ggml.h 96 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. #ifdef GGML_MULTIPLATFORM
  188. # if defined(_WIN32)
  189. # define GGML_CALL
  190. # else
  191. # define GGML_CALL __attribute__((__ms_abi__))
  192. # endif
  193. #else
  194. # define GGML_CALL
  195. #endif
  196. // TODO: support for clang
  197. #ifdef __GNUC__
  198. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  199. #elif defined(_MSC_VER)
  200. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  201. #else
  202. # define GGML_DEPRECATED(func, hint) func
  203. #endif
  204. #ifndef __GNUC__
  205. # define GGML_ATTRIBUTE_FORMAT(...)
  206. #elif defined(__MINGW32__)
  207. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  208. #else
  209. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  210. #endif
  211. #include <stdbool.h>
  212. #include <stddef.h>
  213. #include <stdint.h>
  214. #include <stdio.h>
  215. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  216. #define GGML_FILE_VERSION 2
  217. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  218. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  219. #define GGML_MAX_DIMS 4
  220. #define GGML_MAX_PARAMS 2048
  221. #define GGML_MAX_CONTEXTS 64
  222. #define GGML_MAX_SRC 10
  223. #ifndef GGML_MAX_NAME
  224. #define GGML_MAX_NAME 64
  225. #define GGML_MAX_N_THREADS 512
  226. #endif
  227. #define GGML_MAX_OP_PARAMS 64
  228. #define GGML_DEFAULT_N_THREADS 4
  229. #define GGML_DEFAULT_GRAPH_SIZE 2048
  230. #if UINTPTR_MAX == 0xFFFFFFFF
  231. #define GGML_MEM_ALIGN 4
  232. #else
  233. #define GGML_MEM_ALIGN 16
  234. #endif
  235. #define GGML_EXIT_SUCCESS 0
  236. #define GGML_EXIT_ABORTED 1
  237. #define GGML_ROPE_TYPE_NEOX 2
  238. #define GGUF_MAGIC "GGUF"
  239. #define GGUF_VERSION 3
  240. #define GGUF_DEFAULT_ALIGNMENT 32
  241. #define GGML_UNUSED(x) (void)(x)
  242. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  243. #ifndef NDEBUG
  244. #define GGML_UNREACHABLE() do { fprintf(stderr, "statement should be unreachable\n"); abort(); } while(0)
  245. #elif defined(__GNUC__)
  246. #define GGML_UNREACHABLE() __builtin_unreachable()
  247. #elif defined(_MSC_VER)
  248. #define GGML_UNREACHABLE() __assume(0)
  249. #else
  250. #define GGML_UNREACHABLE() ((void) 0)
  251. #endif
  252. #ifdef __cplusplus
  253. #define GGML_NORETURN [[noreturn]]
  254. #elif defined(_MSC_VER)
  255. #define GGML_NORETURN __declspec(noreturn)
  256. #else
  257. #define GGML_NORETURN _Noreturn
  258. #endif
  259. #define GGML_ABORT(...) ggml_abort(__FILE__, __LINE__, __VA_ARGS__)
  260. #define GGML_ASSERT(x) if (!(x)) GGML_ABORT("GGML_ASSERT(%s) failed", #x)
  261. // used to copy the number of elements and stride in bytes of tensors into local variables.
  262. // main purpose is to reduce code duplication and improve readability.
  263. //
  264. // example:
  265. //
  266. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  267. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  268. //
  269. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  270. const type prefix##0 = (pointer)->array[0]; \
  271. GGML_UNUSED(prefix##0);
  272. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  273. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  274. const type prefix##1 = (pointer)->array[1]; \
  275. GGML_UNUSED(prefix##1);
  276. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  277. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  278. const type prefix##2 = (pointer)->array[2]; \
  279. GGML_UNUSED(prefix##2);
  280. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  281. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  282. const type prefix##3 = (pointer)->array[3]; \
  283. GGML_UNUSED(prefix##3);
  284. #define GGML_TENSOR_UNARY_OP_LOCALS \
  285. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  286. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  287. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  288. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  289. #define GGML_TENSOR_BINARY_OP_LOCALS \
  290. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  291. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  292. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  293. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  294. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  295. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  296. #define GGML_TENSOR_BINARY_OP_LOCALS01 \
  297. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  298. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  299. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  300. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  301. #ifdef __cplusplus
  302. extern "C" {
  303. #endif
  304. GGML_NORETURN GGML_ATTRIBUTE_FORMAT(3, 4)
  305. GGML_API void ggml_abort(const char * file, int line, const char * fmt, ...);
  306. enum ggml_status {
  307. GGML_STATUS_ALLOC_FAILED = -2,
  308. GGML_STATUS_FAILED = -1,
  309. GGML_STATUS_SUCCESS = 0,
  310. GGML_STATUS_ABORTED = 1,
  311. };
  312. // get ggml_status name string
  313. GGML_API GGML_CALL const char * ggml_status_to_string(enum ggml_status status);
  314. // ieee 754-2008 half-precision float16
  315. // todo: make this not an integral type
  316. typedef uint16_t ggml_fp16_t;
  317. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t);
  318. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float);
  319. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t *, float *, int64_t);
  320. GGML_API void ggml_fp32_to_fp16_row(const float *, ggml_fp16_t *, int64_t);
  321. // google brain half-precision bfloat16
  322. typedef struct { uint16_t bits; } ggml_bf16_t;
  323. GGML_API ggml_bf16_t ggml_fp32_to_bf16(float);
  324. GGML_API float ggml_bf16_to_fp32(ggml_bf16_t); // consider just doing << 16
  325. GGML_API void ggml_bf16_to_fp32_row(const ggml_bf16_t *, float *, int64_t);
  326. GGML_API void ggml_fp32_to_bf16_row_ref(const float *, ggml_bf16_t *, int64_t);
  327. GGML_API void ggml_fp32_to_bf16_row(const float *, ggml_bf16_t *, int64_t);
  328. struct ggml_object;
  329. struct ggml_context;
  330. struct ggml_cgraph;
  331. // NOTE: always add types at the end of the enum to keep backward compatibility
  332. enum ggml_type {
  333. GGML_TYPE_F32 = 0,
  334. GGML_TYPE_F16 = 1,
  335. GGML_TYPE_Q4_0 = 2,
  336. GGML_TYPE_Q4_1 = 3,
  337. // GGML_TYPE_Q4_2 = 4, support has been removed
  338. // GGML_TYPE_Q4_3 = 5, support has been removed
  339. GGML_TYPE_Q5_0 = 6,
  340. GGML_TYPE_Q5_1 = 7,
  341. GGML_TYPE_Q8_0 = 8,
  342. GGML_TYPE_Q8_1 = 9,
  343. GGML_TYPE_Q2_K = 10,
  344. GGML_TYPE_Q3_K = 11,
  345. GGML_TYPE_Q4_K = 12,
  346. GGML_TYPE_Q5_K = 13,
  347. GGML_TYPE_Q6_K = 14,
  348. GGML_TYPE_Q8_K = 15,
  349. GGML_TYPE_IQ2_XXS = 16,
  350. GGML_TYPE_IQ2_XS = 17,
  351. GGML_TYPE_IQ3_XXS = 18,
  352. GGML_TYPE_IQ1_S = 19,
  353. GGML_TYPE_IQ4_NL = 20,
  354. GGML_TYPE_IQ3_S = 21,
  355. GGML_TYPE_IQ2_S = 22,
  356. GGML_TYPE_IQ4_XS = 23,
  357. GGML_TYPE_I8 = 24,
  358. GGML_TYPE_I16 = 25,
  359. GGML_TYPE_I32 = 26,
  360. GGML_TYPE_I64 = 27,
  361. GGML_TYPE_F64 = 28,
  362. GGML_TYPE_IQ1_M = 29,
  363. GGML_TYPE_BF16 = 30,
  364. GGML_TYPE_Q4_0_4_4 = 31,
  365. GGML_TYPE_Q4_0_4_8 = 32,
  366. GGML_TYPE_Q4_0_8_8 = 33,
  367. GGML_TYPE_TQ1_0 = 34,
  368. GGML_TYPE_TQ2_0 = 35,
  369. GGML_TYPE_COUNT,
  370. };
  371. // precision
  372. enum ggml_prec {
  373. GGML_PREC_DEFAULT,
  374. GGML_PREC_F32,
  375. };
  376. enum ggml_backend_type {
  377. GGML_BACKEND_TYPE_CPU = 0,
  378. GGML_BACKEND_TYPE_GPU = 10,
  379. GGML_BACKEND_TYPE_GPU_SPLIT = 20,
  380. };
  381. // model file types
  382. enum ggml_ftype {
  383. GGML_FTYPE_UNKNOWN = -1,
  384. GGML_FTYPE_ALL_F32 = 0,
  385. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  386. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  387. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  388. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  389. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  390. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  391. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  392. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  393. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  394. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  395. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  396. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  397. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  398. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  399. GGML_FTYPE_MOSTLY_IQ3_XXS = 17, // except 1d tensors
  400. GGML_FTYPE_MOSTLY_IQ1_S = 18, // except 1d tensors
  401. GGML_FTYPE_MOSTLY_IQ4_NL = 19, // except 1d tensors
  402. GGML_FTYPE_MOSTLY_IQ3_S = 20, // except 1d tensors
  403. GGML_FTYPE_MOSTLY_IQ2_S = 21, // except 1d tensors
  404. GGML_FTYPE_MOSTLY_IQ4_XS = 22, // except 1d tensors
  405. GGML_FTYPE_MOSTLY_IQ1_M = 23, // except 1d tensors
  406. GGML_FTYPE_MOSTLY_BF16 = 24, // except 1d tensors
  407. GGML_FTYPE_MOSTLY_Q4_0_4_4 = 25, // except 1d tensors
  408. GGML_FTYPE_MOSTLY_Q4_0_4_8 = 26, // except 1d tensors
  409. GGML_FTYPE_MOSTLY_Q4_0_8_8 = 27, // except 1d tensors
  410. };
  411. // available tensor operations:
  412. enum ggml_op {
  413. GGML_OP_NONE = 0,
  414. GGML_OP_DUP,
  415. GGML_OP_ADD,
  416. GGML_OP_ADD1,
  417. GGML_OP_ACC,
  418. GGML_OP_SUB,
  419. GGML_OP_MUL,
  420. GGML_OP_DIV,
  421. GGML_OP_SQR,
  422. GGML_OP_SQRT,
  423. GGML_OP_LOG,
  424. GGML_OP_SIN,
  425. GGML_OP_COS,
  426. GGML_OP_SUM,
  427. GGML_OP_SUM_ROWS,
  428. GGML_OP_MEAN,
  429. GGML_OP_ARGMAX,
