tensor_mapping.py 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "embed_tokens", # embeddinggemma
  14. "tok_embeddings", # llama-pth
  15. "embeddings.word_embeddings", # bert nomic-bert
  16. "language_model.embedding.word_embeddings", # persimmon
  17. "wte", # gpt2
  18. "transformer.embd.wte", # phi2
  19. "model.tok_embeddings", # internlm2
  20. "model.embedding", # mamba-qbert
  21. "backbone.embedding", # mamba
  22. "backbone.embeddings", # mamba-hf
  23. "transformer.in_out_embed", # Grok
  24. "embedding.word_embeddings", # chatglm
  25. "transformer.token_embeddings", # openelm
  26. "shared", # t5
  27. "rwkv.embeddings", # rwkv6
  28. "model.embeddings", # rwkv7
  29. "model.word_embeddings", # bailingmoe
  30. "language_model.model.embed_tokens", # llama4
  31. "encoder", # neobert
  32. "model.transformer.wte", # llada
  33. "embed_tokens", # qwen3-embedding
  34. ),
  35. # Token type embeddings
  36. MODEL_TENSOR.TOKEN_TYPES: (
  37. "embeddings.token_type_embeddings", # bert nomic-bert
  38. ),
  39. # Normalization of token embeddings
  40. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  41. "word_embeddings_layernorm", # bloom
  42. "embeddings.LayerNorm", # bert
  43. "emb_ln", # nomic-bert
  44. "transformer.norm", # openelm
  45. "rwkv.blocks.0.pre_ln", # rwkv
  46. "rwkv.blocks.0.pre_ln", # rwkv6
  47. "model.pre_ln", # rwkv7
  48. "model.layers.0.pre_norm", # rwkv7
  49. "backbone.norm", # wavtokenizer
  50. "model.embedding_norm", # lfm2
  51. ),
  52. # Position embeddings
  53. MODEL_TENSOR.POS_EMBD: (
  54. "transformer.wpe", # gpt2
  55. "embeddings.position_embeddings", # bert
  56. "wpe", # gpt2
  57. ),
  58. # Output
  59. MODEL_TENSOR.OUTPUT: (
  60. "embed_out", # gptneox
  61. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  62. "output", # llama-pth bloom internlm2
  63. "word_embeddings_for_head", # persimmon
  64. "lm_head.linear", # phi2
  65. "output_layer", # chatglm
  66. "head", # rwkv
  67. "head.out", # wavtokenizer
  68. "lm_head", # llama4
  69. "model.transformer.ff_out", # llada
  70. ),
  71. MODEL_TENSOR.DENSE_2_OUT: (
  72. "dense_2_out", # embeddinggemma
  73. ),
  74. MODEL_TENSOR.DENSE_3_OUT: (
  75. "dense_3_out", # embeddinggemma
  76. ),
  77. # Output norm
  78. MODEL_TENSOR.OUTPUT_NORM: (
  79. "gpt_neox.final_layer_norm", # gptneox
  80. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  81. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  82. "norm", # llama-pth
  83. "transformer.norm_f", # mpt dbrx
  84. "ln_f", # refact bloom qwen gpt2
  85. "language_model.encoder.final_layernorm", # persimmon
  86. "model.final_layernorm", # persimmon
  87. "lm_head.ln", # phi2
  88. "model.norm_f", # mamba-qbert
  89. "backbone.norm_f", # mamba
  90. "transformer.rms_norm", # Grok
  91. "encoder.final_layernorm", # chatglm
  92. "transformer.norm", # openelm
  93. "model.norm", # nemotron
  94. "rwkv.ln_out", # rwkv6
  95. "model.ln_out", # rwkv7
  96. "backbone.final_layer_norm", # wavtokenizer
  97. "model.norm", # llama4
  98. "model.transformer.ln_f", # llada
  99. "model.norm", # cogvlm
  100. ),
  101. # Rope frequencies
  102. MODEL_TENSOR.ROPE_FREQS: (
  103. "rope.freqs", # llama-pth
  104. "rotary_pos_emb.inv_freq", # chatglm
  105. ),
  106. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  107. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  108. MODEL_TENSOR.CONV1D: (
  109. "backbone.embed", # roberta
  110. ),
  111. }
  112. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  113. # Attention norm
  114. MODEL_TENSOR.ATTN_NORM: (
  115. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  116. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  117. "transformer.blocks.{bid}.norm_1", # mpt
  118. "transformer.h.{bid}.input_layernorm", # falcon7b
  119. "h.{bid}.input_layernorm", # bloom
  120. "transformer.h.{bid}.ln_mlp", # falcon40b
  121. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  122. "layers.{bid}.attention_norm", # llama-pth
  123. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  124. "model.layers.{bid}.ln1", # yi
  125. "h.{bid}.ln_1", # gpt2
  126. "transformer.h.{bid}.ln", # phi2
  127. "model.layers.layers.{bid}.norm", # plamo
  128. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  129. "model.layers.{bid}.attention_norm", # internlm2
  130. "model.layers.{bid}.norm", # mamba-qbert
  131. "backbone.layers.{bid}.norm", # mamba
  132. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  133. "model.layers.{bid}.pre_attn_norm", # grok-2
  134. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  135. "encoder.layers.{bid}.input_layernorm", # chatglm
  136. "transformer.layers.{bid}.attn_norm", # openelm
  137. "rwkv.blocks.{bid}.ln1", # rwkv6
  138. "model.layers.{bid}.ln1", # rwkv7
  139. "model.layers.{bid}.input_layernorm", # llama4
  140. "layers.{bid}.input_layernorm", # embeddinggemma
  141. "transformer_encoder.{bid}.attention_norm", # neobert
  142. "model.layers.{bid}.operator_norm", # lfm2
  143. "model.transformer.blocks.{bid}.attn_norm", # llada
  144. "layers.{bid}.input_layernorm", # qwen3-embedding
  145. "model.layers.{bid}.attention_layernorm" # apertus
  146. ),
  147. # Attention norm 2
  148. MODEL_TENSOR.ATTN_NORM_2: (
  149. "transformer.h.{bid}.ln_attn", # falcon40b
  150. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  151. "rwkv.blocks.{bid}.ln2", # rwkv6
  152. "model.layers.{bid}.ln2", # rwkv7
  153. "model.layers.{bid}.post_attention_layernorm", # cogvlm
  154. ),
  155. # Attention query-key-value
  156. MODEL_TENSOR.ATTN_QKV: (
  157. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  158. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  159. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  160. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  161. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  162. "h.{bid}.self_attention.query_key_value", # bloom
  163. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  164. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  165. "model.layers.{bid}.attention.query_key_value", # bailingmoe2
  166. "h.{bid}.attn.c_attn", # gpt2
  167. "transformer.h.{bid}.mixer.Wqkv", # phi2
  168. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  169. "encoder.layers.{bid}.mixer.Wqkv", # jina
  170. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  171. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  172. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  173. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  174. "transformer_encoder.{bid}.qkv", # neobert
  175. "model.layers.{bid}.self_attn.language_expert_query_key_value", # cogvlm
  176. ),
  177. # Attention query
  178. MODEL_TENSOR.ATTN_Q: (
  179. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  180. "layers.{bid}.self_attn.q_proj", # embeddinggemma
  181. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  182. "layers.{bid}.attention.wq", # llama-pth
  183. "encoder.layer.{bid}.attention.self.query", # bert
  184. "transformer.layer.{bid}.attention.q_lin", # distillbert
  185. "transformer.h.{bid}.attn.q_proj", # gpt-j
  186. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  187. "model.layers.{bid}.attention.wq", # internlm2
  188. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  189. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  190. "model.layers.{bid}.self_attn.q_proj", # llama4
  191. "model.transformer.blocks.{bid}.q_proj", # llada
