clip.cpp 177 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211
  1. // NOTE: This is modified from clip.cpp only for LLaVA,
  2. // so there might be still unnecessary artifacts hanging around
  3. // I'll gradually clean and extend it
  4. // Note: Even when using identical normalized image inputs (see normalize_image_u8_to_f32()) we have a significant difference in resulting embeddings compared to pytorch
  5. #include "clip.h"
  6. #include "clip-impl.h"
  7. #include "ggml.h"
  8. #include "ggml-cpp.h"
  9. #include "ggml-cpu.h"
  10. #include "ggml-alloc.h"
  11. #include "ggml-backend.h"
  12. #include "gguf.h"
  13. #include <cassert>
  14. #include <cmath>
  15. #include <cstdlib>
  16. #include <cstring>
  17. #include <fstream>
  18. #include <map>
  19. #include <regex>
  20. #include <stdexcept>
  21. #include <unordered_set>
  22. #include <vector>
  23. #include <sstream>
  24. #include <cinttypes>
  25. #include <limits>
  26. #include <array>
  27. #include <numeric>
  28. #include <functional>
  29. struct clip_logger_state g_logger_state = {GGML_LOG_LEVEL_CONT, clip_log_callback_default, NULL};
  30. enum ffn_op_type {
  31. FFN_GELU,
  32. FFN_GELU_ERF,
  33. FFN_SILU,
  34. FFN_GELU_QUICK,
  35. };
  36. enum norm_type {
  37. NORM_TYPE_NORMAL,
  38. NORM_TYPE_RMS,
  39. };
  40. //#define CLIP_DEBUG_FUNCTIONS
  41. #ifdef CLIP_DEBUG_FUNCTIONS
  42. static void clip_image_write_image_to_ppm(const clip_image_u8& img, const std::string& filename) {
  43. std::ofstream file(filename, std::ios::binary);
  44. if (!file.is_open()) {
  45. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  46. return;
  47. }
  48. // PPM header: P6 format, width, height, and max color value
  49. file << "P6\n" << img.nx << " " << img.ny << "\n255\n";
  50. // Write pixel data
  51. for (size_t i = 0; i < img.buf.size(); i += 3) {
  52. // PPM expects binary data in RGB format, which matches our image buffer
  53. file.write(reinterpret_cast<const char*>(&img.buf[i]), 3);
  54. }
  55. file.close();
  56. }
  57. static void clip_image_save_to_bmp(const clip_image_u8& img, const std::string& filename) {
  58. std::ofstream file(filename, std::ios::binary);
  59. if (!file.is_open()) {
  60. LOG_ERR("Failed to open file for writing: %s\n", filename.c_str());
  61. return;
  62. }
  63. int fileSize = 54 + 3 * img.nx * img.ny; // File header + info header + pixel data
  64. int bytesPerPixel = 3;
  65. int widthInBytes = img.nx * bytesPerPixel;
  66. int paddingAmount = (4 - (widthInBytes % 4)) % 4;
  67. int stride = widthInBytes + paddingAmount;
  68. // Bitmap file header
  69. unsigned char fileHeader[14] = {
  70. 'B','M', // Signature
  71. 0,0,0,0, // Image file size in bytes
  72. 0,0,0,0, // Reserved
  73. 54,0,0,0 // Start of pixel array
  74. };
  75. // Total file size
  76. fileSize = 54 + (stride * img.ny);
  77. fileHeader[2] = (unsigned char)(fileSize);
  78. fileHeader[3] = (unsigned char)(fileSize >> 8);
  79. fileHeader[4] = (unsigned char)(fileSize >> 16);
  80. fileHeader[5] = (unsigned char)(fileSize >> 24);
  81. // Bitmap information header (BITMAPINFOHEADER)
  82. unsigned char infoHeader[40] = {
  83. 40,0,0,0, // Size of this header (40 bytes)
  84. 0,0,0,0, // Image width
  85. 0,0,0,0, // Image height
  86. 1,0, // Number of color planes
  87. 24,0, // Bits per pixel
  88. 0,0,0,0, // No compression
  89. 0,0,0,0, // Image size (can be 0 for no compression)
  90. 0,0,0,0, // X pixels per meter (not specified)
  91. 0,0,0,0, // Y pixels per meter (not specified)
  92. 0,0,0,0, // Total colors (color table not used)
  93. 0,0,0,0 // Important colors (all are important)
  94. };
  95. // Width and height in the information header
  96. infoHeader[4] = (unsigned char)(img.nx);
  97. infoHeader[5] = (unsigned char)(img.nx >> 8);
  98. infoHeader[6] = (unsigned char)(img.nx >> 16);
  99. infoHeader[7] = (unsigned char)(img.nx >> 24);
  100. infoHeader[8] = (unsigned char)(img.ny);
  101. infoHeader[9] = (unsigned char)(img.ny >> 8);
  102. infoHeader[10] = (unsigned char)(img.ny >> 16);
  103. infoHeader[11] = (unsigned char)(img.ny >> 24);
  104. // Write file headers
  105. file.write(reinterpret_cast<char*>(fileHeader), sizeof(fileHeader));
  106. file.write(reinterpret_cast<char*>(infoHeader), sizeof(infoHeader));
  107. // Pixel data
  108. std::vector<unsigned char> padding(3, 0); // Max padding size to be added to each row
  109. for (int y = img.ny - 1; y >= 0; --y) { // BMP files are stored bottom-to-top
  110. for (int x = 0; x < img.nx; ++x) {
  111. // Each pixel
  112. size_t pixelIndex = (y * img.nx + x) * 3;
  113. unsigned char pixel[3] = {
  114. img.buf[pixelIndex + 2], // BMP stores pixels in BGR format
  115. img.buf[pixelIndex + 1],
  116. img.buf[pixelIndex]
  117. };
  118. file.write(reinterpret_cast<char*>(pixel), 3);
  119. }
  120. // Write padding for the row
  121. file.write(reinterpret_cast<char*>(padding.data()), paddingAmount);
  122. }
  123. file.close();
  124. }
  125. // debug function to convert f32 to u8
  126. static void clip_image_convert_f32_to_u8(const clip_image_f32& src, clip_image_u8& dst) {
  127. dst.nx = src.nx;
  128. dst.ny = src.ny;
  129. dst.buf.resize(3 * src.nx * src.ny);
  130. for (size_t i = 0; i < src.buf.size(); ++i) {
  131. dst.buf[i] = static_cast<uint8_t>(std::min(std::max(int(src.buf[i] * 255.0f), 0), 255));
  132. }
  133. }
  134. #endif
  135. //
  136. // clip layers
  137. //
  138. enum patch_merge_type {
  139. PATCH_MERGE_FLAT,
  140. PATCH_MERGE_SPATIAL_UNPAD,
  141. };
  142. struct clip_hparams {
  143. int32_t image_size;
  144. int32_t patch_size;
  145. int32_t n_embd;
  146. int32_t n_ff;
  147. int32_t projection_dim;
  148. int32_t n_head;
  149. int32_t n_layer;
  150. int32_t proj_scale_factor = 0; // idefics3
  151. float image_mean[3];
  152. float image_std[3];
  153. // for models using dynamic image size, we need to have a smaller image size to warmup
  154. // otherwise, user will get OOM everytime they load the model
  155. int32_t warmup_image_size = 0;
  156. int32_t warmup_audio_size = 3000;
  157. ffn_op_type ffn_op = FFN_GELU;
  158. patch_merge_type mm_patch_merge_type = PATCH_MERGE_FLAT;
  159. float eps = 1e-6;
  160. float rope_theta = 0.0;
  161. std::vector<clip_image_size> image_res_candidates; // for llava-uhd style models
  162. int32_t image_crop_resolution;
  163. std::unordered_set<int32_t> vision_feature_layer;
  164. int32_t attn_window_size = 0;
  165. int32_t n_wa_pattern = 0;
  166. int32_t spatial_merge_size = 0;
  167. // audio
  168. int32_t n_mel_bins = 0; // whisper preprocessor
  169. int32_t proj_stack_factor = 0; // ultravox
  170. // legacy
  171. bool has_llava_projector = false;
  172. int minicpmv_version = 0;
  173. int32_t minicpmv_query_num = 0; // MiniCPM-V query number
  174. };
  175. struct clip_layer {
  176. // attention
  177. ggml_tensor * k_w = nullptr;
  178. ggml_tensor * k_b = nullptr;
  179. ggml_tensor * q_w = nullptr;
  180. ggml_tensor * q_b = nullptr;
  181. ggml_tensor * v_w = nullptr;
  182. ggml_tensor * v_b = nullptr;
  183. ggml_tensor * o_w = nullptr;
  184. ggml_tensor * o_b = nullptr;
  185. ggml_tensor * k_norm = nullptr;
  186. ggml_tensor * q_norm = nullptr;
  187. // layernorm 1
  188. ggml_tensor * ln_1_w = nullptr;
  189. ggml_tensor * ln_1_b = nullptr;
  190. ggml_tensor * ff_up_w = nullptr;
  191. ggml_tensor * ff_up_b = nullptr;
  192. ggml_tensor * ff_gate_w = nullptr;
  193. ggml_tensor * ff_gate_b = nullptr;
  194. ggml_tensor * ff_down_w = nullptr;
  195. ggml_tensor * ff_down_b = nullptr;
  196. // layernorm 2
  197. ggml_tensor * ln_2_w = nullptr;
  198. ggml_tensor * ln_2_b = nullptr;
  199. // layer scale (no bias)
  200. ggml_tensor * ls_1_w = nullptr;
  201. ggml_tensor * ls_2_w = nullptr;
  202. };
  203. struct clip_model {
  204. clip_modality modality = CLIP_MODALITY_VISION;
  205. projector_type proj_type = PROJECTOR_TYPE_MLP;
  206. clip_hparams hparams;
  207. // embeddings
  208. ggml_tensor * class_embedding = nullptr;
  209. ggml_tensor * patch_embeddings_0 = nullptr;
  210. ggml_tensor * patch_embeddings_1 = nullptr; // second Conv2D kernel when we decouple Conv3D along temproal dimension (Qwen2VL)
  211. ggml_tensor * patch_bias = nullptr;
  212. ggml_tensor * position_embeddings = nullptr;
  213. ggml_tensor * pre_ln_w = nullptr;
  214. ggml_tensor * pre_ln_b = nullptr;
  215. std::vector<clip_layer> layers;
  216. ggml_tensor * post_ln_w;
  217. ggml_tensor * post_ln_b;
  218. ggml_tensor * projection; // TODO: rename it to fc (fully connected layer)
  219. ggml_tensor * mm_fc_w;
  220. ggml_tensor * mm_fc_b;
  221. // LLaVA projection
  222. ggml_tensor * mm_input_norm_w = nullptr;
  223. ggml_tensor * mm_0_w = nullptr;
  224. ggml_tensor * mm_0_b = nullptr;
  225. ggml_tensor * mm_2_w = nullptr;
  226. ggml_tensor * mm_2_b = nullptr;
  227. ggml_tensor * image_newline = nullptr;
  228. // Yi type models with mlp+normalization projection
  229. ggml_tensor * mm_1_w = nullptr; // Yi type models have 0, 1, 3, 4
  230. ggml_tensor * mm_1_b = nullptr;
  231. ggml_tensor * mm_3_w = nullptr;
  232. ggml_tensor * mm_3_b = nullptr;
  233. ggml_tensor * mm_4_w = nullptr;
  234. ggml_tensor * mm_4_b = nullptr;
  235. // GLMV-Edge projection
  236. ggml_tensor * mm_model_adapter_conv_w = nullptr;
  237. ggml_tensor * mm_model_adapter_conv_b = nullptr;
  238. ggml_tensor * mm_glm_tok_boi = nullptr;
  239. ggml_tensor * mm_glm_tok_eoi = nullptr;
  240. // MobileVLM projection
  241. ggml_tensor * mm_model_mlp_1_w = nullptr;
  242. ggml_tensor * mm_model_mlp_1_b = nullptr;
  243. ggml_tensor * mm_model_mlp_3_w = nullptr;
  244. ggml_tensor * mm_model_mlp_3_b = nullptr;
  245. ggml_tensor * mm_model_block_1_block_0_0_w = nullptr;
  246. ggml_tensor * mm_model_block_1_block_0_1_w = nullptr;
  247. ggml_tensor * mm_model_block_1_block_0_1_b = nullptr;
  248. ggml_tensor * mm_model_block_1_block_1_fc1_w = nullptr;
  249. ggml_tensor * mm_model_block_1_block_1_fc1_b = nullptr;
  250. ggml_tensor * mm_model_block_1_block_1_fc2_w = nullptr;
  251. ggml_tensor * mm_model_block_1_block_1_fc2_b = nullptr;
  252. ggml_tensor * mm_model_block_1_block_2_0_w = nullptr;
  253. ggml_tensor * mm_model_block_1_block_2_1_w = nullptr;
  254. ggml_tensor * mm_model_block_1_block_2_1_b = nullptr;
  255. ggml_tensor * mm_model_block_2_block_0_0_w = nullptr;
  256. ggml_tensor * mm_model_block_2_block_0_1_w = nullptr;
  257. ggml_tensor * mm_model_block_2_block_0_1_b = nullptr;
  258. ggml_tensor * mm_model_block_2_block_1_fc1_w = nullptr;
  259. ggml_tensor * mm_model_block_2_block_1_fc1_b = nullptr;
  260. ggml_tensor * mm_model_block_2_block_1_fc2_w = nullptr;
  261. ggml_tensor * mm_model_block_2_block_1_fc2_b = nullptr;
  262. ggml_tensor * mm_model_block_2_block_2_0_w = nullptr;
  263. ggml_tensor * mm_model_block_2_block_2_1_w = nullptr;
  264. ggml_tensor * mm_model_block_2_block_2_1_b = nullptr;
  265. // MobileVLM_V2 projection
  266. ggml_tensor * mm_model_mlp_0_w = nullptr;
  267. ggml_tensor * mm_model_mlp_0_b = nullptr;
  268. ggml_tensor * mm_model_mlp_2_w = nullptr;
  269. ggml_tensor * mm_model_mlp_2_b = nullptr;
  270. ggml_tensor * mm_model_peg_0_w = nullptr;
  271. ggml_tensor * mm_model_peg_0_b = nullptr;
  272. // MINICPMV projection
  273. ggml_tensor * mm_model_pos_embed_k = nullptr;
  274. ggml_tensor * mm_model_query = nullptr;
  275. ggml_tensor * mm_model_proj = nullptr;
  276. ggml_tensor * mm_model_kv_proj = nullptr;
  277. ggml_tensor * mm_model_attn_q_w = nullptr;
  278. ggml_tensor * mm_model_attn_q_b = nullptr;
  279. ggml_tensor * mm_model_attn_k_w = nullptr;
  280. ggml_tensor * mm_model_attn_k_b = nullptr;
  281. ggml_tensor * mm_model_attn_v_w = nullptr;
  282. ggml_tensor * mm_model_attn_v_b = nullptr;
  283. ggml_tensor * mm_model_attn_o_w = nullptr;
  284. ggml_tensor * mm_model_attn_o_b = nullptr;
  285. ggml_tensor * mm_model_ln_q_w = nullptr;
  286. ggml_tensor * mm_model_ln_q_b = nullptr;
  287. ggml_tensor * mm_model_ln_kv_w = nullptr;
  288. ggml_tensor * mm_model_ln_kv_b = nullptr;
  289. ggml_tensor * mm_model_ln_post_w = nullptr;
  290. ggml_tensor * mm_model_ln_post_b = nullptr;
  291. // gemma3
  292. ggml_tensor * mm_input_proj_w = nullptr;
  293. ggml_tensor * mm_soft_emb_norm_w = nullptr;
  294. // pixtral
  295. ggml_tensor * token_embd_img_break = nullptr;
  296. ggml_tensor * mm_patch_merger_w = nullptr;
  297. // ultravox / whisper encoder
  298. ggml_tensor * conv1d_1_w = nullptr;
  299. ggml_tensor * conv1d_1_b = nullptr;
  300. ggml_tensor * conv1d_2_w = nullptr;
  301. ggml_tensor * conv1d_2_b = nullptr;
  302. ggml_tensor * mm_norm_pre_w = nullptr;
  303. ggml_tensor * mm_norm_mid_w = nullptr;
  304. bool audio_has_avgpool() const {
  305. return proj_type == PROJECTOR_TYPE_QWEN2A
  306. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  307. }
  308. bool audio_has_stack_frames() const {
  309. return proj_type == PROJECTOR_TYPE_ULTRAVOX
  310. || proj_type == PROJECTOR_TYPE_VOXTRAL;
  311. }
  312. };
  313. struct clip_ctx {
  314. clip_model model;
  315. gguf_context_ptr ctx_gguf;
  316. ggml_context_ptr ctx_data;
  317. std::vector<uint8_t> buf_compute_meta;
  318. std::vector<ggml_backend_t> backend_ptrs;
  319. std::vector<ggml_backend_buffer_type_t> backend_buft;
  320. ggml_backend_t backend = nullptr;
  321. ggml_backend_t backend_cpu = nullptr;
  322. ggml_backend_buffer_ptr buf;
  323. int max_nodes = 8192;
  324. ggml_backend_sched_ptr sched;
  325. // for debugging
  326. bool debug_graph = false;
  327. std::vector<ggml_tensor *> debug_print_tensors;
  328. clip_ctx(clip_context_params & ctx_params) {
  329. debug_graph = std::getenv("MTMD_DEBUG_GRAPH") != nullptr;
  330. backend_cpu = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_CPU, nullptr);
  331. if (!backend_cpu) {
  332. throw std::runtime_error("failed to initialize CPU backend");
  333. }
  334. if (ctx_params.use_gpu) {
  335. auto backend_name = std::getenv("MTMD_BACKEND_DEVICE");
  336. if (backend_name != nullptr) {
  337. backend = ggml_backend_init_by_name(backend_name, nullptr);
  338. if (!backend) {
  339. LOG_WRN("%s: Warning: Failed to initialize \"%s\" backend, falling back to default GPU backend\n", __func__, backend_name);
  340. }
  341. }
  342. if (!backend) {
  343. backend = ggml_backend_init_by_type(GGML_BACKEND_DEVICE_TYPE_GPU, nullptr);
  344. }
  345. }
  346. if (backend) {
  347. LOG_INF("%s: CLIP using %s backend\n", __func__, ggml_backend_name(backend));
  348. backend_ptrs.push_back(backend);
  349. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  350. } else {
  351. backend = backend_cpu;
  352. LOG_INF("%s: CLIP using CPU backend\n", __func__);
  353. }
  354. backend_ptrs.push_back(backend_cpu);
  355. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend_cpu));
  356. sched.reset(
  357. ggml_backend_sched_new(backend_ptrs.data(), backend_buft.data(), backend_ptrs.size(), 8192, false, true)
  358. );
  359. }
  360. ~clip_ctx() {
  361. ggml_backend_free(backend);
  362. if (backend != backend_cpu) {
  363. ggml_backend_free(backend_cpu);
  364. }
  365. }
  366. // this function is added so that we don't change too much of the existing code
  367. projector_type proj_type() const {
  368. return model.proj_type;
  369. }
  370. };
  371. struct clip_graph {
  372. clip_ctx * ctx;
  373. const clip_model & model;
  374. const clip_hparams & hparams;
  375. // we only support single image per batch
  376. const clip_image_f32 & img;
  377. const int patch_size;
  378. const int n_patches_x;
  379. const int n_patches_y;
  380. const int n_patches;
  381. const int n_embd;
  382. const int n_head;
  383. const int d_head;
  384. const int n_layer;
  385. const float eps;
  386. const float kq_scale;
  387. ggml_context_ptr ctx0_ptr;
  388. ggml_context * ctx0;
  389. ggml_cgraph * gf;
  390. clip_graph(clip_ctx * ctx, const clip_image_f32 & img) :
  391. ctx(ctx),
  392. model(ctx->model),
  393. hparams(model.hparams),
  394. img(img),
  395. patch_size(hparams.patch_size),
  396. n_patches_x(img.nx / patch_size),
  397. n_patches_y(img.ny / patch_size),
  398. n_patches(n_patches_x * n_patches_y),
  399. n_embd(hparams.n_embd),
  400. n_head(hparams.n_head),
  401. d_head(n_embd / n_head),
  402. n_layer(hparams.n_layer),
  403. eps(hparams.eps),
  404. kq_scale(1.0f / sqrtf((float)d_head)) {
  405. struct ggml_init_params params = {
  406. /*.mem_size =*/ ctx->buf_compute_meta.size(),
  407. /*.mem_buffer =*/ ctx->buf_compute_meta.data(),
  408. /*.no_alloc =*/ true,
  409. };
  410. ctx0_ptr.reset(ggml_init(params));
  411. ctx0 = ctx0_ptr.get();
  412. gf = ggml_new_graph_custom(ctx0, ctx->max_nodes, false);
  413. }
  414. ggml_cgraph * build_siglip() {
  415. ggml_tensor * inp = build_inp();
  416. ggml_tensor * cur = build_vit(
  417. inp, n_patches,
  418. NORM_TYPE_NORMAL,
  419. hparams.ffn_op,
  420. model.position_embeddings,
  421. nullptr);
  422. if (ctx->proj_type() == PROJECTOR_TYPE_GEMMA3) {
  423. const int batch_size = 1;
  424. GGML_ASSERT(n_patches_x == n_patches_y);
  425. const int patches_per_image = n_patches_x;
  426. const int kernel_size = hparams.proj_scale_factor;
  427. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  428. cur = ggml_reshape_4d(ctx0, cur, patches_per_image, patches_per_image, n_embd, batch_size);
  429. // doing a pool2d to reduce the number of output tokens
  430. cur = ggml_pool_2d(ctx0, cur, GGML_OP_POOL_AVG, kernel_size, kernel_size, kernel_size, kernel_size, 0, 0);
  431. cur = ggml_reshape_3d(ctx0, cur, cur->ne[0] * cur->ne[0], n_embd, batch_size);
  432. cur = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  433. // apply norm before projection
  434. cur = ggml_rms_norm(ctx0, cur, eps);
  435. cur = ggml_mul(ctx0, cur, model.mm_soft_emb_norm_w);
  436. // apply projection
  437. cur = ggml_mul_mat(ctx0,
  438. ggml_cont(ctx0, ggml_transpose(ctx0, model.mm_input_proj_w)),
  439. cur);
  440. } else if (ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3) {
  441. // https://github.com/huggingface/transformers/blob/0a950e0bbe1ed58d5401a6b547af19f15f0c195e/src/transformers/models/idefics3/modeling_idefics3.py#L578
  442. const int scale_factor = model.hparams.proj_scale_factor;
  443. const int n_embd = cur->ne[0];
  444. const int seq = cur->ne[1];
  445. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  446. const int height = std::sqrt(seq);
  447. const int width = std::sqrt(seq);
  448. GGML_ASSERT(scale_factor != 0);
  449. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, width / scale_factor, height, bsz);
  450. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  451. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  452. n_embd * scale_factor * scale_factor,
  453. height / scale_factor,
  454. width / scale_factor,
  455. bsz);
  456. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  457. cur = ggml_reshape_3d(ctx0, ggml_cont(ctx0, cur),
  458. n_embd * scale_factor * scale_factor,
  459. seq / (scale_factor * scale_factor),
  460. bsz);
  461. cur = ggml_mul_mat(ctx0, model.projection, cur);
  462. } else {
  463. GGML_ABORT("SigLIP: Unsupported projector type");
  464. }
  465. // build the graph
  466. ggml_build_forward_expand(gf, cur);
  467. return gf;
  468. }
  469. ggml_cgraph * build_pixtral() {
  470. const int n_merge = hparams.spatial_merge_size;
  471. // 2D input positions
  472. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  473. ggml_set_name(pos_h, "pos_h");
  474. ggml_set_input(pos_h);
  475. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  476. ggml_set_name(pos_w, "pos_w");
  477. ggml_set_input(pos_w);
  478. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  479. return build_rope_2d(ctx0, cur, pos_h, pos_w, hparams.rope_theta, true);
  480. };
  481. ggml_tensor * inp = build_inp();
  482. ggml_tensor * cur = build_vit(
  483. inp, n_patches,
  484. NORM_TYPE_RMS,
  485. hparams.ffn_op,
  486. nullptr, // no learned pos embd
  487. add_pos);
  488. // mistral small 3.1 patch merger
  489. // ref: https://github.com/huggingface/transformers/blob/7a3e208892c06a5e278144eaf38c8599a42f53e7/src/transformers/models/mistral3/modeling_mistral3.py#L67
  490. if (model.mm_patch_merger_w) {
  491. GGML_ASSERT(hparams.spatial_merge_size > 0);