  430. GGML_OP_REPEAT,
  431. GGML_OP_REPEAT_BACK,
  432. GGML_OP_CONCAT,
  433. GGML_OP_SILU_BACK,
  434. GGML_OP_NORM, // normalize
  435. GGML_OP_RMS_NORM,
  436. GGML_OP_RMS_NORM_BACK,
  437. GGML_OP_GROUP_NORM,
  438. GGML_OP_MUL_MAT,
  439. GGML_OP_MUL_MAT_ID,
  440. GGML_OP_OUT_PROD,
  441. GGML_OP_SCALE,
  442. GGML_OP_SET,
  443. GGML_OP_CPY,
  444. GGML_OP_CONT,
  445. GGML_OP_RESHAPE,
  446. GGML_OP_VIEW,
  447. GGML_OP_PERMUTE,
  448. GGML_OP_TRANSPOSE,
  449. GGML_OP_GET_ROWS,
  450. GGML_OP_GET_ROWS_BACK,
  451. GGML_OP_DIAG,
  452. GGML_OP_DIAG_MASK_INF,
  453. GGML_OP_DIAG_MASK_ZERO,
  454. GGML_OP_SOFT_MAX,
  455. GGML_OP_SOFT_MAX_BACK,
  456. GGML_OP_ROPE,
  457. GGML_OP_ROPE_BACK,
  458. GGML_OP_CLAMP,
  459. GGML_OP_CONV_TRANSPOSE_1D,
  460. GGML_OP_IM2COL,
  461. GGML_OP_IM2COL_BACK,
  462. GGML_OP_CONV_TRANSPOSE_2D,
  463. GGML_OP_POOL_1D,
  464. GGML_OP_POOL_2D,
  465. GGML_OP_POOL_2D_BACK,
  466. GGML_OP_UPSCALE, // nearest interpolate
  467. GGML_OP_PAD,
  468. GGML_OP_ARANGE,
  469. GGML_OP_TIMESTEP_EMBEDDING,
  470. GGML_OP_ARGSORT,
  471. GGML_OP_LEAKY_RELU,
  472. GGML_OP_FLASH_ATTN_EXT,
  473. GGML_OP_FLASH_ATTN_BACK,
  474. GGML_OP_SSM_CONV,
  475. GGML_OP_SSM_SCAN,
  476. GGML_OP_WIN_PART,
  477. GGML_OP_WIN_UNPART,
  478. GGML_OP_GET_REL_POS,
  479. GGML_OP_ADD_REL_POS,
  480. GGML_OP_RWKV_WKV,
  481. GGML_OP_UNARY,
  482. GGML_OP_MAP_UNARY,
  483. GGML_OP_MAP_BINARY,
  484. GGML_OP_MAP_CUSTOM1_F32,
  485. GGML_OP_MAP_CUSTOM2_F32,
  486. GGML_OP_MAP_CUSTOM3_F32,
  487. GGML_OP_MAP_CUSTOM1,
  488. GGML_OP_MAP_CUSTOM2,
  489. GGML_OP_MAP_CUSTOM3,
  490. GGML_OP_CROSS_ENTROPY_LOSS,
  491. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  492. GGML_OP_OPT_STEP_ADAMW,
  493. GGML_OP_COUNT,
  494. };
  495. enum ggml_unary_op {
  496. GGML_UNARY_OP_ABS,
  497. GGML_UNARY_OP_SGN,
  498. GGML_UNARY_OP_NEG,
  499. GGML_UNARY_OP_STEP,
  500. GGML_UNARY_OP_TANH,
  501. GGML_UNARY_OP_ELU,
  502. GGML_UNARY_OP_RELU,
  503. GGML_UNARY_OP_SIGMOID,
  504. GGML_UNARY_OP_GELU,
  505. GGML_UNARY_OP_GELU_QUICK,
  506. GGML_UNARY_OP_SILU,
  507. GGML_UNARY_OP_HARDSWISH,
  508. GGML_UNARY_OP_HARDSIGMOID,
  509. GGML_UNARY_OP_EXP,
  510. GGML_UNARY_OP_COUNT,
  511. };
  512. enum ggml_object_type {
  513. GGML_OBJECT_TYPE_TENSOR,
  514. GGML_OBJECT_TYPE_GRAPH,
  515. GGML_OBJECT_TYPE_WORK_BUFFER
  516. };
  517. enum ggml_log_level {
  518. GGML_LOG_LEVEL_NONE = 0,
  519. GGML_LOG_LEVEL_INFO = 1,
  520. GGML_LOG_LEVEL_WARN = 2,
  521. GGML_LOG_LEVEL_ERROR = 3,
  522. GGML_LOG_LEVEL_DEBUG = 4,
  523. GGML_LOG_LEVEL_CONT = 5, // continue previous log
  524. };
  525. // this tensor...
  526. enum ggml_tensor_flag {
  527. GGML_TENSOR_FLAG_INPUT = 1, // ...is an input for the GGML compute graph
  528. GGML_TENSOR_FLAG_OUTPUT = 2, // ...is an output for the GGML compute graph
  529. GGML_TENSOR_FLAG_PARAM = 4, // ...contains trainable parameters
  530. GGML_TENSOR_FLAG_LOSS = 8, // ...defines loss for numerical optimization (multiple loss tensors add up)
  531. };
  532. // n-dimensional tensor
  533. struct ggml_tensor {
  534. enum ggml_type type;
  535. GGML_DEPRECATED(enum ggml_backend_type backend, "use the buffer type to find the storage location of the tensor");
  536. struct ggml_backend_buffer * buffer;
  537. int64_t ne[GGML_MAX_DIMS]; // number of elements
  538. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  539. // nb[0] = ggml_type_size(type)
  540. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  541. // nb[i] = nb[i-1] * ne[i-1]
  542. // compute data
  543. enum ggml_op op;
  544. // op params - allocated as int32_t for alignment
  545. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  546. int32_t flags;
  547. struct ggml_tensor * grad;
  548. struct ggml_tensor * src[GGML_MAX_SRC];
  549. // source tensor and offset for views
  550. struct ggml_tensor * view_src;
  551. size_t view_offs;
  552. void * data;
  553. char name[GGML_MAX_NAME];
  554. void * extra; // extra things e.g. for ggml-cuda.cu
  555. // char padding[4];
  556. };
  557. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  558. // Abort callback
  559. // If not NULL, called before ggml computation
  560. // If it returns true, the computation is aborted
  561. typedef bool (*ggml_abort_callback)(void * data);
  562. // Scheduling priorities
  563. enum ggml_sched_priority {
  564. GGML_SCHED_PRIO_NORMAL,
  565. GGML_SCHED_PRIO_MEDIUM,
  566. GGML_SCHED_PRIO_HIGH,
  567. GGML_SCHED_PRIO_REALTIME
  568. };
  569. // Threadpool params
  570. // Use ggml_threadpool_params_default() or ggml_threadpool_params_init() to populate the defaults
  571. struct ggml_threadpool_params {
  572. bool cpumask[GGML_MAX_N_THREADS]; // mask of cpu cores (all-zeros means use default affinity settings)
  573. int n_threads; // number of threads
  574. enum ggml_sched_priority prio; // thread priority
  575. uint32_t poll; // polling level (0 - no polling, 100 - aggressive polling)
  576. bool strict_cpu; // strict cpu placement
  577. bool paused; // start in paused state
  578. };
  579. struct ggml_threadpool; // forward declaration, see ggml.c
  580. typedef struct ggml_threadpool * ggml_threadpool_t;
  581. // the compute plan that needs to be prepared for ggml_graph_compute()
  582. // since https://github.com/ggerganov/ggml/issues/287
  583. struct ggml_cplan {
  584. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  585. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  586. int n_threads;
  587. struct ggml_threadpool * threadpool;
  588. // abort ggml_graph_compute when true
  589. ggml_abort_callback abort_callback;
  590. void * abort_callback_data;
  591. };
  592. // scratch buffer
  593. struct ggml_scratch {
  594. size_t offs;
  595. size_t size;
  596. void * data;
  597. };
  598. struct ggml_init_params {
  599. // memory pool
  600. size_t mem_size; // bytes
  601. void * mem_buffer; // if NULL, memory will be allocated internally
  602. bool no_alloc; // don't allocate memory for the tensor data
  603. };
  604. // numa strategies
  605. enum ggml_numa_strategy {
  606. GGML_NUMA_STRATEGY_DISABLED = 0,
  607. GGML_NUMA_STRATEGY_DISTRIBUTE = 1,
  608. GGML_NUMA_STRATEGY_ISOLATE = 2,
  609. GGML_NUMA_STRATEGY_NUMACTL = 3,
  610. GGML_NUMA_STRATEGY_MIRROR = 4,
  611. GGML_NUMA_STRATEGY_COUNT
  612. };
  613. //
  614. // GUID
  615. //
  616. // GUID types
  617. typedef uint8_t ggml_guid[16];
  618. typedef ggml_guid * ggml_guid_t;
  619. GGML_API bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b);
  620. // misc
  621. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  622. GGML_API int64_t ggml_time_ms(void);
  623. GGML_API int64_t ggml_time_us(void);
  624. GGML_API int64_t ggml_cycles(void);
  625. GGML_API int64_t ggml_cycles_per_ms(void);
  626. // accepts a UTF-8 path, even on Windows
  627. GGML_API FILE * ggml_fopen(const char * fname, const char * mode);
  628. GGML_API void ggml_numa_init(enum ggml_numa_strategy numa); // call once for better performance on NUMA systems
  629. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  630. GGML_API void ggml_print_object (const struct ggml_object * obj);
  631. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  632. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  633. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  634. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  635. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  636. GGML_API GGML_CALL int64_t ggml_blck_size(enum ggml_type type);
  637. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  638. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  639. GGML_DEPRECATED(
  640. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  641. "use ggml_row_size() instead");
  642. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  643. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  644. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  645. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  646. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  647. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  648. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  649. // TODO: temporary until model loading of ggml examples is refactored
  650. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  651. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  652. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  653. GGML_API GGML_CALL bool ggml_is_empty (const struct ggml_tensor * tensor);
  654. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  655. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  656. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  657. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  658. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  659. GGML_API GGML_CALL bool ggml_is_contiguous (const struct ggml_tensor * tensor);
  660. GGML_API GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor); // same as ggml_is_contiguous()
  661. GGML_API GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor); // contiguous for dims >= 1
  662. GGML_API GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor); // contiguous for dims >= 2
  663. GGML_API bool ggml_are_same_shape (const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  664. GGML_API bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  665. GGML_API bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  666. // use this to compute the memory overhead of a tensor
  667. GGML_API size_t ggml_tensor_overhead(void);
  668. GGML_API bool ggml_validate_row_data(enum ggml_type type, const void * data, size_t nbytes);
  669. // main
