common.cpp 53 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274
  1. #include "common.h"
  2. #include "build-info.h"
  3. #include "llama.h"
  4. #include <algorithm>
  5. #include <cassert>
  6. #include <cmath>
  7. #include <cstring>
  8. #include <ctime>
  9. #include <fstream>
  10. #include <iterator>
  11. #include <iostream>
  12. #include <regex>
  13. #include <sstream>
  14. #include <string>
  15. #include <unordered_set>
  16. #include <vector>
  17. #include <cinttypes>
  18. #if defined(__APPLE__) && defined(__MACH__)
  19. #include <sys/types.h>
  20. #include <sys/sysctl.h>
  21. #endif
  22. #if defined(_WIN32)
  23. #define WIN32_LEAN_AND_MEAN
  24. #ifndef NOMINMAX
  25. # define NOMINMAX
  26. #endif
  27. #include <codecvt>
  28. #include <locale>
  29. #include <windows.h>
  30. #include <fcntl.h>
  31. #include <io.h>
  32. #else
  33. #include <sys/ioctl.h>
  34. #include <sys/stat.h>
  35. #include <unistd.h>
  36. #endif
  37. #if defined(_MSC_VER)
  38. #pragma warning(disable: 4244 4267) // possible loss of data
  39. #endif
  40. int32_t get_num_physical_cores() {
  41. #ifdef __linux__
  42. // enumerate the set of thread siblings, num entries is num cores
  43. std::unordered_set<std::string> siblings;
  44. for (uint32_t cpu=0; cpu < UINT32_MAX; ++cpu) {
  45. std::ifstream thread_siblings("/sys/devices/system/cpu"
  46. + std::to_string(cpu) + "/topology/thread_siblings");
  47. if (!thread_siblings.is_open()) {
  48. break; // no more cpus
  49. }
  50. std::string line;
  51. if (std::getline(thread_siblings, line)) {
  52. siblings.insert(line);
  53. }
  54. }
  55. if (!siblings.empty()) {
  56. return static_cast<int32_t>(siblings.size());
  57. }
  58. #elif defined(__APPLE__) && defined(__MACH__)
  59. int32_t num_physical_cores;
  60. size_t len = sizeof(num_physical_cores);
  61. int result = sysctlbyname("hw.perflevel0.physicalcpu", &num_physical_cores, &len, NULL, 0);
  62. if (result == 0) {
  63. return num_physical_cores;
  64. }
  65. result = sysctlbyname("hw.physicalcpu", &num_physical_cores, &len, NULL, 0);
  66. if (result == 0) {
  67. return num_physical_cores;
  68. }
  69. #elif defined(_WIN32)
  70. //TODO: Implement
  71. #endif
  72. unsigned int n_threads = std::thread::hardware_concurrency();
  73. return n_threads > 0 ? (n_threads <= 4 ? n_threads : n_threads / 2) : 4;
  74. }
  75. void process_escapes(std::string& input) {
  76. std::size_t input_len = input.length();
  77. std::size_t output_idx = 0;
  78. for (std::size_t input_idx = 0; input_idx < input_len; ++input_idx) {
  79. if (input[input_idx] == '\\' && input_idx + 1 < input_len) {
  80. switch (input[++input_idx]) {
  81. case 'n': input[output_idx++] = '\n'; break;
  82. case 'r': input[output_idx++] = '\r'; break;
  83. case 't': input[output_idx++] = '\t'; break;
  84. case '\'': input[output_idx++] = '\''; break;
  85. case '\"': input[output_idx++] = '\"'; break;
  86. case '\\': input[output_idx++] = '\\'; break;
  87. default: input[output_idx++] = '\\';
  88. input[output_idx++] = input[input_idx]; break;
  89. }
  90. } else {
  91. input[output_idx++] = input[input_idx];
  92. }
  93. }
  94. input.resize(output_idx);
  95. }
  96. bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
  97. bool invalid_param = false;
  98. std::string arg;
  99. gpt_params default_params;
  100. const std::string arg_prefix = "--";
  101. for (int i = 1; i < argc; i++) {
  102. arg = argv[i];
  103. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  104. std::replace(arg.begin(), arg.end(), '_', '-');
  105. }
  106. if (arg == "-s" || arg == "--seed") {
  107. if (++i >= argc) {
  108. invalid_param = true;
  109. break;
  110. }
  111. params.seed = std::stoul(argv[i]);
  112. } else if (arg == "-t" || arg == "--threads") {
  113. if (++i >= argc) {
  114. invalid_param = true;
  115. break;
  116. }
  117. params.n_threads = std::stoi(argv[i]);
  118. if (params.n_threads <= 0) {
  119. params.n_threads = std::thread::hardware_concurrency();
  120. }
  121. } else if (arg == "-p" || arg == "--prompt") {
  122. if (++i >= argc) {
  123. invalid_param = true;
  124. break;
  125. }
  126. params.prompt = argv[i];
  127. } else if (arg == "-e" || arg == "--escape") {
  128. params.escape = true;
  129. } else if (arg == "--prompt-cache") {
  130. if (++i >= argc) {
  131. invalid_param = true;
  132. break;
  133. }
  134. params.path_prompt_cache = argv[i];
  135. } else if (arg == "--prompt-cache-all") {
  136. params.prompt_cache_all = true;
  137. } else if (arg == "--prompt-cache-ro") {
  138. params.prompt_cache_ro = true;
  139. } else if (arg == "-f" || arg == "--file") {
  140. if (++i >= argc) {
  141. invalid_param = true;
  142. break;
  143. }
  144. std::ifstream file(argv[i]);
  145. if (!file) {
  146. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  147. invalid_param = true;
  148. break;
  149. }
  150. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.prompt));
  151. if (params.prompt.back() == '\n') {
  152. params.prompt.pop_back();
  153. }
  154. } else if (arg == "-n" || arg == "--n-predict") {
  155. if (++i >= argc) {
  156. invalid_param = true;
  157. break;
  158. }
  159. params.n_predict = std::stoi(argv[i]);
  160. } else if (arg == "--top-k") {
  161. if (++i >= argc) {
  162. invalid_param = true;
  163. break;
  164. }
  165. params.top_k = std::stoi(argv[i]);
  166. } else if (arg == "-c" || arg == "--ctx-size") {
  167. if (++i >= argc) {
  168. invalid_param = true;
  169. break;
  170. }
  171. params.n_ctx = std::stoi(argv[i]);
  172. } else if (arg == "--rope-freq-base") {
  173. if (++i >= argc) {
  174. invalid_param = true;
  175. break;
  176. }
  177. params.rope_freq_base = std::stof(argv[i]);
  178. } else if (arg == "--rope-freq-scale") {
  179. if (++i >= argc) {
