clip-impl.h 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497
  1. #include "ggml.h"
  2. #include "gguf.h"
  3. #include "clip.h"
  4. #include <climits>
  5. #include <cstdarg>
  6. #include <cinttypes>
  7. #include <string>
  8. #include <map>
  9. #include <sstream>
  10. #include <vector>
  11. #include <memory>
  12. // Internal header for clip.cpp
  13. #define KEY_FTYPE "general.file_type"
  14. #define KEY_NAME "general.name"
  15. #define KEY_DESCRIPTION "general.description"
  16. #define KEY_PROJ_TYPE "clip.projector_type"
  17. #define KEY_HAS_AUDIO_ENC "clip.has_audio_encoder"
  18. #define KEY_HAS_VISION_ENC "clip.has_vision_encoder"
  19. #define KEY_USE_GELU "clip.use_gelu"
  20. #define KEY_USE_SILU "clip.use_silu"
  21. #define KEY_N_EMBD "clip.%s.embedding_length"
  22. #define KEY_N_FF "clip.%s.feed_forward_length"
  23. #define KEY_N_BLOCK "clip.%s.block_count"
  24. #define KEY_PROJ_DIM "clip.%s.projection_dim"
  25. #define KEY_N_HEAD "clip.%s.attention.head_count"
  26. #define KEY_LAYER_NORM_EPS "clip.%s.attention.layer_norm_epsilon"
  27. // vision-specific
  28. #define KEY_VISION_PROJ_TYPE "clip.vision.projector_type" // for models with mixed modalities
  29. #define KEY_IMAGE_SIZE "clip.vision.image_size"
  30. #define KEY_PREPROC_IMAGE_SIZE "clip.vision.preproc_image_size"
  31. #define KEY_PATCH_SIZE "clip.vision.patch_size"
  32. #define KEY_IMAGE_MEAN "clip.vision.image_mean"
  33. #define KEY_IMAGE_STD "clip.vision.image_std"
  34. #define KEY_FEATURE_LAYER "clip.vision.feature_layer"
  35. #define KEY_PROJ_SCALE_FACTOR "clip.vision.projector.scale_factor"
  36. #define KEY_SPATIAL_MERGE_SIZE "clip.vision.spatial_merge_size"
  37. #define KEY_IS_DEEPSTACK_LAYERS "clip.vision.is_deepstack_layers"
  38. #define KEY_MM_PATCH_MERGE_TYPE "clip.vision.mm_patch_merge_type"
  39. #define KEY_IMAGE_GRID_PINPOINTS "clip.vision.image_grid_pinpoints"
  40. #define KEY_IMAGE_CROP_RESOLUTION "clip.vision.image_crop_resolution"
  41. #define KEY_WIN_ATTN_PATTERN "clip.vision.n_wa_pattern"
  42. #define KEY_ATTN_WINDOW_SIZE "clip.vision.window_size"
  43. #define KEY_MINICPMV_VERSION "clip.minicpmv_version"
  44. #define KEY_MINICPMV_QUERY_NUM "clip.minicpmv_query_num"
  45. // audio-specific
  46. #define KEY_AUDIO_PROJ_TYPE "clip.audio.projector_type" // for models with mixed modalities
  47. #define KEY_A_NUM_MEL_BINS "clip.audio.num_mel_bins"
  48. #define KEY_A_PROJ_STACK_FACTOR "clip.audio.projector.stack_factor"
  49. //
  50. // tensor name constants
  51. //
  52. #define TN_POS_EMBD "%s.position_embd.weight"
  53. #define TN_CLASS_EMBD "v.class_embd"
  54. #define TN_PATCH_EMBD "v.patch_embd.weight" // not rename tensor with ".0" postfix for backwrad compat
  55. #define TN_PATCH_EMBD_1 "v.patch_embd.weight.1"
  56. #define TN_PATCH_BIAS "v.patch_embd.bias"
  57. #define TN_ATTN_QKV "%s.blk.%d.attn_qkv.%s"
  58. #define TN_ATTN_K "%s.blk.%d.attn_k.%s"
  59. #define TN_ATTN_Q "%s.blk.%d.attn_q.%s"
