1
0
Tatsuya Tanaka ceda28ef8e llava : remove duplicate include (#13207) 9 сар өмнө
..
android 243453533e llava : update documentations (#13055) 9 сар өмнө
CMakeLists.txt 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө
README-quantize.md 1ec208083c llava: add quantization for the visual projector LLAVA, Qwen2VL (#11644) 1 жил өмнө
README.md ecda2ec4b3 mtmd : Support Pixtral 12B (#13065) 9 сар өмнө
clip-impl.h ceda28ef8e llava : remove duplicate include (#13207) 9 сар өмнө
clip-quantize-cli.cpp 1ec208083c llava: add quantization for the visual projector LLAVA, Qwen2VL (#11644) 1 жил өмнө
clip.cpp 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө
clip.h 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө
convert_image_encoder_to_gguf.py e9b2f84f14 llava: add big-endian conversion for image encoder (#12218) 11 сар өмнө
deprecation-warning.cpp 84a9bf2fc2 mtmd : merge llava, gemma3 and minicpmv CLI into single `llama-mtmd-cli` (#13012) 9 сар өмнө
glmedge-convert-image-encoder-to-gguf.py 0cec062a63 llama : add support for GLM-Edge and GLM-Edge-V series models (#10573) 1 жил өмнө
glmedge-surgery.py 0cec062a63 llama : add support for GLM-Edge and GLM-Edge-V series models (#10573) 1 жил өмнө
llava.cpp 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө
llava.h 3071c0a5f2 llava : support MiniCPM-V-2.5 (#7599) 1 жил өмнө
llava_surgery.py e235b267a2 py : switch to snake_case (#8305) 1 жил өмнө
llava_surgery_v2.py 7a2c913e66 llava : Add Granite Vision Support (#11794) 11 сар өмнө
minicpmv-convert-image-encoder-to-gguf.py 8352cdc87b llava : fix bug in minicpm-v code (#11513) 10 сар өмнө
minicpmv-surgery.py 3e3357fd77 llava : support Minicpm-omni (#11289) 1 жил өмнө
mtmd-cli.cpp 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө
mtmd.cpp 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө
mtmd.h 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө
qwen2_vl_surgery.py ca2bb89eac clip : Add Qwen2.5VL support (#12402) 9 сар өмнө
qwen2vl-test.cpp 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө
requirements.txt d3ae0ee8d7 py : fix requirements check '==' -> '~=' (#8982) 1 жил өмнө
test-1.jpeg 0364178ca2 clip : refactor clip_init, add tests (#12757) 10 сар өмнө
tests.sh 00e3e5a194 mtmd : add qwen2vl and qwen2.5vl (#13141) 9 сар өмнө

README-quantize.md

Quantizing CLIP Visual Projector

This is the tool for quantizing the CLIP visual projector model. Quantization reduces the precision of the model's weights, which can significantly decrease the model size and improve inference speed, often with minimal impact on performance.

Usage

To quantize a CLIP visual projector model, use the following command:

./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf <type>

After the quantization, the visual projector can be used freely with the existing LLAVA cli (LLAVA, Qwen2VL, etc).

Arguments

  • /path/to/ggml-model-f32.gguf: The path to the input model file in FP32 or FP16 format.
  • /path/to/ggml-model-quantized.gguf: The path where the quantized model will be saved.
  • <type>: The quantization type to apply. This should be an integer corresponding to one of the quantization types defined in the enum ggml_type.

Quantization Types

The following quantization types are supported, based on the enum ggml_type definition:

  • 2 - q4_0: 4-bit quantization with a single scale value.
  • 3 - q4_1: 4-bit quantization with a separate scale value for each block.
  • 6 - q5_0: 5-bit quantization with a single scale value.
  • 7 - q5_1: 5-bit quantization with a separate scale value for each block.
  • 8 - q8_0: 8-bit quantization with a single scale value.

Example

To quantize a model using the q4_0 quantization type, you would run:

./bin/llama-llava-clip-quantize-cli /path/to/ggml-model-f32.gguf /path/to/ggml-model-quantized.gguf 2

This command will generate a quantized model at /path/to/ggml-model-quantized.gguf using the q4_0 quantization method.

Notes

  • Quantization can lead to a loss in model accuracy, depending on the chosen quantization type. It is recommended to evaluate the quantized model's performance on your specific task to ensure it meets your requirements.
  • The quantized model will typically be smaller in size and faster to run, making it more suitable for deployment in resource-constrained environments.