  492. cur = ggml_mul(ctx0, ggml_rms_norm(ctx0, cur, eps), model.mm_input_norm_w);
  493. // reshape image tokens to 2D grid
  494. cur = ggml_reshape_3d(ctx0, cur, n_embd, n_patches_x, n_patches_y);
  495. cur = ggml_permute(ctx0, cur, 2, 0, 1, 3); // [x, y, n_embd]
  496. cur = ggml_cont(ctx0, cur);
  497. // torch.nn.functional.unfold is just an im2col under the hood
  498. // we just need a dummy kernel to make it work
  499. ggml_tensor * kernel = ggml_view_3d(ctx0, cur, n_merge, n_merge, cur->ne[2], 0, 0, 0);
  500. cur = ggml_im2col(ctx0, kernel, cur, n_merge, n_merge, 0, 0, 1, 1, true, inp->type);
  501. // project to n_embd
  502. cur = ggml_reshape_2d(ctx0, cur, cur->ne[0], cur->ne[1] * cur->ne[2]);
  503. cur = ggml_mul_mat(ctx0, model.mm_patch_merger_w, cur);
  504. }
  505. // LlavaMultiModalProjector (always using GELU activation)
  506. {
  507. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  508. if (model.mm_1_b) {
  509. cur = ggml_add(ctx0, cur, model.mm_1_b);
  510. }
  511. cur = ggml_gelu(ctx0, cur);
  512. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  513. if (model.mm_2_b) {
  514. cur = ggml_add(ctx0, cur, model.mm_2_b);
  515. }
  516. }
  517. // arrangement of the [IMG_BREAK] token
  518. {
  519. // not efficient, but works
  520. // the trick is to view the embeddings as a 3D tensor with shape [n_embd, n_patches_per_row, n_rows]
  521. // and then concatenate the [IMG_BREAK] token to the end of each row, aka n_patches_per_row dimension
  522. // after the concatenation, we have a tensor with shape [n_embd, n_patches_per_row + 1, n_rows]
  523. const int p_y = n_merge > 0 ? n_patches_y / n_merge : n_patches_y;
  524. const int p_x = n_merge > 0 ? n_patches_x / n_merge : n_patches_x;
  525. const int p_total = p_x * p_y;
  526. const int n_embd_text = cur->ne[0];
  527. const int n_tokens_output = p_total + p_y - 1; // one [IMG_BREAK] per row, except the last row
  528. ggml_tensor * tmp = ggml_reshape_3d(ctx0, cur, n_embd_text, p_x, p_y);
  529. ggml_tensor * tok = ggml_new_tensor_3d(ctx0, tmp->type, n_embd_text, 1, p_y);
  530. tok = ggml_scale(ctx0, tok, 0.0); // clear the tensor
  531. tok = ggml_add(ctx0, tok, model.token_embd_img_break);
  532. tmp = ggml_concat(ctx0, tmp, tok, 1);
  533. cur = ggml_view_2d(ctx0, tmp,
  534. n_embd_text, n_tokens_output,
  535. ggml_row_size(tmp->type, n_embd_text), 0);
  536. }
  537. // build the graph
  538. ggml_build_forward_expand(gf, cur);
  539. return gf;
  540. }
  541. // Qwen2VL and Qwen2.5VL use M-RoPE
  542. ggml_cgraph * build_qwen2vl() {
  543. GGML_ASSERT(model.patch_bias == nullptr);
  544. GGML_ASSERT(model.class_embedding == nullptr);
  545. const int batch_size = 1;
  546. const bool use_window_attn = hparams.n_wa_pattern > 0;
  547. const int n_wa_pattern = hparams.n_wa_pattern;
  548. const int n_pos = n_patches;
  549. const int num_position_ids = n_pos * 4; // m-rope requires 4 dim per position
  550. norm_type norm_t = ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL
  551. ? NORM_TYPE_RMS // qwen 2.5 vl
  552. : NORM_TYPE_NORMAL; // qwen 2 vl
  553. int mrope_sections[4] = {d_head/4, d_head/4, d_head/4, d_head/4};
  554. ggml_tensor * inp_raw = build_inp_raw();
  555. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  556. GGML_ASSERT(img.nx % (patch_size * 2) == 0);
  557. GGML_ASSERT(img.ny % (patch_size * 2) == 0);
  558. // second conv dimension
  559. {
  560. auto inp_1 = ggml_conv_2d(ctx0, model.patch_embeddings_1, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  561. inp = ggml_add(ctx0, inp, inp_1);
  562. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 1, 2, 0, 3)); // [w, h, c, b] -> [c, w, h, b]
  563. inp = ggml_reshape_4d(
  564. ctx0, inp,
  565. n_embd * 2, n_patches_x / 2, n_patches_y, batch_size);
  566. inp = ggml_reshape_4d(
  567. ctx0, inp,
  568. n_embd * 2, n_patches_x / 2, 2, batch_size * (n_patches_y / 2));
  569. inp = ggml_cont(ctx0, ggml_permute(ctx0, inp, 0, 2, 1, 3));
  570. inp = ggml_reshape_3d(
  571. ctx0, inp,
  572. n_embd, n_patches_x * n_patches_y, batch_size);
  573. }
  574. ggml_tensor * inpL = inp;
  575. ggml_tensor * window_mask = nullptr;
  576. ggml_tensor * window_idx = nullptr;
  577. ggml_tensor * inv_window_idx = nullptr;
  578. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, num_position_ids);
  579. ggml_set_name(positions, "positions");
  580. ggml_set_input(positions);
  581. // pre-layernorm
  582. if (model.pre_ln_w) {
  583. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  584. }
  585. if (use_window_attn) {
  586. // handle window attention inputs
  587. inv_window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  588. ggml_set_name(inv_window_idx, "inv_window_idx");
  589. ggml_set_input(inv_window_idx);
  590. // mask for window attention
  591. window_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_pos, n_pos);
  592. ggml_set_name(window_mask, "window_mask");
  593. ggml_set_input(window_mask);
  594. // inpL shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  595. GGML_ASSERT(batch_size == 1);
  596. inpL = ggml_reshape_2d(ctx0, inpL, n_embd * 4, n_patches_x * n_patches_y * batch_size / 4);
  597. inpL = ggml_get_rows(ctx0, inpL, inv_window_idx);
  598. inpL = ggml_reshape_3d(ctx0, inpL, n_embd, n_patches_x * n_patches_y, batch_size);
  599. }
  600. // loop over layers
  601. for (int il = 0; il < n_layer; il++) {
  602. auto & layer = model.layers[il];
  603. const bool full_attn = use_window_attn ? (il + 1) % n_wa_pattern == 0 : true;
  604. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  605. // layernorm1
  606. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  607. cb(cur, "ln1", il);
  608. // self-attention
  609. {
  610. ggml_tensor * Qcur = ggml_add(ctx0,
  611. ggml_mul_mat(ctx0, layer.q_w, cur), layer.q_b);
  612. ggml_tensor * Kcur = ggml_add(ctx0,
  613. ggml_mul_mat(ctx0, layer.k_w, cur), layer.k_b);
  614. ggml_tensor * Vcur = ggml_add(ctx0,
  615. ggml_mul_mat(ctx0, layer.v_w, cur), layer.v_b);
  616. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_patches);
  617. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_patches);
  618. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_patches);
  619. cb(Qcur, "Qcur", il);
  620. cb(Kcur, "Kcur", il);
  621. cb(Vcur, "Vcur", il);
  622. // apply M-RoPE
  623. Qcur = ggml_rope_multi(
  624. ctx0, Qcur, positions, nullptr,
  625. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  626. Kcur = ggml_rope_multi(
  627. ctx0, Kcur, positions, nullptr,
  628. d_head/2, mrope_sections, GGML_ROPE_TYPE_VISION, 32768, 10000, 1, 0, 1, 32, 1);
  629. cb(Qcur, "Qcur_rope", il);
  630. cb(Kcur, "Kcur_rope", il);
  631. ggml_tensor * attn_mask = full_attn ? nullptr : window_mask;
  632. cur = build_attn(layer.o_w, layer.o_b,
  633. Qcur, Kcur, Vcur, attn_mask, kq_scale, il);
  634. cb(cur, "attn_out", il);
  635. }
  636. // re-add the layer input, e.g., residual
  637. cur = ggml_add(ctx0, cur, inpL);
  638. inpL = cur; // inpL = residual, cur = hidden_states
  639. cb(cur, "ffn_inp", il);
  640. // layernorm2
  641. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  642. cb(cur, "ffn_inp_normed", il);
  643. // ffn
  644. cur = build_ffn(cur,
  645. layer.ff_up_w, layer.ff_up_b,
  646. layer.ff_gate_w, layer.ff_gate_b,
  647. layer.ff_down_w, layer.ff_down_b,
  648. hparams.ffn_op, il);
  649. cb(cur, "ffn_out", il);
  650. // residual 2
  651. cur = ggml_add(ctx0, inpL, cur);
  652. cb(cur, "layer_out", il);
  653. inpL = cur;
  654. }
  655. // post-layernorm
  656. if (model.post_ln_w) {
  657. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, n_layer);
  658. }
  659. // multimodal projection
  660. ggml_tensor * embeddings = inpL;
  661. embeddings = ggml_reshape_3d(ctx0, embeddings, n_embd * 4, n_pos / 4, batch_size);
  662. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  663. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  664. // GELU activation
  665. embeddings = ggml_gelu(ctx0, embeddings);
  666. // Second linear layer
  667. embeddings = ggml_mul_mat(ctx0, model.mm_1_w, embeddings);
  668. embeddings = ggml_add(ctx0, embeddings, model.mm_1_b);
  669. if (use_window_attn) {
  670. window_idx = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos / 4);
  671. ggml_set_name(window_idx, "window_idx");
  672. ggml_set_input(window_idx);
  673. // embeddings shape: [n_embd, n_patches_x * n_patches_y, batch_size]
  674. GGML_ASSERT(batch_size == 1);
  675. embeddings = ggml_reshape_2d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4);
  676. embeddings = ggml_get_rows(ctx0, embeddings, window_idx);
  677. embeddings = ggml_reshape_3d(ctx0, embeddings, hparams.projection_dim, n_patches_x * n_patches_y / 4, batch_size);
  678. }
  679. // build the graph
  680. ggml_build_forward_expand(gf, embeddings);
  681. return gf;
  682. }
  683. ggml_cgraph * build_minicpmv() {
  684. const int batch_size = 1;
  685. GGML_ASSERT(model.class_embedding == nullptr);
  686. const int n_pos = n_patches;
  687. // position embeddings for the projector (not for ViT)
  688. int n_output_dim = clip_n_mmproj_embd(ctx);
  689. ggml_tensor * pos_embed = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_output_dim, n_pos, batch_size);
  690. ggml_set_name(pos_embed, "pos_embed");
  691. ggml_set_input(pos_embed);
  692. // for selecting learned pos embd, used by ViT
  693. struct ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  694. ggml_set_name(positions, "positions");
  695. ggml_set_input(positions);
  696. ggml_tensor * learned_pos_embd = ggml_get_rows(ctx0, model.position_embeddings, positions);
  697. ggml_tensor * inp = build_inp();
  698. ggml_tensor * embeddings = build_vit(
  699. inp, n_patches,
  700. NORM_TYPE_NORMAL,
  701. hparams.ffn_op,
  702. learned_pos_embd,
  703. nullptr);
  704. // resampler projector (it is just another transformer)
  705. ggml_tensor * q = model.mm_model_query;
  706. ggml_tensor * v = ggml_mul_mat(ctx0, model.mm_model_kv_proj, embeddings);
  707. // norm
  708. q = build_norm(q, model.mm_model_ln_q_w, model.mm_model_ln_q_b, NORM_TYPE_NORMAL, eps, -1);
  709. v = build_norm(v, model.mm_model_ln_kv_w, model.mm_model_ln_kv_b, NORM_TYPE_NORMAL, eps, -1);
  710. // k = v + pos_embed
  711. ggml_tensor * k = ggml_add(ctx0, v, pos_embed);
  712. // attention
  713. {
  714. int n_embd = clip_n_mmproj_embd(ctx);
  715. const int d_head = 128;
  716. int n_head = n_embd/d_head;
  717. // Use actual config value if available, otherwise fall back to hardcoded values
  718. int num_query = ctx->model.hparams.minicpmv_query_num;
  719. ggml_tensor * Q = ggml_add(ctx0,
  720. ggml_mul_mat(ctx0, model.mm_model_attn_q_w, q),
  721. model.mm_model_attn_q_b);
  722. ggml_tensor * K = ggml_add(ctx0,
  723. ggml_mul_mat(ctx0, model.mm_model_attn_k_w, k),
  724. model.mm_model_attn_k_b);
  725. ggml_tensor * V = ggml_add(ctx0,
  726. ggml_mul_mat(ctx0, model.mm_model_attn_v_w, v),
  727. model.mm_model_attn_v_b);
  728. Q = ggml_reshape_3d(ctx0, Q, d_head, n_head, num_query);
  729. K = ggml_reshape_3d(ctx0, K, d_head, n_head, n_pos);
  730. V = ggml_reshape_3d(ctx0, V, d_head, n_head, n_pos);
  731. cb(Q, "resampler_Q", -1);
  732. cb(K, "resampler_K", -1);
  733. cb(V, "resampler_V", -1);
  734. embeddings = build_attn(
  735. model.mm_model_attn_o_w,
  736. model.mm_model_attn_o_b,
  737. Q, K, V, nullptr, kq_scale, -1);
  738. cb(embeddings, "resampler_attn_out", -1);
  739. }
  740. // layernorm
  741. embeddings = build_norm(embeddings, model.mm_model_ln_post_w, model.mm_model_ln_post_b, NORM_TYPE_NORMAL, eps, -1);
  742. // projection
  743. embeddings = ggml_mul_mat(ctx0, model.mm_model_proj, embeddings);
  744. // build the graph
  745. ggml_build_forward_expand(gf, embeddings);
  746. return gf;
  747. }
  748. ggml_cgraph * build_internvl() {
  749. GGML_ASSERT(model.class_embedding != nullptr);
  750. GGML_ASSERT(model.position_embeddings != nullptr);
  751. const int n_pos = n_patches + 1;
  752. ggml_tensor * inp = build_inp();
  753. // add CLS token
  754. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  755. // The larger models use a different ViT, which uses RMS norm instead of layer norm
  756. // ref: https://github.com/ggml-org/llama.cpp/pull/13443#issuecomment-2869786188
  757. norm_type norm_t = (hparams.n_embd == 3200 && hparams.n_layer == 45)
  758. ? NORM_TYPE_RMS // 6B ViT (Used by InternVL 2.5/3 - 26B, 38B, 78B)
  759. : NORM_TYPE_NORMAL; // 300M ViT (Used by all smaller InternVL models)
  760. ggml_tensor * cur = build_vit(
  761. inp, n_pos,
  762. norm_t,
  763. hparams.ffn_op,
  764. model.position_embeddings,
  765. nullptr);
  766. // remove CLS token
  767. cur = ggml_view_2d(ctx0, cur,
  768. n_embd, n_patches,
  769. ggml_row_size(cur->type, n_embd), 0);
  770. // pixel shuffle
  771. {
  772. const int scale_factor = model.hparams.proj_scale_factor;
  773. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  774. const int height = n_patches_y;
  775. const int width = n_patches_x;
  776. GGML_ASSERT(scale_factor > 0);
  777. cur = ggml_reshape_4d(ctx0, cur, n_embd * scale_factor, height / scale_factor, width, bsz);
  778. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  779. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  780. n_embd * scale_factor * scale_factor,
  781. height / scale_factor,
  782. width / scale_factor,
  783. bsz);
  784. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  785. // flatten to 2D
  786. cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
  787. n_embd * scale_factor * scale_factor,
  788. cur->ne[1] * cur->ne[2]);
  789. }
  790. // projector (always using GELU activation)
  791. {
  792. // projector LayerNorm uses pytorch's default eps = 1e-5
  793. // ref: https://huggingface.co/OpenGVLab/InternVL3-8B-Instruct/blob/a34d3e4e129a5856abfd6aa6de79776484caa14e/modeling_internvl_chat.py#L79
  794. cur = build_norm(cur, model.mm_0_w, model.mm_0_b, NORM_TYPE_NORMAL, 1e-5, -1);
  795. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  796. cur = ggml_add(ctx0, cur, model.mm_1_b);
  797. cur = ggml_gelu(ctx0, cur);
  798. cur = ggml_mul_mat(ctx0, model.mm_3_w, cur);
  799. cur = ggml_add(ctx0, cur, model.mm_3_b);
  800. }
  801. // build the graph
  802. ggml_build_forward_expand(gf, cur);
  803. return gf;
  804. }
  805. ggml_cgraph * build_llama4() {
  806. GGML_ASSERT(model.class_embedding != nullptr);
  807. GGML_ASSERT(model.position_embeddings != nullptr);
  808. const int n_pos = n_patches + 1; // +1 for [CLS]
  809. // 2D input positions
  810. ggml_tensor * pos_h = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  811. ggml_set_name(pos_h, "pos_h");
  812. ggml_set_input(pos_h);
  813. ggml_tensor * pos_w = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  814. ggml_set_name(pos_w, "pos_w");
  815. ggml_set_input(pos_w);
  816. ggml_tensor * inp = build_inp_raw();
  817. // Llama4UnfoldConvolution
  818. {
  819. ggml_tensor * kernel = ggml_reshape_4d(ctx0, model.patch_embeddings_0,
  820. patch_size, patch_size, 3, n_embd);
  821. inp = ggml_im2col(ctx0, kernel, inp, patch_size, patch_size, 0, 0, 1, 1, true, inp->type);
  822. inp = ggml_mul_mat(ctx0, model.patch_embeddings_0, inp);
  823. inp = ggml_reshape_2d(ctx0, inp, n_embd, n_patches);
  824. cb(inp, "patch_conv", -1);
  825. }
  826. // add CLS token
  827. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  828. // build ViT with 2D position embeddings
  829. auto add_pos = [&](ggml_tensor * cur, const clip_layer &) {
  830. // first half is X axis and second half is Y axis
  831. // ref: https://github.com/huggingface/transformers/blob/40a493c7ed4f19f08eadb0639cf26d49bfa5e180/src/transformers/models/llama4/modeling_llama4.py#L1312
  832. // ref: https://github.com/Blaizzy/mlx-vlm/blob/a57156aa87b33cca6e5ee6cfc14dd4ef8f611be6/mlx_vlm/models/llama4/vision.py#L441
  833. return build_rope_2d(ctx0, cur, pos_w, pos_h, hparams.rope_theta, false);
  834. };
  835. ggml_tensor * cur = build_vit(
  836. inp, n_pos,
  837. NORM_TYPE_NORMAL,
  838. hparams.ffn_op,
  839. model.position_embeddings,
  840. add_pos);
  841. // remove CLS token
  842. cur = ggml_view_2d(ctx0, cur,
  843. n_embd, n_patches,
  844. ggml_row_size(cur->type, n_embd), 0);
  845. // pixel shuffle
  846. // based on Llama4VisionPixelShuffleMLP
  847. // https://github.com/huggingface/transformers/blob/2932f318a20d9e54cc7aea052e040164d85de7d6/src/transformers/models/llama4/modeling_llama4.py#L1151
  848. {
  849. const int scale_factor = model.hparams.proj_scale_factor;
  850. const int bsz = 1; // batch size, always 1 for now since we don't support batching
  851. GGML_ASSERT(scale_factor > 0);
  852. GGML_ASSERT(n_patches_x == n_patches_y); // llama4 only supports square images
  853. cur = ggml_reshape_4d(ctx0, cur,
  854. n_embd * scale_factor,
  855. n_patches_x / scale_factor,
  856. n_patches_y,
  857. bsz);
  858. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  859. cur = ggml_reshape_4d(ctx0, ggml_cont(ctx0, cur),
  860. n_embd * scale_factor * scale_factor,
  861. n_patches_x / scale_factor,
  862. n_patches_y / scale_factor,
  863. bsz);
  864. cur = ggml_permute(ctx0, cur, 0, 2, 1, 3);
  865. // flatten to 2D
  866. cur = ggml_reshape_2d(ctx0, ggml_cont(ctx0, cur),
  867. n_embd * scale_factor * scale_factor,
  868. n_patches / scale_factor / scale_factor);
  869. cb(cur, "pixel_shuffle", -1);
  870. }
  871. // based on Llama4VisionMLP2 (always uses GELU activation, no bias)
  872. {
  873. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, cur);
  874. cur = ggml_gelu(ctx0, cur);
  875. cur = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, cur);
  876. cur = ggml_gelu(ctx0, cur);
  877. cb(cur, "adapter_mlp", -1);
  878. }
  879. // Llama4MultiModalProjector
  880. cur = ggml_mul_mat(ctx0, model.mm_model_proj, cur);
  881. cb(cur, "projected", -1);
  882. // build the graph
  883. ggml_build_forward_expand(gf, cur);
  884. return gf;
  885. }
  886. // this graph is used by llava, granite and glm
  887. // due to having embedding_stack (used by granite), we cannot reuse build_vit
  888. ggml_cgraph * build_llava() {
  889. const int batch_size = 1;
  890. const int n_pos = n_patches + (model.class_embedding ? 1 : 0);
  891. GGML_ASSERT(n_patches_x == n_patches_y && "only square images supported");
  892. // Calculate the deepest feature layer based on hparams and projector type
  893. int max_feature_layer = n_layer;
  894. {
  895. // Get the index of the second to last layer; this is the default for models that have a llava projector
  896. int il_last = hparams.n_layer - 1;
  897. int deepest_feature_layer = -1;
  898. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV || ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  899. il_last += 1;
  900. }
  901. // If we set explicit vision feature layers, only go up to the deepest one
  902. // NOTE: only used by granite-vision models for now
  903. for (const auto & feature_layer : hparams.vision_feature_layer) {
  904. if (feature_layer > deepest_feature_layer) {
  905. deepest_feature_layer = feature_layer;
  906. }
  907. }
  908. max_feature_layer = deepest_feature_layer < 0 ? il_last : deepest_feature_layer;
  909. }
  910. ggml_tensor * inp = build_inp();
  911. // concat class_embeddings and patch_embeddings
  912. if (model.class_embedding) {
  913. inp = ggml_concat(ctx0, inp, model.class_embedding, 1);
  914. }
  915. ggml_tensor * positions = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_pos);
  916. ggml_set_name(positions, "positions");
  917. ggml_set_input(positions);
  918. inp = ggml_add(ctx0, inp, ggml_get_rows(ctx0, model.position_embeddings, positions));
  919. ggml_tensor * inpL = inp;
  920. // pre-layernorm
  921. if (model.pre_ln_w) {
  922. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, NORM_TYPE_NORMAL, eps, -1);
  923. cb(inpL, "pre_ln", -1);
  924. }
  925. std::vector<ggml_tensor *> embedding_stack;
  926. const auto & vision_feature_layer = hparams.vision_feature_layer;
  927. // loop over layers
  928. for (int il = 0; il < max_feature_layer; il++) {
  929. auto & layer = model.layers[il];
  930. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  931. // If this is an embedding feature layer, save the output.
