.push_back(std::move(res));
  3377. }
  3378. res_imgs->grid_x = instructions.grid_size.width;
  3379. res_imgs->grid_y = instructions.grid_size.height;
  3380. return true;
  3381. } else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
  3382. || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
  3383. || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  3384. ) {
  3385. clip_image_u8 resized_image;
  3386. int sz = params.image_size;
  3387. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  3388. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3389. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  3390. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3391. res_imgs->entries.push_back(std::move(img_f32));
  3392. return true;
  3393. } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL
  3394. || ctx->proj_type() == PROJECTOR_TYPE_LIGHTONOCR
  3395. ) {
  3396. clip_image_u8 resized_image;
  3397. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  3398. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  3399. clip_image_f32_ptr img_f32(clip_image_f32_init());
  3400. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  3401. res_imgs->entries.push_back(std::move(img_f32));
  3402. return true;
  3403. } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
  3404. GGML_ASSERT(!params.image_res_candidates.empty());
  3405. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3406. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3407. for (size_t i = 0; i < imgs.size(); ++i) {
  3408. clip_image_f32_ptr res(clip_image_f32_init());
  3409. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3410. res_imgs->entries.push_back(std::move(res));
  3411. }
  3412. res_imgs->grid_x = inst.grid_size.width;
  3413. res_imgs->grid_y = inst.grid_size.height;
  3414. return true;
  3415. } else if ( ctx->proj_type() == PROJECTOR_TYPE_LFM2
  3416. || ctx->proj_type() == PROJECTOR_TYPE_KIMIVL
  3417. ) {
  3418. GGML_ASSERT(params.proj_scale_factor);
  3419. // smart resize
  3420. const int width = img->nx;
  3421. const int height = img->ny;
  3422. const int total_factor = params.patch_size * params.proj_scale_factor;
  3423. constexpr int min_image_tokens = 64;
  3424. constexpr int max_image_tokens = 1024;
  3425. const float min_pixels = min_image_tokens * total_factor * total_factor;
  3426. const float max_pixels = max_image_tokens * total_factor * total_factor;
  3427. auto round_by_factor = [f = total_factor](float x) { return static_cast<int>(std::nearbyintf(x / static_cast<float>(f))) * f; };
  3428. auto ceil_by_factor = [f = total_factor](float x) { return static_cast<int>(std::ceil(x / static_cast<float>(f))) * f; };
  3429. auto floor_by_factor = [f = total_factor](float x) { return static_cast<int>(std::floor(x / static_cast<float>(f))) * f; };
  3430. int h_bar = std::max(total_factor, round_by_factor(height));
  3431. int w_bar = std::max(total_factor, round_by_factor(width));
  3432. if (h_bar * w_bar > max_pixels) {
  3433. const auto beta = std::sqrt((height * width) / max_pixels);
  3434. h_bar = std::max(total_factor, floor_by_factor(height / beta));
  3435. w_bar = std::max(total_factor, floor_by_factor(width / beta));
  3436. } else if (h_bar * w_bar < min_pixels) {
  3437. const auto beta = std::sqrt(min_pixels / (height * width));
  3438. h_bar = ceil_by_factor(height * beta);
  3439. w_bar = ceil_by_factor(width * beta);
  3440. }
  3441. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3442. clip_image_u8 resized_img;
  3443. image_manipulation::resize_and_pad_image(*img, resized_img, clip_image_size{w_bar, h_bar}, pad_color);
  3444. clip_image_f32_ptr res(clip_image_f32_init());
  3445. normalize_image_u8_to_f32(resized_img, *res, params.image_mean, params.image_std);
  3446. res_imgs->entries.push_back(std::move(res));
  3447. return true;
  3448. }
  3449. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  3450. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3451. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  3452. if (pad_to_square) {
