convert_hf_to_gguf.py 505 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  448. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  449. # we don't need these
  450. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  451. continue
  452. old_dtype = data_torch.dtype
  453. # convert any unsupported data types to float32
  454. if data_torch.dtype not in (torch.float16, torch.float32):
  455. data_torch = data_torch.to(torch.float32)
  456. # use the first number-like part of the tensor name as the block id
  457. bid = None
  458. for part in name.split("."):
  459. if part.isdecimal():
  460. bid = int(part)
  461. break
  462. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  463. # TODO: why do we squeeze here?
  464. # data = data_torch.squeeze().numpy()
  465. data = data_torch.numpy()
  466. n_dims = len(data.shape)
  467. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  468. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  469. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  470. data_qtype = gguf.GGMLQuantizationType.F32
  471. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  472. # Some tensor types are always in float32
  473. if data_qtype is False and (
  474. any(
  475. self.match_model_tensor_name(new_name, key, bid)
  476. for key in (
  477. gguf.MODEL_TENSOR.FFN_GATE_INP,
  478. gguf.MODEL_TENSOR.POS_EMBD,
  479. gguf.MODEL_TENSOR.TOKEN_TYPES,
  480. gguf.MODEL_TENSOR.SSM_CONV1D,
  481. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  482. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  483. gguf.MODEL_TENSOR.TIME_MIX_W1,
  484. gguf.MODEL_TENSOR.TIME_MIX_W2,
  485. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  486. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  487. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  488. gguf.MODEL_TENSOR.POSNET_NORM1,
  489. gguf.MODEL_TENSOR.POSNET_NORM2,
  490. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  491. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  492. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  493. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  494. )
  495. )
  496. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  497. ):
  498. data_qtype = gguf.GGMLQuantizationType.F32
  499. if data_qtype is False and any(
  500. self.match_model_tensor_name(new_name, key, bid)
  501. for key in (
  502. gguf.MODEL_TENSOR.TOKEN_EMBD,
  503. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  504. gguf.MODEL_TENSOR.OUTPUT,
  505. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  506. gguf.MODEL_TENSOR.LAUREL_L,
  507. gguf.MODEL_TENSOR.LAUREL_R,
  508. )
  509. ):
  510. if self.ftype in (
  511. gguf.LlamaFileType.MOSTLY_TQ1_0,
  512. gguf.LlamaFileType.MOSTLY_TQ2_0,
  513. ):
  514. # TODO: use Q4_K and Q6_K
  515. data_qtype = gguf.GGMLQuantizationType.F16
  516. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  517. if isinstance(data_qtype, bool):
  518. if self.ftype == gguf.LlamaFileType.ALL_F32:
  519. data_qtype = gguf.GGMLQuantizationType.F32
  520. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  521. data_qtype = gguf.GGMLQuantizationType.F16
  522. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  523. data_qtype = gguf.GGMLQuantizationType.BF16
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  525. data_qtype = gguf.GGMLQuantizationType.Q8_0
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  527. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  529. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  530. else:
  531. raise ValueError(f"Unknown file type: {self.ftype.name}")
  532. try:
  533. data = gguf.quants.quantize(data, data_qtype)
  534. except gguf.QuantError as e:
  535. logger.warning("%s, %s", e, "falling back to F16")
  536. data_qtype = gguf.GGMLQuantizationType.F16
  537. data = gguf.quants.quantize(data, data_qtype)
  538. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  539. # reverse shape to make it similar to the internal ggml dimension order
  540. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  541. # n_dims is implicit in the shape
  542. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  543. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  544. def set_type(self):
  545. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  546. def prepare_metadata(self, vocab_only: bool):
  547. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  548. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  549. # If we are using HF model id, set the metadata name to the model id
  550. if self.remote_hf_model_id:
  551. self.metadata.name = self.remote_hf_model_id
  552. # Fallback to model directory name if metadata name is still missing
  553. if self.metadata.name is None:
  554. self.metadata.name = self.dir_model.name
  555. # Generate parameter weight class (useful for leader boards) if not yet determined
  556. if self.metadata.size_label is None and total_params > 0:
  557. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  558. self.set_type()
  559. logger.info("Set meta model")
  560. self.metadata.set_gguf_meta_model(self.gguf_writer)
  561. logger.info("Set model parameters")
  562. self.set_gguf_parameters()
  563. logger.info("Set model quantization version")
  564. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  565. def write_vocab(self):
  566. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  567. def write(self):
  568. self.prepare_tensors()
  569. self.prepare_metadata(vocab_only=False)
  570. self.gguf_writer.write_header_to_file(path=self.fname_out)
  571. self.gguf_writer.write_kv_data_to_file()
  572. self.gguf_writer.write_tensors_to_file(progress=True)
  573. self.gguf_writer.close()
  574. @staticmethod
  575. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  576. part_names: list[str] = []
  577. for filename in os.listdir(dir_model):
  578. if filename.startswith(prefix) and filename.endswith(suffix):
  579. part_names.append(filename)
  580. part_names.sort()
  581. return part_names
  582. @staticmethod
  583. def load_hparams(dir_model: Path, is_mistral_format: bool):
  584. if is_mistral_format:
  585. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  586. config = json.load(f)
  587. return config
  588. try:
  589. # for security reason, we don't allow loading remote code by default
  590. # if a model need remote code, we will fallback to config.json
  591. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  592. except Exception as e:
  593. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  594. logger.warning("Trying to load config.json instead")
  595. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  596. config = json.load(f)
  597. if "llm_config" in config:
  598. # rename for InternVL
  599. config["text_config"] = config["llm_config"]
  600. if "lm_config" in config:
  601. # rename for GlmASR
  602. config["text_config"] = config["lm_config"]
  603. if "thinker_config" in config:
  604. # rename for Qwen2.5-Omni
  605. config["text_config"] = config["thinker_config"]["text_config"]
  606. if "lfm" in config:
  607. # rename for LFM2-Audio
  608. config["text_config"] = config["lfm"]
  609. return config
  610. @classmethod
  611. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  612. assert names
  613. def func(modelcls: AnyModel) -> AnyModel:
  614. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  615. for name in names:
  616. cls._model_classes[model_type][name] = modelcls
  617. return modelcls
  618. return func
  619. @classmethod
  620. def print_registered_models(cls):
  621. for model_type, model_classes in cls._model_classes.items():
  622. logger.error(f"{model_type.name} models:")
  623. for name in sorted(model_classes.keys()):
  624. logger.error(f" - {name}")
  625. @classmethod
  626. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  627. try:
  628. return cls._model_classes[model_type][arch]
  629. except KeyError:
  630. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  631. class TextModel(ModelBase):
  632. model_type = ModelType.TEXT
  633. hf_arch: str
  634. def __init__(self, *args, **kwargs):
  635. super().__init__(*args, **kwargs)
  636. if not self.is_mistral_format:
  637. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  638. else:
  639. self.hf_arch = ""
  640. if "text_config" in self.hparams:
  641. # move the text_config to the root level
  642. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  643. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  644. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  645. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  646. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  647. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  648. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  649. self.rope_parameters["rope_theta"] = rope_theta
  650. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  651. self.rope_parameters["rope_type"] = rope_type
  652. @classmethod
  653. def __init_subclass__(cls):
  654. # can't use an abstract property, because overriding it without type errors
  655. # would require using decorated functions instead of simply defining the property
  656. if "model_arch" not in cls.__dict__:
  657. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  658. def set_vocab(self):
  659. self._set_vocab_gpt2()
  660. def prepare_metadata(self, vocab_only: bool):
  661. super().prepare_metadata(vocab_only=vocab_only)
  662. total_params = self.gguf_writer.get_total_parameter_count()[0]
  663. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  664. output_type: str = self.ftype.name.partition("_")[2]
  665. # Filename Output
  666. if self.fname_out.is_dir():
  667. # Generate default filename based on model specification and available metadata
  668. if not vocab_only:
  669. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  670. else:
  671. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  672. # Use the default filename
  673. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  674. else:
  675. # Output path is a custom defined templated filename
  676. # Note: `not is_dir()` is used because `.is_file()` will not detect
  677. # file template strings as it doesn't actually exist as a file
  678. # Process templated file name with the output ftype, useful with the "auto" ftype
  679. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  680. logger.info("Set model tokenizer")
  681. self.set_vocab()
  682. def set_gguf_parameters(self):
  683. self.gguf_writer.add_block_count(self.block_count)
  684. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  685. self.gguf_writer.add_context_length(n_ctx)
  686. logger.info(f"gguf: context length = {n_ctx}")
  687. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  688. self.gguf_writer.add_embedding_length(n_embd)
  689. logger.info(f"gguf: embedding length = {n_embd}")
  690. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  691. self.gguf_writer.add_feed_forward_length(n_ff)
  692. logger.info(f"gguf: feed forward length = {n_ff}")
  693. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  694. self.gguf_writer.add_head_count(n_head)
  695. logger.info(f"gguf: head count = {n_head}")
  696. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  697. self.gguf_writer.add_head_count_kv(n_head_kv)
  698. logger.info(f"gguf: key-value head count = {n_head_kv}")
  699. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  700. if (rope_type := rope_params.get("rope_type")) is not None:
  701. rope_factor = rope_params.get("factor")
  702. rope_gguf_type = gguf.RopeScalingType.NONE
  703. if rope_type == "linear" and rope_factor is not None:
  704. rope_gguf_type = gguf.RopeScalingType.LINEAR
  705. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  706. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  707. elif rope_type == "yarn" and rope_factor is not None:
  708. rope_gguf_type = gguf.RopeScalingType.YARN
  709. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  710. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  711. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  712. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  713. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  714. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  715. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  716. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  717. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  718. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  719. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  720. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  721. elif rope_type == "su" or rope_type == "longrope":
  722. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  723. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  724. elif rope_type == "dynamic":
  725. # HunYuan, handled in model class
  726. pass
  727. elif rope_type.lower() == "llama3":
  728. # Handled in generate_extra_tensors
  729. pass
  730. else:
  731. logger.warning(f"Unknown RoPE type: {rope_type}")
  732. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  733. if "mrope_section" in self.rope_parameters:
  734. mrope_section = self.rope_parameters["mrope_section"]
  735. # Pad to 4 dimensions [time, height, width, extra]
  736. while len(mrope_section) < 4:
  737. mrope_section.append(0)
  738. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  739. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  740. if (rope_theta := rope_params.get("rope_theta")) is not None:
  741. self.gguf_writer.add_rope_freq_base(rope_theta)
  742. logger.info(f"gguf: rope theta = {rope_theta}")
  743. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  744. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  745. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  746. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  747. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  748. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  749. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  750. self.gguf_writer.add_expert_count(n_experts)
  751. logger.info(f"gguf: expert count = {n_experts}")
  752. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  753. self.gguf_writer.add_expert_used_count(n_experts_used)
  754. logger.info(f"gguf: experts used count = {n_experts_used}")
  755. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  756. self.gguf_writer.add_expert_group_count(n_expert_groups)
  757. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  758. if (n_group_used := self.hparams.get("topk_group")) is not None:
  759. self.gguf_writer.add_expert_group_used_count(n_group_used)
  760. logger.info(f"gguf: expert groups used count = {n_group_used}")
  761. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  762. if score_func == "sigmoid":
  763. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  764. elif score_func == "softmax":
  765. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  766. else:
  767. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  768. logger.info(f"gguf: expert score gating function = {score_func}")
  769. if (head_dim := self.hparams.get("head_dim")) is not None:
  770. self.gguf_writer.add_key_length(head_dim)
  771. self.gguf_writer.add_value_length(head_dim)
  772. self.gguf_writer.add_file_type(self.ftype)
  773. logger.info(f"gguf: file type = {self.ftype}")
  774. def write_vocab(self):
  775. if len(self.gguf_writer.tensors) != 1:
  776. raise ValueError('Splitting the vocabulary is not supported')
  777. self.prepare_metadata(vocab_only=True)
  778. self.gguf_writer.write_header_to_file(path=self.fname_out)
  779. self.gguf_writer.write_kv_data_to_file()
  780. self.gguf_writer.close()
  781. def does_token_look_special(self, token: str | bytes) -> bool:
  782. if isinstance(token, (bytes, bytearray)):
  783. token_text = token.decode(encoding="utf-8")
  784. elif isinstance(token, memoryview):
  785. token_text = token.tobytes().decode(encoding="utf-8")
  786. else:
  787. token_text = token
  788. # Some models mark some added tokens which ought to be control tokens as not special.
  789. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  790. seems_special = token_text in (
  791. "<pad>", # deepseek-coder
  792. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  793. )
  794. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  795. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  796. # TODO: should these be marked as UNUSED instead? (maybe not)
  797. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  798. return seems_special
  799. # used for GPT-2 BPE and WordPiece vocabs
  800. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  801. tokens: list[str] = []
  802. toktypes: list[int] = []
  803. from transformers import AutoTokenizer
  804. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  805. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  806. assert max(tokenizer.vocab.values()) < vocab_size
  807. tokpre = self.get_vocab_base_pre(tokenizer)
  808. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  809. added_vocab = tokenizer.get_added_vocab()
  810. added_tokens_decoder = tokenizer.added_tokens_decoder
  811. for i in range(vocab_size):
  812. if i not in reverse_vocab:
  813. tokens.append(f"[PAD{i}]")
  814. toktypes.append(gguf.TokenType.UNUSED)
  815. else:
  816. token: str = reverse_vocab[i]
  817. if token in added_vocab:
  818. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  819. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  820. if not added_tokens_decoder[i].normalized:
  821. previous_token = token
  822. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  823. if previous_token != token:
  824. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  825. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  826. toktypes.append(gguf.TokenType.CONTROL)
  827. else:
  828. # NOTE: this was added for Gemma.
  829. # Encoding and decoding the tokens above isn't sufficient for this case.
  830. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  831. toktypes.append(gguf.TokenType.USER_DEFINED)
  832. else:
  833. toktypes.append(gguf.TokenType.NORMAL)
  834. tokens.append(token)
  835. return tokens, toktypes, tokpre
  836. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  837. # do not modify it manually!
  838. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  839. # Marker: Start get_vocab_base_pre
  840. def get_vocab_base_pre(self, tokenizer) -> str:
  841. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  842. # is specific for the BPE pre-tokenizer used by the model
  843. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  844. # use in llama.cpp to implement the same pre-tokenizer
  845. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  846. chktok = tokenizer.encode(chktxt)
  847. chkhsh = sha256(str(chktok).encode()).hexdigest()
  848. logger.debug(f"chktok: {chktok}")
  849. logger.debug(f"chkhsh: {chkhsh}")
  850. res = None
  851. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  852. # or pull the latest version of the model from Huggingface
  853. # don't edit the hashes manually!
  854. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  855. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  856. res = "chatglm-bpe"
  857. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  858. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  859. res = "chatglm-bpe"
  860. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  861. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  862. res = "glm4"
  863. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  864. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  865. res = "glm4"
  866. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  867. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  868. res = "minerva-7b"
  869. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  870. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  871. res = "hunyuan"
  872. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  873. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  874. res = "hunyuan-dense"
  875. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  876. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  877. res = "falcon-h1"
  878. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  879. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  880. res = "falcon-h1"
  881. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  882. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  883. res = "falcon-h1"
  884. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  885. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  886. res = "falcon-h1"
  887. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  888. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  889. res = "kimi-k2"
  890. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  891. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  892. res = "qwen2"
  893. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  894. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  895. res = "grok-2"
  896. if chkhsh == "b3d1dd861f1d4c5c0d2569ce36baf3f90fe8a102db3de50dd71ff860d91be3df":
  897. # ref: https://huggingface.co/aari1995/German_Semantic_V3
  898. res = "jina-v2-de"
  899. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  900. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  901. res = "llama-bpe"
  902. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  903. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  904. res = "deepseek-llm"
  905. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  906. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  907. res = "deepseek-coder"
  908. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  909. # ref: https://huggingface.co/tiiuae/falcon-7b
  910. res = "falcon"
  911. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  912. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  913. res = "bert-bge"
  914. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  915. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  916. res = "falcon3"
  917. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  918. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  919. res = "bert-bge-large"
  920. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  921. # ref: https://huggingface.co/mosaicml/mpt-7b
  922. res = "mpt"
  923. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  924. # ref: https://huggingface.co/bigcode/starcoder2-3b
  925. res = "starcoder"
  926. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  927. # ref: https://huggingface.co/openai-community/gpt2
  928. res = "gpt-2"
  929. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  930. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  931. res = "stablelm2"
  932. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  933. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  934. res = "refact"
  935. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  936. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  937. res = "command-r"
  938. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  939. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  940. res = "qwen2"
  941. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  942. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  943. res = "olmo"
  944. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  945. # ref: https://huggingface.co/databricks/dbrx-base
  946. res = "dbrx"
  947. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  948. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  949. res = "jina-v1-en"
  950. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  951. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  952. res = "jina-v2-en"
  953. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  954. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  955. res = "jina-v2-es"
  956. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  957. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  958. res = "jina-v2-de"
  959. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  960. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  961. res = "smaug-bpe"
  962. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  963. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  964. res = "poro-chat"
  965. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  966. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  967. res = "jina-v2-code"
  968. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  969. # ref: https://huggingface.co/LumiOpen/Viking-7B
  970. res = "viking"
  971. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  972. # ref: https://huggingface.co/core42/jais-13b
  973. res = "jais"
  974. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  975. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  976. res = "codeshell"
  977. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  978. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  979. res = "tekken"
  980. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  981. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  982. res = "smollm"
  983. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  984. # ref: https://huggingface.co/bigscience/bloom
  985. res = "bloom"
  986. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  987. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  988. res = "gpt3-finnish"
  989. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  990. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  991. res = "exaone"
  992. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  993. # ref: https://huggingface.co/microsoft/phi-2
  994. res = "phi-2"
  995. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  996. # ref: https://huggingface.co/facebook/chameleon-7b
  997. res = "chameleon"
  998. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  999. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  1000. res = "roberta-bpe"
  1001. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  1002. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1003. res = "gigachat"
  1004. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1005. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1006. res = "megrez"
  1007. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1008. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1009. res = "deepseek-v3"
  1010. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1011. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1012. res = "deepseek-r1-qwen"
  1013. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1014. # ref: https://huggingface.co/Xenova/gpt-4o
  1015. res = "gpt-4o"
  1016. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1017. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1018. res = "superbpe"
  1019. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1020. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1021. res = "trillion"
  1022. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1023. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1024. res = "bailingmoe"
  1025. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1026. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1027. res = "llama4"
  1028. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1029. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1030. res = "pixtral"
  1031. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1032. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1033. res = "seed-coder"
  1034. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1035. # ref: https://huggingface.co/skt/A.X-4.0
  1036. res = "a.x-4.0"
  1037. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1038. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1039. res = "midm-2.0"
  1040. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1041. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1042. res = "lfm2"
  1043. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1044. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1045. res = "exaone4"
  1046. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1047. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1048. res = "mellum"
  1049. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1050. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1051. res = "modern-bert"
  1052. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1053. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1054. res = "afmoe"
  1055. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1056. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1057. res = "bailingmoe2"
  1058. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1059. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1060. res = "granite-docling"
  1061. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1062. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1063. res = "minimax-m2"
  1064. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1065. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1066. res = "kormo"
  1067. if chkhsh == "9d70134b369a70e5735009b6de918f7581b5211f7c074d1f89f753aea8248af1":
  1068. # ref: https://huggingface.co/tencent/Youtu-LLM-2B
  1069. res = "youtu"
  1070. if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
  1071. # ref: https://huggingface.co/upstage/Solar-Open-100B
  1072. res = "solar-open"
  1073. if res is None:
  1074. logger.warning("\n")
  1075. logger.warning("**************************************************************************************")
  1076. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1077. logger.warning("** There are 2 possible reasons for this:")
  1078. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1079. logger.warning("** - the pre-tokenization config has changed upstream")
  1080. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1081. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1082. logger.warning("**")
  1083. logger.warning(f"** chkhsh: {chkhsh}")
  1084. logger.warning("**************************************************************************************")
  1085. logger.warning("\n")
  1086. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1087. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1088. logger.debug(f"chkhsh: {chkhsh}")
  1089. return res
  1090. # Marker: End get_vocab_base_pre
  1091. def _set_vocab_none(self) -> None:
  1092. self.gguf_writer.add_tokenizer_model("none")
  1093. def _set_vocab_gpt2(self) -> None:
  1094. tokens, toktypes, tokpre = self.get_vocab_base()
  1095. self.gguf_writer.add_tokenizer_model("gpt2")
  1096. self.gguf_writer.add_tokenizer_pre(tokpre)
  1097. self.gguf_writer.add_token_list(tokens)
  1098. self.gguf_writer.add_token_types(toktypes)
  1099. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1100. special_vocab.add_to_gguf(self.gguf_writer)
  1101. def _set_vocab_qwen(self):
  1102. dir_model = self.dir_model
  1103. hparams = self.hparams
  1104. tokens: list[str] = []
  1105. toktypes: list[int] = []
  1106. from transformers import AutoTokenizer
  1107. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1108. vocab_size = hparams["vocab_size"]
  1109. assert max(tokenizer.get_vocab().values()) < vocab_size
  1110. tokpre = self.get_vocab_base_pre(tokenizer)
  1111. merges = []
  1112. vocab = {}
  1113. mergeable_ranks = tokenizer.mergeable_ranks
  1114. for token, rank in mergeable_ranks.items():
  1115. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1116. if len(token) == 1:
  1117. continue
  1118. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1119. assert len(merged) == 2
  1120. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1121. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1122. added_vocab = tokenizer.special_tokens
  1123. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1124. for i in range(vocab_size):
  1125. if i not in reverse_vocab:
  1126. tokens.append(f"[PAD{i}]")
  1127. toktypes.append(gguf.TokenType.UNUSED)
  1128. elif reverse_vocab[i] in added_vocab:
  1129. tokens.append(reverse_vocab[i])
  1130. toktypes.append(gguf.TokenType.CONTROL)
  1131. else:
  1132. tokens.append(reverse_vocab[i])
  1133. toktypes.append(gguf.TokenType.NORMAL)
  1134. self.gguf_writer.add_tokenizer_model("gpt2")
  1135. self.gguf_writer.add_tokenizer_pre(tokpre)
  1136. self.gguf_writer.add_token_list(tokens)
  1137. self.gguf_writer.add_token_types(toktypes)
  1138. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1139. special_vocab.merges = merges
  1140. # only add special tokens when they were not already loaded from config.json
  1141. if len(special_vocab.special_token_ids) == 0:
  1142. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1143. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1144. # this one is usually not in config.json anyway
  1145. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1146. special_vocab.add_to_gguf(self.gguf_writer)
  1147. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1148. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1149. self.gguf_writer.add_tokenizer_model("llama")
  1150. self.gguf_writer.add_tokenizer_pre("default")
  1151. self.gguf_writer.add_token_list(tokens)
  1152. self.gguf_writer.add_token_scores(scores)
  1153. self.gguf_writer.add_token_types(toktypes)
  1154. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1155. special_vocab.add_to_gguf(self.gguf_writer)
  1156. def _create_vocab_sentencepiece(self):
  1157. from sentencepiece import SentencePieceProcessor
  1158. tokenizer_path = self.dir_model / 'tokenizer.model'
  1159. if not tokenizer_path.is_file():
  1160. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1161. tokenizer = SentencePieceProcessor()
  1162. tokenizer.LoadFromFile(str(tokenizer_path))
  1163. vocab_size = self.find_hparam([
  1164. "vocab_size_per_layer_input", # gemma3n
  1165. "vocab_size",
  1166. ], optional=True) or tokenizer.vocab_size()
  1167. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1168. scores: list[float] = [-10000.0] * vocab_size
  1169. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1170. for token_id in range(tokenizer.vocab_size()):
  1171. if token_id >= vocab_size:
  1172. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1173. break
  1174. piece = tokenizer.IdToPiece(token_id)
  1175. text = piece.encode("utf-8")
  1176. score = tokenizer.GetScore(token_id)
  1177. toktype = SentencePieceTokenTypes.NORMAL
  1178. if tokenizer.IsUnknown(token_id):
  1179. toktype = SentencePieceTokenTypes.UNKNOWN
  1180. elif tokenizer.IsControl(token_id):
  1181. toktype = SentencePieceTokenTypes.CONTROL
  1182. elif tokenizer.IsUnused(token_id):
  1183. toktype = SentencePieceTokenTypes.UNUSED
  1184. elif tokenizer.IsByte(token_id):
  1185. toktype = SentencePieceTokenTypes.BYTE
  1186. tokens[token_id] = text
  1187. scores[token_id] = score
  1188. toktypes[token_id] = toktype
  1189. added_tokens_file = self.dir_model / 'added_tokens.json'
  1190. if added_tokens_file.is_file():
  1191. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1192. added_tokens_json = json.load(f)
  1193. for key in added_tokens_json:
  1194. token_id = added_tokens_json[key]
  1195. if token_id >= vocab_size:
  1196. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1197. continue
  1198. tokens[token_id] = key.encode("utf-8")
  1199. scores[token_id] = -1000.0
  1200. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1201. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1202. if tokenizer_config_file.is_file():
  1203. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1204. tokenizer_config_json = json.load(f)
  1205. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1206. for token_id, token_data in added_tokens_decoder.items():
  1207. token_id = int(token_id)
  1208. token: str = token_data["content"]
  1209. if token_id >= vocab_size:
  1210. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1211. continue
  1212. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1213. if tokens[token_id] != token.encode("utf-8"):
  1214. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1215. if token_data.get("special") or self.does_token_look_special(token):
  1216. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1217. else:
  1218. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1219. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1220. scores[token_id] = -1000.0
  1221. tokens[token_id] = token.encode("utf-8")
  1222. if vocab_size > len(tokens):
  1223. pad_count = vocab_size - len(tokens)
  1224. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1225. for i in range(1, pad_count + 1):
  1226. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1227. scores.append(-1000.0)
  1228. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1229. return tokens, scores, toktypes
  1230. def _set_vocab_llama_hf(self):
  1231. vocab = gguf.LlamaHfVocab(self.dir_model)
  1232. tokens = []
  1233. scores = []
  1234. toktypes = []
  1235. for text, score, toktype in vocab.all_tokens():
  1236. tokens.append(text)
  1237. scores.append(score)
  1238. toktypes.append(toktype)
  1239. assert len(tokens) == vocab.vocab_size
  1240. self.gguf_writer.add_tokenizer_model("llama")
  1241. self.gguf_writer.add_tokenizer_pre("default")
  1242. self.gguf_writer.add_token_list(tokens)
  1243. self.gguf_writer.add_token_scores(scores)
  1244. self.gguf_writer.add_token_types(toktypes)
  1245. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1246. special_vocab.add_to_gguf(self.gguf_writer)
  1247. def _set_vocab_rwkv_world(self):
  1248. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1249. vocab_size = self.hparams.get("vocab_size", 65536)
  1250. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1251. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1252. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1253. lines = f.readlines()
  1254. for line in lines:
  1255. parts = line.split(' ')
  1256. assert len(parts) >= 3
  1257. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1258. token = token.encode("utf-8") if isinstance(token, str) else token
  1259. assert isinstance(token, bytes)
  1260. assert len(token) == token_len
  1261. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1262. tokens.append(token_text.encode("utf-8"))
  1263. toktypes.append(gguf.TokenType.NORMAL)
  1264. remainder = vocab_size - len(tokens)
  1265. assert remainder >= 0
  1266. for i in range(len(tokens), vocab_size):
  1267. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1268. toktypes.append(gguf.TokenType.UNUSED)
  1269. self.gguf_writer.add_tokenizer_model("rwkv")
  1270. self.gguf_writer.add_token_list(tokens)
  1271. self.gguf_writer.add_token_types(toktypes)
  1272. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1273. if special_vocab.chat_template is None:
  1274. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1275. if template_path.is_file():
  1276. with open(template_path, "r", encoding="utf-8") as f:
  1277. template = f.read()
  1278. else:
  1279. template = "rwkv-world"
  1280. special_vocab.chat_template = template
  1281. # hack: Add '\n\n' as the EOT token to make it chat normally
  1282. special_vocab._set_special_token("eot", 261)
  1283. # hack: Override these as they have already been set (incorrectly)
  1284. special_vocab.special_token_ids["bos"] = 0
  1285. special_vocab.special_token_ids["eos"] = 0
  1286. special_vocab.add_to_gguf(self.gguf_writer)
  1287. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1288. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1289. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1290. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1291. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1292. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1293. assert field # tokenizer model
  1294. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1295. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1296. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1297. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1298. assert field # token list
  1299. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1300. if model_name == "llama-spm":
  1301. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1302. assert field # token scores
  1303. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1304. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1305. assert field # token types
  1306. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1307. if model_name != "llama-spm":
  1308. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1309. assert field # token merges
  1310. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1311. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1312. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1313. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1314. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1315. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1316. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1317. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1318. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1319. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1320. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1321. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1322. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1323. def _try_set_pooling_type(self) -> None:
  1324. # get pooling path
  1325. pooling_path = None
  1326. module_path = self.dir_model / "modules.json"
  1327. if module_path.is_file():
  1328. with open(module_path, encoding="utf-8") as f:
  1329. modules = json.load(f)
  1330. for mod in modules:
  1331. if mod["type"] == "sentence_transformers.models.Pooling":
  1332. pooling_path = mod["path"]
  1333. break
  1334. # get pooling type
  1335. if pooling_path is not None:
  1336. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1337. pooling = json.load(f)
  1338. if pooling["pooling_mode_mean_tokens"]:
  1339. pooling_type = gguf.PoolingType.MEAN
  1340. elif pooling["pooling_mode_cls_token"]:
  1341. pooling_type = gguf.PoolingType.CLS
  1342. elif pooling["pooling_mode_lasttoken"]:
  1343. pooling_type = gguf.PoolingType.LAST
  1344. else:
  1345. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1346. self.gguf_writer.add_pooling_type(pooling_type)
  1347. def _set_vocab_glmedge(self):
  1348. from transformers import AutoTokenizer
  1349. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1350. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1351. tokens, toktypes, tokpre = self.get_vocab_base()
  1352. self.gguf_writer.add_tokenizer_model("gpt2")
  1353. self.gguf_writer.add_tokenizer_pre(tokpre)
  1354. self.gguf_writer.add_token_list(tokens)
  1355. self.gguf_writer.add_token_types(toktypes)
  1356. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1357. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1358. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1359. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1360. special_vocab.add_to_gguf(self.gguf_writer)
  1361. def _set_vocab_interns1(self):
  1362. tokens: list[str] = []
  1363. toktypes: list[int] = []
  1364. from transformers import AutoTokenizer
  1365. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1366. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1367. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1368. assert max(vocab.values()) < vocab_size
  1369. tokpre = self.get_vocab_base_pre(tokenizer)
  1370. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1371. added_vocab = tokenizer.get_added_vocab()
  1372. added_tokens_decoder = tokenizer.added_tokens_decoder
  1373. for i in range(vocab_size):
  1374. if i not in reverse_vocab:
  1375. tokens.append(f"[PAD{i}]")
  1376. toktypes.append(gguf.TokenType.UNUSED)
  1377. else:
  1378. token: str = reverse_vocab[i]
  1379. if token in added_vocab:
  1380. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1381. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1382. if not added_tokens_decoder[i].normalized:
  1383. previous_token = token
  1384. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1385. if previous_token != token:
  1386. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1387. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1388. toktypes.append(gguf.TokenType.CONTROL)
  1389. else:
  1390. toktypes.append(gguf.TokenType.USER_DEFINED)
  1391. else:
  1392. toktypes.append(gguf.TokenType.NORMAL)
  1393. tokens.append(token)
  1394. self.gguf_writer.add_tokenizer_model("gpt2")
  1395. self.gguf_writer.add_tokenizer_pre(tokpre)
  1396. self.gguf_writer.add_token_list(tokens)
  1397. self.gguf_writer.add_token_types(toktypes)
  1398. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1399. special_vocab._set_special_token("bos", 151643)
  1400. special_vocab.add_to_gguf(self.gguf_writer)
  1401. def _set_vocab_mistral(self):
  1402. if not _mistral_common_installed:
  1403. raise ImportError(_mistral_import_error_msg)
  1404. vocab = MistralVocab(self.dir_model)
  1405. logger.info(
  1406. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1407. )
  1408. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1409. tokens = []
  1410. scores = []
  1411. toktypes = []
  1412. for text, score, toktype in vocab.all_tokens():
  1413. tokens.append(text)
  1414. scores.append(score)
  1415. toktypes.append(toktype)
  1416. assert len(tokens) == vocab.vocab_size, (
  1417. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1418. )
  1419. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1420. self.gguf_writer.add_tokenizer_pre("tekken")
  1421. self.gguf_writer.add_token_merges(
  1422. vocab.extract_vocab_merges_from_model()
  1423. )
  1424. logger.info(
  1425. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1426. )
  1427. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1428. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1429. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1430. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1431. self.gguf_writer.add_token_list(tokens)
  1432. self.gguf_writer.add_token_scores(scores)
  1433. self.gguf_writer.add_token_types(toktypes)
  1434. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1435. self.gguf_writer.add_add_bos_token(True)
  1436. self.gguf_writer.add_add_eos_token(False)
  1437. local_template_file_path = self.dir_model / "chat_template.jinja"
  1438. if self.is_mistral_format and local_template_file_path.is_file():
  1439. # Ministral-3 and other new Mistral models come with chat templates.
  1440. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1441. logger.info("Using an existing Mistral local chat template.")
  1442. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1443. template = f.read()
  1444. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1445. template_dir = Path(__file__).parent / "models/templates/"
  1446. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1447. if self.is_mistral_format:
  1448. logger.info(
  1449. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1450. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1451. )
  1452. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1453. else:
  1454. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1455. template = None
  1456. if template is not None:
  1457. self.gguf_writer.add_chat_template(template)
  1458. def _set_vocab_plamo(self):
  1459. # PLaMo models use a custom tokenizer with a .jsonl file
  1460. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  1461. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  1462. if not tokenizer_jsonl_path.is_file():
  1463. raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
  1464. # Load tokenizer config
  1465. with open(tokenizer_config_path, "r", encoding="utf-8") as f:
  1466. tokenizer_config = json.load(f)
  1467. # Load tokens from JSONL file (actually a list format)
  1468. tokens = []
  1469. scores = []
  1470. toktypes = []
  1471. with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
  1472. for line_num, line in enumerate(f):
  1473. if line.strip():
  1474. token_data = json.loads(line)
  1475. # Format: [token, score, type, ?, ?, ?, ?]