  670. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  671. GGML_API void ggml_free(struct ggml_context * ctx);
  672. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  673. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  674. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  675. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  676. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  677. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  678. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  679. GGML_API struct ggml_tensor * ggml_new_tensor(
  680. struct ggml_context * ctx,
  681. enum ggml_type type,
  682. int n_dims,
  683. const int64_t *ne);
  684. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  685. struct ggml_context * ctx,
  686. enum ggml_type type,
  687. int64_t ne0);
  688. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  689. struct ggml_context * ctx,
  690. enum ggml_type type,
  691. int64_t ne0,
  692. int64_t ne1);
  693. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  694. struct ggml_context * ctx,
  695. enum ggml_type type,
  696. int64_t ne0,
  697. int64_t ne1,
  698. int64_t ne2);
  699. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  700. struct ggml_context * ctx,
  701. enum ggml_type type,
  702. int64_t ne0,
  703. int64_t ne1,
  704. int64_t ne2,
  705. int64_t ne3);
  706. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  707. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  708. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  709. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  710. // Context tensor enumeration and lookup
  711. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  712. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  713. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  714. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  715. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  716. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  717. // Converts a flat index into coordinates
  718. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  719. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  720. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  721. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  722. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  723. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  724. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  725. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  726. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  727. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  728. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  729. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  730. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  731. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  732. GGML_ATTRIBUTE_FORMAT(2, 3)
  733. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  734. //
  735. // operations on tensors with backpropagation
  736. //
  737. GGML_API struct ggml_tensor * ggml_dup(
  738. struct ggml_context * ctx,
  739. struct ggml_tensor * a);
  740. // in-place, returns view(a)
  741. GGML_API struct ggml_tensor * ggml_dup_inplace(
  742. struct ggml_context * ctx,
  743. struct ggml_tensor * a);
  744. GGML_API struct ggml_tensor * ggml_add(
  745. struct ggml_context * ctx,
  746. struct ggml_tensor * a,
  747. struct ggml_tensor * b);
  748. GGML_API struct ggml_tensor * ggml_add_inplace(
  749. struct ggml_context * ctx,
  750. struct ggml_tensor * a,
  751. struct ggml_tensor * b);
  752. GGML_API struct ggml_tensor * ggml_add_cast(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a,
  755. struct ggml_tensor * b,
  756. enum ggml_type type);
  757. GGML_API struct ggml_tensor * ggml_add1(
  758. struct ggml_context * ctx,
  759. struct ggml_tensor * a,
  760. struct ggml_tensor * b);
  761. GGML_API struct ggml_tensor * ggml_add1_inplace(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a,
  764. struct ggml_tensor * b);
  765. // dst = a
  766. // view(dst, nb1, nb2, nb3, offset) += b
  767. // return dst
  768. GGML_API struct ggml_tensor * ggml_acc(
  769. struct ggml_context * ctx,
  770. struct ggml_tensor * a,
  771. struct ggml_tensor * b,
  772. size_t nb1,
  773. size_t nb2,
  774. size_t nb3,
  775. size_t offset);
  776. GGML_API struct ggml_tensor * ggml_acc_inplace(
  777. struct ggml_context * ctx,
  778. struct ggml_tensor * a,
  779. struct ggml_tensor * b,
  780. size_t nb1,
  781. size_t nb2,
  782. size_t nb3,
  783. size_t offset);
  784. GGML_API struct ggml_tensor * ggml_sub(
  785. struct ggml_context * ctx,
  786. struct ggml_tensor * a,
  787. struct ggml_tensor * b);
  788. GGML_API struct ggml_tensor * ggml_sub_inplace(
  789. struct ggml_context * ctx,
  790. struct ggml_tensor * a,
  791. struct ggml_tensor * b);
  792. GGML_API struct ggml_tensor * ggml_mul(
  793. struct ggml_context * ctx,
  794. struct ggml_tensor * a,
  795. struct ggml_tensor * b);
  796. GGML_API struct ggml_tensor * ggml_mul_inplace(
  797. struct ggml_context * ctx,
  798. struct ggml_tensor * a,
  799. struct ggml_tensor * b);
  800. GGML_API struct ggml_tensor * ggml_div(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a,
  803. struct ggml_tensor * b);
  804. GGML_API struct ggml_tensor * ggml_div_inplace(
  805. struct ggml_context * ctx,
  806. struct ggml_tensor * a,
  807. struct ggml_tensor * b);
  808. GGML_API struct ggml_tensor * ggml_sqr(
  809. struct ggml_context * ctx,
  810. struct ggml_tensor * a);
  811. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  812. struct ggml_context * ctx,
  813. struct ggml_tensor * a);
  814. GGML_API struct ggml_tensor * ggml_sqrt(
  815. struct ggml_context * ctx,
  816. struct ggml_tensor * a);
  817. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  818. struct ggml_context * ctx,
  819. struct ggml_tensor * a);
  820. GGML_API struct ggml_tensor * ggml_log(
  821. struct ggml_context * ctx,
  822. struct ggml_tensor * a);
  823. GGML_API struct ggml_tensor * ggml_log_inplace(
  824. struct ggml_context * ctx,
  825. struct ggml_tensor * a);
  826. GGML_API struct ggml_tensor * ggml_sin(
  827. struct ggml_context * ctx,
  828. struct ggml_tensor * a);
  829. GGML_API struct ggml_tensor * ggml_sin_inplace(
  830. struct ggml_context * ctx,
  831. struct ggml_tensor * a);
  832. GGML_API struct ggml_tensor * ggml_cos(
  833. struct ggml_context * ctx,
  834. struct ggml_tensor * a);
  835. GGML_API struct ggml_tensor * ggml_cos_inplace(
  836. struct ggml_context * ctx,
  837. struct ggml_tensor * a);
  838. // return scalar
  839. GGML_API struct ggml_tensor * ggml_sum(
  840. struct ggml_context * ctx,
  841. struct ggml_tensor * a);
  842. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  843. GGML_API struct ggml_tensor * ggml_sum_rows(
  844. struct ggml_context * ctx,
  845. struct ggml_tensor * a);
  846. // mean along rows
  847. GGML_API struct ggml_tensor * ggml_mean(
  848. struct ggml_context * ctx,
  849. struct ggml_tensor * a);
  850. // argmax along rows
  851. GGML_API struct ggml_tensor * ggml_argmax(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a);
  854. // if a is the same shape as b, and a is not parameter, return a
  855. // otherwise, return a new tensor: repeat(a) to fit in b
  856. GGML_API struct ggml_tensor * ggml_repeat(
  857. struct ggml_context * ctx,
  858. struct ggml_tensor * a,
  859. struct ggml_tensor * b);
  860. // sums repetitions in a into shape of b
  861. GGML_API struct ggml_tensor * ggml_repeat_back(
  862. struct ggml_context * ctx,
  863. struct ggml_tensor * a,
  864. struct ggml_tensor * b);
  865. // concat a and b along dim
  866. // used in stable-diffusion
  867. GGML_API struct ggml_tensor * ggml_concat(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a,
  870. struct ggml_tensor * b,
  871. int dim);
  872. GGML_API struct ggml_tensor * ggml_abs(
  873. struct ggml_context * ctx,
  874. struct ggml_tensor * a);
  875. GGML_API struct ggml_tensor * ggml_abs_inplace(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a);
  878. GGML_API struct ggml_tensor * ggml_sgn(
  879. struct ggml_context * ctx,
  880. struct ggml_tensor * a);
  881. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  882. struct ggml_context * ctx,
  883. struct ggml_tensor * a);
  884. GGML_API struct ggml_tensor * ggml_neg(
  885. struct ggml_context * ctx,
  886. struct ggml_tensor * a);
  887. GGML_API struct ggml_tensor * ggml_neg_inplace(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a);
  890. GGML_API struct ggml_tensor * ggml_step(
  891. struct ggml_context * ctx,
  892. struct ggml_tensor * a);
  893. GGML_API struct ggml_tensor * ggml_step_inplace(
  894. struct ggml_context * ctx,
  895. struct ggml_tensor * a);
  896. GGML_API struct ggml_tensor * ggml_tanh(
  897. struct ggml_context * ctx,
  898. struct ggml_tensor * a);
  899. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  900. struct ggml_context * ctx,
  901. struct ggml_tensor * a);
  902. GGML_API struct ggml_tensor * ggml_elu(
  903. struct ggml_context * ctx,
  904. struct ggml_tensor * a);
  905. GGML_API struct ggml_tensor * ggml_elu_inplace(
  906. struct ggml_context * ctx,
  907. struct ggml_tensor * a);
  908. GGML_API struct ggml_tensor * ggml_relu(
  909. struct ggml_context * ctx,
  910. struct ggml_tensor * a);
  911. GGML_API struct ggml_tensor * ggml_leaky_relu(
  912. struct ggml_context * ctx,
  913. struct ggml_tensor * a, float negative_slope, bool inplace);
  914. GGML_API struct ggml_tensor * ggml_relu_inplace(
  915. struct ggml_context * ctx,
  916. struct ggml_tensor * a);