  3453. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  3454. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  3455. const int longer_side = std::max(img->nx, img->ny);
  3456. temp->nx = longer_side;
  3457. temp->ny = longer_side;
  3458. temp->buf.resize(3 * longer_side * longer_side);
  3459. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  3460. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  3461. // resize the image to the target_size
  3462. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  3463. clip_image_f32_ptr res(clip_image_f32_init());
  3464. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  3465. res_imgs->entries.push_back(std::move(res));
  3466. return true;
  3467. } else if (!params.image_res_candidates.empty()) {
  3468. // "spatial_unpad" with "anyres" processing for llava-1.6
  3469. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  3470. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  3471. for (size_t i = 0; i < imgs.size(); ++i) {
  3472. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  3473. clip_image_f32_ptr res(clip_image_f32_init());
  3474. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  3475. res_imgs->entries.push_back(std::move(res));
  3476. }
  3477. return true;
  3478. } else {
  3479. GGML_ABORT("Unknown image preprocessing type");
  3480. }
  3481. }
  3482. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  3483. return ctx->model.image_newline;
  3484. }
  3485. void clip_free(clip_ctx * ctx) {
  3486. if (ctx == nullptr) {
  3487. return;
  3488. }
  3489. delete ctx;
  3490. }
  3491. // deprecated
  3492. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  3493. const int32_t nx = ctx->model.hparams.image_size;
  3494. const int32_t ny = ctx->model.hparams.image_size;
  3495. return clip_embd_nbytes_by_img(ctx, nx, ny);
  3496. }
  3497. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  3498. clip_image_f32 img;
  3499. img.nx = img_w;
  3500. img.ny = img_h;
  3501. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  3502. }
  3503. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  3504. return ctx->model.hparams.image_size;
  3505. }
  3506. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  3507. return ctx->model.hparams.patch_size;
  3508. }
  3509. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  3510. return ctx->model.hparams.n_embd;
  3511. }
  3512. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  3513. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  3514. }
  3515. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3516. const auto & params = ctx->model.hparams;
  3517. const int n_total = clip_n_output_tokens(ctx, img);
  3518. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3519. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  3520. }
  3521. return n_total;
  3522. }
  3523. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3524. const auto & params = ctx->model.hparams;
  3525. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL) {
  3526. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  3527. }
  3528. return 1;
  3529. }
  3530. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3531. const auto & params = ctx->model.hparams;
  3532. // for models with fixed size image, the input image is already pre-processed and resized to square
  3533. int patch_size = params.patch_size;
  3534. int n_patches = (img->nx / patch_size) * (img->ny / patch_size);
  3535. projector_type proj = ctx->proj_type();
  3536. switch (proj) {
  3537. case PROJECTOR_TYPE_MLP:
  3538. case PROJECTOR_TYPE_MLP_NORM:
  3539. {
  3540. // do nothing
  3541. } break;
  3542. case PROJECTOR_TYPE_LDP:
  3543. case PROJECTOR_TYPE_LDPV2:
  3544. case PROJECTOR_TYPE_GLM_EDGE:
  3545. {
  3546. n_patches /= 4;
  3547. if (ctx->model.mm_boi) {
  3548. n_patches += 2; // for BOI and EOI token embeddings
  3549. }
  3550. } break;
  3551. case PROJECTOR_TYPE_MINICPMV:
  3552. {
  3553. // Use actual config value if available, otherwise fall back to hardcoded values
  3554. if (params.minicpmv_query_num > 0) {