  1476. token = token_data[0].encode("utf-8")
  1477. score = float(token_data[1])
  1478. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  1479. tokens.append(token)
  1480. scores.append(score)
  1481. if token_type_str == "UNKNOWN":
  1482. toktypes.append(gguf.TokenType.UNKNOWN)
  1483. elif token_type_str == "CONTROL":
  1484. toktypes.append(gguf.TokenType.CONTROL)
  1485. elif token_type_str == "BYTE":
  1486. toktypes.append(gguf.TokenType.BYTE)
  1487. else:
  1488. token_str = token_data[0]
  1489. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  1490. toktypes.append(gguf.TokenType.CONTROL)
  1491. else:
  1492. toktypes.append(gguf.TokenType.NORMAL)
  1493. vocab_size = self.hparams["vocab_size"]
  1494. if vocab_size > len(tokens):
  1495. pad_count = vocab_size - len(tokens)
  1496. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1497. for i in range(1, pad_count + 1):
  1498. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1499. scores.append(-1000.0)
  1500. toktypes.append(gguf.TokenType.UNUSED)
  1501. self.gguf_writer.add_tokenizer_model("plamo2")
  1502. self.gguf_writer.add_tokenizer_pre("default")
  1503. self.gguf_writer.add_token_list(tokens)
  1504. self.gguf_writer.add_token_scores(scores)
  1505. self.gguf_writer.add_token_types(toktypes)
  1506. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  1507. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  1508. self.gguf_writer.add_bos_token_id(token_id)
  1509. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  1510. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  1511. self.gguf_writer.add_eos_token_id(token_id)
  1512. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  1513. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  1514. self.gguf_writer.add_pad_token_id(token_id)
  1515. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  1516. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  1517. self.gguf_writer.add_sep_token_id(token_id)
  1518. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  1519. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  1520. self.gguf_writer.add_unk_token_id(token_id)
  1521. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  1522. self.gguf_writer.add_eot_token_id(4)
  1523. self.gguf_writer.add_add_space_prefix(False)
  1524. class MmprojModel(ModelBase):
  1525. model_type = ModelType.MMPROJ
  1526. model_arch = gguf.MODEL_ARCH.MMPROJ
  1527. preprocessor_config: dict[str, Any]
  1528. global_config: dict[str, Any]
  1529. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1530. has_vision_encoder: bool = True # by default
  1531. has_audio_encoder: bool = False
  1532. # for models having multiple encoders, we need to separate their hparams
  1533. hparams_vision: dict[str, Any] | None = None
  1534. hparams_audio: dict[str, Any] | None = None
  1535. def __init__(self, *args, **kwargs):
  1536. super().__init__(*args, **kwargs)
  1537. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1538. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1539. # get n_embd of the text model
  1540. if not self.is_mistral_format:
  1541. if "text_config" not in self.hparams:
  1542. self.hparams["text_config"] = {}
  1543. if "audio_config" not in self.hparams:
  1544. self.hparams["audio_config"] = {}
  1545. text_config = {**self.hparams, **self.hparams["text_config"]}
  1546. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1547. else:
  1548. text_config = {
  1549. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1550. }
  1551. self.n_embd_text = text_config.get("hidden_dim", 0)
  1552. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1553. # move vision config to the top level, while preserving the original hparams in global_config
  1554. import copy
  1555. self.global_config = copy.deepcopy(self.hparams)
  1556. self.hparams_vision = self.get_vision_config()
  1557. self.hparams_audio = self.get_audio_config()
  1558. if self.hparams_vision is None and self.hparams_audio is None:
  1559. raise ValueError("vision_config / audio_config not found in hparams")
  1560. # for compat with vision-only models
  1561. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1562. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1563. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1564. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1565. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1566. # load preprocessor config
  1567. self.preprocessor_config = {}
  1568. # prefer preprocessor_config.json if possible
  1569. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1570. if preprocessor_config_path.is_file():
  1571. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1572. self.preprocessor_config = json.load(f)
  1573. # prefer processor_config.json if possible
  1574. processor_config_path = self.dir_model / "processor_config.json"
  1575. if processor_config_path.is_file():
  1576. with open(processor_config_path, "r", encoding="utf-8") as f:
  1577. cfg = json.load(f)
  1578. # move image_processor to root level for compat
  1579. if "image_processor" in cfg:
  1580. cfg = {
  1581. **cfg,
  1582. **cfg["image_processor"],
  1583. }
  1584. # merge configs
  1585. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1586. def get_vision_config(self) -> dict[str, Any] | None:
  1587. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1588. return self.global_config.get(config_name)
  1589. def get_audio_config(self) -> dict[str, Any] | None:
  1590. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1591. return self.global_config.get(mm_config_key)
  1592. def set_type(self):
  1593. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1594. def prepare_metadata(self, vocab_only: bool):
  1595. super().prepare_metadata(vocab_only=vocab_only)
  1596. output_type: str = self.ftype.name.partition("_")[2]
  1597. if self.fname_out.is_dir():
  1598. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1599. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1600. else:
  1601. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1602. def set_gguf_parameters(self):
  1603. self.gguf_writer.add_file_type(self.ftype)
  1604. if self.has_vision_encoder:
  1605. self.gguf_writer.add_clip_has_vision_encoder(True)
  1606. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1607. # vision config
  1608. self.image_size = self.find_vparam(["image_size"])
  1609. self.gguf_writer.add_vision_image_size(self.image_size)
  1610. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1611. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1612. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1613. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1614. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1615. # preprocessor config
  1616. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1617. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1618. self.gguf_writer.add_vision_image_mean(image_mean)
  1619. self.gguf_writer.add_vision_image_std(image_std)
  1620. if self.has_audio_encoder:
  1621. self.gguf_writer.add_clip_has_audio_encoder(True)
  1622. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1623. # audio config
  1624. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1625. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1626. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1627. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1628. if not self.has_vision_encoder and not self.has_audio_encoder:
  1629. raise ValueError("MmprojModel must have either vision or audio encoder")
  1630. def write_vocab(self):
  1631. raise ValueError("MmprojModel does not support vocab writing")
  1632. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1633. assert self.hparams_vision is not None
  1634. return self._find_param(self.hparams_vision, keys, optional)
  1635. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1636. assert self.hparams_audio is not None
  1637. return self._find_param(self.hparams_audio, keys, optional)
  1638. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1639. key = next((k for k in keys if k in obj), None)
  1640. if key is not None:
  1641. return obj[key]
  1642. if optional:
  1643. return None
  1644. raise KeyError(f"could not find any of: {keys}")
  1645. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1646. del bid, name, n_dims # unused
  1647. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1648. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1649. return False
  1650. @ModelBase.register("GPTNeoXForCausalLM")
  1651. class GPTNeoXModel(TextModel):
  1652. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1653. def set_gguf_parameters(self):
  1654. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1655. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1656. self.gguf_writer.add_block_count(self.block_count)
  1657. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1658. self.gguf_writer.add_rope_dimension_count(
  1659. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1660. )
  1661. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1662. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1663. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1664. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1665. del bid # unused
  1666. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1667. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1668. tensors: list[tuple[str, Tensor]] = []
  1669. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1670. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1671. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1672. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1673. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1674. data_torch = torch.cat(
  1675. (
  1676. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1677. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1678. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1679. ),
  1680. dim=0,
  1681. )
  1682. logger.info("re-format attention.linear_qkv.weight")
  1683. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1684. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1685. data_torch = torch.cat(
  1686. (
  1687. qkv_bias[:, 0, :].reshape((n_embed,)),
  1688. qkv_bias[:, 1, :].reshape((n_embed,)),
  1689. qkv_bias[:, 2, :].reshape((n_embed,)),
  1690. ),
  1691. dim=0,
  1692. )
  1693. logger.info("re-format attention.linear_qkv.bias")
  1694. tensors.append((self.map_tensor_name(name), data_torch))
  1695. return tensors
  1696. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1697. class BloomModel(TextModel):
  1698. model_arch = gguf.MODEL_ARCH.BLOOM
  1699. def set_gguf_parameters(self):
  1700. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1701. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1702. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1703. self.gguf_writer.add_embedding_length(n_embed)
  1704. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1705. self.gguf_writer.add_block_count(self.block_count)
  1706. self.gguf_writer.add_head_count(n_head)
  1707. self.gguf_writer.add_head_count_kv(n_head)
  1708. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1709. self.gguf_writer.add_file_type(self.ftype)
  1710. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1711. del bid # unused
  1712. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1713. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1714. name = re.sub(r'transformer\.', '', name)
  1715. tensors: list[tuple[str, Tensor]] = []
  1716. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1717. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1718. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1719. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1720. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1721. data_torch = torch.cat(
  1722. (
  1723. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1724. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1725. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1726. ),
  1727. dim=0,
  1728. )
  1729. logger.info("re-format attention.linear_qkv.weight")
  1730. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1731. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1732. data_torch = torch.cat(
  1733. (
  1734. qkv_bias[:, 0, :].reshape((n_embed,)),
  1735. qkv_bias[:, 1, :].reshape((n_embed,)),
  1736. qkv_bias[:, 2, :].reshape((n_embed,)),
  1737. ),
  1738. dim=0,
  1739. )
  1740. logger.info("re-format attention.linear_qkv.bias")
  1741. tensors.append((self.map_tensor_name(name), data_torch))
  1742. return tensors
  1743. @ModelBase.register("MPTForCausalLM")
  1744. class MPTModel(TextModel):
  1745. model_arch = gguf.MODEL_ARCH.MPT
  1746. def set_vocab(self):
  1747. try:
  1748. self._set_vocab_gpt2()
  1749. except Exception:
  1750. # Fallback for SEA-LION model
  1751. self._set_vocab_sentencepiece()
  1752. self.gguf_writer.add_add_bos_token(False)
  1753. self.gguf_writer.add_pad_token_id(3)
  1754. self.gguf_writer.add_eos_token_id(1)
  1755. self.gguf_writer.add_unk_token_id(0)
  1756. def set_gguf_parameters(self):
  1757. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1758. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1759. self.gguf_writer.add_block_count(self.block_count)
  1760. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1761. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1762. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1763. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1764. self.gguf_writer.add_layer_norm_eps(1e-5)
  1765. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1766. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1767. if self.hparams["attn_config"]["alibi"]:
  1768. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1769. else:
  1770. self.gguf_writer.add_max_alibi_bias(0.0)
  1771. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1772. del bid # unused
  1773. if "scales" in name:
  1774. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1775. new_name = new_name.replace("scales", "act.scales")
  1776. else:
  1777. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1778. return [(new_name, data_torch)]
  1779. @ModelBase.register("OrionForCausalLM")
  1780. class OrionModel(TextModel):
  1781. model_arch = gguf.MODEL_ARCH.ORION
  1782. def set_vocab(self):
  1783. self._set_vocab_sentencepiece()
  1784. def set_gguf_parameters(self):
  1785. head_count = self.hparams["num_attention_heads"]
  1786. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1787. ctx_length = 0
  1788. if "max_sequence_length" in self.hparams:
  1789. ctx_length = self.hparams["max_sequence_length"]
  1790. elif "max_position_embeddings" in self.hparams:
  1791. ctx_length = self.hparams["max_position_embeddings"]
  1792. elif "model_max_length" in self.hparams:
  1793. ctx_length = self.hparams["model_max_length"]
  1794. else:
  1795. raise ValueError("gguf: can not find ctx length parameter.")
  1796. self.gguf_writer.add_file_type(self.ftype)
  1797. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1798. self.gguf_writer.add_context_length(ctx_length)
  1799. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1800. self.gguf_writer.add_block_count(self.block_count)
  1801. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1802. self.gguf_writer.add_head_count(head_count)
  1803. self.gguf_writer.add_head_count_kv(head_count_kv)
  1804. # note: config provides rms norm but it is actually layer norm
  1805. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1806. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1807. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1808. class BaichuanModel(TextModel):
  1809. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1810. def set_vocab(self):
  1811. self._set_vocab_sentencepiece()
  1812. def set_gguf_parameters(self):
  1813. super().set_gguf_parameters()
  1814. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1815. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1816. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1817. head_count = self.hparams["num_attention_heads"]
  1818. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1819. tensors: list[tuple[str, Tensor]] = []
  1820. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1821. logger.info(f"Unpacking and permuting layer {bid}")
  1822. tensors = [
  1823. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1824. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1825. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1826. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1827. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1828. self._reverse_hf_part(data_torch, 2)),
  1829. ]
  1830. else:
  1831. tensors = [(self.map_tensor_name(name), data_torch)]
  1832. return tensors
  1833. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1834. if n_kv_head is not None and n_head != n_kv_head:
  1835. n_head //= n_kv_head
  1836. return (
  1837. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1838. .swapaxes(1, 2)
  1839. .reshape(weights.shape)
  1840. )
  1841. def _reverse_hf_permute_part(
  1842. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1843. ) -> Tensor:
  1844. r = weights.shape[0] // 3
  1845. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1846. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1847. r = weights.shape[0] // 3
  1848. return weights[r * n_part:r * n_part + r, ...]
  1849. @ModelBase.register("XverseForCausalLM")
  1850. class XverseModel(TextModel):
  1851. model_arch = gguf.MODEL_ARCH.XVERSE
  1852. def set_vocab(self):
  1853. assert (self.dir_model / "tokenizer.json").is_file()
  1854. dir_model = self.dir_model
  1855. hparams = self.hparams
  1856. tokens: list[bytes] = []
  1857. toktypes: list[int] = []
  1858. from transformers import AutoTokenizer
  1859. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1860. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1861. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1862. # because vocab_size is the count of items, and indexes start at 0.
  1863. max_vocab_index = max(tokenizer.get_vocab().values())
  1864. if max_vocab_index >= vocab_size:
  1865. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1866. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1867. added_vocab = tokenizer.get_added_vocab()
  1868. for token_id in range(vocab_size):
  1869. token_text = reverse_vocab[token_id].encode('utf-8')
  1870. # replace "\x00" to string with length > 0
  1871. if token_text == b"\x00":
  1872. toktype = gguf.TokenType.BYTE # special
  1873. token_text = f"<{token_text}>".encode('utf-8')
  1874. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1875. toktype = gguf.TokenType.BYTE # special
  1876. elif reverse_vocab[token_id] in added_vocab:
  1877. if tokenizer.added_tokens_decoder[token_id].special:
  1878. toktype = gguf.TokenType.CONTROL
  1879. else:
  1880. toktype = gguf.TokenType.USER_DEFINED
  1881. else:
  1882. toktype = gguf.TokenType.NORMAL
  1883. tokens.append(token_text)
  1884. toktypes.append(toktype)
  1885. self.gguf_writer.add_tokenizer_model("llama")
  1886. self.gguf_writer.add_tokenizer_pre("default")
  1887. self.gguf_writer.add_token_list(tokens)
  1888. self.gguf_writer.add_token_types(toktypes)
  1889. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1890. special_vocab.add_to_gguf(self.gguf_writer)
  1891. def set_gguf_parameters(self):
  1892. super().set_gguf_parameters()
  1893. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1894. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1896. del bid # unused
  1897. head_count = self.hparams["num_attention_heads"]
  1898. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1899. # HF models permute some of the tensors, so we need to undo that
  1900. if name.endswith("q_proj.weight"):
  1901. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1902. if name.endswith("k_proj.weight"):
  1903. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1904. return [(self.map_tensor_name(name), data_torch)]
  1905. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1906. if n_kv_head is not None and n_head != n_kv_head:
  1907. n_head //= n_kv_head
  1908. return (
  1909. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1910. .swapaxes(1, 2)
  1911. .reshape(weights.shape)
  1912. )
  1913. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1914. class FalconModel(TextModel):
  1915. model_arch = gguf.MODEL_ARCH.FALCON
  1916. def set_gguf_parameters(self):
  1917. n_head = self.hparams.get("num_attention_heads")
  1918. if n_head is None:
  1919. n_head = self.hparams["n_head"] # old name
  1920. n_head_kv = self.hparams.get("num_kv_heads")
  1921. if n_head_kv is None:
  1922. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1923. self.gguf_writer.add_context_length(2048) # not in config.json
  1924. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1925. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1926. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1927. self.gguf_writer.add_block_count(self.block_count)
  1928. self.gguf_writer.add_head_count(n_head)
  1929. self.gguf_writer.add_head_count_kv(n_head_kv)
  1930. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1931. self.gguf_writer.add_file_type(self.ftype)
  1932. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1933. del bid # unused
  1934. # QKV tensor transform
  1935. # The original query_key_value tensor contains n_head_kv "kv groups",
  1936. # each consisting of n_head/n_head_kv query weights followed by one key
  1937. # and one value weight (shared by all query heads in the kv group).
  1938. # This layout makes it a big pain to work with in GGML.
  1939. # So we rearrange them here,, so that we have n_head query weights
  1940. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1941. # in contiguous fashion.
  1942. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1943. if "query_key_value" in name:
  1944. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1945. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1946. head_dim = self.hparams["hidden_size"] // n_head
  1947. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1948. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1949. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1950. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1951. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1952. return [(self.map_tensor_name(name), data_torch)]
  1953. @ModelBase.register("GPTBigCodeForCausalLM")
  1954. class StarCoderModel(TextModel):
  1955. model_arch = gguf.MODEL_ARCH.STARCODER
  1956. def set_gguf_parameters(self):
  1957. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1958. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1959. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1960. self.gguf_writer.add_block_count(self.block_count)
  1961. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1962. self.gguf_writer.add_head_count_kv(1)
  1963. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1964. self.gguf_writer.add_file_type(self.ftype)
  1965. @ModelBase.register("GPTRefactForCausalLM")
  1966. class RefactModel(TextModel):
  1967. model_arch = gguf.MODEL_ARCH.REFACT
  1968. def set_vocab(self):
  1969. super().set_vocab()
  1970. # TODO: how to determine special FIM tokens automatically?
  1971. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1972. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1973. special_vocab._set_special_token("prefix", 1)
  1974. special_vocab._set_special_token("suffix", 3)
  1975. special_vocab._set_special_token("middle", 2)
  1976. special_vocab.chat_template = None # do not add it twice
  1977. special_vocab.add_to_gguf(self.gguf_writer)
  1978. def set_gguf_parameters(self):
  1979. hidden_dim = self.hparams["n_embd"]
  1980. inner_dim = 4 * hidden_dim
  1981. hidden_dim = int(2 * inner_dim / 3)
  1982. multiple_of = 256
  1983. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1984. # refact uses Alibi. So this is from config.json which might be used by training.
  1985. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1986. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1987. self.gguf_writer.add_feed_forward_length(ff_dim)
  1988. self.gguf_writer.add_block_count(self.block_count)
  1989. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1990. self.gguf_writer.add_head_count_kv(1)
  1991. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1992. self.gguf_writer.add_file_type(self.ftype)
  1993. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1994. hidden_dim = self.hparams["n_embd"]
  1995. inner_dim = 4 * hidden_dim
  1996. hidden_dim = int(2 * inner_dim / 3)
  1997. multiple_of = 256
  1998. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1999. n_head = self.hparams["n_head"]
  2000. n_head_kv = 1
  2001. head_dim = self.hparams["n_embd"] // n_head
  2002. tensors: list[tuple[str, Tensor]] = []
  2003. if bid is not None:
  2004. if name == f"transformer.h.{bid}.attn.kv.weight":
  2005. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  2006. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  2007. elif name == f"transformer.h.{bid}.attn.q.weight":
  2008. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  2009. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  2010. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  2011. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  2012. if len(tensors) == 0:
  2013. tensors.append((self.map_tensor_name(name), data_torch))
  2014. return tensors
  2015. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  2016. class StableLMModel(TextModel):
  2017. model_arch = gguf.MODEL_ARCH.STABLELM
  2018. def set_vocab(self):
  2019. if (self.dir_model / "tokenizer.json").is_file():
  2020. self._set_vocab_gpt2()
  2021. else:
  2022. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  2023. self._set_vocab_qwen()
  2024. def set_gguf_parameters(self):
  2025. hparams = self.hparams
  2026. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2027. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2028. self.gguf_writer.add_block_count(self.block_count)
  2029. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2030. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  2031. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  2032. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2033. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2034. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  2035. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  2036. self.gguf_writer.add_file_type(self.ftype)
  2037. _q_norms: list[dict[str, Tensor]] | None = None
  2038. _k_norms: list[dict[str, Tensor]] | None = None
  2039. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2040. n_head = self.hparams["num_attention_heads"]
  2041. n_kv_head = self.hparams["num_key_value_heads"]
  2042. if name.find("q_layernorm.norms") != -1:
  2043. assert bid is not None
  2044. if self._q_norms is None:
  2045. self._q_norms = [{} for _ in range(self.block_count)]
  2046. self._q_norms[bid][name] = data_torch
  2047. if len(self._q_norms[bid]) >= n_head:
  2048. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  2049. else:
  2050. return []
  2051. if name.find("k_layernorm.norms") != -1:
  2052. assert bid is not None
  2053. if self._k_norms is None:
  2054. self._k_norms = [{} for _ in range(self.block_count)]
  2055. self._k_norms[bid][name] = data_torch
  2056. if len(self._k_norms[bid]) >= n_kv_head:
  2057. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  2058. else:
  2059. return []
  2060. return [(self.map_tensor_name(name), data_torch)]
  2061. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  2062. datas: list[Tensor] = []
  2063. # extract the norms in order
  2064. for xid in range(n_head):
  2065. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  2066. datas.append(norms[ename])
  2067. del norms[ename]
  2068. data_torch = torch.stack(datas, dim=0)
  2069. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  2070. new_name = self.map_tensor_name(merged_name)
  2071. return [(new_name, data_torch)]
  2072. def prepare_tensors(self):
  2073. super().prepare_tensors()
  2074. if self._q_norms is not None or self._k_norms is not None:
  2075. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2076. norms = (
  2077. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2078. ) + (
  2079. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2080. )
  2081. if len(norms) > 0:
  2082. raise ValueError(f"Unprocessed norms: {norms}")
  2083. @ModelBase.register(
  2084. "LLaMAForCausalLM",
  2085. "LlamaForCausalLM",
  2086. "MistralForCausalLM",
  2087. "MixtralForCausalLM",
  2088. "VLlama3ForCausalLM",
  2089. "LlavaForConditionalGeneration",
  2090. "VoxtralForConditionalGeneration",
  2091. "IQuestCoderForCausalLM",
  2092. "LlamaModel")
  2093. class LlamaModel(TextModel):
  2094. model_arch = gguf.MODEL_ARCH.LLAMA
  2095. undo_permute = True
  2096. def __init__(self, *args, **kwargs):
  2097. super().__init__(*args, **kwargs)
  2098. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2099. if self.hf_arch == "VLlama3ForCausalLM":
  2100. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2101. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2102. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2103. def set_vocab(self):
  2104. if self.origin_hf_arch == "GlmasrModel":
  2105. return self._set_vocab_glmedge()
  2106. if self.is_mistral_format:
  2107. return self._set_vocab_mistral()
  2108. path_tekken_json = self.dir_model / "tekken.json"
  2109. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2110. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2111. self._set_vocab_mistral()
  2112. try:
  2113. self._set_vocab_sentencepiece()
  2114. except FileNotFoundError:
  2115. try:
  2116. self._set_vocab_llama_hf()
  2117. except (FileNotFoundError, TypeError):
  2118. # Llama 3
  2119. self._set_vocab_gpt2()
  2120. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2121. if self.hparams.get("vocab_size", 32000) == 32016:
  2122. special_vocab = gguf.SpecialVocab(
  2123. self.dir_model, load_merges=False,
  2124. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2125. )
  2126. special_vocab._set_special_token("prefix", 32007)
  2127. special_vocab._set_special_token("suffix", 32008)
  2128. special_vocab._set_special_token("middle", 32009)
  2129. special_vocab._set_special_token("eot", 32010)
  2130. special_vocab.add_to_gguf(self.gguf_writer)
  2131. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2132. if tokenizer_config_file.is_file():
  2133. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2134. tokenizer_config_json = json.load(f)
  2135. if "add_prefix_space" in tokenizer_config_json:
  2136. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2137. # Apply to granite small models only
  2138. if self.hparams.get("vocab_size", 32000) == 49152:
  2139. self.gguf_writer.add_add_bos_token(False)
  2140. def set_gguf_parameters(self):
  2141. super().set_gguf_parameters()
  2142. hparams = self.hparams
  2143. if not self.is_mistral_format:
  2144. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2145. if (rope_dim := hparams.get("head_dim")) is None:
  2146. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2147. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2148. @staticmethod
  2149. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2150. if n_head_kv is not None and n_head != n_head_kv:
  2151. n_head = n_head_kv
  2152. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2153. .swapaxes(1, 2)
  2154. .reshape(weights.shape))
  2155. _experts: list[dict[str, Tensor]] | None = None
  2156. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2157. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2158. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2159. vision_prefixes = [
  2160. "vision_encoder.",
  2161. "vision_language_adapter.",
  2162. "patch_merger.",
  2163. "pre_mm_projector_norm",
  2164. "audio_encoder.",
  2165. ]
  2166. is_multimodal_tensor = "vision_tower" in name \
  2167. or "vision_model" in name \
  2168. or "audio_tower" in name \
  2169. or "model.connector" in name \
  2170. or "multi_modal_projector" in name \
  2171. or any(
  2172. name.startswith(prefix)
  2173. for prefix in vision_prefixes
  2174. )
  2175. if is_multimodal_tensor:
  2176. return [] # skip vision tensors
  2177. elif self.hf_arch == "LlamaModel":
  2178. name = "model." + name
  2179. elif name.startswith("model.text_model"):
  2180. name = name.replace("text_model.", "") # for SmolVLM
  2181. elif name.startswith("language_model."):
  2182. name = name.replace("language_model.", "") # for the rest
  2183. if self.undo_permute:
  2184. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2185. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2186. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2187. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2188. # process the experts separately
  2189. if name.find("block_sparse_moe.experts") != -1:
  2190. n_experts = self.hparams["num_local_experts"]
  2191. assert bid is not None
  2192. if self._experts is None:
  2193. self._experts = [{} for _ in range(self.block_count)]
  2194. self._experts[bid][name] = data_torch
  2195. if len(self._experts[bid]) >= n_experts * 3:
  2196. tensors: list[tuple[str, Tensor]] = []
  2197. # merge the experts into a single 3d tensor
  2198. for wid in ["w1", "w2", "w3"]:
  2199. datas: list[Tensor] = []
  2200. for xid in range(n_experts):
  2201. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2202. datas.append(self._experts[bid][ename])
  2203. del self._experts[bid][ename]
  2204. data_torch = torch.stack(datas, dim=0)
  2205. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2206. new_name = self.map_tensor_name(merged_name)
  2207. tensors.append((new_name, data_torch))
  2208. return tensors
  2209. else:
  2210. return []
  2211. return [(self.map_tensor_name(name), data_torch)]
  2212. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2213. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2214. if rope_params.get("rope_type", '').lower() == "llama3":
  2215. base = rope_params.get("rope_theta", 10000.0)
  2216. if (dim := self.hparams.get("head_dim")) is None:
  2217. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2218. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2219. factor = rope_params.get("factor", 8.0)
  2220. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2221. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2222. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2223. low_freq_wavelen = old_context_len / low_freq_factor
  2224. high_freq_wavelen = old_context_len / high_freq_factor
  2225. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2226. rope_factors = []
  2227. for freq in freqs:
  2228. wavelen = 2 * math.pi / freq
  2229. if wavelen < high_freq_wavelen:
  2230. rope_factors.append(1)
  2231. elif wavelen > low_freq_wavelen:
  2232. rope_factors.append(factor)
  2233. else:
  2234. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2235. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2236. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2237. def prepare_tensors(self):
  2238. super().prepare_tensors()
  2239. if self._experts is not None:
  2240. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2241. experts = [k for d in self._experts for k in d.keys()]
  2242. if len(experts) > 0:
  2243. raise ValueError(f"Unprocessed experts: {experts}")
  2244. @ModelBase.register("ArceeForCausalLM")
  2245. class ArceeModel(LlamaModel):
  2246. model_arch = gguf.MODEL_ARCH.ARCEE
  2247. def set_gguf_parameters(self):
  2248. super().set_gguf_parameters()
  2249. self._try_set_pooling_type()
  2250. @ModelBase.register("AfmoeForCausalLM")
  2251. class AfmoeModel(LlamaModel):
  2252. model_arch = gguf.MODEL_ARCH.AFMOE
  2253. def set_gguf_parameters(self):
  2254. super().set_gguf_parameters()
  2255. # MoE parameters
  2256. if (n_experts := self.hparams.get("num_experts")) is not None:
  2257. self.gguf_writer.add_expert_count(n_experts)
  2258. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2259. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2260. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2261. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2262. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2263. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2264. # Route normalization and scaling
  2265. if (route_norm := self.hparams.get("route_norm")) is not None:
  2266. self.gguf_writer.add_expert_weights_norm(route_norm)
  2267. if (route_scale := self.hparams.get("route_scale")) is not None:
  2268. self.gguf_writer.add_expert_weights_scale(route_scale)
  2269. # Sliding window attention
  2270. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2271. self.gguf_writer.add_sliding_window(sliding_window)
  2272. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2273. # Handle expert weights - they're already merged in the HF format
  2274. # process the experts separately
  2275. if name.find("mlp.experts") != -1:
  2276. n_experts = self.hparams["num_experts"]
  2277. assert bid is not None
  2278. if self._experts is None:
  2279. self._experts = [{} for _ in range(self.block_count)]
  2280. self._experts[bid][name] = data_torch
  2281. if len(self._experts[bid]) >= n_experts * 3:
  2282. tensors: list[tuple[str, Tensor]] = []
  2283. # merge the experts into a single 3d tensor
  2284. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2285. datas: list[Tensor] = []
  2286. for xid in range(n_experts):
  2287. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2288. datas.append(self._experts[bid][ename_to_retrieve])
  2289. del self._experts[bid][ename_to_retrieve]
  2290. data_torch = torch.stack(datas, dim=0)
  2291. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2292. new_name = self.map_tensor_name(merged_name)
  2293. tensors.append((new_name, data_torch))
  2294. return tensors
  2295. else:
  2296. return []
  2297. if name.endswith(".expert_bias"):
  2298. name = name.replace(".expert_bias", ".expert_bias.bias")
  2299. return [(self.map_tensor_name(name), data_torch)]
  2300. @ModelBase.register(
  2301. "LlavaForConditionalGeneration", # pixtral
  2302. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2303. )
  2304. class LlavaVisionModel(MmprojModel):
  2305. img_break_tok_id = -1
  2306. use_break_tok = True
  2307. def __init__(self, *args, **kwargs):
  2308. super().__init__(*args, **kwargs)
  2309. if self.hparams.get("model_type") == "pixtral":
  2310. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2311. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2312. if self.use_break_tok:
  2313. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2314. elif self.is_mistral_format:
  2315. # hparams is already vision config here so norm_eps is only defined in global_config.
  2316. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2317. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2318. if self.use_break_tok:
  2319. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2320. else:
  2321. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2322. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2323. def get_token_id(self, token: str) -> int:
  2324. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2325. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2326. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2327. for id_, token_data in added_tokens_decoder.items():
  2328. if token_data["content"] == token:
  2329. return int(id_)
  2330. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2331. def set_gguf_parameters(self):
  2332. super().set_gguf_parameters()
  2333. hparams = self.hparams
  2334. if hparams.get("model_type") == "pixtral":
  2335. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2336. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2337. # hidden_act
  2338. if hparams["hidden_act"] == "silu":
  2339. self.gguf_writer.add_vision_use_silu(True)
  2340. elif hparams["hidden_act"] == "gelu":
  2341. self.gguf_writer.add_vision_use_gelu(True)
  2342. else:
  2343. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2344. # spatial_merge_size
  2345. if "spatial_merge_size" in self.global_config:
  2346. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2347. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2348. del bid # unused
  2349. n_head = (
  2350. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2351. )
  2352. n_kv_head = n_head
  2353. valid_prefixes = (
  2354. "multi_modal_projector.",
  2355. "vision_tower.",
  2356. "vision_encoder.",
  2357. "vision_language_adapter.",
  2358. "patch_merger.",
  2359. "pre_mm_projector_norm",
  2360. )
  2361. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2362. # process vision tensors
  2363. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2364. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2365. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2366. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2367. return [(self.map_tensor_name(name), data_torch)]
  2368. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2369. if self.img_break_tok_id > 0 and embed_key in name:
  2370. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2371. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2372. img_break_embd = data_torch[self.img_break_tok_id]
  2373. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2374. return [(self.map_tensor_name(name), img_break_embd)]
  2375. return [] # skip other tensors
  2376. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2377. class SmolVLMModel(MmprojModel):
  2378. def __init__(self, *args, **kwargs):
  2379. super().__init__(*args, **kwargs)
  2380. if self.hparams["model_type"] == "smolvlm_vision":
  2381. # fix for SmolVLM2, missing some keys in config.json
  2382. # default values are taken from transformers code
  2383. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2384. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2385. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2386. def set_gguf_parameters(self):
  2387. super().set_gguf_parameters()
  2388. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2389. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2390. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2391. self.gguf_writer.add_vision_use_gelu(True)
  2392. # Add the preprocessor longest edge size
  2393. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2394. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2395. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2396. if ".embeddings." in name:
  2397. return gguf.GGMLQuantizationType.F32
  2398. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2399. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2400. del bid # unused
  2401. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2402. if is_vision_tensor:
  2403. return [(self.map_tensor_name(name), data_torch)]
  2404. return [] # skip other tensors
  2405. @ModelBase.register(
  2406. "Llama4ForConditionalGeneration",
  2407. "Llama4ForCausalLM",
  2408. )
  2409. class Llama4Model(LlamaModel):
  2410. model_arch = gguf.MODEL_ARCH.LLAMA4
  2411. undo_permute = False
  2412. def __init__(self, *args, **kwargs):
  2413. super().__init__(*args, **kwargs)
  2414. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2415. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2416. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2417. def set_vocab(self):
  2418. self._set_vocab_gpt2()
  2419. def set_gguf_parameters(self):
  2420. super().set_gguf_parameters()
  2421. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2422. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2423. if "layer_types" in self.hparams:
  2424. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2425. # all layers are full attention (for MobileLLM), disable swa
  2426. self.gguf_writer.add_sliding_window(0)
  2427. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2428. if name.startswith("language_model."):
  2429. name = name.replace("language_model.", "")
  2430. # split the gate_up into gate and up
  2431. if "gate_up_proj" in name:
  2432. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2433. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2434. dim_half = data_torch.shape[-1] // 2
  2435. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2436. return [
  2437. (self.map_tensor_name(name_gate), gate_proj_weight),
  2438. (self.map_tensor_name(name_up), up_proj_weight)
  2439. ]
  2440. if name.endswith("down_proj"):
  2441. name += ".weight"
  2442. data_torch = data_torch.transpose(-1, -2)
  2443. if "multi_modal_projector" in name or "vision_model" in name:
  2444. return []
  2445. return super().modify_tensors(data_torch, name, bid)
  2446. @ModelBase.register("Llama4ForConditionalGeneration")
  2447. class Llama4VisionModel(MmprojModel):
  2448. def set_gguf_parameters(self):
  2449. super().set_gguf_parameters()
  2450. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2451. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2452. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2453. assert self.hparams["hidden_act"] == "gelu"
  2454. self.gguf_writer.add_vision_use_gelu(True)
  2455. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2456. del bid # unused
  2457. if "multi_modal_projector" in name or "vision_model" in name:
  2458. # process vision tensors
  2459. if "positional_embedding_vlm" in name and ".weight" not in name:
  2460. name += ".weight"
  2461. if "multi_modal_projector.linear_1" in name:
  2462. # despite the name with number postfix, this is a single fully connected layer
  2463. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2464. return [(self.map_tensor_name(name), data_torch)]
  2465. return []
  2466. @ModelBase.register("Mistral3ForConditionalGeneration")
  2467. class Mistral3Model(LlamaModel):
  2468. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2469. def __init__(self, *args, **kwargs):
  2470. super().__init__(*args, **kwargs)
  2471. # for compatibility, we use LLAMA arch for older models
  2472. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2473. if self.hparams.get("model_type") != "ministral3":
  2474. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2475. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2476. self.gguf_writer.add_architecture()
  2477. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2478. def set_gguf_parameters(self):
  2479. super().set_gguf_parameters()
  2480. rope_params = self.rope_parameters
  2481. if self.hparams.get("model_type") == "ministral3":
  2482. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2483. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2484. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2485. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2486. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2487. name = name.replace("language_model.", "")
  2488. if "multi_modal_projector" in name or "vision_tower" in name:
  2489. return []
  2490. return super().modify_tensors(data_torch, name, bid)
  2491. @ModelBase.register("DeciLMForCausalLM")
  2492. class DeciModel(TextModel):
  2493. model_arch = gguf.MODEL_ARCH.DECI
  2494. @staticmethod
  2495. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2496. # DeciLM-specific code
  2497. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2498. return DeciModel._find_multiple(intermediate_size, 256)
  2499. @staticmethod
  2500. def _find_multiple(n: int, k: int) -> int:
  2501. # DeciLM-specific code
  2502. if n % k == 0:
  2503. return n
  2504. return n + k - (n % k)
  2505. def __init__(self, *args, **kwargs):
  2506. super().__init__(*args, **kwargs)
  2507. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2508. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2509. assert self.block_count == len(_block_configs)
  2510. self._num_kv_heads = list()
  2511. self._num_heads = list()
  2512. _ffn_multipliers = list()
  2513. # ***linear attention layer***
  2514. # if n_heads_in_group is None and replace_with_linear is True
  2515. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2516. # ***attention-free layer***
  2517. # if n_heads_in_group is None and replace_with_linear is False
  2518. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2519. # ***normal attention-layer***
  2520. # if n_heads_in_group is not None, then
  2521. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2522. # _num_heads[il] is num_attention_head
  2523. # ***dummy layer*** for nemotron 253B
  2524. # if n_heads_in_group is None and ffn_mult is None
  2525. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2526. for il in range(len(_block_configs)):
  2527. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2528. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2529. self._num_kv_heads.append(0)
  2530. self._num_heads.append(self.hparams["num_attention_heads"])
  2531. else:
  2532. self._num_kv_heads.append(0)
  2533. self._num_heads.append(0)
  2534. else:
  2535. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2536. self._num_heads.append(self.hparams["num_attention_heads"])
  2537. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2538. _ffn_multipliers.append(0.0)
  2539. else:
  2540. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2541. assert self.block_count == len(self._num_kv_heads)
  2542. assert self.block_count == len(self._num_heads)
  2543. assert self.block_count == len(_ffn_multipliers)
  2544. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2545. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2546. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2547. self._ffn_dims: list[int] = [
  2548. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2549. for multiplier in _ffn_multipliers
  2550. ]
  2551. def set_vocab(self):
  2552. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2553. # eos_token from '|eot_id|' to '|end_of_text|'
  2554. if self.hparams.get("vocab_size", 128256) == 128256:
  2555. tokens, toktypes, tokpre = self.get_vocab_base()
  2556. self.gguf_writer.add_tokenizer_model("gpt2")
  2557. self.gguf_writer.add_tokenizer_pre(tokpre)
  2558. self.gguf_writer.add_token_list(tokens)
  2559. self.gguf_writer.add_token_types(toktypes)
  2560. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2561. special_vocab.add_to_gguf(self.gguf_writer)
  2562. else:
  2563. # DeciLM-7B
  2564. self._set_vocab_llama_hf()
  2565. def set_gguf_parameters(self):
  2566. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2567. assert self.block_count == len(self._num_kv_heads)
  2568. assert self.block_count == len(self._num_heads)
  2569. assert self.block_count == len(self._ffn_dims)
  2570. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2571. self.gguf_writer.add_rope_freq_base(rope_theta)
  2572. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2573. self.gguf_writer.add_head_count(self._num_heads)
  2574. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2575. self.gguf_writer.add_block_count(self.block_count)
  2576. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2577. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2578. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2579. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2580. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2581. self.gguf_writer.add_file_type(self.ftype)
  2582. else: # DeciLM-7B
  2583. super().set_gguf_parameters()
  2584. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2585. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2586. assert self.block_count == len(self._num_kv_heads)
  2587. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2588. hparams = self.hparams
  2589. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2590. if (rope_dim := hparams.get("head_dim")) is None:
  2591. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2592. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2593. @staticmethod
  2594. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2595. if n_head_kv is not None and n_head != n_head_kv:
  2596. n_head = n_head_kv
  2597. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2598. .swapaxes(1, 2)
  2599. .reshape(weights.shape))
  2600. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2601. n_head = self.hparams["num_attention_heads"]
  2602. if bid is not None:
  2603. if "num_key_value_heads_per_layer" in self.hparams:
  2604. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2605. elif "block_configs" in self.hparams:
  2606. n_kv_head = self._num_kv_heads[bid]
  2607. n_head = self._num_heads[bid]
  2608. else:
  2609. n_kv_head = self.hparams.get("num_key_value_heads")
  2610. else:
  2611. n_kv_head = self.hparams.get("num_key_value_heads")
  2612. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2613. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2614. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2615. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2616. return [(self.map_tensor_name(name), data_torch)]
  2617. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2618. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2619. if rope_params.get("rope_type", '').lower() == "llama3":
  2620. base = rope_params.get("rope_theta", 10000.0)
  2621. if (dim := self.hparams.get("head_dim")) is None:
  2622. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2623. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2624. factor = rope_params.get("factor", 8.0)
  2625. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2626. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2627. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2628. low_freq_wavelen = old_context_len / low_freq_factor
  2629. high_freq_wavelen = old_context_len / high_freq_factor
  2630. assert low_freq_wavelen != high_freq_wavelen
  2631. rope_factors = []
  2632. for freq in freqs:
  2633. wavelen = 2 * math.pi / freq
  2634. if wavelen < high_freq_wavelen:
  2635. rope_factors.append(1)
  2636. elif wavelen > low_freq_wavelen:
  2637. rope_factors.append(factor)
  2638. else:
  2639. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2640. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2641. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2642. def prepare_tensors(self):
  2643. super().prepare_tensors()
  2644. @ModelBase.register("BitnetForCausalLM")
  2645. class BitnetModel(TextModel):
  2646. model_arch = gguf.MODEL_ARCH.BITNET
  2647. def set_vocab(self):
  2648. self._set_vocab_sentencepiece()
  2649. def set_gguf_parameters(self):
  2650. super().set_gguf_parameters()
  2651. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2652. self.gguf_writer.add_rope_scaling_factor(1.0)
  2653. def weight_quant(self, weight: Tensor) -> Tensor:
  2654. dtype = weight.dtype
  2655. weight = weight.float()
  2656. scale = weight.abs().mean().clamp(min=1e-5)
  2657. iscale = 1 / scale
  2658. # TODO: multiply by the scale directly instead of inverting it twice
  2659. # (this is also unnecessarily doubly inverted upstream)
  2660. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2661. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2662. return result.type(dtype)
  2663. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2664. new_name = self.map_tensor_name(name)
  2665. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2666. gguf.MODEL_TENSOR.ATTN_Q,
  2667. gguf.MODEL_TENSOR.ATTN_K,
  2668. gguf.MODEL_TENSOR.ATTN_V,
  2669. gguf.MODEL_TENSOR.ATTN_OUT,
  2670. gguf.MODEL_TENSOR.FFN_UP,
  2671. gguf.MODEL_TENSOR.FFN_DOWN,
  2672. gguf.MODEL_TENSOR.FFN_GATE,
  2673. ]):
  2674. # transform weight into 1/0/-1 (in fp32)
  2675. data_torch = self.weight_quant(data_torch)
  2676. yield (new_name, data_torch)
  2677. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2678. class GrokModel(TextModel):
  2679. model_arch = gguf.MODEL_ARCH.GROK
  2680. def set_vocab(self):
  2681. if (self.dir_model / 'tokenizer.model').is_file():
  2682. self._set_vocab_sentencepiece()
  2683. return
  2684. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2685. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2686. sys.exit(1)
  2687. self._set_vocab_gpt2()
  2688. def __init__(self, *args, **kwargs):
  2689. super().__init__(*args, **kwargs)
  2690. def set_gguf_parameters(self):
  2691. super().set_gguf_parameters()
  2692. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2693. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2694. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2695. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2696. if (rope_dim := self.hparams.get("head_dim")) is None:
  2697. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2698. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2699. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2700. # Treat "original" as "yarn", seems to have been a mistake
  2701. if self.hparams.get("rope_type") in ("yarn", "original"):
  2702. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2703. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2704. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2705. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2706. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2707. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2708. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2709. if temp_len := self.hparams.get("attn_temperature_len"):
  2710. self.gguf_writer.add_attn_temperature_length(temp_len)
  2711. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2712. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2713. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2714. _experts: list[dict[str, list[Tensor]]] | None = None
  2715. _cur_expert = ""
  2716. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2717. tensors: list[tuple[str, Tensor]] = []
  2718. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2719. if not is_expert:
  2720. tensors.append((self.map_tensor_name(name), data_torch))
  2721. # process the experts separately
  2722. if is_expert or self._cur_expert:
  2723. n_experts = self.hparams["num_local_experts"]
  2724. assert bid is not None
  2725. if self._experts is None:
  2726. self._experts = [{} for _ in range(self.block_count)]
  2727. # concatenate split tensors
  2728. if name in self._experts[bid]:
  2729. self._cur_expert = name
  2730. self._experts[bid][name].append(data_torch)
  2731. return []
  2732. elif is_expert:
  2733. self._cur_expert = name
  2734. self._experts[bid][name] = [data_torch]
  2735. return []
  2736. else:
  2737. self._cur_expert = ""
  2738. for bid in range(self.block_count):
  2739. if len(self._experts[bid]) >= n_experts * 3:
  2740. # merge the experts into a single 3d tensor
  2741. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2742. datas: list[Tensor] = []
  2743. for xid in range(n_experts):
  2744. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2745. if ename not in self._experts[bid]:
  2746. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2747. tensor_list = self._experts[bid][ename]
  2748. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2749. del self._experts[bid][ename]
  2750. data_torch = torch.stack(datas, dim=0)
  2751. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2752. new_name = self.map_tensor_name(merged_name)
  2753. yield (new_name, data_torch)
  2754. yield from tensors
  2755. @ModelBase.register("DbrxForCausalLM")
  2756. class DbrxModel(TextModel):
  2757. model_arch = gguf.MODEL_ARCH.DBRX
  2758. def set_gguf_parameters(self):
  2759. ffn_config = self.hparams["ffn_config"]
  2760. attn_config = self.hparams["attn_config"]
  2761. self.gguf_writer.add_block_count(self.block_count)
  2762. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2763. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2764. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2765. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2766. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2767. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2768. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2769. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2770. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2771. self.gguf_writer.add_layer_norm_eps(1e-5)
  2772. self.gguf_writer.add_file_type(self.ftype)
  2773. logger.info(f"gguf: file type = {self.ftype}")
  2774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2775. del bid # unused
  2776. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2777. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2778. n_embd = self.hparams["d_model"]
  2779. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2780. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2781. # But llama.cpp moe graph works differently
  2782. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2783. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2784. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2785. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2786. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2787. experts = False
  2788. for exp_tensor_name in exp_tensor_names.keys():
  2789. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2790. experts = True
  2791. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2792. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2793. data_torch = data_torch.permute(*permute_tensor)
  2794. break
  2795. # map tensor names
  2796. # In MoE models the ffn tensors are typically most of the model weights,
  2797. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2798. # Every other model has the weight names ending in .weight,
  2799. # let's assume that is the convention which is not the case for dbrx:
  2800. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2801. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2802. return [(new_name, data_torch)]
  2803. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2804. del name, new_name, bid # unused
  2805. return n_dims > 1
  2806. @ModelBase.register("MiniCPMForCausalLM")
  2807. class MiniCPMModel(TextModel):
  2808. model_arch = gguf.MODEL_ARCH.MINICPM
  2809. def set_gguf_parameters(self):
  2810. super().set_gguf_parameters()
  2811. embedding_scale = float(self.hparams["scale_emb"])
  2812. self.gguf_writer.add_embedding_scale(embedding_scale)
  2813. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2814. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2815. self.gguf_writer.add_residual_scale(residual_scale)
  2816. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2817. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2818. self.gguf_writer.add_logit_scale(logit_scale)
  2819. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2820. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2821. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2822. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2823. if rope_scaling is not None:
  2824. long_factors = rope_scaling.get('long_factor', None)
  2825. short_factors = rope_scaling.get('short_factor', None)
  2826. if long_factors is None or short_factors is None:
  2827. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2828. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2829. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2830. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2831. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2832. def set_vocab(self):
  2833. self._set_vocab_sentencepiece()
  2834. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2835. del bid # unused
  2836. n_head = self.hparams["num_attention_heads"]
  2837. n_kv_head = self.hparams.get("num_key_value_heads")
  2838. # HF models permute some of the tensors, so we need to undo that
  2839. if name.endswith(("q_proj.weight")):
  2840. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2841. if name.endswith(("k_proj.weight")):
  2842. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2843. return [(self.map_tensor_name(name), data_torch)]
  2844. @ModelBase.register("MiniCPM3ForCausalLM")
  2845. class MiniCPM3Model(TextModel):
  2846. model_arch = gguf.MODEL_ARCH.MINICPM3
  2847. def set_gguf_parameters(self):
  2848. hparams = self.hparams
  2849. self.gguf_writer.add_file_type(self.ftype)
  2850. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2851. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2852. self.gguf_writer.add_block_count(self.block_count)
  2853. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2854. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2855. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2856. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2857. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2858. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2859. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2860. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2861. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2862. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2863. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2864. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2865. if rope_scaling is not None:
  2866. rope_dims = self.hparams["qk_rope_head_dim"]
  2867. long_factors = rope_scaling.get('long_factor', None)
  2868. short_factors = rope_scaling.get('short_factor', None)
  2869. if long_factors is None or short_factors is None:
  2870. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2871. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2872. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2873. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2874. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2875. def set_vocab(self):
  2876. self._set_vocab_sentencepiece()
  2877. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2878. if n_kv_head is not None and n_head != n_kv_head:
  2879. n_head //= n_kv_head
  2880. return (
  2881. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2882. .swapaxes(1, 2)
  2883. .reshape(weights.shape)
  2884. )
  2885. @ModelBase.register("QWenLMHeadModel")
  2886. class QwenModel(TextModel):
  2887. model_arch = gguf.MODEL_ARCH.QWEN
  2888. @staticmethod
  2889. def token_bytes_to_string(b):
  2890. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2891. byte_encoder = bytes_to_unicode()
  2892. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2893. @staticmethod
  2894. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2895. parts = [bytes([b]) for b in token]
  2896. while True:
  2897. min_idx = None
  2898. min_rank = None
  2899. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2900. rank = mergeable_ranks.get(pair[0] + pair[1])
  2901. if rank is not None and (min_rank is None or rank < min_rank):
  2902. min_idx = i
  2903. min_rank = rank
  2904. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2905. break
  2906. assert min_idx is not None
  2907. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2908. return parts
  2909. def set_vocab(self):
  2910. self._set_vocab_qwen()
  2911. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
  2912. class Qwen2Model(TextModel):
  2913. model_arch = gguf.MODEL_ARCH.QWEN2
  2914. def set_vocab(self):
  2915. try:
  2916. self._set_vocab_sentencepiece()
  2917. except FileNotFoundError:
  2918. self._set_vocab_gpt2()
  2919. def set_gguf_parameters(self):
  2920. super().set_gguf_parameters()
  2921. self._try_set_pooling_type()
  2922. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2923. if self.hf_arch == "Qwen2Model":
  2924. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2925. if "language_model." in name:
  2926. name = name.replace("language_model.", "") # for InternVL
  2927. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2928. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2929. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2930. # skip vision and audio tensors
  2931. return []
  2932. yield from super().modify_tensors(data_torch, name, bid)
  2933. @ModelBase.register("DreamModel")
  2934. class DreamModel(TextModel):
  2935. model_arch = gguf.MODEL_ARCH.DREAM
  2936. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2937. tokens: list[str] = []
  2938. toktypes: list[int] = []
  2939. from transformers import AutoTokenizer
  2940. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2941. vocab_dict = tokenizer.get_vocab()
  2942. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2943. assert max(vocab_dict.values()) < vocab_size
  2944. tokpre = self.get_vocab_base_pre(tokenizer)
  2945. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2946. added_vocab = tokenizer.get_added_vocab()
  2947. for i in range(vocab_size):
  2948. if i not in reverse_vocab:
  2949. tokens.append(f"[PAD{i}]")
  2950. toktypes.append(gguf.TokenType.UNUSED)
  2951. elif reverse_vocab[i] in added_vocab:
  2952. tokens.append(reverse_vocab[i])
  2953. # Check if it's a special token - treat special tokens as CONTROL tokens
  2954. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2955. if tokenizer.added_tokens_decoder[i].special:
  2956. toktypes.append(gguf.TokenType.CONTROL)
  2957. else:
  2958. toktypes.append(gguf.TokenType.USER_DEFINED)
  2959. else:
  2960. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2961. toktypes.append(gguf.TokenType.CONTROL)
  2962. else:
  2963. tokens.append(reverse_vocab[i])
  2964. toktypes.append(gguf.TokenType.NORMAL)
  2965. return tokens, toktypes, tokpre
  2966. def set_vocab(self):
  2967. try:
  2968. self._set_vocab_sentencepiece()
  2969. except FileNotFoundError:
  2970. self._set_vocab_gpt2()
  2971. def set_gguf_parameters(self):
  2972. super().set_gguf_parameters()
  2973. self._try_set_pooling_type()
  2974. # Dream models use non-causal attention for diffusion
  2975. self.gguf_writer.add_causal_attention(False)
  2976. # Add Dream-specific parameters
  2977. mask_token_id = self.hparams.get("mask_token_id")
  2978. if mask_token_id is not None:
  2979. self.gguf_writer.add_mask_token_id(mask_token_id)
  2980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2981. # Dream model tensors should be mapped directly since it's the base model
  2982. yield from super().modify_tensors(data_torch, name, bid)
  2983. @ModelBase.register("LLaDAModelLM")
  2984. class LLaDAModel(TextModel):
  2985. model_arch = gguf.MODEL_ARCH.LLADA
  2986. undo_permute = True
  2987. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2988. tokens: list[str] = []
  2989. toktypes: list[int] = []
  2990. from transformers import AutoTokenizer
  2991. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2992. vocab_dict = tokenizer.get_vocab()
  2993. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2994. assert max(vocab_dict.values()) < vocab_size
  2995. tokpre = self.get_vocab_base_pre(tokenizer)
  2996. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2997. added_vocab = tokenizer.get_added_vocab()
  2998. for i in range(vocab_size):
  2999. if i not in reverse_vocab:
  3000. tokens.append(f"[PAD{i}]")
  3001. toktypes.append(gguf.TokenType.UNUSED)
  3002. elif reverse_vocab[i] in added_vocab:
  3003. tokens.append(reverse_vocab[i])
  3004. # Check if it's a special token - treat special tokens as CONTROL tokens
  3005. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  3006. if tokenizer.added_tokens_decoder[i].special:
  3007. toktypes.append(gguf.TokenType.CONTROL)
  3008. else:
  3009. toktypes.append(gguf.TokenType.USER_DEFINED)
  3010. else:
  3011. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  3012. toktypes.append(gguf.TokenType.CONTROL)
  3013. else:
  3014. tokens.append(reverse_vocab[i])
  3015. toktypes.append(gguf.TokenType.NORMAL)
  3016. return tokens, toktypes, tokpre
  3017. def set_vocab(self):
  3018. self._set_vocab_gpt2()
  3019. # LLaDA specific parameters
  3020. self.gguf_writer.add_add_bos_token(True)
  3021. def set_gguf_parameters(self):
  3022. super().set_gguf_parameters()
  3023. self._try_set_pooling_type()
  3024. # Add parameters similar to LlamaModel
  3025. hparams = self.hparams
  3026. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3027. if (rope_dim := hparams.get("head_dim")) is None:
  3028. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  3029. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  3030. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3031. # Set context length for LLaDA
  3032. context_length = self.hparams.get("max_sequence_length", 4096)
  3033. self.gguf_writer.add_context_length(context_length)
  3034. # Set embedding length (dimension size)
  3035. embedding_length = self.hparams.get("d_model", 4096)
  3036. self.gguf_writer.add_embedding_length(embedding_length)
  3037. # Set feed forward length (MLP hidden size)
  3038. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  3039. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  3040. # LLaDA models use non-causal attention for diffusion, similar to Dream
  3041. self.gguf_writer.add_causal_attention(False)
  3042. # LLaDA models don't shift their logits
  3043. self.gguf_writer.add_diffusion_shift_logits(False)
  3044. @staticmethod
  3045. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3046. if n_head_kv is not None and n_head != n_head_kv:
  3047. n_head = n_head_kv
  3048. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3049. .swapaxes(1, 2)
  3050. .reshape(weights.shape))
  3051. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3052. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  3053. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  3054. if self.undo_permute:
  3055. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3056. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  3057. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3058. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  3059. # LLaDA model tensors should be mapped directly since it's the base model
  3060. yield from super().modify_tensors(data_torch, name, bid)
  3061. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  3062. class Ernie4_5Model(TextModel):
  3063. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  3064. def set_vocab(self):
  3065. self._set_vocab_sentencepiece()
  3066. def set_gguf_parameters(self):
  3067. super().set_gguf_parameters()
  3068. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3069. num_heads = self.hparams["num_attention_heads"]
  3070. num_kv_heads = self.hparams["num_key_value_heads"]
  3071. if (head_dim := self.hparams.get("head_dim")) is None:
  3072. head_dim = self.hparams["hidden_size"] // num_heads
  3073. if "ernie." in name:
  3074. name = name.replace("ernie.", "model.")
  3075. # split the qkv weights
  3076. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3077. if "qkv_proj" in name:
  3078. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3079. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3080. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3081. total_q_dim = num_heads * head_dim
  3082. total_k_dim = num_kv_heads * head_dim
  3083. total_v_dim = num_kv_heads * head_dim
  3084. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3085. return [
  3086. (self.map_tensor_name(name_q), q_proj_weight),
  3087. (self.map_tensor_name(name_k), k_proj_weight),
  3088. (self.map_tensor_name(name_v), v_proj_weight)
  3089. ]
  3090. # split the up_gate_proj into gate and up
  3091. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3092. if "up_gate_proj" in name:
  3093. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3094. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3095. dim_half = data_torch.shape[0] // 2
  3096. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3097. return [
  3098. (self.map_tensor_name(name_gate), gate_proj_weight),
  3099. (self.map_tensor_name(name_up), up_proj_weight)
  3100. ]
  3101. return [(self.map_tensor_name(name), data_torch)]
  3102. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3103. class Ernie4_5MoeModel(Ernie4_5Model):
  3104. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3105. _experts: list[dict[str, Tensor]] | None = None
  3106. def __init__(self, *args, **kwargs):
  3107. super().__init__(*args, **kwargs)
  3108. self._experts = [{} for _ in range(self.block_count)]
  3109. def set_gguf_parameters(self):
  3110. super().set_gguf_parameters()
  3111. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3112. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3113. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3114. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3115. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3116. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3117. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3118. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3119. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3120. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3121. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3122. # Modify correction bias name as in DeepseekV2
  3123. if name.endswith("e_score_correction_bias"):
  3124. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3125. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3126. match = re.match(r"model.mtp_block.(\d+)", name)
  3127. if match:
  3128. return []
  3129. # skip all other MTP tensors for now
  3130. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3131. if match:
  3132. return []
  3133. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3134. if match:
  3135. return []
  3136. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3137. if match:
  3138. return []
  3139. # process the experts separately
  3140. if name.find("mlp.experts") != -1:
  3141. n_experts = self.hparams["moe_num_experts"]
  3142. assert bid is not None
  3143. if self._experts is None:
  3144. self._experts = [{} for _ in range(self.block_count)]
  3145. self._experts[bid][name] = data_torch
  3146. if len(self._experts[bid]) >= n_experts * 3:
  3147. tensors: list[tuple[str, Tensor]] = []
  3148. # merge the experts into a single 3d tensor
  3149. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3150. datas: list[Tensor] = []
  3151. for xid in range(n_experts):
  3152. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3153. datas.append(self._experts[bid][ename_to_retrieve])
  3154. del self._experts[bid][ename_to_retrieve]
  3155. data_torch = torch.stack(datas, dim=0)
  3156. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3157. new_name = self.map_tensor_name(merged_name)
  3158. tensors.append((new_name, data_torch))
  3159. return tensors
  3160. else:
  3161. return []
  3162. return [(self.map_tensor_name(name), data_torch)]
  3163. def prepare_tensors(self):
  3164. super().prepare_tensors()
  3165. if self._experts is not None:
  3166. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3167. experts = [k for d in self._experts for k in d.keys()]
  3168. if len(experts) > 0:
  3169. raise ValueError(f"Unprocessed experts: {experts}")
  3170. @ModelBase.register(
  3171. "Qwen2VLModel",
  3172. "Qwen2VLForConditionalGeneration",
  3173. "Qwen2_5_VLForConditionalGeneration",
  3174. "Qwen2_5OmniModel",
  3175. )
  3176. class Qwen2VLModel(TextModel):
  3177. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3178. def set_gguf_parameters(self):
  3179. super().set_gguf_parameters()
  3180. def set_vocab(self):
  3181. try:
  3182. self._set_vocab_sentencepiece()
  3183. except FileNotFoundError:
  3184. self._set_vocab_gpt2()
  3185. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3186. del bid # unused
  3187. if name.startswith("thinker."):
  3188. name = name.replace("thinker.", "")
  3189. if name.startswith("visual") or name.startswith("audio") or \
  3190. name.startswith("talker") or name.startswith("token2wav"):
  3191. # skip multimodal tensors
  3192. return []
  3193. return [(self.map_tensor_name(name), data_torch)]
  3194. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3195. class Qwen2VLVisionModel(MmprojModel):
  3196. def __init__(self, *args, **kwargs):
  3197. super().__init__(*args, **kwargs)
  3198. assert self.hparams_vision is not None
  3199. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3200. # rename config.json values
  3201. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3202. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3203. if "embed_dim" in self.hparams_vision: # qwen2vl
  3204. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3205. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3206. def set_gguf_parameters(self):
  3207. super().set_gguf_parameters()
  3208. assert self.hparams_vision is not None
  3209. hparams = self.hparams_vision
  3210. model_type = self.global_config['model_type']
  3211. if model_type == 'qwen2_vl':
  3212. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3213. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3214. if model_type == 'qwen2_5_omni':
  3215. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3216. else:
  3217. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3218. self.gguf_writer.add_vision_use_silu(True)
  3219. # find n_wa_pattern (window attention pattern)
  3220. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3221. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3222. n_wa_pattern = fullatt_block_indexes[0] + 1
  3223. # validate n_wa_pattern
  3224. for i in range(1, len(fullatt_block_indexes)):
  3225. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3226. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3227. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3228. else:
  3229. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3230. # default values below are taken from HF tranformers code
  3231. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3232. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3233. if ".position_embd." in new_name:
  3234. return gguf.GGMLQuantizationType.F32
  3235. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3236. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3237. del bid # unused
  3238. if name.startswith("visual."):
  3239. # process visual tensors
  3240. # split QKV tensors if needed
  3241. if ".qkv." in name:
  3242. if data_torch.ndim == 2: # weight
  3243. c3, _ = data_torch.shape
  3244. else: # bias
  3245. c3 = data_torch.shape[0]
  3246. assert c3 % 3 == 0
  3247. c = c3 // 3
  3248. wq = data_torch[:c]
  3249. wk = data_torch[c: c * 2]
  3250. wv = data_torch[c * 2:]
  3251. return [
  3252. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3253. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3254. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3255. ]
  3256. elif 'patch_embed.proj.weight' in name:
  3257. # split Conv3D into Conv2Ds
  3258. c1, c2, kt, kh, kw = data_torch.shape
  3259. del c1, c2, kh, kw # unused
  3260. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3261. return [
  3262. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3263. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3264. ]
  3265. else:
  3266. return [(self.map_tensor_name(name), data_torch)]
  3267. return [] # skip other tensors
  3268. @ModelBase.register("Qwen2_5OmniModel")
  3269. class Qwen25OmniModel(Qwen2VLVisionModel):
  3270. has_vision_encoder = True
  3271. has_audio_encoder = True
  3272. def __init__(self, *args, **kwargs):
  3273. super().__init__(*args, **kwargs)
  3274. assert self.hparams_audio is not None
  3275. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3276. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3277. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3278. def set_gguf_parameters(self):
  3279. super().set_gguf_parameters()
  3280. assert self.hparams_audio is not None
  3281. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3282. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3283. def get_vision_config(self) -> dict[str, Any] | None:
  3284. return self.global_config["thinker_config"].get("vision_config")
  3285. def get_audio_config(self) -> dict[str, Any] | None:
  3286. return self.global_config["thinker_config"].get("audio_config")
  3287. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3288. # SinusoidsPositionEmbedding
  3289. assert self.hparams_audio is not None
  3290. max_timescale = 10000
  3291. length = 1500
  3292. channels = self.hparams_audio["hidden_size"]
  3293. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3294. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3295. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3296. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3297. yield ("audio_tower.embed_positions.weight", pos_embd)
  3298. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3299. if ".conv" in name and ".weight" in name:
  3300. return gguf.GGMLQuantizationType.F16
  3301. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3302. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3303. if name.startswith("thinker."):
  3304. name = name.replace("thinker.", "")
  3305. if name.startswith("audio_tower"):
  3306. # process audio tensors
  3307. if "conv1.bias" in name or "conv2.bias" in name:
  3308. # transpose conv1 and conv2 bias
  3309. data_torch = data_torch.unsqueeze(-1)
  3310. if "audio_bos_eos_token" in name:
  3311. # this tensor is left unused in transformers code
  3312. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3313. return []
  3314. return [(self.map_tensor_name(name), data_torch)]
  3315. return super().modify_tensors(data_torch, name, bid)
  3316. @ModelBase.register("InternVisionModel")
  3317. class InternVisionModel(MmprojModel):
  3318. def set_gguf_parameters(self):
  3319. assert self.hparams_vision is not None
  3320. if isinstance(self.hparams_vision['image_size'], list):
  3321. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3322. if isinstance(self.hparams_vision['patch_size'], list):
  3323. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3324. super().set_gguf_parameters()
  3325. hparams = self.hparams
  3326. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3327. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3328. # hidden_act
  3329. if hparams["hidden_act"] == "silu":
  3330. self.gguf_writer.add_vision_use_silu(True)
  3331. elif hparams["hidden_act"] == "gelu":
  3332. self.gguf_writer.add_vision_use_gelu(True)
  3333. else:
  3334. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3335. # downsample_ratio
  3336. downsample_ratio = self.global_config.get("downsample_ratio")
  3337. assert downsample_ratio is not None
  3338. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3339. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3340. if ".position_embd." in new_name:
  3341. return gguf.GGMLQuantizationType.F32
  3342. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3343. def _mapping_interns1_name(self, name):
  3344. names_map = {
  3345. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3346. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3347. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3348. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3349. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3350. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3351. }
  3352. if name in names_map:
  3353. name = names_map[name]
  3354. return name
  3355. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3356. del bid # unused
  3357. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3358. # deal with intern-s1 special case
  3359. name = self._mapping_interns1_name(name)
  3360. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3361. # process visual tensors
  3362. # correct name
  3363. if name.startswith("vision_model"):
  3364. name = "vision_tower." + name
  3365. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3366. name += ".weight"
  3367. # split QKV tensors if needed
  3368. if ".qkv." in name:
  3369. if data_torch.ndim == 2: # weight
  3370. c3, _ = data_torch.shape
  3371. else: # bias
  3372. c3 = data_torch.shape[0]
  3373. assert c3 % 3 == 0
  3374. c = c3 // 3
  3375. wq = data_torch[:c]
  3376. wk = data_torch[c: c * 2]
  3377. wv = data_torch[c * 2:]
  3378. return [
  3379. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3380. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3381. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3382. ]
  3383. return [(self.map_tensor_name(name), data_torch)]
  3384. return [] # skip other tensors
  3385. @ModelBase.register("WavTokenizerDec")
  3386. class WavTokenizerDecModel(TextModel):
  3387. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3389. del bid # unused
  3390. if \
  3391. name.endswith("codebook.cluster_size") or \
  3392. name.endswith("codebook.embed_avg") or \
  3393. name.endswith("codebook.inited"):
  3394. logger.debug(f"Skipping {name!r}")
  3395. return []
  3396. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3397. return [(self.map_tensor_name(name), data_torch)]
  3398. def set_vocab(self):
  3399. self._set_vocab_none()
  3400. def set_gguf_parameters(self):
  3401. super().set_gguf_parameters()
  3402. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3403. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3404. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3405. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3406. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3407. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3408. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3409. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3410. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3411. self.gguf_writer.add_causal_attention(False)
  3412. @ModelBase.register("Qwen2MoeForCausalLM")
  3413. class Qwen2MoeModel(TextModel):
  3414. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3415. def set_gguf_parameters(self):
  3416. super().set_gguf_parameters()
  3417. if (n_experts := self.hparams.get("num_experts")) is not None:
  3418. self.gguf_writer.add_expert_count(n_experts)
  3419. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3420. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3421. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3422. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3423. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3424. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3425. _experts: list[dict[str, Tensor]] | None = None
  3426. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3427. # process the experts separately
  3428. name = name.replace("language_model.", "") # InternVL
  3429. # handle aggregated expert tensors
  3430. # GGUF stores dimensions reversed from PyTorch, so:
  3431. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3432. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3433. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3434. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3435. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3436. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3437. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3438. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3439. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3440. permuted = data_torch.permute(0, 2, 1).contiguous()
  3441. return [(self.map_tensor_name(mapped), permuted)]
  3442. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3443. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3444. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3445. split_dim = data_torch.shape[-1] // 2
  3446. gate = data_torch[..., :split_dim].contiguous()
  3447. up = data_torch[..., split_dim:].contiguous()
  3448. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3449. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3450. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3451. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3452. base_name = name.removesuffix(".weight")
  3453. base = base_name.rsplit('.', 1)[0]
  3454. mapped_gate = f"{base}.gate_proj.weight"
  3455. mapped_up = f"{base}.up_proj.weight"
  3456. perm_gate = gate.permute(0, 2, 1).contiguous()
  3457. perm_up = up.permute(0, 2, 1).contiguous()
  3458. return [
  3459. (self.map_tensor_name(mapped_gate), perm_gate),
  3460. (self.map_tensor_name(mapped_up), perm_up),
  3461. ]
  3462. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3463. # skip visual tensors
  3464. return []
  3465. if name.find("experts") != -1:
  3466. n_experts = self.hparams["num_experts"]
  3467. assert bid is not None
  3468. if self._experts is None:
  3469. self._experts = [{} for _ in range(self.block_count)]
  3470. self._experts[bid][name] = data_torch
  3471. if len(self._experts[bid]) >= n_experts * 3:
  3472. tensors: list[tuple[str, Tensor]] = []
  3473. # merge the experts into a single 3d tensor
  3474. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3475. datas: list[Tensor] = []
  3476. for xid in range(n_experts):
  3477. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3478. datas.append(self._experts[bid][ename])
  3479. del self._experts[bid][ename]
  3480. data_torch = torch.stack(datas, dim=0)
  3481. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3482. new_name = self.map_tensor_name(merged_name)
  3483. tensors.append((new_name, data_torch))
  3484. return tensors
  3485. else:
  3486. return []
  3487. return [(self.map_tensor_name(name), data_torch)]
  3488. def prepare_tensors(self):
  3489. super().prepare_tensors()
  3490. if self._experts is not None:
  3491. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3492. experts = [k for d in self._experts for k in d.keys()]
  3493. if len(experts) > 0:
  3494. raise ValueError(f"Unprocessed experts: {experts}")
  3495. @ModelBase.register("Qwen3ForCausalLM")
  3496. class Qwen3Model(Qwen2Model):
  3497. model_arch = gguf.MODEL_ARCH.QWEN3
  3498. # extra logic for rerank models
  3499. is_rerank: bool = False
  3500. is_tied_embeddings: bool = False
  3501. token_false_id: int | None = None
  3502. token_true_id: int | None = None
  3503. def __init__(self, *args, **kwargs):
  3504. super().__init__(*args, **kwargs)
  3505. # track for intern-s1-mini
  3506. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3507. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3508. # a bit hacky, but currently the only way to detect if this is a rerank model
  3509. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3510. readme_path = self.dir_model / "README.md"
  3511. readme_text = ""
  3512. if readme_path.exists():
  3513. with readme_path.open("r", encoding="utf-8") as f:
  3514. readme_text = f.read()
  3515. if "# Qwen3-Reranker" in readme_text:
  3516. self._find_rerank_config()
  3517. def set_vocab(self):
  3518. # deal with intern-s1-mini
  3519. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3520. self._set_vocab_interns1()
  3521. return
  3522. super().set_vocab()
  3523. def _find_rerank_config(self):
  3524. from transformers import AutoTokenizer
  3525. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3526. self.is_rerank = True
  3527. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3528. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3529. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3530. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3531. assert self.token_false_id is not None and self.token_true_id is not None
  3532. def set_gguf_parameters(self):
  3533. super().set_gguf_parameters()
  3534. if self.is_rerank:
  3535. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3536. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3537. self.gguf_writer.add_chat_template([{
  3538. "name": "rerank",
  3539. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3540. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3541. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3542. }])
  3543. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3544. # extract "yes" and "no" tokens from the output lm_head tensor
  3545. false_row = data_torch[self.token_false_id]
  3546. true_row = data_torch[self.token_true_id]
  3547. return torch.stack([true_row, false_row], dim=0)
  3548. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3549. if "model.vision_" in name:
  3550. # skip multimodal tensors
  3551. return []
  3552. if self.is_rerank:
  3553. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3554. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3555. if is_tied_head or is_real_head:
  3556. cls_out_head = (
  3557. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3558. self._get_cls_out_tensor(data_torch),
  3559. )
  3560. if is_tied_head:
  3561. embed = (self.map_tensor_name(name), data_torch)
  3562. return [cls_out_head, embed]
  3563. if is_real_head:
  3564. return [cls_out_head]
  3565. return super().modify_tensors(data_torch, name, bid)
  3566. @ModelBase.register("Qwen3MoeForCausalLM")
  3567. class Qwen3MoeModel(Qwen2MoeModel):
  3568. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3569. def __init__(self, *args, **kwargs):
  3570. super().__init__(*args, **kwargs)
  3571. hparams = ModelBase.load_hparams(self.dir_model, False)
  3572. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3573. def set_vocab(self):
  3574. # deal with intern-s1
  3575. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3576. self._set_vocab_interns1()
  3577. return
  3578. super().set_vocab()
  3579. @ModelBase.register("Qwen3NextForCausalLM")
  3580. class Qwen3NextModel(Qwen2MoeModel):
  3581. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3582. def set_gguf_parameters(self):
  3583. super().set_gguf_parameters()
  3584. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3585. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3586. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3587. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3588. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3589. if (rope_dim := self.hparams.get("head_dim")) is None:
  3590. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3591. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3592. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3593. if name.startswith("mtp"):
  3594. return [] # ignore MTP layers for now
  3595. if name.endswith(".A_log"):
  3596. data_torch = -torch.exp(data_torch)
  3597. elif name.endswith(".dt_bias"):
  3598. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3599. elif "conv1d" in name:
  3600. data_torch = data_torch.squeeze()
  3601. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3602. data_torch = data_torch + 1
  3603. yield from super().modify_tensors(data_torch, name, bid)
  3604. @ModelBase.register("RND1")
  3605. class RND1Model(Qwen2MoeModel):
  3606. model_arch = gguf.MODEL_ARCH.RND1
  3607. def set_gguf_parameters(self):
  3608. super().set_gguf_parameters()
  3609. # RND1 specific parameters
  3610. # RND1 uses bidirectional attention
  3611. self.gguf_writer.add_causal_attention(False)
  3612. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3613. self.gguf_writer.add_mask_token_id(mask_token_id)
  3614. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3615. class Qwen3VLVisionModel(MmprojModel):
  3616. def __init__(self, *args, **kwargs):
  3617. super().__init__(*args, **kwargs)
  3618. assert self.hparams_vision is not None
  3619. # Compute image_size if not present
  3620. if "image_size" not in self.hparams_vision:
  3621. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3622. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3623. patch_size = self.hparams_vision.get("patch_size", 16)
  3624. # num_position_embeddings = (image_size / patch_size) ** 2
  3625. # So image_size = sqrt(num_position_embeddings) * patch_size
  3626. image_size = int(num_pos**0.5 * patch_size)
  3627. self.hparams_vision["image_size"] = image_size
  3628. # Rename config values for compatibility
  3629. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3630. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3631. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3632. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3633. self.is_deepstack_layers[idx] = True
  3634. def set_gguf_parameters(self):
  3635. super().set_gguf_parameters()
  3636. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3637. self.gguf_writer.add_vision_use_gelu(True)
  3638. if self.hparams_vision is not None:
  3639. merge_size = self.hparams_vision.get("spatial_merge_size")
  3640. if merge_size is not None:
  3641. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3642. # Use text config's rms_norm_eps for vision attention layernorm eps
  3643. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3644. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3645. if self.is_deepstack_layers:
  3646. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3647. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3648. assert self.hparams_vision is not None
  3649. # Skip text model tensors - they go in the text model file
  3650. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3651. return []
  3652. if name.startswith("model.visual."):
  3653. name = name.replace("model.visual.", "visual.", 1)
  3654. if name.startswith("visual.deepstack_merger_list."):
  3655. prefix, rest = name.split(".", maxsplit=3)[2:]
  3656. # prefix is the layer index, convert to absolute clip layer index!
  3657. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3658. target = rest
  3659. tensor_type: gguf.MODEL_TENSOR
  3660. if target.startswith("norm."):
  3661. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3662. suffix = target.split(".", 1)[1]
  3663. elif target.startswith("linear_fc1."):
  3664. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3665. suffix = target.split(".", 1)[1]
  3666. elif target.startswith("linear_fc2."):
  3667. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3668. suffix = target.split(".", 1)[1]
  3669. else:
  3670. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3671. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3672. return [(new_name, data_torch)]
  3673. if name.startswith("visual.merger."):
  3674. suffix = name.split(".", 2)[2]
  3675. if suffix.startswith("linear_fc"):
  3676. fc_idx_str, tail = suffix.split(".", 1)
  3677. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3678. # Qwen3VL has linear_fc1 and linear_fc2
  3679. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3680. if fc_num == 1:
  3681. fc_idx = 0
  3682. elif fc_num == 2:
  3683. fc_idx = 2
  3684. else:
  3685. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3686. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3687. elif suffix.startswith("norm."):
  3688. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3689. else:
  3690. raise ValueError(f"Unexpected merger tensor: {name}")
  3691. return [(new_name, data_torch)]
  3692. if name == "visual.patch_embed.proj.weight":
  3693. # split Conv3D into Conv2Ds along temporal dimension
  3694. c1, c2, kt, _, _ = data_torch.shape
  3695. del c1, c2
  3696. if kt != 2:
  3697. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3698. return [
  3699. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3700. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3701. ]
  3702. if name == "visual.patch_embed.proj.bias":
  3703. # Include the bias - it's used by the C++ code
  3704. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3705. if name.startswith("visual."):
  3706. return [(self.map_tensor_name(name), data_torch)]
  3707. # Fall back to parent class for other tensors
  3708. return super().modify_tensors(data_torch, name, bid)
  3709. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3710. class Glm4VVisionModel(Qwen3VLVisionModel):
  3711. def set_gguf_parameters(self):
  3712. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3713. assert self.hparams_vision is not None
  3714. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3715. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3716. if hidden_act == "gelu":
  3717. self.gguf_writer.add_vision_use_gelu(True)
  3718. elif hidden_act == "silu":
  3719. self.gguf_writer.add_vision_use_silu(True)
  3720. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3721. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3722. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3723. if name.startswith("model.visual."):
  3724. name = name.replace("model.visual.", "visual.")