  932. // NOTE: 0 index here refers to the input to the encoder.
  933. if (vision_feature_layer.find(il) != vision_feature_layer.end()) {
  934. embedding_stack.push_back(cur);
  935. }
  936. // layernorm1
  937. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, NORM_TYPE_NORMAL, eps, il);
  938. cb(cur, "layer_inp_normed", il);
  939. // self-attention
  940. {
  941. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  942. if (layer.q_b) {
  943. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  944. }
  945. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  946. if (layer.k_b) {
  947. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  948. }
  949. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  950. if (layer.v_b) {
  951. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  952. }
  953. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  954. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  955. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  956. cb(Qcur, "Qcur", il);
  957. cb(Kcur, "Kcur", il);
  958. cb(Vcur, "Vcur", il);
  959. cur = build_attn(layer.o_w, layer.o_b,
  960. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  961. cb(cur, "attn_out", il);
  962. }
  963. // re-add the layer input, e.g., residual
  964. cur = ggml_add(ctx0, cur, inpL);
  965. inpL = cur; // inpL = residual, cur = hidden_states
  966. cb(cur, "ffn_inp", il);
  967. // layernorm2
  968. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, NORM_TYPE_NORMAL, eps, il);
  969. cb(cur, "ffn_inp_normed", il);
  970. // ffn
  971. cur = build_ffn(cur,
  972. layer.ff_up_w, layer.ff_up_b,
  973. layer.ff_gate_w, layer.ff_gate_b,
  974. layer.ff_down_w, layer.ff_down_b,
  975. hparams.ffn_op, il);
  976. cb(cur, "ffn_out", il);
  977. // residual 2
  978. cur = ggml_add(ctx0, inpL, cur);
  979. cb(cur, "layer_out", il);
  980. inpL = cur;
  981. }
  982. // post-layernorm
  983. if (model.post_ln_w) {
  984. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, NORM_TYPE_NORMAL, eps, -1);
  985. }
  986. ggml_tensor * embeddings = inpL;
  987. // process vision feature layers (used by granite)
  988. {
  989. // final layer is a vision feature layer
  990. if (vision_feature_layer.find(max_feature_layer) != vision_feature_layer.end()) {
  991. embedding_stack.push_back(inpL);
  992. }
  993. // If feature layers are explicitly set, stack them (if we have multiple)
  994. if (!embedding_stack.empty()) {
  995. embeddings = embedding_stack[0];
  996. for (size_t i = 1; i < embedding_stack.size(); i++) {
  997. embeddings = ggml_concat(ctx0, embeddings, embedding_stack[i], 0);
  998. }
  999. }
  1000. }
  1001. // llava projector (also used by granite)
  1002. if (ctx->model.hparams.has_llava_projector) {
  1003. embeddings = ggml_reshape_2d(ctx0, embeddings, embeddings->ne[0], embeddings->ne[1]);
  1004. ggml_tensor * patches = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_patches);
  1005. ggml_set_name(patches, "patches");
  1006. ggml_set_input(patches);
  1007. // shape [1, 576, 1024]
  1008. // ne is whcn, ne = [1024, 576, 1, 1]
  1009. embeddings = ggml_get_rows(ctx0, embeddings, patches);
  1010. // print_tensor_info(embeddings, "embeddings");
  1011. // llava projector
  1012. if (ctx->proj_type() == PROJECTOR_TYPE_MLP) {
  1013. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1014. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1015. embeddings = ggml_gelu(ctx0, embeddings);
  1016. if (model.mm_2_w) {
  1017. embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
  1018. embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
  1019. }
  1020. }
  1021. else if (ctx->proj_type() == PROJECTOR_TYPE_MLP_NORM) {
  1022. embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
  1023. embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
  1024. // ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
  1025. // First LayerNorm
  1026. embeddings = ggml_norm(ctx0, embeddings, eps);
  1027. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_1_w),
  1028. model.mm_1_b);
  1029. // GELU activation
  1030. embeddings = ggml_gelu(ctx0, embeddings);
  1031. // Second linear layer
  1032. embeddings = ggml_mul_mat(ctx0, model.mm_3_w, embeddings);
  1033. embeddings = ggml_add(ctx0, embeddings, model.mm_3_b);
  1034. // Second LayerNorm
  1035. embeddings = ggml_norm(ctx0, embeddings, eps);
  1036. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_4_w),
  1037. model.mm_4_b);
  1038. }
  1039. else if (ctx->proj_type() == PROJECTOR_TYPE_LDP) {
  1040. // MobileVLM projector
  1041. int n_patch = 24;
  1042. ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings);
  1043. mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b);
  1044. mlp_1 = ggml_gelu(ctx0, mlp_1);
  1045. ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1);
  1046. mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b);
  1047. // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1]
  1048. // block 1
  1049. ggml_tensor * block_1 = nullptr;
  1050. {
  1051. // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24]
  1052. mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3));
  1053. mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]);
  1054. // stride = 1, padding = 1, bias is nullptr
  1055. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, 1, 1, 1, 1, 1, 1);
  1056. // layer norm
  1057. // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1058. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1059. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1060. block_1 = ggml_norm(ctx0, block_1, eps);
  1061. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b);
  1062. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1063. // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1064. // hardswish
  1065. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1066. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1067. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1068. // pointwise conv
  1069. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1070. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1);
  1071. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b);
  1072. block_1 = ggml_relu(ctx0, block_1);
  1073. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1);
  1074. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b);
  1075. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1076. // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1]
  1077. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1078. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1079. int w = block_1->ne[0], h = block_1->ne[1];
  1080. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1081. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1082. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1083. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1);
  1084. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1085. // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1]
  1086. block_1 = ggml_norm(ctx0, block_1, eps);
  1087. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b);
  1088. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1089. // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1]
  1090. // residual
  1091. block_1 = ggml_add(ctx0, mlp_3, block_1);
  1092. }
  1093. // block_2
  1094. {
  1095. // stride = 2
  1096. block_1 = ggml_conv_2d_dw(ctx0, model.mm_model_block_2_block_0_0_w, block_1, 2, 2, 1, 1, 1, 1);
  1097. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1098. // layer norm
  1099. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3));
  1100. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1101. block_1 = ggml_norm(ctx0, block_1, eps);
  1102. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b);
  1103. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3));
  1104. // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1]
  1105. // hardswish
  1106. ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1);
  1107. // not sure the parameters is right for globalAvgPooling
  1108. block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0);
  1109. // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1110. // pointwise conv
  1111. block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]);
  1112. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1);
  1113. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b);
  1114. block_1 = ggml_relu(ctx0, block_1);
  1115. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1);
  1116. block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b);
  1117. block_1 = ggml_hardsigmoid(ctx0, block_1);
  1118. // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1]
  1119. block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]);
  1120. block_1 = ggml_mul(ctx0, block_1_hw, block_1);
  1121. int w = block_1->ne[0], h = block_1->ne[1];
  1122. block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]);
  1123. block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3));
  1124. // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1]
  1125. block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1);
  1126. block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]);
  1127. // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1]
  1128. block_1 = ggml_norm(ctx0, block_1, eps);
  1129. block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b);
  1130. block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]);
  1131. // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1]
  1132. }
  1133. embeddings = block_1;
  1134. }
  1135. else if (ctx->proj_type() == PROJECTOR_TYPE_LDPV2)
  1136. {
  1137. int n_patch = 24;
  1138. ggml_tensor * mlp_0 = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1139. mlp_0 = ggml_add(ctx0, mlp_0, model.mm_model_mlp_0_b);
  1140. mlp_0 = ggml_gelu(ctx0, mlp_0);
  1141. ggml_tensor * mlp_2 = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, mlp_0);
  1142. mlp_2 = ggml_add(ctx0, mlp_2, model.mm_model_mlp_2_b);
  1143. // mlp_2 ne = [2048, 576, 1, 1]
  1144. // // AVG Pool Layer 2*2, strides = 2
  1145. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 0, 2, 3));
  1146. // mlp_2 ne = [576, 2048, 1, 1]
  1147. mlp_2 = ggml_reshape_4d(ctx0, mlp_2, n_patch, n_patch, mlp_2->ne[1], mlp_2->ne[2]);
  1148. // mlp_2 ne [24, 24, 2048, 1]
  1149. mlp_2 = ggml_pool_2d(ctx0, mlp_2, GGML_OP_POOL_AVG, 2, 2, 2, 2, 0, 0);
  1150. // weight ne = [3, 3, 2048, 1]
  1151. ggml_tensor * peg_0 = ggml_conv_2d_dw(ctx0, model.mm_model_peg_0_w, mlp_2, 1, 1, 1, 1, 1, 1);
  1152. peg_0 = ggml_cont(ctx0, ggml_permute(ctx0, peg_0, 1, 2, 0, 3));
  1153. peg_0 = ggml_add(ctx0, peg_0, model.mm_model_peg_0_b);
  1154. mlp_2 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_2, 1, 2, 0, 3));
  1155. peg_0 = ggml_add(ctx0, peg_0, mlp_2);
  1156. peg_0 = ggml_reshape_3d(ctx0, peg_0, peg_0->ne[0], peg_0->ne[1] * peg_0->ne[2], peg_0->ne[3]);
  1157. embeddings = peg_0;
  1158. }
  1159. else {
  1160. GGML_ABORT("fatal error");
  1161. }
  1162. }
  1163. // glm projector
  1164. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE) {
  1165. size_t gridsz = (size_t)sqrt(embeddings->ne[1]);
  1166. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings,1,0,2,3));
  1167. embeddings = ggml_reshape_3d(ctx0, embeddings, gridsz, gridsz, embeddings->ne[1]);
  1168. embeddings = ggml_conv_2d(ctx0, model.mm_model_adapter_conv_w, embeddings, 2, 2, 0, 0, 1, 1);
  1169. embeddings = ggml_reshape_3d(ctx0, embeddings,embeddings->ne[0]*embeddings->ne[1] , embeddings->ne[2], batch_size);
  1170. embeddings = ggml_cont(ctx0, ggml_permute(ctx0,embeddings, 1, 0, 2, 3));
  1171. embeddings = ggml_add(ctx0, embeddings, model.mm_model_adapter_conv_b);
  1172. // GLU
  1173. {
  1174. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_0_w, embeddings);
  1175. embeddings = ggml_norm(ctx0, embeddings, eps);
  1176. embeddings = ggml_add(ctx0, ggml_mul(ctx0, embeddings, model.mm_model_ln_q_w), model.mm_model_ln_q_b);
  1177. embeddings = ggml_gelu_inplace(ctx0, embeddings);
  1178. ggml_tensor * x = embeddings;
  1179. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_2_w, embeddings);
  1180. x = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w,x);
  1181. embeddings = ggml_swiglu_split(ctx0, embeddings, x);
  1182. embeddings = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, embeddings);
  1183. }
  1184. // arrangement of BOI/EOI token embeddings
  1185. // note: these embeddings are not present in text model, hence we cannot process them as text tokens
  1186. // see: https://huggingface.co/THUDM/glm-edge-v-2b/blob/main/siglip.py#L53
  1187. {
  1188. embeddings = ggml_concat(ctx0, model.mm_glm_tok_boi, embeddings, 1); // BOI
  1189. embeddings = ggml_concat(ctx0, embeddings, model.mm_glm_tok_eoi, 1); // EOI
  1190. }
  1191. }
  1192. else {
  1193. GGML_ABORT("llava: unknown projector type");
  1194. }
  1195. // build the graph
  1196. ggml_build_forward_expand(gf, embeddings);
  1197. return gf;
  1198. }
  1199. // whisper encoder with custom projector
  1200. ggml_cgraph * build_whisper_enc() {
  1201. const int n_frames = img.nx;
  1202. const int n_pos = n_frames / 2;
  1203. GGML_ASSERT(model.position_embeddings->ne[1] >= n_pos);
  1204. ggml_tensor * inp = build_inp_raw(1);
  1205. // conv1d block
  1206. {
  1207. // convolution + gelu
  1208. ggml_tensor * cur = ggml_conv_1d_ph(ctx0, model.conv1d_1_w, inp, 1, 1);
  1209. cur = ggml_add(ctx0, cur, model.conv1d_1_b);
  1210. cur = ggml_gelu_erf(ctx0, cur);
  1211. cur = ggml_conv_1d_ph(ctx0, model.conv1d_2_w, cur, 2, 1);
  1212. cur = ggml_add(ctx0, cur, model.conv1d_2_b);
  1213. cur = ggml_gelu_erf(ctx0, cur);
  1214. // transpose
  1215. inp = ggml_cont(ctx0, ggml_transpose(ctx0, cur));
  1216. cb(inp, "after_conv1d", -1);
  1217. }
  1218. // sanity check (only check one layer, but it should be the same for all)
  1219. GGML_ASSERT(model.layers[0].ln_1_w && model.layers[0].ln_1_b);
  1220. GGML_ASSERT(model.layers[0].ln_2_w && model.layers[0].ln_2_b);
  1221. GGML_ASSERT(model.layers[0].q_b);
  1222. GGML_ASSERT(model.layers[0].v_b);
  1223. GGML_ASSERT(!model.layers[0].k_b); // no bias for k
  1224. GGML_ASSERT(model.post_ln_w && model.post_ln_b);
  1225. ggml_tensor * pos_embd_selected = ggml_view_2d(
  1226. ctx0, model.position_embeddings,
  1227. model.position_embeddings->ne[0], n_pos,
  1228. model.position_embeddings->nb[1], 0
  1229. );
  1230. ggml_tensor * cur = build_vit(
  1231. inp, n_pos,
  1232. NORM_TYPE_NORMAL,
  1233. hparams.ffn_op,
  1234. pos_embd_selected,
  1235. nullptr);
  1236. cb(cur, "after_transformer", -1);
  1237. if (model.audio_has_stack_frames()) {
  1238. // StackAudioFrames
  1239. // https://huggingface.co/fixie-ai/ultravox-v0_5-llama-3_2-1b/blob/main/ultravox_model.py
  1240. int64_t stride = n_embd * hparams.proj_stack_factor;
  1241. int64_t padded_len = GGML_PAD(ggml_nelements(cur), stride);
  1242. int64_t pad = padded_len - ggml_nelements(cur);
  1243. if (pad > 0) {
  1244. cur = ggml_view_1d(ctx0, cur, ggml_nelements(cur), 0);
  1245. cur = ggml_pad(ctx0, cur, pad, 0, 0, 0);
  1246. }
  1247. cur = ggml_view_2d(ctx0, cur, stride, padded_len / stride,
  1248. ggml_row_size(cur->type, stride), 0);
  1249. cb(cur, "after_stacked", -1);
  1250. }
  1251. if (ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX) {
  1252. // UltravoxProjector
  1253. // pre-norm
  1254. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1255. cur = ggml_mul(ctx0, cur, model.mm_norm_pre_w);
  1256. // ffn in
  1257. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1258. // swiglu
  1259. // see SwiGLU in ultravox_model.py, the second half passed through is silu, not the first half
  1260. cur = ggml_swiglu_swapped(ctx0, cur);
  1261. // mid-norm
  1262. cur = ggml_rms_norm(ctx0, cur, 1e-6);
  1263. cur = ggml_mul(ctx0, cur, model.mm_norm_mid_w);
  1264. // ffn out
  1265. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1266. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2A) {
  1267. // projector
  1268. cur = ggml_mul_mat(ctx0, model.mm_fc_w, cur);
  1269. cur = ggml_add(ctx0, cur, model.mm_fc_b);
  1270. } else if (ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL) {
  1271. // projector
  1272. cur = ggml_mul_mat(ctx0, model.mm_1_w, cur);
  1273. cur = ggml_gelu_erf(ctx0, cur);
  1274. cur = ggml_mul_mat(ctx0, model.mm_2_w, cur);
  1275. } else {
  1276. GGML_ABORT("%s: unknown projector type", __func__);
  1277. }
  1278. cb(cur, "projected", -1);
  1279. ggml_build_forward_expand(gf, cur);
  1280. return gf;
  1281. }
  1282. private:
  1283. //
  1284. // utility functions
  1285. //
  1286. void cb(ggml_tensor * cur0, const char * name, int il) const {
  1287. if (ctx->debug_graph) {
  1288. ggml_tensor * cur = ggml_cpy(ctx0, cur0, ggml_dup_tensor(ctx0, cur0));
  1289. std::string cur_name = il >= 0 ? std::string(name) + "_" + std::to_string(il) : name;
  1290. ggml_set_name(cur, cur_name.c_str());
  1291. ggml_set_output(cur);
  1292. ggml_build_forward_expand(gf, cur);
  1293. ctx->debug_print_tensors.push_back(cur);
  1294. }
  1295. }
  1296. // build vision transformer (ViT) cgraph
  1297. // this function should cover most of the models
  1298. // if your model has specific features, you should probably duplicate this function
  1299. ggml_tensor * build_vit(
  1300. ggml_tensor * inp,
  1301. int64_t n_pos,
  1302. norm_type norm_t,
  1303. ffn_op_type ffn_t,
  1304. ggml_tensor * learned_pos_embd,
  1305. std::function<ggml_tensor *(ggml_tensor *, const clip_layer &)> add_pos
  1306. ) {
  1307. if (learned_pos_embd) {
  1308. inp = ggml_add(ctx0, inp, learned_pos_embd);
  1309. cb(inp, "pos_embed", -1);
  1310. }
  1311. ggml_tensor * inpL = inp;
  1312. // pre-layernorm
  1313. if (model.pre_ln_w) {
  1314. inpL = build_norm(inpL, model.pre_ln_w, model.pre_ln_b, norm_t, eps, -1);
  1315. cb(inpL, "pre_ln", -1);
  1316. }
  1317. // loop over layers
  1318. for (int il = 0; il < n_layer; il++) {
  1319. auto & layer = model.layers[il];
  1320. ggml_tensor * cur = inpL; // inpL = residual, cur = hidden_states
  1321. // layernorm1
  1322. cur = build_norm(cur, layer.ln_1_w, layer.ln_1_b, norm_t, eps, il);
  1323. cb(cur, "layer_inp_normed", il);
  1324. // self-attention
  1325. {
  1326. ggml_tensor * Qcur = ggml_mul_mat(ctx0, layer.q_w, cur);
  1327. if (layer.q_b) {
  1328. Qcur = ggml_add(ctx0, Qcur, layer.q_b);
  1329. }
  1330. ggml_tensor * Kcur = ggml_mul_mat(ctx0, layer.k_w, cur);
  1331. if (layer.k_b) {
  1332. Kcur = ggml_add(ctx0, Kcur, layer.k_b);
  1333. }
  1334. ggml_tensor * Vcur = ggml_mul_mat(ctx0, layer.v_w, cur);
  1335. if (layer.v_b) {
  1336. Vcur = ggml_add(ctx0, Vcur, layer.v_b);
  1337. }
  1338. if (layer.q_norm) {
  1339. Qcur = build_norm(Qcur, layer.q_norm, NULL, norm_t, eps, il);
  1340. cb(Qcur, "Qcur_norm", il);
  1341. }
  1342. if (layer.k_norm) {
  1343. Kcur = build_norm(Kcur, layer.k_norm, NULL, norm_t, eps, il);