  3555. n_patches = params.minicpmv_query_num;
  3556. } else {
  3557. // Fallback to hardcoded values for legacy models
  3558. if (params.minicpmv_version == 2) {
  3559. n_patches = 96;
  3560. } else if (params.minicpmv_version == 3) {
  3561. n_patches = 64;
  3562. } else if (params.minicpmv_version == 4) {
  3563. n_patches = 64;
  3564. } else if (params.minicpmv_version == 5) {
  3565. // MiniCPM-V 4.0
  3566. n_patches = 64;
  3567. } else if (params.minicpmv_version == 6) {
  3568. // MiniCPM-V 4.5
  3569. n_patches = 64;
  3570. } else {
  3571. GGML_ABORT("Unknown minicpmv version");
  3572. }
  3573. }
  3574. } break;
  3575. case PROJECTOR_TYPE_QWEN2VL:
  3576. case PROJECTOR_TYPE_QWEN25VL:
  3577. case PROJECTOR_TYPE_QWEN3VL:
  3578. {
  3579. // dynamic size (2 conv, so double patch size)
  3580. int patch_size = params.patch_size * 2;
  3581. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  3582. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  3583. n_patches = x_patch * y_patch;
  3584. } break;
  3585. case PROJECTOR_TYPE_GEMMA3:
  3586. case PROJECTOR_TYPE_IDEFICS3:
  3587. case PROJECTOR_TYPE_INTERNVL:
  3588. case PROJECTOR_TYPE_LLAMA4:
  3589. {
  3590. // both X and Y are downscaled by the scale factor
  3591. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3592. n_patches /= (scale_factor * scale_factor);
  3593. } break;
  3594. case PROJECTOR_TYPE_LFM2:
  3595. case PROJECTOR_TYPE_KIMIVL:
  3596. {
  3597. // dynamic size
  3598. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3599. int out_patch_size = params.patch_size * scale_factor;
  3600. int x_patch = CLIP_ALIGN(img->nx, out_patch_size) / out_patch_size;
  3601. int y_patch = CLIP_ALIGN(img->ny, out_patch_size) / out_patch_size;
  3602. n_patches = x_patch * y_patch;
  3603. } break;
  3604. case PROJECTOR_TYPE_PIXTRAL:
  3605. case PROJECTOR_TYPE_LIGHTONOCR:
  3606. {
  3607. // dynamic size
  3608. int n_merge = params.spatial_merge_size;
  3609. int n_patches_x = img->nx / patch_size / (n_merge > 0 ? n_merge : 1);
  3610. int n_patches_y = img->ny / patch_size / (n_merge > 0 ? n_merge : 1);
  3611. if (ctx->model.token_embd_img_break) {
  3612. n_patches = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3613. } else {
  3614. n_patches = n_patches_y * n_patches_x;
  3615. }
  3616. } break;
  3617. case PROJECTOR_TYPE_VOXTRAL:
  3618. case PROJECTOR_TYPE_ULTRAVOX:
  3619. case PROJECTOR_TYPE_QWEN2A:
  3620. {
  3621. n_patches = img->nx;
  3622. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3623. if (ctx->model.audio_has_stack_frames()) {
  3624. GGML_ASSERT(proj_stack_factor > 0);
  3625. const int n_len = CLIP_ALIGN(n_patches, proj_stack_factor);
  3626. n_patches = n_len / proj_stack_factor;
  3627. }
  3628. // whisper downscales input token by half after conv1d
  3629. n_patches /= 2;
  3630. if (ctx->model.audio_has_avgpool()) {
  3631. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3632. n_patches /= 2;
  3633. }
  3634. } break;
  3635. case PROJECTOR_TYPE_COGVLM:
  3636. {
  3637. n_patches += 2; // for BOI and EOI token embeddings
  3638. } break;
  3639. default:
  3640. GGML_ABORT("unsupported projector type");
  3641. }
  3642. return n_patches;
  3643. }
  3644. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3645. assert(embed_dim % 2 == 0);
  3646. int H = pos.size();
  3647. int W = pos[0].size();
  3648. std::vector<float> omega(embed_dim / 2);
  3649. for (int i = 0; i < embed_dim / 2; ++i) {
  3650. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3651. }
  3652. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3653. for (int h = 0; h < H; ++h) {
  3654. for (int w = 0; w < W; ++w) {
  3655. for (int d = 0; d < embed_dim / 2; ++d) {
  3656. float out_value = pos[h][w] * omega[d];
  3657. emb[h][w][d] = sin(out_value);
  3658. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3659. }
  3660. }
  3661. }
  3662. return emb;
  3663. }
  3664. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3665. assert(embed_dim % 2 == 0);