  3725. if name.startswith("visual.merger."):
  3726. return [(self.map_tensor_name(name), data_torch)]
  3727. return super().modify_tensors(data_torch, name, bid)
  3728. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3729. class Qwen3VLTextModel(Qwen3Model):
  3730. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3731. def set_gguf_parameters(self):
  3732. super().set_gguf_parameters()
  3733. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3734. vision_config = self.hparams.get("vision_config", {})
  3735. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3736. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3737. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3738. # Skip vision tensors - they go in the mmproj file
  3739. if name.startswith("model.visual."):
  3740. return []
  3741. return super().modify_tensors(data_torch, name, bid)
  3742. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3743. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3744. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3745. def set_gguf_parameters(self):
  3746. super().set_gguf_parameters()
  3747. vision_config = self.hparams.get("vision_config", {})
  3748. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3749. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3750. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3751. # Skip vision tensors - they go in the mmproj file
  3752. if name.startswith("model.visual."):
  3753. return []
  3754. return super().modify_tensors(data_torch, name, bid)
  3755. @ModelBase.register("GPT2LMHeadModel")
  3756. class GPT2Model(TextModel):
  3757. model_arch = gguf.MODEL_ARCH.GPT2
  3758. def set_gguf_parameters(self):
  3759. self.gguf_writer.add_block_count(self.block_count)
  3760. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3761. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3762. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3763. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3764. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3765. self.gguf_writer.add_file_type(self.ftype)
  3766. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3767. del bid # unused
  3768. tensors: list[tuple[str, Tensor]] = []
  3769. # we don't need these
  3770. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3771. return tensors
  3772. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3773. data_torch = data_torch.transpose(1, 0)
  3774. new_name = self.map_tensor_name(name)
  3775. tensors.append((new_name, data_torch))
  3776. return tensors
  3777. @ModelBase.register("PhiForCausalLM")
  3778. class Phi2Model(TextModel):
  3779. model_arch = gguf.MODEL_ARCH.PHI2
  3780. def set_gguf_parameters(self):
  3781. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3782. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3783. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3784. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3785. self.gguf_writer.add_embedding_length(n_embd)
  3786. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3787. self.gguf_writer.add_block_count(self.block_count)
  3788. self.gguf_writer.add_head_count(n_head)
  3789. self.gguf_writer.add_head_count_kv(n_head)
  3790. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3791. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3792. self.gguf_writer.add_file_type(self.ftype)
  3793. self.gguf_writer.add_add_bos_token(False)
  3794. @ModelBase.register("Phi3ForCausalLM")
  3795. class Phi3MiniModel(TextModel):
  3796. model_arch = gguf.MODEL_ARCH.PHI3
  3797. def set_vocab(self):
  3798. # Phi-4 model uses GPT2Tokenizer
  3799. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3800. if tokenizer_config_file.is_file():
  3801. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3802. tokenizer_config_json = json.load(f)
  3803. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3804. if tokenizer_class == 'GPT2Tokenizer':
  3805. return self._set_vocab_gpt2()
  3806. from sentencepiece import SentencePieceProcessor
  3807. tokenizer_path = self.dir_model / 'tokenizer.model'
  3808. if not tokenizer_path.is_file():
  3809. raise ValueError(f'Error: Missing {tokenizer_path}')
  3810. tokenizer = SentencePieceProcessor()
  3811. tokenizer.LoadFromFile(str(tokenizer_path))
  3812. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3813. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3814. scores: list[float] = [-10000.0] * vocab_size
  3815. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3816. for token_id in range(tokenizer.vocab_size()):
  3817. piece = tokenizer.IdToPiece(token_id)
  3818. text = piece.encode("utf-8")
  3819. score = tokenizer.GetScore(token_id)
  3820. toktype = SentencePieceTokenTypes.NORMAL
  3821. if tokenizer.IsUnknown(token_id):
  3822. toktype = SentencePieceTokenTypes.UNKNOWN
  3823. elif tokenizer.IsControl(token_id):
  3824. toktype = SentencePieceTokenTypes.CONTROL
  3825. elif tokenizer.IsUnused(token_id):
  3826. toktype = SentencePieceTokenTypes.UNUSED
  3827. elif tokenizer.IsByte(token_id):
  3828. toktype = SentencePieceTokenTypes.BYTE
  3829. tokens[token_id] = text
  3830. scores[token_id] = score
  3831. toktypes[token_id] = toktype
  3832. added_tokens_file = self.dir_model / 'added_tokens.json'
  3833. if added_tokens_file.is_file():
  3834. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3835. added_tokens_json = json.load(f)
  3836. for key in added_tokens_json:
  3837. token_id = added_tokens_json[key]
  3838. if token_id >= vocab_size:
  3839. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3840. continue
  3841. tokens[token_id] = key.encode("utf-8")
  3842. scores[token_id] = -1000.0
  3843. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3844. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3845. if tokenizer_config_file.is_file():
  3846. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3847. tokenizer_config_json = json.load(f)
  3848. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3849. for token_id, foken_data in added_tokens_decoder.items():
  3850. token_id = int(token_id)
  3851. token = foken_data["content"].encode("utf-8")
  3852. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3853. if tokens[token_id] != token:
  3854. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3855. tokens[token_id] = token
  3856. scores[token_id] = -1000.0
  3857. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3858. if foken_data.get("special"):
  3859. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3860. tokenizer_file = self.dir_model / 'tokenizer.json'
  3861. if tokenizer_file.is_file():
  3862. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3863. tokenizer_json = json.load(f)
  3864. added_tokens = tokenizer_json.get("added_tokens", [])
  3865. for foken_data in added_tokens:
  3866. token_id = int(foken_data["id"])
  3867. token = foken_data["content"].encode("utf-8")
  3868. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3869. if tokens[token_id] != token:
  3870. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3871. tokens[token_id] = token
  3872. scores[token_id] = -1000.0
  3873. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3874. if foken_data.get("special"):
  3875. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3876. self.gguf_writer.add_tokenizer_model("llama")
  3877. self.gguf_writer.add_tokenizer_pre("default")
  3878. self.gguf_writer.add_token_list(tokens)
  3879. self.gguf_writer.add_token_scores(scores)
  3880. self.gguf_writer.add_token_types(toktypes)
  3881. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3882. special_vocab.add_to_gguf(self.gguf_writer)
  3883. def set_gguf_parameters(self):
  3884. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3885. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3886. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3887. rms_eps = self.find_hparam(["rms_norm_eps"])
  3888. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3889. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3890. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3891. rope_dims = int(rot_pct * n_embd) // n_head
  3892. self.gguf_writer.add_context_length(max_pos_embds)
  3893. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3894. self.gguf_writer.add_embedding_length(n_embd)
  3895. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3896. self.gguf_writer.add_block_count(self.block_count)
  3897. self.gguf_writer.add_head_count(n_head)
  3898. self.gguf_writer.add_head_count_kv(n_head_kv)
  3899. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3900. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3901. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3902. self.gguf_writer.add_file_type(self.ftype)
  3903. sliding_window = self.hparams.get("sliding_window")
  3904. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3905. if sliding_window is None:
  3906. sliding_window = 0
  3907. self.gguf_writer.add_sliding_window(sliding_window)
  3908. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3909. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3910. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3911. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3912. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3913. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3914. rope_dims = int(rot_pct * n_embd) // n_head
  3915. # write rope scaling for long context (128k) model
  3916. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3917. if rope_scaling is None:
  3918. return
  3919. scale = max_pos_embds / orig_max_pos_embds
  3920. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3921. if len(rope_scaling_type) == 0:
  3922. raise KeyError('Missing the required key rope_scaling.type')
  3923. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3924. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3925. elif rope_scaling_type == 'yarn':
  3926. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3927. else:
  3928. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3929. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3930. long_factors = rope_scaling.get('long_factor', None)
  3931. short_factors = rope_scaling.get('short_factor', None)
  3932. if long_factors is None or short_factors is None:
  3933. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3934. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3935. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3936. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3937. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3938. @ModelBase.register("PhiMoEForCausalLM")
  3939. class PhiMoeModel(Phi3MiniModel):
  3940. model_arch = gguf.MODEL_ARCH.PHIMOE
  3941. _experts: list[dict[str, Tensor]] | None = None
  3942. def set_gguf_parameters(self):
  3943. super().set_gguf_parameters()
  3944. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3945. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3946. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3947. # process the experts separately
  3948. if name.find("block_sparse_moe.experts") != -1:
  3949. n_experts = self.hparams["num_local_experts"]
  3950. assert bid is not None
  3951. if self._experts is None:
  3952. self._experts = [{} for _ in range(self.block_count)]
  3953. self._experts[bid][name] = data_torch
  3954. if len(self._experts[bid]) >= n_experts * 3:
  3955. tensors: list[tuple[str, Tensor]] = []
  3956. # merge the experts into a single 3d tensor
  3957. for w_name in ["w1", "w2", "w3"]:
  3958. datas: list[Tensor] = []
  3959. for xid in range(n_experts):
  3960. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3961. datas.append(self._experts[bid][ename])
  3962. del self._experts[bid][ename]
  3963. data_torch = torch.stack(datas, dim=0)
  3964. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3965. new_name = self.map_tensor_name(merged_name)
  3966. tensors.append((new_name, data_torch))
  3967. return tensors
  3968. else:
  3969. return []
  3970. return [(self.map_tensor_name(name), data_torch)]
  3971. def prepare_tensors(self):
  3972. super().prepare_tensors()
  3973. if self._experts is not None:
  3974. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3975. experts = [k for d in self._experts for k in d.keys()]
  3976. if len(experts) > 0:
  3977. raise ValueError(f"Unprocessed experts: {experts}")
  3978. @ModelBase.register("PlamoForCausalLM")
  3979. class PlamoModel(TextModel):
  3980. model_arch = gguf.MODEL_ARCH.PLAMO
  3981. def set_vocab(self):
  3982. self._set_vocab_sentencepiece()
  3983. def set_gguf_parameters(self):
  3984. hparams = self.hparams
  3985. self.gguf_writer.add_context_length(4096) # not in config.json
  3986. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3987. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3988. self.gguf_writer.add_block_count(self.block_count)
  3989. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3990. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3991. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3992. self.gguf_writer.add_file_type(self.ftype)
  3993. def shuffle_attn_q_weight(self, data_torch):
  3994. assert data_torch.size() == (5120, 5120)
  3995. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3996. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3997. data_torch = torch.reshape(data_torch, (5120, 5120))
  3998. return data_torch
  3999. def shuffle_attn_output_weight(self, data_torch):
  4000. assert data_torch.size() == (5120, 5120)
  4001. data_torch = data_torch.reshape(5120, 8, 5, 128)
  4002. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  4003. data_torch = torch.reshape(data_torch, (5120, 5120))
  4004. return data_torch
  4005. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4006. del bid # unused
  4007. new_name = self.map_tensor_name(name)
  4008. # shuffle for broadcasting of gqa in ggml_mul_mat
  4009. if new_name.endswith("attn_q.weight"):
  4010. data_torch = self.shuffle_attn_q_weight(data_torch)
  4011. elif new_name.endswith("attn_output.weight"):
  4012. data_torch = self.shuffle_attn_output_weight(data_torch)
  4013. return [(new_name, data_torch)]
  4014. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  4015. class Plamo2Model(TextModel):
  4016. model_arch = gguf.MODEL_ARCH.PLAMO2
  4017. def set_vocab(self):
  4018. self._set_vocab_plamo()
  4019. def set_gguf_parameters(self):
  4020. hparams = self.hparams
  4021. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4022. # Which layers are Mamba layers
  4023. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4024. # This logic matches modeling_plamo.py's is_mamba function
  4025. mamba_step = hparams.get("mamba_step", 2)
  4026. mamba_enabled = hparams.get("mamba_enabled", True)
  4027. num_key_value_heads = []
  4028. num_attention_heads = []
  4029. if mamba_enabled:
  4030. for i in range(self.block_count):
  4031. if self.block_count <= (mamba_step // 2):
  4032. # use attention in last layer
  4033. is_mamba = (i != self.block_count - 1)
  4034. else:
  4035. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4036. if is_mamba:
  4037. num_key_value_heads.append(0)
  4038. num_attention_heads.append(0)
  4039. else:
  4040. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4041. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4042. if num_key_value_heads and num_attention_heads:
  4043. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4044. self.gguf_writer.add_head_count(num_attention_heads)
  4045. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4046. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4047. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4048. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4049. self.gguf_writer.add_block_count(self.block_count)
  4050. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4051. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4052. # Mamba parameters
  4053. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4054. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4055. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4056. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4057. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4058. self.gguf_writer.add_ssm_group_count(0)
  4059. # MLP feed forward parameters (for attention layers)
  4060. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4061. self.gguf_writer.add_file_type(self.ftype)
  4062. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4063. del bid # unused
  4064. if name.endswith(".A_log"):
  4065. data_torch = -torch.exp(data_torch)
  4066. elif name.endswith(".dt_bias"):
  4067. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4068. elif name.endswith(".dt_norm_weight"):
  4069. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4070. elif name.endswith(".B_norm_weight"):
  4071. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4072. elif name.endswith(".C_norm_weight"):
  4073. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4074. elif name.endswith(".k_weight"):
  4075. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4076. elif name.endswith(".q_weight"):
  4077. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4078. elif name.endswith(".conv1d.weight"):
  4079. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4080. assert data_torch.ndim == 2
  4081. elif name.endswith(".pre_mixer_norm.weight"):
  4082. data_torch += 1.0
  4083. elif name.endswith(".post_mixer_norm.weight"):
  4084. data_torch += 1.0 / 5
  4085. elif name.endswith(".pre_mlp_norm.weight"):
  4086. data_torch += 1.0
  4087. elif name.endswith(".post_mlp_norm.weight"):
  4088. data_torch += 1.0 / (5**1.5)
  4089. elif name.endswith(".norm.weight"):
  4090. data_torch += 1.0
  4091. new_name = self.map_tensor_name(name)
  4092. return [(new_name, data_torch)]
  4093. @ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
  4094. class Plamo3Model(TextModel):
  4095. model_arch = gguf.MODEL_ARCH.PLAMO3
  4096. def set_vocab(self):
  4097. self._set_vocab_plamo()
  4098. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  4099. tokenizer_config = {}
  4100. if tokenizer_config_path.is_file():
  4101. with open(tokenizer_config_path, encoding="utf-8") as f:
  4102. tokenizer_config = json.load(f)
  4103. chat_template = tokenizer_config.get("chat_template")
  4104. chat_template_jinja = self.dir_model / "chat_template.jinja"
  4105. if chat_template_jinja.is_file():
  4106. with open(chat_template_jinja, encoding="utf-8") as f:
  4107. chat_template = f.read()
  4108. if chat_template:
  4109. self.gguf_writer.add_chat_template(chat_template)
  4110. def set_gguf_parameters(self):
  4111. super().set_gguf_parameters()
  4112. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4113. if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
  4114. self.gguf_writer.add_sliding_window(sliding_window)
  4115. self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
  4116. self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("rope_local_theta")})["rope_theta"])
  4117. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4118. if name.endswith(".pre_mixer_norm.weight"):
  4119. data_torch = data_torch + 1.0
  4120. elif name.endswith(".post_mixer_norm.weight"):
  4121. data_torch = data_torch + 1.0 / 5
  4122. elif name.endswith(".pre_mlp_norm.weight"):
  4123. data_torch = data_torch + 1.0
  4124. elif name.endswith(".post_mlp_norm.weight"):
  4125. data_torch = data_torch + 1.0 / (5**1.5)
  4126. elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
  4127. data_torch = data_torch + 1.0
  4128. elif name.endswith(".norm.weight"):
  4129. data_torch = data_torch + 1.0
  4130. return [(self.map_tensor_name(name), data_torch)]
  4131. @ModelBase.register("CodeShellForCausalLM")
  4132. class CodeShellModel(TextModel):
  4133. model_arch = gguf.MODEL_ARCH.CODESHELL
  4134. def set_gguf_parameters(self):
  4135. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4136. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4137. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4138. self.gguf_writer.add_block_count(self.block_count)
  4139. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4140. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4141. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4142. self.gguf_writer.add_file_type(self.ftype)
  4143. self.gguf_writer.add_rope_freq_base(10000.0)
  4144. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4145. self.gguf_writer.add_rope_scaling_factor(1.0)
  4146. @ModelBase.register("InternLM2ForCausalLM")
  4147. class InternLM2Model(TextModel):
  4148. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4149. def set_vocab(self):
  4150. # (TODO): Is there a better way?
  4151. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4152. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4153. # recognized as an empty string in C++.
  4154. from sentencepiece import SentencePieceProcessor
  4155. from sentencepiece import sentencepiece_model_pb2 as model
  4156. tokenizer_path = self.dir_model / 'tokenizer.model'
  4157. tokens: list[bytes] = []
  4158. scores: list[float] = []
  4159. toktypes: list[int] = []
  4160. if not tokenizer_path.is_file():
  4161. logger.error(f'Error: Missing {tokenizer_path}')
  4162. sys.exit(1)
  4163. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4164. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4165. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4166. tokenizer = SentencePieceProcessor()
  4167. tokenizer.LoadFromFile(str(tokenizer_path))
  4168. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4169. for token_id in range(vocab_size):
  4170. piece = tokenizer.IdToPiece(token_id)
  4171. text = piece.encode("utf-8")
  4172. score = tokenizer.GetScore(token_id)
  4173. if text == b"\x00":
  4174. # (TODO): fixme
  4175. # Hack here and replace the \x00 characters.
  4176. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4177. text = "🐉".encode("utf-8")
  4178. toktype = SentencePieceTokenTypes.NORMAL
  4179. if tokenizer.IsUnknown(token_id):
  4180. toktype = SentencePieceTokenTypes.UNKNOWN
  4181. elif tokenizer.IsControl(token_id):
  4182. toktype = SentencePieceTokenTypes.CONTROL
  4183. elif tokenizer.IsUnused(token_id):
  4184. toktype = SentencePieceTokenTypes.UNUSED
  4185. elif tokenizer.IsByte(token_id):
  4186. toktype = SentencePieceTokenTypes.BYTE
  4187. # take care of ununsed raw token
  4188. if piece.startswith('[UNUSED'):
  4189. toktype = SentencePieceTokenTypes.UNUSED
  4190. tokens.append(text)
  4191. scores.append(score)
  4192. toktypes.append(toktype)
  4193. added_tokens_file = self.dir_model / 'added_tokens.json'
  4194. if added_tokens_file.is_file():
  4195. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4196. added_tokens_json = json.load(f)
  4197. for key in added_tokens_json:
  4198. tokens.append(key.encode("utf-8"))
  4199. scores.append(-1000.0)
  4200. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4201. chat_eos_token = '<|im_end|>'
  4202. chat_eos_token_id = None
  4203. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4204. if tokenizer_config_file.is_file():
  4205. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4206. tokenizer_config_json = json.load(f)
  4207. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4208. for token_id, foken_data in added_tokens_decoder.items():
  4209. token_id = int(token_id)
  4210. token = foken_data["content"]
  4211. if token == chat_eos_token:
  4212. chat_eos_token_id = token_id
  4213. token = token.encode("utf-8")
  4214. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4215. if tokens[token_id] != token:
  4216. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4217. tokens[token_id] = token
  4218. scores[token_id] = -1000.0
  4219. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4220. if foken_data.get("special"):
  4221. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4222. tokenizer_file = self.dir_model / 'tokenizer.json'
  4223. if tokenizer_file.is_file():
  4224. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4225. tokenizer_json = json.load(f)
  4226. added_tokens = tokenizer_json.get("added_tokens", [])
  4227. for foken_data in added_tokens:
  4228. token_id = int(foken_data["id"])
  4229. token = foken_data["content"]
  4230. if token == chat_eos_token:
  4231. chat_eos_token_id = token_id
  4232. token = token.encode("utf-8")
  4233. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4234. if tokens[token_id] != token:
  4235. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4236. tokens[token_id] = token
  4237. scores[token_id] = -1000.0
  4238. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4239. if foken_data.get("special"):
  4240. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4241. self.gguf_writer.add_tokenizer_model("llama")
  4242. self.gguf_writer.add_tokenizer_pre("default")
  4243. self.gguf_writer.add_token_list(tokens)
  4244. self.gguf_writer.add_token_scores(scores)
  4245. self.gguf_writer.add_token_types(toktypes)
  4246. self.gguf_writer.add_add_space_prefix(add_prefix)
  4247. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4248. old_eos = special_vocab.special_token_ids["eos"]
  4249. if chat_eos_token_id is not None:
  4250. # For the chat model, we replace the eos with '<|im_end|>'.
  4251. # TODO: this is a hack, should be fixed
  4252. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4253. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4254. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4255. " in chat mode so that the conversation can end normally.")
  4256. special_vocab.add_to_gguf(self.gguf_writer)
  4257. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4258. num_heads = self.hparams["num_attention_heads"]
  4259. num_kv_heads = self.hparams["num_key_value_heads"]
  4260. n_embd = self.hparams["hidden_size"]
  4261. q_per_kv = num_heads // num_kv_heads
  4262. head_dim = n_embd // num_heads
  4263. num_groups = num_heads // q_per_kv
  4264. name = name.replace("language_model.", "") # InternVL
  4265. if name.startswith("mlp") or name.startswith("vision_model"):
  4266. # skip visual tensors
  4267. return []
  4268. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4269. qkv = data_torch
  4270. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4271. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4272. # The model weights of q and k equire additional reshape.
  4273. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4274. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4275. v = v.reshape((-1, v.shape[-1]))
  4276. return [
  4277. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4278. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4279. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4280. ]
  4281. else:
  4282. return [(self.map_tensor_name(name), data_torch)]
  4283. @ModelBase.register("InternLM3ForCausalLM")
  4284. class InternLM3Model(TextModel):
  4285. model_arch = gguf.MODEL_ARCH.LLAMA
  4286. def set_vocab(self):
  4287. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4288. self.gguf_writer.add_tokenizer_model("llama")
  4289. self.gguf_writer.add_tokenizer_pre("default")
  4290. self.gguf_writer.add_token_list(tokens)
  4291. self.gguf_writer.add_token_scores(scores)
  4292. self.gguf_writer.add_token_types(toktypes)
  4293. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4294. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4295. if tokenizer_config_file.is_file():
  4296. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4297. tokenizer_config_json = json.load(f)
  4298. if "add_prefix_space" in tokenizer_config_json:
  4299. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4300. if "added_tokens_decoder" in tokenizer_config_json:
  4301. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4302. if token_data.get("special"):
  4303. token_id = int(token_id)
  4304. token = token_data["content"]
  4305. special_vocab._set_special_token(token, token_id)
  4306. # update eos token
  4307. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4308. special_vocab.special_token_ids["eos"] = token_id
  4309. special_vocab.add_to_gguf(self.gguf_writer)
  4310. def set_gguf_parameters(self):
  4311. super().set_gguf_parameters()
  4312. hparams = self.hparams
  4313. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4314. if (rope_dim := hparams.get("head_dim")) is None:
  4315. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4316. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4317. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4318. n_head = self.hparams["num_attention_heads"]
  4319. n_kv_head = self.hparams.get("num_key_value_heads")
  4320. name = name.replace("language_model.", "") # InternVL
  4321. if name.startswith("mlp") or name.startswith("vision_model"):
  4322. # skip visual tensors
  4323. return []
  4324. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4325. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4326. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4327. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4328. return [(self.map_tensor_name(name), data_torch)]
  4329. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4330. class BertModel(TextModel):
  4331. model_arch = gguf.MODEL_ARCH.BERT
  4332. def __init__(self, *args, **kwargs):
  4333. super().__init__(*args, **kwargs)
  4334. self.vocab_size = None
  4335. if cls_out_labels := self.hparams.get("id2label"):
  4336. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4337. # Remove dummy labels added by AutoConfig
  4338. cls_out_labels = None
  4339. self.cls_out_labels = cls_out_labels
  4340. def set_gguf_parameters(self):
  4341. super().set_gguf_parameters()
  4342. self.gguf_writer.add_causal_attention(False)
  4343. self._try_set_pooling_type()
  4344. if self.cls_out_labels:
  4345. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4346. def set_vocab(self):
  4347. tokens, toktypes, tokpre = self.get_vocab_base()
  4348. self.vocab_size = len(tokens)
  4349. # we need this to validate the size of the token_type embeddings
  4350. # though currently we are passing all zeros to the token_type embeddings
  4351. # "Sequence A" or "Sequence B"
  4352. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4353. # convert to phantom space vocab
  4354. def phantom(tok, toktype):
  4355. if toktype == gguf.TokenType.CONTROL:
  4356. return tok
  4357. if tok.startswith("##"):
  4358. return tok[2:]
  4359. return "\u2581" + tok
  4360. assert len(tokens) == len(toktypes)
  4361. tokens = list(map(phantom, tokens, toktypes))
  4362. # add vocab to gguf
  4363. self.gguf_writer.add_tokenizer_model("bert")
  4364. self.gguf_writer.add_tokenizer_pre(tokpre)
  4365. self.gguf_writer.add_token_list(tokens)
  4366. self.gguf_writer.add_token_types(toktypes)
  4367. # handle special tokens
  4368. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4369. special_vocab.add_to_gguf(self.gguf_writer)
  4370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4371. del bid # unused
  4372. if name.startswith("bert."):
  4373. name = name[5:]
  4374. if name.endswith(".gamma"):
  4375. name = name[:-6] + ".weight"
  4376. if name.endswith(".beta"):
  4377. name = name[:-5] + ".bias"
  4378. # we are only using BERT for embeddings so we don't need the pooling layer
  4379. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4380. return [] # we don't need these
  4381. if name.startswith("cls.predictions"):
  4382. return []
  4383. if name.startswith("cls.seq_relationship"):
  4384. return []
  4385. if self.cls_out_labels:
  4386. # For BertForSequenceClassification (direct projection layer)
  4387. if name == "classifier.weight":
  4388. name = "classifier.out_proj.weight"
  4389. if name == "classifier.bias":
  4390. name = "classifier.out_proj.bias"
  4391. return [(self.map_tensor_name(name), data_torch)]
  4392. def _xlmroberta_tokenizer_init(self) -> None:
  4393. # we need the pad_token_id to know how to chop down position_embd matrix
  4394. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4395. self._position_offset = 1 + pad_token_id
  4396. if "max_position_embeddings" in self.hparams:
  4397. self.hparams["max_position_embeddings"] -= self._position_offset
  4398. else:
  4399. self._position_offset = None
  4400. def _xlmroberta_set_vocab(self) -> None:
  4401. # to avoid TypeError: Descriptors cannot be created directly
  4402. # exception when importing sentencepiece_model_pb2
  4403. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4404. from sentencepiece import SentencePieceProcessor
  4405. from sentencepiece import sentencepiece_model_pb2 as model
  4406. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4407. tokenizer_json = {}
  4408. tokenizer_config_json = {}
  4409. if not tokenizer_path.is_file():
  4410. tokenizer_path = self.dir_model / 'tokenizer.json'
  4411. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4412. if not tokenizer_path.is_file():
  4413. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4414. from base64 import b64decode
  4415. from transformers import AutoTokenizer
  4416. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4417. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4418. tokenizer_json = json.load(fp)
  4419. if tokenizer_config_path.is_file():
  4420. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4421. tokenizer_config_json = json.load(fp)
  4422. add_prefix = tokenizer.add_prefix_space
  4423. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4424. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4425. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4426. else:
  4427. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4428. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4429. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4430. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4431. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4432. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4433. tokenizer = SentencePieceProcessor()
  4434. tokenizer.LoadFromFile(str(tokenizer_path))
  4435. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4436. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4437. scores: list[float] = [-10000.0] * vocab_size
  4438. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4439. if isinstance(tokenizer, SentencePieceProcessor):
  4440. for token_id in range(tokenizer.vocab_size()):
  4441. piece = tokenizer.IdToPiece(token_id)
  4442. text = piece.encode("utf-8")
  4443. score = tokenizer.GetScore(token_id)
  4444. toktype = SentencePieceTokenTypes.NORMAL
  4445. if tokenizer.IsUnknown(token_id):
  4446. toktype = SentencePieceTokenTypes.UNKNOWN
  4447. elif tokenizer.IsControl(token_id):
  4448. toktype = SentencePieceTokenTypes.CONTROL
  4449. elif tokenizer.IsUnused(token_id):
  4450. toktype = SentencePieceTokenTypes.UNUSED
  4451. elif tokenizer.IsByte(token_id):
  4452. toktype = SentencePieceTokenTypes.BYTE
  4453. tokens[token_id] = text
  4454. scores[token_id] = score
  4455. toktypes[token_id] = toktype
  4456. else:
  4457. added_vocab = tokenizer.get_added_vocab()
  4458. unk_token = tokenizer_config_json.get("unk_token")
  4459. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4460. for token_id in range(tokenizer.vocab_size):
  4461. piece = tokenizer._convert_id_to_token(token_id)
  4462. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4463. text = piece.encode("utf-8")
  4464. score = tokenizer_json["model"]["vocab"][token_id][1]
  4465. toktype = SentencePieceTokenTypes.NORMAL
  4466. if token_id == unk_token_id:
  4467. toktype = SentencePieceTokenTypes.UNKNOWN
  4468. elif token_id in tokenizer.all_special_ids:
  4469. toktype = SentencePieceTokenTypes.CONTROL
  4470. elif token_id in added_vocab.values():
  4471. toktype = SentencePieceTokenTypes.USER_DEFINED
  4472. # No reliable way to detect this, but jina doesn't have any
  4473. # elif tokenizer.IsByte(token_id):
  4474. # toktype = SentencePieceTokenTypes.BYTE
  4475. tokens[token_id] = text
  4476. scores[token_id] = score
  4477. toktypes[token_id] = toktype
  4478. if isinstance(tokenizer, SentencePieceProcessor):
  4479. # realign tokens (see HF tokenizer code)
  4480. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4481. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4482. toktypes = [
  4483. SentencePieceTokenTypes.CONTROL,
  4484. SentencePieceTokenTypes.CONTROL,
  4485. SentencePieceTokenTypes.CONTROL,
  4486. SentencePieceTokenTypes.UNKNOWN,
  4487. ] + toktypes[3:-1]
  4488. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4489. # Add mask token missing from sentencepiece.bpe.model
  4490. tokens[250001] = b'<mask>'
  4491. scores[250001] = 0.0
  4492. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4493. self.gguf_writer.add_tokenizer_model("t5")
  4494. self.gguf_writer.add_tokenizer_pre("default")
  4495. self.gguf_writer.add_token_list(tokens)
  4496. self.gguf_writer.add_token_scores(scores)
  4497. self.gguf_writer.add_token_types(toktypes)
  4498. self.gguf_writer.add_add_space_prefix(add_prefix)
  4499. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4500. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4501. if precompiled_charsmap:
  4502. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4503. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4504. special_vocab.add_to_gguf(self.gguf_writer)
  4505. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4506. class DistilBertModel(BertModel):
  4507. model_arch = gguf.MODEL_ARCH.BERT
  4508. def set_gguf_parameters(self):
  4509. self.gguf_writer.add_layer_norm_eps(1e-12)
  4510. logger.info("gguf: layer norm epsilon = 1e-12")
  4511. super().set_gguf_parameters()
  4512. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4513. if name.startswith("distilbert."):
  4514. name = name[11:]
  4515. # These layers act as MLM head, so we don't need them
  4516. if name.startswith("vocab_"):
  4517. return []
  4518. return super().modify_tensors(data_torch, name, bid)
  4519. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4520. class RobertaModel(BertModel):
  4521. model_arch = gguf.MODEL_ARCH.BERT
  4522. def __init__(self, *args, **kwargs):
  4523. super().__init__(*args, **kwargs)
  4524. # we need the pad_token_id to know how to chop down position_embd matrix
  4525. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4526. self._position_offset = 1 + pad_token_id
  4527. if "max_position_embeddings" in self.hparams:
  4528. self.hparams["max_position_embeddings"] -= self._position_offset
  4529. else:
  4530. self._position_offset = None
  4531. def set_vocab(self):
  4532. """Support BPE tokenizers for roberta models"""
  4533. bpe_tok_path = self.dir_model / "tokenizer.json"
  4534. if bpe_tok_path.exists():
  4535. self._set_vocab_gpt2()
  4536. # we need this to validate the size of the token_type embeddings
  4537. # though currently we are passing all zeros to the token_type embeddings
  4538. # "Sequence A" or "Sequence B"
  4539. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4540. else:
  4541. return super().set_vocab()
  4542. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4543. # if name starts with "roberta.", remove the prefix
  4544. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4545. if name.startswith("roberta."):
  4546. name = name[8:]
  4547. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4548. if name == "embeddings.position_embeddings.weight":
  4549. if self._position_offset is not None:
  4550. data_torch = data_torch[self._position_offset:,:]
  4551. return super().modify_tensors(data_torch, name, bid)
  4552. @ModelBase.register("NomicBertModel")
  4553. class NomicBertModel(BertModel):
  4554. model_arch = gguf.MODEL_ARCH.BERT
  4555. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4556. hparams = kwargs.pop("hparams", None)
  4557. if hparams is None:
  4558. hparams = ModelBase.load_hparams(dir_model, False)
  4559. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4560. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4561. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4562. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4563. if self._tokenizer_is_xlmroberta:
  4564. self._xlmroberta_tokenizer_init()
  4565. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4566. if npos == 8192 and mtp == 2048:
  4567. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4568. elif npos == 2048 and mtp == 2048:
  4569. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4570. else:
  4571. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4572. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4573. # this doesn't do anything in the HF version
  4574. assert self.hparams["causal"] is False
  4575. # no bias tensors unless MoE
  4576. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4577. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4578. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4579. # norm at end of layer
  4580. assert self.hparams["prenorm"] is False
  4581. # standard RoPE
  4582. assert self.hparams["rotary_emb_fraction"] == 1.0
  4583. assert self.hparams["rotary_emb_interleaved"] is False
  4584. assert self.hparams["rotary_emb_scale_base"] is None
  4585. def set_vocab(self) -> None:
  4586. if self._tokenizer_is_xlmroberta:
  4587. return self._xlmroberta_set_vocab()
  4588. return super().set_vocab()
  4589. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4590. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4591. if "mlp.experts.bias" in name:
  4592. return [] # Explicitly return an empty list.
  4593. if "mlp.experts.mlp.w1" in name:
  4594. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4595. name += ".weight"
  4596. if "mlp.experts.mlp.w2" in name:
  4597. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4598. data_torch = data_torch.transpose(1, 2)
  4599. name += ".weight"
  4600. return [(self.map_tensor_name(name), data_torch)]
  4601. def set_gguf_parameters(self):
  4602. super().set_gguf_parameters()
  4603. if self.is_moe:
  4604. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4605. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4606. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4607. def _is_tokenizer_xlmroberta(self) -> bool:
  4608. with open(self.dir_model / "tokenizer.json") as f:
  4609. tokenizer_json = json.load(f)
  4610. toktyp = tokenizer_json["model"]["type"]
  4611. if toktyp == "Unigram":
  4612. return True
  4613. if toktyp == "WordPiece":
  4614. return False
  4615. raise ValueError(f"unknown tokenizer: {toktyp}")
  4616. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4617. class NeoBert(BertModel):
  4618. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4619. def set_gguf_parameters(self):
  4620. super().set_gguf_parameters()
  4621. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4622. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4623. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4624. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4625. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4626. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4627. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4628. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4629. def modify_tensors(self, data_torch, name, bid):
  4630. if name.startswith("decoder."):
  4631. return []
  4632. if name.startswith("model."):
  4633. name = name[6:]
  4634. return super().modify_tensors(data_torch, name, bid)
  4635. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4636. class XLMRobertaModel(BertModel):
  4637. model_arch = gguf.MODEL_ARCH.BERT
  4638. _lora_files = {}
  4639. _lora_names = []
  4640. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4641. hparams = kwargs.pop("hparams", None)
  4642. if hparams is None:
  4643. hparams = ModelBase.load_hparams(dir_model, False)
  4644. if lora_names := hparams.get("lora_adaptations"):
  4645. self._lora_names = lora_names
  4646. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4647. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4648. self._xlmroberta_tokenizer_init()
  4649. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4650. if self._lora_names:
  4651. for name in self._lora_names:
  4652. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4653. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4654. return super().generate_extra_tensors()
  4655. def set_type(self):
  4656. for lora_writer in self._lora_files.values():
  4657. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4658. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4659. super().set_type()
  4660. def set_vocab(self):
  4661. self._xlmroberta_set_vocab()
  4662. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4663. # if name starts with "roberta.", remove the prefix
  4664. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4665. if name.startswith("roberta."):
  4666. name = name[8:]
  4667. # jina-embeddings-v3
  4668. if ".parametrizations." in name:
  4669. name = name.replace(".parametrizations.", ".")
  4670. if name.endswith(".original"):
  4671. name = name[:-9]
  4672. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4673. if name == "embeddings.position_embeddings.weight":
  4674. if self._position_offset is not None:
  4675. data_torch = data_torch[self._position_offset:,:]
  4676. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4677. if name.startswith("pooler.dense"):
  4678. return []
  4679. num_loras = data_torch.size(0)
  4680. assert num_loras == len(self._lora_names)
  4681. # Split out each LoRA in their own GGUF
  4682. for i, lora_writer in enumerate(self._lora_files.values()):
  4683. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4684. data = data_torch[i, :, :]
  4685. # Transpose/flip token_embd/types into correct shape
  4686. if new_name == "token_embd.weight.lora_b":
  4687. data = data.T
  4688. elif new_name.startswith("token_types.weight."):
  4689. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4690. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4691. return []
  4692. return super().modify_tensors(data_torch, name, bid)
  4693. def set_gguf_parameters(self):
  4694. super().set_gguf_parameters()
  4695. # jina-embeddings-v3
  4696. lora_alpha = self.hparams.get("lora_alpha")
  4697. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4698. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4699. for lora_name, lora_writer in self._lora_files.items():
  4700. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4701. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4702. if lora_prompt_prefixes:
  4703. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4704. def write(self):
  4705. super().write()
  4706. for lora_writer in self._lora_files.values():
  4707. lora_writer.write_header_to_file()
  4708. lora_writer.write_kv_data_to_file()
  4709. lora_writer.write_tensors_to_file(progress=True)
  4710. lora_writer.close()
  4711. @ModelBase.register("GemmaForCausalLM")
  4712. class GemmaModel(TextModel):
  4713. model_arch = gguf.MODEL_ARCH.GEMMA
  4714. def set_vocab(self):
  4715. self._set_vocab_sentencepiece()
  4716. # TODO: these special tokens should be exported only for the CodeGemma family
  4717. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4718. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4719. special_vocab._set_special_token("prefix", 67)
  4720. special_vocab._set_special_token("suffix", 69)
  4721. special_vocab._set_special_token("middle", 68)
  4722. special_vocab._set_special_token("fsep", 70)
  4723. special_vocab._set_special_token("eot", 107)
  4724. special_vocab.chat_template = None # do not add it twice
  4725. special_vocab.add_to_gguf(self.gguf_writer)
  4726. self.gguf_writer.add_add_space_prefix(False)
  4727. def set_gguf_parameters(self):
  4728. hparams = self.hparams
  4729. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4730. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4731. self.gguf_writer.add_block_count(self.block_count)
  4732. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4733. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4734. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4735. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4736. self.gguf_writer.add_key_length(hparams["head_dim"])
  4737. self.gguf_writer.add_value_length(hparams["head_dim"])
  4738. self.gguf_writer.add_file_type(self.ftype)
  4739. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4740. del bid # unused
  4741. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4742. # To prevent errors, skip loading lm_head.weight.
  4743. if name == "lm_head.weight":
  4744. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4745. return []
  4746. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4747. if name.endswith("norm.weight"):
  4748. data_torch = data_torch + 1
  4749. return [(self.map_tensor_name(name), data_torch)]
  4750. @ModelBase.register("Gemma2ForCausalLM")
  4751. class Gemma2Model(TextModel):
  4752. model_arch = gguf.MODEL_ARCH.GEMMA2
  4753. def set_vocab(self):
  4754. self._set_vocab_sentencepiece()
  4755. self.gguf_writer.add_add_space_prefix(False)
  4756. def set_gguf_parameters(self):
  4757. hparams = self.hparams
  4758. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4759. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4760. self.gguf_writer.add_block_count(self.block_count)
  4761. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4762. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4763. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4765. self.gguf_writer.add_key_length(hparams["head_dim"])
  4766. self.gguf_writer.add_value_length(hparams["head_dim"])
  4767. self.gguf_writer.add_file_type(self.ftype)
  4768. self.gguf_writer.add_attn_logit_softcapping(
  4769. self.hparams["attn_logit_softcapping"]
  4770. )
  4771. self.gguf_writer.add_final_logit_softcapping(
  4772. self.hparams["final_logit_softcapping"]
  4773. )
  4774. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4775. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4776. del bid # unused
  4777. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4778. # To prevent errors, skip loading lm_head.weight.