  917. GGML_API struct ggml_tensor * ggml_sigmoid(
  918. struct ggml_context * ctx,
  919. struct ggml_tensor * a);
  920. GGML_API struct ggml_tensor * ggml_sigmoid_inplace(
  921. struct ggml_context * ctx,
  922. struct ggml_tensor * a);
  923. GGML_API struct ggml_tensor * ggml_gelu(
  924. struct ggml_context * ctx,
  925. struct ggml_tensor * a);
  926. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  927. struct ggml_context * ctx,
  928. struct ggml_tensor * a);
  929. GGML_API struct ggml_tensor * ggml_gelu_quick(
  930. struct ggml_context * ctx,
  931. struct ggml_tensor * a);
  932. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  933. struct ggml_context * ctx,
  934. struct ggml_tensor * a);
  935. GGML_API struct ggml_tensor * ggml_silu(
  936. struct ggml_context * ctx,
  937. struct ggml_tensor * a);
  938. GGML_API struct ggml_tensor * ggml_silu_inplace(
  939. struct ggml_context * ctx,
  940. struct ggml_tensor * a);
  941. // a - x
  942. // b - dy
  943. GGML_API struct ggml_tensor * ggml_silu_back(
  944. struct ggml_context * ctx,
  945. struct ggml_tensor * a,
  946. struct ggml_tensor * b);
  947. // hardswish(x) = x * relu6(x + 3) / 6
  948. GGML_API struct ggml_tensor * ggml_hardswish(
  949. struct ggml_context * ctx,
  950. struct ggml_tensor * a);
  951. // hardsigmoid(x) = relu6(x + 3) / 6
  952. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  953. struct ggml_context * ctx,
  954. struct ggml_tensor * a);
  955. GGML_API struct ggml_tensor * ggml_exp(
  956. struct ggml_context * ctx,
  957. struct ggml_tensor * a);
  958. GGML_API struct ggml_tensor * ggml_exp_inplace(
  959. struct ggml_context * ctx,
  960. struct ggml_tensor * a);
  961. // normalize along rows
  962. GGML_API struct ggml_tensor * ggml_norm(
  963. struct ggml_context * ctx,
  964. struct ggml_tensor * a,
  965. float eps);
  966. GGML_API struct ggml_tensor * ggml_norm_inplace(
  967. struct ggml_context * ctx,
  968. struct ggml_tensor * a,
  969. float eps);
  970. GGML_API struct ggml_tensor * ggml_rms_norm(
  971. struct ggml_context * ctx,
  972. struct ggml_tensor * a,
  973. float eps);
  974. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  975. struct ggml_context * ctx,
  976. struct ggml_tensor * a,
  977. float eps);
  978. // group normalize along ne0*ne1*n_groups
  979. // used in stable-diffusion
  980. GGML_API struct ggml_tensor * ggml_group_norm(
  981. struct ggml_context * ctx,
  982. struct ggml_tensor * a,
  983. int n_groups,
  984. float eps);
  985. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  986. struct ggml_context * ctx,
  987. struct ggml_tensor * a,
  988. int n_groups,
  989. float eps);
  990. // a - x
  991. // b - dy
  992. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * a,
  995. struct ggml_tensor * b,
  996. float eps);
  997. // A: k columns, n rows => [ne03, ne02, n, k]
  998. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  999. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  1000. GGML_API struct ggml_tensor * ggml_mul_mat(
  1001. struct ggml_context * ctx,
  1002. struct ggml_tensor * a,
  1003. struct ggml_tensor * b);
  1004. // change the precision of a matrix multiplication
  1005. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  1006. GGML_API void ggml_mul_mat_set_prec(
  1007. struct ggml_tensor * a,
  1008. enum ggml_prec prec);
  1009. // indirect matrix multiplication
  1010. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  1011. struct ggml_context * ctx,
  1012. struct ggml_tensor * as,
  1013. struct ggml_tensor * b,
  1014. struct ggml_tensor * ids);
  1015. // A: m columns, n rows,
  1016. // B: p columns, n rows,
  1017. // result is m columns, p rows
  1018. GGML_API struct ggml_tensor * ggml_out_prod(
  1019. struct ggml_context * ctx,
  1020. struct ggml_tensor * a,
  1021. struct ggml_tensor * b);
  1022. //
  1023. // operations on tensors without backpropagation
  1024. //
  1025. GGML_API struct ggml_tensor * ggml_scale(
  1026. struct ggml_context * ctx,
  1027. struct ggml_tensor * a,
  1028. float s);
  1029. // in-place, returns view(a)
  1030. GGML_API struct ggml_tensor * ggml_scale_inplace(
  1031. struct ggml_context * ctx,
  1032. struct ggml_tensor * a,
  1033. float s);
  1034. // b -> view(a,offset,nb1,nb2,3), return modified a
  1035. GGML_API struct ggml_tensor * ggml_set(
  1036. struct ggml_context * ctx,
  1037. struct ggml_tensor * a,
  1038. struct ggml_tensor * b,
  1039. size_t nb1,
  1040. size_t nb2,
  1041. size_t nb3,
  1042. size_t offset); // in bytes
  1043. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1044. GGML_API struct ggml_tensor * ggml_set_inplace(
  1045. struct ggml_context * ctx,
  1046. struct ggml_tensor * a,
  1047. struct ggml_tensor * b,
  1048. size_t nb1,
  1049. size_t nb2,
  1050. size_t nb3,
  1051. size_t offset); // in bytes
  1052. GGML_API struct ggml_tensor * ggml_set_1d(
  1053. struct ggml_context * ctx,
  1054. struct ggml_tensor * a,
  1055. struct ggml_tensor * b,
  1056. size_t offset); // in bytes
  1057. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  1058. struct ggml_context * ctx,
  1059. struct ggml_tensor * a,
  1060. struct ggml_tensor * b,
  1061. size_t offset); // in bytes
  1062. // b -> view(a,offset,nb1,nb2,3), return modified a
  1063. GGML_API struct ggml_tensor * ggml_set_2d(
  1064. struct ggml_context * ctx,
  1065. struct ggml_tensor * a,
  1066. struct ggml_tensor * b,
  1067. size_t nb1,
  1068. size_t offset); // in bytes
  1069. // b -> view(a,offset,nb1,nb2,3), return view(a)
  1070. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  1071. struct ggml_context * ctx,
  1072. struct ggml_tensor * a,
  1073. struct ggml_tensor * b,
  1074. size_t nb1,
  1075. size_t offset); // in bytes
  1076. // a -> b, return view(b)
  1077. GGML_API struct ggml_tensor * ggml_cpy(
  1078. struct ggml_context * ctx,
  1079. struct ggml_tensor * a,
  1080. struct ggml_tensor * b);
  1081. GGML_API struct ggml_tensor * ggml_cast(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. enum ggml_type type);
  1085. // make contiguous
  1086. GGML_API struct ggml_tensor * ggml_cont(
  1087. struct ggml_context * ctx,
  1088. struct ggml_tensor * a);
  1089. // make contiguous, with new shape
  1090. GGML_API struct ggml_tensor * ggml_cont_1d(
  1091. struct ggml_context * ctx,
  1092. struct ggml_tensor * a,
  1093. int64_t ne0);
  1094. GGML_API struct ggml_tensor * ggml_cont_2d(
  1095. struct ggml_context * ctx,
  1096. struct ggml_tensor * a,
  1097. int64_t ne0,
  1098. int64_t ne1);
  1099. GGML_API struct ggml_tensor * ggml_cont_3d(
  1100. struct ggml_context * ctx,
  1101. struct ggml_tensor * a,
  1102. int64_t ne0,
  1103. int64_t ne1,
  1104. int64_t ne2);
  1105. GGML_API struct ggml_tensor * ggml_cont_4d(
  1106. struct ggml_context * ctx,
  1107. struct ggml_tensor * a,
  1108. int64_t ne0,
  1109. int64_t ne1,
  1110. int64_t ne2,
  1111. int64_t ne3);
  1112. // return view(a), b specifies the new shape
  1113. // TODO: when we start computing gradient, make a copy instead of view
  1114. GGML_API struct ggml_tensor * ggml_reshape(
  1115. struct ggml_context * ctx,
  1116. struct ggml_tensor * a,
  1117. struct ggml_tensor * b);
  1118. // return view(a)
  1119. // TODO: when we start computing gradient, make a copy instead of view
  1120. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1121. struct ggml_context * ctx,
  1122. struct ggml_tensor * a,
  1123. int64_t ne0);
  1124. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1125. struct ggml_context * ctx,
  1126. struct ggml_tensor * a,
  1127. int64_t ne0,
  1128. int64_t ne1);
  1129. // return view(a)
  1130. // TODO: when we start computing gradient, make a copy instead of view
  1131. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1132. struct ggml_context * ctx,
  1133. struct ggml_tensor * a,
  1134. int64_t ne0,
  1135. int64_t ne1,
  1136. int64_t ne2);
  1137. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1138. struct ggml_context * ctx,
  1139. struct ggml_tensor * a,
  1140. int64_t ne0,
  1141. int64_t ne1,
  1142. int64_t ne2,
  1143. int64_t ne3);
  1144. // offset in bytes
  1145. GGML_API struct ggml_tensor * ggml_view_1d(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. int64_t ne0,
  1149. size_t offset);
  1150. GGML_API struct ggml_tensor * ggml_view_2d(
  1151. struct ggml_context * ctx,
  1152. struct ggml_tensor * a,
  1153. int64_t ne0,
  1154. int64_t ne1,
  1155. size_t nb1, // row stride in bytes
  1156. size_t offset);
  1157. GGML_API struct ggml_tensor * ggml_view_3d(
  1158. struct ggml_context * ctx,
  1159. struct ggml_tensor * a,
  1160. int64_t ne0,
  1161. int64_t ne1,
  1162. int64_t ne2,
  1163. size_t nb1, // row stride in bytes
  1164. size_t nb2, // slice stride in bytes
  1165. size_t offset);
  1166. GGML_API struct ggml_tensor * ggml_view_4d(
  1167. struct ggml_context * ctx,
  1168. struct ggml_tensor * a,
  1169. int64_t ne0,
  1170. int64_t ne1,
  1171. int64_t ne2,
  1172. int64_t ne3,
  1173. size_t nb1, // row stride in bytes
  1174. size_t nb2, // slice stride in bytes
  1175. size_t nb3,
  1176. size_t offset);
  1177. GGML_API struct ggml_tensor * ggml_permute(
  1178. struct ggml_context * ctx,
  1179. struct ggml_tensor * a,
  1180. int axis0,
  1181. int axis1,
  1182. int axis2,
  1183. int axis3);
  1184. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1185. GGML_API struct ggml_tensor * ggml_transpose(
  1186. struct ggml_context * ctx,
  1187. struct ggml_tensor * a);
  1188. // supports 3D: a->ne[2] == b->ne[1]
  1189. GGML_API struct ggml_tensor * ggml_get_rows(