  3666. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3667. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3668. int H = emb_h.size();
  3669. int W = emb_h[0].size();
  3670. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3671. for (int h = 0; h < H; ++h) {
  3672. for (int w = 0; w < W; ++w) {
  3673. for (int d = 0; d < embed_dim / 2; ++d) {
  3674. emb[h][w][d] = emb_h[h][w][d];
  3675. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3676. }
  3677. }
  3678. }
  3679. return emb;
  3680. }
  3681. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3682. int grid_h_size = image_size.first;
  3683. int grid_w_size = image_size.second;
  3684. std::vector<float> grid_h(grid_h_size);
  3685. std::vector<float> grid_w(grid_w_size);
  3686. for (int i = 0; i < grid_h_size; ++i) {
  3687. grid_h[i] = static_cast<float>(i);
  3688. }
  3689. for (int i = 0; i < grid_w_size; ++i) {
  3690. grid_w[i] = static_cast<float>(i);
  3691. }
  3692. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3693. for (int h = 0; h < grid_h_size; ++h) {
  3694. for (int w = 0; w < grid_w_size; ++w) {
  3695. grid[h][w] = grid_w[w];
  3696. }
  3697. }
  3698. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3699. for (int h = 0; h < grid_h_size; ++h) {
  3700. for (int w = 0; w < grid_w_size; ++w) {
  3701. grid_2d[0][h][w] = grid_h[h];
  3702. grid_2d[1][h][w] = grid_w[w];
  3703. }
  3704. }
  3705. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3706. int H = image_size.first;
  3707. int W = image_size.second;
  3708. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3709. for (int h = 0; h < H; ++h) {
  3710. for (int w = 0; w < W; ++w) {
  3711. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3712. }
  3713. }
  3714. return pos_embed_2d;
  3715. }
  3716. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3717. clip_image_f32_batch imgs;
  3718. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3719. *img_copy = *img;
  3720. imgs.entries.push_back(std::move(img_copy));
  3721. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3722. }
  3723. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3724. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3725. int batch_size = imgs.entries.size();
  3726. // TODO @ngxson : implement batch size > 1 as a loop
  3727. // we don't need true batching support because the cgraph will gonna be big anyway
  3728. if (batch_size != 1) {
  3729. return false; // only support batch size of 1
  3730. }
  3731. // build the inference graph
  3732. ctx->debug_print_tensors.clear();
  3733. ggml_backend_sched_reset(ctx->sched.get());
  3734. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3735. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3736. // set inputs
  3737. const auto & model = ctx->model;
  3738. const auto & hparams = model.hparams;
  3739. const int image_size_width = imgs.entries[0]->nx;
  3740. const int image_size_height = imgs.entries[0]->ny;
  3741. const int patch_size = hparams.patch_size;
  3742. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3743. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3744. const int pos_w = image_size_width / patch_size;
  3745. const int pos_h = image_size_height / patch_size;
  3746. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3747. auto get_inp_tensor = [&gf](const char * name) {
  3748. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3749. if (inp == nullptr) {
  3750. GGML_ABORT("Failed to get tensor %s", name);
  3751. }
  3752. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3753. GGML_ABORT("Tensor %s is not an input tensor", name);
  3754. }
  3755. return inp;
  3756. };
  3757. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3758. ggml_tensor * cur = get_inp_tensor(name);
  3759. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3760. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3761. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3762. };
  3763. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3764. ggml_tensor * cur = get_inp_tensor(name);