  4779. if name == "lm_head.weight":
  4780. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4781. return []
  4782. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4783. if name.endswith("norm.weight"):
  4784. data_torch = data_torch + 1
  4785. return [(self.map_tensor_name(name), data_torch)]
  4786. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4787. class Gemma3Model(TextModel):
  4788. model_arch = gguf.MODEL_ARCH.GEMMA3
  4789. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4790. def set_vocab(self):
  4791. if (self.dir_model / "tokenizer.model").is_file():
  4792. self._set_vocab_sentencepiece()
  4793. self.gguf_writer.add_add_space_prefix(False)
  4794. else:
  4795. self._set_vocab_gpt2()
  4796. def set_gguf_parameters(self):
  4797. super().set_gguf_parameters()
  4798. hparams = self.hparams
  4799. # some default values are not specified in the hparams
  4800. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4801. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4802. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4803. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4804. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4805. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4806. # attn_logit_softcapping is removed in Gemma3
  4807. assert hparams.get("attn_logit_softcapping") is None
  4808. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4809. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4810. if hparams.get("sliding_window_pattern") != 1:
  4811. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4812. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4813. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4814. del bid # unused
  4815. if "language_model." in name:
  4816. name = name.replace("language_model.", "")
  4817. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4818. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4819. return [] # skip vision tensors
  4820. # remove OOV (out-of-vocabulary) rows in token_embd
  4821. if "embed_tokens.weight" in name:
  4822. if (self.dir_model / "tokenizer.model").is_file():
  4823. tokens = self._create_vocab_sentencepiece()[0]
  4824. else:
  4825. tokens = self.get_vocab_base()[0]
  4826. data_torch = data_torch[:len(tokens)]
  4827. # ref code in Gemma3RMSNorm
  4828. # output = output * (1.0 + self.weight.float())
  4829. # note: this is not the case on gemma3n
  4830. if name.endswith("norm.weight"):
  4831. data_torch = data_torch + self.norm_shift
  4832. return [(self.map_tensor_name(name), data_torch)]
  4833. @ModelBase.register("Gemma3TextModel")
  4834. class EmbeddingGemma(Gemma3Model):
  4835. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4836. module_paths = []
  4837. dense_features_dims = {}
  4838. def __init__(self, *args, **kwargs):
  4839. super().__init__(*args, **kwargs)
  4840. if self.sentence_transformers_dense_modules:
  4841. # read modules.json to determine if model has Dense layers
  4842. modules_file = self.dir_model / "modules.json"
  4843. if modules_file.is_file():
  4844. with open(modules_file, encoding="utf-8") as modules_json_file:
  4845. mods = json.load(modules_json_file)
  4846. for mod in mods:
  4847. if mod["type"] == "sentence_transformers.models.Dense":
  4848. mod_path = mod["path"]
  4849. # check if model.safetensors file for Dense layer exists
  4850. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4851. if model_tensors_file.is_file():
  4852. self.module_paths.append(mod_path)
  4853. # read config.json of the Dense layer to get in/out features
  4854. mod_conf_file = self.dir_model / mod_path / "config.json"
  4855. if mod_conf_file.is_file():
  4856. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4857. mod_conf = json.load(mod_conf_json_file)
  4858. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4859. prefix = self._get_dense_prefix(mod_path)
  4860. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4861. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4862. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4863. from safetensors.torch import load_file
  4864. module_paths = list(self.module_paths)
  4865. for i, module_path in enumerate(module_paths):
  4866. tensors_file = self.dir_model / module_path / "model.safetensors"
  4867. local_tensors = load_file(tensors_file)
  4868. tensor_name = self._get_dense_prefix(module_path)
  4869. for name, local_tensor in local_tensors.items():
  4870. if not name.endswith(".weight"):
  4871. continue
  4872. orig_name = name.replace("linear", tensor_name)
  4873. name = self.map_tensor_name(orig_name)
  4874. yield name, local_tensor.clone()
  4875. @staticmethod
  4876. def _get_dense_prefix(module_path) -> str:
  4877. """Get the tensor name prefix for the Dense layer from module path."""
  4878. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4879. return tensor_name
  4880. def set_gguf_parameters(self):
  4881. super().set_gguf_parameters()
  4882. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4883. # constructor. We want to use the value from the original model's config.json.
  4884. # ref: https://github.com/huggingface/transformers/pull/40700
  4885. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4886. config = json.load(f)
  4887. orig_sliding_window = config.get("sliding_window")
  4888. if orig_sliding_window is None:
  4889. raise ValueError("sliding_window not found in model config - this is required for the model")
  4890. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4891. f"instead of {self.hparams['sliding_window']}")
  4892. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4893. if self.sentence_transformers_dense_modules:
  4894. for dense, dims in self.dense_features_dims.items():
  4895. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4896. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4897. self._try_set_pooling_type()
  4898. @ModelBase.register("Gemma3ForConditionalGeneration")
  4899. class Gemma3VisionModel(MmprojModel):
  4900. def set_gguf_parameters(self):
  4901. super().set_gguf_parameters()
  4902. hparams = self.hparams
  4903. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4904. # default values below are taken from HF tranformers code
  4905. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4906. self.gguf_writer.add_vision_use_gelu(True)
  4907. # calculate proj_scale_factor (used by tinygemma3 test model)
  4908. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4909. n_per_side = int(image_seq_length ** 0.5)
  4910. image_size = self.hparams["image_size"]
  4911. patch_size = self.hparams["patch_size"]
  4912. proj_scale_factor = (image_size // patch_size) // n_per_side
  4913. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4914. # we only need to write this if it's not the default value
  4915. # in this case, we are converting a test model
  4916. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4917. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4918. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4919. if "input_projection" in name:
  4920. return gguf.GGMLQuantizationType.F16
  4921. if ".embeddings." in name:
  4922. return gguf.GGMLQuantizationType.F32
  4923. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4924. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4925. del bid # unused
  4926. if "vision_model.head." in name:
  4927. return [] # skip redundant tensors for tinygemma3
  4928. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4929. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4930. # process vision tensors
  4931. name = name.replace("_weight", ".weight")
  4932. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4933. # the other norm values are part of SigLIP model, and they are already correct
  4934. # ref code: Gemma3RMSNorm
  4935. if "soft_emb_norm.weight" in name:
  4936. logger.info(f"Correcting norm value for '{name}'")
  4937. data_torch = data_torch + 1
  4938. return [(self.map_tensor_name(name), data_torch)]
  4939. return [] # skip other tensors
  4940. @ModelBase.register("Gemma3nForConditionalGeneration")
  4941. class Gemma3NModel(Gemma3Model):
  4942. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4943. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4944. _altup_proj: list[Tensor] = []
  4945. _altup_unembd: list[Tensor] = []
  4946. def __init__(self, *args, **kwargs):
  4947. super().__init__(*args, **kwargs)
  4948. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4949. self._altup_proj = [
  4950. torch.Tensor(), # to be replaced
  4951. torch.Tensor(), # to be replaced
  4952. torch.Tensor(), # to be replaced
  4953. ]
  4954. self._altup_unembd = [
  4955. torch.Tensor(), # to be replaced
  4956. torch.Tensor(), # to be replaced
  4957. torch.Tensor(), # to be replaced
  4958. ]
  4959. def set_vocab(self):
  4960. super().set_vocab()
  4961. def set_gguf_parameters(self):
  4962. super().set_gguf_parameters()
  4963. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4964. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4965. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4966. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4967. activation_sparsity_scale = []
  4968. for s in self.hparams["activation_sparsity_pattern"]:
  4969. normal_dist = torch.distributions.normal.Normal(0, 1)
  4970. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4971. activation_sparsity_scale.append(std_multiplier.item())
  4972. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4973. sliding_window_pattern = []
  4974. for t in self.hparams["layer_types"]:
  4975. sliding_window_pattern.append(t == "sliding_attention")
  4976. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4977. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4978. has_all = all(m.numel() > 0 for m in matrices)
  4979. if not has_all:
  4980. return None
  4981. else:
  4982. return torch.stack(matrices, dim=0)
  4983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4984. if name.endswith("_scale"):
  4985. name = name + ".weight"
  4986. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4987. if "language_model." not in name:
  4988. return [] # skip non-language model tensors
  4989. if "altup_unembed_projections" in name:
  4990. data_torch = data_torch.to(device="cpu")
  4991. if ".0." in name:
  4992. self._altup_unembd[0] = data_torch
  4993. elif ".1." in name:
  4994. self._altup_unembd[1] = data_torch
  4995. elif ".2." in name:
  4996. self._altup_unembd[2] = data_torch
  4997. else:
  4998. raise ValueError(f"Unknown name: {name}")
  4999. out = self._stack_matrices(self._altup_unembd)
  5000. if out is not None:
  5001. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  5002. else:
  5003. return []
  5004. if "altup_projections" in name:
  5005. data_torch = data_torch.to(device="cpu")
  5006. if ".0." in name:
  5007. self._altup_proj[0] = data_torch
  5008. elif ".1." in name:
  5009. self._altup_proj[1] = data_torch
  5010. elif ".2." in name:
  5011. self._altup_proj[2] = data_torch
  5012. else:
  5013. raise ValueError(f"Unknown name: {name}")
  5014. out = self._stack_matrices(self._altup_proj)
  5015. if out is not None:
  5016. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5017. else:
  5018. return []
  5019. return super().modify_tensors(data_torch, name, bid)
  5020. @ModelBase.register("Starcoder2ForCausalLM")
  5021. class StarCoder2Model(TextModel):
  5022. model_arch = gguf.MODEL_ARCH.STARCODER2
  5023. @ModelBase.register("Rwkv6ForCausalLM")
  5024. class Rwkv6Model(TextModel):
  5025. model_arch = gguf.MODEL_ARCH.RWKV6
  5026. def set_vocab(self):
  5027. self._set_vocab_rwkv_world()
  5028. def set_gguf_parameters(self):
  5029. head_size = self.hparams["head_size"]
  5030. hidden_size = self.hparams["hidden_size"]
  5031. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5032. rescale_every_n_layers = self.hparams["rescale_every"]
  5033. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5034. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5035. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5036. # RWKV isn't context limited
  5037. self.gguf_writer.add_context_length(1048576)
  5038. self.gguf_writer.add_embedding_length(hidden_size)
  5039. self.gguf_writer.add_block_count(self.block_count)
  5040. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5041. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5042. self.gguf_writer.add_wkv_head_size(head_size)
  5043. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5044. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5045. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5046. self.gguf_writer.add_file_type(self.ftype)
  5047. # required by llama.cpp, unused
  5048. self.gguf_writer.add_head_count(0)
  5049. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5050. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5051. new_name = self.map_tensor_name(name)
  5052. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5053. new_name += ".weight"
  5054. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5055. data_torch = data_torch.transpose(0, 1)
  5056. if new_name.endswith("time_mix_w2.weight"):
  5057. data_torch = data_torch.permute(0, 2, 1)
  5058. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5059. data_torch = data_torch.squeeze()
  5060. try:
  5061. rescale_every_n_layers = self.hparams["rescale_every"]
  5062. if rescale_every_n_layers > 0:
  5063. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5064. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5065. except KeyError:
  5066. pass
  5067. # concat time_mix_lerp weights to reduce some cpu overhead
  5068. # also reduces the number of tensors in the model
  5069. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5070. try:
  5071. self.lerp_weights[bid][new_name] = data_torch
  5072. except KeyError:
  5073. self.lerp_weights[bid] = {new_name: data_torch}
  5074. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5075. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5076. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5077. yield (new_name, data)
  5078. return
  5079. yield (new_name, data_torch)
  5080. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5081. class RWKV6Qwen2Model(Rwkv6Model):
  5082. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5083. def set_vocab(self):
  5084. try:
  5085. self._set_vocab_sentencepiece()
  5086. except FileNotFoundError:
  5087. self._set_vocab_gpt2()
  5088. def set_gguf_parameters(self):
  5089. num_attention_heads = self.hparams["num_attention_heads"]
  5090. num_key_value_heads = self.hparams["num_key_value_heads"]
  5091. hidden_size = self.hparams["hidden_size"]
  5092. head_size = hidden_size // num_attention_heads
  5093. rms_norm_eps = self.hparams["rms_norm_eps"]
  5094. intermediate_size = self.hparams["intermediate_size"]
  5095. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5096. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5097. # RWKV isn't context limited
  5098. self.gguf_writer.add_context_length(1048576)
  5099. self.gguf_writer.add_embedding_length(hidden_size)
  5100. self.gguf_writer.add_block_count(self.block_count)
  5101. self.gguf_writer.add_wkv_head_size(head_size)
  5102. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5103. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5104. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5105. self.gguf_writer.add_file_type(self.ftype)
  5106. # special parameters for time_mixing in RWKV6QWEN2
  5107. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5108. self.gguf_writer.add_token_shift_count(1)
  5109. # RWKV6QWEN2 use grouped key/value like GQA
  5110. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5111. # required by llama.cpp, unused
  5112. self.gguf_writer.add_head_count(0)
  5113. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5114. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5115. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5116. data = data.view(5, -1, data.shape[-1])
  5117. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5118. # permute them here to avoid code changes
  5119. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5120. if "w2" in new_name:
  5121. data = data.view(5, -1, data.shape[-1])
  5122. yield (new_name, data)
  5123. continue
  5124. yield (new_name, data)
  5125. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5126. class Rwkv7Model(TextModel):
  5127. model_arch = gguf.MODEL_ARCH.RWKV7
  5128. def set_vocab(self):
  5129. self._set_vocab_rwkv_world()
  5130. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5131. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5132. def set_gguf_parameters(self):
  5133. try:
  5134. head_size = self.hparams["head_size"]
  5135. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5136. except KeyError:
  5137. head_size = self.hparams["head_dim"]
  5138. layer_norm_eps = self.hparams["norm_eps"]
  5139. hidden_size = self.hparams["hidden_size"]
  5140. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5141. # ICLR: In-Context-Learning-Rate
  5142. try:
  5143. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5144. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5145. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5146. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5147. except KeyError:
  5148. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5149. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5150. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5151. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5152. # RWKV isn't context limited
  5153. self.gguf_writer.add_context_length(1048576)
  5154. self.gguf_writer.add_embedding_length(hidden_size)
  5155. self.gguf_writer.add_block_count(self.block_count)
  5156. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5157. self.gguf_writer.add_wkv_head_size(head_size)
  5158. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5159. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5160. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5161. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5162. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5163. self.gguf_writer.add_file_type(self.ftype)
  5164. # required by llama.cpp, unused
  5165. self.gguf_writer.add_head_count(0)
  5166. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5167. lora_needs_transpose: bool = True
  5168. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5169. # unify tensor names here to make life easier
  5170. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5171. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5172. name = name.replace("time_mixer.", "")
  5173. # lora layer names in fla-hub's impl
  5174. if "_lora.lora" in name:
  5175. self.lora_needs_transpose = False
  5176. name = name.replace("_lora.lora.0.weight", "1.weight")
  5177. name = name.replace("_lora.lora.2.weight", "2.weight")
  5178. name = name.replace("_lora.lora.2.bias", "0.weight")
  5179. name = name.replace("feed_forward_norm", "ln2")
  5180. name = name.replace("g_norm", "ln_x")
  5181. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5182. # some models have dummy v0/v1/v2 on first layer while others don't
  5183. # ignore them all since they are not used
  5184. return
  5185. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5186. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5187. if bid is not None and "attention.x_" in name:
  5188. if "attention.x_x" in name:
  5189. # already concatenated
  5190. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5191. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5192. yield (new_name, data)
  5193. else:
  5194. try:
  5195. self.lerp_weights[bid][name] = data_torch
  5196. except KeyError:
  5197. self.lerp_weights[bid] = {name: data_torch}
  5198. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5199. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5200. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5201. yield (new_name, data)
  5202. return
  5203. else:
  5204. data_torch = data_torch.squeeze()
  5205. new_name = self.map_tensor_name(name)
  5206. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5207. new_name += ".weight"
  5208. if self.lora_needs_transpose and any(
  5209. new_name.endswith(t) for t in [
  5210. "time_mix_w1.weight", "time_mix_w2.weight",
  5211. "time_mix_a1.weight", "time_mix_a2.weight",
  5212. "time_mix_v1.weight", "time_mix_v2.weight",
  5213. "time_mix_g1.weight", "time_mix_g2.weight",
  5214. ]
  5215. ):
  5216. data_torch = data_torch.transpose(0, 1)
  5217. if 'r_k' in new_name:
  5218. data_torch = data_torch.flatten()
  5219. if bid == 0 and "time_mix_a" in new_name:
  5220. # dummy v0/v1/v2 on first layer
  5221. # easist way to make llama happy
  5222. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5223. yield (new_name, data_torch)
  5224. @ModelBase.register("RwkvHybridForCausalLM")
  5225. class ARwkv7Model(Rwkv7Model):
  5226. model_arch = gguf.MODEL_ARCH.ARWKV7
  5227. def set_vocab(self):
  5228. try:
  5229. self._set_vocab_sentencepiece()
  5230. except FileNotFoundError:
  5231. self._set_vocab_gpt2()
  5232. def set_gguf_parameters(self):
  5233. hidden_size = self.hparams["hidden_size"]
  5234. head_size = self.hparams["head_size"]
  5235. rms_norm_eps = self.hparams["rms_norm_eps"]
  5236. intermediate_size = self.hparams["intermediate_size"]
  5237. wkv_has_gate = self.hparams["wkv_has_gate"]
  5238. assert self.hparams["wkv_version"] == 7
  5239. # ICLR: In-Context-Learning-Rate
  5240. lora_rank_decay = 64
  5241. lora_rank_iclr = 64
  5242. lora_rank_value_residual_mix = 32
  5243. lora_rank_gate = 128 if wkv_has_gate else 0
  5244. # RWKV isn't context limited
  5245. self.gguf_writer.add_context_length(1048576)
  5246. self.gguf_writer.add_embedding_length(hidden_size)
  5247. self.gguf_writer.add_block_count(self.block_count)
  5248. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5249. self.gguf_writer.add_wkv_head_size(head_size)
  5250. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5251. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5252. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5253. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5254. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5255. self.gguf_writer.add_file_type(self.ftype)
  5256. self.gguf_writer.add_token_shift_count(1)
  5257. # required by llama.cpp, unused
  5258. self.gguf_writer.add_head_count(0)
  5259. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5260. class MambaModel(TextModel):
  5261. model_arch = gguf.MODEL_ARCH.MAMBA
  5262. def __init__(self, dir_model: Path, *args, **kwargs):
  5263. # Avoid using AutoConfig for hparams
  5264. hparams = kwargs.pop("hparams", None)
  5265. if hparams is None:
  5266. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5267. hparams = json.load(f)
  5268. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5269. def set_vocab(self):
  5270. vocab_size = self.hparams["vocab_size"]
  5271. # Round vocab size to next multiple of 8
  5272. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5273. # pad using ceiling division
  5274. # ref: https://stackoverflow.com/a/17511341/22827863
  5275. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5276. self.hparams["vocab_size"] = vocab_size
  5277. if (self.dir_model / "tokenizer.json").is_file():
  5278. self._set_vocab_gpt2()
  5279. elif (self.dir_model / "tokenizer.model").is_file():
  5280. self._set_vocab_sentencepiece()
  5281. else:
  5282. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5283. self._set_vocab_builtin("gpt-neox", vocab_size)
  5284. def set_gguf_parameters(self):
  5285. d_model = self.find_hparam(["hidden_size", "d_model"])
  5286. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5287. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5288. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5289. # ceiling division
  5290. # ref: https://stackoverflow.com/a/17511341/22827863
  5291. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5292. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5293. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5294. use_dt_b_c_norm = False
  5295. # For falconmamba we do apply RMS norm on B / DT and C layers
  5296. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5297. use_dt_b_c_norm = True
  5298. # Fail early for models which don't have a block expansion factor of 2
  5299. assert d_inner == 2 * d_model
  5300. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5301. self.gguf_writer.add_embedding_length(d_model)
  5302. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5303. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5304. self.gguf_writer.add_block_count(self.block_count)
  5305. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5306. self.gguf_writer.add_ssm_inner_size(d_inner)
  5307. self.gguf_writer.add_ssm_state_size(d_state)
  5308. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5309. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5310. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5311. self.gguf_writer.add_file_type(self.ftype)
  5312. _tok_embd = None
  5313. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5314. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5315. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5316. new_name = self.map_tensor_name(name)
  5317. if name.endswith(".A_log"):
  5318. logger.debug("A_log --> A ==> " + new_name)
  5319. data_torch = -torch.exp(data_torch)
  5320. # [4 1 8192 1] -> [4 8192 1 1]
  5321. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5322. data_torch = data_torch.squeeze()
  5323. # assuming token_embd.weight is seen before output.weight
  5324. if self._tok_embd is not None and new_name == output_name:
  5325. if torch.equal(self._tok_embd, data_torch):
  5326. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5327. return []
  5328. elif new_name == tok_embd_name:
  5329. self._tok_embd = data_torch
  5330. return [(new_name, data_torch)]
  5331. @ModelBase.register("Mamba2ForCausalLM")
  5332. class Mamba2Model(TextModel):
  5333. model_arch = gguf.MODEL_ARCH.MAMBA2
  5334. def __init__(self, dir_model: Path, *args, **kwargs):
  5335. # Avoid using AutoConfig for hparams
  5336. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5337. hparams = kwargs.pop("hparams", None)
  5338. if hparams is None:
  5339. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5340. hparams = json.load(f)
  5341. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5342. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5343. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5344. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5345. def set_vocab(self):
  5346. vocab_size = self.hparams["vocab_size"]
  5347. # Round vocab size to next multiple of 16
  5348. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5349. # pad using ceiling division
  5350. # ref: https://stackoverflow.com/a/17511341/22827863
  5351. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5352. self.hparams["vocab_size"] = vocab_size
  5353. if (self.dir_model / "tokenizer.model").is_file():
  5354. self._set_vocab_sentencepiece()
  5355. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5356. # mamba-codestral
  5357. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5358. elif (self.dir_model / "tokenizer.json").is_file():
  5359. self._set_vocab_gpt2()
  5360. else:
  5361. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5362. self._set_vocab_builtin("gpt-neox", vocab_size)
  5363. def set_gguf_parameters(self):
  5364. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5365. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5366. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5367. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5368. # Fail early for models which don't have a block expansion factor of 2
  5369. # TODO: does this really matter?
  5370. # skip the assertion for FalconH1 Model
  5371. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5372. assert self.d_inner == 2 * self.d_model
  5373. assert self.d_inner % head_dim == 0
  5374. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5375. self.gguf_writer.add_embedding_length(self.d_model)
  5376. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5377. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5378. self.gguf_writer.add_block_count(self.block_count)
  5379. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5380. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5381. self.gguf_writer.add_ssm_state_size(d_state)
  5382. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5383. self.gguf_writer.add_ssm_group_count(self.n_group)
  5384. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5385. self.gguf_writer.add_file_type(self.ftype)
  5386. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5387. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5388. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5389. name = name.removeprefix("model.")
  5390. if name.endswith(".dt_bias"):
  5391. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5392. new_name = self.map_tensor_name(name)
  5393. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5394. data_torch = data_torch.squeeze()
  5395. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5396. gguf.MODEL_TENSOR.SSM_A,
  5397. gguf.MODEL_TENSOR.SSM_D,
  5398. ]):
  5399. # unsqueeze A to use similar shape semantics as Mamba-1
  5400. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5401. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5402. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5403. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5404. if name.endswith(".A_log"):
  5405. logger.debug("A_log --> A ==> " + new_name)
  5406. data_torch = -torch.exp(data_torch)
  5407. yield (new_name, data_torch)
  5408. @ModelBase.register("JambaForCausalLM")
  5409. class JambaModel(TextModel):
  5410. model_arch = gguf.MODEL_ARCH.JAMBA
  5411. def set_vocab(self):
  5412. if (self.dir_model / "tokenizer.model").is_file():
  5413. self._set_vocab_sentencepiece()
  5414. else:
  5415. self._set_vocab_llama_hf()
  5416. self.gguf_writer.add_add_space_prefix(False)
  5417. def set_gguf_parameters(self):
  5418. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5419. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5420. d_inner = self.hparams["mamba_expand"] * d_model
  5421. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5422. # ceiling division
  5423. # ref: https://stackoverflow.com/a/17511341/22827863
  5424. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5425. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5426. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5427. n_kv_head = self.hparams["num_key_value_heads"]
  5428. attn_offset = self.hparams["attn_layer_offset"]
  5429. attn_period = self.hparams["attn_layer_period"]
  5430. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5431. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5432. ]
  5433. self.gguf_writer.add_block_count(self.block_count)
  5434. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5435. self.gguf_writer.add_embedding_length(d_model)
  5436. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5437. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5438. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5439. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5440. self.gguf_writer.add_ssm_inner_size(d_inner)
  5441. self.gguf_writer.add_ssm_state_size(d_state)
  5442. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5443. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5444. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5445. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5446. self.gguf_writer.add_file_type(self.ftype)
  5447. _experts: list[dict[str, Tensor]] | None = None
  5448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5449. # Mini-Jamba
  5450. name = name.replace(".moe.", ".feed_forward.")
  5451. if bid is not None:
  5452. moe_offset = self.hparams["expert_layer_offset"]
  5453. moe_period = self.hparams["expert_layer_period"]
  5454. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5455. name = name.replace(".experts.0.", ".")
  5456. # process the experts separately
  5457. if ".feed_forward.experts." in name:
  5458. n_experts = self.hparams["num_experts"]
  5459. assert bid is not None
  5460. if self._experts is None:
  5461. self._experts = [{} for _ in range(self.block_count)]
  5462. self._experts[bid][name] = data_torch
  5463. if len(self._experts[bid]) >= n_experts * 3:
  5464. # merge the experts into a single 3d tensor
  5465. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5466. datas: list[Tensor] = []
  5467. for xid in range(n_experts):
  5468. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5469. datas.append(self._experts[bid][ename])
  5470. del self._experts[bid][ename]
  5471. data_torch = torch.stack(datas, dim=0)
  5472. # using the same merged name as qwen2moe
  5473. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5474. new_name = self.map_tensor_name(merged_name)
  5475. yield new_name, data_torch
  5476. return
  5477. new_name = self.map_tensor_name(name)
  5478. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5479. data_torch = data_torch.squeeze()
  5480. if name.endswith(".A_log"):
  5481. logger.debug("A_log --> A ==> " + new_name)
  5482. data_torch = -torch.exp(data_torch)
  5483. yield (new_name, data_torch)
  5484. def prepare_tensors(self):
  5485. super().prepare_tensors()
  5486. if self._experts is not None:
  5487. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5488. experts = [k for d in self._experts for k in d.keys()]
  5489. if len(experts) > 0:
  5490. raise ValueError(f"Unprocessed experts: {experts}")
  5491. @ModelBase.register("CohereForCausalLM")
  5492. class CommandR2Model(TextModel):
  5493. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5494. def __init__(self, *args, **kwargs):
  5495. super().__init__(*args, **kwargs)
  5496. # max_position_embeddings = 8192 in config.json but model was actually
  5497. # trained on 128k context length
  5498. # aya-23 models don't have model_max_length specified
  5499. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5500. def set_gguf_parameters(self):
  5501. super().set_gguf_parameters()
  5502. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5503. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5504. @ModelBase.register("Cohere2ForCausalLM")
  5505. class Cohere2Model(TextModel):
  5506. model_arch = gguf.MODEL_ARCH.COHERE2
  5507. def set_gguf_parameters(self):
  5508. super().set_gguf_parameters()
  5509. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5510. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5511. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5512. rotary_pct = self.hparams["rotary_pct"]
  5513. hidden_size = self.hparams["hidden_size"]
  5514. num_attention_heads = self.hparams["num_attention_heads"]
  5515. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5516. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5517. @ModelBase.register("OlmoForCausalLM")
  5518. @ModelBase.register("OLMoForCausalLM")
  5519. class OlmoModel(TextModel):
  5520. model_arch = gguf.MODEL_ARCH.OLMO
  5521. def set_gguf_parameters(self):
  5522. super().set_gguf_parameters()
  5523. self.gguf_writer.add_layer_norm_eps(1e-5)
  5524. clip_qkv = self.hparams.get("clip_qkv")
  5525. if clip_qkv is not None:
  5526. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5527. # Same as super class, but permuting q_proj, k_proj
  5528. # Copied from: LlamaModel
  5529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5530. del bid # unused
  5531. n_head = self.hparams["num_attention_heads"]
  5532. n_kv_head = self.hparams.get("num_key_value_heads")
  5533. if name.endswith("q_proj.weight"):
  5534. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5535. if name.endswith("k_proj.weight"):
  5536. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5537. return [(self.map_tensor_name(name), data_torch)]
  5538. @ModelBase.register("SeedOssForCausalLM")
  5539. class SeedOssModel(TextModel):
  5540. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5541. @ModelBase.register("Olmo2ForCausalLM")
  5542. @ModelBase.register("Olmo3ForCausalLM")
  5543. class Olmo2Model(TextModel):
  5544. model_arch = gguf.MODEL_ARCH.OLMO2
  5545. def set_gguf_parameters(self):
  5546. super().set_gguf_parameters()
  5547. if "sliding_window" in self.hparams:
  5548. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5549. sliding_window_pattern = []
  5550. if "layer_types" in self.hparams:
  5551. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5552. else:
  5553. # Olmo2 does not use sliding window attention.
  5554. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5555. for i in range(self.hparams["num_hidden_layers"]):
  5556. sliding_window_pattern.append((i + 1) % 4 != 0)
  5557. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5558. @ModelBase.register("OlmoeForCausalLM")
  5559. class OlmoeModel(TextModel):
  5560. model_arch = gguf.MODEL_ARCH.OLMOE
  5561. def set_gguf_parameters(self):
  5562. super().set_gguf_parameters()
  5563. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5564. if (n_experts := self.hparams.get("num_experts")) is not None:
  5565. self.gguf_writer.add_expert_count(n_experts)
  5566. _experts: list[dict[str, Tensor]] | None = None
  5567. # Copied from: Qwen2MoeModel
  5568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5569. # process the experts separately
  5570. if name.find("experts") != -1:
  5571. n_experts = self.hparams["num_experts"]
  5572. assert bid is not None
  5573. if self._experts is None:
  5574. self._experts = [{} for _ in range(self.block_count)]
  5575. self._experts[bid][name] = data_torch
  5576. if len(self._experts[bid]) >= n_experts * 3:
  5577. tensors: list[tuple[str, Tensor]] = []
  5578. # merge the experts into a single 3d tensor
  5579. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5580. datas: list[Tensor] = []
  5581. for xid in range(n_experts):
  5582. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5583. datas.append(self._experts[bid][ename])
  5584. del self._experts[bid][ename]
  5585. data_torch = torch.stack(datas, dim=0)
  5586. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5587. new_name = self.map_tensor_name(merged_name)
  5588. tensors.append((new_name, data_torch))
  5589. return tensors
  5590. else:
  5591. return []
  5592. return [(self.map_tensor_name(name), data_torch)]
  5593. # Copied from: Qwen2MoeModel
  5594. def prepare_tensors(self):
  5595. super().prepare_tensors()
  5596. if self._experts is not None:
  5597. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5598. experts = [k for d in self._experts for k in d.keys()]
  5599. if len(experts) > 0:
  5600. raise ValueError(f"Unprocessed experts: {experts}")
  5601. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5602. class JinaBertV2Model(BertModel):
  5603. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5604. def set_vocab(self):
  5605. tokenizer_class = 'BertTokenizer'
  5606. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5607. tokenizer_class = json.load(f)['tokenizer_class']
  5608. if tokenizer_class == 'BertTokenizer':
  5609. super().set_vocab()
  5610. elif tokenizer_class == 'RobertaTokenizer':
  5611. self._set_vocab_gpt2()
  5612. self.gguf_writer.add_token_type_count(2)
  5613. else:
  5614. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5615. @ModelBase.register("OpenELMForCausalLM")
  5616. class OpenELMModel(TextModel):
  5617. model_arch = gguf.MODEL_ARCH.OPENELM
  5618. @staticmethod
  5619. def _make_divisible(v: float | int, divisor: int) -> int:
  5620. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5621. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5622. # Make sure that round down does not go down by more than 10%.
  5623. if new_v < 0.9 * v:
  5624. new_v += divisor
  5625. return new_v
  5626. def __init__(self, *args, **kwargs):
  5627. super().__init__(*args, **kwargs)
  5628. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5629. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5630. self._n_embd: int = self.hparams["model_dim"]
  5631. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5632. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5633. self._ffn_dims: list[int] = [
  5634. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5635. for multiplier in ffn_multipliers
  5636. ]
  5637. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5638. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5639. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5640. def set_vocab(self):
  5641. try:
  5642. self._set_vocab_sentencepiece()
  5643. except FileNotFoundError:
  5644. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5645. def set_gguf_parameters(self):
  5646. n_embd = self._n_embd
  5647. head_dim = self.hparams["head_dim"]
  5648. rot_pct = 1.0
  5649. assert self.block_count == len(self._num_kv_heads)
  5650. assert self.block_count == len(self._num_query_heads)
  5651. assert self.block_count == len(self._ffn_dims)
  5652. self.gguf_writer.add_block_count(self.block_count)
  5653. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5654. self.gguf_writer.add_embedding_length(n_embd)
  5655. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5656. self.gguf_writer.add_head_count(self._num_query_heads)
  5657. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5658. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5659. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5660. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5661. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5662. self.gguf_writer.add_key_length(head_dim)
  5663. self.gguf_writer.add_value_length(head_dim)
  5664. self.gguf_writer.add_file_type(self.ftype)
  5665. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5666. if "n_layers" in keys:
  5667. return self.hparams["num_transformer_layers"]
  5668. return super().find_hparam(keys, optional)
  5669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5670. # split ff
  5671. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5672. ff_dim = self._ffn_dims[bid]
  5673. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5674. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5675. return
  5676. yield (self.map_tensor_name(name), data_torch)
  5677. @ModelBase.register("ArcticForCausalLM")
  5678. class ArcticModel(TextModel):
  5679. model_arch = gguf.MODEL_ARCH.ARCTIC
  5680. def set_vocab(self):
  5681. # The reason for using a custom implementation here is that the
  5682. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5683. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5684. from sentencepiece import SentencePieceProcessor
  5685. tokenizer_path = self.dir_model / 'tokenizer.model'
  5686. if not tokenizer_path.is_file():
  5687. logger.error(f'Error: Missing {tokenizer_path}')
  5688. sys.exit(1)
  5689. # Read the whole vocabulary from the tokenizer.model file
  5690. tokenizer = SentencePieceProcessor()
  5691. tokenizer.LoadFromFile(str(tokenizer_path))
  5692. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5693. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5694. scores: list[float] = [-10000.0] * vocab_size
  5695. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5696. for token_id in range(tokenizer.vocab_size()):
  5697. piece = tokenizer.IdToPiece(token_id)
  5698. text = piece.encode("utf-8")
  5699. score = tokenizer.GetScore(token_id)
  5700. toktype = SentencePieceTokenTypes.NORMAL
  5701. if tokenizer.IsUnknown(token_id):
  5702. toktype = SentencePieceTokenTypes.UNKNOWN
  5703. elif tokenizer.IsControl(token_id):
  5704. toktype = SentencePieceTokenTypes.CONTROL
  5705. elif tokenizer.IsUnused(token_id):
  5706. toktype = SentencePieceTokenTypes.UNUSED
  5707. elif tokenizer.IsByte(token_id):
  5708. toktype = SentencePieceTokenTypes.BYTE
  5709. tokens[token_id] = text
  5710. scores[token_id] = score
  5711. toktypes[token_id] = toktype
  5712. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5713. # of information about added/redefined tokens and modify them accordingly.