  180. invalid_param = true;
  181. break;
  182. }
  183. params.rope_freq_scale = std::stof(argv[i]);
  184. } else if (arg == "--rope-scale") {
  185. if (++i >= argc) {
  186. invalid_param = true;
  187. break;
  188. }
  189. params.rope_freq_scale = 1.0f/std::stof(argv[i]);
  190. } else if (arg == "--memory-f32") {
  191. params.memory_f16 = false;
  192. } else if (arg == "--top-p") {
  193. if (++i >= argc) {
  194. invalid_param = true;
  195. break;
  196. }
  197. params.top_p = std::stof(argv[i]);
  198. } else if (arg == "--temp") {
  199. if (++i >= argc) {
  200. invalid_param = true;
  201. break;
  202. }
  203. params.temp = std::stof(argv[i]);
  204. } else if (arg == "--tfs") {
  205. if (++i >= argc) {
  206. invalid_param = true;
  207. break;
  208. }
  209. params.tfs_z = std::stof(argv[i]);
  210. } else if (arg == "--typical") {
  211. if (++i >= argc) {
  212. invalid_param = true;
  213. break;
  214. }
  215. params.typical_p = std::stof(argv[i]);
  216. } else if (arg == "--repeat-last-n") {
  217. if (++i >= argc) {
  218. invalid_param = true;
  219. break;
  220. }
  221. params.repeat_last_n = std::stoi(argv[i]);
  222. } else if (arg == "--repeat-penalty") {
  223. if (++i >= argc) {
  224. invalid_param = true;
  225. break;
  226. }
  227. params.repeat_penalty = std::stof(argv[i]);
  228. } else if (arg == "--frequency-penalty") {
  229. if (++i >= argc) {
  230. invalid_param = true;
  231. break;
  232. }
  233. params.frequency_penalty = std::stof(argv[i]);
  234. } else if (arg == "--presence-penalty") {
  235. if (++i >= argc) {
  236. invalid_param = true;
  237. break;
  238. }
  239. params.presence_penalty = std::stof(argv[i]);
  240. } else if (arg == "--mirostat") {
  241. if (++i >= argc) {
  242. invalid_param = true;
  243. break;
  244. }
  245. params.mirostat = std::stoi(argv[i]);
  246. } else if (arg == "--mirostat-lr") {
  247. if (++i >= argc) {
  248. invalid_param = true;
  249. break;
  250. }
  251. params.mirostat_eta = std::stof(argv[i]);
  252. } else if (arg == "--mirostat-ent") {
  253. if (++i >= argc) {
  254. invalid_param = true;
  255. break;
  256. }
  257. params.mirostat_tau = std::stof(argv[i]);
  258. } else if (arg == "--cfg-negative-prompt") {
  259. if (++i >= argc) {
  260. invalid_param = true;
  261. break;
  262. }
  263. params.cfg_negative_prompt = argv[i];
  264. } else if (arg == "--cfg-negative-prompt-file") {
  265. if (++i >= argc) {
  266. invalid_param = true;
  267. break;
  268. }
  269. std::ifstream file(argv[i]);
  270. if (!file) {
  271. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  272. invalid_param = true;
  273. break;
  274. }
  275. std::copy(std::istreambuf_iterator<char>(file), std::istreambuf_iterator<char>(), back_inserter(params.cfg_negative_prompt));
  276. if (params.cfg_negative_prompt.back() == '\n') {
  277. params.cfg_negative_prompt.pop_back();
  278. }
  279. } else if (arg == "--cfg-scale") {
  280. if (++i >= argc) {
  281. invalid_param = true;
  282. break;
  283. }
  284. params.cfg_scale = std::stof(argv[i]);
  285. } else if (arg == "-b" || arg == "--batch-size") {
  286. if (++i >= argc) {
  287. invalid_param = true;
  288. break;
  289. }
  290. params.n_batch = std::stoi(argv[i]);
  291. } else if (arg == "--keep") {
  292. if (++i >= argc) {
  293. invalid_param = true;
  294. break;
  295. }
  296. params.n_keep = std::stoi(argv[i]);
  297. } else if (arg == "--draft") {
  298. if (++i >= argc) {
  299. invalid_param = true;
  300. break;
  301. }
  302. params.n_draft = std::stoi(argv[i]);
  303. } else if (arg == "--chunks") {
  304. if (++i >= argc) {
  305. invalid_param = true;
  306. break;
  307. }
  308. params.n_chunks = std::stoi(argv[i]);
  309. } else if (arg == "-m" || arg == "--model") {
  310. if (++i >= argc) {
  311. invalid_param = true;
  312. break;
  313. }
  314. params.model = argv[i];
  315. } else if (arg == "-md" || arg == "--model-draft") {
  316. if (++i >= argc) {
  317. invalid_param = true;
  318. break;
  319. }
  320. params.model_draft = argv[i];
  321. } else if (arg == "-a" || arg == "--alias") {
  322. if (++i >= argc) {
  323. invalid_param = true;
  324. break;
  325. }
  326. params.model_alias = argv[i];
  327. } else if (arg == "--lora") {
  328. if (++i >= argc) {
  329. invalid_param = true;
  330. break;
  331. }
  332. params.lora_adapter = argv[i];
  333. params.use_mmap = false;
  334. } else if (arg == "--lora-base") {
  335. if (++i >= argc) {
  336. invalid_param = true;
  337. break;
  338. }
  339. params.lora_base = argv[i];
  340. } else if (arg == "-i" || arg == "--interactive") {
  341. params.interactive = true;
  342. } else if (arg == "--embedding") {
  343. params.embedding = true;
  344. } else if (arg == "--interactive-first") {
  345. params.interactive_first = true;
  346. } else if (arg == "-ins" || arg == "--instruct") {
  347. params.instruct = true;
  348. } else if (arg == "--multiline-input") {
  349. params.multiline_input = true;
  350. } else if (arg == "--simple-io") {
  351. params.simple_io = true;
  352. } else if (arg == "--color") {
  353. params.use_color = true;
  354. } else if (arg == "--mlock") {
  355. params.use_mlock = true;
  356. } else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers") {
  357. if (++i >= argc) {
  358. invalid_param = true;
  359. break;
  360. }
  361. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  362. params.n_gpu_layers = std::stoi(argv[i]);
  363. #else
  364. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
  365. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  366. #endif
  367. } else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
  368. if (++i >= argc) {
  369. invalid_param = true;
  370. break;
  371. }
  372. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  373. params.n_gpu_layers_draft = std::stoi(argv[i]);