  3765. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3766. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3767. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3768. };
  3769. // set input pixel values
  3770. if (!imgs.is_audio) {
  3771. size_t nelem = 0;
  3772. for (const auto & img : imgs.entries) {
  3773. nelem += img->nx * img->ny * 3;
  3774. }
  3775. std::vector<float> inp_raw(nelem);
  3776. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3777. //
  3778. // ┌──W──┐
  3779. // │ H │ channel = R
  3780. // ├─────┤ │
  3781. // │ H │ channel = G
  3782. // ├─────┤ │
  3783. // │ H │ channel = B
  3784. // └─────┘ │
  3785. // ──────┘ x B
  3786. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3787. const int nx = imgs.entries[i]->nx;
  3788. const int ny = imgs.entries[i]->ny;
  3789. const int n = nx * ny;
  3790. for (int b = 0; b < batch_size; b++) {
  3791. float * batch_entry = inp_raw.data() + b * (3*n);
  3792. for (int y = 0; y < ny; y++) {
  3793. for (int x = 0; x < nx; x++) {
  3794. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3795. size_t base_dst = y * nx + x; // idx of the first channel
  3796. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3797. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3798. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3799. }
  3800. }
  3801. }
  3802. }
  3803. set_input_f32("inp_raw", inp_raw);
  3804. } else {
  3805. // audio input
  3806. GGML_ASSERT(imgs.entries.size() == 1);
  3807. const auto & mel_inp = imgs.entries[0];
  3808. const int n_step = mel_inp->nx;
  3809. const int n_mel = mel_inp->ny;
  3810. std::vector<float> inp_raw(n_step * n_mel);
  3811. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3812. set_input_f32("inp_raw", inp_raw);
  3813. }
  3814. // set input per projector
  3815. switch (ctx->model.proj_type) {
  3816. case PROJECTOR_TYPE_MINICPMV:
  3817. {
  3818. // inspired from siglip:
  3819. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3820. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3821. std::vector<int32_t> positions(pos_h * pos_w);
  3822. int bucket_coords_h[1024];
  3823. int bucket_coords_w[1024];
  3824. for (int i = 0; i < pos_h; i++){
  3825. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3826. }
  3827. for (int i = 0; i < pos_w; i++){
  3828. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3829. }
  3830. for (int i = 0, id = 0; i < pos_h; i++){
  3831. for (int j = 0; j < pos_w; j++){
  3832. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3833. }
  3834. }
  3835. set_input_i32("positions", positions);
  3836. // inspired from resampler of Qwen-VL:
  3837. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3838. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3839. int embed_dim = clip_n_mmproj_embd(ctx);
  3840. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3841. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3842. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3843. for(int i = 0; i < pos_w * pos_h; ++i){
  3844. for(int j = 0; j < embed_dim; ++j){
  3845. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3846. }
  3847. }
  3848. set_input_f32("pos_embed", pos_embed);
  3849. } break;
  3850. case PROJECTOR_TYPE_QWEN2VL:
  3851. case PROJECTOR_TYPE_QWEN3VL:
  3852. {
  3853. const int merge_ratio = 2;
  3854. const int pw = image_size_width / patch_size;
  3855. const int ph = image_size_height / patch_size;
  3856. std::vector<int> positions(n_pos * 4);
  3857. int ptr = 0;
  3858. for (int y = 0; y < ph; y += merge_ratio) {
  3859. for (int x = 0; x < pw; x += merge_ratio) {
  3860. for (int dy = 0; dy < 2; dy++) {
  3861. for (int dx = 0; dx < 2; dx++) {
  3862. positions[ ptr] = y + dy;
  3863. positions[ num_patches + ptr] = x + dx;
  3864. positions[2 * num_patches + ptr] = y + dy;
  3865. positions[3 * num_patches + ptr] = x + dx;
  3866. ptr++;
  3867. }
  3868. }
  3869. }
  3870. }
  3871. set_input_i32("positions", positions);
  3872. } break;
  3873. case PROJECTOR_TYPE_QWEN25VL:
  3874. {