  5714. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5715. if tokenizer_config_file.is_file():
  5716. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5717. tokenizer_config_json = json.load(f)
  5718. if "added_tokens_decoder" in tokenizer_config_json:
  5719. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5720. for token_id, token_json in added_tokens_decoder.items():
  5721. token_id = int(token_id)
  5722. if token_id >= vocab_size:
  5723. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5724. continue
  5725. token_content = token_json["content"]
  5726. token_type = SentencePieceTokenTypes.USER_DEFINED
  5727. token_score = -10000.0
  5728. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5729. # Set the score to 0.0 as in the original tokenizer.model
  5730. if ("special" in token_json) and token_json["special"]:
  5731. if token_content == tokenizer_config_json["unk_token"]:
  5732. token_type = SentencePieceTokenTypes.UNKNOWN
  5733. else:
  5734. token_type = SentencePieceTokenTypes.CONTROL
  5735. token_score = 0.0
  5736. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5737. tokens[token_id] = token_content.encode("utf-8")
  5738. toktypes[token_id] = token_type
  5739. scores[token_id] = token_score
  5740. self.gguf_writer.add_tokenizer_model("llama")
  5741. self.gguf_writer.add_tokenizer_pre("default")
  5742. self.gguf_writer.add_token_list(tokens)
  5743. self.gguf_writer.add_token_scores(scores)
  5744. self.gguf_writer.add_token_types(toktypes)
  5745. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5746. special_vocab.add_to_gguf(self.gguf_writer)
  5747. def set_gguf_parameters(self):
  5748. super().set_gguf_parameters()
  5749. hparams = self.hparams
  5750. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5751. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5752. _experts: list[dict[str, Tensor]] | None = None
  5753. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5754. n_head = self.hparams["num_attention_heads"]
  5755. n_kv_head = self.hparams.get("num_key_value_heads")
  5756. if name.endswith("q_proj.weight"):
  5757. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5758. if name.endswith("k_proj.weight"):
  5759. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5760. # process the experts separately
  5761. if name.find("block_sparse_moe.experts") != -1:
  5762. n_experts = self.hparams["num_local_experts"]
  5763. assert bid is not None
  5764. if self._experts is None:
  5765. self._experts = [{} for _ in range(self.block_count)]
  5766. self._experts[bid][name] = data_torch
  5767. if len(self._experts[bid]) >= n_experts * 3:
  5768. tensors: list[tuple[str, Tensor]] = []
  5769. # merge the experts into a single 3d tensor
  5770. for wid in ["w1", "w2", "w3"]:
  5771. datas: list[Tensor] = []
  5772. for xid in range(n_experts):
  5773. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5774. datas.append(self._experts[bid][ename])
  5775. del self._experts[bid][ename]
  5776. data_torch = torch.stack(datas, dim=0)
  5777. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5778. new_name = self.map_tensor_name(merged_name)
  5779. tensors.append((new_name, data_torch))
  5780. return tensors
  5781. else:
  5782. return []
  5783. return [(self.map_tensor_name(name), data_torch)]
  5784. def prepare_tensors(self):
  5785. super().prepare_tensors()
  5786. if self._experts is not None:
  5787. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5788. experts = [k for d in self._experts for k in d.keys()]
  5789. if len(experts) > 0:
  5790. raise ValueError(f"Unprocessed experts: {experts}")
  5791. @ModelBase.register("DeepseekForCausalLM")
  5792. class DeepseekModel(TextModel):
  5793. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5794. def set_vocab(self):
  5795. try:
  5796. self._set_vocab_sentencepiece()
  5797. except FileNotFoundError:
  5798. self._set_vocab_gpt2()
  5799. def set_gguf_parameters(self):
  5800. super().set_gguf_parameters()
  5801. hparams = self.hparams
  5802. if (rope_dim := hparams.get("head_dim")) is None:
  5803. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5804. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5805. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5806. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5807. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5808. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5809. self.gguf_writer.add_expert_weights_scale(1.0)
  5810. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5811. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5812. _experts: list[dict[str, Tensor]] | None = None
  5813. @staticmethod
  5814. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5815. if n_head_kv is not None and n_head != n_head_kv:
  5816. n_head = n_head_kv
  5817. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5818. .swapaxes(1, 2)
  5819. .reshape(weights.shape))
  5820. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5821. n_head = self.hparams["num_attention_heads"]
  5822. n_kv_head = self.hparams.get("num_key_value_heads")
  5823. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5824. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5825. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5826. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5827. # process the experts separately
  5828. if name.find("mlp.experts") != -1:
  5829. n_experts = self.hparams["n_routed_experts"]
  5830. assert bid is not None
  5831. if self._experts is None:
  5832. self._experts = [{} for _ in range(self.block_count)]
  5833. self._experts[bid][name] = data_torch
  5834. if len(self._experts[bid]) >= n_experts * 3:
  5835. tensors: list[tuple[str, Tensor]] = []
  5836. # merge the experts into a single 3d tensor
  5837. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5838. datas: list[Tensor] = []
  5839. for xid in range(n_experts):
  5840. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5841. datas.append(self._experts[bid][ename])
  5842. del self._experts[bid][ename]
  5843. data_torch = torch.stack(datas, dim=0)
  5844. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5845. new_name = self.map_tensor_name(merged_name)
  5846. tensors.append((new_name, data_torch))
  5847. return tensors
  5848. else:
  5849. return []
  5850. return [(self.map_tensor_name(name), data_torch)]
  5851. def prepare_tensors(self):
  5852. super().prepare_tensors()
  5853. if self._experts is not None:
  5854. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5855. experts = [k for d in self._experts for k in d.keys()]
  5856. if len(experts) > 0:
  5857. raise ValueError(f"Unprocessed experts: {experts}")
  5858. @ModelBase.register(
  5859. "DeepseekV2ForCausalLM",
  5860. "DeepseekV3ForCausalLM",
  5861. "KimiVLForConditionalGeneration",
  5862. "YoutuForCausalLM",
  5863. )
  5864. class DeepseekV2Model(TextModel):
  5865. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5866. def set_vocab(self):
  5867. try:
  5868. self._set_vocab_gpt2()
  5869. return
  5870. except Exception:
  5871. pass
  5872. from transformers import AutoTokenizer
  5873. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5874. tokpre = self.get_vocab_base_pre(tokenizer)
  5875. if tokpre == "kimi-k2":
  5876. # Build merges list using the approach similar to HunYuanMoE
  5877. merges = []
  5878. vocab = {}
  5879. mergeable_ranks = tokenizer.model._mergeable_ranks
  5880. for token, rank in mergeable_ranks.items():
  5881. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5882. if len(token) == 1:
  5883. continue
  5884. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5885. if len(merged) == 2:
  5886. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5887. # Build token list
  5888. vocab_size = self.hparams["vocab_size"]
  5889. special_tokens = tokenizer.special_tokens
  5890. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5891. tokens: list[str] = []
  5892. toktypes: list[int] = []
  5893. for i in range(vocab_size):
  5894. if i not in reverse_vocab:
  5895. tokens.append(f"[PAD{i}]")
  5896. toktypes.append(gguf.TokenType.UNUSED)
  5897. else:
  5898. token = reverse_vocab[i]
  5899. tokens.append(token)
  5900. if i in special_tokens.values():
  5901. toktypes.append(gguf.TokenType.CONTROL)
  5902. else:
  5903. toktypes.append(gguf.TokenType.NORMAL)
  5904. self.gguf_writer.add_tokenizer_model("gpt2")
  5905. self.gguf_writer.add_tokenizer_pre(tokpre)
  5906. self.gguf_writer.add_token_list(tokens)
  5907. self.gguf_writer.add_token_types(toktypes)
  5908. self.gguf_writer.add_token_merges(merges)
  5909. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5910. special_vocab.add_to_gguf(self.gguf_writer)
  5911. else:
  5912. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5913. def set_gguf_parameters(self):
  5914. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5915. self.hparams["num_key_value_heads"] = 1
  5916. super().set_gguf_parameters()
  5917. hparams = self.hparams
  5918. # first_k_dense_replace: number of leading layers using dense FFN instead of MoE
  5919. # For non-MoE models (like Youtu), set to n_layer to use dense FFN for all layers
  5920. # For MoE models (like DeepSeek-V2), this is the number of leading non-MoE layers
  5921. has_moe = hparams.get("n_routed_experts") is not None
  5922. first_k_dense_replace = hparams.get("first_k_dense_replace")
  5923. if first_k_dense_replace is None:
  5924. # Default: if no MoE, all layers are dense; if MoE, none are dense
  5925. first_k_dense_replace = hparams["num_hidden_layers"] if not has_moe else 0
  5926. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5927. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5928. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5929. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5930. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5931. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5932. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5933. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5934. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5935. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5936. # MoE parameters (required by C++ code for DEEPSEEK2 arch)
  5937. # For non-MoE models like Youtu, use intermediate_size as expert_feed_forward_length
  5938. moe_intermediate_size = self.find_hparam(["moe_intermediate_size", "intermediate_size"], optional=False)
  5939. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5940. if (n_routed_experts := hparams.get("n_routed_experts")) is not None:
  5941. self.gguf_writer.add_expert_count(n_routed_experts)
  5942. # expert_shared_count is required by C++ code, default to 0 for non-MoE models
  5943. n_shared_experts = hparams.get("n_shared_experts", 0)
  5944. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5945. # When not set, C++ code will use scale_w = false to skip the no-op scaling
  5946. if (routed_scaling_factor := hparams.get("routed_scaling_factor")) is not None:
  5947. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5948. if (norm_topk_prob := hparams.get("norm_topk_prob")) is not None and norm_topk_prob:
  5949. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5950. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5951. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5952. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5953. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5954. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5955. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5956. _experts: list[dict[str, Tensor]] | None = None
  5957. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5958. # skip vision tensors and remove "language_model." for Kimi-VL
  5959. if "vision_tower" in name or "multi_modal_projector" in name:
  5960. return []
  5961. if name.startswith("siglip2.") or name.startswith("merger."):
  5962. return []
  5963. if name.startswith("language_model."):
  5964. name = name.replace("language_model.", "")
  5965. # skip lm_head.weight if tie_word_embeddings is True
  5966. if self.hparams.get("tie_word_embeddings", False):
  5967. if name == "lm_head.weight" or name == "model.lm_head.weight":
  5968. logger.info("Skipping tied output layer 'lm_head.weight' (will use token_embd.weight)")
  5969. return []
  5970. # rename e_score_correction_bias tensors
  5971. if name.endswith("e_score_correction_bias"):
  5972. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5973. # skip Multi-Token Prediction (MTP) layers
  5974. block_count = self.hparams["num_hidden_layers"]
  5975. match = re.match(r"model.layers.(\d+)", name)
  5976. if match and int(match.group(1)) >= block_count:
  5977. return []
  5978. # process the experts separately
  5979. if name.find("mlp.experts") != -1:
  5980. n_experts = self.hparams["n_routed_experts"]
  5981. assert bid is not None
  5982. if self._experts is None:
  5983. self._experts = [{} for _ in range(self.block_count)]
  5984. self._experts[bid][name] = data_torch
  5985. if len(self._experts[bid]) >= n_experts * 3:
  5986. tensors: list[tuple[str, Tensor]] = []
  5987. # merge the experts into a single 3d tensor
  5988. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5989. datas: list[Tensor] = []
  5990. for xid in range(n_experts):
  5991. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5992. datas.append(self._experts[bid][ename])
  5993. del self._experts[bid][ename]
  5994. data_torch = torch.stack(datas, dim=0)
  5995. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5996. new_name = self.map_tensor_name(merged_name)
  5997. tensors.append((new_name, data_torch))
  5998. return tensors
  5999. else:
  6000. return []
  6001. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  6002. if name.endswith("kv_b_proj.weight"):
  6003. name_kb = name.replace("kv_b_proj", "k_b_proj")
  6004. name_vb = name.replace("kv_b_proj", "v_b_proj")
  6005. n_head_kv = self.hparams["num_key_value_heads"]
  6006. v_head_dim = self.hparams["v_head_dim"]
  6007. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  6008. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  6009. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  6010. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  6011. k_b = k_b.transpose(1, 2)
  6012. return [
  6013. (self.map_tensor_name(name_kb), k_b),
  6014. (self.map_tensor_name(name_vb), v_b)
  6015. ]
  6016. return [(self.map_tensor_name(name), data_torch)]
  6017. def prepare_tensors(self):
  6018. super().prepare_tensors()
  6019. if self._experts is not None:
  6020. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6021. experts = [k for d in self._experts for k in d.keys()]
  6022. if len(experts) > 0:
  6023. raise ValueError(f"Unprocessed experts: {experts}")
  6024. @ModelBase.register("MiniMaxM2ForCausalLM")
  6025. class MiniMaxM2Model(TextModel):
  6026. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  6027. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6028. def __init__(self, *args, **kwargs):
  6029. super().__init__(*args, **kwargs)
  6030. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6031. def set_gguf_parameters(self):
  6032. super().set_gguf_parameters()
  6033. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6034. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6035. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6036. if name.endswith("e_score_correction_bias"):
  6037. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6038. # merge expert weights
  6039. if 'experts' in name:
  6040. n_experts = self.hparams["num_experts"]
  6041. assert bid is not None
  6042. expert_cache = self._experts_cache.setdefault(bid, {})
  6043. expert_cache[name] = data_torch
  6044. expert_weights = ["w1", "w2", "w3"]
  6045. # not enough expert weights to merge
  6046. if len(expert_cache) < n_experts * len(expert_weights):
  6047. return []
  6048. tensors: list[tuple[str, Tensor]] = []
  6049. for w_name in expert_weights:
  6050. datas: list[Tensor] = []
  6051. for xid in range(n_experts):
  6052. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6053. datas.append(expert_cache[ename])
  6054. del expert_cache[ename]
  6055. data_torch = torch.stack(datas, dim=0)
  6056. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6057. new_name = self.map_tensor_name(merged_name)
  6058. tensors.append((new_name, data_torch))
  6059. del self._experts_cache[bid]
  6060. return tensors
  6061. return super().modify_tensors(data_torch, name, bid)
  6062. @ModelBase.register("MiMoV2FlashForCausalLM")
  6063. class MimoV2Model(TextModel):
  6064. model_arch = gguf.MODEL_ARCH.MIMO2
  6065. def set_gguf_parameters(self):
  6066. super().set_gguf_parameters()
  6067. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  6068. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  6069. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  6070. assert self.hparams["topk_method"] == "noaux_tc"
  6071. n_head_kv = self.hparams["num_key_value_heads"]
  6072. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6073. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6074. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6075. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6076. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6077. self.gguf_writer.add_rope_freq_base_swa(self.hparams["swa_rope_theta"])
  6078. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6079. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6080. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6081. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6082. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6083. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6084. _experts: list[dict[str, Tensor]] | None = None
  6085. def modify_tensors(self, data_torch, name, bid):
  6086. if name.endswith("e_score_correction_bias"):
  6087. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6088. if "attention_sink" in name and not name.endswith(".weight"):
  6089. name += ".weight"
  6090. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6091. if "model.mtp." in name:
  6092. return []
  6093. # process the experts separately
  6094. if name.find("mlp.experts") != -1:
  6095. n_experts = self.hparams["n_routed_experts"]
  6096. assert bid is not None
  6097. if self._experts is None:
  6098. self._experts = [{} for _ in range(self.block_count)]
  6099. self._experts[bid][name] = data_torch
  6100. if len(self._experts[bid]) >= n_experts * 3:
  6101. tensors: list[tuple[str, Tensor]] = []
  6102. # merge the experts into a single 3d tensor
  6103. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6104. datas: list[Tensor] = []
  6105. for xid in range(n_experts):
  6106. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6107. datas.append(self._experts[bid][ename_to_retrieve])
  6108. del self._experts[bid][ename_to_retrieve]
  6109. data_torch = torch.stack(datas, dim=0)
  6110. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6111. new_name = self.map_tensor_name(merged_name)
  6112. tensors.append((new_name, data_torch))
  6113. return tensors
  6114. else:
  6115. return []
  6116. return [(self.map_tensor_name(name), data_torch)]
  6117. def prepare_tensors(self):
  6118. super().prepare_tensors()
  6119. if self._experts is not None:
  6120. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6121. experts = [k for d in self._experts for k in d.keys()]
  6122. if len(experts) > 0:
  6123. raise ValueError(f"Unprocessed experts: {experts}")
  6124. @ModelBase.register("PanguEmbeddedForCausalLM")
  6125. class PanguEmbeddedModel(TextModel):
  6126. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6127. def set_vocab(self):
  6128. self._set_vocab_sentencepiece()
  6129. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6130. if tokenizer_config_file.is_file():
  6131. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6132. tokenizer_config_json = json.load(f)
  6133. if "add_prefix_space" in tokenizer_config_json:
  6134. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6135. def set_gguf_parameters(self):
  6136. super().set_gguf_parameters()
  6137. hparams = self.hparams
  6138. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6139. # PanguEmbedded's hparam loaded from config.json without head_dim
  6140. if (rope_dim := hparams.get("head_dim")) is None:
  6141. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6142. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6143. if hparams.get("head_dim") is None:
  6144. self.gguf_writer.add_key_length(rope_dim)
  6145. self.gguf_writer.add_value_length(rope_dim)
  6146. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6147. if name == "lm_head.weight":
  6148. if self.hparams.get("tie_word_embeddings", False):
  6149. logger.info("Skipping tied output layer 'lm_head.weight'")
  6150. return []
  6151. return [(self.map_tensor_name(name), data_torch)]
  6152. @ModelBase.register("Dots1ForCausalLM")
  6153. class Dots1Model(Qwen2MoeModel):
  6154. model_arch = gguf.MODEL_ARCH.DOTS1
  6155. def __init__(self, *args, **kwargs):
  6156. super().__init__(*args, **kwargs)
  6157. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6158. def set_gguf_parameters(self):
  6159. super().set_gguf_parameters()
  6160. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6161. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6162. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6163. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6165. if name.endswith("e_score_correction_bias"):
  6166. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6167. if "shared_experts" in name:
  6168. return [(self.map_tensor_name(name), data_torch)]
  6169. return super().modify_tensors(data_torch, name, bid)
  6170. @ModelBase.register("PLMForCausalLM")
  6171. class PLMModel(TextModel):
  6172. model_arch = gguf.MODEL_ARCH.PLM
  6173. def set_vocab(self):
  6174. self._set_vocab_gpt2()
  6175. def set_gguf_parameters(self):
  6176. super().set_gguf_parameters()
  6177. hparams = self.hparams
  6178. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6179. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6180. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6181. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6182. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6183. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6184. return [(self.map_tensor_name(name), data_torch)]
  6185. def prepare_tensors(self):
  6186. super().prepare_tensors()
  6187. @ModelBase.register("T5WithLMHeadModel")
  6188. @ModelBase.register("T5ForConditionalGeneration")
  6189. @ModelBase.register("MT5ForConditionalGeneration")
  6190. @ModelBase.register("UMT5ForConditionalGeneration")
  6191. @ModelBase.register("UMT5Model")
  6192. class T5Model(TextModel):
  6193. model_arch = gguf.MODEL_ARCH.T5
  6194. def __init__(self, *args, **kwargs):
  6195. super().__init__(*args, **kwargs)
  6196. self.shared_token_embeddings_found = False
  6197. def set_vocab(self):
  6198. # to avoid TypeError: Descriptors cannot be created directly
  6199. # exception when importing sentencepiece_model_pb2
  6200. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6201. from sentencepiece import SentencePieceProcessor
  6202. from sentencepiece import sentencepiece_model_pb2 as model
  6203. tokenizer_path = self.dir_model / 'tokenizer.model'
  6204. # many older models use spiece.model tokenizer model filename
  6205. if not tokenizer_path.is_file():
  6206. tokenizer_path = self.dir_model / 'spiece.model'
  6207. if not tokenizer_path.is_file():
  6208. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6209. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6210. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6211. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6212. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6213. # assure the tokenizer model file name is correct
  6214. assert tokenizer_path.name == 'tokenizer.model'
  6215. return self._set_vocab_sentencepiece()
  6216. else:
  6217. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6218. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6219. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6220. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6221. tokenizer = SentencePieceProcessor()
  6222. tokenizer.LoadFromFile(str(tokenizer_path))
  6223. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6224. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6225. scores: list[float] = [-10000.0] * vocab_size
  6226. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6227. for token_id in range(tokenizer.vocab_size()):
  6228. piece = tokenizer.IdToPiece(token_id)
  6229. text = piece.encode("utf-8")
  6230. score = tokenizer.GetScore(token_id)
  6231. toktype = SentencePieceTokenTypes.NORMAL
  6232. if tokenizer.IsUnknown(token_id):
  6233. toktype = SentencePieceTokenTypes.UNKNOWN
  6234. elif tokenizer.IsControl(token_id):
  6235. toktype = SentencePieceTokenTypes.CONTROL
  6236. elif tokenizer.IsUnused(token_id):
  6237. toktype = SentencePieceTokenTypes.UNUSED
  6238. elif tokenizer.IsByte(token_id):
  6239. toktype = SentencePieceTokenTypes.BYTE
  6240. tokens[token_id] = text
  6241. scores[token_id] = score
  6242. toktypes[token_id] = toktype
  6243. added_tokens_file = self.dir_model / 'added_tokens.json'
  6244. if added_tokens_file.is_file():
  6245. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6246. added_tokens_json = json.load(f)
  6247. for key in added_tokens_json:
  6248. token_id = added_tokens_json[key]
  6249. if token_id >= vocab_size:
  6250. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6251. continue
  6252. tokens[token_id] = key.encode("utf-8")
  6253. scores[token_id] = -1000.0
  6254. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6255. if vocab_size > len(tokens):
  6256. pad_count = vocab_size - len(tokens)
  6257. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6258. for i in range(1, pad_count + 1):
  6259. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6260. scores.append(-1000.0)
  6261. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6262. self.gguf_writer.add_tokenizer_model("t5")
  6263. self.gguf_writer.add_tokenizer_pre("default")
  6264. self.gguf_writer.add_token_list(tokens)
  6265. self.gguf_writer.add_token_scores(scores)
  6266. self.gguf_writer.add_token_types(toktypes)
  6267. self.gguf_writer.add_add_space_prefix(add_prefix)
  6268. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6269. if precompiled_charsmap:
  6270. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6271. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6272. special_vocab.add_to_gguf(self.gguf_writer)
  6273. def set_gguf_parameters(self):
  6274. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6275. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6276. n_ctx = 512
  6277. self.gguf_writer.add_context_length(n_ctx)
  6278. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6279. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6280. self.gguf_writer.add_block_count(self.block_count)
  6281. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6282. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6283. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6284. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6285. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6286. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6287. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6288. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6289. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6290. self.gguf_writer.add_file_type(self.ftype)
  6291. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6292. del bid # unused
  6293. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6294. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6295. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6296. # and decoder and ignore the remaining ones.
  6297. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6298. if not self.shared_token_embeddings_found:
  6299. name = "shared.weight"
  6300. self.shared_token_embeddings_found = True
  6301. else:
  6302. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6303. return []
  6304. return [(self.map_tensor_name(name), data_torch)]
  6305. @ModelBase.register("T5EncoderModel")
  6306. class T5EncoderModel(TextModel):
  6307. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6308. def __init__(self, *args, **kwargs):
  6309. super().__init__(*args, **kwargs)
  6310. self.shared_token_embeddings_found = False
  6311. def set_vocab(self):
  6312. # to avoid TypeError: Descriptors cannot be created directly
  6313. # exception when importing sentencepiece_model_pb2
  6314. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6315. from sentencepiece import SentencePieceProcessor
  6316. from sentencepiece import sentencepiece_model_pb2 as model
  6317. tokenizer_path = self.dir_model / 'tokenizer.model'
  6318. # many older models use spiece.model tokenizer model filename
  6319. if not tokenizer_path.is_file():
  6320. tokenizer_path = self.dir_model / 'spiece.model'
  6321. if not tokenizer_path.is_file():
  6322. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6323. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6324. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6325. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6326. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6327. # assure the tokenizer model file name is correct
  6328. assert tokenizer_path.name == 'tokenizer.model'
  6329. return self._set_vocab_sentencepiece()
  6330. else:
  6331. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6332. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6333. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6334. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6335. tokenizer = SentencePieceProcessor()
  6336. tokenizer.LoadFromFile(str(tokenizer_path))
  6337. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6338. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6339. scores: list[float] = [-10000.0] * vocab_size
  6340. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6341. for token_id in range(tokenizer.vocab_size()):
  6342. piece = tokenizer.IdToPiece(token_id)
  6343. text = piece.encode("utf-8")
  6344. score = tokenizer.GetScore(token_id)
  6345. toktype = SentencePieceTokenTypes.NORMAL
  6346. if tokenizer.IsUnknown(token_id):
  6347. toktype = SentencePieceTokenTypes.UNKNOWN
  6348. elif tokenizer.IsControl(token_id):
  6349. toktype = SentencePieceTokenTypes.CONTROL
  6350. elif tokenizer.IsUnused(token_id):
  6351. toktype = SentencePieceTokenTypes.UNUSED
  6352. elif tokenizer.IsByte(token_id):
  6353. toktype = SentencePieceTokenTypes.BYTE
  6354. tokens[token_id] = text
  6355. scores[token_id] = score
  6356. toktypes[token_id] = toktype
  6357. added_tokens_file = self.dir_model / 'added_tokens.json'
  6358. if added_tokens_file.is_file():
  6359. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6360. added_tokens_json = json.load(f)
  6361. for key in added_tokens_json:
  6362. token_id = added_tokens_json[key]
  6363. if token_id >= vocab_size:
  6364. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6365. continue
  6366. tokens[token_id] = key.encode("utf-8")
  6367. scores[token_id] = -1000.0
  6368. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6369. if vocab_size > len(tokens):
  6370. pad_count = vocab_size - len(tokens)
  6371. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6372. for i in range(1, pad_count + 1):
  6373. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6374. scores.append(-1000.0)
  6375. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6376. self.gguf_writer.add_tokenizer_model("t5")
  6377. self.gguf_writer.add_tokenizer_pre("default")
  6378. self.gguf_writer.add_token_list(tokens)
  6379. self.gguf_writer.add_token_scores(scores)
  6380. self.gguf_writer.add_token_types(toktypes)
  6381. self.gguf_writer.add_add_space_prefix(add_prefix)
  6382. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6383. if precompiled_charsmap:
  6384. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6385. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6386. special_vocab.add_to_gguf(self.gguf_writer)
  6387. def set_gguf_parameters(self):
  6388. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6389. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6390. n_ctx = 512
  6391. self.gguf_writer.add_context_length(n_ctx)
  6392. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6393. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6394. self.gguf_writer.add_block_count(self.block_count)
  6395. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6396. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6397. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6398. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6399. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6400. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6401. self.gguf_writer.add_file_type(self.ftype)
  6402. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6403. del bid # unused
  6404. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6405. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6406. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6407. # and decoder and ignore the remaining ones.
  6408. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6409. if not self.shared_token_embeddings_found:
  6410. name = "shared.weight"
  6411. self.shared_token_embeddings_found = True
  6412. else:
  6413. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6414. return []
  6415. return [(self.map_tensor_name(name), data_torch)]
  6416. @ModelBase.register("JAISLMHeadModel")
  6417. class JaisModel(TextModel):
  6418. model_arch = gguf.MODEL_ARCH.JAIS
  6419. def __init__(self, *args, **kwargs):
  6420. super().__init__(*args, **kwargs)
  6421. # SwigLU activation
  6422. assert self.hparams["activation_function"] == "swiglu"
  6423. # ALiBi position embedding
  6424. assert self.hparams["position_embedding_type"] == "alibi"
  6425. # Embeddings scale
  6426. self.embeddings_scale = 1.0
  6427. if 'mup_embeddings_scale' in self.hparams:
  6428. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6429. elif 'embeddings_scale' in self.hparams:
  6430. self.embeddings_scale = self.hparams['embeddings_scale']
  6431. else:
  6432. assert False
  6433. self.width_scale = 1.0
  6434. if 'mup_output_alpha' in self.hparams:
  6435. assert 'mup_width_scale' in self.hparams
  6436. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6437. elif 'width_scale' in self.hparams:
  6438. self.width_scale = self.hparams['width_scale']
  6439. else:
  6440. assert False
  6441. self.max_alibi_bias = 8.0
  6442. def set_vocab(self):
  6443. self._set_vocab_gpt2()
  6444. def set_gguf_parameters(self):
  6445. self.gguf_writer.add_block_count(self.block_count)
  6446. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6447. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6448. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6449. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6450. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6451. self.gguf_writer.add_file_type(self.ftype)
  6452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6453. del bid # unused
  6454. tensors: list[tuple[str, Tensor]] = []
  6455. # we don't need these
  6456. if name.endswith((".attn.bias")):
  6457. return tensors
  6458. if name.endswith(("relative_pe.slopes")):
  6459. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6460. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6461. # but Jais's PyTorch model simply precalculates the slope values and places them
  6462. # in relative_pes.slopes
  6463. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6464. first_val = float(data_torch[0].item())
  6465. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6466. return tensors
  6467. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6468. data_torch = data_torch.transpose(1, 0)
  6469. new_name = self.map_tensor_name(name)
  6470. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6471. tensors.append((new_name, data_torch * self.embeddings_scale))
  6472. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6473. tensors.append((new_name, data_torch * self.width_scale))
  6474. else:
  6475. tensors.append((new_name, data_torch))
  6476. return tensors
  6477. def prepare_tensors(self):
  6478. super().prepare_tensors()
  6479. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6480. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6481. class Glm4Model(TextModel):
  6482. model_arch = gguf.MODEL_ARCH.GLM4
  6483. use_mrope = False
  6484. partial_rotary_factor = 0.5
  6485. def __init__(self, *args, **kwargs):
  6486. super().__init__(*args, **kwargs)
  6487. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6488. if "mrope_section" in self.rope_parameters:
  6489. self.use_mrope = True
  6490. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6491. def set_vocab(self):
  6492. from transformers import AutoTokenizer
  6493. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6494. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6495. tokens, toktypes, tokpre = self.get_vocab_base()
  6496. self.gguf_writer.add_tokenizer_model("gpt2")
  6497. self.gguf_writer.add_tokenizer_pre(tokpre)
  6498. self.gguf_writer.add_token_list(tokens)
  6499. self.gguf_writer.add_token_types(toktypes)
  6500. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6501. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6502. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6503. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6504. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6505. special_vocab.add_to_gguf(self.gguf_writer)
  6506. def set_gguf_parameters(self):
  6507. super().set_gguf_parameters()
  6508. if (rope_dim := self.hparams.get("head_dim")) is None:
  6509. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6510. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6511. @staticmethod
  6512. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6513. orig_shape = weights.shape
  6514. if len(orig_shape) == 1:
  6515. weights = weights.unsqueeze(1) # [out_dim, 1]
  6516. if len(weights.shape) != 2:
  6517. raise ValueError("Only 1D and 2D tensors are supported.")
  6518. n_effective_heads = weights.shape[0] // head_dim
  6519. if n_head_kv is not None and n_effective_heads != n_head:
  6520. if n_effective_heads != n_head_kv:
  6521. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6522. rotary_dim = int(head_dim * partial_rotary_factor)
  6523. if rotary_dim % 2 != 0:
  6524. raise ValueError("rotary_dim must be even.")
  6525. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6526. rot_part = reshaped[:, :rotary_dim, :]
  6527. non_rot_part = reshaped[:, rotary_dim:, :]
  6528. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6529. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6530. result = combined.reshape(weights.shape)
  6531. return result if len(orig_shape) != 1 else result.squeeze(1)
  6532. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6533. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6534. return []
  6535. elif name.startswith("model.language_model."):
  6536. name = name.replace("language_model.", "") # for Glm4v
  6537. if self.use_mrope:
  6538. n_head = self.hparams["num_attention_heads"]
  6539. n_kv_head = self.hparams["num_key_value_heads"]
  6540. n_embd = self.hparams["hidden_size"]
  6541. head_dim = n_embd // n_head
  6542. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6543. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6544. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6545. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6546. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6547. return super().modify_tensors(data_torch, name, bid)
  6548. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6549. class Glm4MoeModel(TextModel):
  6550. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6551. def __init__(self, *args, **kwargs):
  6552. super().__init__(*args, **kwargs)
  6553. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6554. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6555. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6556. def set_vocab(self):
  6557. from transformers import AutoTokenizer
  6558. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6559. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6560. tokens, toktypes, tokpre = self.get_vocab_base()
  6561. self.gguf_writer.add_tokenizer_model("gpt2")
  6562. self.gguf_writer.add_tokenizer_pre(tokpre)
  6563. self.gguf_writer.add_token_list(tokens)
  6564. self.gguf_writer.add_token_types(toktypes)
  6565. # Special tokens
  6566. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6567. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6568. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6569. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6570. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6571. special_vocab.add_to_gguf(self.gguf_writer)
  6572. def set_gguf_parameters(self):
  6573. super().set_gguf_parameters()
  6574. if (rope_dim := self.hparams.get("head_dim")) is None:
  6575. rope_dim = (
  6576. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6577. )
  6578. self.gguf_writer.add_rope_dimension_count(
  6579. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6580. )
  6581. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6582. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6583. self.gguf_writer.add_expert_count(n_routed_experts)
  6584. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6585. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6586. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6587. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6588. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6589. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6590. # Expert gating function (sigmoid for GLM4_MOE)
  6591. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6592. # Routed scaling factor
  6593. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6594. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6595. # Normalise topk probabilities
  6596. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6597. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6598. # NextN/MTP prediction layers
  6599. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6600. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6601. _experts: list[dict[str, Tensor]] | None = None
  6602. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6603. def modify_tensors(
  6604. self, data_torch: Tensor, name: str, bid: int | None
  6605. ) -> Iterable[tuple[str, Tensor]]:
  6606. if name.startswith("model.visual."): # ignore visual part
  6607. return []
  6608. elif name.startswith("model.language_model."):
  6609. name = name.replace("language_model.", "") # for multimodal variants
  6610. # Handle main token embedding (but not layer-specific NextN embeddings)
  6611. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6612. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6613. # Handle routed experts
  6614. if name.find("mlp.experts") != -1:
  6615. n_experts = self.hparams["n_routed_experts"]
  6616. assert bid is not None
  6617. if self._experts is None:
  6618. self._experts = [{} for _ in range(self.block_count)]
  6619. self._experts[bid][name] = data_torch
  6620. if len(self._experts[bid]) >= n_experts * 3:
  6621. tensors: list[tuple[str, Tensor]] = []
  6622. # merge the experts into a single 3d tensor
  6623. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6624. datas: list[Tensor] = []
  6625. for xid in range(n_experts):
  6626. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6627. datas.append(self._experts[bid][ename])
  6628. del self._experts[bid][ename]
  6629. data_torch = torch.stack(datas, dim=0)
  6630. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6631. new_name = self.map_tensor_name(merged_name)
  6632. tensors.append((new_name, data_torch))
  6633. return tensors
  6634. else:
  6635. return []
  6636. if name.endswith("e_score_correction_bias"):
  6637. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6638. new_name = self.map_tensor_name(name)
  6639. return [(new_name, data_torch)]
  6640. def prepare_tensors(self):
  6641. super().prepare_tensors()
  6642. if self._experts is not None:
  6643. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6644. experts = [k for d in self._experts for k in d.keys()]
  6645. if len(experts) > 0:
  6646. raise ValueError(f"Unprocessed experts: {experts}")
  6647. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6648. class ChatGLMModel(TextModel):
  6649. model_arch = gguf.MODEL_ARCH.CHATGLM
  6650. def set_vocab_chatglm3(self):
  6651. dir_model = self.dir_model
  6652. hparams = self.hparams
  6653. tokens: list[bytes] = []
  6654. toktypes: list[int] = []
  6655. scores: list[float] = []
  6656. from transformers import AutoTokenizer
  6657. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6658. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6659. assert max(tokenizer.get_vocab().values()) < vocab_size
  6660. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6661. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6662. for token_id in range(vocab_size):
  6663. piece = tokenizer._convert_id_to_token(token_id)
  6664. if token_id == 0:
  6665. piece = "<unk>"
  6666. elif token_id == 1:
  6667. piece = "<bos>"
  6668. elif token_id == 2:
  6669. piece = "<eos>"
  6670. text = piece.encode("utf-8")
  6671. score = 0.0
  6672. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6673. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6674. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6675. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6676. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6677. if piece in special_tokens:
  6678. toktype = SentencePieceTokenTypes.CONTROL
  6679. elif len(piece) == 0:
  6680. text = f"[PAD{token_id}]".encode("utf-8")
  6681. toktype = SentencePieceTokenTypes.UNUSED
  6682. else:
  6683. toktype = SentencePieceTokenTypes.USER_DEFINED
  6684. tokens.append(text)
  6685. scores.append(score)
  6686. toktypes.append(toktype)
  6687. continue
  6688. toktype = SentencePieceTokenTypes.NORMAL
  6689. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6690. toktype = SentencePieceTokenTypes.UNKNOWN
  6691. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6692. toktype = SentencePieceTokenTypes.CONTROL
  6693. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6694. toktype = SentencePieceTokenTypes.UNUSED
  6695. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6696. toktype = SentencePieceTokenTypes.BYTE
  6697. tokens.append(text)
  6698. scores.append(score)
  6699. toktypes.append(toktype)
  6700. self.gguf_writer.add_tokenizer_model("llama")
  6701. # glm3 needs prefix and suffix formatted as:
  6702. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6703. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6704. self.gguf_writer.add_token_list(tokens)
  6705. self.gguf_writer.add_token_scores(scores)
  6706. self.gguf_writer.add_token_types(toktypes)
  6707. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6708. special_vocab.add_to_gguf(self.gguf_writer)
  6709. @staticmethod
  6710. def token_bytes_to_string(b):
  6711. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6712. byte_encoder = bytes_to_unicode()
  6713. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6714. @staticmethod
  6715. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6716. parts = [bytes([b]) for b in token]
  6717. while True:
  6718. min_idx = None
  6719. min_rank = None
  6720. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6721. rank = mergeable_ranks.get(pair[0] + pair[1])
  6722. if rank is not None and (min_rank is None or rank < min_rank):
  6723. min_idx = i
  6724. min_rank = rank
  6725. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6726. break
  6727. assert min_idx is not None
  6728. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6729. return parts
  6730. def set_vocab(self):
  6731. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6732. self.set_vocab_chatglm3()
  6733. return
  6734. dir_model = self.dir_model
  6735. hparams = self.hparams
  6736. tokens: list[str] = []
  6737. toktypes: list[int] = []
  6738. from transformers import AutoTokenizer
  6739. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6740. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6741. assert max(tokenizer.get_vocab().values()) < vocab_size
  6742. tokens, toktypes, tokpre = self.get_vocab_base()
  6743. self.gguf_writer.add_tokenizer_model("gpt2")
  6744. self.gguf_writer.add_tokenizer_pre(tokpre)
  6745. self.gguf_writer.add_token_list(tokens)
  6746. self.gguf_writer.add_token_types(toktypes)
  6747. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6748. # only add special tokens when they were not already loaded from config.json
  6749. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6750. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6751. # this one is usually not in config.json anyway
  6752. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6753. special_vocab.add_to_gguf(self.gguf_writer)
  6754. def set_gguf_parameters(self):
  6755. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6756. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6757. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6758. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6759. self.gguf_writer.add_embedding_length(n_embed)
  6760. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6761. self.gguf_writer.add_block_count(self.block_count)
  6762. self.gguf_writer.add_head_count(n_head)
  6763. self.gguf_writer.add_head_count_kv(n_head_kv)
  6764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6765. self.gguf_writer.add_file_type(self.ftype)
  6766. if "attention_dim" in self.hparams:
  6767. rope_dim = self.hparams["attention_dim"]
  6768. else:
  6769. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6770. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6771. self.gguf_writer.add_add_bos_token(False)
  6772. rope_freq = 10000
  6773. if "rope_ratio" in self.hparams:
  6774. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6775. self.gguf_writer.add_rope_freq_base(rope_freq)
  6776. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6777. del bid # unused
  6778. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6779. return []
  6780. name = name.removeprefix("transformer.")
  6781. return [(self.map_tensor_name(name), data_torch)]
  6782. @ModelBase.register("NemotronForCausalLM")
  6783. class NemotronModel(TextModel):
  6784. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6785. def set_vocab(self):
  6786. self._set_vocab_sentencepiece()
  6787. self.gguf_writer.add_pad_token_id(0)
  6788. self.gguf_writer.add_unk_token_id(1)
  6789. def set_gguf_parameters(self):
  6790. super().set_gguf_parameters()
  6791. hparams = self.hparams
  6792. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6793. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6794. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6795. # * Partial RoPE
  6796. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6797. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6798. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6799. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6800. # * RopeScaling for Nemotron
  6801. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6802. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6803. else:
  6804. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6805. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6807. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6808. # model.layers.{l}.input_layernorm.weight
  6809. # model.layers.{l}.post_attention_layernorm.weight
  6810. # model.norm.weight
  6811. if name.endswith("norm.weight"):
  6812. data_torch = data_torch + 1
  6813. return [(self.map_tensor_name(name), data_torch)]
  6814. @ModelBase.register("ExaoneForCausalLM")
  6815. class ExaoneModel(TextModel):
  6816. model_arch = gguf.MODEL_ARCH.EXAONE
  6817. def set_gguf_parameters(self):
  6818. super().set_gguf_parameters()
  6819. hparams = self.hparams
  6820. assert (hparams["activation_function"] == "silu")
  6821. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6822. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6823. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6824. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6825. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6826. if rope_params.get("rope_type", '').lower() == "llama3":
  6827. base = self.rope_parameters.get("rope_theta", 10000.0)
  6828. if (dim := self.hparams.get("head_dim")) is None:
  6829. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6830. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6831. factor = rope_params.get("factor", 8.0)
  6832. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6833. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6834. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6835. low_freq_wavelen = old_context_len / low_freq_factor
  6836. high_freq_wavelen = old_context_len / high_freq_factor
  6837. assert low_freq_wavelen != high_freq_wavelen
  6838. rope_factors = []
  6839. for freq in freqs:
  6840. wavelen = 2 * math.pi / freq
  6841. if wavelen < high_freq_wavelen:
  6842. rope_factors.append(1)
  6843. elif wavelen > low_freq_wavelen:
  6844. rope_factors.append(factor)
  6845. else:
  6846. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6847. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6848. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6849. @ModelBase.register("Exaone4ForCausalLM")
  6850. class Exaone4Model(TextModel):
  6851. model_arch = gguf.MODEL_ARCH.EXAONE4
  6852. def set_vocab(self):
  6853. tokens, toktypes, tokpre = self.get_vocab_base()
  6854. self.gguf_writer.add_tokenizer_model("gpt2")
  6855. self.gguf_writer.add_tokenizer_pre(tokpre)
  6856. self.gguf_writer.add_token_list(tokens)
  6857. self.gguf_writer.add_token_types(toktypes)
  6858. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6859. special_vocab.add_to_gguf(self.gguf_writer)
  6860. def set_gguf_parameters(self):
  6861. super().set_gguf_parameters()
  6862. hparams = self.hparams
  6863. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6864. if hparams.get("sliding_window") is not None:
  6865. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6866. if "layer_types" in hparams:
  6867. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6868. elif "sliding_window_pattern" in hparams:
  6869. sliding_window_pattern = []
  6870. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6871. for i in range(hparams["num_hidden_layers"]):
  6872. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6873. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6874. for i in range(hparams["num_hidden_layers"]):
  6875. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6876. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6877. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6878. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6879. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6880. if rope_params.get("rope_type", '').lower() == "llama3":
  6881. base = rope_params.get("rope_theta", 10_000.0)
  6882. if (dim := self.hparams.get("head_dim")) is None:
  6883. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6884. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6885. factor = rope_params.get("factor", 16.0)
  6886. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6887. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6888. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6889. low_freq_wavelen = old_context_len / low_freq_factor
  6890. high_freq_wavelen = old_context_len / high_freq_factor
  6891. rope_factors = []
  6892. for freq in freqs:
  6893. wavelen = 2 * math.pi / freq
  6894. if wavelen < high_freq_wavelen:
  6895. rope_factors.append(1)
  6896. elif wavelen > low_freq_wavelen:
  6897. rope_factors.append(factor)
  6898. else:
  6899. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6900. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6901. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6902. @ModelBase.register("GraniteForCausalLM")
  6903. class GraniteModel(LlamaModel):
  6904. """Conversion for IBM's GraniteForCausalLM"""
  6905. model_arch = gguf.MODEL_ARCH.GRANITE
  6906. def set_gguf_parameters(self):
  6907. """Granite uses standard llama parameters with the following differences:
  6908. - No head_dim support
  6909. - New multiplier params:
  6910. - attention_scale
  6911. - embedding_scale
  6912. - residual_scale
  6913. - logits_scaling
  6914. """
  6915. if head_dim := self.hparams.pop("head_dim", None):
  6916. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6917. super().set_gguf_parameters()
  6918. # NOTE: Convert _multiplier params to _scale params for naming
  6919. # consistency
  6920. if attention_scale := self.hparams.get("attention_multiplier"):
  6921. self.gguf_writer.add_attention_scale(attention_scale)
  6922. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6923. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6924. self.gguf_writer.add_embedding_scale(embedding_scale)
  6925. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6926. if residual_scale := self.hparams.get("residual_multiplier"):
  6927. self.gguf_writer.add_residual_scale(residual_scale)
  6928. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6929. if logits_scale := self.hparams.get("logits_scaling"):
  6930. self.gguf_writer.add_logit_scale(logits_scale)
  6931. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6932. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6933. class GraniteMoeModel(GraniteModel):
  6934. """Conversion for IBM's GraniteMoeForCausalLM"""
  6935. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6936. def set_gguf_parameters(self):
  6937. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6938. - shared_intermediate_size
  6939. """
  6940. super().set_gguf_parameters()
  6941. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6942. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6943. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6944. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6945. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6946. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6947. the hidden size that is then split during forward. To keep compatibility
  6948. with existing mixtral support, we pull them apart here.