  60. #define TN_ATTN_V "%s.blk.%d.attn_v.%s"
  61. #define TN_ATTN_OUTPUT "%s.blk.%d.attn_out.%s"
  62. #define TN_ATTN_K_NORM "%s.blk.%d.attn_k_norm.%s"
  63. #define TN_ATTN_Q_NORM "%s.blk.%d.attn_q_norm.%s"
  64. #define TN_FFN_DOWN "%s.blk.%d.ffn_down.%s"
  65. #define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
  66. #define TN_FFN_UP "%s.blk.%d.ffn_up.%s"
  67. #define TN_FFN_GATE "%s.blk.%d.ffn_gate.%s"
  68. #define TN_LN_1 "%s.blk.%d.ln1.%s" // layer norm
  69. #define TN_LN_2 "%s.blk.%d.ln2.%s" // layer norm
  70. #define TN_LS_1 "%s.blk.%d.ls1.%s" // layer scale
  71. #define TN_LS_2 "%s.blk.%d.ls2.%s" // layer scale
  72. #define TN_LN_PRE "%s.pre_ln.%s"
  73. #define TN_LN_POST "%s.post_ln.%s"
  74. #define TN_LLAVA_PROJ "mm.%d.%s"
  75. #define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s"
  76. #define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s"
  77. #define TN_MVLM_PROJ_PEG "mm.model.peg.%d.%s"
  78. #define TN_IMAGE_NEWLINE "model.image_newline"
  79. #define TN_MM_INP_NORM "mm.input_norm.weight"
  80. #define TN_MM_INP_NORM_B "mm.input_norm.bias"
  81. #define TN_MM_INP_PROJ "mm.input_projection.weight" // gemma3
  82. #define TN_MM_SOFT_EMB_N "mm.soft_emb_norm.weight" // gemma3
  83. #define TN_MM_PROJECTOR "mm.model.fc.weight" // idefics3
  84. #define TN_MM_PATCH_MERGER "mm.patch_merger.weight" // mistral small 3.1
  85. #define TN_TOK_IMG_BREAK "v.token_embd.img_break" // pixtral
  86. #define TN_TOK_GLM_BOI "adapter.boi" // glm-edge (these embeddings are not in text model)
  87. #define TN_TOK_GLM_EOI "adapter.eoi" // glm-edge (these embeddings are not in text model)
  88. #define TN_DEEPSTACK_NORM "v.deepstack.%d.norm.%s" // qwen3vl deepstack
  89. #define TN_DEEPSTACK_FC1 "v.deepstack.%d.fc1.%s" // qwen3vl deepstack
  90. #define TN_DEEPSTACK_FC2 "v.deepstack.%d.fc2.%s" // qwen3vl deepstack
  91. // mimicpmv
  92. #define TN_MINICPMV_POS_EMBD_K "resampler.pos_embed_k"
  93. #define TN_MINICPMV_QUERY "resampler.query"
  94. #define TN_MINICPMV_PROJ "resampler.proj.weight"
  95. #define TN_MINICPMV_KV_PROJ "resampler.kv.weight"
  96. #define TN_MINICPMV_ATTN "resampler.attn.%s.%s"
  97. #define TN_MINICPMV_LN "resampler.ln_%s.%s"
  98. #define TN_GLM_ADAPER_CONV "adapter.conv.%s"
  99. #define TN_GLM_ADAPTER_LINEAR "adapter.linear.linear.%s"
  100. #define TN_GLM_ADAPTER_NORM_1 "adapter.linear.norm1.%s"
  101. #define TN_GLM_ADAPTER_D_H_2_4H "adapter.linear.dense_h_to_4h.%s"
  102. #define TN_GLM_ADAPTER_GATE "adapter.linear.gate.%s"
  103. #define TN_GLM_ADAPTER_D_4H_2_H "adapter.linear.dense_4h_to_h.%s"
  104. // ultravox
  105. #define TN_CONV1D "a.conv1d.%d.%s"
  106. #define TN_MM_AUDIO_MLP "mm.a.mlp.%d.%s"
  107. #define TN_MM_AUDIO_FC "mm.a.fc.%s" // fully connected layer
  108. #define TN_MM_NORM_PRE "mm.a.norm_pre.%s"
  109. #define TN_MM_NORM_MID "mm.a.norm_mid.%s"
  110. // cogvlm
  111. #define TN_MM_POST_FC_NORM "mm.post_fc_norm.%s"
  112. #define TN_MM_H_TO_4H "mm.up.%s"