  374. #else
  375. fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
  376. fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
  377. #endif
  378. } else if (arg == "--main-gpu" || arg == "-mg") {
  379. if (++i >= argc) {
  380. invalid_param = true;
  381. break;
  382. }
  383. #ifdef GGML_USE_CUBLAS
  384. params.main_gpu = std::stoi(argv[i]);
  385. #else
  386. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.\n");
  387. #endif
  388. } else if (arg == "--tensor-split" || arg == "-ts") {
  389. if (++i >= argc) {
  390. invalid_param = true;
  391. break;
  392. }
  393. #ifdef GGML_USE_CUBLAS
  394. std::string arg_next = argv[i];
  395. // split string by , and /
  396. const std::regex regex{R"([,/]+)"};
  397. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  398. std::vector<std::string> split_arg{it, {}};
  399. GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
  400. for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
  401. if (i < split_arg.size()) {
  402. params.tensor_split[i] = std::stof(split_arg[i]);
  403. } else {
  404. params.tensor_split[i] = 0.0f;
  405. }
  406. }
  407. #else
  408. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
  409. #endif // GGML_USE_CUBLAS
  410. } else if (arg == "--no-mul-mat-q" || arg == "-nommq") {
  411. #ifdef GGML_USE_CUBLAS
  412. params.mul_mat_q = false;
  413. #else
  414. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n");
  415. #endif // GGML_USE_CUBLAS
  416. } else if (arg == "--low-vram" || arg == "-lv") {
  417. #ifdef GGML_USE_CUBLAS
  418. params.low_vram = true;
  419. #else
  420. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. It is not possible to set lower vram usage.\n");
  421. #endif // GGML_USE_CUBLAS
  422. } else if (arg == "--no-mmap") {
  423. params.use_mmap = false;
  424. } else if (arg == "--mtest") {
  425. params.mem_test = true;
  426. } else if (arg == "--numa") {
  427. params.numa = true;
  428. } else if (arg == "--export") {
  429. params.export_cgraph = true;
  430. } else if (arg == "--verbose-prompt") {
  431. params.verbose_prompt = true;
  432. } else if (arg == "-r" || arg == "--reverse-prompt") {
  433. if (++i >= argc) {
  434. invalid_param = true;
  435. break;
  436. }
  437. params.antiprompt.push_back(argv[i]);
  438. } else if (arg == "-ld" || arg == "--logdir") {
  439. if (++i >= argc) {
  440. invalid_param = true;
  441. break;
  442. }
  443. params.logdir = argv[i];
  444. if (params.logdir.back() != DIRECTORY_SEPARATOR) {
  445. params.logdir += DIRECTORY_SEPARATOR;
  446. }
  447. } else if (arg == "--perplexity") {
  448. params.perplexity = true;
  449. } else if (arg == "--ppl-stride") {
  450. if (++i >= argc) {
  451. invalid_param = true;
  452. break;
  453. }
  454. params.ppl_stride = std::stoi(argv[i]);
  455. } else if (arg == "--ppl-output-type") {
  456. if (++i >= argc) {
  457. invalid_param = true;
  458. break;
  459. }
  460. params.ppl_output_type = std::stoi(argv[i]);
  461. } else if (arg == "--hellaswag") {
  462. params.hellaswag = true;
  463. } else if (arg == "--hellaswag-tasks") {
  464. if (++i >= argc) {
  465. invalid_param = true;
  466. break;
  467. }
  468. params.hellaswag_tasks = std::stoi(argv[i]);
  469. } else if (arg == "--ignore-eos") {
  470. params.ignore_eos = true;
  471. } else if (arg == "--no-penalize-nl") {
  472. params.penalize_nl = false;
  473. } else if (arg == "-l" || arg == "--logit-bias") {
  474. if (++i >= argc) {
  475. invalid_param = true;
  476. break;
  477. }
  478. std::stringstream ss(argv[i]);
  479. llama_token key;
  480. char sign;
  481. std::string value_str;
  482. try {
  483. if (ss >> key && ss >> sign && std::getline(ss, value_str) && (sign == '+' || sign == '-')) {
  484. params.logit_bias[key] = std::stof(value_str) * ((sign == '-') ? -1.0f : 1.0f);
  485. } else {
  486. throw std::exception();
  487. }
  488. } catch (const std::exception&) {
  489. invalid_param = true;
  490. break;
  491. }
  492. } else if (arg == "-h" || arg == "--help") {
  493. gpt_print_usage(argc, argv, default_params);
  494. #ifndef LOG_DISABLE_LOGS
  495. log_print_usage();
  496. #endif // LOG_DISABLE_LOGS
  497. exit(0);
  498. } else if (arg == "--random-prompt") {
  499. params.random_prompt = true;
  500. } else if (arg == "--in-prefix-bos") {
  501. params.input_prefix_bos = true;
  502. } else if (arg == "--in-prefix") {
  503. if (++i >= argc) {
  504. invalid_param = true;
  505. break;
  506. }
  507. params.input_prefix = argv[i];
  508. } else if (arg == "--in-suffix") {
  509. if (++i >= argc) {
  510. invalid_param = true;
  511. break;
  512. }
  513. params.input_suffix = argv[i];
  514. } else if (arg == "--grammar") {
  515. if (++i >= argc) {
  516. invalid_param = true;
  517. break;
  518. }
  519. params.grammar = argv[i];
  520. } else if (arg == "--grammar-file") {
  521. if (++i >= argc) {
  522. invalid_param = true;
  523. break;
  524. }
  525. std::ifstream file(argv[i]);
  526. if (!file) {
  527. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  528. invalid_param = true;
  529. break;
  530. }
  531. std::copy(
  532. std::istreambuf_iterator<char>(file),
  533. std::istreambuf_iterator<char>(),
  534. std::back_inserter(params.grammar)
  535. );
  536. #ifndef LOG_DISABLE_LOGS
  537. // Parse args for logging parameters
  538. } else if ( log_param_single_parse( argv[i] ) ) {
  539. // Do nothing, log_param_single_parse automatically does it's thing
  540. // and returns if a match was found and parsed.
  541. } else if ( log_param_pair_parse( /*check_but_dont_parse*/ true, argv[i] ) ) {
  542. // We have a matching known parameter requiring an argument,
  543. // now we need to check if there is anything after this argv
  544. // and flag invalid_param or parse it.