  6949. """
  6950. if name.endswith("block_sparse_moe.input_linear.weight"):
  6951. ffn_dim = self.hparams["intermediate_size"]
  6952. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6953. gate, up = data_torch.split(ffn_dim, dim=-2)
  6954. return [
  6955. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6956. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6957. ]
  6958. has_experts = bool(self.hparams.get('num_local_experts'))
  6959. if name.endswith("shared_mlp.input_linear.weight"):
  6960. ffn_dim = self.hparams["shared_intermediate_size"]
  6961. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6962. gate, up = data_torch.split(ffn_dim, dim=-2)
  6963. if has_experts:
  6964. return [
  6965. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6966. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6967. ]
  6968. return [
  6969. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6970. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6971. ]
  6972. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6973. return [
  6974. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6975. ]
  6976. return super().modify_tensors(data_torch, name, bid)
  6977. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6978. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6979. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6980. layers and optionally uses MoE w/ a shared expert"""
  6981. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6982. undo_permute = True
  6983. def __init__(self, *args, **kwargs):
  6984. # Hybrid mamba models use a prefix for the mamba-specific params.
  6985. # TODO: Extend this if the prefix(es) need to be configurable
  6986. self.hparam_prefixes = ["mamba"]
  6987. super().__init__(*args, **kwargs)
  6988. # Lists of which layers use ssm vs attention
  6989. self._attn_layers = self.get_attn_layers()
  6990. self._ssm_layers = [
  6991. i for i in range(self.block_count)
  6992. if i not in self._attn_layers
  6993. ]
  6994. # There are some models in this family that are non-hybrid, but keep the
  6995. # same parent class by setting all layers to "attention." If this is the
  6996. # case, the model architecture needs to be updated to a standard
  6997. # "granite" or "granitemoe" model
  6998. if not self._ssm_layers:
  6999. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  7000. new_arch = (
  7001. gguf.MODEL_ARCH.GRANITE_MOE
  7002. if has_experts else
  7003. gguf.MODEL_ARCH.GRANITE
  7004. )
  7005. self.model_arch = new_arch
  7006. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  7007. self.gguf_writer.add_architecture()
  7008. # n_group and d_inner are used during reshape_tensors for mamba2
  7009. # NOTE: Explicitly include hparam prefix prefix for d_model to
  7010. # disambiguate with top-level head_dim
  7011. # NOTE 2: If needed for future models, this can be isolated in a method
  7012. # to separate the prefix setting and teh keys used
  7013. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  7014. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  7015. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  7016. def get_attn_layers(self):
  7017. # Explicit list of layer type names
  7018. if layer_types := self.hparams.get("layer_types"):
  7019. return [
  7020. i for i, typ in enumerate(layer_types)
  7021. if typ == "attention"
  7022. ]
  7023. # Layer types indicated by index or period
  7024. attn_layers = self.hparams.get("attn_layer_indices", [])
  7025. if not attn_layers:
  7026. attn_period = self.hparams.get("attn_layer_period")
  7027. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  7028. attn_offset = self.hparams.get("attn_layer_offset")
  7029. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  7030. attn_layers = [
  7031. i for i in range(self.block_count)
  7032. if i % attn_period == attn_offset
  7033. ]
  7034. return attn_layers
  7035. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7036. prefixed = []
  7037. for pfx in self.hparam_prefixes:
  7038. prefixed.extend(
  7039. "_".join([pfx, k])
  7040. for k in keys
  7041. )
  7042. keys = list(keys) + prefixed
  7043. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  7044. def modify_tensors(
  7045. self, data_torch: Tensor, name: str, bid: int | None
  7046. ) -> Iterable[tuple[str, Tensor]]:
  7047. if (
  7048. name.endswith("block_sparse_moe.input_linear.weight")
  7049. or "shared_mlp" in name
  7050. ):
  7051. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7052. # Determine whether this is a mamba layer or an attention layer
  7053. if bid in self._ssm_layers:
  7054. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  7055. elif bid in self._attn_layers:
  7056. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7057. return [(self.map_tensor_name(name), data_torch)]
  7058. def set_gguf_parameters(self):
  7059. """This method merges params from both parents and some that are
  7060. specific to this model. The result is some duplication of how the params
  7061. get set. The following warnings are expected during conversion:
  7062. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  7063. WARNING:Duplicated key name 'granitehybrid.context_length'
  7064. """
  7065. GraniteMoeModel.set_gguf_parameters(self)
  7066. ## Mamba mixer params ##
  7067. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  7068. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  7069. self.gguf_writer.add_ssm_group_count(self.n_group)
  7070. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7071. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7072. # in llama.cpp
  7073. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7074. ## Attention params ##
  7075. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7076. head_count_kv_vec = [
  7077. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7078. ]
  7079. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7080. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7081. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7082. ## If Bamba or non-hybrid, use rope, otherwise don't
  7083. use_rope = (
  7084. "BambaForCausalLM" in self.hparams["architectures"]
  7085. or not self._ssm_layers
  7086. )
  7087. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7088. if not use_rope:
  7089. self.gguf_writer.add_context_length(2**20)
  7090. ## Validation ##
  7091. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7092. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7093. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7094. def set_vocab(self):
  7095. self.hparams["pad_vocab_size_multiple"] = 8
  7096. Mamba2Model.set_vocab(self)
  7097. @ModelBase.register("NemotronHForCausalLM")
  7098. class NemotronHModel(GraniteHybridModel):
  7099. """Hybrid mamba2/attention model from NVIDIA"""
  7100. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7101. is_moe: bool = False
  7102. def __init__(self, *args, **kwargs):
  7103. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7104. # calling the parent __init__. This is because the parent constructor
  7105. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7106. # mappings would be missed if it were called with the default non-MoE arch.
  7107. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7108. if "num_experts_per_tok" in hparams:
  7109. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7110. self.is_moe = True
  7111. super().__init__(*args, **kwargs)
  7112. # Save the top-level head_dim for later
  7113. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7114. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7115. # Don't use expand to calculate d_inner
  7116. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7117. # Update the ssm / attn / mlp layers
  7118. # M: Mamba2, *: Attention, -: MLP
  7119. # MoE:
  7120. # M: Mamba2, *: Attention, E: Expert
  7121. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7122. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7123. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7124. def get_attn_layers(self):
  7125. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7126. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7127. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7128. def set_gguf_parameters(self):
  7129. super().set_gguf_parameters()
  7130. self.gguf_writer.add_key_length(self.head_dim)
  7131. self.gguf_writer.add_value_length(self.head_dim)
  7132. # Set feed_forward_length
  7133. # NOTE: This will trigger an override warning. This is preferrable to
  7134. # duplicating all the parent logic
  7135. if not self.is_moe:
  7136. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7137. self.gguf_writer.add_feed_forward_length([
  7138. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7139. ])
  7140. else:
  7141. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7142. self.gguf_writer.add_feed_forward_length([
  7143. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7144. ])
  7145. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7146. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7147. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7148. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7149. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7150. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7151. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7152. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7153. # number of experts used per token (top-k)
  7154. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7155. self.gguf_writer.add_expert_used_count(n_experts_used)
  7156. def set_vocab(self):
  7157. super().set_vocab()
  7158. # The tokenizer _does_ add a BOS token (via post_processor type
  7159. # TemplateProcessing) but does not set add_bos_token to true in the
  7160. # config, so we need to explicitly override it here.
  7161. if not self.is_moe:
  7162. self.gguf_writer.add_add_bos_token(True)
  7163. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7164. if self.is_moe and bid is not None:
  7165. if name.endswith("mixer.gate.e_score_correction_bias"):
  7166. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7167. mapped_name = self.map_tensor_name(new_name)
  7168. return [(mapped_name, data_torch)]
  7169. if name.endswith("mixer.dt_bias"):
  7170. new_name = name.replace("dt_bias", "dt.bias")
  7171. mapped_name = self.map_tensor_name(new_name)
  7172. return [(mapped_name, data_torch)]
  7173. if name.endswith("mixer.conv1d.weight"):
  7174. squeezed_data = data_torch.squeeze()
  7175. mapped_name = self.map_tensor_name(name)
  7176. return [(mapped_name, squeezed_data)]
  7177. if name.endswith("mixer.A_log"):
  7178. transformed_data = -torch.exp(data_torch)
  7179. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7180. mapped_name = self.map_tensor_name(name)
  7181. return [(mapped_name, reshaped_data)]
  7182. if name.endswith("mixer.D"):
  7183. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7184. mapped_name = self.map_tensor_name(name)
  7185. return [(mapped_name, reshaped_data)]
  7186. if name.endswith("mixer.norm.weight"):
  7187. reshaped_data = data_torch.reshape(8, 512)
  7188. mapped_name = self.map_tensor_name(name)
  7189. return [(mapped_name, reshaped_data)]
  7190. if name.find("mixer.experts") != -1:
  7191. n_experts = self.hparams["n_routed_experts"]
  7192. assert bid is not None
  7193. if self._experts is None:
  7194. self._experts = [{} for _ in range(self.block_count)]
  7195. self._experts[bid][name] = data_torch
  7196. if len(self._experts[bid]) >= n_experts * 2:
  7197. # merge the experts into a single tensor
  7198. tensors: list[tuple[str, Tensor]] = []
  7199. for w_name in ["down_proj", "up_proj"]:
  7200. datas: list[Tensor] = []
  7201. for xid in range(n_experts):
  7202. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7203. datas.append(self._experts[bid][ename])
  7204. del self._experts[bid][ename]
  7205. data_torch = torch.stack(datas, dim=0)
  7206. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7207. new_name = self.map_tensor_name(merged_name)
  7208. tensors.append((new_name, data_torch))
  7209. return tensors
  7210. else:
  7211. return []
  7212. return super().modify_tensors(data_torch, name, bid)
  7213. def prepare_tensors(self):
  7214. super().prepare_tensors()
  7215. if self._experts is not None:
  7216. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7217. experts = [k for d in self._experts for k in d.keys()]
  7218. if len(experts) > 0:
  7219. raise ValueError(f"Unprocessed experts: {experts}")
  7220. @ModelBase.register("LlamaBidirectionalModel")
  7221. class LlamaEmbedNemotronModel(LlamaModel):
  7222. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7223. @ModelBase.register("BailingMoeForCausalLM")
  7224. class BailingMoeModel(TextModel):
  7225. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7226. def set_vocab(self):
  7227. self._set_vocab_gpt2()
  7228. def set_gguf_parameters(self):
  7229. super().set_gguf_parameters()
  7230. hparams = self.hparams
  7231. if (rope_dim := hparams.get("head_dim")) is None:
  7232. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7233. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7234. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7235. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7236. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7237. self.gguf_writer.add_expert_weights_scale(1.0)
  7238. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7239. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7240. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7241. _experts: list[dict[str, Tensor]] | None = None
  7242. @staticmethod
  7243. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7244. if n_head_kv is not None and n_head != n_head_kv:
  7245. n_head = n_head_kv
  7246. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7247. .swapaxes(1, 2)
  7248. .reshape(weights.shape))
  7249. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7250. n_head = self.hparams["num_attention_heads"]
  7251. n_kv_head = self.hparams.get("num_key_value_heads")
  7252. n_embd = self.hparams["hidden_size"]
  7253. if (head_dim := self.hparams.get("head_dim")) is None:
  7254. head_dim = n_embd // n_head
  7255. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7256. if name.endswith("attention.dense.weight"):
  7257. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7258. elif name.endswith("query_key_value.weight"):
  7259. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7260. return [
  7261. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7262. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7263. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7264. ]
  7265. elif name.find("mlp.experts") != -1:
  7266. n_experts = self.hparams["num_experts"]
  7267. assert bid is not None
  7268. tensors: list[tuple[str, Tensor]] = []
  7269. if self._experts is None:
  7270. self._experts = [{} for _ in range(self.block_count)]
  7271. self._experts[bid][name] = data_torch
  7272. if len(self._experts[bid]) >= n_experts * 3:
  7273. # merge the experts into a single 3d tensor
  7274. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7275. datas: list[Tensor] = []
  7276. for xid in range(n_experts):
  7277. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7278. datas.append(self._experts[bid][ename])
  7279. del self._experts[bid][ename]
  7280. data_torch = torch.stack(datas, dim=0)
  7281. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7282. new_name = self.map_tensor_name(merged_name)
  7283. tensors.append((new_name, data_torch))
  7284. return tensors
  7285. new_name = self.map_tensor_name(name)
  7286. if new_name == output_name and self.hparams.get("norm_head"):
  7287. data_torch = data_torch.float()
  7288. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7289. return [(new_name, data_torch)]
  7290. def prepare_tensors(self):
  7291. super().prepare_tensors()
  7292. if self._experts is not None:
  7293. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7294. experts = [k for d in self._experts for k in d.keys()]
  7295. if len(experts) > 0:
  7296. raise ValueError(f"Unprocessed experts: {experts}")
  7297. @ModelBase.register("BailingMoeV2ForCausalLM")
  7298. class BailingMoeV2Model(TextModel):
  7299. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7300. def __init__(self, *args, **kwargs):
  7301. super().__init__(*args, **kwargs)
  7302. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7303. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7304. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7305. def set_vocab(self):
  7306. self._set_vocab_gpt2()
  7307. def set_gguf_parameters(self):
  7308. super().set_gguf_parameters()
  7309. hparams = self.hparams
  7310. if (rope_dim := hparams.get("head_dim")) is None:
  7311. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7312. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7313. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7314. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7315. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7316. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7317. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7318. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7319. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7320. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7321. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7322. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7323. _experts: list[dict[str, Tensor]] | None = None
  7324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7325. if "mlp.experts" in name:
  7326. n_experts = self.hparams["num_experts"]
  7327. assert bid is not None
  7328. tensors: list[tuple[str, Tensor]] = []
  7329. if self._experts is None:
  7330. self._experts = [{} for _ in range(self.block_count)]
  7331. self._experts[bid][name] = data_torch
  7332. if len(self._experts[bid]) >= n_experts * 3:
  7333. # merge the experts into a single 3d tensor
  7334. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7335. datas: list[Tensor] = []
  7336. for xid in range(n_experts):
  7337. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7338. datas.append(self._experts[bid][ename])
  7339. del self._experts[bid][ename]
  7340. data_torch = torch.stack(datas, dim=0)
  7341. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7342. new_name = self.map_tensor_name(merged_name)
  7343. tensors.append((new_name, data_torch))
  7344. return tensors
  7345. if name.endswith(".expert_bias"):
  7346. name = name.replace(".expert_bias", ".expert_bias.bias")
  7347. return [(self.map_tensor_name(name), data_torch)]
  7348. def prepare_tensors(self):
  7349. super().prepare_tensors()
  7350. if self._experts is not None:
  7351. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7352. experts = [k for d in self._experts for k in d.keys()]
  7353. if len(experts) > 0:
  7354. raise ValueError(f"Unprocessed experts: {experts}")
  7355. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7356. class GroveMoeModel(TextModel):
  7357. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7358. def set_gguf_parameters(self):
  7359. super().set_gguf_parameters()
  7360. if (n_experts := self.hparams.get("num_experts")) is not None:
  7361. self.gguf_writer.add_expert_count(n_experts)
  7362. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7363. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7364. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7365. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7366. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7367. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7368. self.gguf_writer.add_experts_per_group(2)
  7369. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7370. self.gguf_writer.add_expert_group_scale(0.05)
  7371. _experts: list[dict[str, Tensor]] | None = None
  7372. _chunk_experts: list[dict[str, Tensor]] | None = None
  7373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7374. if name.endswith(".expert_bias"):
  7375. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7376. return []
  7377. # process the experts separately
  7378. if name.find("chunk_experts") != -1:
  7379. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7380. assert bid is not None
  7381. if self._chunk_experts is None:
  7382. self._chunk_experts = [{} for _ in range(self.block_count)]
  7383. self._chunk_experts[bid][name] = data_torch
  7384. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7385. tensors: list[tuple[str, Tensor]] = []
  7386. # merge the experts into a single 3d tensor
  7387. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7388. datas: list[Tensor] = []
  7389. for xid in range(n_experts):
  7390. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7391. datas.append(self._chunk_experts[bid][ename])
  7392. del self._chunk_experts[bid][ename]
  7393. data_torch = torch.stack(datas, dim=0)
  7394. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7395. new_name = self.map_tensor_name(merged_name)
  7396. tensors.append((new_name, data_torch))
  7397. return tensors
  7398. else:
  7399. return []
  7400. elif name.find("experts") != -1:
  7401. n_experts = self.hparams["num_experts"]
  7402. assert bid is not None
  7403. if self._experts is None:
  7404. self._experts = [{} for _ in range(self.block_count)]
  7405. self._experts[bid][name] = data_torch
  7406. if len(self._experts[bid]) >= n_experts * 3:
  7407. tensors: list[tuple[str, Tensor]] = []
  7408. # merge the experts into a single 3d tensor
  7409. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7410. datas: list[Tensor] = []
  7411. for xid in range(n_experts):
  7412. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7413. datas.append(self._experts[bid][ename])
  7414. del self._experts[bid][ename]
  7415. data_torch = torch.stack(datas, dim=0)
  7416. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7417. new_name = self.map_tensor_name(merged_name)
  7418. tensors.append((new_name, data_torch))
  7419. return tensors
  7420. else:
  7421. return []
  7422. return [(self.map_tensor_name(name), data_torch)]
  7423. def prepare_tensors(self):
  7424. super().prepare_tensors()
  7425. if self._chunk_experts is not None:
  7426. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7427. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7428. if len(chunk_experts) > 0:
  7429. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7430. if self._experts is not None:
  7431. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7432. experts = [k for d in self._experts for k in d.keys()]
  7433. if len(experts) > 0:
  7434. raise ValueError(f"Unprocessed experts: {experts}")
  7435. @ModelBase.register("ChameleonForConditionalGeneration")
  7436. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7437. class ChameleonModel(TextModel):
  7438. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7439. def set_gguf_parameters(self):
  7440. super().set_gguf_parameters()
  7441. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7442. def set_vocab(self):
  7443. self._set_vocab_gpt2()
  7444. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7445. # ignore image tokenizer for now
  7446. # TODO: remove this once image support is implemented for Chameleon
  7447. if name.startswith("model.vqmodel"):
  7448. return []
  7449. n_head = self.hparams["num_attention_heads"]
  7450. n_kv_head = self.hparams.get("num_key_value_heads")
  7451. hidden_dim = self.hparams.get("hidden_size")
  7452. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7453. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7454. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7455. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7456. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7457. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7458. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7459. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7460. return [(self.map_tensor_name(name), data_torch)]
  7461. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7462. @staticmethod
  7463. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7464. head_dim = hidden_dim // n_heads
  7465. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7466. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7467. return data_torch
  7468. @ModelBase.register("UltravoxModel")
  7469. class UltravoxModel(TextModel):
  7470. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7471. def __init__(self, *args, **kwargs):
  7472. super().__init__(*args, **kwargs)
  7473. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7474. @ModelBase.register("GlmasrModel")
  7475. class GlmASRWhisperEncoderModel(MmprojModel):
  7476. has_vision_encoder = False
  7477. has_audio_encoder = True
  7478. def __init__(self, *args, **kwargs):
  7479. super().__init__(*args, **kwargs)
  7480. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7481. self.hparams["hidden_size"] = self.hparams["d_model"]
  7482. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7483. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7484. def set_gguf_parameters(self):
  7485. super().set_gguf_parameters()
  7486. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7487. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7488. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7489. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7490. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7491. if ".conv" in name and ".weight" in name:
  7492. return gguf.GGMLQuantizationType.F16
  7493. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7494. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7495. del bid # unused
  7496. if name.startswith("model.") or name.startswith("lm_head."):
  7497. # skip language model tensors
  7498. return []
  7499. if name.startswith("audio_encoder.whisper."):
  7500. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7501. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7502. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7503. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7504. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7505. if name.startswith("audio_encoder.adapting."):
  7506. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7507. if ".layer_norm." in name:
  7508. name = name.replace(".layer_norm.", ".ln_pre.")
  7509. if ".0." in name:
  7510. name = name.replace(".0.", ".linear_1.")
  7511. if ".2." in name:
  7512. name = name.replace(".2.", ".linear_2.")
  7513. if ".proj." in name:
  7514. return []
  7515. if "conv1.bias" in name or "conv2.bias" in name:
  7516. # transpose conv1 and conv2 bias
  7517. data_torch = data_torch.unsqueeze(-1)
  7518. return [(self.map_tensor_name(name), data_torch)]
  7519. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7520. class WhisperEncoderModel(MmprojModel):
  7521. has_vision_encoder = False # no vision encoder
  7522. has_audio_encoder = True
  7523. def __init__(self, *args, **kwargs):
  7524. super().__init__(*args, **kwargs)
  7525. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7526. self.hparams["hidden_size"] = self.hparams["d_model"]
  7527. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7528. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7529. def set_gguf_parameters(self):
  7530. super().set_gguf_parameters()
  7531. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7532. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7533. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7534. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7535. if ".conv" in name and ".weight" in name:
  7536. return gguf.GGMLQuantizationType.F16
  7537. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7538. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7539. del bid # unused
  7540. if name.startswith("language_model."):
  7541. # skip language model tensors
  7542. return []
  7543. # prevent clash naming with vision tensors
  7544. if name.startswith("multi_modal_projector"):
  7545. name = "audio." + name
  7546. if "conv1.bias" in name or "conv2.bias" in name:
  7547. # transpose conv1 and conv2 bias
  7548. data_torch = data_torch.unsqueeze(-1)
  7549. return [(self.map_tensor_name(name), data_torch)]
  7550. @ModelBase.register("UltravoxModel")
  7551. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7552. has_vision_encoder = False # no vision encoder
  7553. has_audio_encoder = True
  7554. def set_gguf_parameters(self):
  7555. super().set_gguf_parameters()
  7556. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7557. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7558. @ModelBase.register("VoxtralForConditionalGeneration")
  7559. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7560. has_vision_encoder = False # no vision encoder
  7561. has_audio_encoder = True
  7562. def set_gguf_parameters(self):
  7563. super().set_gguf_parameters()
  7564. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7565. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7566. @ModelBase.register("AudioFlamingo3ForConditionalGeneration")
  7567. class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
  7568. def set_gguf_parameters(self):
  7569. super().set_gguf_parameters()
  7570. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
  7571. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7572. if ".conv" in name and ".weight" in name:
  7573. # Was trained in BF16, being safe, avoiding quantizing to FP16
  7574. return gguf.GGMLQuantizationType.F32
  7575. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7576. @ModelBase.register("FalconH1ForCausalLM")
  7577. class FalconH1Model(Mamba2Model):
  7578. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7579. def __init__(self, *args, **kwargs):
  7580. # Set the hparam prefixes for Falcon Mamba2
  7581. self.hparam_prefixes = ["mamba"]
  7582. # Initialize the base Mamba2Model
  7583. super().__init__(*args, **kwargs)
  7584. # Use Llama conversion for attention
  7585. self._transformer_model_class = LlamaModel
  7586. # n_group and d_inner are used during reshape_tensors for mamba2
  7587. self.n_group = self.find_hparam(["n_groups"])
  7588. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7589. self.d_head = self.find_hparam(["d_head"])
  7590. # Initialize any Falcon Mamba2 specific attributes
  7591. self.has_attention = True # Falcon Mamba2 has attention components
  7592. # Load Falcon-H1 multipliers from hyperparameters
  7593. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7594. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7595. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7596. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7597. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7598. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7599. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7600. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7601. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7602. prefixed = []
  7603. for pfx in self.hparam_prefixes:
  7604. prefixed.extend(
  7605. "_".join([pfx, k])
  7606. for k in keys
  7607. )
  7608. keys = list(keys) + prefixed
  7609. return super().find_hparam(keys, *args, **kwargs)
  7610. def set_vocab(self):
  7611. self._set_vocab_gpt2()
  7612. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7613. tensors = list(super().modify_tensors(data_torch, name, bid))
  7614. tensor = tensors[0][1]
  7615. if "down_proj" in name:
  7616. tensor = tensor * self.mlp_multipliers[1]
  7617. elif "gate_proj" in name:
  7618. tensor = tensor * self.mlp_multipliers[0]
  7619. elif "k_proj" in name:
  7620. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7621. elif "q_proj" in name:
  7622. tensor = tensor * self.attention_in_multiplier
  7623. elif "v_proj" in name:
  7624. tensor = tensor * self.attention_in_multiplier
  7625. elif "o_proj" in name:
  7626. tensor = tensor * self.attention_out_multiplier
  7627. elif "out_proj" in name:
  7628. tensor = tensor * self.ssm_out_multiplier
  7629. elif "in_proj" in name:
  7630. tensor = tensor * self.ssm_in_multiplier
  7631. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7632. intermediate_size = self.hparams["mamba_d_ssm"]
  7633. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7634. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7635. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7636. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7637. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7638. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7639. elif "lm_head" in name:
  7640. tensor = tensor * self.hparams["lm_head_multiplier"]
  7641. elif "embed_tokens" in name:
  7642. tensor = tensor * self.hparams["embedding_multiplier"]
  7643. elif "mamba.norm" in name:
  7644. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7645. tensors = [(tensors[0][0], tensor)]
  7646. return tensors
  7647. def set_gguf_parameters(self):
  7648. super().set_gguf_parameters()
  7649. ## General Params ##
  7650. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7651. # Override some Mamba2 defaults
  7652. self.gguf_writer.add_block_count(self.block_count)
  7653. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7654. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7655. ## Attention params ##
  7656. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7657. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7658. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7659. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7660. ## Validation ##
  7661. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7662. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7663. # Add any other Falcon Mamba2 specific configuration
  7664. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7665. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7666. class HunYuanMoEModel(TextModel):
  7667. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7668. def set_vocab(self):
  7669. from transformers import AutoTokenizer
  7670. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7671. # 1. Get the pre-tokenizer identifier hash
  7672. tokpre = self.get_vocab_base_pre(tokenizer)
  7673. # 2. Reverse-engineer the merges list from mergeable_ranks
  7674. merges = []
  7675. vocab = {}
  7676. mergeable_ranks = tokenizer.mergeable_ranks
  7677. for token, rank in mergeable_ranks.items():
  7678. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7679. if len(token) == 1:
  7680. continue
  7681. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7682. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7683. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7684. # 3. Generate the tokens and toktypes lists
  7685. vocab_size = self.hparams["vocab_size"]
  7686. assert tokenizer.vocab_size == vocab_size
  7687. special_tokens = tokenizer.special_tokens
  7688. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7689. tokens: list[str] = []
  7690. toktypes: list[int] = []
  7691. for i in range(vocab_size):
  7692. if i not in reverse_vocab:
  7693. tokens.append(f"[PAD{i}]")
  7694. toktypes.append(gguf.TokenType.UNUSED)
  7695. else:
  7696. token = reverse_vocab[i]
  7697. tokens.append(token)
  7698. if i in special_tokens.values():
  7699. toktypes.append(gguf.TokenType.CONTROL)
  7700. else:
  7701. toktypes.append(gguf.TokenType.NORMAL)
  7702. # 4. Write all vocab-related fields to the GGUF writer
  7703. self.gguf_writer.add_tokenizer_model("gpt2")
  7704. self.gguf_writer.add_tokenizer_pre(tokpre)
  7705. self.gguf_writer.add_token_list(tokens)
  7706. self.gguf_writer.add_token_types(toktypes)
  7707. self.gguf_writer.add_token_merges(merges)
  7708. # 5. Add special tokens and chat templates
  7709. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7710. special_vocab.add_to_gguf(self.gguf_writer)
  7711. # FIX for BOS token: Overwrite incorrect id read from config.json
  7712. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7713. def set_gguf_parameters(self):
  7714. super().set_gguf_parameters()
  7715. hparams = self.hparams
  7716. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7717. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7718. moe_intermediate_size = hparams["moe_intermediate_size"]
  7719. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7720. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7721. moe_topk = hparams["moe_topk"]
  7722. assert all(topk == moe_topk[0] for topk in moe_topk)
  7723. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7724. moe_shared_expert = hparams["num_shared_expert"]
  7725. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7726. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7727. # Rope
  7728. if self.rope_parameters.get("rope_type") == "dynamic":
  7729. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7730. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7731. alpha = self.rope_parameters.get("alpha", 1000)
  7732. base = self.rope_parameters.get("rope_theta", 10000.0)
  7733. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7734. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7735. self.gguf_writer.add_rope_freq_base(scaled_base)
  7736. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7737. self.gguf_writer.add_rope_scaling_factor(1)
  7738. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7739. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7740. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7741. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7742. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7743. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7744. _experts: list[dict[str, Tensor]] | None = None
  7745. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7746. if name == "lm_head.weight":
  7747. if self.hparams.get("tie_word_embeddings", False):
  7748. logger.info("Skipping tied output layer 'lm_head.weight'")
  7749. return []
  7750. if name.find("mlp.experts") != -1:
  7751. n_experts = self.hparams["num_experts"]
  7752. assert bid is not None
  7753. if self._experts is None:
  7754. self._experts = [{} for _ in range(self.block_count)]
  7755. self._experts[bid][name] = data_torch
  7756. if len(self._experts[bid]) >= n_experts * 3:
  7757. # merge the experts into a single 3d tensor
  7758. tensors: list[tuple[str, Tensor]] = []
  7759. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7760. datas: list[Tensor] = []
  7761. for xid in range(n_experts):
  7762. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7763. datas.append(self._experts[bid][ename])
  7764. del self._experts[bid][ename]
  7765. data_torch = torch.stack(datas, dim=0)
  7766. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7767. new_name = self.map_tensor_name(merged_name)
  7768. tensors.append((new_name, data_torch))
  7769. return tensors
  7770. else:
  7771. return []
  7772. return [(self.map_tensor_name(name), data_torch)]
  7773. def prepare_tensors(self):
  7774. super().prepare_tensors()
  7775. if self._experts is not None:
  7776. experts = [k for d in self._experts for k in d.keys()]
  7777. if len(experts) > 0:
  7778. raise ValueError(f"Unprocessed experts: {experts}")
  7779. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7780. class LLaDAMoEModel(TextModel):
  7781. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7782. def set_gguf_parameters(self):
  7783. super().set_gguf_parameters()
  7784. if (n_experts := self.hparams.get("num_experts")) is not None:
  7785. self.gguf_writer.add_expert_count(n_experts)
  7786. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7787. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7788. # number of experts used per token (top-k)
  7789. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7790. self.gguf_writer.add_expert_used_count(n_experts_used)
  7791. self.gguf_writer.add_mask_token_id(156895)
  7792. self.gguf_writer.add_causal_attention(False)
  7793. self.gguf_writer.add_diffusion_shift_logits(False)
  7794. _experts: list[dict[str, Tensor]] | None = None
  7795. # Copied from: Qwen2MoeModel
  7796. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7797. # process the experts separately
  7798. if name.find("experts") != -1:
  7799. n_experts = self.hparams["num_experts"]
  7800. assert bid is not None
  7801. if self._experts is None:
  7802. self._experts = [{} for _ in range(self.block_count)]
  7803. self._experts[bid][name] = data_torch
  7804. if len(self._experts[bid]) >= n_experts * 3:
  7805. tensors: list[tuple[str, Tensor]] = []
  7806. # merge the experts into a single 3d tensor
  7807. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7808. datas: list[Tensor] = []
  7809. for xid in range(n_experts):
  7810. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7811. datas.append(self._experts[bid][ename])
  7812. del self._experts[bid][ename]
  7813. data_torch = torch.stack(datas, dim=0)
  7814. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7815. new_name = self.map_tensor_name(merged_name)
  7816. tensors.append((new_name, data_torch))
  7817. return tensors
  7818. else:
  7819. return []
  7820. return [(self.map_tensor_name(name), data_torch)]
  7821. # Copied from: Qwen2MoeModel
  7822. def prepare_tensors(self):
  7823. super().prepare_tensors()
  7824. if self._experts is not None:
  7825. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7826. experts = [k for d in self._experts for k in d.keys()]
  7827. if len(experts) > 0:
  7828. raise ValueError(f"Unprocessed experts: {experts}")
  7829. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7830. class HunYuanModel(TextModel):
  7831. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7832. def set_vocab(self):
  7833. if (self.dir_model / "tokenizer.json").is_file():
  7834. self._set_vocab_gpt2()
  7835. else:
  7836. from transformers import AutoTokenizer
  7837. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7838. # 1. Get the pre-tokenizer identifier hash
  7839. tokpre = self.get_vocab_base_pre(tokenizer)
  7840. # 2. Reverse-engineer the merges list from mergeable_ranks
  7841. merges = []
  7842. vocab = {}
  7843. mergeable_ranks = tokenizer.mergeable_ranks
  7844. for token, rank in mergeable_ranks.items():
  7845. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7846. if len(token) == 1:
  7847. continue
  7848. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7849. if len(merged) == 2:
  7850. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7851. # 3. Generate the tokens and toktypes lists
  7852. vocab_size = self.hparams["vocab_size"]
  7853. assert tokenizer.vocab_size == vocab_size
  7854. special_tokens = tokenizer.special_tokens
  7855. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7856. tokens: list[str] = []
  7857. toktypes: list[int] = []
  7858. for i in range(vocab_size):
  7859. if i not in reverse_vocab:
  7860. tokens.append(f"[PAD{i}]")
  7861. toktypes.append(gguf.TokenType.UNUSED)
  7862. else:
  7863. token = reverse_vocab[i]
  7864. tokens.append(token)
  7865. if i in special_tokens.values():
  7866. toktypes.append(gguf.TokenType.CONTROL)
  7867. else:
  7868. toktypes.append(gguf.TokenType.NORMAL)
  7869. # 4. Write all vocab-related fields to the GGUF writer
  7870. self.gguf_writer.add_tokenizer_model("gpt2")
  7871. self.gguf_writer.add_tokenizer_pre(tokpre)
  7872. self.gguf_writer.add_token_list(tokens)
  7873. self.gguf_writer.add_token_types(toktypes)
  7874. self.gguf_writer.add_token_merges(merges)
  7875. # 5. Add special tokens and chat templates
  7876. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7877. special_vocab.add_to_gguf(self.gguf_writer)
  7878. # FIX for BOS token: Overwrite incorrect id read from config.json
  7879. if self.hparams['hidden_size'] == 4096:
  7880. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7881. def set_gguf_parameters(self):
  7882. super().set_gguf_parameters()
  7883. hparams = self.hparams
  7884. # Rope
  7885. if self.rope_parameters.get("rope_type") == "dynamic":
  7886. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7887. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7888. alpha = self.rope_parameters.get("alpha", 50)
  7889. base = self.rope_parameters.get("rope_theta", 10000.0)
  7890. dim = hparams["head_dim"]
  7891. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7892. self.gguf_writer.add_rope_freq_base(scaled_base)
  7893. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7894. self.gguf_writer.add_rope_scaling_factor(1)
  7895. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7896. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7897. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7898. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7899. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7900. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7901. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7902. if name == "lm_head.weight":
  7903. if self.hparams.get("tie_word_embeddings", False):
  7904. logger.info("Skipping tied output layer 'lm_head.weight'")
  7905. return []
  7906. return [(self.map_tensor_name(name), data_torch)]
  7907. @ModelBase.register("SmolLM3ForCausalLM")
  7908. class SmolLM3Model(LlamaModel):
  7909. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7910. @ModelBase.register("GptOssForCausalLM")
  7911. class GptOssModel(TextModel):
  7912. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7913. # TODO: remove once MXFP4 is supported more generally
  7914. def dequant_model(self):
  7915. quant_config = self.hparams.get("quantization_config")
  7916. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7917. return
  7918. return super().dequant_model()
  7919. def transform_nibble_layout(self, tensor):
  7920. assert tensor.dtype == torch.uint8
  7921. assert tensor.shape[-1] == 16
  7922. # swap nibbles
  7923. t_lo = tensor & 0x0F
  7924. t_hi = tensor & 0xF0
  7925. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7926. tensor = t_swapped
  7927. # transform aaaa...bbbb... to abababab...