  1190. struct ggml_context * ctx,
  1191. struct ggml_tensor * a,
  1192. struct ggml_tensor * b);
  1193. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1194. struct ggml_context * ctx,
  1195. struct ggml_tensor * a,
  1196. struct ggml_tensor * b,
  1197. struct ggml_tensor * c);
  1198. GGML_API struct ggml_tensor * ggml_diag(
  1199. struct ggml_context * ctx,
  1200. struct ggml_tensor * a);
  1201. // set elements above the diagonal to -INF
  1202. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1203. struct ggml_context * ctx,
  1204. struct ggml_tensor * a,
  1205. int n_past);
  1206. // in-place, returns view(a)
  1207. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1208. struct ggml_context * ctx,
  1209. struct ggml_tensor * a,
  1210. int n_past);
  1211. // set elements above the diagonal to 0
  1212. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1213. struct ggml_context * ctx,
  1214. struct ggml_tensor * a,
  1215. int n_past);
  1216. // in-place, returns view(a)
  1217. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1218. struct ggml_context * ctx,
  1219. struct ggml_tensor * a,
  1220. int n_past);
  1221. GGML_API struct ggml_tensor * ggml_soft_max(
  1222. struct ggml_context * ctx,
  1223. struct ggml_tensor * a);
  1224. // in-place, returns view(a)
  1225. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1226. struct ggml_context * ctx,
  1227. struct ggml_tensor * a);
  1228. // fused soft_max(a*scale + mask*(ALiBi slope))
  1229. // mask is optional
  1230. // max_bias = 0.0f for no ALiBi
  1231. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1232. struct ggml_context * ctx,
  1233. struct ggml_tensor * a,
  1234. struct ggml_tensor * mask,
  1235. float scale,
  1236. float max_bias);
  1237. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1238. struct ggml_context * ctx,
  1239. struct ggml_tensor * a,
  1240. struct ggml_tensor * b);
  1241. // in-place, returns view(a)
  1242. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1243. struct ggml_context * ctx,
  1244. struct ggml_tensor * a,
  1245. struct ggml_tensor * b);
  1246. // rotary position embedding
  1247. // if (mode & 1) - skip n_past elements (NOT SUPPORTED)
  1248. // if (mode & GGML_ROPE_TYPE_NEOX) - GPT-NeoX style
  1249. //
  1250. // b is an int32 vector with size a->ne[2], it contains the positions
  1251. GGML_API struct ggml_tensor * ggml_rope(
  1252. struct ggml_context * ctx,
  1253. struct ggml_tensor * a,
  1254. struct ggml_tensor * b,
  1255. int n_dims,
  1256. int mode);
  1257. // in-place, returns view(a)
  1258. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1259. struct ggml_context * ctx,
  1260. struct ggml_tensor * a,
  1261. struct ggml_tensor * b,
  1262. int n_dims,
  1263. int mode);
  1264. // custom RoPE
  1265. // c is freq factors (e.g. phi3-128k), (optional)
  1266. GGML_API struct ggml_tensor * ggml_rope_ext(
  1267. struct ggml_context * ctx,
  1268. struct ggml_tensor * a,
  1269. struct ggml_tensor * b,
  1270. struct ggml_tensor * c,
  1271. int n_dims,
  1272. int mode,
  1273. int n_ctx_orig,
  1274. float freq_base,
  1275. float freq_scale,
  1276. float ext_factor,
  1277. float attn_factor,
  1278. float beta_fast,
  1279. float beta_slow);
  1280. // in-place, returns view(a)
  1281. GGML_API struct ggml_tensor * ggml_rope_ext_inplace(
  1282. struct ggml_context * ctx,
  1283. struct ggml_tensor * a,
  1284. struct ggml_tensor * b,
  1285. struct ggml_tensor * c,
  1286. int n_dims,
  1287. int mode,
  1288. int n_ctx_orig,
  1289. float freq_base,
  1290. float freq_scale,
  1291. float ext_factor,
  1292. float attn_factor,
  1293. float beta_fast,
  1294. float beta_slow);
  1295. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom(
  1296. struct ggml_context * ctx,
  1297. struct ggml_tensor * a,
  1298. struct ggml_tensor * b,
  1299. int n_dims,
  1300. int mode,
  1301. int n_ctx_orig,
  1302. float freq_base,
  1303. float freq_scale,
  1304. float ext_factor,
  1305. float attn_factor,
  1306. float beta_fast,
  1307. float beta_slow),
  1308. "use ggml_rope_ext instead");
  1309. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1310. struct ggml_context * ctx,
  1311. struct ggml_tensor * a,
  1312. struct ggml_tensor * b,
  1313. int n_dims,
  1314. int mode,
  1315. int n_ctx_orig,
  1316. float freq_base,
  1317. float freq_scale,
  1318. float ext_factor,
  1319. float attn_factor,
  1320. float beta_fast,
  1321. float beta_slow),
  1322. "use ggml_rope_ext_inplace instead");
  1323. // compute correction dims for YaRN RoPE scaling
  1324. GGML_CALL void ggml_rope_yarn_corr_dims(
  1325. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1326. // rotary position embedding backward, i.e compute dx from dy
  1327. // a - dy
  1328. GGML_API struct ggml_tensor * ggml_rope_back(
  1329. struct ggml_context * ctx,
  1330. struct ggml_tensor * a,
  1331. struct ggml_tensor * b,
  1332. struct ggml_tensor * c,
  1333. int n_dims,
  1334. int mode,
  1335. int n_ctx_orig,
  1336. float freq_base,
  1337. float freq_scale,
  1338. float ext_factor,
  1339. float attn_factor,
  1340. float beta_fast,
  1341. float beta_slow);
  1342. // clamp
  1343. // in-place, returns view(a)
  1344. GGML_API struct ggml_tensor * ggml_clamp(
  1345. struct ggml_context * ctx,
  1346. struct ggml_tensor * a,
  1347. float min,
  1348. float max);
  1349. // im2col
  1350. // converts data into a format that effectively results in a convolution when combined with matrix multiplication
  1351. GGML_API struct ggml_tensor * ggml_im2col(
  1352. struct ggml_context * ctx,
  1353. struct ggml_tensor * a, // convolution kernel
  1354. struct ggml_tensor * b, // data
  1355. int s0, // stride dimension 0
  1356. int s1, // stride dimension 1
  1357. int p0, // padding dimension 0
  1358. int p1, // padding dimension 1
  1359. int d0, // dilation dimension 0
  1360. int d1, // dilation dimension 1
  1361. bool is_2D,
  1362. enum ggml_type dst_type);
  1363. GGML_API struct ggml_tensor * ggml_im2col_back(
  1364. struct ggml_context * ctx,
  1365. struct ggml_tensor * a, // convolution kernel
  1366. struct ggml_tensor * b, // gradient of im2col output
  1367. int64_t * ne, // shape of im2col input
  1368. int s0, // stride dimension 0
  1369. int s1, // stride dimension 1
  1370. int p0, // padding dimension 0
  1371. int p1, // padding dimension 1
  1372. int d0, // dilation dimension 0
  1373. int d1, // dilation dimension 1
  1374. bool is_2D);
  1375. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1376. struct ggml_context * ctx,
  1377. struct ggml_tensor * a, // convolution kernel
  1378. struct ggml_tensor * b, // data
  1379. int s0, // stride dimension 0
  1380. int s1, // stride dimension 1
  1381. int p0, // padding dimension 0
  1382. int p1, // padding dimension 1
  1383. int d0, // dilation dimension 0
  1384. int d1); // dilation dimension 1
  1385. GGML_API struct ggml_tensor * ggml_conv_1d(
  1386. struct ggml_context * ctx,
  1387. struct ggml_tensor * a, // convolution kernel
  1388. struct ggml_tensor * b, // data
  1389. int s0, // stride
  1390. int p0, // padding
  1391. int d0); // dilation
  1392. // conv_1d with padding = half
  1393. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1394. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1395. struct ggml_context * ctx,
  1396. struct ggml_tensor * a, // convolution kernel
  1397. struct ggml_tensor * b, // data
  1398. int s, // stride
  1399. int d); // dilation
  1400. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1401. struct ggml_context * ctx,
  1402. struct ggml_tensor * a, // convolution kernel
  1403. struct ggml_tensor * b, // data
  1404. int s0, // stride
  1405. int p0, // padding
  1406. int d0); // dilation
  1407. GGML_API struct ggml_tensor * ggml_conv_2d(
  1408. struct ggml_context * ctx,
  1409. struct ggml_tensor * a, // convolution kernel
  1410. struct ggml_tensor * b, // data
  1411. int s0, // stride dimension 0
  1412. int s1, // stride dimension 1
  1413. int p0, // padding dimension 0
  1414. int p1, // padding dimension 1
  1415. int d0, // dilation dimension 0
  1416. int d1); // dilation dimension 1
  1417. // kernel size is a->ne[0] x a->ne[1]
  1418. // stride is equal to kernel size
  1419. // padding is zero
  1420. // example:
  1421. // a: 16 16 3 768
  1422. // b: 1024 1024 3 1
  1423. // res: 64 64 768 1
  1424. // used in sam
  1425. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1426. struct ggml_context * ctx,
  1427. struct ggml_tensor * a,
  1428. struct ggml_tensor * b);
  1429. // kernel size is a->ne[0] x a->ne[1]
  1430. // stride is 1
  1431. // padding is half
  1432. // example:
  1433. // a: 3 3 256 256
  1434. // b: 64 64 256 1
  1435. // res: 64 64 256 1
  1436. // used in sam
  1437. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1438. struct ggml_context * ctx,
  1439. struct ggml_tensor * a,
  1440. struct ggml_tensor * b);
  1441. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1442. struct ggml_context * ctx,
  1443. struct ggml_tensor * a,
  1444. struct ggml_tensor * b,
  1445. int stride);
  1446. enum ggml_op_pool {
  1447. GGML_OP_POOL_MAX,
  1448. GGML_OP_POOL_AVG,
  1449. GGML_OP_POOL_COUNT,
  1450. };
  1451. GGML_API struct ggml_tensor * ggml_pool_1d(
  1452. struct ggml_context * ctx,
  1453. struct ggml_tensor * a,
  1454. enum ggml_op_pool op,
  1455. int k0, // kernel size
  1456. int s0, // stride
  1457. int p0); // padding
  1458. // the result will have 2*p0 padding for the first dimension
  1459. // and 2*p1 padding for the second dimension
  1460. GGML_API struct ggml_tensor * ggml_pool_2d(