  545. if (++i >= argc) {
  546. invalid_param = true;
  547. break;
  548. }
  549. if( !log_param_pair_parse( /*check_but_dont_parse*/ false, argv[i-1], argv[i]) ) {
  550. invalid_param = true;
  551. break;
  552. }
  553. // End of Parse args for logging parameters
  554. #endif // LOG_DISABLE_LOGS
  555. } else {
  556. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  557. gpt_print_usage(argc, argv, default_params);
  558. exit(1);
  559. }
  560. }
  561. if (invalid_param) {
  562. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  563. gpt_print_usage(argc, argv, default_params);
  564. exit(1);
  565. }
  566. if (params.prompt_cache_all &&
  567. (params.interactive || params.interactive_first ||
  568. params.instruct)) {
  569. fprintf(stderr, "error: --prompt-cache-all not supported in interactive mode yet\n");
  570. gpt_print_usage(argc, argv, default_params);
  571. exit(1);
  572. }
  573. if (params.escape) {
  574. process_escapes(params.prompt);
  575. process_escapes(params.input_prefix);
  576. process_escapes(params.input_suffix);
  577. }
  578. return true;
  579. }
  580. void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
  581. printf("usage: %s [options]\n", argv[0]);
  582. printf("\n");
  583. printf("options:\n");
  584. printf(" -h, --help show this help message and exit\n");
  585. printf(" -i, --interactive run in interactive mode\n");
  586. printf(" --interactive-first run in interactive mode and wait for input right away\n");
  587. printf(" -ins, --instruct run in instruction mode (use with Alpaca models)\n");
  588. printf(" --multiline-input allows you to write or paste multiple lines without ending each in '\\'\n");
  589. printf(" -r PROMPT, --reverse-prompt PROMPT\n");
  590. printf(" halt generation at PROMPT, return control in interactive mode\n");
  591. printf(" (can be specified more than once for multiple prompts).\n");
  592. printf(" --color colorise output to distinguish prompt and user input from generations\n");
  593. printf(" -s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)\n");
  594. printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
  595. printf(" -p PROMPT, --prompt PROMPT\n");
  596. printf(" prompt to start generation with (default: empty)\n");
  597. printf(" -e, --escape process prompt escapes sequences (\\n, \\r, \\t, \\', \\\", \\\\)\n");
  598. printf(" --prompt-cache FNAME file to cache prompt state for faster startup (default: none)\n");
  599. printf(" --prompt-cache-all if specified, saves user input and generations to cache as well.\n");
  600. printf(" not supported with --interactive or other interactive options\n");
  601. printf(" --prompt-cache-ro if specified, uses the prompt cache but does not update it.\n");
  602. printf(" --random-prompt start with a randomized prompt.\n");
  603. printf(" --in-prefix-bos prefix BOS to user inputs, preceding the `--in-prefix` string\n");
  604. printf(" --in-prefix STRING string to prefix user inputs with (default: empty)\n");
  605. printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n");
  606. printf(" -f FNAME, --file FNAME\n");
  607. printf(" prompt file to start generation.\n");
  608. printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict);
  609. printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
  610. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  611. printf(" --top-k N top-k sampling (default: %d, 0 = disabled)\n", params.top_k);
  612. printf(" --top-p N top-p sampling (default: %.1f, 1.0 = disabled)\n", (double)params.top_p);
  613. printf(" --tfs N tail free sampling, parameter z (default: %.1f, 1.0 = disabled)\n", (double)params.tfs_z);
  614. printf(" --typical N locally typical sampling, parameter p (default: %.1f, 1.0 = disabled)\n", (double)params.typical_p);
  615. printf(" --repeat-last-n N last n tokens to consider for penalize (default: %d, 0 = disabled, -1 = ctx_size)\n", params.repeat_last_n);
  616. printf(" --repeat-penalty N penalize repeat sequence of tokens (default: %.1f, 1.0 = disabled)\n", (double)params.repeat_penalty);
  617. printf(" --presence-penalty N repeat alpha presence penalty (default: %.1f, 0.0 = disabled)\n", (double)params.presence_penalty);
  618. printf(" --frequency-penalty N repeat alpha frequency penalty (default: %.1f, 0.0 = disabled)\n", (double)params.frequency_penalty);
  619. printf(" --mirostat N use Mirostat sampling.\n");
  620. printf(" Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.\n");
  621. printf(" (default: %d, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)\n", params.mirostat);
  622. printf(" --mirostat-lr N Mirostat learning rate, parameter eta (default: %.1f)\n", (double)params.mirostat_eta);
  623. printf(" --mirostat-ent N Mirostat target entropy, parameter tau (default: %.1f)\n", (double)params.mirostat_tau);
  624. printf(" -l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS\n");
  625. printf(" modifies the likelihood of token appearing in the completion,\n");
  626. printf(" i.e. `--logit-bias 15043+1` to increase likelihood of token ' Hello',\n");
  627. printf(" or `--logit-bias 15043-1` to decrease likelihood of token ' Hello'\n");
  628. printf(" --grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)\n");
  629. printf(" --grammar-file FNAME file to read grammar from\n");
  630. printf(" --cfg-negative-prompt PROMPT\n");
  631. printf(" negative prompt to use for guidance. (default: empty)\n");
  632. printf(" --cfg-negative-prompt-file FNAME\n");
  633. printf(" negative prompt file to use for guidance. (default: empty)\n");
  634. printf(" --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
  635. printf(" --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale);
  636. printf(" --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base);
  637. printf(" --rope-freq-scale N RoPE frequency linear scaling factor, inverse of --rope-scale (default: %g)\n", params.rope_freq_scale);
  638. printf(" --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
  639. printf(" --no-penalize-nl do not penalize newline token\n");
  640. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  641. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  642. printf(" --temp N temperature (default: %.1f)\n", (double)params.temp);
  643. printf(" --perplexity compute perplexity over each ctx window of the prompt\n");
  644. printf(" --hellaswag compute HellaSwag score over random tasks from datafile supplied with -f\n");