  113. #define TN_MM_GATE "mm.gate.%s"
  114. #define TN_MM_4H_TO_H "mm.down.%s"
  115. #define TN_TOK_BOI "v.boi"
  116. #define TN_TOK_EOI "v.eoi"
  117. // align x to upper multiple of n
  118. #define CLIP_ALIGN(x, n) ((((x) + (n) - 1) / (n)) * (n))
  119. enum projector_type {
  120. PROJECTOR_TYPE_MLP,
  121. PROJECTOR_TYPE_MLP_NORM,
  122. PROJECTOR_TYPE_LDP,
  123. PROJECTOR_TYPE_LDPV2,
  124. PROJECTOR_TYPE_MINICPMV,
  125. PROJECTOR_TYPE_GLM_EDGE,
  126. PROJECTOR_TYPE_QWEN2VL,
  127. PROJECTOR_TYPE_QWEN3VL,
  128. PROJECTOR_TYPE_GEMMA3,
  129. PROJECTOR_TYPE_IDEFICS3,
  130. PROJECTOR_TYPE_PIXTRAL,
  131. PROJECTOR_TYPE_QWEN25VL,
  132. PROJECTOR_TYPE_ULTRAVOX,
  133. PROJECTOR_TYPE_INTERNVL,
  134. PROJECTOR_TYPE_LLAMA4,
  135. PROJECTOR_TYPE_QWEN2A,
  136. PROJECTOR_TYPE_QWEN25O, // will be replaced by QWEN2A or QWEN25VL depending on clip_ctx
  137. PROJECTOR_TYPE_VOXTRAL,
  138. PROJECTOR_TYPE_LFM2,
  139. PROJECTOR_TYPE_KIMIVL,
  140. PROJECTOR_TYPE_LIGHTONOCR,
  141. PROJECTOR_TYPE_COGVLM,
  142. PROJECTOR_TYPE_UNKNOWN,
  143. };
  144. static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
  145. { PROJECTOR_TYPE_MLP, "mlp" },
  146. { PROJECTOR_TYPE_LDP, "ldp" },
  147. { PROJECTOR_TYPE_LDPV2, "ldpv2"},
  148. { PROJECTOR_TYPE_MINICPMV, "resampler"},
  149. { PROJECTOR_TYPE_GLM_EDGE, "adapter"},
  150. { PROJECTOR_TYPE_QWEN2VL, "qwen2vl_merger"},
  151. { PROJECTOR_TYPE_QWEN25VL, "qwen2.5vl_merger"},
  152. { PROJECTOR_TYPE_QWEN3VL, "qwen3vl_merger"},
  153. { PROJECTOR_TYPE_GEMMA3, "gemma3"},
  154. { PROJECTOR_TYPE_IDEFICS3, "idefics3"},
  155. { PROJECTOR_TYPE_PIXTRAL, "pixtral"},
  156. { PROJECTOR_TYPE_ULTRAVOX, "ultravox"},
  157. { PROJECTOR_TYPE_INTERNVL, "internvl"},
  158. { PROJECTOR_TYPE_LLAMA4, "llama4"},
  159. { PROJECTOR_TYPE_QWEN2A, "qwen2a"},
  160. { PROJECTOR_TYPE_QWEN25O, "qwen2.5o"},
  161. { PROJECTOR_TYPE_VOXTRAL, "voxtral"},
  162. { PROJECTOR_TYPE_LFM2, "lfm2"},
  163. { PROJECTOR_TYPE_KIMIVL, "kimivl"},
  164. { PROJECTOR_TYPE_LIGHTONOCR,"lightonocr"},
  165. { PROJECTOR_TYPE_COGVLM, "cogvlm"},
  166. };
  167. static projector_type clip_projector_type_from_string(const std::string & str) {
  168. for (const auto & pair : PROJECTOR_TYPE_NAMES) {
  169. if (pair.second == str) {
  170. return pair.first;
  171. }
  172. }
  173. return PROJECTOR_TYPE_UNKNOWN;
  174. }
  175. // RGB uint8 image
  176. struct clip_image_u8 {
  177. int nx;
  178. int ny;
  179. std::vector<uint8_t> buf;
  180. };
  181. // For images, buf.size() == nx*ny*3
  182. // Memory layout: RGBRGBRGB...
  183. // For audio, only one channel is used, buf.size() == nx*ny
  184. // nx will be n_frames and ny will be n_mel
  185. struct clip_image_f32 {
  186. int nx;
  187. int ny;
  188. std::vector<float> buf;
  189. };
  190. //
  191. // logging
  192. //
  193. static void clip_log_callback_default(enum ggml_log_level level, const char * text, void * user_data) {
  194. (void) level;
  195. (void) user_data;