  1344. cb(Kcur, "Kcur_norm", il);
  1345. }
  1346. Qcur = ggml_reshape_3d(ctx0, Qcur, d_head, n_head, n_pos);
  1347. Kcur = ggml_reshape_3d(ctx0, Kcur, d_head, n_head, n_pos);
  1348. Vcur = ggml_reshape_3d(ctx0, Vcur, d_head, n_head, n_pos);
  1349. cb(Qcur, "Qcur", il);
  1350. cb(Kcur, "Kcur", il);
  1351. cb(Vcur, "Vcur", il);
  1352. if (add_pos) {
  1353. Qcur = add_pos(Qcur, layer);
  1354. Kcur = add_pos(Kcur, layer);
  1355. cb(Qcur, "Qcur_pos", il);
  1356. cb(Kcur, "Kcur_pos", il);
  1357. }
  1358. cur = build_attn(layer.o_w, layer.o_b,
  1359. Qcur, Kcur, Vcur, nullptr, kq_scale, il);
  1360. cb(cur, "attn_out", il);
  1361. }
  1362. if (layer.ls_1_w) {
  1363. cur = ggml_mul(ctx0, cur, layer.ls_1_w);
  1364. cb(cur, "attn_out_scaled", il);
  1365. }
  1366. // re-add the layer input, e.g., residual
  1367. cur = ggml_add(ctx0, cur, inpL);
  1368. inpL = cur; // inpL = residual, cur = hidden_states
  1369. cb(cur, "ffn_inp", il);
  1370. // layernorm2
  1371. cur = build_norm(cur, layer.ln_2_w, layer.ln_2_b, norm_t, eps, il);
  1372. cb(cur, "ffn_inp_normed", il);
  1373. // ffn
  1374. cur = build_ffn(cur,
  1375. layer.ff_up_w, layer.ff_up_b,
  1376. layer.ff_gate_w, layer.ff_gate_b,
  1377. layer.ff_down_w, layer.ff_down_b,
  1378. ffn_t, il);
  1379. cb(cur, "ffn_out", il);
  1380. if (layer.ls_2_w) {
  1381. cur = ggml_mul(ctx0, cur, layer.ls_2_w);
  1382. cb(cur, "ffn_out_scaled", il);
  1383. }
  1384. // residual 2
  1385. cur = ggml_add(ctx0, inpL, cur);
  1386. cb(cur, "layer_out", il);
  1387. inpL = cur;
  1388. }
  1389. if (ctx->model.audio_has_avgpool()) {
  1390. ggml_tensor * cur = inpL;
  1391. cur = ggml_transpose(ctx0, cur);
  1392. cur = ggml_cont(ctx0, cur);
  1393. cur = ggml_pool_1d(ctx0, cur, GGML_OP_POOL_AVG, 2, 2, 0);
  1394. cur = ggml_transpose(ctx0, cur);
  1395. cur = ggml_cont(ctx0, cur);
  1396. inpL = cur;
  1397. }
  1398. // post-layernorm
  1399. if (model.post_ln_w) {
  1400. inpL = build_norm(inpL, model.post_ln_w, model.post_ln_b, norm_t, eps, -1);
  1401. }
  1402. return inpL;
  1403. }
  1404. // build the input after conv2d (inp_raw --> patches)
  1405. // returns tensor with shape [n_embd, n_patches]
  1406. ggml_tensor * build_inp() {
  1407. ggml_tensor * inp_raw = build_inp_raw();
  1408. ggml_tensor * inp = ggml_conv_2d(ctx0, model.patch_embeddings_0, inp_raw, patch_size, patch_size, 0, 0, 1, 1);
  1409. inp = ggml_reshape_2d(ctx0, inp, n_patches, n_embd);
  1410. inp = ggml_cont(ctx0, ggml_transpose(ctx0, inp));
  1411. if (model.patch_bias) {
  1412. inp = ggml_add(ctx0, inp, model.patch_bias);
  1413. cb(inp, "patch_bias", -1);
  1414. }
  1415. return inp;
  1416. }
  1417. ggml_tensor * build_inp_raw(int channels = 3) {
  1418. ggml_tensor * inp_raw = ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, img.nx, img.ny, channels);
  1419. ggml_set_name(inp_raw, "inp_raw");
  1420. ggml_set_input(inp_raw);
  1421. return inp_raw;
  1422. }
  1423. ggml_tensor * build_norm(
  1424. ggml_tensor * cur,
  1425. ggml_tensor * mw,
  1426. ggml_tensor * mb,
  1427. norm_type type,
  1428. float norm_eps,
  1429. int il) const {
  1430. cur = type == NORM_TYPE_RMS
  1431. ? ggml_rms_norm(ctx0, cur, norm_eps)
  1432. : ggml_norm(ctx0, cur, norm_eps);
  1433. if (mw || mb) {
  1434. cb(cur, "norm", il);
  1435. }
  1436. if (mw) {
  1437. cur = ggml_mul(ctx0, cur, mw);
  1438. if (mb) {
  1439. cb(cur, "norm_w", il);
  1440. }
  1441. }
  1442. if (mb) {
  1443. cur = ggml_add(ctx0, cur, mb);
  1444. }
  1445. return cur;
  1446. }
  1447. ggml_tensor * build_ffn(
  1448. ggml_tensor * cur,
  1449. ggml_tensor * up,
  1450. ggml_tensor * up_b,
  1451. ggml_tensor * gate,
  1452. ggml_tensor * gate_b,
  1453. ggml_tensor * down,
  1454. ggml_tensor * down_b,
  1455. ffn_op_type type_op,
  1456. int il) const {
  1457. ggml_tensor * tmp = up ? ggml_mul_mat(ctx0, up, cur) : cur;
  1458. cb(tmp, "ffn_up", il);
  1459. if (up_b) {
  1460. tmp = ggml_add(ctx0, tmp, up_b);
  1461. cb(tmp, "ffn_up_b", il);
  1462. }
  1463. if (gate) {
  1464. cur = ggml_mul_mat(ctx0, gate, cur);
  1465. cb(cur, "ffn_gate", il);
  1466. if (gate_b) {
  1467. cur = ggml_add(ctx0, cur, gate_b);
  1468. cb(cur, "ffn_gate_b", il);
  1469. }
  1470. } else {
  1471. cur = tmp;
  1472. }
  1473. // we only support parallel ffn for now
  1474. switch (type_op) {
  1475. case FFN_SILU:
  1476. if (gate) {
  1477. cur = ggml_swiglu_split(ctx0, cur, tmp);
  1478. cb(cur, "ffn_swiglu", il);
  1479. } else {
  1480. cur = ggml_silu(ctx0, cur);
  1481. cb(cur, "ffn_silu", il);
  1482. } break;
  1483. case FFN_GELU:
  1484. if (gate) {
  1485. cur = ggml_geglu_split(ctx0, cur, tmp);
  1486. cb(cur, "ffn_geglu", il);
  1487. } else {
  1488. cur = ggml_gelu(ctx0, cur);
  1489. cb(cur, "ffn_gelu", il);
  1490. } break;
  1491. case FFN_GELU_ERF:
  1492. if (gate) {
  1493. cur = ggml_geglu_erf_split(ctx0, cur, tmp);
  1494. cb(cur, "ffn_geglu_erf", il);
  1495. } else {
  1496. cur = ggml_gelu_erf(ctx0, cur);
  1497. cb(cur, "ffn_gelu_erf", il);
  1498. } break;
  1499. case FFN_GELU_QUICK:
  1500. if (gate) {
  1501. cur = ggml_geglu_quick_split(ctx0, cur, tmp);
  1502. cb(cur, "ffn_geglu_quick", il);
  1503. } else {
  1504. cur = ggml_gelu_quick(ctx0, cur);
  1505. cb(cur, "ffn_gelu_quick", il);
  1506. } break;
  1507. }
  1508. if (down) {
  1509. cur = ggml_mul_mat(ctx0, down, cur);
  1510. }
  1511. if (down_b) {
  1512. cb(cur, "ffn_down", il);
  1513. }
  1514. if (down_b) {
  1515. cur = ggml_add(ctx0, cur, down_b);
  1516. }
  1517. return cur;
  1518. }
  1519. ggml_tensor * build_attn(
  1520. ggml_tensor * wo,
  1521. ggml_tensor * wo_b,
  1522. ggml_tensor * q_cur,
  1523. ggml_tensor * k_cur,
  1524. ggml_tensor * v_cur,
  1525. ggml_tensor * kq_mask,
  1526. float kq_scale,
  1527. int il) const {
  1528. // these nodes are added to the graph together so that they are not reordered
  1529. // by doing so, the number of splits in the graph is reduced
  1530. ggml_build_forward_expand(gf, q_cur);
  1531. ggml_build_forward_expand(gf, k_cur);
  1532. ggml_build_forward_expand(gf, v_cur);
  1533. ggml_tensor * q = ggml_permute(ctx0, q_cur, 0, 2, 1, 3);
  1534. //cb(q, "q", il);
  1535. ggml_tensor * k = ggml_permute(ctx0, k_cur, 0, 2, 1, 3);
  1536. //cb(k, "k", il);
  1537. ggml_tensor * v = ggml_permute(ctx0, v_cur, 1, 2, 0, 3);
  1538. v = ggml_cont(ctx0, v);
  1539. //cb(k, "v", il);
  1540. ggml_tensor * cur;
  1541. // TODO @ngxson : support flash attention
  1542. {
  1543. const auto n_tokens = q->ne[1];
  1544. const auto n_head = q->ne[2];
  1545. // const auto n_kv = k->ne[1]; // for flash attention
  1546. ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  1547. // F32 may not needed for vision encoders?
  1548. // ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  1549. kq = ggml_soft_max_ext(ctx0, kq, kq_mask, kq_scale, 0.0f);
  1550. ggml_tensor * kqv = ggml_mul_mat(ctx0, v, kq);
  1551. cur = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  1552. cur = ggml_cont_2d(ctx0, cur, cur->ne[0]*n_head, n_tokens);
  1553. }
  1554. cb(cur, "kqv_out", il);
  1555. if (wo) {
  1556. cur = ggml_mul_mat(ctx0, wo, cur);
  1557. }
  1558. if (wo_b) {
  1559. cur = ggml_add(ctx0, cur, wo_b);
  1560. }
  1561. return cur;
  1562. }
  1563. // implementation of the 2D RoPE without adding a new op in ggml
  1564. // this is not efficient (use double the memory), but works on all backends
  1565. // TODO: there was a more efficient which relies on ggml_view and ggml_rope_ext_inplace, but the rope inplace does not work well with non-contiguous tensors ; we should fix that and revert back to the original implementation in https://github.com/ggml-org/llama.cpp/pull/13065
  1566. static ggml_tensor * build_rope_2d(
  1567. ggml_context * ctx0,
  1568. ggml_tensor * cur,
  1569. ggml_tensor * pos_a, // first half
  1570. ggml_tensor * pos_b, // second half
  1571. const float freq_base,
  1572. const bool interleave_freq
  1573. ) {
  1574. const int64_t n_dim = cur->ne[0];
  1575. const int64_t n_head = cur->ne[1];
  1576. const int64_t n_pos = cur->ne[2];
  1577. // for example, if we have cur tensor of shape (n_dim=8, n_head, n_pos)
  1578. // we will have a list of 4 inv_freq: 1e-0, 1e-1, 1e-2, 1e-3
  1579. // first half of cur will use 1e-0, 1e-2 (even)
  1580. // second half of cur will use 1e-1, 1e-3 (odd)
  1581. // the trick here is to rotate just half of n_dim, so inv_freq will automatically be even
  1582. // ^ don't ask me why, it's math! -2(2i) / n_dim == -2i / (n_dim/2)
  1583. // then for the second half, we use freq_scale to shift the inv_freq
  1584. // ^ why? replace (2i) with (2i+1) in the above equation
  1585. const float freq_scale_odd = interleave_freq
  1586. ? std::pow(freq_base, (float)-2/n_dim)
  1587. : 1.0;
  1588. // first half
  1589. ggml_tensor * first;
  1590. {
  1591. first = ggml_view_3d(ctx0, cur,
  1592. n_dim/2, n_head, n_pos,
  1593. ggml_row_size(cur->type, n_dim),
  1594. ggml_row_size(cur->type, n_dim*n_head),
  1595. 0);
  1596. first = ggml_rope_ext(
  1597. ctx0,
  1598. first,
  1599. pos_a, // positions
  1600. nullptr, // freq factors
  1601. n_dim/2, // n_dims
  1602. 0, 0, freq_base,
  1603. 1.0f, 0.0f, 1.0f, 0.0f, 0.0f
  1604. );
  1605. }
  1606. // second half
  1607. ggml_tensor * second;
  1608. {
  1609. second = ggml_view_3d(ctx0, cur,
  1610. n_dim/2, n_head, n_pos,
  1611. ggml_row_size(cur->type, n_dim),
  1612. ggml_row_size(cur->type, n_dim*n_head),
  1613. n_dim/2 * ggml_element_size(cur));
  1614. second = ggml_cont(ctx0, second); // copy, because ggml_rope don't play well with non-contiguous tensors
  1615. second = ggml_rope_ext(
  1616. ctx0,
  1617. second,
  1618. pos_b, // positions
  1619. nullptr, // freq factors
  1620. n_dim/2, // n_dims
  1621. 0, 0, freq_base,
  1622. freq_scale_odd,
  1623. 0.0f, 1.0f, 0.0f, 0.0f
  1624. );
  1625. }
  1626. cur = ggml_concat(ctx0, first, second, 0);
  1627. return cur;
  1628. }
  1629. };
  1630. static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32_batch & imgs) {
  1631. GGML_ASSERT(imgs.entries.size() == 1 && "n_batch > 1 is not supported");
  1632. clip_graph graph(ctx, *imgs.entries[0]);
  1633. ggml_cgraph * res;
  1634. switch (ctx->proj_type()) {
  1635. case PROJECTOR_TYPE_GEMMA3:
  1636. case PROJECTOR_TYPE_IDEFICS3:
  1637. {
  1638. res = graph.build_siglip();
  1639. } break;
  1640. case PROJECTOR_TYPE_PIXTRAL:
  1641. {
  1642. res = graph.build_pixtral();
  1643. } break;
  1644. case PROJECTOR_TYPE_QWEN2VL:
  1645. case PROJECTOR_TYPE_QWEN25VL:
  1646. {
  1647. res = graph.build_qwen2vl();
  1648. } break;
  1649. case PROJECTOR_TYPE_MINICPMV:
  1650. {
  1651. res = graph.build_minicpmv();
  1652. } break;
  1653. case PROJECTOR_TYPE_INTERNVL:
  1654. {
  1655. res = graph.build_internvl();
  1656. } break;
  1657. case PROJECTOR_TYPE_LLAMA4:
  1658. {
  1659. res = graph.build_llama4();
  1660. } break;
  1661. case PROJECTOR_TYPE_ULTRAVOX:
  1662. case PROJECTOR_TYPE_VOXTRAL:
  1663. case PROJECTOR_TYPE_QWEN2A:
  1664. {
  1665. res = graph.build_whisper_enc();
  1666. } break;
  1667. default:
  1668. {
  1669. res = graph.build_llava();
  1670. } break;
  1671. }
  1672. return res;
  1673. }
  1674. struct clip_model_loader {
  1675. ggml_context_ptr ctx_meta;
  1676. gguf_context_ptr ctx_gguf;
  1677. std::string fname;
  1678. size_t model_size = 0; // in bytes
  1679. bool has_vision = false;
  1680. bool has_audio = false;
  1681. // TODO @ngxson : we should not pass clip_ctx here, it should be clip_model
  1682. clip_model_loader(const char * fname) : fname(fname) {
  1683. struct ggml_context * meta = nullptr;
  1684. struct gguf_init_params params = {
  1685. /*.no_alloc = */ true,
  1686. /*.ctx = */ &meta,
  1687. };
  1688. ctx_gguf = gguf_context_ptr(gguf_init_from_file(fname, params));
  1689. if (!ctx_gguf.get()) {
  1690. throw std::runtime_error(string_format("%s: failed to load CLIP model from %s. Does this file exist?\n", __func__, fname));
  1691. }
  1692. ctx_meta.reset(meta);
  1693. const int n_tensors = gguf_get_n_tensors(ctx_gguf.get());
  1694. // print gguf info
  1695. {
  1696. std::string name;
  1697. get_string(KEY_NAME, name, false);
  1698. std::string description;
  1699. get_string(KEY_DESCRIPTION, description, false);
  1700. LOG_INF("%s: model name: %s\n", __func__, name.c_str());
  1701. LOG_INF("%s: description: %s\n", __func__, description.c_str());
  1702. LOG_INF("%s: GGUF version: %d\n", __func__, gguf_get_version(ctx_gguf.get()));
  1703. LOG_INF("%s: alignment: %zu\n", __func__, gguf_get_alignment(ctx_gguf.get()));
  1704. LOG_INF("%s: n_tensors: %d\n", __func__, n_tensors);
  1705. LOG_INF("%s: n_kv: %d\n", __func__, (int)gguf_get_n_kv(ctx_gguf.get()));
  1706. LOG_INF("\n");
  1707. }
  1708. // modalities
  1709. {
  1710. get_bool(KEY_HAS_VISION_ENC, has_vision, false);
  1711. get_bool(KEY_HAS_AUDIO_ENC, has_audio, false);
  1712. if (has_vision) {
  1713. LOG_INF("%s: has vision encoder\n", __func__);
  1714. }
  1715. if (has_audio) {
  1716. LOG_INF("%s: has audio encoder\n", __func__);
  1717. }
  1718. }
  1719. // tensors
  1720. {
  1721. for (int i = 0; i < n_tensors; ++i) {
  1722. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1723. const size_t offset = gguf_get_tensor_offset(ctx_gguf.get(), i);
  1724. enum ggml_type type = gguf_get_tensor_type(ctx_gguf.get(), i);
  1725. ggml_tensor * cur = ggml_get_tensor(meta, name);
  1726. size_t tensor_size = ggml_nbytes(cur);
  1727. model_size += tensor_size;
  1728. LOG_DBG("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%" PRIu64 ", %" PRIu64 ", %" PRIu64 ", %" PRIu64 "], type = %s\n",
  1729. __func__, i, ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], ggml_type_name(type));
  1730. }
  1731. }
  1732. }
  1733. void load_hparams(clip_model & model, clip_modality modality) {
  1734. auto & hparams = model.hparams;
  1735. std::string log_ffn_op; // for logging
  1736. // sanity check
  1737. if (modality == CLIP_MODALITY_VISION) {
  1738. GGML_ASSERT(has_vision);
  1739. } else if (modality == CLIP_MODALITY_AUDIO) {
  1740. GGML_ASSERT(has_audio);
  1741. }
  1742. model.modality = modality;
  1743. // projector type
  1744. std::string proj_type;
  1745. {
  1746. get_string(KEY_PROJ_TYPE, proj_type, false);
  1747. if (!proj_type.empty()) {
  1748. model.proj_type = clip_projector_type_from_string(proj_type);
  1749. }
  1750. if (model.proj_type == PROJECTOR_TYPE_UNKNOWN) {
  1751. throw std::runtime_error(string_format("%s: unknown projector type: %s\n", __func__, proj_type.c_str()));
  1752. }
  1753. // correct arch for multimodal models
  1754. if (model.proj_type == PROJECTOR_TYPE_QWEN25O) {
  1755. model.proj_type = modality == CLIP_MODALITY_VISION
  1756. ? PROJECTOR_TYPE_QWEN25VL
  1757. : PROJECTOR_TYPE_QWEN2A;
  1758. }
  1759. }
  1760. const bool is_vision = model.modality == CLIP_MODALITY_VISION;
  1761. const bool is_audio = model.modality == CLIP_MODALITY_AUDIO;
  1762. // other hparams
  1763. {
  1764. const char * prefix = is_vision ? "vision" : "audio";
  1765. get_u32(string_format(KEY_N_EMBD, prefix), hparams.n_embd);
  1766. get_u32(string_format(KEY_N_HEAD, prefix), hparams.n_head);
  1767. get_u32(string_format(KEY_N_FF, prefix), hparams.n_ff);
  1768. get_u32(string_format(KEY_N_BLOCK, prefix), hparams.n_layer);
  1769. get_u32(string_format(KEY_PROJ_DIM, prefix), hparams.projection_dim);
  1770. get_f32(string_format(KEY_LAYER_NORM_EPS, prefix), hparams.eps);
  1771. if (is_vision) {
  1772. get_u32(KEY_IMAGE_SIZE, hparams.image_size);
  1773. get_u32(KEY_PATCH_SIZE, hparams.patch_size);
  1774. get_u32(KEY_IMAGE_CROP_RESOLUTION, hparams.image_crop_resolution, false);
  1775. get_i32(KEY_MINICPMV_VERSION, hparams.minicpmv_version, false); // legacy
  1776. get_u32(KEY_MINICPMV_QUERY_NUM, hparams.minicpmv_query_num, false);
  1777. if (hparams.minicpmv_query_num == 0) {
  1778. // Fallback to hardcoded values for legacy models
  1779. if (hparams.minicpmv_version == 3) {
  1780. hparams.minicpmv_query_num = 64;
  1781. } else if (hparams.minicpmv_version == 4) {
  1782. hparams.minicpmv_query_num = 64;
  1783. } else if (hparams.minicpmv_version == 5) {
  1784. hparams.minicpmv_query_num = 64;
  1785. } else {
  1786. hparams.minicpmv_query_num = 96;
  1787. }
  1788. }
  1789. } else if (is_audio) {
  1790. get_u32(KEY_A_NUM_MEL_BINS, hparams.n_mel_bins);
  1791. } else {
  1792. GGML_ASSERT(false && "unknown modality");
  1793. }
  1794. // for pinpoints, we need to convert it into a list of resolution candidates
  1795. {
  1796. std::vector<int> pinpoints;
  1797. get_arr_int(KEY_IMAGE_GRID_PINPOINTS, pinpoints, false);
  1798. if (!pinpoints.empty()) {
  1799. for (size_t i = 0; i < pinpoints.size(); i += 2) {
  1800. hparams.image_res_candidates.push_back({
  1801. pinpoints[i],
  1802. pinpoints[i+1],
  1803. });
  1804. }
  1805. }
  1806. }
  1807. // default warmup value
  1808. hparams.warmup_image_size = hparams.image_size;
  1809. hparams.has_llava_projector = model.proj_type == PROJECTOR_TYPE_MLP
  1810. || model.proj_type == PROJECTOR_TYPE_MLP_NORM
  1811. || model.proj_type == PROJECTOR_TYPE_LDP
  1812. || model.proj_type == PROJECTOR_TYPE_LDPV2;
  1813. {
  1814. bool use_gelu = false;
  1815. bool use_silu = false;
  1816. get_bool(KEY_USE_GELU, use_gelu, false);
  1817. get_bool(KEY_USE_SILU, use_silu, false);
  1818. if (use_gelu && use_silu) {
  1819. throw std::runtime_error(string_format("%s: both use_gelu and use_silu are set to true\n", __func__));
  1820. }
  1821. if (use_gelu) {
  1822. hparams.ffn_op = FFN_GELU;
  1823. log_ffn_op = "gelu";
  1824. } else if (use_silu) {
  1825. hparams.ffn_op = FFN_SILU;
  1826. log_ffn_op = "silu";
  1827. } else {
  1828. hparams.ffn_op = FFN_GELU_QUICK;
  1829. log_ffn_op = "gelu_quick";
  1830. }
  1831. }
  1832. {
  1833. std::string mm_patch_merge_type;
  1834. get_string(KEY_MM_PATCH_MERGE_TYPE, mm_patch_merge_type, false);
  1835. if (mm_patch_merge_type == "spatial_unpad") {
  1836. hparams.mm_patch_merge_type = PATCH_MERGE_SPATIAL_UNPAD;
  1837. }
  1838. }
  1839. if (is_vision) {
  1840. int idx_mean = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_MEAN);
  1841. int idx_std = gguf_find_key(ctx_gguf.get(), KEY_IMAGE_STD);
  1842. GGML_ASSERT(idx_mean >= 0 && "image_mean not found");
  1843. GGML_ASSERT(idx_std >= 0 && "image_std not found");
  1844. const float * mean_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_mean);
  1845. const float * std_data = (const float *) gguf_get_arr_data(ctx_gguf.get(), idx_std);
  1846. for (int i = 0; i < 3; ++i) {
  1847. hparams.image_mean[i] = mean_data[i];
  1848. hparams.image_std[i] = std_data[i];
  1849. }
  1850. }
  1851. // Load the vision feature layer indices if they are explicitly provided;
  1852. // if multiple vision feature layers are present, the values will be concatenated
  1853. // to form the final visual features.