  645. printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks);
  646. printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep);
  647. printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft);
  648. printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks);
  649. if (llama_mlock_supported()) {
  650. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  651. }
  652. if (llama_mmap_supported()) {
  653. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  654. }
  655. printf(" --numa attempt optimizations that help on some NUMA systems\n");
  656. printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
  657. printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
  658. #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
  659. printf(" -ngl N, --n-gpu-layers N\n");
  660. printf(" number of layers to store in VRAM\n");
  661. printf(" -ngld N, --n-gpu-layers-draft N\n");
  662. printf(" number of layers to store in VRAM for the draft model\n");
  663. printf(" -ts SPLIT --tensor-split SPLIT\n");
  664. printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
  665. printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
  666. printf(" -lv, --low-vram don't allocate VRAM scratch buffer\n");
  667. #ifdef GGML_USE_CUBLAS
  668. printf(" -nommq, --no-mul-mat-q\n");
  669. printf(" use " GGML_CUBLAS_NAME " instead of custom mul_mat_q " GGML_CUDA_NAME " kernels.\n");
  670. printf(" Not recommended since this is both slower and uses more VRAM.\n");
  671. #endif // GGML_USE_CUBLAS
  672. #endif
  673. printf(" --mtest compute maximum memory usage\n");
  674. printf(" --export export the computation graph to 'llama.ggml'\n");
  675. printf(" --verbose-prompt print prompt before generation\n");
  676. fprintf(stderr, " --simple-io use basic IO for better compatibility in subprocesses and limited consoles\n");
  677. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  678. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  679. printf(" -m FNAME, --model FNAME\n");
  680. printf(" model path (default: %s)\n", params.model.c_str());
  681. printf(" -md FNAME, --model-draft FNAME\n");
  682. printf(" draft model for speculative decoding (default: %s)\n", params.model.c_str());
  683. printf(" -ld LOGDIR, --logdir LOGDIR\n");
  684. printf(" path under which to save YAML logs (no logging if unset)\n");
  685. printf("\n");
  686. }
  687. std::string gpt_random_prompt(std::mt19937 & rng) {
  688. const int r = rng() % 10;
  689. switch (r) {
  690. case 0: return "So";
  691. case 1: return "Once upon a time";
  692. case 2: return "When";
  693. case 3: return "The";
  694. case 4: return "After";
  695. case 5: return "If";
  696. case 6: return "import";
  697. case 7: return "He";
  698. case 8: return "She";
  699. case 9: return "They";
  700. default: return "To";
  701. }
  702. return "The";
  703. }
  704. //
  705. // Model utils
  706. //
  707. struct llama_context_params llama_context_params_from_gpt_params(const gpt_params & params) {
  708. auto lparams = llama_context_default_params();
  709. lparams.n_ctx = params.n_ctx;
  710. lparams.n_batch = params.n_batch;
  711. if (params.n_gpu_layers != -1) {
  712. lparams.n_gpu_layers = params.n_gpu_layers;
  713. }
  714. lparams.main_gpu = params.main_gpu;
  715. lparams.tensor_split = params.tensor_split;
  716. lparams.low_vram = params.low_vram;
  717. lparams.mul_mat_q = params.mul_mat_q;
  718. lparams.seed = params.seed;
  719. lparams.f16_kv = params.memory_f16;
  720. lparams.use_mmap = params.use_mmap;
  721. lparams.use_mlock = params.use_mlock;
  722. lparams.logits_all = params.perplexity;
  723. lparams.embedding = params.embedding;
  724. lparams.rope_freq_base = params.rope_freq_base;
  725. lparams.rope_freq_scale = params.rope_freq_scale;
  726. return lparams;
  727. }
  728. std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_params(gpt_params & params) {
  729. auto lparams = llama_context_params_from_gpt_params(params);
  730. llama_model * model = llama_load_model_from_file(params.model.c_str(), lparams);
  731. if (model == NULL) {
  732. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, params.model.c_str());
  733. return std::make_tuple(nullptr, nullptr);
  734. }
  735. llama_context * lctx = llama_new_context_with_model(model, lparams);
  736. if (lctx == NULL) {
  737. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, params.model.c_str());
  738. llama_free_model(model);
  739. return std::make_tuple(nullptr, nullptr);
  740. }
  741. if (!params.lora_adapter.empty()) {
  742. int err = llama_model_apply_lora_from_file(model,
  743. params.lora_adapter.c_str(),
  744. params.lora_base.empty() ? NULL : params.lora_base.c_str(),
  745. params.n_threads);
  746. if (err != 0) {
  747. fprintf(stderr, "%s: error: failed to apply lora adapter\n", __func__);
  748. llama_free(lctx);
  749. llama_free_model(model);
  750. return std::make_tuple(nullptr, nullptr);
  751. }
  752. }
  753. if (params.ignore_eos) {
  754. params.logit_bias[llama_token_eos(lctx)] = -INFINITY;
  755. }
  756. {
  757. LOG("warming up the model with an empty run\n");
  758. const std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
  759. llama_eval(lctx, tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, params.n_threads);
  760. llama_reset_timings(lctx);
  761. }
  762. return std::make_tuple(model, lctx);
  763. }
  764. //
  765. // Vocab utils
  766. //
  767. std::vector<llama_token> llama_tokenize(
  768. struct llama_context * ctx,
  769. const std::string & text,
  770. bool add_bos) {
  771. // upper limit for the number of tokens
  772. int n_tokens = text.length() + add_bos;
  773. std::vector<llama_token> result(n_tokens);
  774. n_tokens = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos);
  775. if (n_tokens < 0) {
  776. result.resize(-n_tokens);
  777. int check = llama_tokenize(ctx, text.c_str(), result.data(), result.size(), add_bos);
  778. GGML_ASSERT(check == -n_tokens);
  779. } else {
  780. result.resize(n_tokens);
  781. }
  782. return result;
  783. }
  784. std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token) {
  785. std::vector<char> result(8, 0);
  786. const int n_tokens = llama_token_to_piece(ctx, token, result.data(), result.size());
  787. if (n_tokens < 0) {
  788. result.resize(-n_tokens);
  789. int check = llama_token_to_piece(ctx, token, result.data(), result.size());