  192. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  193. "backbone.layers.{bid}.mixer.q_proj", # nemotron-h
  194. ),
  195. # Attention key
  196. MODEL_TENSOR.ATTN_K: (
  197. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  198. "layers.{bid}.self_attn.k_proj", # embeddinggemma
  199. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  200. "layers.{bid}.attention.wk", # llama-pth
  201. "encoder.layer.{bid}.attention.self.key", # bert
  202. "transformer.layer.{bid}.attention.k_lin", # distillbert
  203. "transformer.h.{bid}.attn.k_proj", # gpt-j
  204. "transformer.h.{bid}.attn.k", # refact
  205. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  206. "model.layers.{bid}.attention.wk", # internlm2
  207. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  208. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  209. "model.layers.{bid}.self_attn.k_proj", # llama4
  210. "model.transformer.blocks.{bid}.k_proj", # llada
  211. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  212. "backbone.layers.{bid}.mixer.k_proj", # nemotron-h
  213. ),
  214. # Attention value
  215. MODEL_TENSOR.ATTN_V: (
  216. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  217. "layers.{bid}.self_attn.v_proj", # embeddinggemma
  218. "layers.{bid}.attention.wv", # llama-pth
  219. "encoder.layer.{bid}.attention.self.value", # bert
  220. "transformer.layer.{bid}.attention.v_lin", # distillbert
  221. "transformer.h.{bid}.attn.v_proj", # gpt-j
  222. "transformer.h.{bid}.attn.v", # refact
  223. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  224. "model.layers.{bid}.attention.wv", # internlm2
  225. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  226. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  227. "model.layers.{bid}.self_attn.v_proj", # llama4
  228. "model.transformer.blocks.{bid}.v_proj", # llada
  229. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  230. "backbone.layers.{bid}.mixer.v_proj", # nemotron-h
  231. ),
  232. # Attention output
  233. MODEL_TENSOR.ATTN_OUT: (
  234. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  235. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  236. "transformer.blocks.{bid}.attn.out_proj", # mpt
  237. "transformer.h.{bid}.self_attention.dense", # falcon
  238. "h.{bid}.self_attention.dense", # bloom
  239. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  240. "layers.{bid}.self_attn.o_proj", # embeddinggemma
  241. "model.layers.{bid}.self_attn.out_proj", # lfm2
  242. "model.layers.{bid}.self_attn.linear_attn", # deci
  243. "layers.{bid}.attention.wo", # llama-pth
  244. "encoder.layer.{bid}.attention.output.dense", # bert
  245. "transformer.layer.{bid}.attention.out_lin", # distillbert
  246. "transformer.h.{bid}.attn.out_proj", # gpt-j
  247. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  248. "model.layers.{bid}.self_attn.dense", # persimmon
  249. "model.layers.{bid}.attention.dense", # bailingmoe2
  250. "h.{bid}.attn.c_proj", # gpt2
  251. "transformer.h.{bid}.mixer.out_proj", # phi2
  252. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  253. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  254. "model.layers.{bid}.attention.wo", # internlm2
  255. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  256. "encoder.layers.{bid}.mixer.out_proj", # jina
  257. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  258. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  259. "encoder.layers.{bid}.self_attention.dense", # chatglm
  260. "transformer.layers.{bid}.attn.out_proj", # openelm
  261. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  262. "model.layers.{bid}.self_attn.o_proj", # llama4
  263. "transformer_encoder.{bid}.wo", # neobert
  264. "model.transformer.blocks.{bid}.attn_out", # llada
  265. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  266. "backbone.layers.{bid}.mixer.o_proj", # nemotron-h
  267. "model.layers.{bid}.self_attn.language_expert_dense", # cogvlm
  268. ),
  269. # Attention output norm
  270. MODEL_TENSOR.ATTN_OUT_NORM: (
  271. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  272. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  273. "encoder.layers.{bid}.norm1", # nomic-bert
  274. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  275. "model.layers.{bid}.post_attn_norm", # grok-2
  276. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  277. ),
  278. MODEL_TENSOR.ATTN_POST_NORM: (
  279. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  280. "layers.{bid}.post_attention_layernorm", # embeddinggemma
  281. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  282. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  283. ),
  284. # Rotary embeddings
  285. MODEL_TENSOR.ATTN_ROT_EMBD: (
  286. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  287. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  288. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  289. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  290. ),
  291. MODEL_TENSOR.ATTN_SINKS: (
  292. "model.layers.{bid}.self_attn.sinks", # openai-moe
  293. ),
  294. # Feed-forward norm
  295. MODEL_TENSOR.FFN_NORM: (
  296. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  297. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  298. "h.{bid}.post_attention_layernorm", # bloom
  299. "transformer.blocks.{bid}.norm_2", # mpt
  300. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  301. "layers.{bid}.ffn_norm", # llama-pth
  302. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  303. "model.layers.{bid}.ln2", # yi
  304. "h.{bid}.ln_2", # gpt2
  305. "model.layers.{bid}.ffn_norm", # internlm2
  306. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  307. "model.layers.{bid}.pre_moe_norm", # grok-2
  308. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  309. "transformer.layers.{bid}.ffn_norm", # openelm
  310. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  311. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  312. "model.layers.{bid}.post_attention_layernorm", # llama4
  313. "transformer_encoder.{bid}.ffn_norm", # neobert
  314. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  315. "model.transformer.blocks.{bid}.ff_norm", # llada
  316. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  317. "model.layers.{bid}.feedforward_layernorm", # apertus
  318. ),
  319. # Post feed-forward norm
  320. MODEL_TENSOR.FFN_PRE_NORM: (
  321. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  322. "layers.{bid}.pre_feedforward_layernorm", # embeddinggemma
  323. "model.layers.{bid}.pre_ff_layernorm.weight",
  324. ),
  325. # Post feed-forward norm
  326. MODEL_TENSOR.FFN_POST_NORM: (
  327. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  328. "layers.{bid}.post_feedforward_layernorm", # embeddinggemma
  329. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  330. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  331. "model.layers.{bid}.feed_forward.up_proj",
  332. "model.layers.{bid}.post_moe_norm", # grok-2
  333. ),
  334. MODEL_TENSOR.FFN_GATE_INP: (
  335. "layers.{bid}.feed_forward.gate", # mixtral
  336. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  337. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  338. "transformer.decoder_layer.{bid}.router", # Grok
  339. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  340. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  341. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  342. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  343. "model.layers.{bid}.mlp.router", # openai-moe