  3875. // pw * ph = number of tokens output by ViT after apply patch merger
  3876. // ipw * ipw = number of vision token been processed inside ViT
  3877. const int merge_ratio = 2;
  3878. const int pw = image_size_width / patch_size / merge_ratio;
  3879. const int ph = image_size_height / patch_size / merge_ratio;
  3880. const int ipw = image_size_width / patch_size;
  3881. const int iph = image_size_height / patch_size;
  3882. std::vector<int> idx (ph * pw);
  3883. std::vector<int> inv_idx(ph * pw);
  3884. if (use_window_attn) {
  3885. const int attn_window_size = 112;
  3886. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3887. int dst = 0;
  3888. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3889. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3890. int mask_row = 0;
  3891. for (int y = 0; y < ph; y += grid_window) {
  3892. for (int x = 0; x < pw; x += grid_window) {
  3893. const int win_h = std::min(grid_window, ph - y);
  3894. const int win_w = std::min(grid_window, pw - x);
  3895. const int dst_0 = dst;
  3896. // group all tokens belong to the same window togather (to a continue range)
  3897. for (int dy = 0; dy < win_h; dy++) {
  3898. for (int dx = 0; dx < win_w; dx++) {
  3899. const int src = (y + dy) * pw + (x + dx);
  3900. GGML_ASSERT(src < (int)idx.size());
  3901. GGML_ASSERT(dst < (int)inv_idx.size());
  3902. idx [src] = dst;
  3903. inv_idx[dst] = src;
  3904. dst++;
  3905. }
  3906. }
  3907. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  3908. int row_offset = mask_row * (ipw * iph);
  3909. std::fill(
  3910. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  3911. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  3912. 0.0);
  3913. mask_row++;
  3914. }
  3915. }
  3916. }
  3917. set_input_i32("window_idx", idx);
  3918. set_input_i32("inv_window_idx", inv_idx);
  3919. set_input_f32("window_mask", mask);
  3920. } else {
  3921. for (int i = 0; i < ph * pw; i++) {
  3922. idx[i] = i;
  3923. }
  3924. }
  3925. const int mpow = merge_ratio * merge_ratio;
  3926. std::vector<int> positions(n_pos * 4);
  3927. int ptr = 0;
  3928. for (int y = 0; y < iph; y += merge_ratio) {
  3929. for (int x = 0; x < ipw; x += merge_ratio) {
  3930. for (int dy = 0; dy < 2; dy++) {
  3931. for (int dx = 0; dx < 2; dx++) {
  3932. auto remap = idx[ptr / mpow];
  3933. remap = (remap * mpow) + (ptr % mpow);
  3934. positions[ remap] = y + dy;
  3935. positions[ num_patches + remap] = x + dx;
  3936. positions[2 * num_patches + remap] = y + dy;
  3937. positions[3 * num_patches + remap] = x + dx;
  3938. ptr++;
  3939. }
  3940. }
  3941. }
  3942. }
  3943. set_input_i32("positions", positions);
  3944. } break;
  3945. case PROJECTOR_TYPE_PIXTRAL:
  3946. case PROJECTOR_TYPE_KIMIVL:
  3947. case PROJECTOR_TYPE_LIGHTONOCR:
  3948. {
  3949. // set the 2D positions
  3950. int n_patches_per_col = image_size_width / patch_size;
  3951. std::vector<int> pos_data(n_pos);
  3952. // dimension H
  3953. for (int i = 0; i < n_pos; i++) {
  3954. pos_data[i] = i / n_patches_per_col;
  3955. }
  3956. set_input_i32("pos_h", pos_data);
  3957. // dimension W
  3958. for (int i = 0; i < n_pos; i++) {
  3959. pos_data[i] = i % n_patches_per_col;
  3960. }
  3961. set_input_i32("pos_w", pos_data);
  3962. } break;
  3963. case PROJECTOR_TYPE_GLM_EDGE:
  3964. {
  3965. // llava and other models
  3966. std::vector<int32_t> positions(n_pos);
  3967. for (int i = 0; i < n_pos; i++) {
  3968. positions[i] = i;
  3969. }
  3970. set_input_i32("positions", positions);
  3971. } break;
  3972. case PROJECTOR_TYPE_MLP:
  3973. case PROJECTOR_TYPE_MLP_NORM:
  3974. case PROJECTOR_TYPE_LDP:
  3975. case PROJECTOR_TYPE_LDPV2:
  3976. {
  3977. // llava and other models
  3978. std::vector<int32_t> positions(n_pos);
  3979. for (int i = 0; i < n_pos; i++) {
  3980. positions[i] = i;
  3981. }
  3982. set_input_i32("positions", positions);
  3983. // The patches vector is used to get rows to index into the embeds with;
  3984. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3985. // when retrieving the rows.