  790. GGML_ASSERT(check == -n_tokens);
  791. } else {
  792. result.resize(n_tokens);
  793. }
  794. return std::string(result.data(), result.size());
  795. }
  796. std::string llama_detokenize_spm(llama_context * ctx, const std::vector<llama_token> & tokens) {
  797. const llama_token bos_id = llama_token_bos(ctx);
  798. std::string piece;
  799. std::string result;
  800. for (size_t i = 0; i < tokens.size(); ++i) {
  801. piece = llama_token_to_piece(ctx, tokens[i]);
  802. // remove the leading space of the first non-BOS token
  803. if (((tokens[0] == bos_id && i == 1) || (tokens[0] != bos_id && i == 0)) && piece[0] == ' ') {
  804. piece = piece.substr(1);
  805. }
  806. result += piece;
  807. }
  808. return result;
  809. }
  810. std::string llama_detokenize_bpe(llama_context * ctx, const std::vector<llama_token> & tokens) {
  811. std::string piece;
  812. std::string result;
  813. for (size_t i = 0; i < tokens.size(); ++i) {
  814. piece = llama_token_to_piece(ctx, tokens[i]);
  815. result += piece;
  816. }
  817. return result;
  818. }
  819. //
  820. // Sampling utils
  821. //
  822. llama_token llama_sample_token(
  823. struct llama_context * ctx,
  824. struct llama_context * ctx_guidance,
  825. struct llama_grammar * grammar,
  826. const struct gpt_params & params,
  827. const std::vector<llama_token> & last_tokens,
  828. std::vector<llama_token_data> & candidates,
  829. int idx) {
  830. const int n_ctx = llama_n_ctx(ctx);
  831. const int n_vocab = llama_n_vocab(ctx);
  832. const float temp = params.temp;
  833. const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
  834. const float top_p = params.top_p;
  835. const float tfs_z = params.tfs_z;
  836. const float typical_p = params.typical_p;
  837. const int32_t repeat_last_n = params.repeat_last_n < 0 ? n_ctx : params.repeat_last_n;
  838. const float repeat_penalty = params.repeat_penalty;
  839. const float alpha_presence = params.presence_penalty;
  840. const float alpha_frequency = params.frequency_penalty;
  841. const int mirostat = params.mirostat;
  842. const float mirostat_tau = params.mirostat_tau;
  843. const float mirostat_eta = params.mirostat_eta;
  844. const bool penalize_nl = params.penalize_nl;
  845. llama_token id = 0;
  846. float * logits = llama_get_logits(ctx) + idx * n_vocab;
  847. // Apply params.logit_bias map
  848. for (auto it = params.logit_bias.begin(); it != params.logit_bias.end(); it++) {
  849. logits[it->first] += it->second;
  850. }
  851. candidates.clear();
  852. for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
  853. candidates.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f});
  854. }
  855. llama_token_data_array cur_p = { candidates.data(), candidates.size(), false };
  856. if (ctx_guidance) {
  857. llama_sample_classifier_free_guidance(ctx, &cur_p, ctx_guidance, params.cfg_scale);
  858. }
  859. // apply penalties
  860. if (!last_tokens.empty()) {
  861. const float nl_logit = logits[llama_token_nl(ctx)];
  862. const int last_n_repeat = std::min(std::min((int)last_tokens.size(), repeat_last_n), n_ctx);
  863. llama_sample_repetition_penalty(ctx, &cur_p,
  864. last_tokens.data() + last_tokens.size() - last_n_repeat,
  865. last_n_repeat, repeat_penalty);
  866. llama_sample_frequency_and_presence_penalties(ctx, &cur_p,
  867. last_tokens.data() + last_tokens.size() - last_n_repeat,
  868. last_n_repeat, alpha_frequency, alpha_presence);
  869. if (!penalize_nl) {
  870. for (size_t idx = 0; idx < cur_p.size; idx++) {
  871. if (cur_p.data[idx].id == llama_token_nl(ctx)) {
  872. cur_p.data[idx].logit = nl_logit;
  873. break;
  874. }
  875. }
  876. }
  877. }
  878. if (grammar != NULL) {
  879. llama_sample_grammar(ctx, &cur_p, grammar);
  880. }
  881. if (temp <= 0) {
  882. // Greedy sampling
  883. id = llama_sample_token_greedy(ctx, &cur_p);
  884. } else {
  885. if (mirostat == 1) {
  886. static float mirostat_mu = 2.0f * mirostat_tau;
  887. const int mirostat_m = 100;
  888. llama_sample_temperature(ctx, &cur_p, temp);
  889. id = llama_sample_token_mirostat(ctx, &cur_p, mirostat_tau, mirostat_eta, mirostat_m, &mirostat_mu);
  890. } else if (mirostat == 2) {
  891. static float mirostat_mu = 2.0f * mirostat_tau;
  892. llama_sample_temperature(ctx, &cur_p, temp);
  893. id = llama_sample_token_mirostat_v2(ctx, &cur_p, mirostat_tau, mirostat_eta, &mirostat_mu);
  894. } else {
  895. // Temperature sampling
  896. llama_sample_top_k (ctx, &cur_p, top_k, 1);
  897. llama_sample_tail_free (ctx, &cur_p, tfs_z, 1);
  898. llama_sample_typical (ctx, &cur_p, typical_p, 1);
  899. llama_sample_top_p (ctx, &cur_p, top_p, 1);
  900. llama_sample_temperature(ctx, &cur_p, temp);
  901. {
  902. const int n_top = 10;
  903. LOG("top %d candidates:\n", n_top);
  904. for (int i = 0; i < n_top; i++) {
  905. const llama_token id = cur_p.data[i].id;
  906. LOG(" - %5d: '%12s' (%.3f)\n", id, llama_token_to_piece(ctx, id).c_str(), cur_p.data[i].p);
  907. }
  908. }
  909. id = llama_sample_token(ctx, &cur_p);
  910. LOG("sampled token: %5d: '%s'\n", id, llama_token_to_piece(ctx, id).c_str());
  911. }
  912. }
  913. // printf("`%d`", candidates_p.size);
  914. if (grammar != NULL) {
  915. llama_grammar_accept_token(ctx, grammar, id);
  916. }
  917. return id;
  918. }
  919. //
  920. // YAML utils
  921. //
  922. // returns true if successful, false otherwise
  923. bool create_directory_with_parents(const std::string & path) {
  924. #ifdef _WIN32
  925. std::wstring_convert<std::codecvt_utf8<wchar_t>> converter;
  926. std::wstring wpath = converter.from_bytes(path);
  927. // if the path already exists, check whether it's a directory
  928. const DWORD attributes = GetFileAttributesW(wpath.c_str());
  929. if ((attributes != INVALID_FILE_ATTRIBUTES) && (attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  930. return true;
  931. }
  932. size_t pos_slash = 0;
  933. // process path from front to back, procedurally creating directories
  934. while ((pos_slash = path.find('\\', pos_slash)) != std::string::npos) {
  935. const std::wstring subpath = wpath.substr(0, pos_slash);
  936. const wchar_t * test = subpath.c_str();
  937. const bool success = CreateDirectoryW(test, NULL);
  938. if (!success) {
  939. const DWORD error = GetLastError();
  940. // if the path already exists, ensure that it's a directory
  941. if (error == ERROR_ALREADY_EXISTS) {