  7928. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7929. # get a_
  7930. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7931. blk_a1 = (blk_a << 4).view(-1, 1)
  7932. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7933. # get _b
  7934. blk_b0 = (blk_b >> 4).view(-1, 1)
  7935. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7936. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7937. # swap once more
  7938. out = blk_a | blk_b
  7939. out_h = out & 0xF0
  7940. out_l = out & 0x0F
  7941. out = (out_h >> 4) | (out_l << 4)
  7942. return out
  7943. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7944. assert blocks.dtype == torch.uint8
  7945. assert scales.dtype == torch.uint8
  7946. scales = scales.unsqueeze(-1)
  7947. assert len(blocks.shape) == 4
  7948. assert len(scales.shape) == 4
  7949. blocks = self.transform_nibble_layout(blocks)
  7950. new_data = torch.concat((scales, blocks), dim=-1)
  7951. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7952. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7953. # flatten last dim
  7954. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7955. new_data = new_data.numpy()
  7956. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7957. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7958. blocks0: Tensor = torch.zeros(1)
  7959. blocks1: Tensor = torch.zeros(1)
  7960. # we assume that tensors are loaded in the correct order
  7961. for name, data_torch in self.get_tensors():
  7962. if "mlp.experts.down_proj_blocks" in name:
  7963. blocks0 = data_torch
  7964. elif "mlp.experts.down_proj_scales" in name:
  7965. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7966. self.repack_mxfp4(new_name, blocks0, data_torch)
  7967. elif "mlp.experts.gate_up_proj_blocks" in name:
  7968. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7969. elif "mlp.experts.gate_up_proj_scales" in name:
  7970. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7971. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7972. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7973. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7974. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7975. return []
  7976. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7977. del bid # unused
  7978. if "sinks" in name:
  7979. name += ".weight"
  7980. # correct naming for down_proj
  7981. if "down_proj" in name:
  7982. if name.endswith("_bias"):
  7983. name = name.replace("down_proj_bias", "down_proj.bias")
  7984. elif "_blocks" not in name and "_scales" not in name:
  7985. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7986. name = name.replace("down_proj", "down_proj.weight")
  7987. data_torch = data_torch.transpose(-1, -2)
  7988. else:
  7989. # otherwise, it should already be repacked to ggml MXFP4 format
  7990. return []
  7991. # split the gate_up into gate and up
  7992. if "gate_up_proj" in name:
  7993. if name.endswith("_bias"):
  7994. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7995. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7996. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7997. return [
  7998. (self.map_tensor_name(name_gate), gate_proj_bias),
  7999. (self.map_tensor_name(name_up), up_proj_bias)
  8000. ]
  8001. elif "_blocks" not in name and "_scales" not in name:
  8002. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  8003. name_up = name.replace("gate_up_proj", "up_proj.weight")
  8004. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  8005. data_torch = data_torch.transpose(-1, -2)
  8006. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  8007. return [
  8008. (self.map_tensor_name(name_gate), gate_proj_weight),
  8009. (self.map_tensor_name(name_up), up_proj_weight)
  8010. ]
  8011. else:
  8012. # otherwise, it should already be repacked to ggml MXFP4 format
  8013. return []
  8014. return [(self.map_tensor_name(name), data_torch)]
  8015. def set_vocab(self):
  8016. self._set_vocab_gpt2()
  8017. def set_gguf_parameters(self):
  8018. super().set_gguf_parameters()
  8019. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  8020. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  8021. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  8022. class LFM2Model(TextModel):
  8023. model_arch = gguf.MODEL_ARCH.LFM2
  8024. def _add_feed_forward_length(self):
  8025. ff_dim = self.hparams["block_ff_dim"]
  8026. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  8027. ff_dim = self.hparams["block_ff_dim"]
  8028. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  8029. multiple_of = self.hparams["block_multiple_of"]
  8030. if auto_adjust_ff_dim:
  8031. ff_dim = int(2 * ff_dim / 3)
  8032. # custom dim factor multiplier
  8033. if ffn_dim_multiplier is not None:
  8034. ff_dim = int(ffn_dim_multiplier * ff_dim)
  8035. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  8036. self.gguf_writer.add_feed_forward_length(ff_dim)
  8037. def set_gguf_parameters(self):
  8038. # set num_key_value_heads only for attention layers
  8039. self.hparams["num_key_value_heads"] = [
  8040. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8041. for layer_type in self.hparams["layer_types"]
  8042. ]
  8043. super().set_gguf_parameters()
  8044. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8045. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8046. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  8047. self._add_feed_forward_length()
  8048. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8049. if self._is_vision_tensor(name) or self._is_audio_tensor(name):
  8050. # skip multimodal tensors
  8051. return []
  8052. name = name.replace("language_model.", "") # vision
  8053. name = name.replace("lfm.", "model.") # audio
  8054. # conv op requires 2d tensor
  8055. if 'conv.conv' in name:
  8056. data_torch = data_torch.squeeze(1)
  8057. return [(self.map_tensor_name(name), data_torch)]
  8058. def _is_vision_tensor(self, name: str) -> bool:
  8059. return "vision_tower" in name or "multi_modal_projector" in name
  8060. def _is_audio_tensor(self, name: str):
  8061. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  8062. @ModelBase.register("Lfm2MoeForCausalLM")
  8063. class LFM2MoeModel(TextModel):
  8064. model_arch = gguf.MODEL_ARCH.LFM2MOE
  8065. def set_gguf_parameters(self):
  8066. # set num_key_value_heads only for attention layers
  8067. self.hparams["num_key_value_heads"] = [
  8068. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8069. for layer_type in self.hparams["layer_types"]
  8070. ]
  8071. super().set_gguf_parameters()
  8072. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  8073. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  8074. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  8075. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8076. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8077. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8078. # cache for experts weights for merging
  8079. _experts_cache: dict[int, dict[str, Tensor]] = {}
  8080. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8081. # conv op requires 2d tensor
  8082. if 'conv.conv' in name:
  8083. data_torch = data_torch.squeeze(1)
  8084. if name.endswith(".expert_bias"):
  8085. name = name.replace(".expert_bias", ".expert_bias.bias")
  8086. # merge expert weights
  8087. if 'experts' in name:
  8088. n_experts = self.hparams["num_experts"]
  8089. assert bid is not None
  8090. expert_cache = self._experts_cache.setdefault(bid, {})
  8091. expert_cache[name] = data_torch
  8092. expert_weights = ["w1", "w2", "w3"]
  8093. # not enough expert weights to merge
  8094. if len(expert_cache) < n_experts * len(expert_weights):
  8095. return []
  8096. tensors: list[tuple[str, Tensor]] = []
  8097. for w_name in expert_weights:
  8098. datas: list[Tensor] = []
  8099. for xid in range(n_experts):
  8100. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8101. datas.append(expert_cache[ename])
  8102. del expert_cache[ename]
  8103. data_torch = torch.stack(datas, dim=0)
  8104. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8105. new_name = self.map_tensor_name(merged_name)
  8106. tensors.append((new_name, data_torch))
  8107. del self._experts_cache[bid]
  8108. return tensors
  8109. return [(self.map_tensor_name(name), data_torch)]
  8110. def prepare_tensors(self):
  8111. super().prepare_tensors()
  8112. assert not self._experts_cache
  8113. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8114. class LFM2VLModel(MmprojModel):
  8115. def __init__(self, *args, **kwargs):
  8116. super().__init__(*args, **kwargs)
  8117. assert self.hparams_vision is not None
  8118. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8119. self.hparams_vision["image_size"] = 256
  8120. def set_gguf_parameters(self):
  8121. super().set_gguf_parameters()
  8122. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8123. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8124. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8125. self.gguf_writer.add_vision_use_gelu(True)
  8126. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8127. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8128. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8130. del bid # unused
  8131. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8132. if is_vision_tensor:
  8133. # remove "model." prefix
  8134. name = name.replace("model.vision_tower.", "vision_tower.")
  8135. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8136. if "patch_embedding.weight" in name:
  8137. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8138. return [(self.map_tensor_name(name), data_torch)]
  8139. return [] # skip other tensors
  8140. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8141. class LFM2AudioModel(MmprojModel):
  8142. has_vision_encoder = False
  8143. has_audio_encoder = True
  8144. model_name = "Lfm2AudioEncoder"
  8145. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  8146. def get_audio_config(self) -> dict[str, Any] | None:
  8147. return self.global_config.get("encoder")
  8148. def set_gguf_parameters(self):
  8149. assert self.hparams_audio is not None
  8150. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8151. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8152. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8153. super().set_gguf_parameters()
  8154. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8155. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8156. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8157. def tensor_force_quant(self, name, new_name, bid, n_dims):
  8158. if ".conv" in name and ".weight" in name:
  8159. return gguf.GGMLQuantizationType.F32
  8160. return super().tensor_force_quant(name, new_name, bid, n_dims)
  8161. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8162. # skip language model tensors
  8163. if name.startswith("lfm."):
  8164. return []
  8165. # for training only
  8166. if any(p in name for p in ["audio_loss_weight"]):
  8167. return []
  8168. # for audio output
  8169. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8170. return []
  8171. # fold running_mean, running_var and eps into weight and bias for batch_norm
  8172. if "batch_norm" in name:
  8173. if self._batch_norm_tensors is None:
  8174. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  8175. assert bid is not None
  8176. self._batch_norm_tensors[bid][name] = data_torch
  8177. if len(self._batch_norm_tensors[bid]) < 5:
  8178. return []
  8179. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  8180. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  8181. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  8182. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  8183. eps = 1e-5 # default value
  8184. a = weight / torch.sqrt(running_var + eps)
  8185. b = bias - running_mean * a
  8186. return [
  8187. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  8188. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  8189. ]
  8190. # reshape conv weights
  8191. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  8192. data_torch = data_torch[:, None, None]
  8193. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  8194. assert data_torch.shape[1] == 1
  8195. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  8196. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  8197. assert data_torch.shape[2] == 1
  8198. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  8199. return [(self.map_tensor_name(name), data_torch)]
  8200. @ModelBase.register("SmallThinkerForCausalLM")
  8201. class SmallThinkerModel(TextModel):
  8202. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8203. def set_gguf_parameters(self):
  8204. super().set_gguf_parameters()
  8205. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8206. self.gguf_writer.add_expert_count(n_experts)
  8207. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8208. self.gguf_writer.add_expert_used_count(n_experts_used)
  8209. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8210. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8211. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8212. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8213. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8214. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8215. else:
  8216. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8217. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8218. if sliding_window_layout:
  8219. for i in sliding_window_layout:
  8220. if i != 0:
  8221. sliding_window = self.hparams.get("sliding_window_size")
  8222. if sliding_window:
  8223. self.gguf_writer.add_sliding_window(sliding_window)
  8224. break
  8225. _experts: list[dict[str, Tensor]] | None = None
  8226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8227. # process the experts separately
  8228. if name.find("experts") != -1:
  8229. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8230. assert bid is not None
  8231. if self._experts is None:
  8232. self._experts = [{} for _ in range(self.block_count)]
  8233. self._experts[bid][name] = data_torch
  8234. if len(self._experts[bid]) >= n_experts * 3:
  8235. tensors: list[tuple[str, Tensor]] = []
  8236. # merge the experts into a single 3d tensor
  8237. for w_name in ["down", "gate", "up"]:
  8238. datas: list[Tensor] = []
  8239. for xid in range(n_experts):
  8240. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8241. datas.append(self._experts[bid][ename])
  8242. del self._experts[bid][ename]
  8243. data_torch = torch.stack(datas, dim=0)
  8244. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8245. new_name = self.map_tensor_name(merged_name)
  8246. tensors.append((new_name, data_torch))
  8247. return tensors
  8248. else:
  8249. return []
  8250. return [(self.map_tensor_name(name), data_torch)]
  8251. def prepare_tensors(self):
  8252. super().prepare_tensors()
  8253. if self._experts is not None:
  8254. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8255. experts = [k for d in self._experts for k in d.keys()]
  8256. if len(experts) > 0:
  8257. raise ValueError(f"Unprocessed experts: {experts}")
  8258. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8259. class ModernBertModel(BertModel):
  8260. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8261. def set_vocab(self):
  8262. self.gguf_writer.add_add_bos_token(True)
  8263. self.gguf_writer.add_add_eos_token(True)
  8264. self.gguf_writer.add_add_sep_token(True)
  8265. self._set_vocab_gpt2()
  8266. def set_gguf_parameters(self):
  8267. super().set_gguf_parameters()
  8268. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8269. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8270. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8271. self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("local_rope_theta")})["rope_theta"])
  8272. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8273. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8274. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8275. # these layers act as MLM head, so we don't need them
  8276. if name.startswith("decoder."):
  8277. return []
  8278. if name.startswith("model."):
  8279. name = name[6:]
  8280. return super().modify_tensors(data_torch, name, bid)
  8281. @ModelBase.register("ApertusForCausalLM")
  8282. class ApertusModel(LlamaModel):
  8283. model_arch = gguf.MODEL_ARCH.APERTUS
  8284. undo_permute = False
  8285. _alpha_n = {}
  8286. _alpha_p = {}
  8287. _beta = {}
  8288. _eps = {}
  8289. def modify_tensors(self, data_torch, name, bid):
  8290. # Handle xIELU activation parameters
  8291. n_layers = self.hparams["num_hidden_layers"]
  8292. if name.endswith(".act_fn.alpha_n"):
  8293. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8294. if (len(self._alpha_n) == n_layers):
  8295. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8296. return []
  8297. if name.endswith(".act_fn.alpha_p"):
  8298. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8299. if (len(self._alpha_p) == n_layers):
  8300. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8301. return []
  8302. if name.endswith(".act_fn.beta"):
  8303. self._beta[bid] = data_torch.to("cpu").float().item()
  8304. if (len(self._beta) == n_layers):
  8305. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8306. return []
  8307. if name.endswith(".act_fn.eps"):
  8308. self._eps[bid] = data_torch.to("cpu").float().item()
  8309. if (len(self._eps) == n_layers):
  8310. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8311. return []
  8312. return super().modify_tensors(data_torch, name, bid)
  8313. class MistralModel(LlamaModel):
  8314. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8315. model_name = "Mistral"
  8316. hf_arch = ""
  8317. is_mistral_format = True
  8318. undo_permute = False
  8319. def __init__(self, *args, **kwargs):
  8320. super().__init__(*args, **kwargs)
  8321. # for compatibility, we use LLAMA arch for older models
  8322. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8323. if "llama_4_scaling" not in self.hparams:
  8324. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8325. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8326. self.gguf_writer.add_architecture()
  8327. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8328. def dequant_model(self):
  8329. # transform quantization config into HF format
  8330. quant_config = self.hparams.get("quantization")
  8331. if quant_config is not None:
  8332. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8333. self.hparams["quantization_config"] = {
  8334. "activation_scheme": "static",
  8335. "quant_method": "fp8",
  8336. "weight_block_size": None,
  8337. }
  8338. return super().dequant_model()
  8339. @staticmethod
  8340. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8341. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8342. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8343. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8344. )
  8345. if vocab.tokenizer.version == TokenizerVersion.v1:
  8346. return "mistral-v1"
  8347. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8348. return "mistral-v3"
  8349. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8350. return "mistral-v3-tekken"
  8351. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8352. return "mistral-v7"
  8353. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8354. return "mistral-v7-tekken"
  8355. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8356. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8357. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8358. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8359. else:
  8360. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8361. if is_mistral_format:
  8362. err_message += (
  8363. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8364. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8365. )
  8366. raise ValueError(err_message)
  8367. template_path = templates_dir / template_file
  8368. if not template_path.exists():
  8369. raise FileNotFoundError(f"Template file not found: {template_path}")
  8370. with open(template_path, "r", encoding="utf-8") as f:
  8371. template = f.read()
  8372. return template
  8373. def set_gguf_parameters(self):
  8374. super().set_gguf_parameters()
  8375. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8376. @staticmethod
  8377. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8378. if "yarn" in hparams:
  8379. yarn_params = hparams["yarn"]
  8380. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8381. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8382. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8383. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8384. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8385. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8386. if "llama_4_scaling" in hparams:
  8387. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8388. class MistralMoeModel(DeepseekV2Model):
  8389. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8390. model_name = "Mistral"
  8391. hf_arch = ""
  8392. is_mistral_format = True
  8393. def __init__(self, *args, **kwargs):
  8394. super().__init__(*args, **kwargs)
  8395. logger.info("Using MistralMoeModel")
  8396. # remap hparams from Mistral MoE format to DeepseekV2 format
  8397. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8398. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8399. config = self.hparams
  8400. # Mistral key -> HF key
  8401. config_mapping = {
  8402. "dim": "hidden_size",
  8403. "norm_eps": "rms_norm_eps",
  8404. "n_kv_heads": "num_key_value_heads",
  8405. "n_layers": "num_hidden_layers",
  8406. "n_heads": "num_attention_heads",
  8407. "hidden_dim": "intermediate_size",
  8408. }
  8409. # HF key -> (Mistral key, default value)
  8410. top_level_mapping_with_default = {
  8411. "model_type": ("model_type", "transformer"),
  8412. "hidden_act": ("activation", "silu"),
  8413. "tie_word_embeddings": ("tied_embeddings", False),
  8414. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8415. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8416. }
  8417. # mapping top-level keys
  8418. for key, new_key in config_mapping.items():
  8419. if key in config:
  8420. config[new_key] = config[key]
  8421. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8422. config[new_key] = config.get(key, default_value)
  8423. # mapping MoE-specific keys
  8424. moe_config_map = {
  8425. "route_every_n": "moe_layer_freq",
  8426. "first_k_dense_replace": "first_k_dense_replace",
  8427. "num_experts_per_tok": "num_experts_per_tok",
  8428. "num_experts": "n_routed_experts",
  8429. "expert_hidden_dim": "moe_intermediate_size",
  8430. "routed_scale": "routed_scaling_factor",
  8431. "num_shared_experts": "n_shared_experts",
  8432. "num_expert_groups": "n_group",
  8433. "num_expert_groups_per_tok": "topk_group",
  8434. }
  8435. moe = config["moe"]
  8436. for key, new_key in moe_config_map.items():
  8437. if key in moe:
  8438. config[new_key] = moe[key]
  8439. # provide missing values
  8440. config["topk_method"] = None
  8441. config["norm_topk_prob"] = True
  8442. config["scoring_func"] = "softmax"
  8443. def set_vocab(self):
  8444. self._set_vocab_mistral()
  8445. def set_gguf_parameters(self):
  8446. super().set_gguf_parameters()
  8447. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8448. yarn_params = self.hparams["yarn"]
  8449. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8450. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8451. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8452. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8453. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8454. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8455. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8456. return []
  8457. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8458. if name.endswith(".qscale_act"):
  8459. name = name.replace(".qscale_act", ".input_scale")
  8460. if name.endswith(".qscale_weight"):
  8461. name = name.replace(".qscale_weight", ".weight_scale")
  8462. if ".wkv_b." in name:
  8463. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8464. if ".experts." in name:
  8465. name = name.replace(".experts.", ".mlp.experts.")
  8466. name = name.replace(".w1.", ".gate_proj.")
  8467. name = name.replace(".w2.", ".down_proj.")
  8468. name = name.replace(".w3.", ".up_proj.")
  8469. name = "model." + name
  8470. return super().modify_tensors(data_torch, name, bid)
  8471. class PixtralModel(LlavaVisionModel):
  8472. model_name = "Pixtral"
  8473. hf_arch = ""
  8474. is_mistral_format = True
  8475. def set_gguf_parameters(self):
  8476. super().set_gguf_parameters()
  8477. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8478. self.gguf_writer.add_vision_attention_layernorm_eps(
  8479. self.find_hparam(["norm_eps"])
  8480. )
  8481. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8482. self.gguf_writer.add_vision_use_silu(True)
  8483. # spatial_merge_size
  8484. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8485. self.gguf_writer.add_vision_spatial_merge_size(
  8486. self.find_vparam(["spatial_merge_size"])
  8487. )
  8488. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8489. if name == "vision_language_adapter.w_in.weight":
  8490. return "mm.1.weight"
  8491. elif name == "vision_language_adapter.w_out.weight":
  8492. return "mm.2.weight"
  8493. return super().map_tensor_name(name, try_suffixes)
  8494. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8495. class LightOnOCRVisionModel(LlavaVisionModel):
  8496. is_mistral_format = False
  8497. use_break_tok = False
  8498. def set_gguf_parameters(self):
  8499. super().set_gguf_parameters()
  8500. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8501. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8502. name = name.replace("model.vision_encoder.", "vision_tower.")
  8503. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8504. return super().modify_tensors(data_torch, name, bid)
  8505. @ModelBase.register("KimiVLForConditionalGeneration")
  8506. class KimiVLModel(MmprojModel):
  8507. def __init__(self, *args, **kwargs):
  8508. super().__init__(*args, **kwargs)
  8509. assert self.hparams_vision is not None
  8510. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8511. def set_gguf_parameters(self):
  8512. super().set_gguf_parameters()
  8513. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8514. self.gguf_writer.add_vision_use_gelu(True)
  8515. self.gguf_writer.add_vision_projector_scale_factor(2)
  8516. # eps is the same as pytorch's default value
  8517. assert self.hparams_vision is not None
  8518. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8519. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8520. del bid # unused
  8521. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8522. if is_vision_tensor:
  8523. if "pos_emb.weight" in name:
  8524. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8525. elif "wqkv" in name:
  8526. split_dim = 0 if "weight" in name else -1
  8527. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8528. return [
  8529. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8530. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8531. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8532. ]
  8533. return [(self.map_tensor_name(name), data_torch)]
  8534. return [] # skip other tensors
  8535. @ModelBase.register("CogVLMForCausalLM")
  8536. class CogVLMVisionModel(MmprojModel):
  8537. def set_gguf_parameters(self):
  8538. super().set_gguf_parameters()
  8539. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8540. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8542. del bid # unused
  8543. if not name.startswith("model.vision."):
  8544. return []
  8545. return [(self.map_tensor_name(name), data_torch)]
  8546. @ModelBase.register("CogVLMForCausalLM")
  8547. class CogVLMModel(LlamaModel):
  8548. model_arch = gguf.MODEL_ARCH.COGVLM
  8549. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8550. del bid # unused
  8551. # block vision tensors
  8552. if name.startswith("model.vision."):
  8553. return []
  8554. return [(self.map_tensor_name(name), data_torch)]
  8555. @ModelBase.register("JanusForConditionalGeneration")
  8556. class JanusProModel(LlamaModel):
  8557. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8558. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8559. # Skip vision, aligner, and generation tensors
  8560. skip_prefixes = (
  8561. 'model.vision_model.',
  8562. 'model.aligner.',
  8563. 'model.vqmodel.',
  8564. 'model.generation_embeddings.',
  8565. 'model.generation_aligner.',
  8566. 'model.generation_head.',
  8567. )
  8568. if name.startswith(skip_prefixes):
  8569. return []
  8570. if name.startswith('model.language_model.'):
  8571. name = name.replace('model.language_model.', 'model.')
  8572. elif name.startswith('language_model.'):
  8573. name = name.replace('language_model.', '')
  8574. return super().modify_tensors(data_torch, name, bid)
  8575. @ModelBase.register("JanusForConditionalGeneration")
  8576. class JanusProVisionModel(MmprojModel):
  8577. def __init__(self, *args, **kwargs):
  8578. super().__init__(*args, **kwargs)
  8579. assert self.hparams_vision is not None
  8580. if "intermediate_size" not in self.hparams_vision:
  8581. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8582. hidden_size = self.hparams_vision.get("hidden_size")
  8583. if mlp_ratio is not None and hidden_size is not None:
  8584. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8585. def set_gguf_parameters(self):
  8586. super().set_gguf_parameters()
  8587. assert self.hparams_vision is not None
  8588. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8589. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8590. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8591. if hidden_act == "gelu":
  8592. self.gguf_writer.add_vision_use_gelu(True)
  8593. elif hidden_act == "silu":
  8594. self.gguf_writer.add_vision_use_silu(True)
  8595. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8596. """Map aligner tensors to projector format"""
  8597. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8598. if name.startswith("model.aligner."):
  8599. local_name = name[len("model.aligner."):]
  8600. elif name.startswith("aligner."):
  8601. local_name = name[len("aligner."):]
  8602. else:
  8603. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8604. if local_name.startswith("fc1."):
  8605. mm_index = 0
  8606. elif local_name.startswith("hidden_layers."):
  8607. parts = local_name.split(".", 2)
  8608. if len(parts) < 3:
  8609. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8610. mm_index = int(parts[1]) + 1
  8611. else:
  8612. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8613. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8614. return [(tensor_name, data_torch)]
  8615. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8616. del bid # unused
  8617. # Skip language model tensors as they will be handled by `JanusProModel`
  8618. if name.startswith(('model.language_model.', 'language_model.')):
  8619. return []
  8620. # Skip generation-related components
  8621. skip_generation_prefixes = (
  8622. 'model.vqmodel.',
  8623. 'vqmodel.',
  8624. 'model.generation_embeddings.',
  8625. 'generation_embeddings.',
  8626. 'model.generation_aligner.',
  8627. 'generation_aligner.',
  8628. 'model.generation_head.',
  8629. 'generation_head.',
  8630. )
  8631. if name.startswith(skip_generation_prefixes):
  8632. return []
  8633. # Handle aligner tensors
  8634. if name.startswith(('model.aligner.', 'aligner.')):
  8635. return list(self._map_aligner_tensor(data_torch, name))
  8636. # Handle vision tensors
  8637. if name.startswith(('model.vision_model.', 'vision_model.')):
  8638. return [(self.map_tensor_name(name), data_torch)]
  8639. return []
  8640. @ModelBase.register("YOUTUVLForConditionalGeneration", "YOUTUVLForCausalLM")
  8641. class YOUTUVLVisionModel(MmprojModel):
  8642. def __init__(self, *args, **kwargs):
  8643. super().__init__(*args, **kwargs)
  8644. assert self.hparams_vision is not None
  8645. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  8646. def set_gguf_parameters(self):
  8647. super().set_gguf_parameters()
  8648. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.YOUTUVL)
  8649. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8650. # Handle activation function
  8651. hidden_act = str(self.hparams.get("hidden_act", "gelu_pytorch_tanh")).lower()
  8652. if hidden_act in ("gelu", "gelu_pytorch_tanh", "gelu_fast", "gelu_new", "gelu_accurate"):
  8653. self.gguf_writer.add_vision_use_gelu(True)
  8654. elif hidden_act == "silu":
  8655. self.gguf_writer.add_vision_use_silu(True)
  8656. else:
  8657. raise ValueError(f"Unsupported activation function for YOUTUVL: {hidden_act}")
  8658. self.gguf_writer.add_vision_spatial_merge_size(self.hparams.get("spatial_merge_size", 2))
  8659. window_size = self.hparams.get("window_size")
  8660. if window_size is not None:
  8661. self.gguf_writer.add_vision_window_size(window_size)
  8662. # fullatt_block_indexes contains explicit layer indices that use full attention
  8663. # e.g., [2, 5, 8, 11] means layers 2, 5, 8, 11 use full attention
  8664. # All other layers use window attention
  8665. fullatt_block_indexes = self.hparams.get("fullatt_block_indexes")
  8666. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for youtuvl"
  8667. # Store the explicit layer indices for YoutuVL (irregular pattern approach)
  8668. self.gguf_writer.add_vision_wa_layer_indexes(layers=fullatt_block_indexes)
  8669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8670. del bid # unused
  8671. # Skip language model tensors
  8672. skip_prefixes = ('lm_head.', 'model.layers.', 'model.embed_tokens.', 'model.norm.')
  8673. if name.startswith(skip_prefixes):
  8674. return []
  8675. # Try to map the tensor using TensorNameMap (handles vision encoder and projector)
  8676. try:
  8677. new_name = self.map_tensor_name(name)
  8678. return [(new_name, data_torch)]
  8679. except ValueError:
  8680. # If mapping fails, log warning and skip
  8681. logger.warning(f"Cannot map tensor: {name}")
  8682. return []
  8683. @ModelBase.register("SolarOpenForCausalLM")
  8684. class SolarOpenModel(Glm4MoeModel):
  8685. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  8686. def set_vocab(self):
  8687. from transformers import AutoTokenizer
  8688. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  8689. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  8690. tokens, toktypes, tokpre = self.get_vocab_base()
  8691. self.gguf_writer.add_tokenizer_model("gpt2")
  8692. self.gguf_writer.add_tokenizer_pre(tokpre)
  8693. self.gguf_writer.add_token_list(tokens)
  8694. self.gguf_writer.add_token_types(toktypes)
  8695. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  8696. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
  8697. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
  8698. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
  8699. special_vocab.add_to_gguf(self.gguf_writer)
  8700. ###### CONVERSION LOGIC ######
  8701. # tree of lazy tensors
  8702. class LazyTorchTensor(gguf.LazyBase):
  8703. _tensor_type = torch.Tensor
  8704. # to keep the type-checker happy
  8705. dtype: torch.dtype
  8706. shape: torch.Size
  8707. # only used when converting a torch.Tensor to a np.ndarray
  8708. _dtype_map: dict[torch.dtype, type] = {
  8709. torch.float16: np.float16,
  8710. torch.float32: np.float32,
  8711. torch.uint8: np.uint8,
  8712. }
  8713. # only used when byteswapping data. Only correct size is needed
  8714. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8715. torch.float64: np.float64,
  8716. torch.float32: np.float32,
  8717. torch.bfloat16: np.float16,
  8718. torch.float16: np.float16,
  8719. torch.int64: np.int64,
  8720. torch.uint64: np.uint64,
  8721. torch.int32: np.int32,
  8722. torch.uint32: np.uint32,
  8723. torch.int16: np.int16,
  8724. torch.uint16: np.uint16,
  8725. torch.int8: np.int8,
  8726. torch.uint8: np.uint8,
  8727. torch.bool: np.uint8,
  8728. torch.float8_e4m3fn: np.uint8,
  8729. torch.float8_e5m2: np.uint8,
  8730. }
  8731. # used for safetensors slices
  8732. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8733. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8734. _dtype_str_map: dict[str, torch.dtype] = {
  8735. "F64": torch.float64,
  8736. "F32": torch.float32,
  8737. "BF16": torch.bfloat16,
  8738. "F16": torch.float16,
  8739. # "U64": torch.uint64,
  8740. "I64": torch.int64,
  8741. # "U32": torch.uint32,
  8742. "I32": torch.int32,
  8743. # "U16": torch.uint16,
  8744. "I16": torch.int16,
  8745. "U8": torch.uint8,
  8746. "I8": torch.int8,
  8747. "BOOL": torch.bool,
  8748. "F8_E4M3": torch.float8_e4m3fn,
  8749. "F8_E5M2": torch.float8_e5m2,
  8750. }
  8751. def numpy(self) -> gguf.LazyNumpyTensor:
  8752. dtype = self._dtype_map[self.dtype]
  8753. return gguf.LazyNumpyTensor(
  8754. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8755. args=(self,),
  8756. func=(lambda s: s.numpy())
  8757. )
  8758. @classmethod
  8759. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8760. return torch.empty(size=shape, dtype=dtype, device="meta")
  8761. @classmethod
  8762. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8763. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8764. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8765. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8766. return cast(torch.Tensor, lazy)
  8767. @classmethod
  8768. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8769. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8770. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8771. if sys.byteorder == 'big':
  8772. # switch data back to big endian
  8773. tensor = tensor.view(dtype).byteswap(inplace=False)
  8774. return tensor
  8775. dtype = cls._dtype_str_map[tensor.dtype]
  8776. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8777. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8778. dtype = cls._dtype_str_map[t.dtype]
  8779. shape = t.shape
  8780. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8781. return cast(torch.Tensor, lazy)
  8782. @classmethod
  8783. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8784. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8785. if sys.byteorder == 'big':
  8786. # switch data back to big endian
  8787. tensor = tensor.view(dtype).byteswap(inplace=False)
  8788. return tensor
  8789. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8790. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8791. shape = remote_tensor.shape
  8792. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8793. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8794. return cast(torch.Tensor, lazy)
  8795. @classmethod
  8796. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8797. del types # unused
  8798. if kwargs is None:
  8799. kwargs = {}
  8800. if func is torch.Tensor.numpy:
  8801. return args[0].numpy()
  8802. return cls._wrap_fn(func)(*args, **kwargs)
  8803. def parse_args() -> argparse.Namespace:
  8804. parser = argparse.ArgumentParser(
  8805. description="Convert a huggingface model to a GGML compatible file")
  8806. parser.add_argument(
  8807. "--vocab-only", action="store_true",
  8808. help="extract only the vocab",
  8809. )
  8810. parser.add_argument(
  8811. "--outfile", type=Path,
  8812. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8813. )
  8814. parser.add_argument(
  8815. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  8816. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  8817. )
  8818. parser.add_argument(
  8819. "--bigendian", action="store_true",
  8820. help="model is executed on big endian machine",
  8821. )
  8822. parser.add_argument(
  8823. "model", type=str,
  8824. help="directory containing model file or huggingface repository ID (if --remote)",
  8825. nargs="?",
  8826. )
  8827. parser.add_argument(
  8828. "--use-temp-file", action="store_true",
  8829. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8830. )
  8831. parser.add_argument(
  8832. "--no-lazy", action="store_true",
  8833. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8834. )
  8835. parser.add_argument(
  8836. "--model-name", type=str, default=None,
  8837. help="name of the model",
  8838. )
  8839. parser.add_argument(
  8840. "--verbose", action="store_true",
  8841. help="increase output verbosity",
  8842. )
  8843. parser.add_argument(
  8844. "--split-max-tensors", type=int, default=0,
  8845. help="max tensors in each split",
  8846. )
  8847. parser.add_argument(
  8848. "--split-max-size", type=str, default="0",
  8849. help="max size per split N(M|G)",
  8850. )
  8851. parser.add_argument(
  8852. "--dry-run", action="store_true",
  8853. help="only print out a split plan and exit, without writing any new files",
  8854. )
  8855. parser.add_argument(
  8856. "--no-tensor-first-split", action="store_true",
  8857. help="do not add tensors to the first split (disabled by default)"
  8858. )
  8859. parser.add_argument(
  8860. "--metadata", type=Path,
  8861. help="Specify the path for an authorship metadata override file"
  8862. )
  8863. parser.add_argument(
  8864. "--print-supported-models", action="store_true",
  8865. help="Print the supported models"
  8866. )
  8867. parser.add_argument(
  8868. "--remote", action="store_true",
  8869. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8870. )
  8871. parser.add_argument(
  8872. "--mmproj", action="store_true",
  8873. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8874. )
  8875. parser.add_argument(
  8876. "--mistral-format", action="store_true",
  8877. help="Whether the model is stored following the Mistral format.",
  8878. )
  8879. parser.add_argument(
  8880. "--disable-mistral-community-chat-template", action="store_true",
  8881. help=(
  8882. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8883. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8884. )
  8885. )
  8886. parser.add_argument(
  8887. "--sentence-transformers-dense-modules", action="store_true",
  8888. help=("Whether to include sentence-transformers dense modules."
  8889. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8890. "Default these modules are not included.")
  8891. )
  8892. args = parser.parse_args()
  8893. if not args.print_supported_models and args.model is None:
  8894. parser.error("the following arguments are required: model")
  8895. return args
  8896. def split_str_to_n_bytes(split_str: str) -> int:
  8897. if split_str.endswith("K"):
  8898. n = int(split_str[:-1]) * 1000
  8899. elif split_str.endswith("M"):
  8900. n = int(split_str[:-1]) * 1000 * 1000
  8901. elif split_str.endswith("G"):
  8902. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8903. elif split_str.isnumeric():
  8904. n = int(split_str)
  8905. else:
  8906. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8907. if n < 0:
  8908. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8909. return n
  8910. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8911. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8912. # maybe we should fallback to text model's arch in that case, since not many models have both
  8913. text_config = hparams.get("text_config", {})
  8914. vision_config = hparams.get("vision_config", {})
  8915. arch = None
  8916. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8917. arch = arches[0]
  8918. elif "ssm_cfg" in hparams:
  8919. # For non-hf Mamba and Mamba2 models
  8920. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8921. # if "architectures" is found in the sub-config, use that instead
  8922. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8923. arch = text_config["architectures"][0]
  8924. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8925. arch = vision_config["architectures"][0]
  8926. if arch is None:
  8927. raise ValueError("Failed to detect model architecture")
  8928. return arch
  8929. def main() -> None:
  8930. args = parse_args()
  8931. if args.print_supported_models:
  8932. logger.error("Supported models:")
  8933. ModelBase.print_registered_models()
  8934. sys.exit(0)
  8935. if args.verbose:
  8936. logging.basicConfig(level=logging.DEBUG)
  8937. else:
  8938. logging.basicConfig(level=logging.INFO)
  8939. if args.remote:
  8940. hf_repo_id = args.model
  8941. from huggingface_hub import snapshot_download
  8942. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8943. if args.sentence_transformers_dense_modules:
  8944. # include sentence-transformers dense modules safetensors files
  8945. allowed_patterns.append("*.safetensors")
  8946. local_dir = snapshot_download(
  8947. repo_id=hf_repo_id,
  8948. allow_patterns=allowed_patterns)
  8949. dir_model = Path(local_dir)
  8950. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8951. else:
  8952. hf_repo_id = None
  8953. dir_model = Path(args.model)
  8954. if not dir_model.is_dir():
  8955. logger.error(f'Error: {dir_model} is not a directory')
  8956. sys.exit(1)
  8957. ftype_map: dict[str, gguf.LlamaFileType] = {
  8958. "f32": gguf.LlamaFileType.ALL_F32,
  8959. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8960. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8961. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8962. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8963. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8964. "auto": gguf.LlamaFileType.GUESSED,
  8965. }
  8966. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8967. if args.use_temp_file and is_split:
  8968. logger.error("Error: Cannot use temp file when splitting")
  8969. sys.exit(1)
  8970. if args.outfile is not None:
  8971. fname_out = args.outfile
  8972. elif hf_repo_id:
  8973. # if remote, use the model ID as the output file name
  8974. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8975. else:
  8976. fname_out = dir_model
  8977. logger.info(f"Loading model: {dir_model.name}")
  8978. is_mistral_format = args.mistral_format
  8979. if is_mistral_format and not _mistral_common_installed:
  8980. raise ImportError(_mistral_import_error_msg)
  8981. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8982. with torch.inference_mode():
  8983. output_type = ftype_map[args.outtype]
  8984. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8985. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8986. if not is_mistral_format:
  8987. model_architecture = get_model_architecture(hparams, model_type)
  8988. logger.info(f"Model architecture: {model_architecture}")
  8989. try:
  8990. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8991. except NotImplementedError:
  8992. logger.error(f"Model {model_architecture} is not supported")
  8993. sys.exit(1)
  8994. elif args.mmproj:
  8995. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8996. model_class = PixtralModel
  8997. elif "moe" in hparams:
  8998. model_class = MistralMoeModel
  8999. else:
  9000. model_class = MistralModel
  9001. model_instance = model_class(dir_model, output_type, fname_out,
  9002. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  9003. eager=args.no_lazy,
  9004. metadata_override=args.metadata, model_name=args.model_name,
  9005. split_max_tensors=args.split_max_tensors,
  9006. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  9007. small_first_shard=args.no_tensor_first_split,
  9008. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  9009. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  9010. )
  9011. if args.vocab_only:
  9012. logger.info("Exporting model vocab...")
  9013. model_instance.write_vocab()
  9014. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  9015. else:
  9016. logger.info("Exporting model...")
  9017. model_instance.write()
  9018. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  9019. logger.info(f"Model successfully exported to {out_path}")
  9020. if __name__ == '__main__':
  9021. main()