  3986. int patch_offset = model.class_embedding ? 1 : 0;
  3987. std::vector<int32_t> patches(num_patches);
  3988. for (int i = 0; i < num_patches; i++) {
  3989. patches[i] = i + patch_offset;
  3990. }
  3991. set_input_i32("patches", patches);
  3992. } break;
  3993. case PROJECTOR_TYPE_GEMMA3:
  3994. case PROJECTOR_TYPE_IDEFICS3:
  3995. case PROJECTOR_TYPE_INTERNVL:
  3996. case PROJECTOR_TYPE_QWEN2A:
  3997. case PROJECTOR_TYPE_ULTRAVOX:
  3998. case PROJECTOR_TYPE_LFM2:
  3999. case PROJECTOR_TYPE_VOXTRAL:
  4000. case PROJECTOR_TYPE_COGVLM:
  4001. {
  4002. // do nothing
  4003. } break;
  4004. case PROJECTOR_TYPE_LLAMA4:
  4005. {
  4006. // set the 2D positions
  4007. int n_patches_per_col = image_size_width / patch_size;
  4008. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  4009. // last pos is always kept 0, it's for CLS
  4010. // dimension H
  4011. for (int i = 0; i < num_patches; i++) {
  4012. pos_data[i] = (i / n_patches_per_col) + 1;
  4013. }
  4014. set_input_i32("pos_h", pos_data);
  4015. // dimension W
  4016. for (int i = 0; i < num_patches; i++) {
  4017. pos_data[i] = (i % n_patches_per_col) + 1;
  4018. }
  4019. set_input_i32("pos_w", pos_data);
  4020. } break;
  4021. default:
  4022. GGML_ABORT("Unknown projector type");
  4023. }
  4024. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  4025. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  4026. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  4027. if (reg) {
  4028. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  4029. if (ggml_backend_set_n_threads_fn) {
  4030. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  4031. }
  4032. }
  4033. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  4034. if (status != GGML_STATUS_SUCCESS) {
  4035. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  4036. return false;
  4037. }
  4038. // print debug nodes
  4039. if (ctx->debug_graph) {
  4040. LOG_INF("\n\n---\n\n");
  4041. LOG_INF("\n\nDebug graph:\n\n");
  4042. for (ggml_tensor * t : ctx->debug_print_tensors) {
  4043. std::vector<uint8_t> data(ggml_nbytes(t));
  4044. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  4045. print_tensor_shape(t);
  4046. print_tensor_data(t, data.data(), 3);
  4047. }
  4048. }
  4049. // the last node is the embedding tensor
  4050. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  4051. // sanity check (only support batch size of 1 for now)
  4052. const int n_tokens_out = embeddings->ne[1];
  4053. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  4054. if (n_tokens_out != expected_n_tokens_out) {
  4055. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  4056. GGML_ABORT("Invalid number of output tokens");
  4057. }
  4058. // copy the embeddings to the location passed by the user
  4059. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  4060. return true;
  4061. }
  4062. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  4063. switch (ctx->model.proj_type) {
  4064. case PROJECTOR_TYPE_LDP:
  4065. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  4066. case PROJECTOR_TYPE_LDPV2:
  4067. return ctx->model.mm_model_peg_0_b->ne[0];
  4068. case PROJECTOR_TYPE_MLP:
  4069. case PROJECTOR_TYPE_PIXTRAL:
  4070. case PROJECTOR_TYPE_LIGHTONOCR:
  4071. return ctx->model.mm_2_w->ne[1];
  4072. case PROJECTOR_TYPE_MLP_NORM:
  4073. return ctx->model.mm_3_b->ne[0];
  4074. case PROJECTOR_TYPE_MINICPMV:
  4075. return ctx->model.mm_model_proj->ne[0];
  4076. case PROJECTOR_TYPE_GLM_EDGE:
  4077. return ctx->model.mm_model_mlp_3_w->ne[1];
  4078. case PROJECTOR_TYPE_QWEN2VL:
  4079. case PROJECTOR_TYPE_QWEN25VL:
  4080. return ctx->model.mm_1_b->ne[0];
  4081. case PROJECTOR_TYPE_QWEN3VL:
  4082. // main path + deepstack paths
  4083. return ctx->model.mm_1_b->ne[0] * (1 + ctx->model.n_deepstack_layers);
  4084. case PROJECTOR_TYPE_GEMMA3:
  4085. return ctx->model.mm_input_proj_w->ne[0];
  4086. case PROJECTOR_TYPE_IDEFICS3:
  4087. return ctx->model.projection->ne[1];
  4088. case PROJECTOR_TYPE_ULTRAVOX:
  4089. case PROJECTOR_TYPE_VOXTRAL:
  4090. return ctx->model.mm_2_w->ne[1];
  4091. case PROJECTOR_TYPE_INTERNVL:
  4092. return ctx->model.mm_3_w->ne[1];
  4093. case PROJECTOR_TYPE_LLAMA4:
  4094. return ctx->model.mm_model_proj->ne[1];
  4095. case PROJECTOR_TYPE_QWEN2A:
  4096. return ctx->model.mm_fc_w->ne[1];
  4097. case PROJECTOR_TYPE_LFM2:
  4098. case PROJECTOR_TYPE_KIMIVL:
  4099. return ctx->model.mm_2_w->ne[1];
  4100. case PROJECTOR_TYPE_COGVLM:
  4101. return ctx->model.mm_4h_to_h_w->ne[1];
  4102. default:
  4103. GGML_ABORT("Unknown projector type");
  4104. }
  4105. }
  4106. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  4107. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  4108. return ctx->model.hparams.minicpmv_version;
  4109. }
  4110. return 0;
  4111. }
  4112. bool clip_is_glm(const struct clip_ctx * ctx) {
  4113. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  4114. }
  4115. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  4116. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  4117. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  4118. || ctx->proj_type() == PROJECTOR_TYPE_QWEN3VL;
  4119. }
  4120. bool clip_is_llava(const struct clip_ctx * ctx) {
  4121. return ctx->model.hparams.has_llava_projector;
  4122. }
  4123. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  4124. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  4125. }
  4126. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  4127. return ctx->model.modality == CLIP_MODALITY_VISION;
  4128. }
  4129. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  4130. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  4131. }
  4132. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  4133. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  4134. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  4135. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  4136. }
  4137. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  4138. clip_image_f32 clip_img;
  4139. clip_img.buf.resize(h * w * 3);
  4140. for (int i = 0; i < h*w*3; i++)
  4141. {
  4142. clip_img.buf[i] = img[i];
  4143. }
  4144. clip_img.nx = w;
  4145. clip_img.ny = h;
  4146. clip_image_encode(ctx, n_threads, &clip_img, vec);
  4147. return true;
  4148. }
  4149. //
  4150. // API used internally with mtmd
  4151. //
  4152. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  4153. return ctx->proj_type();
  4154. }
  4155. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  4156. clip_image_f32 * audio = new clip_image_f32;
  4157. audio->nx = n_frames;
  4158. audio->ny = n_mel;
  4159. audio->buf.resize(n_frames * n_mel);
  4160. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  4161. batch->entries.push_back(clip_image_f32_ptr(audio));
  4162. batch->is_audio = true;
  4163. }