  1461. struct ggml_context * ctx,
  1462. struct ggml_tensor * a,
  1463. enum ggml_op_pool op,
  1464. int k0,
  1465. int k1,
  1466. int s0,
  1467. int s1,
  1468. float p0,
  1469. float p1);
  1470. GGML_API struct ggml_tensor * ggml_pool_2d_back(
  1471. struct ggml_context * ctx,
  1472. struct ggml_tensor * a,
  1473. struct ggml_tensor * af, // "a"/input used in forward pass
  1474. enum ggml_op_pool op,
  1475. int k0,
  1476. int k1,
  1477. int s0,
  1478. int s1,
  1479. float p0,
  1480. float p1);
  1481. // nearest interpolate
  1482. // multiplies ne0 and ne1 by scale factor
  1483. // used in stable-diffusion
  1484. GGML_API struct ggml_tensor * ggml_upscale(
  1485. struct ggml_context * ctx,
  1486. struct ggml_tensor * a,
  1487. int scale_factor);
  1488. // nearest interpolate
  1489. // nearest interpolate to specified dimensions
  1490. // used in tortoise.cpp
  1491. GGML_API struct ggml_tensor * ggml_upscale_ext(
  1492. struct ggml_context * ctx,
  1493. struct ggml_tensor * a,
  1494. int ne0,
  1495. int ne1,
  1496. int ne2,
  1497. int ne3);
  1498. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1499. GGML_API struct ggml_tensor * ggml_pad(
  1500. struct ggml_context * ctx,
  1501. struct ggml_tensor * a,
  1502. int p0,
  1503. int p1,
  1504. int p2,
  1505. int p3);
  1506. // Ref: https://github.com/CompVis/stable-diffusion/blob/main/ldm/modules/diffusionmodules/util.py#L151
  1507. // timesteps: [N,]
  1508. // return: [N, dim]
  1509. GGML_API struct ggml_tensor * ggml_timestep_embedding(
  1510. struct ggml_context * ctx,
  1511. struct ggml_tensor * timesteps,
  1512. int dim,
  1513. int max_period);
  1514. // sort rows
  1515. enum ggml_sort_order {
  1516. GGML_SORT_ORDER_ASC,
  1517. GGML_SORT_ORDER_DESC,
  1518. };
  1519. GGML_API struct ggml_tensor * ggml_argsort(
  1520. struct ggml_context * ctx,
  1521. struct ggml_tensor * a,
  1522. enum ggml_sort_order order);
  1523. GGML_API struct ggml_tensor * ggml_arange(
  1524. struct ggml_context * ctx,
  1525. float start,
  1526. float stop,
  1527. float step);
  1528. // top k elements per row
  1529. GGML_API struct ggml_tensor * ggml_top_k(
  1530. struct ggml_context * ctx,
  1531. struct ggml_tensor * a,
  1532. int k);
  1533. #define GGML_KQ_MASK_PAD 32
  1534. // q: [n_embd, n_batch, n_head, 1]
  1535. // k: [n_embd, n_kv, n_head_kv, 1]
  1536. // v: [n_embd, n_kv, n_head_kv, 1] !! not transposed !!
  1537. // mask: [n_kv, n_batch_pad, 1, 1] !! n_batch_pad = GGML_PAD(n_batch, GGML_KQ_MASK_PAD) !!
  1538. // res: [n_embd, n_head, n_batch, 1] !! permuted !!
  1539. GGML_API struct ggml_tensor * ggml_flash_attn_ext(
  1540. struct ggml_context * ctx,
  1541. struct ggml_tensor * q,
  1542. struct ggml_tensor * k,
  1543. struct ggml_tensor * v,
  1544. struct ggml_tensor * mask,
  1545. float scale,
  1546. float max_bias,
  1547. float logit_softcap);
  1548. GGML_API void ggml_flash_attn_ext_set_prec(
  1549. struct ggml_tensor * a,
  1550. enum ggml_prec prec);
  1551. // TODO: needs to be adapted to ggml_flash_attn_ext
  1552. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1553. struct ggml_context * ctx,
  1554. struct ggml_tensor * q,
  1555. struct ggml_tensor * k,
  1556. struct ggml_tensor * v,
  1557. struct ggml_tensor * d,
  1558. bool masked);
  1559. GGML_API struct ggml_tensor * ggml_ssm_conv(
  1560. struct ggml_context * ctx,
  1561. struct ggml_tensor * sx,
  1562. struct ggml_tensor * c);
  1563. GGML_API struct ggml_tensor * ggml_ssm_scan(
  1564. struct ggml_context * ctx,
  1565. struct ggml_tensor * s,
  1566. struct ggml_tensor * x,
  1567. struct ggml_tensor * dt,
  1568. struct ggml_tensor * A,
  1569. struct ggml_tensor * B,
  1570. struct ggml_tensor * C);
  1571. // partition into non-overlapping windows with padding if needed
  1572. // example:
  1573. // a: 768 64 64 1
  1574. // w: 14
  1575. // res: 768 14 14 25
  1576. // used in sam
  1577. GGML_API struct ggml_tensor * ggml_win_part(
  1578. struct ggml_context * ctx,
  1579. struct ggml_tensor * a,
  1580. int w);
  1581. // reverse of ggml_win_part
  1582. // used in sam
  1583. GGML_API struct ggml_tensor * ggml_win_unpart(
  1584. struct ggml_context * ctx,
  1585. struct ggml_tensor * a,
  1586. int w0,
  1587. int h0,
  1588. int w);
  1589. GGML_API struct ggml_tensor * ggml_unary(
  1590. struct ggml_context * ctx,
  1591. struct ggml_tensor * a,
  1592. enum ggml_unary_op op);
  1593. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1594. struct ggml_context * ctx,
  1595. struct ggml_tensor * a,
  1596. enum ggml_unary_op op);
  1597. // used in sam
  1598. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1599. struct ggml_context * ctx,
  1600. struct ggml_tensor * a,
  1601. int qh,
  1602. int kh);
  1603. // used in sam
  1604. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1605. struct ggml_context * ctx,
  1606. struct ggml_tensor * a,
  1607. struct ggml_tensor * pw,
  1608. struct ggml_tensor * ph);
  1609. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1610. struct ggml_context * ctx,
  1611. struct ggml_tensor * a,
  1612. struct ggml_tensor * pw,
  1613. struct ggml_tensor * ph);
  1614. GGML_API struct ggml_tensor * ggml_rwkv_wkv(
  1615. struct ggml_context * ctx,
  1616. struct ggml_tensor * k,
  1617. struct ggml_tensor * v,
  1618. struct ggml_tensor * r,
  1619. struct ggml_tensor * tf,
  1620. struct ggml_tensor * td,
  1621. struct ggml_tensor * state);
  1622. // custom operators
  1623. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1624. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1625. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1626. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1627. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1628. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1629. struct ggml_context * ctx,
  1630. struct ggml_tensor * a,
  1631. ggml_unary_op_f32_t fun),
  1632. "use ggml_map_custom1 instead");
  1633. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1634. struct ggml_context * ctx,
  1635. struct ggml_tensor * a,
  1636. ggml_unary_op_f32_t fun),
  1637. "use ggml_map_custom1_inplace instead");
  1638. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1639. struct ggml_context * ctx,
  1640. struct ggml_tensor * a,
  1641. struct ggml_tensor * b,
  1642. ggml_binary_op_f32_t fun),
  1643. "use ggml_map_custom2 instead");
  1644. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1645. struct ggml_context * ctx,
  1646. struct ggml_tensor * a,
  1647. struct ggml_tensor * b,
  1648. ggml_binary_op_f32_t fun),
  1649. "use ggml_map_custom2_inplace instead");
  1650. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1651. struct ggml_context * ctx,
  1652. struct ggml_tensor * a,
  1653. ggml_custom1_op_f32_t fun),
  1654. "use ggml_map_custom1 instead");
  1655. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1656. struct ggml_context * ctx,
  1657. struct ggml_tensor * a,
  1658. ggml_custom1_op_f32_t fun),
  1659. "use ggml_map_custom1_inplace instead");
  1660. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1661. struct ggml_context * ctx,
  1662. struct ggml_tensor * a,
  1663. struct ggml_tensor * b,
  1664. ggml_custom2_op_f32_t fun),
  1665. "use ggml_map_custom2 instead");
  1666. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1667. struct ggml_context * ctx,
  1668. struct ggml_tensor * a,
  1669. struct ggml_tensor * b,
  1670. ggml_custom2_op_f32_t fun),
  1671. "use ggml_map_custom2_inplace instead");
  1672. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1673. struct ggml_context * ctx,
  1674. struct ggml_tensor * a,
  1675. struct ggml_tensor * b,
  1676. struct ggml_tensor * c,
  1677. ggml_custom3_op_f32_t fun),
  1678. "use ggml_map_custom3 instead");
  1679. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1680. struct ggml_context * ctx,
  1681. struct ggml_tensor * a,
  1682. struct ggml_tensor * b,
  1683. struct ggml_tensor * c,
  1684. ggml_custom3_op_f32_t fun),
  1685. "use ggml_map_custom3_inplace instead");
  1686. // custom operators v2
  1687. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1688. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1689. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1690. GGML_API struct ggml_tensor * ggml_map_custom1(
  1691. struct ggml_context * ctx,
  1692. struct ggml_tensor * a,
  1693. ggml_custom1_op_t fun,
  1694. int n_tasks,
  1695. void * userdata);
  1696. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1697. struct ggml_context * ctx,
  1698. struct ggml_tensor * a,
  1699. ggml_custom1_op_t fun,
  1700. int n_tasks,
  1701. void * userdata);
  1702. GGML_API struct ggml_tensor * ggml_map_custom2(
  1703. struct ggml_context * ctx,
  1704. struct ggml_tensor * a,
  1705. struct ggml_tensor * b,
  1706. ggml_custom2_op_t fun,
  1707. int n_tasks,
  1708. void * userdata);
  1709. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1710. struct ggml_context * ctx,
  1711. struct ggml_tensor * a,
  1712. struct ggml_tensor * b,
  1713. ggml_custom2_op_t fun,
  1714. int n_tasks,
  1715. void * userdata);
  1716. GGML_API struct ggml_tensor * ggml_map_custom3(
  1717. struct ggml_context * ctx,
  1718. struct ggml_tensor * a,
  1719. struct ggml_tensor * b,
  1720. struct ggml_tensor * c,
  1721. ggml_custom3_op_t fun,
  1722. int n_tasks,
  1723. void * userdata);
  1724. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1725. struct ggml_context * ctx,
  1726. struct ggml_tensor * a,
  1727. struct ggml_tensor * b,
  1728. struct ggml_tensor * c,
  1729. ggml_custom3_op_t fun,
  1730. int n_tasks,
  1731. void * userdata);