  344. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  345. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  346. "model.layers.{bid}.feed_forward.gate", # lfm2moe
  347. ),
  348. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  349. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  350. ),
  351. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  352. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  353. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  354. "model.layers.{bid}.mlp.gate.expert_bias", # bailingmoe2
  355. "model.layers.{bid}.feed_forward.expert_bias", # lfm2moe
  356. "model.layers.{bid}.block_sparse_moe.e_score_correction", # minimax-m2
  357. ),
  358. # Feed-forward up
  359. MODEL_TENSOR.FFN_UP: (
  360. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  361. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  362. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  363. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  364. "h.{bid}.mlp.dense_h_to_4h", # bloom
  365. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  366. "layers.{bid}.mlp.up_proj", # embeddinggemma
  367. "layers.{bid}.feed_forward.w3", # llama-pth
  368. "encoder.layer.{bid}.intermediate.dense", # bert
  369. "transformer.layer.{bid}.ffn.lin1", # distillbert
  370. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  371. "transformer.h.{bid}.mlp.linear_3", # refact
  372. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  373. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  374. "transformer.h.{bid}.mlp.w1", # qwen
  375. "h.{bid}.mlp.c_fc", # gpt2
  376. "transformer.h.{bid}.mlp.fc1", # phi2
  377. "model.layers.{bid}.mlp.fc1", # phi2
  378. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  379. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  380. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  381. "model.layers.{bid}.feed_forward.w3", # internlm2
  382. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  383. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  384. "model.layers.{bid}.mlp.c_fc", # starcoder2
  385. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  386. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  387. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  388. "model.layers.{bid}.residual_mlp.w3", # arctic
  389. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  390. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  391. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  392. "transformer_encoder.{bid}.ffn.w12", # neobert
  393. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  394. "model.transformer.blocks.{bid}.up_proj", # llada
  395. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  396. "backbone.layers.{bid}.mixer.up_proj", # nemotron-h
  397. "model.layers.{bid}.mlp.language_mlp.up_proj", # cogvlm
  398. ),
  399. MODEL_TENSOR.FFN_UP_EXP: (
  400. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  401. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  402. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  403. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  404. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  405. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  406. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  407. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  408. ),
  409. MODEL_TENSOR.FFN_UP_SHEXP: (
  410. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  411. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  412. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  413. "model.layers.{bid}.feed_forward.down_proj",
  414. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  415. ),
  416. MODEL_TENSOR.FFN_UP_CHEXP: (
  417. "model.layers.{bid}.mlp.chunk_experts.up_proj", # grovemoe
  418. ),
  419. # AWQ-activation gate
  420. MODEL_TENSOR.FFN_ACT: (
  421. "transformer.blocks.{bid}.ffn.act", # mpt
  422. ),
  423. # Feed-forward gate
  424. MODEL_TENSOR.FFN_GATE: (
  425. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  426. "layers.{bid}.mlp.gate_proj", # embeddinggemma
  427. "layers.{bid}.feed_forward.w1", # llama-pth
  428. "transformer.h.{bid}.mlp.w2", # qwen
  429. "transformer.h.{bid}.mlp.c_fc2", # jais
  430. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  431. "model.layers.{bid}.feed_forward.w1", # internlm2
  432. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  433. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  434. "transformer.h.{bid}.mlp.linear_1", # refact
  435. "model.layers.{bid}.residual_mlp.w1", # arctic
  436. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  437. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  438. "model.transformer.blocks.{bid}.ff_proj", # llada
  439. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  440. "model.layers.{bid}.mlp.language_mlp.gate_proj", # cogvlm
  441. ),
  442. MODEL_TENSOR.FFN_GATE_EXP: (
  443. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  444. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  445. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  446. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  447. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  448. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  449. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  450. ),
  451. MODEL_TENSOR.FFN_GATE_SHEXP: (
  452. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  453. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  454. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  455. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  456. ),
  457. MODEL_TENSOR.FFN_GATE_CHEXP: (
  458. "model.layers.{bid}.mlp.chunk_experts.gate_proj", # grovemoe
  459. ),
  460. # Feed-forward down
  461. MODEL_TENSOR.FFN_DOWN: (
  462. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  463. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  464. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  465. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  466. "h.{bid}.mlp.dense_4h_to_h", # bloom
  467. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  468. "layers.{bid}.mlp.down_proj", # embeddinggemma
  469. "layers.{bid}.feed_forward.w2", # llama-pth
  470. "encoder.layer.{bid}.output.dense", # bert
  471. "transformer.layer.{bid}.ffn.lin2", # distillbert
  472. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  473. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  474. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  475. "h.{bid}.mlp.c_proj", # gpt2
  476. "transformer.h.{bid}.mlp.fc2", # phi2
  477. "model.layers.{bid}.mlp.fc2", # phi2
  478. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  479. "model.layers.{bid}.feed_forward.w2", # internlm2
  480. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  481. "model.layers.{bid}.mlp.c_proj", # starcoder2
  482. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  483. "transformer.layers.{bid}.ffn.proj_2", # openelm
  484. "model.layers.{bid}.residual_mlp.w2", # arctic
  485. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  486. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  487. "model.layers.h.{bid}.mlp.c_proj", # exaone
  488. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  489. "transformer_encoder.{bid}.ffn.w3", # neobert
  490. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  491. "model.transformer.blocks.{bid}.ff_out", # llada
  492. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  493. "backbone.layers.{bid}.mixer.down_proj", # nemotron-h