  196. fputs(text, stderr);
  197. fflush(stderr);
  198. }
  199. struct clip_logger_state {
  200. ggml_log_level verbosity_thold;
  201. ggml_log_callback log_callback;
  202. void * log_callback_user_data;
  203. };
  204. extern struct clip_logger_state g_logger_state;
  205. static void clip_log_internal_v(enum ggml_log_level level, const char * format, va_list args) {
  206. if (format == NULL) {
  207. return;
  208. }
  209. va_list args_copy;
  210. va_copy(args_copy, args);
  211. char buffer[128];
  212. int len = vsnprintf(buffer, 128, format, args);
  213. if (len < 128) {
  214. g_logger_state.log_callback(level, buffer, g_logger_state.log_callback_user_data);
  215. } else {
  216. char * buffer2 = (char *) calloc(len + 1, sizeof(char));
  217. vsnprintf(buffer2, len + 1, format, args_copy);
  218. buffer2[len] = 0;
  219. g_logger_state.log_callback(level, buffer2, g_logger_state.log_callback_user_data);
  220. free(buffer2);
  221. }
  222. va_end(args_copy);
  223. }
  224. static void clip_log_internal(enum ggml_log_level level, const char * format, ...) {
  225. va_list args;
  226. va_start(args, format);
  227. clip_log_internal_v(level, format, args);
  228. va_end(args);
  229. }
  230. #define LOG_TMPL(level, ...) \
  231. do { \
  232. if ((level) >= g_logger_state.verbosity_thold) { \
  233. clip_log_internal((level), __VA_ARGS__); \
  234. } \
  235. } while (0)
  236. #define LOG_INF(...) LOG_TMPL(GGML_LOG_LEVEL_INFO, __VA_ARGS__)
  237. #define LOG_WRN(...) LOG_TMPL(GGML_LOG_LEVEL_WARN, __VA_ARGS__)
  238. #define LOG_ERR(...) LOG_TMPL(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  239. #define LOG_DBG(...) LOG_TMPL(GGML_LOG_LEVEL_DEBUG, __VA_ARGS__)
  240. #define LOG_CNT(...) LOG_TMPL(GGML_LOG_LEVEL_CONT, __VA_ARGS__)
  241. //
  242. // cpp wrappers
  243. //
  244. // wrapper for clip_image_size
  245. struct clip_image_size_deleter {
  246. void operator()(clip_image_size * val) { clip_image_size_free(val); }
  247. };
  248. typedef std::unique_ptr<clip_image_size, clip_image_size_deleter> clip_image_size_ptr;
  249. // wrapper for clip_image_u8
  250. struct clip_image_u8_deleter {
  251. void operator()(clip_image_u8 * val) { clip_image_u8_free(val); }
  252. };
  253. typedef std::unique_ptr<clip_image_u8, clip_image_u8_deleter> clip_image_u8_ptr;
  254. // wrapper for clip_image_f32
  255. struct clip_image_f32_deleter {
  256. void operator()(clip_image_f32 * val) { clip_image_f32_free(val); }
  257. };
  258. typedef std::unique_ptr<clip_image_f32, clip_image_f32_deleter> clip_image_f32_ptr;
  259. struct clip_image_u8_batch {
  260. std::vector<clip_image_u8_ptr> entries;
  261. };
  262. struct clip_image_f32_batch {
  263. std::vector<clip_image_f32_ptr> entries;
  264. bool is_audio = false;
  265. // for llava-uhd style models, we need to know the grid size
  266. // note: entries.size() == grid_x * grid_y + 1 (one overview image)
  267. int grid_x = 0;
  268. int grid_y = 0;
