| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- #include "models.h"
- ggml_cgraph * clip_graph_youtuvl::build() {
- GGML_ASSERT(model.class_embedding == nullptr);
- const int batch_size = 1;
- const bool use_window_attn = !hparams.wa_layer_indexes.empty();
- const int n_pos = n_patches;
- const int num_position_ids = n_pos * 4;
- const int m = 2;
- const int Wp = n_patches_x;
- const int Hp = n_patches_y;
- const int Hm = Hp / m;
- const int Wm = Wp / m;
- norm_type norm_t = NORM_TYPE_NORMAL;
- int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
- ggml_tensor * inp = build_inp_raw();
- // change conv3d to linear
- // reshape and permute to get patches, permute from (patch_size, m, Wm, patch_size, m, Hm, C) to (C, patch_size, patch_size, m, m, Wm, Hm)
- {
- inp = ggml_reshape_4d(
- ctx0, inp,
- Wm * m * patch_size, m * patch_size, Hm, 3);
- inp = ggml_permute(ctx0, inp, 1, 2, 3, 0);
- inp = ggml_cont_4d(
- ctx0, inp,
- m * patch_size * 3, Wm, m * patch_size, Hm);
- inp = ggml_permute(ctx0, inp, 0, 2, 1, 3);
- inp = ggml_cont_4d(
- ctx0, inp,
- m * patch_size * 3, patch_size, m, Hm * Wm);
- inp = ggml_permute(ctx0, inp, 1, 0, 2, 3);
- inp = ggml_cont_4d(
- ctx0, inp,
- patch_size, 3, patch_size, Hm * Wm * m * m);
- inp = ggml_permute(ctx0, inp, 2, 0, 1, 3);
- inp = ggml_cont_3d(
- ctx0, inp,
- 3*patch_size* patch_size, Hm * Wm * m * m, 1);
- }
- inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
- if (model.patch_bias) {
- inp = ggml_add(ctx0, inp, model.patch_bias);
- }
- inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
- ggml_tensor * inpL = inp;
- ggml_tensor * window_mask = nullptr;
- ggml_tensor * window_idx = nullptr;
- ggml_tensor * inv_window_idx = nullptr;
- ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
- ggml_set_name(positions, "positions");
- ggml_set_input(positions);
- // pre-layernorm
- if (model.pre_ln_w) {
- inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
- }
- if (use_window_attn) {
- inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
- ggml_set_name(inv_window_idx, "inv_window_idx");
- ggml_set_input(inv_window_idx);
- // mask for window attention
- window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
- ggml_set_name(window_mask, "window_mask");
- ggml_set_input(window_mask);
- // if flash attn is used, we need to pad the mask and cast to f16
- if (flash_attn_type == CLIP_FLASH_ATTN_TYPE_ENABLED) {
- window_mask = ggml_cast(ctx0, window_mask, GGML_TYPE_F16);
- }
- // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
- GGML_ASSERT(batch_size == 1);
- inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
- inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
- inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
- }
- // loop over layers
- for (int il = 0; il < n_layer; il++) {
- const auto & layer = model.layers[il];
- const bool full_attn = use_window_attn ? hparams.wa_layer_indexes.count(il) > 0 : true;
- ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
- // layernorm1
- cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
- // self-attention
- {
- ggml_tensor * Qcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
- ggml_tensor * Kcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
- ggml_tensor * Vcur = ggml_add(ctx0,
- ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
- Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
- Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
- Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
- Qcur = ggml_rope_multi(
- ctx0, Qcur, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- Kcur = ggml_rope_multi(
- ctx0, Kcur, positions, nullptr,
- d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
- ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
- cur = build_attn(layer.o_w, layer.o_b,
- Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
- }
- // re-add the layer input, e.g., residual
- cur = ggml_add(ctx0, cur, inpL);
- inpL = cur; // inpL = residual, cur = hidden_states
- // layernorm2
- cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
- // ffn
- cur = build_ffn(cur,
- layer.ff_up_w, layer.ff_up_b,
- nullptr, nullptr,
- layer.ff_down_w, layer.ff_down_b,
- hparams.ffn_op, il);
- // residual 2
- cur = ggml_add(ctx0, inpL, cur);
- inpL = cur;
- }
- ggml_tensor * embeddings = inpL;
- if (use_window_attn) {
- const int spatial_merge_unit = 4;
- window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / spatial_merge_unit);
- ggml_set_name(window_idx, "window_idx");
- ggml_set_input(window_idx);
- GGML_ASSERT(batch_size == 1);
- embeddings = ggml_reshape_2d(ctx0, embeddings, n_embd * spatial_merge_unit, n_patches / spatial_merge_unit);
- embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
- embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd, n_patches, batch_size);
- cb(embeddings, "window_order_restored", -1);
- }
- // post-layernorm (part of Siglip2VisionTransformer, applied after encoder)
- if (model.post_ln_w) {
- embeddings = build_norm(embeddings, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
- }
- // Now apply merger (VLPatchMerger):
- // 1. Apply RMS norm (ln_q in VLPatchMerger)
- embeddings = build_norm(embeddings, model.mm_input_norm_w, nullptr, NORM_TYPE_RMS, 1e-6, -1);
- cb(embeddings, "merger_normed", -1);
- // 2. First reshape for spatial merge (merge 2x2 patches)
- embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
- cb(embeddings, "merger_reshaped", -1);
- embeddings = build_ffn(embeddings,
- model.mm_0_w, model.mm_0_b,
- nullptr, nullptr,
- model.mm_1_w, model.mm_1_b,
- FFN_GELU,
- -1);
- ggml_build_forward_expand(gf, embeddings);
- return gf;
- }
|