  494. "model.layers.{bid}.mlp.language_mlp.down_proj", # cogvlm
  495. ),
  496. MODEL_TENSOR.FFN_DOWN_EXP: (
  497. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  498. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  499. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  500. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  501. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  502. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  503. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  504. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  505. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  506. ),
  507. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  508. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  509. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  510. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  511. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  512. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  513. ),
  514. MODEL_TENSOR.FFN_DOWN_CHEXP: (
  515. "model.layers.{bid}.mlp.chunk_experts.down_proj", # grovemoe
  516. ),
  517. MODEL_TENSOR.ATTN_Q_NORM: (
  518. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  519. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  520. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  521. "model.layers.{bid}.attention.query_layernorm", # bailingmoe2
  522. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  523. "layers.{bid}.self_attn.q_norm", # embeddinggemma
  524. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  525. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  526. "transformer.layers.{bid}.attn.q_norm", # openelm
  527. "model.layers.layers.{bid}.mixer.q", # plamo2
  528. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  529. "model.layers.{bid}.attention.query_layernorm", # apertus
  530. ),
  531. MODEL_TENSOR.ATTN_K_NORM: (
  532. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  533. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  534. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  535. "model.layers.{bid}.attention.key_layernorm", # bailingmoe2
  536. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  537. "layers.{bid}.self_attn.k_norm", # embeddinggemma
  538. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  539. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  540. "transformer.layers.{bid}.attn.k_norm", # openelm
  541. "model.layers.layers.{bid}.mixer.k", # plamo2
  542. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  543. "model.layers.{bid}.attention.key_layernorm", # apertus
  544. ),
  545. MODEL_TENSOR.ROPE_FREQS: (
  546. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  547. ),
  548. MODEL_TENSOR.LAYER_OUT_NORM: (
  549. "encoder.layer.{bid}.output.LayerNorm", # bert
  550. "transformer.layer.{bid}.output_layer_norm", # distillbert
  551. "encoder.layers.{bid}.norm2", # nomic-bert
  552. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  553. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  554. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  555. "model.layers.{bid}.final_layernorm", # bailingmoe2
  556. ),
  557. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  558. "model.embed_tokens_per_layer", # gemma3n
  559. ),
  560. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  561. "model.per_layer_model_projection", # gemma3n
  562. ),
  563. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  564. "model.per_layer_projection_norm", # gemma3n
  565. ),
  566. MODEL_TENSOR.ALTUP_PROJ: (
  567. "model.altup_projections", # gemma3n
  568. ),
  569. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  570. "model.altup_unembed_projections", # gemma3n
  571. ),
  572. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  573. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  574. ),
  575. MODEL_TENSOR.PER_LAYER_PROJ: (
  576. "model.layers.{bid}.per_layer_projection", # gemma3n
  577. ),
  578. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  579. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  580. ),
  581. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  582. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  583. ),
  584. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  585. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  586. ),
  587. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  588. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  589. ),
  590. MODEL_TENSOR.ALTUP_ROUTER: (
  591. "model.layers.{bid}.altup.modality_router", # gemma3n
  592. ),
  593. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  594. "model.layers.{bid}.altup.router_norm", # gemma3n
  595. ),
  596. MODEL_TENSOR.LAUREL_L: (
  597. "model.layers.{bid}.laurel.linear_left", # gemma3n
  598. ),
  599. MODEL_TENSOR.LAUREL_R: (
  600. "model.layers.{bid}.laurel.linear_right", # gemma3n
  601. ),
  602. MODEL_TENSOR.LAUREL_POST_NORM: (
  603. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  604. ),
  605. MODEL_TENSOR.SSM_IN: (
  606. "model.layers.{bid}.in_proj", # mamba-hf
  607. "backbone.layers.{bid}.mixer.in_proj", # mamba
  608. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  609. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  610. ),
  611. MODEL_TENSOR.SSM_CONV1D: (
  612. "model.layers.{bid}.conv1d", # mamba-hf
  613. "backbone.layers.{bid}.mixer.conv1d", # mamba
  614. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  615. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  616. ),
  617. MODEL_TENSOR.SSM_X: (
  618. "model.layers.{bid}.x_proj", # mamba-hf
  619. "backbone.layers.{bid}.mixer.x_proj", # mamba
  620. "model.layers.{bid}.mamba.x_proj", # jamba
  621. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  622. ),
  623. MODEL_TENSOR.SSM_DT: (
  624. "model.layers.{bid}.dt_proj", # mamba-hf
  625. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  626. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  627. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  628. ),
  629. MODEL_TENSOR.SSM_DT_NORM: (
  630. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  631. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  632. ),
  633. MODEL_TENSOR.SSM_A: (
  634. "model.layers.{bid}.A_log", # mamba-hf
  635. "backbone.layers.{bid}.mixer.A_log", # mamba
  636. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  637. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  638. ),
  639. MODEL_TENSOR.SSM_B_NORM: (
  640. "model.layers.{bid}.mamba.b_layernorm", # jamba
  641. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  642. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  643. ),
  644. MODEL_TENSOR.SSM_C_NORM: (
  645. "model.layers.{bid}.mamba.c_layernorm", # jamba
  646. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  647. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  648. ),
  649. MODEL_TENSOR.SSM_D: (
  650. "model.layers.{bid}.D", # mamba-hf
  651. "backbone.layers.{bid}.mixer.D", # mamba
  652. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  653. "model.layers.layers.{bid}.mixer.D", # plamo2
  654. ),
  655. MODEL_TENSOR.SSM_NORM: (
  656. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  657. "backbone.layers.{bid}.mixer.norm", # mamba2
  658. ),
  659. MODEL_TENSOR.SSM_OUT: (
  660. "model.layers.{bid}.out_proj", # mamba-hf
  661. "backbone.layers.{bid}.mixer.out_proj", # mamba