  942. const DWORD attributes = GetFileAttributesW(subpath.c_str());
  943. if (attributes == INVALID_FILE_ATTRIBUTES || !(attributes & FILE_ATTRIBUTE_DIRECTORY)) {
  944. return false;
  945. }
  946. } else {
  947. return false;
  948. }
  949. }
  950. pos_slash += 1;
  951. }
  952. return true;
  953. #else
  954. // if the path already exists, check whether it's a directory
  955. struct stat info;
  956. if (stat(path.c_str(), &info) == 0) {
  957. return S_ISDIR(info.st_mode);
  958. }
  959. size_t pos_slash = 1; // skip leading slashes for directory creation
  960. // process path from front to back, procedurally creating directories
  961. while ((pos_slash = path.find('/', pos_slash)) != std::string::npos) {
  962. const std::string subpath = path.substr(0, pos_slash);
  963. struct stat info;
  964. // if the path already exists, ensure that it's a directory
  965. if (stat(subpath.c_str(), &info) == 0) {
  966. if (!S_ISDIR(info.st_mode)) {
  967. return false;
  968. }
  969. } else {
  970. // create parent directories
  971. const int ret = mkdir(subpath.c_str(), 0755);
  972. if (ret != 0) {
  973. return false;
  974. }
  975. }
  976. pos_slash += 1;
  977. }
  978. return true;
  979. #endif // _WIN32
  980. }
  981. void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data) {
  982. if (data.empty()) {
  983. fprintf(stream, "%s:\n", prop_name);
  984. return;
  985. }
  986. fprintf(stream, "%s: [", prop_name);
  987. for (size_t i = 0; i < data.size() - 1; ++i) {
  988. fprintf(stream, "%e, ", data[i]);
  989. }
  990. fprintf(stream, "%e]\n", data.back());
  991. }
  992. void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data) {
  993. if (data.empty()) {
  994. fprintf(stream, "%s:\n", prop_name);
  995. return;
  996. }
  997. fprintf(stream, "%s: [", prop_name);
  998. for (size_t i = 0; i < data.size() - 1; ++i) {
  999. fprintf(stream, "%d, ", data[i]);
  1000. }
  1001. fprintf(stream, "%d]\n", data.back());
  1002. }
  1003. void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data) {
  1004. std::string data_str(data == NULL ? "" : data);
  1005. if (data_str.empty()) {
  1006. fprintf(stream, "%s:\n", prop_name);
  1007. return;
  1008. }
  1009. size_t pos_start = 0;
  1010. size_t pos_found = 0;
  1011. if (!data_str.empty() && (std::isspace(data_str[0]) || std::isspace(data_str.back()))) {
  1012. data_str = std::regex_replace(data_str, std::regex("\n"), "\\n");
  1013. data_str = std::regex_replace(data_str, std::regex("\""), "\\\"");
  1014. data_str = "\"" + data_str + "\"";
  1015. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1016. return;
  1017. }
  1018. if (data_str.find('\n') == std::string::npos) {
  1019. fprintf(stream, "%s: %s\n", prop_name, data_str.c_str());
  1020. return;
  1021. }
  1022. fprintf(stream, "%s: |\n", prop_name);
  1023. while ((pos_found = data_str.find('\n', pos_start)) != std::string::npos) {
  1024. fprintf(stream, " %s\n", data_str.substr(pos_start, pos_found-pos_start).c_str());
  1025. pos_start = pos_found + 1;
  1026. }
  1027. }
  1028. std::string get_sortable_timestamp() {
  1029. using clock = std::chrono::system_clock;
  1030. const clock::time_point current_time = clock::now();
  1031. const time_t as_time_t = clock::to_time_t(current_time);
  1032. char timestamp_no_ns[100];
  1033. std::strftime(timestamp_no_ns, 100, "%Y_%m_%d-%H_%M_%S", std::localtime(&as_time_t));
  1034. const int64_t ns = std::chrono::duration_cast<std::chrono::nanoseconds>(
  1035. current_time.time_since_epoch() % 1000000000).count();
  1036. char timestamp_ns[11];
  1037. snprintf(timestamp_ns, 11, "%09" PRId64, ns);
  1038. return std::string(timestamp_no_ns) + "." + std::string(timestamp_ns);
  1039. }
  1040. void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const llama_context * lctx,
  1041. const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc) {
  1042. fprintf(stream, "build_commit: %s\n", BUILD_COMMIT);
  1043. fprintf(stream, "build_number: %d\n", BUILD_NUMBER);
  1044. fprintf(stream, "cpu_has_arm_fma: %s\n", ggml_cpu_has_arm_fma() ? "true" : "false");
  1045. fprintf(stream, "cpu_has_avx: %s\n", ggml_cpu_has_avx() ? "true" : "false");
  1046. fprintf(stream, "cpu_has_avx2: %s\n", ggml_cpu_has_avx2() ? "true" : "false");
  1047. fprintf(stream, "cpu_has_avx512: %s\n", ggml_cpu_has_avx512() ? "true" : "false");
  1048. fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
  1049. fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
  1050. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1051. fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
  1052. fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
  1053. fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
  1054. fprintf(stream, "cpu_has_gpublas: %s\n", ggml_cpu_has_gpublas() ? "true" : "false");
  1055. fprintf(stream, "cpu_has_neon: %s\n", ggml_cpu_has_neon() ? "true" : "false");
  1056. fprintf(stream, "cpu_has_f16c: %s\n", ggml_cpu_has_f16c() ? "true" : "false");
  1057. fprintf(stream, "cpu_has_fp16_va: %s\n", ggml_cpu_has_fp16_va() ? "true" : "false");
  1058. fprintf(stream, "cpu_has_wasm_simd: %s\n", ggml_cpu_has_wasm_simd() ? "true" : "false");
  1059. fprintf(stream, "cpu_has_blas: %s\n", ggml_cpu_has_blas() ? "true" : "false");
  1060. fprintf(stream, "cpu_has_sse3: %s\n", ggml_cpu_has_sse3() ? "true" : "false");
  1061. fprintf(stream, "cpu_has_vsx: %s\n", ggml_cpu_has_vsx() ? "true" : "false");
  1062. #ifdef NDEBUG
  1063. fprintf(stream, "debug: false\n");
  1064. #else
  1065. fprintf(stream, "debug: true\n");
  1066. #endif // NDEBUG
  1067. fprintf(stream, "model_desc: %s\n", model_desc);
  1068. fprintf(stream, "n_vocab: %d # output size of the final layer, 32001 for some models\n", llama_n_vocab(lctx));
  1069. #ifdef __OPTIMIZE__
  1070. fprintf(stream, "optimize: true\n");
  1071. #else
  1072. fprintf(stream, "optimize: false\n");
  1073. #endif // __OPTIMIZE__
  1074. fprintf(stream, "time: %s\n", timestamp.c_str());
  1075. fprintf(stream, "\n");
  1076. fprintf(stream, "###############\n");
  1077. fprintf(stream, "# User Inputs #\n");
  1078. fprintf(stream, "###############\n");
  1079. fprintf(stream, "\n");
  1080. fprintf(stream, "alias: %s # default: unknown\n", params.model_alias.c_str());
  1081. fprintf(stream, "batch_size: %d # default: 512\n", params.n_batch);
  1082. dump_string_yaml_multiline(stream, "cfg_negative_prompt", params.cfg_negative_prompt.c_str());