  1854. // NOTE: gguf conversions should standardize the values of the vision feature layer to
  1855. // be non-negative, since we use -1 to mark values as unset here.
  1856. std::vector<int> vision_feature_layer;
  1857. get_arr_int(KEY_FEATURE_LAYER, vision_feature_layer, false);
  1858. // convert std::vector to std::unordered_set
  1859. for (auto & layer : vision_feature_layer) {
  1860. hparams.vision_feature_layer.insert(layer);
  1861. }
  1862. // model-specific params
  1863. switch (model.proj_type) {
  1864. case PROJECTOR_TYPE_MINICPMV:
  1865. {
  1866. if (hparams.minicpmv_version == 0) {
  1867. hparams.minicpmv_version = 2; // default to 2 if not set
  1868. }
  1869. } break;
  1870. case PROJECTOR_TYPE_IDEFICS3:
  1871. case PROJECTOR_TYPE_INTERNVL:
  1872. {
  1873. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1874. } break;
  1875. case PROJECTOR_TYPE_PIXTRAL:
  1876. {
  1877. hparams.rope_theta = 10000.0f;
  1878. hparams.warmup_image_size = hparams.patch_size * 8;
  1879. // Mistral Small 2506 needs 1024x1024 image size cap to prevent OOM
  1880. // ref: https://github.com/ggml-org/llama.cpp/issues/14310
  1881. hparams.image_size = 1024;
  1882. get_u32(KEY_SPATIAL_MERGE_SIZE, hparams.spatial_merge_size, false);
  1883. } break;
  1884. case PROJECTOR_TYPE_GEMMA3:
  1885. {
  1886. // default value (used by all model sizes in gemma 3 family)
  1887. // number of patches for each **side** is reduced by a factor of 4
  1888. hparams.proj_scale_factor = 4;
  1889. // test model (tinygemma3) has a different value, we optionally read it
  1890. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor, false);
  1891. } break;
  1892. case PROJECTOR_TYPE_QWEN2VL:
  1893. {
  1894. // max image size = sqrt(max_pixels) = 3584
  1895. // ref: https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct/blob/main/preprocessor_config.json
  1896. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1897. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1898. hparams.image_size = 1024;
  1899. hparams.warmup_image_size = hparams.patch_size * 8;
  1900. } break;
  1901. case PROJECTOR_TYPE_QWEN25VL:
  1902. {
  1903. // max image size = sqrt(max_pixels)
  1904. // https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct/blob/main/preprocessor_config.json
  1905. // however, the model use unreasonable memory past 1024 size, we force it to 1024 otherwise it's unusable
  1906. // ref: https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct/discussions/10
  1907. hparams.image_size = 1024;
  1908. hparams.warmup_image_size = hparams.patch_size * 8;
  1909. get_u32(KEY_WIN_ATTN_PATTERN, hparams.n_wa_pattern);
  1910. } break;
  1911. case PROJECTOR_TYPE_LLAMA4:
  1912. {
  1913. hparams.rope_theta = 10000.0f;
  1914. get_u32(KEY_PROJ_SCALE_FACTOR, hparams.proj_scale_factor);
  1915. set_llava_uhd_res_candidates(model, 3);
  1916. } break;
  1917. case PROJECTOR_TYPE_ULTRAVOX:
  1918. case PROJECTOR_TYPE_QWEN2A:
  1919. case PROJECTOR_TYPE_VOXTRAL:
  1920. {
  1921. bool require_stack = model.proj_type == PROJECTOR_TYPE_ULTRAVOX ||
  1922. model.proj_type == PROJECTOR_TYPE_VOXTRAL;
  1923. get_u32(KEY_A_PROJ_STACK_FACTOR, hparams.proj_stack_factor, require_stack);
  1924. if (hparams.n_mel_bins != 128) {
  1925. throw std::runtime_error(string_format("%s: only 128 mel bins are supported for ultravox\n", __func__));
  1926. }
  1927. hparams.ffn_op = FFN_GELU_ERF;
  1928. log_ffn_op = "gelu_erf"; // temporary solution for logging
  1929. } break;
  1930. default:
  1931. break;
  1932. }
  1933. LOG_INF("%s: projector: %s\n", __func__, proj_type.c_str());
  1934. LOG_INF("%s: n_embd: %d\n", __func__, hparams.n_embd);
  1935. LOG_INF("%s: n_head: %d\n", __func__, hparams.n_head);
  1936. LOG_INF("%s: n_ff: %d\n", __func__, hparams.n_ff);
  1937. LOG_INF("%s: n_layer: %d\n", __func__, hparams.n_layer);
  1938. LOG_INF("%s: ffn_op: %s\n", __func__, log_ffn_op.c_str());
  1939. LOG_INF("%s: projection_dim: %d\n", __func__, hparams.projection_dim);
  1940. if (is_vision) {
  1941. LOG_INF("\n--- vision hparams ---\n");
  1942. LOG_INF("%s: image_size: %d\n", __func__, hparams.image_size);
  1943. LOG_INF("%s: patch_size: %d\n", __func__, hparams.patch_size);
  1944. LOG_INF("%s: has_llava_proj: %d\n", __func__, hparams.has_llava_projector);
  1945. LOG_INF("%s: minicpmv_version: %d\n", __func__, hparams.minicpmv_version);
  1946. LOG_INF("%s: proj_scale_factor: %d\n", __func__, hparams.proj_scale_factor);
  1947. LOG_INF("%s: n_wa_pattern: %d\n", __func__, hparams.n_wa_pattern);
  1948. } else if (is_audio) {
  1949. LOG_INF("\n--- audio hparams ---\n");
  1950. LOG_INF("%s: n_mel_bins: %d\n", __func__, hparams.n_mel_bins);
  1951. LOG_INF("%s: proj_stack_factor: %d\n", __func__, hparams.proj_stack_factor);
  1952. }
  1953. LOG_INF("\n");
  1954. LOG_INF("%s: model size: %.2f MiB\n", __func__, model_size / 1024.0 / 1024.0);
  1955. LOG_INF("%s: metadata size: %.2f MiB\n", __func__, ggml_get_mem_size(ctx_meta.get()) / 1024.0 / 1024.0);
  1956. }
  1957. }
  1958. void load_tensors(clip_ctx & ctx_clip) {
  1959. auto & model = ctx_clip.model;
  1960. auto & hparams = model.hparams;
  1961. std::map<std::string, size_t> tensor_offset;
  1962. std::vector<ggml_tensor *> tensors_to_load;
  1963. // TODO @ngxson : support both audio and video in the future
  1964. const char * prefix = model.modality == CLIP_MODALITY_AUDIO ? "a" : "v";
  1965. // get offsets
  1966. for (int64_t i = 0; i < gguf_get_n_tensors(ctx_gguf.get()); ++i) {
  1967. const char * name = gguf_get_tensor_name(ctx_gguf.get(), i);
  1968. tensor_offset[name] = gguf_get_data_offset(ctx_gguf.get()) + gguf_get_tensor_offset(ctx_gguf.get(), i);
  1969. }
  1970. // create data context
  1971. struct ggml_init_params params = {
  1972. /*.mem_size =*/ static_cast<size_t>(gguf_get_n_tensors(ctx_gguf.get()) + 1) * ggml_tensor_overhead(),
  1973. /*.mem_buffer =*/ NULL,
  1974. /*.no_alloc =*/ true,
  1975. };
  1976. ctx_clip.ctx_data.reset(ggml_init(params));
  1977. if (!ctx_clip.ctx_data) {
  1978. throw std::runtime_error(string_format("%s: failed to init ggml context\n", __func__));
  1979. }
  1980. // helper function
  1981. auto get_tensor = [&](const std::string & name, bool required = true) {
  1982. ggml_tensor * cur = ggml_get_tensor(ctx_meta.get(), name.c_str());
  1983. if (!cur && required) {
  1984. throw std::runtime_error(string_format("%s: unable to find tensor %s\n", __func__, name.c_str()));
  1985. }
  1986. if (cur) {
  1987. tensors_to_load.push_back(cur);
  1988. // add tensors to context
  1989. ggml_tensor * data_tensor = ggml_dup_tensor(ctx_clip.ctx_data.get(), cur);
  1990. ggml_set_name(data_tensor, cur->name);
  1991. cur = data_tensor;
  1992. }
  1993. return cur;
  1994. };
  1995. model.class_embedding = get_tensor(TN_CLASS_EMBD, false);
  1996. model.pre_ln_w = get_tensor(string_format(TN_LN_PRE, prefix, "weight"), false);
  1997. model.pre_ln_b = get_tensor(string_format(TN_LN_PRE, prefix, "bias"), false);
  1998. model.post_ln_w = get_tensor(string_format(TN_LN_POST, prefix, "weight"), false);
  1999. model.post_ln_b = get_tensor(string_format(TN_LN_POST, prefix, "bias"), false);
  2000. model.patch_bias = get_tensor(TN_PATCH_BIAS, false);
  2001. model.patch_embeddings_0 = get_tensor(TN_PATCH_EMBD, false);
  2002. model.patch_embeddings_1 = get_tensor(TN_PATCH_EMBD_1, false);
  2003. model.position_embeddings = get_tensor(string_format(TN_POS_EMBD, prefix), false);
  2004. // layers
  2005. model.layers.resize(hparams.n_layer);
  2006. for (int il = 0; il < hparams.n_layer; ++il) {
  2007. auto & layer = model.layers[il];
  2008. layer.k_w = get_tensor(string_format(TN_ATTN_K, prefix, il, "weight"));
  2009. layer.q_w = get_tensor(string_format(TN_ATTN_Q, prefix, il, "weight"));
  2010. layer.v_w = get_tensor(string_format(TN_ATTN_V, prefix, il, "weight"));
  2011. layer.o_w = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "weight"));
  2012. layer.k_norm = get_tensor(string_format(TN_ATTN_K_NORM, prefix, il, "weight"), false);
  2013. layer.q_norm = get_tensor(string_format(TN_ATTN_Q_NORM, prefix, il, "weight"), false);
  2014. layer.ln_1_w = get_tensor(string_format(TN_LN_1, prefix, il, "weight"), false);
  2015. layer.ln_2_w = get_tensor(string_format(TN_LN_2, prefix, il, "weight"), false);
  2016. layer.ls_1_w = get_tensor(string_format(TN_LS_1, prefix, il, "weight"), false); // no bias
  2017. layer.ls_2_w = get_tensor(string_format(TN_LS_2, prefix, il, "weight"), false); // no bias
  2018. layer.k_b = get_tensor(string_format(TN_ATTN_K, prefix, il, "bias"), false);
  2019. layer.q_b = get_tensor(string_format(TN_ATTN_Q, prefix, il, "bias"), false);
  2020. layer.v_b = get_tensor(string_format(TN_ATTN_V, prefix, il, "bias"), false);
  2021. layer.o_b = get_tensor(string_format(TN_ATTN_OUTPUT, prefix, il, "bias"), false);
  2022. layer.ln_1_b = get_tensor(string_format(TN_LN_1, prefix, il, "bias"), false);
  2023. layer.ln_2_b = get_tensor(string_format(TN_LN_2, prefix, il, "bias"), false);
  2024. // ffn
  2025. layer.ff_up_w = get_tensor(string_format(TN_FFN_UP, prefix, il, "weight"));
  2026. layer.ff_up_b = get_tensor(string_format(TN_FFN_UP, prefix, il, "bias"), false);
  2027. layer.ff_gate_w = get_tensor(string_format(TN_FFN_GATE, prefix, il, "weight"), false);
  2028. layer.ff_gate_b = get_tensor(string_format(TN_FFN_GATE, prefix, il, "bias"), false);
  2029. layer.ff_down_w = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "weight"));
  2030. layer.ff_down_b = get_tensor(string_format(TN_FFN_DOWN, prefix, il, "bias"), false);
  2031. // some models already exported with legacy (incorrect) naming which is quite messy, let's fix it here
  2032. // note: Qwen model converted from the old surgery script has n_ff = 0, so we cannot use n_ff to check!
  2033. if (layer.ff_up_w && layer.ff_down_w && layer.ff_down_w->ne[0] == hparams.n_embd) {
  2034. // swap up and down weights
  2035. ggml_tensor * tmp = layer.ff_up_w;
  2036. layer.ff_up_w = layer.ff_down_w;
  2037. layer.ff_down_w = tmp;
  2038. // swap up and down biases
  2039. tmp = layer.ff_up_b;
  2040. layer.ff_up_b = layer.ff_down_b;
  2041. layer.ff_down_b = tmp;
  2042. }
  2043. }
  2044. switch (model.proj_type) {
  2045. case PROJECTOR_TYPE_MLP:
  2046. case PROJECTOR_TYPE_MLP_NORM:
  2047. {
  2048. // LLaVA projection
  2049. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"), false);
  2050. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"), false);
  2051. // Yi-type llava
  2052. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"), false);
  2053. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2054. // missing in Yi-type llava
  2055. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"), false);
  2056. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2057. // Yi-type llava
  2058. model.mm_3_w = get_tensor(string_format(TN_LLAVA_PROJ, 3, "weight"), false);
  2059. model.mm_3_b = get_tensor(string_format(TN_LLAVA_PROJ, 3, "bias"), false);
  2060. model.mm_4_w = get_tensor(string_format(TN_LLAVA_PROJ, 4, "weight"), false);
  2061. model.mm_4_b = get_tensor(string_format(TN_LLAVA_PROJ, 4, "bias"), false);
  2062. if (model.mm_3_w) {
  2063. // TODO: this is a hack to support Yi-type llava
  2064. model.proj_type = PROJECTOR_TYPE_MLP_NORM;
  2065. }
  2066. model.image_newline = get_tensor(TN_IMAGE_NEWLINE, false);
  2067. } break;
  2068. case PROJECTOR_TYPE_LDP:
  2069. {
  2070. // MobileVLM projection
  2071. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2072. model.mm_model_mlp_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2073. model.mm_model_mlp_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2074. model.mm_model_mlp_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2075. model.mm_model_block_1_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight"));
  2076. model.mm_model_block_1_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight"));
  2077. model.mm_model_block_1_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias"));
  2078. model.mm_model_block_1_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight"));
  2079. model.mm_model_block_1_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias"));
  2080. model.mm_model_block_1_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight"));
  2081. model.mm_model_block_1_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias"));
  2082. model.mm_model_block_1_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight"));
  2083. model.mm_model_block_1_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight"));
  2084. model.mm_model_block_1_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias"));
  2085. model.mm_model_block_2_block_0_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight"));
  2086. model.mm_model_block_2_block_0_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight"));
  2087. model.mm_model_block_2_block_0_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias"));
  2088. model.mm_model_block_2_block_1_fc1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight"));
  2089. model.mm_model_block_2_block_1_fc1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias"));
  2090. model.mm_model_block_2_block_1_fc2_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight"));
  2091. model.mm_model_block_2_block_1_fc2_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias"));
  2092. model.mm_model_block_2_block_2_0_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight"));
  2093. model.mm_model_block_2_block_2_1_w = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight"));
  2094. model.mm_model_block_2_block_2_1_b = get_tensor(string_format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias"));
  2095. } break;
  2096. case PROJECTOR_TYPE_LDPV2:
  2097. {
  2098. // MobilVLM_V2 projection
  2099. model.mm_model_mlp_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2100. model.mm_model_mlp_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2101. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2102. model.mm_model_mlp_2_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "bias"));
  2103. model.mm_model_peg_0_w = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "weight"));
  2104. model.mm_model_peg_0_b = get_tensor(string_format(TN_MVLM_PROJ_PEG, 0, "bias"));
  2105. } break;
  2106. case PROJECTOR_TYPE_MINICPMV:
  2107. {
  2108. // model.mm_model_pos_embed = get_tensor(new_clip->ctx_data, TN_MINICPMV_POS_EMBD);
  2109. model.mm_model_pos_embed_k = get_tensor(TN_MINICPMV_POS_EMBD_K);
  2110. model.mm_model_query = get_tensor(TN_MINICPMV_QUERY);
  2111. model.mm_model_proj = get_tensor(TN_MINICPMV_PROJ);
  2112. model.mm_model_kv_proj = get_tensor(TN_MINICPMV_KV_PROJ);
  2113. model.mm_model_attn_q_w = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "weight"));
  2114. model.mm_model_attn_k_w = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "weight"));
  2115. model.mm_model_attn_v_w = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "weight"));
  2116. model.mm_model_attn_q_b = get_tensor(string_format(TN_MINICPMV_ATTN, "q", "bias"));
  2117. model.mm_model_attn_k_b = get_tensor(string_format(TN_MINICPMV_ATTN, "k", "bias"));
  2118. model.mm_model_attn_v_b = get_tensor(string_format(TN_MINICPMV_ATTN, "v", "bias"));
  2119. model.mm_model_attn_o_w = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "weight"));
  2120. model.mm_model_attn_o_b = get_tensor(string_format(TN_MINICPMV_ATTN, "out", "bias"));
  2121. model.mm_model_ln_q_w = get_tensor(string_format(TN_MINICPMV_LN, "q", "weight"));
  2122. model.mm_model_ln_q_b = get_tensor(string_format(TN_MINICPMV_LN, "q", "bias"));
  2123. model.mm_model_ln_kv_w = get_tensor(string_format(TN_MINICPMV_LN, "kv", "weight"));
  2124. model.mm_model_ln_kv_b = get_tensor(string_format(TN_MINICPMV_LN, "kv", "bias"));
  2125. model.mm_model_ln_post_w = get_tensor(string_format(TN_MINICPMV_LN, "post", "weight"));
  2126. model.mm_model_ln_post_b = get_tensor(string_format(TN_MINICPMV_LN, "post", "bias"));
  2127. } break;
  2128. case PROJECTOR_TYPE_GLM_EDGE:
  2129. {
  2130. model.mm_model_adapter_conv_w = get_tensor(string_format(TN_GLM_ADAPER_CONV, "weight"));
  2131. model.mm_model_adapter_conv_b = get_tensor(string_format(TN_GLM_ADAPER_CONV, "bias"));
  2132. model.mm_model_mlp_0_w = get_tensor(string_format(TN_GLM_ADAPTER_LINEAR, "weight"));
  2133. model.mm_model_ln_q_w = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "weight"));
  2134. model.mm_model_ln_q_b = get_tensor(string_format(TN_GLM_ADAPTER_NORM_1, "bias"));
  2135. model.mm_model_mlp_1_w = get_tensor(string_format(TN_GLM_ADAPTER_D_H_2_4H, "weight"));
  2136. model.mm_model_mlp_2_w = get_tensor(string_format(TN_GLM_ADAPTER_GATE, "weight"));
  2137. model.mm_model_mlp_3_w = get_tensor(string_format(TN_GLM_ADAPTER_D_4H_2_H, "weight"));
  2138. model.mm_glm_tok_boi = get_tensor(string_format(TN_TOK_GLM_BOI, "weight"));
  2139. model.mm_glm_tok_eoi = get_tensor(string_format(TN_TOK_GLM_EOI, "weight"));
  2140. } break;
  2141. case PROJECTOR_TYPE_QWEN2VL:
  2142. case PROJECTOR_TYPE_QWEN25VL:
  2143. {
  2144. model.mm_0_w = get_tensor(string_format(TN_LLAVA_PROJ, 0, "weight"));
  2145. model.mm_0_b = get_tensor(string_format(TN_LLAVA_PROJ, 0, "bias"));
  2146. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2147. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"));
  2148. } break;
  2149. case PROJECTOR_TYPE_GEMMA3:
  2150. {
  2151. model.mm_input_proj_w = get_tensor(TN_MM_INP_PROJ);
  2152. model.mm_soft_emb_norm_w = get_tensor(TN_MM_SOFT_EMB_N);
  2153. } break;
  2154. case PROJECTOR_TYPE_IDEFICS3:
  2155. {
  2156. model.projection = get_tensor(TN_MM_PROJECTOR);
  2157. } break;
  2158. case PROJECTOR_TYPE_PIXTRAL:
  2159. {
  2160. model.mm_1_w = get_tensor(string_format(TN_LLAVA_PROJ, 1, "weight"));
  2161. model.mm_1_b = get_tensor(string_format(TN_LLAVA_PROJ, 1, "bias"), false);
  2162. model.mm_2_w = get_tensor(string_format(TN_LLAVA_PROJ, 2, "weight"));
  2163. model.mm_2_b = get_tensor(string_format(TN_LLAVA_PROJ, 2, "bias"), false);
  2164. // [IMG_BREAK] token embedding
  2165. model.token_embd_img_break = get_tensor(TN_TOK_IMG_BREAK);
  2166. // for mistral small 3.1
  2167. model.mm_input_norm_w = get_tensor(TN_MM_INP_NORM, false);
  2168. model.mm_patch_merger_w = get_tensor(TN_MM_PATCH_MERGER, false);
  2169. } break;
  2170. case PROJECTOR_TYPE_ULTRAVOX:
  2171. {
  2172. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2173. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2174. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2175. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2176. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2177. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2178. model.mm_norm_pre_w = get_tensor(string_format(TN_MM_NORM_PRE, "weight"));
  2179. model.mm_norm_mid_w = get_tensor(string_format(TN_MM_NORM_MID, "weight"));
  2180. } break;
  2181. case PROJECTOR_TYPE_QWEN2A:
  2182. {
  2183. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2184. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2185. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2186. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2187. model.mm_fc_w = get_tensor(string_format(TN_MM_AUDIO_FC, "weight"));