  1732. // loss function
  1733. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1734. struct ggml_context * ctx,
  1735. struct ggml_tensor * a,
  1736. struct ggml_tensor * b);
  1737. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1738. struct ggml_context * ctx,
  1739. struct ggml_tensor * a,
  1740. struct ggml_tensor * b,
  1741. struct ggml_tensor * c);
  1742. // AdamW optimizer step
  1743. // Paper: https://arxiv.org/pdf/1711.05101v3.pdf
  1744. // PyTorch: https://pytorch.org/docs/stable/generated/torch.optim.AdamW.html
  1745. GGML_API struct ggml_tensor * ggml_opt_step_adamw(
  1746. struct ggml_context * ctx,
  1747. struct ggml_tensor * a,
  1748. float alpha,
  1749. float beta1,
  1750. float beta2,
  1751. float eps,
  1752. float wd); // weight decay
  1753. //
  1754. // automatic differentiation
  1755. //
  1756. GGML_API void ggml_set_param(struct ggml_context * ctx, struct ggml_tensor * tensor);
  1757. GGML_API void ggml_set_loss(struct ggml_tensor * tensor);
  1758. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1759. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool accumulate, bool keep);
  1760. GGML_API void ggml_build_opt_adamw(
  1761. struct ggml_context * ctx,
  1762. struct ggml_cgraph * gf,
  1763. struct ggml_cgraph * gb,
  1764. float alpha,
  1765. float beta1,
  1766. float beta2,
  1767. float eps,
  1768. float wd); // weight decay
  1769. // graph allocation in a context
  1770. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1771. GGML_API struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads);
  1772. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1773. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1774. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // set regular grads + optimizer momenta to 0, set loss grad to 1
  1775. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1776. GGML_API int ggml_graph_size (struct ggml_cgraph * cgraph);
  1777. GGML_API struct ggml_tensor * ggml_graph_node (struct ggml_cgraph * cgraph, int i); // if i < 0, returns nodes[n_nodes + i]
  1778. GGML_API struct ggml_tensor ** ggml_graph_nodes (struct ggml_cgraph * cgraph);
  1779. GGML_API int ggml_graph_n_nodes(struct ggml_cgraph * cgraph);
  1780. GGML_API void ggml_graph_add_node(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1781. GGML_API size_t ggml_graph_overhead(void);
  1782. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1783. GGML_API struct ggml_threadpool_params ggml_threadpool_params_default(int n_threads);
  1784. GGML_API void ggml_threadpool_params_init (struct ggml_threadpool_params * p, int n_threads);
  1785. GGML_API bool ggml_threadpool_params_match (const struct ggml_threadpool_params * p0, const struct ggml_threadpool_params * p1);
  1786. GGML_API struct ggml_threadpool * ggml_threadpool_new (struct ggml_threadpool_params * params);
  1787. GGML_API void ggml_threadpool_free (struct ggml_threadpool * threadpool);
  1788. GGML_API int ggml_threadpool_get_n_threads(struct ggml_threadpool * threadpool);
  1789. GGML_API void ggml_threadpool_pause (struct ggml_threadpool * threadpool);
  1790. GGML_API void ggml_threadpool_resume (struct ggml_threadpool * threadpool);
  1791. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1792. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1793. GGML_API struct ggml_cplan ggml_graph_plan(
  1794. const struct ggml_cgraph * cgraph,
  1795. int n_threads, /* = GGML_DEFAULT_N_THREADS */
  1796. struct ggml_threadpool * threadpool /* = NULL */ );
  1797. GGML_API enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1798. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1799. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1800. GGML_API enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1801. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1802. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1803. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1804. // print info and performance information for the graph
  1805. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1806. // dump the graph into a file using the dot format
  1807. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1808. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1809. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1810. // but without the second forward pass nodes.
  1811. GGML_API void ggml_build_backward_gradient_checkpointing(
  1812. struct ggml_context * ctx,
  1813. struct ggml_cgraph * gf,
  1814. struct ggml_cgraph * gb,
  1815. struct ggml_cgraph * gb_tmp,
  1816. struct ggml_tensor * * checkpoints,
  1817. int n_checkpoints);
  1818. //
  1819. // optimization
  1820. //
  1821. // optimization methods
  1822. enum ggml_opt_type {
  1823. GGML_OPT_TYPE_ADAM,
  1824. GGML_OPT_TYPE_LBFGS,
  1825. };
  1826. // linesearch methods
  1827. enum ggml_linesearch {
  1828. GGML_LINESEARCH_DEFAULT = 1,
  1829. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1830. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1831. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1832. };
  1833. // optimization return values
  1834. enum ggml_opt_result {
  1835. GGML_OPT_RESULT_OK = 0,
  1836. GGML_OPT_RESULT_DID_NOT_CONVERGE,
  1837. GGML_OPT_RESULT_NO_CONTEXT,
  1838. GGML_OPT_RESULT_INVALID_WOLFE,
  1839. GGML_OPT_RESULT_FAIL,
  1840. GGML_OPT_RESULT_CANCEL,
  1841. GGML_LINESEARCH_FAIL = -128,
  1842. GGML_LINESEARCH_MINIMUM_STEP,
  1843. GGML_LINESEARCH_MAXIMUM_STEP,
  1844. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1845. GGML_LINESEARCH_INVALID_PARAMETERS,
  1846. };
  1847. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1848. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1849. // optimization parameters
  1850. //
  1851. // see ggml.c (ggml_opt_default_params) for default values
  1852. //
  1853. struct ggml_opt_params {
  1854. enum ggml_opt_type type;
  1855. size_t graph_size;
  1856. int n_threads;
  1857. // delta-based convergence test
  1858. //
  1859. // if past == 0 - disabled
  1860. // if past > 0:
  1861. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1862. //
  1863. int past;
  1864. float delta;
  1865. // maximum number of iterations without improvement
  1866. //
  1867. // if 0 - disabled
  1868. // if > 0:
  1869. // assume convergence if no cost improvement in this number of iterations
  1870. //
  1871. int max_no_improvement;
  1872. bool print_forward_graph;
  1873. bool print_backward_graph;
  1874. int n_gradient_accumulation;
  1875. // ADAM parameters
  1876. struct {
  1877. int n_iter;
  1878. float sched; // schedule multiplier (fixed, decay or warmup)
  1879. float decay; // weight decay for AdamW, use 0.0f to disable
  1880. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1881. float alpha; // learning rate
  1882. float beta1;
  1883. float beta2;
  1884. float eps; // epsilon for numerical stability
  1885. float eps_f; // epsilon for convergence test
  1886. float eps_g; // epsilon for convergence test
  1887. float gclip; // gradient clipping
  1888. } adam;
  1889. // LBFGS parameters
  1890. struct {
  1891. int m; // number of corrections to approximate the inv. Hessian
  1892. int n_iter;
  1893. int max_linesearch;
  1894. float eps; // convergence tolerance
  1895. float ftol; // line search tolerance
  1896. float wolfe;
  1897. float min_step;
  1898. float max_step;
  1899. enum ggml_linesearch linesearch;
  1900. } lbfgs;
  1901. };
  1902. struct ggml_opt_context {
  1903. struct ggml_context * ctx;
  1904. struct ggml_opt_params params;
  1905. int iter;
  1906. int64_t nx; // number of parameter elements
  1907. bool just_initialized;
  1908. float loss_before;
  1909. float loss_after;
  1910. struct {
  1911. struct ggml_tensor * g; // current gradient
  1912. struct ggml_tensor * m; // first moment
  1913. struct ggml_tensor * v; // second moment
  1914. struct ggml_tensor * pf; // past function values
  1915. float fx_best;
  1916. float fx_prev;
  1917. int n_no_improvement;
  1918. } adam;
  1919. struct {
  1920. struct ggml_tensor * x; // current parameters
  1921. struct ggml_tensor * xp; // previous parameters
  1922. struct ggml_tensor * g; // current gradient
  1923. struct ggml_tensor * gp; // previous gradient
  1924. struct ggml_tensor * d; // search direction
  1925. struct ggml_tensor * pf; // past function values
  1926. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1927. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1928. struct ggml_tensor * lms; // the L-BFGS memory s
  1929. struct ggml_tensor * lmy; // the L-BFGS memory y
  1930. float fx_best;
  1931. float step;
  1932. int j;
  1933. int k;
  1934. int end;
  1935. int n_no_improvement;
  1936. } lbfgs;
  1937. };
  1938. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1939. // optimize the function defined by the tensor f
  1940. GGML_API enum ggml_opt_result ggml_opt(
  1941. struct ggml_context * ctx,
  1942. struct ggml_opt_params params,
  1943. struct ggml_tensor * f);
  1944. // initialize optimizer context
  1945. GGML_API void ggml_opt_init(
  1946. struct ggml_context * ctx,
  1947. struct ggml_opt_context * opt,
  1948. struct ggml_opt_params params,
  1949. int64_t nx);
  1950. // continue optimizing the function defined by the tensor f
  1951. GGML_API enum ggml_opt_result ggml_opt_resume(
  1952. struct ggml_context * ctx,
  1953. struct ggml_opt_context * opt,
  1954. struct ggml_tensor * f);
  1955. // continue optimizing the function defined by the tensor f
  1956. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1957. struct ggml_context * ctx,
  1958. struct ggml_opt_context * opt,