  662. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  663. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  664. ),
  665. MODEL_TENSOR.TIME_MIX_W0: (
  666. "model.layers.{bid}.attention.w0", # rwkv7
  667. ),
  668. MODEL_TENSOR.TIME_MIX_W1: (
  669. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  670. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  671. "model.layers.{bid}.attention.w1", # rwkv7
  672. ),
  673. MODEL_TENSOR.TIME_MIX_W2: (
  674. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  675. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  676. "model.layers.{bid}.attention.w2", # rwkv7
  677. ),
  678. MODEL_TENSOR.TIME_MIX_A0: (
  679. "model.layers.{bid}.attention.a0", # rwkv7
  680. ),
  681. MODEL_TENSOR.TIME_MIX_A1: (
  682. "model.layers.{bid}.attention.a1", # rwkv7
  683. ),
  684. MODEL_TENSOR.TIME_MIX_A2: (
  685. "model.layers.{bid}.attention.a2", # rwkv7
  686. ),
  687. MODEL_TENSOR.TIME_MIX_V0: (
  688. "model.layers.{bid}.attention.v0", # rwkv7
  689. ),
  690. MODEL_TENSOR.TIME_MIX_V1: (
  691. "model.layers.{bid}.attention.v1", # rwkv7
  692. ),
  693. MODEL_TENSOR.TIME_MIX_V2: (
  694. "model.layers.{bid}.attention.v2", # rwkv7
  695. ),
  696. MODEL_TENSOR.TIME_MIX_G1: (
  697. "model.layers.{bid}.attention.g1", # rwkv7
  698. ),
  699. MODEL_TENSOR.TIME_MIX_G2: (
  700. "model.layers.{bid}.attention.g2", # rwkv7
  701. ),
  702. MODEL_TENSOR.TIME_MIX_K_K: (
  703. "model.layers.{bid}.attention.k_k", # rwkv7
  704. ),
  705. MODEL_TENSOR.TIME_MIX_K_A: (
  706. "model.layers.{bid}.attention.k_a", # rwkv7
  707. ),
  708. MODEL_TENSOR.TIME_MIX_R_K: (
  709. "model.layers.{bid}.attention.r_k", # rwkv7
  710. ),
  711. MODEL_TENSOR.TIME_MIX_LERP_X: (
  712. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  713. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  714. ),
  715. MODEL_TENSOR.TIME_MIX_LERP_K: (
  716. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  717. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  718. ),
  719. MODEL_TENSOR.TIME_MIX_LERP_V: (
  720. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  721. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  722. ),
  723. MODEL_TENSOR.TIME_MIX_LERP_R: (
  724. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  725. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  726. ),
  727. MODEL_TENSOR.TIME_MIX_LERP_G: (
  728. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  729. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  730. ),
  731. MODEL_TENSOR.TIME_MIX_LERP_W: (
  732. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  733. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  734. ),
  735. MODEL_TENSOR.TIME_MIX_FIRST: (
  736. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  737. ),
  738. MODEL_TENSOR.TIME_MIX_DECAY: (
  739. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  740. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  741. ),
  742. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  743. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  744. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  745. ),
  746. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  747. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  748. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  749. ),
  750. MODEL_TENSOR.TIME_MIX_KEY: (
  751. "rwkv.blocks.{bid}.attention.key", # rwkv6
  752. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  753. "model.layers.{bid}.attention.key", # rwkv7
  754. "model.layers.{bid}.attention.k_proj", # rwkv7
  755. ),
  756. MODEL_TENSOR.TIME_MIX_VALUE: (
  757. "rwkv.blocks.{bid}.attention.value", # rwkv6
  758. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  759. "model.layers.{bid}.attention.value", # rwkv7
  760. "model.layers.{bid}.attention.v_proj", # rwkv7
  761. ),
  762. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  763. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  764. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  765. "model.layers.{bid}.attention.receptance", # rwkv7
  766. "model.layers.{bid}.attention.r_proj", # rwkv7
  767. ),
  768. MODEL_TENSOR.TIME_MIX_GATE: (
  769. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  770. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  771. ),
  772. MODEL_TENSOR.TIME_MIX_LN: (
  773. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  774. "model.layers.{bid}.attention.ln_x" # rwkv7
  775. ),
  776. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  777. "rwkv.blocks.{bid}.attention.output", # rwkv6
  778. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  779. "model.layers.{bid}.attention.output", # rwkv7
  780. "model.layers.{bid}.attention.o_proj", # rwkv7
  781. ),
  782. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  783. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  784. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  785. ),
  786. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  787. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  788. ),
  789. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  790. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  791. "model.layers.{bid}.feed_forward.key", # rwkv7
  792. ),
  793. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  794. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  795. ),
  796. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  797. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  798. "model.layers.{bid}.feed_forward.value", # rwkv7
  799. ),
  800. MODEL_TENSOR.ATTN_Q_A: (
  801. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  802. ),
  803. MODEL_TENSOR.ATTN_Q_B: (
  804. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  805. ),
  806. MODEL_TENSOR.ATTN_KV_A_MQA: (
  807. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  808. ),
  809. MODEL_TENSOR.ATTN_KV_B: (
  810. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  811. ),
  812. MODEL_TENSOR.ATTN_K_B: (
  813. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  814. ),
  815. MODEL_TENSOR.ATTN_V_B: (
  816. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  817. ),
  818. MODEL_TENSOR.ATTN_Q_A_NORM: (
  819. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  820. ),
  821. MODEL_TENSOR.ATTN_KV_A_NORM: (
  822. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  823. ),
  824. MODEL_TENSOR.ATTN_SUB_NORM: (
  825. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  826. ),
  827. MODEL_TENSOR.FFN_SUB_NORM: (
  828. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  829. ),
  830. MODEL_TENSOR.DEC_ATTN_NORM: (
  831. "decoder.block.{bid}.layer.0.layer_norm", # t5
  832. ),
  833. MODEL_TENSOR.DEC_ATTN_Q: (
  834. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  835. ),
  836. MODEL_TENSOR.DEC_ATTN_K: (
  837. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  838. ),
  839. MODEL_TENSOR.DEC_ATTN_V: (
  840. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  841. ),
  842. MODEL_TENSOR.DEC_ATTN_OUT: (
  843. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  844. ),
  845. MODEL_TENSOR.DEC_ATTN_REL_B: (
  846. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  847. ),
  848. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  849. "decoder.block.{bid}.layer.1.layer_norm", # t5
  850. ),
  851. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  852. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  853. ),
  854. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  855. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  856. ),