  2188. model.mm_fc_b = get_tensor(string_format(TN_MM_AUDIO_FC, "bias"));
  2189. } break;
  2190. case PROJECTOR_TYPE_VOXTRAL:
  2191. {
  2192. model.conv1d_1_w = get_tensor(string_format(TN_CONV1D, 1, "weight"));
  2193. model.conv1d_1_b = get_tensor(string_format(TN_CONV1D, 1, "bias"));
  2194. model.conv1d_2_w = get_tensor(string_format(TN_CONV1D, 2, "weight"));
  2195. model.conv1d_2_b = get_tensor(string_format(TN_CONV1D, 2, "bias"));
  2196. model.mm_1_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 1, "weight"));
  2197. model.mm_2_w = get_tensor(string_format(TN_MM_AUDIO_MLP, 2, "weight"));
  2198. } break;
  2199. case PROJECTOR_TYPE_INTERNVL:
  2200. {
  2201. model.mm_0_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "weight"));
  2202. model.mm_0_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 0, "bias"));
  2203. model.mm_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2204. model.mm_1_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "bias"));
  2205. model.mm_3_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "weight"));
  2206. model.mm_3_b = get_tensor(string_format(TN_MVLM_PROJ_MLP, 3, "bias"));
  2207. } break;
  2208. case PROJECTOR_TYPE_LLAMA4:
  2209. {
  2210. model.mm_model_proj = get_tensor(TN_MM_PROJECTOR);
  2211. model.mm_model_mlp_1_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 1, "weight"));
  2212. model.mm_model_mlp_2_w = get_tensor(string_format(TN_MVLM_PROJ_MLP, 2, "weight"));
  2213. } break;
  2214. default:
  2215. GGML_ASSERT(false && "unknown projector type");
  2216. }
  2217. // load data
  2218. {
  2219. std::vector<uint8_t> read_buf;
  2220. auto fin = std::ifstream(fname, std::ios::binary);
  2221. if (!fin) {
  2222. throw std::runtime_error(string_format("%s: failed to open %s\n", __func__, fname.c_str()));
  2223. }
  2224. // alloc memory and offload data
  2225. ggml_backend_buffer_type_t buft = ggml_backend_get_default_buffer_type(ctx_clip.backend);
  2226. ctx_clip.buf.reset(ggml_backend_alloc_ctx_tensors_from_buft(ctx_clip.ctx_data.get(), buft));
  2227. ggml_backend_buffer_set_usage(ctx_clip.buf.get(), GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  2228. for (auto & t : tensors_to_load) {
  2229. ggml_tensor * cur = ggml_get_tensor(ctx_clip.ctx_data.get(), t->name);
  2230. const size_t offset = tensor_offset[t->name];
  2231. fin.seekg(offset, std::ios::beg);
  2232. if (!fin) {
  2233. throw std::runtime_error(string_format("%s: failed to seek for tensor %s\n", __func__, t->name));
  2234. }
  2235. size_t num_bytes = ggml_nbytes(cur);
  2236. if (ggml_backend_buft_is_host(buft)) {
  2237. // for the CPU and Metal backend, we can read directly into the tensor
  2238. fin.read(reinterpret_cast<char *>(cur->data), num_bytes);
  2239. } else {
  2240. // read into a temporary buffer first, then copy to device memory
  2241. read_buf.resize(num_bytes);
  2242. fin.read(reinterpret_cast<char *>(read_buf.data()), num_bytes);
  2243. ggml_backend_tensor_set(cur, read_buf.data(), 0, num_bytes);
  2244. }
  2245. }
  2246. fin.close();
  2247. LOG_DBG("%s: loaded %zu tensors from %s\n", __func__, tensors_to_load.size(), fname.c_str());
  2248. }
  2249. }
  2250. void alloc_compute_meta(clip_ctx & ctx_clip) {
  2251. const auto & hparams = ctx_clip.model.hparams;
  2252. ctx_clip.buf_compute_meta.resize(ctx_clip.max_nodes * ggml_tensor_overhead() + ggml_graph_overhead());
  2253. // create a fake batch
  2254. clip_image_f32_batch batch;
  2255. clip_image_f32_ptr img(clip_image_f32_init());
  2256. if (ctx_clip.model.modality == CLIP_MODALITY_VISION) {
  2257. img->nx = hparams.warmup_image_size;
  2258. img->ny = hparams.warmup_image_size;
  2259. } else {
  2260. img->nx = hparams.warmup_audio_size;
  2261. img->ny = hparams.n_mel_bins;
  2262. }
  2263. batch.entries.push_back(std::move(img));
  2264. ggml_cgraph * gf = clip_image_build_graph(&ctx_clip, batch);
  2265. ggml_backend_sched_reserve(ctx_clip.sched.get(), gf);
  2266. for (size_t i = 0; i < ctx_clip.backend_ptrs.size(); ++i) {
  2267. ggml_backend_t backend = ctx_clip.backend_ptrs[i];
  2268. ggml_backend_buffer_type_t buft = ctx_clip.backend_buft[i];
  2269. size_t size = ggml_backend_sched_get_buffer_size(ctx_clip.sched.get(), backend);
  2270. if (size > 1) {
  2271. LOG_INF("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  2272. ggml_backend_buft_name(buft),
  2273. size / 1024.0 / 1024.0);
  2274. }
  2275. }
  2276. }
  2277. void get_bool(const std::string & key, bool & output, bool required = true) {
  2278. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2279. if (i < 0) {
  2280. if (required) throw std::runtime_error("Key not found: " + key);
  2281. return;
  2282. }
  2283. output = gguf_get_val_bool(ctx_gguf.get(), i);
  2284. }
  2285. void get_i32(const std::string & key, int & output, bool required = true) {
  2286. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2287. if (i < 0) {
  2288. if (required) throw std::runtime_error("Key not found: " + key);
  2289. return;
  2290. }
  2291. output = gguf_get_val_i32(ctx_gguf.get(), i);
  2292. }
  2293. void get_u32(const std::string & key, int & output, bool required = true) {
  2294. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2295. if (i < 0) {
  2296. if (required) throw std::runtime_error("Key not found: " + key);
  2297. return;
  2298. }
  2299. output = gguf_get_val_u32(ctx_gguf.get(), i);
  2300. }
  2301. void get_f32(const std::string & key, float & output, bool required = true) {
  2302. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2303. if (i < 0) {
  2304. if (required) throw std::runtime_error("Key not found: " + key);
  2305. return;
  2306. }
  2307. output = gguf_get_val_f32(ctx_gguf.get(), i);
  2308. }
  2309. void get_string(const std::string & key, std::string & output, bool required = true) {
  2310. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2311. if (i < 0) {
  2312. if (required) throw std::runtime_error("Key not found: " + key);
  2313. return;
  2314. }
  2315. output = std::string(gguf_get_val_str(ctx_gguf.get(), i));
  2316. }
  2317. void get_arr_int(const std::string & key, std::vector<int> & output, bool required = true) {
  2318. const int i = gguf_find_key(ctx_gguf.get(), key.c_str());
  2319. if (i < 0) {
  2320. if (required) throw std::runtime_error("Key not found: " + key);
  2321. return;
  2322. }
  2323. int n = gguf_get_arr_n(ctx_gguf.get(), i);
  2324. output.resize(n);
  2325. const int32_t * values = (const int32_t *)gguf_get_arr_data(ctx_gguf.get(), i);
  2326. for (int i = 0; i < n; ++i) {
  2327. output[i] = values[i];
  2328. }
  2329. }
  2330. void set_llava_uhd_res_candidates(clip_model & model, const int max_patches_per_side) {
  2331. auto & hparams = model.hparams;
  2332. for (int x = 1; x <= max_patches_per_side; x++) {
  2333. for (int y = 1; y <= max_patches_per_side; y++) {
  2334. if (x == 1 && y == 1) {
  2335. continue; // skip the first point
  2336. }
  2337. hparams.image_res_candidates.push_back(clip_image_size{
  2338. x*hparams.image_size,
  2339. y*hparams.image_size,
  2340. });
  2341. }
  2342. }
  2343. }
  2344. };
  2345. struct clip_init_result clip_init(const char * fname, struct clip_context_params ctx_params) {
  2346. g_logger_state.verbosity_thold = ctx_params.verbosity;
  2347. clip_ctx * ctx_vision = nullptr;
  2348. clip_ctx * ctx_audio = nullptr;
  2349. try {
  2350. clip_model_loader loader(fname);
  2351. if (loader.has_vision) {
  2352. ctx_vision = new clip_ctx(ctx_params);
  2353. loader.load_hparams(ctx_vision->model, CLIP_MODALITY_VISION);
  2354. loader.load_tensors(*ctx_vision);
  2355. loader.alloc_compute_meta(*ctx_vision);
  2356. }
  2357. if (loader.has_audio) {
  2358. ctx_audio = new clip_ctx(ctx_params);
  2359. loader.load_hparams(ctx_audio->model, CLIP_MODALITY_AUDIO);
  2360. loader.load_tensors(*ctx_audio);
  2361. loader.alloc_compute_meta(*ctx_audio);
  2362. }
  2363. } catch (const std::exception & e) {
  2364. LOG_ERR("%s: failed to load model '%s': %s\n", __func__, fname, e.what());
  2365. if (ctx_vision) {
  2366. delete ctx_vision;
  2367. }
  2368. if (ctx_audio) {
  2369. delete ctx_audio;
  2370. }
  2371. return {nullptr, nullptr};
  2372. }
  2373. return {ctx_vision, ctx_audio};
  2374. }
  2375. struct clip_image_size * clip_image_size_init() {
  2376. struct clip_image_size * load_image_size = new struct clip_image_size();
  2377. load_image_size->width = 448;
  2378. load_image_size->height = 448;
  2379. return load_image_size;
  2380. }
  2381. struct clip_image_u8 * clip_image_u8_init() {
  2382. return new clip_image_u8();
  2383. }
  2384. struct clip_image_f32 * clip_image_f32_init() {
  2385. return new clip_image_f32();
  2386. }
  2387. struct clip_image_f32_batch * clip_image_f32_batch_init() {
  2388. return new clip_image_f32_batch();
  2389. }
  2390. unsigned char * clip_image_u8_get_data(struct clip_image_u8 * img, uint32_t * nx, uint32_t * ny) {
  2391. if (nx) *nx = img->nx;
  2392. if (ny) *ny = img->ny;
  2393. return img->buf.data();
  2394. }
  2395. void clip_image_size_free(struct clip_image_size * load_image_size) {
  2396. if (load_image_size == nullptr) {
  2397. return;
  2398. }
  2399. delete load_image_size;
  2400. }
  2401. void clip_image_u8_free(struct clip_image_u8 * img) { if (img) delete img; }
  2402. void clip_image_f32_free(struct clip_image_f32 * img) { if (img) delete img; }
  2403. void clip_image_u8_batch_free(struct clip_image_u8_batch * batch) { if (batch) delete batch; }
  2404. void clip_image_f32_batch_free(struct clip_image_f32_batch * batch) { if (batch) delete batch; }
  2405. size_t clip_image_f32_batch_n_images(const struct clip_image_f32_batch * batch) {
  2406. return batch->entries.size();
  2407. }
  2408. size_t clip_image_f32_batch_nx(const struct clip_image_f32_batch * batch, int idx) {
  2409. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2410. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2411. return 0;
  2412. }
  2413. return batch->entries[idx]->nx;
  2414. }
  2415. size_t clip_image_f32_batch_ny(const struct clip_image_f32_batch * batch, int idx) {
  2416. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2417. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2418. return 0;
  2419. }
  2420. return batch->entries[idx]->ny;
  2421. }
  2422. clip_image_f32 * clip_image_f32_get_img(const struct clip_image_f32_batch * batch, int idx) {
  2423. if (idx < 0 || idx >= (int)batch->entries.size()) {
  2424. LOG_ERR("%s: invalid index %d\n", __func__, idx);
  2425. return nullptr;
  2426. }
  2427. return batch->entries[idx].get();
  2428. }
  2429. void clip_build_img_from_pixels(const unsigned char * rgb_pixels, int nx, int ny, clip_image_u8 * img) {
  2430. img->nx = nx;
  2431. img->ny = ny;
  2432. img->buf.resize(3 * nx * ny);
  2433. memcpy(img->buf.data(), rgb_pixels, img->buf.size());
  2434. }
  2435. // Normalize image to float32 - careful with pytorch .to(model.device, dtype=torch.float16) - this sometimes reduces precision (32>16>32), sometimes not
  2436. static void normalize_image_u8_to_f32(const clip_image_u8 & src, clip_image_f32 & dst, const float mean[3], const float std[3]) {
  2437. dst.nx = src.nx;
  2438. dst.ny = src.ny;
  2439. dst.buf.resize(src.buf.size());
  2440. // TODO @ngxson : seems like this could be done more efficiently on cgraph
  2441. for (size_t i = 0; i < src.buf.size(); ++i) {
  2442. int c = i % 3; // rgb
  2443. dst.buf[i] = (static_cast<float>(src.buf[i]) / 255.0f - mean[c]) / std[c];
  2444. }
  2445. }
  2446. // set of tools to manupulate images
  2447. // in the future, we can have HW acceleration by allowing this struct to access 3rd party lib like imagick or opencv
  2448. struct image_manipulation {
  2449. // Bilinear resize function
  2450. static void bilinear_resize(const clip_image_u8& src, clip_image_u8& dst, int target_width, int target_height) {
  2451. dst.nx = target_width;
  2452. dst.ny = target_height;
  2453. dst.buf.resize(3 * target_width * target_height);
  2454. float x_ratio = static_cast<float>(src.nx - 1) / target_width;
  2455. float y_ratio = static_cast<float>(src.ny - 1) / target_height;
  2456. for (int y = 0; y < target_height; y++) {
  2457. for (int x = 0; x < target_width; x++) {
  2458. float px = x_ratio * x;
  2459. float py = y_ratio * y;
  2460. int x_floor = static_cast<int>(px);
  2461. int y_floor = static_cast<int>(py);
  2462. float x_lerp = px - x_floor;
  2463. float y_lerp = py - y_floor;
  2464. for (int c = 0; c < 3; c++) {
  2465. float top = lerp(
  2466. static_cast<float>(src.buf[3 * (y_floor * src.nx + x_floor) + c]),
  2467. static_cast<float>(src.buf[3 * (y_floor * src.nx + (x_floor + 1)) + c]),
  2468. x_lerp
  2469. );
  2470. float bottom = lerp(
  2471. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + x_floor) + c]),
  2472. static_cast<float>(src.buf[3 * ((y_floor + 1) * src.nx + (x_floor + 1)) + c]),
  2473. x_lerp
  2474. );
  2475. dst.buf[3 * (y * target_width + x) + c] = static_cast<uint8_t>(lerp(top, bottom, y_lerp));
  2476. }
  2477. }
  2478. }
  2479. }
  2480. // Bicubic resize function
  2481. // part of image will be cropped if the aspect ratio is different
  2482. static bool bicubic_resize(const clip_image_u8 & img, clip_image_u8 & dst, int target_width, int target_height) {
  2483. const int nx = img.nx;
  2484. const int ny = img.ny;
  2485. dst.nx = target_width;
  2486. dst.ny = target_height;
  2487. dst.buf.resize(3 * target_width * target_height);
  2488. float Cc;
  2489. float C[5];
  2490. float d0, d2, d3, a0, a1, a2, a3;
  2491. int i, j, k, jj;
  2492. int x, y;
  2493. float dx, dy;
  2494. float tx, ty;
  2495. tx = (float)nx / (float)target_width;
  2496. ty = (float)ny / (float)target_height;
  2497. // Bicubic interpolation; adapted from ViT.cpp, inspired from :
  2498. // -> https://github.com/yglukhov/bicubic-interpolation-image-processing/blob/master/libimage.c#L36
  2499. // -> https://en.wikipedia.org/wiki/Bicubic_interpolation
  2500. for (i = 0; i < target_height; i++) {
  2501. for (j = 0; j < target_width; j++) {
  2502. x = (int)(tx * j);
  2503. y = (int)(ty * i);
  2504. dx = tx * j - x;
  2505. dy = ty * i - y;
  2506. for (k = 0; k < 3; k++) {
  2507. for (jj = 0; jj <= 3; jj++) {
  2508. d0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x - 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2509. d2 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 1, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2510. d3 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x + 2, 0, nx - 1)) * 3 + k] - img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2511. a0 = img.buf[(clip(y - 1 + jj, 0, ny - 1) * nx + clip(x, 0, nx - 1)) * 3 + k];
  2512. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2513. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2514. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2515. C[jj] = a0 + a1 * dx + a2 * dx * dx + a3 * dx * dx * dx;
  2516. d0 = C[0] - C[1];
  2517. d2 = C[2] - C[1];
  2518. d3 = C[3] - C[1];
  2519. a0 = C[1];
  2520. a1 = -1.0 / 3 * d0 + d2 - 1.0 / 6 * d3;
  2521. a2 = 1.0 / 2 * d0 + 1.0 / 2 * d2;
  2522. a3 = -1.0 / 6 * d0 - 1.0 / 2 * d2 + 1.0 / 6 * d3;
  2523. Cc = a0 + a1 * dy + a2 * dy * dy + a3 * dy * dy * dy;
  2524. const uint8_t Cc2 = std::min(std::max(std::round(Cc), 0.0f), 255.0f);
  2525. dst.buf[(i * target_width + j) * 3 + k] = float(Cc2);
  2526. }
  2527. }
  2528. }
  2529. }
  2530. return true;
  2531. }
  2532. // llava-1.6 type of resize_and_pad
  2533. // if the ratio is not 1:1, padding with pad_color will be applied
  2534. // pad_color is single channel, default is 0 (black)
  2535. static void resize_and_pad_image(const clip_image_u8 & image, clip_image_u8 & dst, const clip_image_size & target_resolution, std::array<uint8_t, 3> pad_color = {0, 0, 0}) {
  2536. int target_width = target_resolution.width;
  2537. int target_height = target_resolution.height;
  2538. float scale_w = static_cast<float>(target_width) / image.nx;
  2539. float scale_h = static_cast<float>(target_height) / image.ny;
  2540. int new_width, new_height;
  2541. if (scale_w < scale_h) {
  2542. new_width = target_width;
  2543. new_height = std::min(static_cast<int>(std::ceil(image.ny * scale_w)), target_height);
  2544. } else {
  2545. new_height = target_height;
  2546. new_width = std::min(static_cast<int>(std::ceil(image.nx * scale_h)), target_width);
  2547. }
  2548. clip_image_u8 resized_image;
  2549. bicubic_resize(image, resized_image, new_width, new_height);
  2550. clip_image_u8 padded_image;
  2551. padded_image.nx = target_width;
  2552. padded_image.ny = target_height;
  2553. padded_image.buf.resize(3 * target_width * target_height);
  2554. // Fill the padded image with the fill color
  2555. for (size_t i = 0; i < padded_image.buf.size(); i += 3) {
  2556. padded_image.buf[i] = pad_color[0];
  2557. padded_image.buf[i + 1] = pad_color[1];
  2558. padded_image.buf[i + 2] = pad_color[2];
  2559. }
  2560. // Calculate padding offsets
  2561. int pad_x = (target_width - new_width) / 2;
  2562. int pad_y = (target_height - new_height) / 2;
  2563. // Copy the resized image into the center of the padded buffer
  2564. for (int y = 0; y < new_height; ++y) {
  2565. for (int x = 0; x < new_width; ++x) {
  2566. for (int c = 0; c < 3; ++c) {
  2567. padded_image.buf[3 * ((y + pad_y) * target_width + (x + pad_x)) + c] = resized_image.buf[3 * (y * new_width + x) + c];
  2568. }
  2569. }
  2570. }
  2571. dst = std::move(padded_image);
  2572. }
  2573. static void crop_image(const clip_image_u8 & image, clip_image_u8 & dst, int x, int y, int w, int h) {
  2574. dst.nx = w;
  2575. dst.ny = h;
  2576. dst.buf.resize(3 * w * h);
  2577. for (int i = 0; i < h; ++i) {
  2578. for (int j = 0; j < w; ++j) {
  2579. int src_idx = 3 * ((y + i)*image.nx + (x + j));
  2580. int dst_idx = 3 * (i*w + j);
  2581. dst.buf[dst_idx] = image.buf[src_idx];
  2582. dst.buf[dst_idx + 1] = image.buf[src_idx + 1];
  2583. dst.buf[dst_idx + 2] = image.buf[src_idx + 2];
  2584. }
  2585. }
  2586. }
  2587. // calculate the size of the **resized** image, while preserving the aspect ratio
  2588. // the calculated size will be aligned to the nearest multiple of align_size
  2589. // if H or W size is larger than max_dimension, it will be resized to max_dimension
  2590. static clip_image_size calc_size_preserved_ratio(const clip_image_size & inp_size, const int align_size, const int max_dimension) {
  2591. if (inp_size.width <= 0 || inp_size.height <= 0 || align_size <= 0 || max_dimension <= 0) {
  2592. return {0, 0};
  2593. }
  2594. float scale = std::min(1.0f, std::min(static_cast<float>(max_dimension) / inp_size.width,
  2595. static_cast<float>(max_dimension) / inp_size.height));
  2596. float target_width_f = static_cast<float>(inp_size.width) * scale;
  2597. float target_height_f = static_cast<float>(inp_size.height) * scale;
  2598. int aligned_width = CLIP_ALIGN((int)target_width_f, align_size);
  2599. int aligned_height = CLIP_ALIGN((int)target_height_f, align_size);
  2600. return {aligned_width, aligned_height};
  2601. }
  2602. private:
  2603. static inline int clip(int x, int lower, int upper) {
  2604. return std::max(lower, std::min(x, upper));
  2605. }