  269. clip_image_f32_batch clone() const {
  270. clip_image_f32_batch new_batch{
  271. /* entries */ {},
  272. /* is_audio */ is_audio,
  273. /* grid_x */ grid_x,
  274. /* grid_y */ grid_y,
  275. };
  276. new_batch.entries.reserve(entries.size());
  277. for (const auto & entry : entries) {
  278. new_batch.entries.emplace_back(new clip_image_f32(*entry));
  279. }
  280. return new_batch;
  281. }
  282. };
  283. //
  284. // common utils
  285. //
  286. static std::string string_format(const char * fmt, ...) {
  287. va_list ap;
  288. va_list ap2;
  289. va_start(ap, fmt);
  290. va_copy(ap2, ap);
  291. int size = vsnprintf(NULL, 0, fmt, ap);
  292. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  293. std::vector<char> buf(size + 1);
  294. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  295. GGML_ASSERT(size2 == size);
  296. va_end(ap2);
  297. va_end(ap);
  298. return std::string(buf.data(), buf.size());
  299. }
  300. static void string_replace_all(std::string & s, const std::string & search, const std::string & replace) {
  301. if (search.empty()) {
  302. return;
  303. }
  304. std::string builder;
  305. builder.reserve(s.length());
  306. size_t pos = 0;
  307. size_t last_pos = 0;
  308. while ((pos = s.find(search, last_pos)) != std::string::npos) {
  309. builder.append(s, last_pos, pos - last_pos);
  310. builder.append(replace);
  311. last_pos = pos + search.length();
  312. }
  313. builder.append(s, last_pos, std::string::npos);
  314. s = std::move(builder);
  315. }
  316. // split string by a `std::string delim` instead of `char delim`
  317. static std::vector<std::string> string_split_str(std::string s, const std::string & delimiter) {
  318. std::vector<std::string> tokens;
  319. size_t pos = 0;
  320. std::string token;
  321. while ((pos = s.find(delimiter)) != std::string::npos) {
  322. token = s.substr(0, pos);
  323. tokens.push_back(token);
  324. s.erase(0, pos + delimiter.length());
  325. }
  326. tokens.push_back(s);
  327. return tokens;
  328. }
  329. //
  330. // gguf utils
  331. //
  332. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  333. switch (type) {
  334. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  335. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  336. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  337. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  338. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  339. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  340. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  341. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  342. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  343. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  344. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  345. default: return string_format("unknown type %d", type);
  346. }
  347. }
  348. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  349. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  350. switch (type) {