  857. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  858. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  859. ),
  860. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  861. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  862. ),
  863. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  864. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  865. ),
  866. MODEL_TENSOR.DEC_FFN_NORM: (
  867. "decoder.block.{bid}.layer.2.layer_norm", # t5
  868. ),
  869. MODEL_TENSOR.DEC_FFN_GATE: (
  870. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  871. ),
  872. MODEL_TENSOR.DEC_FFN_UP: (
  873. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  874. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  875. ),
  876. MODEL_TENSOR.DEC_FFN_DOWN: (
  877. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  878. ),
  879. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  880. "decoder.final_layer_norm", # t5
  881. ),
  882. MODEL_TENSOR.ENC_ATTN_NORM: (
  883. "encoder.block.{bid}.layer.0.layer_norm", # t5
  884. ),
  885. MODEL_TENSOR.ENC_ATTN_Q: (
  886. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  887. ),
  888. MODEL_TENSOR.ENC_ATTN_K: (
  889. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  890. ),
  891. MODEL_TENSOR.ENC_ATTN_V: (
  892. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  893. ),
  894. MODEL_TENSOR.ENC_ATTN_OUT: (
  895. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  896. ),
  897. MODEL_TENSOR.ENC_ATTN_REL_B: (
  898. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  899. ),
  900. MODEL_TENSOR.ENC_FFN_NORM: (
  901. "encoder.block.{bid}.layer.1.layer_norm", # t5
  902. ),
  903. MODEL_TENSOR.ENC_FFN_GATE: (
  904. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  905. ),
  906. MODEL_TENSOR.ENC_FFN_UP: (
  907. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  908. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  909. ),
  910. MODEL_TENSOR.ENC_FFN_DOWN: (
  911. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  912. ),
  913. MODEL_TENSOR.VISEXP_UP: (
  914. "model.layers.{bid}.mlp.vision_mlp.up_proj", # cogvlm
  915. ),
  916. MODEL_TENSOR.VISEXP_GATE: (
  917. "model.layers.{bid}.mlp.vision_mlp.gate_proj", # cogvlm
  918. ),
  919. MODEL_TENSOR.VISEXP_DOWN: (
  920. "model.layers.{bid}.mlp.vision_mlp.down_proj", # cogvlm
  921. ),
  922. MODEL_TENSOR.VISEXP_ATTN_OUT: (
  923. "model.layers.{bid}.self_attn.vision_expert_dense", # cogvlm
  924. ),
  925. MODEL_TENSOR.VISEXP_ATTN_QKV: (
  926. "model.layers.{bid}.self_attn.vision_expert_query_key_value", # cogvlm
  927. ),
  928. ############################################################################
  929. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  930. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  931. "encoder.final_layer_norm", # t5
  932. "layer_norm", # neobert
  933. ),
  934. MODEL_TENSOR.CLS: (
  935. "classifier", # jina
  936. "classifier.dense", # roberta
  937. "pre_classifier", # distillbert
  938. "dense", # neobert
  939. ),
  940. MODEL_TENSOR.CLS_OUT: (
  941. "classifier.out_proj", # roberta
  942. ),
  943. #############################################################################
  944. MODEL_TENSOR.CONVNEXT_DW: (
  945. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  946. ),
  947. MODEL_TENSOR.CONVNEXT_NORM: (
  948. "backbone.convnext.{bid}.norm", # wavtokenizer
  949. ),
  950. MODEL_TENSOR.CONVNEXT_PW1: (
  951. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  952. ),
  953. MODEL_TENSOR.CONVNEXT_PW2: (
  954. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  955. ),
  956. MODEL_TENSOR.CONVNEXT_GAMMA: (
  957. "backbone.convnext.{bid}.gamma", # wavtokenizer
  958. ),
  959. MODEL_TENSOR.POSNET_CONV1: (
  960. "backbone.posnet.{bid}.conv1", # wavtokenizer
  961. ),
  962. MODEL_TENSOR.POSNET_CONV2: (
  963. "backbone.posnet.{bid}.conv2", # wavtokenizer
  964. ),
  965. MODEL_TENSOR.POSNET_NORM: (
  966. "backbone.posnet.{bid}.norm", # wavtokenizer
  967. ),
  968. MODEL_TENSOR.POSNET_NORM1: (
  969. "backbone.posnet.{bid}.norm1", # wavtokenizer
  970. ),
  971. MODEL_TENSOR.POSNET_NORM2: (
  972. "backbone.posnet.{bid}.norm2", # wavtokenizer
  973. ),
  974. MODEL_TENSOR.POSNET_ATTN_NORM: (
  975. "backbone.posnet.{bid}.norm", # wavtokenizer
  976. ),
  977. MODEL_TENSOR.POSNET_ATTN_Q: (
  978. "backbone.posnet.{bid}.q", # wavtokenizer
  979. ),
  980. MODEL_TENSOR.POSNET_ATTN_K: (
  981. "backbone.posnet.{bid}.k", # wavtokenizer
  982. ),
  983. MODEL_TENSOR.POSNET_ATTN_V: (
  984. "backbone.posnet.{bid}.v", # wavtokenizer
  985. ),
  986. MODEL_TENSOR.POSNET_ATTN_OUT: (
  987. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  988. ),
  989. MODEL_TENSOR.SHORTCONV_CONV: (
  990. "model.layers.{bid}.conv.conv",
  991. ),
  992. MODEL_TENSOR.SHORTCONV_INPROJ: (
  993. "model.layers.{bid}.conv.in_proj",
  994. ),
  995. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  996. "model.layers.{bid}.conv.out_proj",
  997. ),
  998. #############################################################################
  999. ## Vision encoder
  1000. MODEL_TENSOR.V_MMPROJ: (
  1001. "multi_modal_projector.linear_{bid}",
  1002. "visual.merger.mlp.{bid}", # qwen2vl
  1003. ),
  1004. MODEL_TENSOR.V_MMPROJ_FC: (
  1005. "model.connector.modality_projection.proj", # SmolVLM
  1006. "model.vision.linear_proj.linear_proj", # cogvlm
  1007. ),
  1008. MODEL_TENSOR.V_MMPROJ_MLP: (
  1009. "model.mm_projector.mlp.mlp.{bid}",
  1010. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  1011. "mlp1.{bid}", # InternVL
  1012. ),
  1013. MODEL_TENSOR.V_MMPROJ_PEG: (
  1014. "model.mm_projector.peg.peg.{bid}",
  1015. ),
  1016. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  1017. "vision_tower.vision_model.embeddings.class_embedding",
  1018. "model.vision_tower.embeddings.cls_token", # Intern-S1
  1019. "vision_model.class_embedding", # llama 4
  1020. "model.vision.patch_embedding.cls_embedding", # cogvlm
  1021. ),
  1022. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  1023. "vision_tower.vision_model.embeddings.patch_embedding",
  1024. "model.vision_tower.embeddings.patch_embeddings.projection", # Intern-S1
  1025. "vpm.embeddings.patch_embedding",
  1026. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  1027. "vision_tower.patch_conv", # pixtral-hf
  1028. "vision_encoder.patch_conv", # pixtral
  1029. "vision_model.patch_embedding.linear", # llama 4
  1030. "visual.patch_embed.proj", # qwen2vl
  1031. "vision_tower.patch_embed.proj", # kimi-vl
  1032. "model.vision.patch_embedding.proj", # cogvlm
  1033. ),
  1034. MODEL_TENSOR.V_ENC_EMBD_POS: (
  1035. "vision_tower.vision_model.embeddings.position_embedding",
  1036. "model.vision_tower.embeddings.position_embeddings", # Intern-S1
  1037. "vpm.embeddings.position_embedding",
  1038. "model.vision_model.embeddings.position_embedding", # SmolVLM
  1039. "vision_model.positional_embedding_vlm", # llama 4
  1040. "vision_tower.patch_embed.pos_emb", # kimi-vl
  1041. "visual.pos_embed", # qwen3vl
  1042. "model.vision.patch_embedding.position_embedding", # cogvlm
  1043. ),
  1044. MODEL_TENSOR.V_ENC_ATTN_QKV: (
  1045. "visual.blocks.{bid}.attn.qkv", # qwen3vl
  1046. "model.vision.transformer.layers.{bid}.attention.query_key_value", # cogvlm
  1047. ),
  1048. MODEL_TENSOR.V_ENC_ATTN_Q: (
  1049. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  1050. "model.vision_tower.encoder.layer.{bid}.attention.q_proj", # Intern-S1