  2606. // Linear interpolation between two points
  2607. static inline float lerp(float s, float e, float t) {
  2608. return s + (e - s) * t;
  2609. }
  2610. };
  2611. /**
  2612. * implementation of LLaVA-UHD:
  2613. * - https://arxiv.org/pdf/2403.11703
  2614. * - https://github.com/thunlp/LLaVA-UHD
  2615. * - https://github.com/thunlp/LLaVA-UHD/blob/302301bc2175f7e717fb8548516188e89f649753/llava_uhd/train/llava-uhd/slice_logic.py#L118
  2616. *
  2617. * overview:
  2618. * - an image always have a single overview (downscaled image)
  2619. * - an image can have 0 or multiple slices, depending on the image size
  2620. * - each slice can then be considered as a separate image
  2621. *
  2622. * for example:
  2623. *
  2624. * [overview] --> [slice 1] --> [slice 2]
  2625. * | |
  2626. * +--> [slice 3] --> [slice 4]
  2627. */
  2628. struct llava_uhd {
  2629. struct slice_coordinates {
  2630. int x;
  2631. int y;
  2632. clip_image_size size;
  2633. };
  2634. struct slice_instructions {
  2635. clip_image_size overview_size; // size of downscaled image
  2636. clip_image_size refined_size; // size of image right before slicing (must be multiple of slice size)
  2637. clip_image_size grid_size; // grid_size.width * grid_size.height = number of slices
  2638. std::vector<slice_coordinates> slices;
  2639. bool padding_refined = false; // if true, refine image will be padded to the grid size (e.g. llava-1.6)
  2640. };
  2641. static slice_instructions get_slice_instructions(struct clip_ctx * ctx, const clip_image_size & original_size) {
  2642. slice_instructions res;
  2643. const int patch_size = clip_get_patch_size(ctx);
  2644. const int slice_size = clip_get_image_size(ctx);
  2645. const int original_width = original_size.width;
  2646. const int original_height = original_size.height;
  2647. const bool has_slices = original_size.width > slice_size || original_size.height > slice_size;
  2648. const bool has_pinpoints = !ctx->model.hparams.image_res_candidates.empty();
  2649. if (!has_slices) {
  2650. // skip slicing logic
  2651. res.overview_size = clip_image_size{slice_size, slice_size};
  2652. res.refined_size = clip_image_size{0, 0};
  2653. res.grid_size = clip_image_size{0, 0};
  2654. return res;
  2655. }
  2656. if (has_pinpoints) {
  2657. // has pinpoints, use them to calculate the grid size (e.g. llava-1.6)
  2658. auto refine_size = llava_uhd::select_best_resolution(
  2659. original_size,
  2660. ctx->model.hparams.image_res_candidates);
  2661. res.overview_size = clip_image_size{slice_size, slice_size};
  2662. res.refined_size = refine_size;
  2663. res.grid_size = clip_image_size{0, 0};
  2664. res.padding_refined = true;
  2665. LOG_DBG("%s: using pinpoints for slicing\n", __func__);
  2666. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d\n",
  2667. __func__, original_width, original_height,
  2668. res.overview_size.width, res.overview_size.height,
  2669. res.refined_size.width, res.refined_size.height);
  2670. for (int y = 0; y < refine_size.height; y += slice_size) {
  2671. for (int x = 0; x < refine_size.width; x += slice_size) {
  2672. slice_coordinates slice;
  2673. slice.x = x;
  2674. slice.y = y;
  2675. slice.size.width = std::min(slice_size, refine_size.width - x);
  2676. slice.size.height = std::min(slice_size, refine_size.height - y);
  2677. res.slices.push_back(slice);
  2678. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2679. __func__, (int)res.slices.size() - 1,
  2680. slice.x, slice.y, slice.size.width, slice.size.height);
  2681. }
  2682. }
  2683. res.grid_size.height = refine_size.height / slice_size;
  2684. res.grid_size.width = refine_size.width / slice_size;
  2685. LOG_DBG("%s: grid size: %d x %d\n", __func__, res.grid_size.width, res.grid_size.height);
  2686. return res;
  2687. }
  2688. // no pinpoints, dynamically calculate the grid size (e.g. minicpmv)
  2689. auto best_size = get_best_resize(original_size, slice_size, patch_size, !has_slices);
  2690. res.overview_size = best_size;
  2691. {
  2692. const int max_slice_nums = 9; // TODO: this is only used by minicpmv, maybe remove it
  2693. const float log_ratio = log((float)original_width / original_height);
  2694. const float ratio = (float)original_width * original_height / (slice_size * slice_size);
  2695. const int multiple = fmin(ceil(ratio), max_slice_nums);
  2696. auto best_grid = get_best_grid(max_slice_nums, multiple, log_ratio);
  2697. auto refine_size = get_refine_size(original_size, best_grid, slice_size, patch_size, true);
  2698. res.grid_size = best_grid;
  2699. res.refined_size = refine_size;
  2700. LOG_DBG("%s: original size: %d x %d, overview size: %d x %d, refined size: %d x %d, grid size: %d x %d\n",
  2701. __func__, original_width, original_height,
  2702. res.overview_size.width, res.overview_size.height,
  2703. res.refined_size.width, res.refined_size.height,
  2704. res.grid_size.width, res.grid_size.height);
  2705. int width = refine_size.width;
  2706. int height = refine_size.height;
  2707. int grid_x = int(width / best_grid.width);
  2708. int grid_y = int(height / best_grid.height);
  2709. for (int patches_y = 0, ic = 0;
  2710. patches_y < refine_size.height && ic < best_grid.height;
  2711. patches_y += grid_y, ic += 1) {
  2712. for (int patches_x = 0, jc = 0;
  2713. patches_x < refine_size.width && jc < best_grid.width;
  2714. patches_x += grid_x, jc += 1) {
  2715. slice_coordinates slice;
  2716. slice.x = patches_x;
  2717. slice.y = patches_y;
  2718. slice.size.width = grid_x;
  2719. slice.size.height = grid_y;
  2720. res.slices.push_back(slice);
  2721. LOG_DBG("%s: slice %d: x=%d, y=%d, size=%dx%d\n",
  2722. __func__, (int)res.slices.size() - 1,
  2723. slice.x, slice.y, slice.size.width, slice.size.height);
  2724. }
  2725. }
  2726. }
  2727. return res;
  2728. }
  2729. static std::vector<clip_image_u8_ptr> slice_image(const clip_image_u8 * img, const slice_instructions & inst) {
  2730. std::vector<clip_image_u8_ptr> output;
  2731. // resize to overview size
  2732. clip_image_u8_ptr resized_img(clip_image_u8_init());
  2733. image_manipulation::bicubic_resize(*img, *resized_img, inst.overview_size.width, inst.overview_size.height);
  2734. output.push_back(std::move(resized_img));
  2735. if (inst.slices.empty()) {
  2736. // no slices, just return the resized image
  2737. return output;
  2738. }
  2739. // resize to refined size
  2740. clip_image_u8_ptr refined_img(clip_image_u8_init());
  2741. if (inst.padding_refined) {
  2742. image_manipulation::resize_and_pad_image(*img, *refined_img, inst.refined_size);
  2743. } else {
  2744. image_manipulation::bilinear_resize(*img, *refined_img, inst.refined_size.width, inst.refined_size.height);
  2745. }
  2746. // create slices
  2747. for (const auto & slice : inst.slices) {
  2748. int x = slice.x;
  2749. int y = slice.y;
  2750. int w = slice.size.width;
  2751. int h = slice.size.height;
  2752. clip_image_u8_ptr img_slice(clip_image_u8_init());
  2753. image_manipulation::crop_image(*refined_img, *img_slice, x, y, w, h);
  2754. output.push_back(std::move(img_slice));
  2755. }
  2756. return output;
  2757. }
  2758. private:
  2759. static clip_image_size get_best_resize(const clip_image_size & original_size, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2760. int width = original_size.width;
  2761. int height = original_size.height;
  2762. if ((width * height > scale_resolution * scale_resolution) || allow_upscale) {
  2763. float r = static_cast<float>(width) / height;
  2764. height = static_cast<int>(scale_resolution / std::sqrt(r));
  2765. width = static_cast<int>(height * r);
  2766. }
  2767. clip_image_size res;
  2768. res.width = ensure_divide(width, patch_size);
  2769. res.height = ensure_divide(height, patch_size);
  2770. return res;
  2771. }
  2772. static clip_image_size resize_maintain_aspect_ratio(const clip_image_size & orig, const clip_image_size & target_max) {
  2773. float scale_width = static_cast<float>(target_max.width) / orig.width;
  2774. float scale_height = static_cast<float>(target_max.height) / orig.height;
  2775. float scale = std::min(scale_width, scale_height);
  2776. return clip_image_size{
  2777. static_cast<int>(orig.width * scale),
  2778. static_cast<int>(orig.height * scale),
  2779. };
  2780. }
  2781. /**
  2782. * Selects the best resolution from a list of possible resolutions based on the original size.
  2783. *
  2784. * For example, when given a list of resolutions:
  2785. * - 100x100
  2786. * - 200x100
  2787. * - 100x200
  2788. * - 200x200
  2789. *
  2790. * And an input image of size 111x200, then 100x200 is the best fit (least wasted resolution).
  2791. *
  2792. * @param original_size The original size of the image
  2793. * @param possible_resolutions A list of possible resolutions
  2794. * @return The best fit resolution
  2795. */
  2796. static clip_image_size select_best_resolution(const clip_image_size & original_size, const std::vector<clip_image_size> & possible_resolutions) {
  2797. clip_image_size best_fit;
  2798. int min_wasted_area = std::numeric_limits<int>::max();
  2799. int max_effective_resolution = 0;
  2800. for (const clip_image_size & candidate : possible_resolutions) {
  2801. auto target_size = resize_maintain_aspect_ratio(original_size, candidate);
  2802. int effective_resolution = std::min(
  2803. target_size.width * target_size.height,
  2804. original_size.width * original_size.height);
  2805. int wasted_area = (candidate.width * candidate.height) - effective_resolution;
  2806. if (effective_resolution > max_effective_resolution || (effective_resolution == max_effective_resolution && wasted_area < min_wasted_area)) {
  2807. max_effective_resolution = effective_resolution;
  2808. min_wasted_area = wasted_area;
  2809. best_fit = candidate;
  2810. }
  2811. LOG_DBG("%s: candidate: %d x %d, target: %d x %d, wasted: %d, effective: %d\n", __func__, candidate.width, candidate.height, target_size.width, target_size.height, wasted_area, effective_resolution);
  2812. }
  2813. return best_fit;
  2814. }
  2815. static int ensure_divide(int length, int patch_size) {
  2816. return std::max(static_cast<int>(std::round(static_cast<float>(length) / patch_size) * patch_size), patch_size);
  2817. }
  2818. static clip_image_size get_refine_size(const clip_image_size & original_size, const clip_image_size & grid, int scale_resolution, int patch_size, bool allow_upscale = false) {
  2819. int width = original_size.width;
  2820. int height = original_size.height;
  2821. int grid_x = grid.width;
  2822. int grid_y = grid.height;
  2823. int refine_width = ensure_divide(width, grid_x);
  2824. int refine_height = ensure_divide(height, grid_y);
  2825. clip_image_size grid_size;
  2826. grid_size.width = refine_width / grid_x;
  2827. grid_size.height = refine_height / grid_y;
  2828. auto best_grid_size = get_best_resize(grid_size, scale_resolution, patch_size, allow_upscale);
  2829. int best_grid_width = best_grid_size.width;
  2830. int best_grid_height = best_grid_size.height;
  2831. clip_image_size refine_size;
  2832. refine_size.width = best_grid_width * grid_x;
  2833. refine_size.height = best_grid_height * grid_y;
  2834. return refine_size;
  2835. }
  2836. static clip_image_size get_best_grid(const int max_slice_nums, const int multiple, const float log_ratio) {
  2837. std::vector<int> candidate_split_grids_nums;
  2838. for (int i : {multiple - 1, multiple, multiple + 1}) {
  2839. if (i == 1 || i > max_slice_nums) {
  2840. continue;
  2841. }
  2842. candidate_split_grids_nums.push_back(i);
  2843. }
  2844. std::vector<clip_image_size> candidate_grids;
  2845. for (int split_grids_nums : candidate_split_grids_nums) {
  2846. int m = 1;
  2847. while (m <= split_grids_nums) {
  2848. if (split_grids_nums % m == 0) {
  2849. candidate_grids.push_back(clip_image_size{m, split_grids_nums / m});
  2850. }
  2851. ++m;
  2852. }
  2853. }
  2854. clip_image_size best_grid{1, 1};
  2855. float min_error = std::numeric_limits<float>::infinity();
  2856. for (const auto& grid : candidate_grids) {
  2857. float error = std::abs(log_ratio - std::log(1.0 * grid.width / grid.height));
  2858. if (error < min_error) {
  2859. best_grid = grid;
  2860. min_error = error;
  2861. }
  2862. }
  2863. return best_grid;
  2864. }
  2865. };
  2866. // returns the normalized float tensor for llava-1.5, for spatial_unpad with anyres processing for llava-1.6 it returns the normalized image patch tensors as a vector
  2867. // res_imgs memory is being allocated here, previous allocations will be freed if found
  2868. bool clip_image_preprocess(struct clip_ctx * ctx, const clip_image_u8 * img, struct clip_image_f32_batch * res_imgs) {
  2869. clip_image_size original_size{img->nx, img->ny};
  2870. bool pad_to_square = true;
  2871. auto & params = ctx->model.hparams;
  2872. // The model config actually contains all we need to decide on how to preprocess, here we automatically switch to the new llava-1.6 preprocessing
  2873. if (params.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD) {
  2874. pad_to_square = false;
  2875. }
  2876. if (clip_is_minicpmv(ctx)) {
  2877. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2878. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2879. for (size_t i = 0; i < imgs.size(); ++i) {
  2880. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2881. clip_image_f32_ptr res(clip_image_f32_init());
  2882. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2883. res_imgs->entries.push_back(std::move(res));
  2884. }
  2885. res_imgs->grid_x = inst.grid_size.width;
  2886. res_imgs->grid_y = inst.grid_size.height;
  2887. return true;
  2888. } else if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  2889. clip_image_u8 resized;
  2890. auto patch_size = params.patch_size * 2;
  2891. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, patch_size, params.image_size);
  2892. image_manipulation::bicubic_resize(*img, resized, new_size.width, new_size.height);
  2893. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2894. // clip_image_f32_ptr res(clip_image_f32_init());
  2895. normalize_image_u8_to_f32(resized, *img_f32, params.image_mean, params.image_std);
  2896. // res_imgs->data[0] = *res;
  2897. res_imgs->entries.push_back(std::move(img_f32));
  2898. return true;
  2899. }
  2900. else if (ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE
  2901. || ctx->proj_type() == PROJECTOR_TYPE_GEMMA3
  2902. || ctx->proj_type() == PROJECTOR_TYPE_IDEFICS3
  2903. || ctx->proj_type() == PROJECTOR_TYPE_INTERNVL // TODO @ngxson : support dynamic resolution
  2904. ) {
  2905. clip_image_u8 resized_image;
  2906. int sz = params.image_size;
  2907. image_manipulation::resize_and_pad_image(*img, resized_image, {sz, sz});
  2908. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2909. //clip_image_save_to_bmp(resized_image, "resized.bmp");
  2910. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2911. res_imgs->entries.push_back(std::move(img_f32));
  2912. return true;
  2913. } else if (ctx->proj_type() == PROJECTOR_TYPE_PIXTRAL) {
  2914. clip_image_u8 resized_image;
  2915. auto new_size = image_manipulation::calc_size_preserved_ratio(original_size, params.patch_size, params.image_size);
  2916. image_manipulation::bilinear_resize(*img, resized_image, new_size.width, new_size.height);
  2917. clip_image_f32_ptr img_f32(clip_image_f32_init());
  2918. normalize_image_u8_to_f32(resized_image, *img_f32, params.image_mean, params.image_std);
  2919. res_imgs->entries.push_back(std::move(img_f32));
  2920. return true;
  2921. } else if (ctx->proj_type() == PROJECTOR_TYPE_LLAMA4) {
  2922. GGML_ASSERT(!params.image_res_candidates.empty());
  2923. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2924. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2925. for (size_t i = 0; i < imgs.size(); ++i) {
  2926. clip_image_f32_ptr res(clip_image_f32_init());
  2927. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2928. res_imgs->entries.push_back(std::move(res));
  2929. }
  2930. res_imgs->grid_x = inst.grid_size.width;
  2931. res_imgs->grid_y = inst.grid_size.height;
  2932. return true;
  2933. }
  2934. // the logic below is to pad the shorter side to the longer side with a background color: rgb(122, 116, 104)
  2935. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2936. clip_image_u8_ptr temp(clip_image_u8_init()); // we will keep the input image data here temporarily
  2937. if (pad_to_square) {
  2938. // for llava-1.5, we resize image to a square, and pad the shorter side with a background color
  2939. // see https://github.com/haotian-liu/LLaVA/blob/e854a2bf85118c504f6f16bf5c3c7c92f8fa8c6b/llava/conversation.py#L113-L156
  2940. const int longer_side = std::max(img->nx, img->ny);
  2941. temp->nx = longer_side;
  2942. temp->ny = longer_side;
  2943. temp->buf.resize(3 * longer_side * longer_side);
  2944. // background color in RGB from LLaVA (this is the mean rgb color * 255)
  2945. const std::array<uint8_t, 3> pad_color = {122, 116, 104};
  2946. // resize the image to the target_size
  2947. image_manipulation::resize_and_pad_image(*img, *temp, clip_image_size{params.image_size, params.image_size}, pad_color);
  2948. clip_image_f32_ptr res(clip_image_f32_init());
  2949. normalize_image_u8_to_f32(*temp, *res, params.image_mean, params.image_std);
  2950. res_imgs->entries.push_back(std::move(res));
  2951. return true;
  2952. } else if (!params.image_res_candidates.empty()) {
  2953. // "spatial_unpad" with "anyres" processing for llava-1.6
  2954. auto const inst = llava_uhd::get_slice_instructions(ctx, original_size);
  2955. std::vector<clip_image_u8_ptr> imgs = llava_uhd::slice_image(img, inst);
  2956. for (size_t i = 0; i < imgs.size(); ++i) {
  2957. // clip_image_save_to_bmp(*imgs[i], "slice_" + std::to_string(i) + ".bmp");
  2958. clip_image_f32_ptr res(clip_image_f32_init());
  2959. normalize_image_u8_to_f32(*imgs[i], *res, params.image_mean, params.image_std);
  2960. res_imgs->entries.push_back(std::move(res));
  2961. }
  2962. return true;
  2963. }
  2964. GGML_ASSERT(false && "Unknown image preprocessing type");
  2965. }
  2966. ggml_tensor * clip_get_newline_tensor(const struct clip_ctx * ctx) {
  2967. return ctx->model.image_newline;
  2968. }
  2969. void clip_free(clip_ctx * ctx) {
  2970. if (ctx == nullptr) {
  2971. return;
  2972. }
  2973. delete ctx;
  2974. }
  2975. // deprecated
  2976. size_t clip_embd_nbytes(const struct clip_ctx * ctx) {
  2977. const int32_t nx = ctx->model.hparams.image_size;
  2978. const int32_t ny = ctx->model.hparams.image_size;
  2979. return clip_embd_nbytes_by_img(ctx, nx, ny);
  2980. }
  2981. size_t clip_embd_nbytes_by_img(const struct clip_ctx * ctx, int img_w, int img_h) {
  2982. clip_image_f32 img;
  2983. img.nx = img_w;
  2984. img.ny = img_h;
  2985. return clip_n_output_tokens(ctx, &img) * clip_n_mmproj_embd(ctx) * sizeof(float);
  2986. }
  2987. int32_t clip_get_image_size(const struct clip_ctx * ctx) {
  2988. return ctx->model.hparams.image_size;
  2989. }
  2990. int32_t clip_get_patch_size(const struct clip_ctx * ctx) {
  2991. return ctx->model.hparams.patch_size;
  2992. }
  2993. int32_t clip_get_hidden_size(const struct clip_ctx * ctx) {