  1959. struct ggml_tensor * f,
  1960. struct ggml_cgraph * gf,
  1961. struct ggml_cgraph * gb,
  1962. ggml_opt_callback callback,
  1963. void * callback_data);
  1964. //
  1965. // tensor flags
  1966. //
  1967. GGML_API void ggml_set_input(struct ggml_tensor * tensor);
  1968. GGML_API void ggml_set_output(struct ggml_tensor * tensor);
  1969. //
  1970. // quantization
  1971. //
  1972. // - ggml_quantize_init can be called multiple times with the same type
  1973. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1974. // automatically called by ggml_quantize_chunk for convenience
  1975. //
  1976. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1977. // call this at the end of the program to avoid memory leaks
  1978. //
  1979. // note: these are thread-safe
  1980. //
  1981. GGML_API void ggml_quantize_init(enum ggml_type type);
  1982. GGML_API void ggml_quantize_free(void);
  1983. // some quantization type cannot be used without an importance matrix
  1984. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1985. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1986. GGML_API size_t ggml_quantize_chunk(
  1987. enum ggml_type type,
  1988. const float * src,
  1989. void * dst,
  1990. int64_t start,
  1991. int64_t nrows,
  1992. int64_t n_per_row,
  1993. const float * imatrix);
  1994. //
  1995. // gguf
  1996. //
  1997. enum gguf_type {
  1998. GGUF_TYPE_UINT8 = 0,
  1999. GGUF_TYPE_INT8 = 1,
  2000. GGUF_TYPE_UINT16 = 2,
  2001. GGUF_TYPE_INT16 = 3,
  2002. GGUF_TYPE_UINT32 = 4,
  2003. GGUF_TYPE_INT32 = 5,
  2004. GGUF_TYPE_FLOAT32 = 6,
  2005. GGUF_TYPE_BOOL = 7,
  2006. GGUF_TYPE_STRING = 8,
  2007. GGUF_TYPE_ARRAY = 9,
  2008. GGUF_TYPE_UINT64 = 10,
  2009. GGUF_TYPE_INT64 = 11,
  2010. GGUF_TYPE_FLOAT64 = 12,
  2011. GGUF_TYPE_COUNT, // marks the end of the enum
  2012. };
  2013. struct gguf_context;
  2014. struct gguf_init_params {
  2015. bool no_alloc;
  2016. // if not NULL, create a ggml_context and allocate the tensor data in it
  2017. struct ggml_context ** ctx;
  2018. };
  2019. GGML_API struct gguf_context * gguf_init_empty(void);
  2020. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  2021. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  2022. GGML_API void gguf_free(struct gguf_context * ctx);
  2023. GGML_API const char * gguf_type_name(enum gguf_type type);
  2024. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  2025. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  2026. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  2027. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  2028. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  2029. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  2030. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  2031. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  2032. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  2033. // will abort if the wrong type is used for the key
  2034. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  2035. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  2036. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  2037. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  2038. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  2039. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  2040. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  2041. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  2042. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  2043. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  2044. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  2045. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  2046. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  2047. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  2048. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  2049. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  2050. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  2051. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  2052. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  2053. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  2054. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  2055. // removes key if it exists
  2056. GGML_API void gguf_remove_key(struct gguf_context * ctx, const char * key);
  2057. // overrides existing values or adds a new one
  2058. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  2059. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  2060. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  2061. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  2062. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  2063. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  2064. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  2065. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  2066. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  2067. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  2068. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  2069. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  2070. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  2071. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  2072. // set or add KV pairs from another context
  2073. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  2074. // manage tensor info
  2075. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  2076. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  2077. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  2078. // writing gguf files can be done in 2 ways:
  2079. //
  2080. // - write the entire gguf_context to a binary file in a single pass:
  2081. //
  2082. // gguf_write_to_file(ctx, fname);
  2083. //
  2084. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  2085. //
  2086. // FILE * f = fopen(fname, "wb");
  2087. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  2088. // fwrite(f, ...);
  2089. // void * data = gguf_meta_get_meta_data(ctx);
  2090. // fseek(f, 0, SEEK_SET);
  2091. // fwrite(f, data, gguf_get_meta_size(ctx));
  2092. // free(data);
  2093. // fclose(f);
  2094. //
  2095. // write the entire context to a binary file
  2096. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  2097. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  2098. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  2099. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  2100. //
  2101. // system info
  2102. //
  2103. GGML_API int ggml_cpu_has_avx (void);
  2104. GGML_API int ggml_cpu_has_avx_vnni (void);
  2105. GGML_API int ggml_cpu_has_avx2 (void);
  2106. GGML_API int ggml_cpu_has_avx512 (void);
  2107. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  2108. GGML_API int ggml_cpu_has_avx512_vnni(void);
  2109. GGML_API int ggml_cpu_has_avx512_bf16(void);
  2110. GGML_API int ggml_cpu_has_fma (void);
  2111. GGML_API int ggml_cpu_has_neon (void);
  2112. GGML_API int ggml_cpu_has_sve (void);
  2113. GGML_API int ggml_cpu_has_arm_fma (void);
  2114. GGML_API int ggml_cpu_has_metal (void);
  2115. GGML_API int ggml_cpu_has_f16c (void);
  2116. GGML_API int ggml_cpu_has_fp16_va (void);
  2117. GGML_API int ggml_cpu_has_wasm_simd (void);
  2118. GGML_API int ggml_cpu_has_blas (void);
  2119. GGML_API int ggml_cpu_has_cuda (void);
  2120. GGML_API int ggml_cpu_has_vulkan (void);
  2121. GGML_API int ggml_cpu_has_kompute (void);
  2122. GGML_API int ggml_cpu_has_gpublas (void);
  2123. GGML_API int ggml_cpu_has_sse3 (void);
  2124. GGML_API int ggml_cpu_has_ssse3 (void);
  2125. GGML_API int ggml_cpu_has_riscv_v (void);
  2126. GGML_API int ggml_cpu_has_sycl (void);
  2127. GGML_API int ggml_cpu_has_rpc (void);
  2128. GGML_API int ggml_cpu_has_vsx (void);
  2129. GGML_API int ggml_cpu_has_matmul_int8(void);
  2130. GGML_API int ggml_cpu_has_cann (void);
  2131. GGML_API int ggml_cpu_has_llamafile (void);
  2132. //
  2133. // Internal types and functions exposed for tests and benchmarks
  2134. //
  2135. #ifdef __cplusplus
  2136. // restrict not standard in C++
  2137. #define GGML_RESTRICT
  2138. #else
  2139. #define GGML_RESTRICT restrict
  2140. #endif
  2141. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int64_t k);
  2142. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t k);
  2143. typedef void (*ggml_from_float_to_mat_t)
  2144. (const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int64_t nr, int64_t k, int64_t bs);
  2145. typedef void (*ggml_vec_dot_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x, size_t bx,
  2146. const void * GGML_RESTRICT y, size_t by, int nrc);
  2147. typedef void (*ggml_gemv_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
  2148. const void * GGML_RESTRICT y, int nr, int nc);
  2149. typedef void (*ggml_gemm_t) (int n, float * GGML_RESTRICT s, size_t bs, const void * GGML_RESTRICT x,
  2150. const void * GGML_RESTRICT y, int nr, int nc);
  2151. typedef struct {
  2152. const char * type_name;
  2153. int64_t blck_size;
  2154. int64_t blck_size_interleave; // interleave elements in blocks
  2155. size_t type_size;
  2156. bool is_quantized;
  2157. ggml_to_float_t to_float;
  2158. ggml_from_float_t from_float;
  2159. ggml_from_float_t from_float_ref;
  2160. ggml_from_float_to_mat_t from_float_to_mat;
  2161. ggml_vec_dot_t vec_dot;
  2162. enum ggml_type vec_dot_type;
  2163. int64_t nrows; // number of rows to process simultaneously
  2164. int64_t ncols; // number of columns to process simultaneously
  2165. ggml_gemv_t gemv;
  2166. ggml_gemm_t gemm;
  2167. } ggml_type_traits_t;
  2168. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  2169. #ifdef __cplusplus
  2170. }
  2171. #endif