  1051. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  1052. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  1053. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  1054. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral-hf
  1055. "vision_encoder.transformer.layers.{bid}.attention.wq", # pixtral
  1056. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  1057. "vision_tower.encoder.blocks.{bid}.wq", # kimi-vl, generated
  1058. ),
  1059. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  1060. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  1061. "model.vision_tower.encoder.layer.{bid}.attention.q_norm", # Intern-S1
  1062. ),
  1063. MODEL_TENSOR.V_ENC_ATTN_K: (
  1064. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  1065. "model.vision_tower.encoder.layer.{bid}.attention.k_proj", # Intern-S1
  1066. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  1067. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  1068. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  1069. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral-hf
  1070. "vision_encoder.transformer.layers.{bid}.attention.wk", # pixtral
  1071. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  1072. "vision_tower.encoder.blocks.{bid}.wk", # kimi-vl, generated
  1073. ),
  1074. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  1075. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  1076. "model.vision_tower.encoder.layer.{bid}.attention.k_norm", # Intern-S1
  1077. ),
  1078. MODEL_TENSOR.V_ENC_ATTN_V: (
  1079. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  1080. "model.vision_tower.encoder.layer.{bid}.attention.v_proj", # Intern-S1
  1081. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  1082. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  1083. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  1084. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral-hf
  1085. "vision_encoder.transformer.layers.{bid}.attention.wv", # pixtral
  1086. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  1087. "vision_tower.encoder.blocks.{bid}.wv", # kimi-vl, generated
  1088. ),
  1089. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  1090. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  1091. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  1092. "model.vision_tower.encoder.layer.{bid}.layernorm_before", # Intern-S1
  1093. "vpm.encoder.layers.{bid}.layer_norm1",
  1094. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  1095. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral-hf
  1096. "vision_encoder.transformer.layers.{bid}.attention_norm", # pixtral
  1097. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  1098. "visual.blocks.{bid}.norm1", # qwen2vl
  1099. "vision_tower.encoder.blocks.{bid}.norm0", # kimi-vl (norm0/norm1)
  1100. "model.vision.transformer.layers.{bid}.input_layernorm", # cogvlm
  1101. ),
  1102. MODEL_TENSOR.V_ENC_ATTN_O: (
  1103. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  1104. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  1105. "model.vision_tower.encoder.layer.{bid}.attention.projection_layer", # Intern-S1
  1106. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  1107. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1108. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1109. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral-hf
  1110. "vision_encoder.transformer.layers.{bid}.attention.wo", # pixtral
  1111. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1112. "vision_tower.encoder.blocks.{bid}.wo", # kimi-vl
  1113. "model.vision.transformer.layers.{bid}.attention.dense", # cogvlm
  1114. ),
  1115. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1116. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1117. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1118. "model.vision_tower.encoder.layer.{bid}.layernorm_after", # Intern-S1
  1119. "vpm.encoder.layers.{bid}.layer_norm2",
  1120. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1121. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1122. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral-hf
  1123. "vision_encoder.transformer.layers.{bid}.ffn_norm", # pixtral
  1124. "visual.blocks.{bid}.norm2", # qwen2vl
  1125. "vision_tower.encoder.blocks.{bid}.norm1", # kimi-vl (norm0/norm1)
  1126. "model.vision.transformer.layers.{bid}.post_attention_layernorm", # cogvlm
  1127. ),
  1128. MODEL_TENSOR.V_ENC_FFN_UP: (
  1129. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1130. "model.vision_tower.encoder.layer.{bid}.mlp.fc1", # Intern-S1
  1131. "vpm.encoder.layers.{bid}.mlp.fc1",
  1132. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1133. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral-hf
  1134. "vision_encoder.transformer.layers.{bid}.feed_forward.w3", # pixtral
  1135. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1136. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1137. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1138. "visual.blocks.{bid}.mlp.linear_fc1", # qwen3vl
  1139. "vision_tower.encoder.blocks.{bid}.mlp.fc0", # kimi-vl (fc0/fc1)
  1140. "model.vision.transformer.layers.{bid}.mlp.fc1", # cogvlm
  1141. ),
  1142. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1143. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral-hf
  1144. "vision_encoder.transformer.layers.{bid}.feed_forward.w1", # pixtral
  1145. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1146. ),
  1147. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1148. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1149. "model.vision_tower.encoder.layer.{bid}.mlp.fc2", # Intern-S1
  1150. "vpm.encoder.layers.{bid}.mlp.fc2",
  1151. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1152. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral-hf
  1153. "vision_encoder.transformer.layers.{bid}.feed_forward.w2", # pixtral
  1154. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1155. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1156. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1157. "visual.blocks.{bid}.mlp.linear_fc2", # qwen3vl
  1158. "vision_tower.encoder.blocks.{bid}.mlp.fc1", # kimi-vl (fc0/fc1)
  1159. "model.vision.transformer.layers.{bid}.mlp.fc2", # cogvlm
  1160. ),
  1161. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1162. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1163. "model.vision_tower.encoder.layer.{bid}.lambda_1", # Intern-S1
  1164. ),
  1165. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1166. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1167. "model.vision_tower.encoder.layer.{bid}.lambda_2", # Intern-S1
  1168. ),
  1169. MODEL_TENSOR.V_PRE_NORM: (
  1170. "vision_tower.vision_model.pre_layrnorm",
  1171. "vision_tower.ln_pre", # pixtral-hf
  1172. "vision_encoder.ln_pre", # pixtral
  1173. "vision_model.layernorm_pre", # llama4
  1174. ),
  1175. MODEL_TENSOR.V_POST_NORM: (
  1176. "vision_tower.vision_model.post_layernorm",
  1177. "model.vision_model.post_layernorm", # SmolVLM
  1178. "vision_model.layernorm_post", # llama4
  1179. "visual.merger.ln_q", # qwen2vl
  1180. "vision_tower.encoder.final_layernorm", # kimi-vl
  1181. ),
  1182. MODEL_TENSOR.V_MM_INP_PROJ: (
  1183. "multi_modal_projector.mm_input_projection",
  1184. ),
  1185. MODEL_TENSOR.V_MM_INP_NORM: (
  1186. "multi_modal_projector.norm",
  1187. "multi_modal_projector.layer_norm",
  1188. "multi_modal_projector.pre_norm",
  1189. "pre_mm_projector_norm",