  1083. fprintf(stream, "cfg_scale: %f # default: 1.0\n", params.cfg_scale);
  1084. fprintf(stream, "chunks: %d # default: -1 (unlimited)\n", params.n_chunks);
  1085. fprintf(stream, "color: %s # default: false\n", params.use_color ? "true" : "false");
  1086. fprintf(stream, "ctx_size: %d # default: 512\n", params.n_ctx);
  1087. fprintf(stream, "escape: %s # default: false\n", params.escape ? "true" : "false");
  1088. fprintf(stream, "export: %s # default: false\n", params.export_cgraph ? "true" : "false");
  1089. fprintf(stream, "file: # never logged, see prompt instead. Can still be specified for input.\n");
  1090. fprintf(stream, "frequency_penalty: %f # default: 0.0 \n", params.frequency_penalty);
  1091. dump_string_yaml_multiline(stream, "grammar", params.grammar.c_str());
  1092. fprintf(stream, "grammar-file: # never logged, see grammar instead. Can still be specified for input.\n");
  1093. fprintf(stream, "hellaswag: %s # default: false\n", params.hellaswag ? "true" : "false");
  1094. fprintf(stream, "hellaswag_tasks: %zu # default: 400\n", params.hellaswag_tasks);
  1095. const auto logit_bias_eos = params.logit_bias.find(llama_token_eos(lctx));
  1096. const bool ignore_eos = logit_bias_eos != params.logit_bias.end() && logit_bias_eos->second == -INFINITY;
  1097. fprintf(stream, "ignore_eos: %s # default: false\n", ignore_eos ? "true" : "false");
  1098. dump_string_yaml_multiline(stream, "in_prefix", params.input_prefix.c_str());
  1099. fprintf(stream, "in_prefix_bos: %s # default: false\n", params.input_prefix_bos ? "true" : "false");
  1100. dump_string_yaml_multiline(stream, "in_suffix", params.input_prefix.c_str());
  1101. fprintf(stream, "instruct: %s # default: false\n", params.instruct ? "true" : "false");
  1102. fprintf(stream, "interactive: %s # default: false\n", params.interactive ? "true" : "false");
  1103. fprintf(stream, "interactive_first: %s # default: false\n", params.interactive_first ? "true" : "false");
  1104. fprintf(stream, "keep: %d # default: 0\n", params.n_keep);
  1105. fprintf(stream, "logdir: %s # default: unset (no logging)\n", params.logdir.c_str());
  1106. fprintf(stream, "logit_bias:\n");
  1107. for (std::pair<llama_token, float> lb : params.logit_bias) {
  1108. if (ignore_eos && lb.first == logit_bias_eos->first) {
  1109. continue;
  1110. }
  1111. fprintf(stream, " %d: %f", lb.first, lb.second);
  1112. }
  1113. fprintf(stream, "lora: %s\n", params.lora_adapter.c_str());
  1114. fprintf(stream, "lora_base: %s\n", params.lora_base.c_str());
  1115. fprintf(stream, "low_vram: %s # default: false\n", params.low_vram ? "true" : "false");
  1116. fprintf(stream, "main_gpu: %d # default: 0\n", params.main_gpu);
  1117. fprintf(stream, "memory_f32: %s # default: false\n", !params.memory_f16 ? "true" : "false");
  1118. fprintf(stream, "mirostat: %d # default: 0 (disabled)\n", params.mirostat);
  1119. fprintf(stream, "mirostat_ent: %f # default: 5.0\n", params.mirostat_tau);
  1120. fprintf(stream, "mirostat_lr: %f # default: 0.1\n", params.mirostat_eta);
  1121. fprintf(stream, "mlock: %s # default: false\n", params.use_mlock ? "true" : "false");
  1122. fprintf(stream, "model: %s # default: models/7B/ggml-model.bin\n", params.model.c_str());
  1123. fprintf(stream, "model_draft: %s # default:\n", params.model_draft.c_str());
  1124. fprintf(stream, "mtest: %s # default: false\n", params.mem_test ? "true" : "false");
  1125. fprintf(stream, "multiline_input: %s # default: false\n", params.multiline_input ? "true" : "false");
  1126. fprintf(stream, "n_gpu_layers: %d # default: -1\n", params.n_gpu_layers);
  1127. fprintf(stream, "n_predict: %d # default: -1 (unlimited)\n", params.n_predict);
  1128. fprintf(stream, "n_probs: %d # only used by server binary, default: 0\n", params.n_probs);
  1129. fprintf(stream, "no_mmap: %s # default: false\n", !params.use_mmap ? "true" : "false");
  1130. fprintf(stream, "no_mul_mat_q: %s # default: false\n", !params.mul_mat_q ? "true" : "false");
  1131. fprintf(stream, "no_penalize_nl: %s # default: false\n", !params.penalize_nl ? "true" : "false");
  1132. fprintf(stream, "numa: %s # default: false\n", params.numa ? "true" : "false");
  1133. fprintf(stream, "ppl_output_type: %d # default: 0\n", params.ppl_output_type);
  1134. fprintf(stream, "ppl_stride: %d # default: 0\n", params.ppl_stride);
  1135. fprintf(stream, "presence_penalty: %f # default: 0.0\n", params.presence_penalty);
  1136. dump_string_yaml_multiline(stream, "prompt", params.prompt.c_str());
  1137. fprintf(stream, "prompt_cache: %s\n", params.path_prompt_cache.c_str());
  1138. fprintf(stream, "prompt_cache_all: %s # default: false\n", params.prompt_cache_all ? "true" : "false");
  1139. fprintf(stream, "prompt_cache_ro: %s # default: false\n", params.prompt_cache_ro ? "true" : "false");
  1140. dump_vector_int_yaml(stream, "prompt_tokens", prompt_tokens);
  1141. fprintf(stream, "random_prompt: %s # default: false\n", params.random_prompt ? "true" : "false");
  1142. fprintf(stream, "repeat_penalty: %f # default: 1.1\n", params.repeat_penalty);
  1143. fprintf(stream, "reverse_prompt:\n");
  1144. for (std::string ap : params.antiprompt) {
  1145. size_t pos = 0;
  1146. while ((pos = ap.find('\n', pos)) != std::string::npos) {
  1147. ap.replace(pos, 1, "\\n");
  1148. pos += 1;
  1149. }
  1150. fprintf(stream, " - %s\n", ap.c_str());
  1151. }
  1152. fprintf(stream, "rope_freq_base: %f # default: 10000.0\n", params.rope_freq_base);
  1153. fprintf(stream, "rope_freq_scale: %f # default: 1.0\n", params.rope_freq_scale);
  1154. fprintf(stream, "seed: %d # default: -1 (random seed)\n", params.seed);
  1155. fprintf(stream, "simple_io: %s # default: false\n", params.simple_io ? "true" : "false");
  1156. fprintf(stream, "temp: %f # default: 0.8\n", params.temp);
  1157. const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
  1158. dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
  1159. fprintf(stream, "tfs: %f # default: 1.0\n", params.tfs_z);
  1160. fprintf(stream, "threads: %d # default: %d\n", params.n_threads, std::thread::hardware_concurrency());
  1161. fprintf(stream, "top_k: %d # default: 40\n", params.top_k);
  1162. fprintf(stream, "top_p: %f # default: 0.95\n", params.top_p);
  1163. fprintf(stream, "typical_p: %f # default: 1.0\n", params.typical_p);
  1164. fprintf(stream, "verbose_prompt: %s # default: false\n", params.verbose_prompt ? "true" : "false");
  1165. }