  351. case GGUF_TYPE_STRING:
  352. return gguf_get_val_str(ctx_gguf, i);
  353. case GGUF_TYPE_ARRAY:
  354. {
  355. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  356. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  357. const void * data = arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx_gguf, i);
  358. std::stringstream ss;
  359. ss << "[";
  360. for (int j = 0; j < arr_n; j++) {
  361. if (arr_type == GGUF_TYPE_STRING) {
  362. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  363. // escape quotes
  364. string_replace_all(val, "\\", "\\\\");
  365. string_replace_all(val, "\"", "\\\"");
  366. ss << '"' << val << '"';
  367. } else if (arr_type == GGUF_TYPE_ARRAY) {
  368. ss << "???";
  369. } else {
  370. ss << gguf_data_to_str(arr_type, data, j);
  371. }
  372. if (j < arr_n - 1) {
  373. ss << ", ";
  374. }
  375. }
  376. ss << "]";
  377. return ss.str();
  378. }
  379. default:
  380. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  381. }
  382. }
  383. //
  384. // debugging
  385. //
  386. static void print_tensor_shape(ggml_tensor * t) {
  387. printf("%s.shape = [", t->name);
  388. for (int i = 0; i < ggml_n_dims(t); ++i) {
  389. printf("%" PRId64, t->ne[i]);
  390. if (i < ggml_n_dims(t) - 1) {
  391. printf(", ");
  392. }
  393. }
  394. printf("]\n");
  395. }
  396. static void print_tensor_data(ggml_tensor * t, uint8_t * data, int64_t n) {
  397. ggml_type type = t->type;
  398. int64_t * ne = t->ne;
  399. size_t * nb = t->nb;
  400. for (int64_t i3 = 0; i3 < ne[3]; i3++) {
  401. printf("%s.data: [\n", t->name);
  402. for (int64_t i2 = 0; i2 < ne[2]; i2++) {
  403. if (i2 == n && ne[2] > 2*n) {
  404. printf(" ..., \n");
  405. i2 = ne[2] - n;
  406. }
  407. printf(" [\n");
  408. for (int64_t i1 = 0; i1 < ne[1]; i1++) {
  409. if (i1 == n && ne[1] > 2*n) {
  410. printf(" ..., \n");
  411. i1 = ne[1] - n;
  412. }
  413. printf(" [");
  414. for (int64_t i0 = 0; i0 < ne[0]; i0++) {
  415. if (i0 == n && ne[0] > 2*n) {
  416. printf("..., ");
  417. i0 = ne[0] - n;
  418. }
  419. size_t i = i3 * nb[3] + i2 * nb[2] + i1 * nb[1] + i0 * nb[0];
  420. float v;
  421. if (type == GGML_TYPE_F16) {
  422. v = ggml_fp16_to_fp32(*(ggml_fp16_t *) &data[i]);
  423. } else if (type == GGML_TYPE_F32) {
  424. v = *(float *) &data[i];
  425. } else if (type == GGML_TYPE_I32) {
  426. v = (float) *(int32_t *) &data[i];
  427. } else if (type == GGML_TYPE_I16) {
  428. v = (float) *(int16_t *) &data[i];
  429. } else if (type == GGML_TYPE_I8) {
  430. v = (float) *(int8_t *) &data[i];
  431. } else {
  432. GGML_ABORT("fatal error");
  433. }
  434. printf("%8.4f", v);
  435. if (i0 < ne[0] - 1) printf(", ");
  436. }
  437. printf("],\n");
  438. }
  439. printf(" ],\n");
  440. }
  441. printf(" ]\n");
  442. }
  443. }
  444. //
  445. // API used internally with mtmd
  446. //
  447. projector_type clip_get_projector_type(const struct clip_ctx * ctx);