  1190. "model.vision.linear_proj.norm1", # cogvlm
  1191. ),
  1192. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1193. "multi_modal_projector.mm_soft_emb_norm",
  1194. ),
  1195. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1196. "resampler.pos_embed_k",
  1197. ),
  1198. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1199. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1200. ),
  1201. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1202. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1203. ),
  1204. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1205. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1206. ),
  1207. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1208. "resampler.attn.out_proj",
  1209. ),
  1210. MODEL_TENSOR.V_RESMPL_KV: (
  1211. "resampler.kv_proj",
  1212. ),
  1213. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1214. "resampler.ln_post",
  1215. ),
  1216. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1217. "resampler.ln_kv",
  1218. ),
  1219. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1220. "resampler.ln_q",
  1221. ),
  1222. MODEL_TENSOR.V_RESMPL_PROJ: (
  1223. "resampler.proj",
  1224. ),
  1225. MODEL_TENSOR.V_RESMPL_QUERY: (
  1226. "resampler.query",
  1227. ),
  1228. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1229. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1230. ),
  1231. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1232. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1 - hf
  1233. "patch_merger.merging_layer", # mistral
  1234. ),
  1235. MODEL_TENSOR.V_DS_NORM: (
  1236. "model.visual.deepstack_merger_list.{bid}.norm", # deepstack in qwen3vl
  1237. ),
  1238. MODEL_TENSOR.V_DS_FC1: (
  1239. "model.visual.deepstack_merger_list.{bid}.linear_fc1", # deepstack in qwen3vl
  1240. ),
  1241. MODEL_TENSOR.V_DS_FC2: (
  1242. "model.visual.deepstack_merger_list.{bid}.linear_fc2", # deepstack in qwen3vl
  1243. ),
  1244. MODEL_TENSOR.V_MM_POST_FC_NORM: (
  1245. "model.vision.linear_proj.norm1", # cogvlm
  1246. ),
  1247. MODEL_TENSOR.V_MM_UP: (
  1248. "model.vision.linear_proj.dense_h_to_4h", # cogvlm
  1249. ),
  1250. MODEL_TENSOR.V_MM_DOWN: (
  1251. "model.vision.linear_proj.dense_4h_to_h", # cogvlm
  1252. ),
  1253. MODEL_TENSOR.V_MM_GATE: (
  1254. "model.vision.linear_proj.gate_proj", # cogvlm
  1255. ),
  1256. MODEL_TENSOR.V_TOK_BOI: (
  1257. "model.vision.boi", # cogvlm
  1258. ),
  1259. MODEL_TENSOR.V_TOK_EOI: (
  1260. "model.vision.eoi", # cogvlm
  1261. ),
  1262. # audio (mtmd)
  1263. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1264. "audio_tower.embed_positions", # ultravox
  1265. ),
  1266. MODEL_TENSOR.A_ENC_CONV1D: (
  1267. "audio_tower.conv{bid}", # ultravox
  1268. ),
  1269. MODEL_TENSOR.A_PRE_NORM: (),
  1270. MODEL_TENSOR.A_POST_NORM: (
  1271. "audio_tower.layer_norm", # ultravox
  1272. "audio_tower.ln_post", # qwen2omni
  1273. ),
  1274. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1275. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1276. ),
  1277. MODEL_TENSOR.A_ENC_ATTN_K: (
  1278. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1279. ),
  1280. MODEL_TENSOR.A_ENC_ATTN_V: (
  1281. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1282. ),
  1283. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1284. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1285. ),
  1286. MODEL_TENSOR.A_ENC_OUTPUT: (
  1287. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1288. ),
  1289. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1290. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1291. ),
  1292. MODEL_TENSOR.A_ENC_FFN_UP: (
  1293. "audio_tower.layers.{bid}.fc1", # ultravox
  1294. ),
  1295. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1296. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1297. "audio_tower.layers.{bid}.fc2", # ultravox
  1298. ),
  1299. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1300. # this prefix is added in the conversion code in modify_tensors()
  1301. MODEL_TENSOR.A_MMPROJ: (
  1302. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1303. ),
  1304. MODEL_TENSOR.A_MMPROJ_FC: (
  1305. "audio.multi_modal_projector.linear", # qwen2audio
  1306. "audio_tower.proj", # qwen2omni
  1307. ),
  1308. MODEL_TENSOR.A_MM_NORM_PRE: (
  1309. "audio.multi_modal_projector.ln_pre", # ultravox
  1310. ),
  1311. MODEL_TENSOR.A_MM_NORM_MID: (
  1312. "audio.multi_modal_projector.ln_mid", # ultravox
  1313. ),
  1314. # NextN/MTP tensors for GLM4_MOE
  1315. MODEL_TENSOR.NEXTN_EH_PROJ: (
  1316. "model.layers.{bid}.eh_proj",
  1317. ),
  1318. MODEL_TENSOR.NEXTN_EMBED_TOKENS: (
  1319. "model.layers.{bid}.embed_tokens",
  1320. ),
  1321. MODEL_TENSOR.NEXTN_ENORM: (
  1322. "model.layers.{bid}.enorm",
  1323. ),
  1324. MODEL_TENSOR.NEXTN_HNORM: (
  1325. "model.layers.{bid}.hnorm",
  1326. ),
  1327. MODEL_TENSOR.NEXTN_SHARED_HEAD_HEAD: (
  1328. "model.layers.{bid}.shared_head.head",
  1329. ),
  1330. MODEL_TENSOR.NEXTN_SHARED_HEAD_NORM: (
  1331. "model.layers.{bid}.shared_head.norm",
  1332. ),
  1333. }
  1334. # architecture-specific block mappings
  1335. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1336. MODEL_ARCH.ARCTIC: {
  1337. MODEL_TENSOR.FFN_NORM: (
  1338. "model.layers.{bid}.residual_layernorm",
  1339. ),
  1340. MODEL_TENSOR.FFN_NORM_EXP: (
  1341. "model.layers.{bid}.post_attention_layernorm",
  1342. ),
  1343. },
  1344. }
  1345. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1346. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1347. self.mapping = {}
  1348. for tensor, keys in self.mappings_cfg.items():
  1349. if tensor not in MODEL_TENSORS[arch]:
  1350. continue
  1351. tensor_name = TENSOR_NAMES[tensor]
  1352. self.mapping[tensor_name] = (tensor, tensor_name)
  1353. for key in keys:
  1354. self.mapping[key] = (tensor, tensor_name)
  1355. if arch in self.arch_block_mappings_cfg:
  1356. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1357. for bid in range(n_blocks):
  1358. for tensor, keys in self.block_mappings_cfg.items():
  1359. if tensor not in MODEL_TENSORS[arch]:
  1360. continue
  1361. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1362. self.mapping[tensor_name] = (tensor, tensor_name)
  1363. for key in keys:
  1364. key = key.format(bid = bid)
  1365. self.mapping[key] = (tensor, tensor_name)
  1366. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1367. result = self.mapping.get(key)
  1368. if result is not None:
  1369. return result
  1370. for suffix in try_suffixes:
  1371. if key.endswith(suffix):
  1372. result = self.mapping.get(key[:-len(suffix)])
  1373. if result is not None:
  1374. return result[0], result[1] + suffix
  1375. return None
  1376. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1377. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1378. if result is None:
  1379. return None
  1380. return result[1]
  1381. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1382. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1383. if result is None:
  1384. return None
  1385. return result[0]
  1386. def __getitem__(self, key: str) -> str:
  1387. try:
  1388. return self.mapping[key][1]
  1389. except KeyError:
  1390. raise KeyError(key)
  1391. def __contains__(self, key: str) -> bool:
  1392. return key in self.mapping
  1393. def __repr__(self) -> str:
  1394. return repr(self.mapping)
  1395. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1396. return TensorNameMap(arch, n_blocks)