  2994. return ctx->model.hparams.n_embd;
  2995. }
  2996. const char * clip_patch_merge_type(const struct clip_ctx * ctx) {
  2997. return ctx->model.hparams.mm_patch_merge_type == PATCH_MERGE_SPATIAL_UNPAD ? "spatial_unpad" : "flat";
  2998. }
  2999. int clip_n_output_tokens_x(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3000. const auto & params = ctx->model.hparams;
  3001. const int n_total = clip_n_output_tokens(ctx, img);
  3002. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3003. return img->nx / (params.patch_size * 2) + (int)(img->nx % params.patch_size > 0);
  3004. }
  3005. return n_total;
  3006. }
  3007. int clip_n_output_tokens_y(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3008. const auto & params = ctx->model.hparams;
  3009. if (ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL) {
  3010. return img->ny / (params.patch_size * 2) + (int)(img->ny % params.patch_size > 0);
  3011. }
  3012. return 1;
  3013. }
  3014. int clip_n_output_tokens(const struct clip_ctx * ctx, struct clip_image_f32 * img) {
  3015. const auto & params = ctx->model.hparams;
  3016. // only for models using fixed size square images
  3017. int n_patches_sq = (params.image_size / params.patch_size) * (params.image_size / params.patch_size);
  3018. projector_type proj = ctx->proj_type();
  3019. switch (proj) {
  3020. case PROJECTOR_TYPE_MLP:
  3021. case PROJECTOR_TYPE_MLP_NORM:
  3022. {
  3023. // do nothing
  3024. } break;
  3025. case PROJECTOR_TYPE_LDP:
  3026. case PROJECTOR_TYPE_LDPV2:
  3027. case PROJECTOR_TYPE_GLM_EDGE:
  3028. {
  3029. n_patches_sq /= 4;
  3030. if (ctx->model.mm_glm_tok_boi) {
  3031. n_patches_sq += 2; // for BOI and EOI token embeddings
  3032. }
  3033. } break;
  3034. case PROJECTOR_TYPE_MINICPMV:
  3035. {
  3036. // Use actual config value if available, otherwise fall back to hardcoded values
  3037. if (params.minicpmv_query_num > 0) {
  3038. n_patches_sq = params.minicpmv_query_num;
  3039. } else {
  3040. // Fallback to hardcoded values for legacy models
  3041. if (params.minicpmv_version == 2) {
  3042. n_patches_sq = 96;
  3043. } else if (params.minicpmv_version == 3) {
  3044. n_patches_sq = 64;
  3045. } else if (params.minicpmv_version == 4) {
  3046. n_patches_sq = 64;
  3047. } else if (params.minicpmv_version == 5) {
  3048. // MiniCPM-V 4.0
  3049. n_patches_sq = 64;
  3050. } else {
  3051. GGML_ABORT("Unknown minicpmv version");
  3052. }
  3053. }
  3054. } break;
  3055. case PROJECTOR_TYPE_QWEN2VL:
  3056. case PROJECTOR_TYPE_QWEN25VL:
  3057. {
  3058. // dynamic size
  3059. int patch_size = params.patch_size * 2;
  3060. int x_patch = img->nx / patch_size + (int)(img->nx % patch_size > 0);
  3061. int y_patch = img->ny / patch_size + (int)(img->ny % patch_size > 0);
  3062. n_patches_sq = x_patch * y_patch;
  3063. } break;
  3064. case PROJECTOR_TYPE_GEMMA3:
  3065. {
  3066. int n_per_side = params.image_size / params.patch_size;
  3067. int n_per_side_2d_pool = n_per_side / params.proj_scale_factor;
  3068. n_patches_sq = n_per_side_2d_pool * n_per_side_2d_pool;
  3069. } break;
  3070. case PROJECTOR_TYPE_IDEFICS3:
  3071. case PROJECTOR_TYPE_INTERNVL:
  3072. {
  3073. // both W and H are divided by proj_scale_factor
  3074. n_patches_sq /= (params.proj_scale_factor * params.proj_scale_factor);
  3075. } break;
  3076. case PROJECTOR_TYPE_PIXTRAL:
  3077. {
  3078. // dynamic size
  3079. int n_merge = params.spatial_merge_size;
  3080. int n_patches_x = img->nx / params.patch_size / (n_merge > 0 ? n_merge : 1);
  3081. int n_patches_y = img->ny / params.patch_size / (n_merge > 0 ? n_merge : 1);
  3082. n_patches_sq = n_patches_y * n_patches_x + n_patches_y - 1; // + one [IMG_BREAK] per row, except the last row
  3083. } break;
  3084. case PROJECTOR_TYPE_LLAMA4:
  3085. {
  3086. int scale_factor = ctx->model.hparams.proj_scale_factor;
  3087. n_patches_sq /= (scale_factor * scale_factor);
  3088. } break;
  3089. case PROJECTOR_TYPE_VOXTRAL:
  3090. case PROJECTOR_TYPE_ULTRAVOX:
  3091. case PROJECTOR_TYPE_QWEN2A:
  3092. {
  3093. n_patches_sq = img->nx;
  3094. const int proj_stack_factor = ctx->model.hparams.proj_stack_factor;
  3095. if (ctx->model.audio_has_stack_frames()) {
  3096. GGML_ASSERT(proj_stack_factor > 0);
  3097. const int n_len = CLIP_ALIGN(n_patches_sq, proj_stack_factor);
  3098. n_patches_sq = n_len / proj_stack_factor;
  3099. }
  3100. // whisper downscales input token by half after conv1d
  3101. n_patches_sq /= 2;
  3102. if (ctx->model.audio_has_avgpool()) {
  3103. // divide by 2 because of nn.AvgPool1d(2, stride=2)
  3104. n_patches_sq /= 2;
  3105. }
  3106. } break;
  3107. default:
  3108. GGML_ABORT("unsupported projector type");
  3109. }
  3110. return n_patches_sq;
  3111. }
  3112. static std::vector<std::vector<std::vector<float>>> get_1d_sincos_pos_embed_from_grid_new(int embed_dim, const std::vector<std::vector<float>> & pos) {
  3113. assert(embed_dim % 2 == 0);
  3114. int H = pos.size();
  3115. int W = pos[0].size();
  3116. std::vector<float> omega(embed_dim / 2);
  3117. for (int i = 0; i < embed_dim / 2; ++i) {
  3118. omega[i] = 1.0 / pow(10000.0, static_cast<float>(i) / (embed_dim / 2));
  3119. }
  3120. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3121. for (int h = 0; h < H; ++h) {
  3122. for (int w = 0; w < W; ++w) {
  3123. for (int d = 0; d < embed_dim / 2; ++d) {
  3124. float out_value = pos[h][w] * omega[d];
  3125. emb[h][w][d] = sin(out_value);
  3126. emb[h][w][d + embed_dim / 2] = cos(out_value);
  3127. }
  3128. }
  3129. }
  3130. return emb;
  3131. }
  3132. static std::vector<std::vector<std::vector<float>>> get_2d_sincos_pos_embed_from_grid(int embed_dim, const std::vector<std::vector<std::vector<float>>> & grid) {
  3133. assert(embed_dim % 2 == 0);
  3134. std::vector<std::vector<std::vector<float>>> emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[0]); // (H, W, D/2)
  3135. std::vector<std::vector<std::vector<float>>> emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim / 2, grid[1]); // (H, W, D/2)
  3136. int H = emb_h.size();
  3137. int W = emb_h[0].size();
  3138. std::vector<std::vector<std::vector<float>>> emb(H, std::vector<std::vector<float>>(W, std::vector<float>(embed_dim)));
  3139. for (int h = 0; h < H; ++h) {
  3140. for (int w = 0; w < W; ++w) {
  3141. for (int d = 0; d < embed_dim / 2; ++d) {
  3142. emb[h][w][d] = emb_h[h][w][d];
  3143. emb[h][w][d + embed_dim / 2] = emb_w[h][w][d];
  3144. }
  3145. }
  3146. }
  3147. return emb;
  3148. }
  3149. static std::vector<std::vector<float>> get_2d_sincos_pos_embed(int embed_dim, const std::pair<int, int> image_size) {
  3150. int grid_h_size = image_size.first;
  3151. int grid_w_size = image_size.second;
  3152. std::vector<float> grid_h(grid_h_size);
  3153. std::vector<float> grid_w(grid_w_size);
  3154. for (int i = 0; i < grid_h_size; ++i) {
  3155. grid_h[i] = static_cast<float>(i);
  3156. }
  3157. for (int i = 0; i < grid_w_size; ++i) {
  3158. grid_w[i] = static_cast<float>(i);
  3159. }
  3160. std::vector<std::vector<float>> grid(grid_h_size, std::vector<float>(grid_w_size));
  3161. for (int h = 0; h < grid_h_size; ++h) {
  3162. for (int w = 0; w < grid_w_size; ++w) {
  3163. grid[h][w] = grid_w[w];
  3164. }
  3165. }
  3166. std::vector<std::vector<std::vector<float>>> grid_2d = {grid, grid};
  3167. for (int h = 0; h < grid_h_size; ++h) {
  3168. for (int w = 0; w < grid_w_size; ++w) {
  3169. grid_2d[0][h][w] = grid_h[h];
  3170. grid_2d[1][h][w] = grid_w[w];
  3171. }
  3172. }
  3173. std::vector<std::vector<std::vector<float>>> pos_embed_3d = get_2d_sincos_pos_embed_from_grid(embed_dim, grid_2d);
  3174. int H = image_size.first;
  3175. int W = image_size.second;
  3176. std::vector<std::vector<float>> pos_embed_2d(H * W, std::vector<float>(embed_dim));
  3177. for (int h = 0; h < H; ++h) {
  3178. for (int w = 0; w < W; ++w) {
  3179. pos_embed_2d[w * H + h] = pos_embed_3d[h][w];
  3180. }
  3181. }
  3182. return pos_embed_2d;
  3183. }
  3184. bool clip_image_encode(struct clip_ctx * ctx, const int n_threads, clip_image_f32 * img, float * vec) {
  3185. clip_image_f32_batch imgs;
  3186. clip_image_f32_ptr img_copy(clip_image_f32_init());
  3187. *img_copy = *img;
  3188. imgs.entries.push_back(std::move(img_copy));
  3189. return clip_image_batch_encode(ctx, n_threads, &imgs, vec);
  3190. }
  3191. bool clip_image_batch_encode(clip_ctx * ctx, const int n_threads, const clip_image_f32_batch * imgs_c_ptr, float * vec) {
  3192. const clip_image_f32_batch & imgs = *imgs_c_ptr;
  3193. int batch_size = imgs.entries.size();
  3194. // TODO @ngxson : implement batch size > 1 as a loop
  3195. // we don't need true batching support because the cgraph will gonna be big anyway
  3196. if (batch_size != 1) {
  3197. return false; // only support batch size of 1
  3198. }
  3199. // build the inference graph
  3200. ctx->debug_print_tensors.clear();
  3201. ggml_backend_sched_reset(ctx->sched.get());
  3202. ggml_cgraph * gf = clip_image_build_graph(ctx, imgs);
  3203. ggml_backend_sched_alloc_graph(ctx->sched.get(), gf);
  3204. // set inputs
  3205. const auto & model = ctx->model;
  3206. const auto & hparams = model.hparams;
  3207. const int image_size_width = imgs.entries[0]->nx;
  3208. const int image_size_height = imgs.entries[0]->ny;
  3209. const int patch_size = hparams.patch_size;
  3210. const int num_patches = ((image_size_width / patch_size) * (image_size_height / patch_size));
  3211. const int n_pos = num_patches + (model.class_embedding ? 1 : 0);
  3212. const int pos_w = image_size_width / patch_size;
  3213. const int pos_h = image_size_height / patch_size;
  3214. const bool use_window_attn = hparams.n_wa_pattern > 0; // for qwen2.5vl
  3215. auto get_inp_tensor = [&gf](const char * name) {
  3216. ggml_tensor * inp = ggml_graph_get_tensor(gf, name);
  3217. if (inp == nullptr) {
  3218. GGML_ABORT("Failed to get tensor %s", name);
  3219. }
  3220. if (!(inp->flags & GGML_TENSOR_FLAG_INPUT)) {
  3221. GGML_ABORT("Tensor %s is not an input tensor", name);
  3222. }
  3223. return inp;
  3224. };
  3225. auto set_input_f32 = [&get_inp_tensor](const char * name, std::vector<float> & values) {
  3226. ggml_tensor * cur = get_inp_tensor(name);
  3227. GGML_ASSERT(cur->type == GGML_TYPE_F32);
  3228. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3229. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3230. };
  3231. auto set_input_i32 = [&get_inp_tensor](const char * name, std::vector<int32_t> & values) {
  3232. ggml_tensor * cur = get_inp_tensor(name);
  3233. GGML_ASSERT(cur->type == GGML_TYPE_I32);
  3234. GGML_ASSERT(ggml_nelements(cur) == (int64_t)values.size());
  3235. ggml_backend_tensor_set(cur, values.data(), 0, ggml_nbytes(cur));
  3236. };
  3237. // set input pixel values
  3238. if (!imgs.is_audio) {
  3239. size_t nelem = 0;
  3240. for (const auto & img : imgs.entries) {
  3241. nelem += img->nx * img->ny * 3;
  3242. }
  3243. std::vector<float> inp_raw(nelem);
  3244. // layout of data (note: the channel dim is unrolled to better visualize the layout):
  3245. //
  3246. // ┌──W──┐
  3247. // │ H │ channel = R
  3248. // ├─────┤ │
  3249. // │ H │ channel = G
  3250. // ├─────┤ │
  3251. // │ H │ channel = B
  3252. // └─────┘ │
  3253. // ──────┘ x B
  3254. for (size_t i = 0; i < imgs.entries.size(); i++) {
  3255. const int nx = imgs.entries[i]->nx;
  3256. const int ny = imgs.entries[i]->ny;
  3257. const int n = nx * ny;
  3258. for (int b = 0; b < batch_size; b++) {
  3259. float * batch_entry = inp_raw.data() + b * (3*n);
  3260. for (int y = 0; y < ny; y++) {
  3261. for (int x = 0; x < nx; x++) {
  3262. size_t base_src = 3*(y * nx + x); // idx of the first channel
  3263. size_t base_dst = y * nx + x; // idx of the first channel
  3264. batch_entry[ base_dst] = imgs.entries[b]->buf[base_src ];
  3265. batch_entry[1*n + base_dst] = imgs.entries[b]->buf[base_src + 1];
  3266. batch_entry[2*n + base_dst] = imgs.entries[b]->buf[base_src + 2];
  3267. }
  3268. }
  3269. }
  3270. }
  3271. set_input_f32("inp_raw", inp_raw);
  3272. } else {
  3273. // audio input
  3274. GGML_ASSERT(imgs.entries.size() == 1);
  3275. const auto & mel_inp = imgs.entries[0];
  3276. const int n_step = mel_inp->nx;
  3277. const int n_mel = mel_inp->ny;
  3278. std::vector<float> inp_raw(n_step * n_mel);
  3279. std::memcpy(inp_raw.data(), mel_inp->buf.data(), n_step * n_mel * sizeof(float));
  3280. set_input_f32("inp_raw", inp_raw);
  3281. }
  3282. // set input per projector
  3283. switch (ctx->model.proj_type) {
  3284. case PROJECTOR_TYPE_MINICPMV:
  3285. {
  3286. // inspired from siglip:
  3287. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit
  3288. // -> https://huggingface.co/HuggingFaceM4/siglip-so400m-14-980-flash-attn2-navit/blob/d66538faeba44480d0bfaa42145eef26f9423199/modeling_siglip.py#L316
  3289. std::vector<int32_t> positions(pos_h * pos_w);
  3290. int bucket_coords_h[1024];
  3291. int bucket_coords_w[1024];
  3292. for (int i = 0; i < pos_h; i++){
  3293. bucket_coords_h[i] = std::floor(70.0*i/pos_h);
  3294. }
  3295. for (int i = 0; i < pos_w; i++){
  3296. bucket_coords_w[i] = std::floor(70.0*i/pos_w);
  3297. }
  3298. for (int i = 0, id = 0; i < pos_h; i++){
  3299. for (int j = 0; j < pos_w; j++){
  3300. positions[id++] = bucket_coords_h[i]*70 + bucket_coords_w[j];
  3301. }
  3302. }
  3303. set_input_i32("positions", positions);
  3304. // inspired from resampler of Qwen-VL:
  3305. // -> https://huggingface.co/Qwen/Qwen-VL/tree/main
  3306. // -> https://huggingface.co/Qwen/Qwen-VL/blob/0547ed36a86561e2e42fecec8fd0c4f6953e33c4/visual.py#L23
  3307. int embed_dim = clip_n_mmproj_embd(ctx);
  3308. // TODO @ngxson : this is very inefficient, can we do this using ggml_sin and ggml_cos?
  3309. auto pos_embed_t = get_2d_sincos_pos_embed(embed_dim, std::make_pair(pos_w, pos_h));
  3310. std::vector<float> pos_embed(embed_dim * pos_w * pos_h);
  3311. for(int i = 0; i < pos_w * pos_h; ++i){
  3312. for(int j = 0; j < embed_dim; ++j){
  3313. pos_embed[i * embed_dim + j] = pos_embed_t[i][j];
  3314. }
  3315. }
  3316. set_input_f32("pos_embed", pos_embed);
  3317. } break;
  3318. case PROJECTOR_TYPE_QWEN2VL:
  3319. {
  3320. const int merge_ratio = 2;
  3321. const int pw = image_size_width / patch_size;
  3322. const int ph = image_size_height / patch_size;
  3323. std::vector<int> positions(n_pos * 4);
  3324. int ptr = 0;
  3325. for (int y = 0; y < ph; y += merge_ratio) {
  3326. for (int x = 0; x < pw; x += merge_ratio) {
  3327. for (int dy = 0; dy < 2; dy++) {
  3328. for (int dx = 0; dx < 2; dx++) {
  3329. positions[ ptr] = y + dy;
  3330. positions[ num_patches + ptr] = x + dx;
  3331. positions[2 * num_patches + ptr] = y + dy;
  3332. positions[3 * num_patches + ptr] = x + dx;
  3333. ptr++;
  3334. }
  3335. }
  3336. }
  3337. }
  3338. set_input_i32("positions", positions);
  3339. } break;
  3340. case PROJECTOR_TYPE_QWEN25VL:
  3341. {
  3342. // pw * ph = number of tokens output by ViT after apply patch merger
  3343. // ipw * ipw = number of vision token been processed inside ViT
  3344. const int merge_ratio = 2;
  3345. const int pw = image_size_width / patch_size / merge_ratio;
  3346. const int ph = image_size_height / patch_size / merge_ratio;
  3347. const int ipw = image_size_width / patch_size;
  3348. const int iph = image_size_height / patch_size;
  3349. std::vector<int> idx (ph * pw);
  3350. std::vector<int> inv_idx(ph * pw);
  3351. if (use_window_attn) {
  3352. const int attn_window_size = 112;
  3353. const int grid_window = attn_window_size / patch_size / merge_ratio;
  3354. int dst = 0;
  3355. // [num_vision_tokens, num_vision_tokens] attention mask tensor
  3356. std::vector<float> mask(pow(ipw * iph, 2), std::numeric_limits<float>::lowest());
  3357. int mask_row = 0;
  3358. for (int y = 0; y < ph; y += grid_window) {
  3359. for (int x = 0; x < pw; x += grid_window) {
  3360. const int win_h = std::min(grid_window, ph - y);
  3361. const int win_w = std::min(grid_window, pw - x);
  3362. const int dst_0 = dst;
  3363. // group all tokens belong to the same window togather (to a continue range)
  3364. for (int dy = 0; dy < win_h; dy++) {
  3365. for (int dx = 0; dx < win_w; dx++) {
  3366. const int src = (y + dy) * pw + (x + dx);
  3367. GGML_ASSERT(src < (int)idx.size());
  3368. GGML_ASSERT(dst < (int)inv_idx.size());
  3369. idx [src] = dst;
  3370. inv_idx[dst] = src;
  3371. dst++;
  3372. }
  3373. }
  3374. for (int r=0; r < win_h * win_w * merge_ratio * merge_ratio; r++) {
  3375. int row_offset = mask_row * (ipw * iph);
  3376. std::fill(
  3377. mask.begin() + row_offset + (dst_0 * merge_ratio * merge_ratio),
  3378. mask.begin() + row_offset + (dst * merge_ratio * merge_ratio),
  3379. 0.0);
  3380. mask_row++;
  3381. }
  3382. }
  3383. }
  3384. set_input_i32("window_idx", idx);
  3385. set_input_i32("inv_window_idx", inv_idx);
  3386. set_input_f32("window_mask", mask);
  3387. } else {
  3388. for (int i = 0; i < ph * pw; i++) {
  3389. idx[i] = i;
  3390. }
  3391. }
  3392. const int mpow = merge_ratio * merge_ratio;
  3393. std::vector<int> positions(n_pos * 4);
  3394. int ptr = 0;
  3395. for (int y = 0; y < iph; y += merge_ratio) {
  3396. for (int x = 0; x < ipw; x += merge_ratio) {
  3397. for (int dy = 0; dy < 2; dy++) {
  3398. for (int dx = 0; dx < 2; dx++) {
  3399. auto remap = idx[ptr / mpow];
  3400. remap = (remap * mpow) + (ptr % mpow);
  3401. positions[ remap] = y + dy;
  3402. positions[ num_patches + remap] = x + dx;
  3403. positions[2 * num_patches + remap] = y + dy;
  3404. positions[3 * num_patches + remap] = x + dx;
  3405. ptr++;
  3406. }
  3407. }
  3408. }
  3409. }
  3410. set_input_i32("positions", positions);
  3411. } break;
  3412. case PROJECTOR_TYPE_PIXTRAL:
  3413. {
  3414. // set the 2D positions
  3415. int n_patches_per_col = image_size_width / patch_size;
  3416. std::vector<int> pos_data(n_pos);
  3417. // dimension H
  3418. for (int i = 0; i < n_pos; i++) {
  3419. pos_data[i] = i / n_patches_per_col;
  3420. }
  3421. set_input_i32("pos_h", pos_data);
  3422. // dimension W
  3423. for (int i = 0; i < n_pos; i++) {
  3424. pos_data[i] = i % n_patches_per_col;
  3425. }
  3426. set_input_i32("pos_w", pos_data);
  3427. } break;
  3428. case PROJECTOR_TYPE_GLM_EDGE:
  3429. {
  3430. // llava and other models
  3431. std::vector<int32_t> positions(n_pos);
  3432. for (int i = 0; i < n_pos; i++) {
  3433. positions[i] = i;
  3434. }
  3435. set_input_i32("positions", positions);
  3436. } break;
  3437. case PROJECTOR_TYPE_MLP:
  3438. case PROJECTOR_TYPE_MLP_NORM:
  3439. case PROJECTOR_TYPE_LDP:
  3440. case PROJECTOR_TYPE_LDPV2:
  3441. {
  3442. // llava and other models
  3443. std::vector<int32_t> positions(n_pos);
  3444. for (int i = 0; i < n_pos; i++) {
  3445. positions[i] = i;
  3446. }
  3447. set_input_i32("positions", positions);
  3448. // The patches vector is used to get rows to index into the embeds with;
  3449. // we should skip dim 0 only if we have CLS to avoid going out of bounds
  3450. // when retrieving the rows.
  3451. int patch_offset = model.class_embedding ? 1 : 0;
  3452. std::vector<int32_t> patches(num_patches);
  3453. for (int i = 0; i < num_patches; i++) {
  3454. patches[i] = i + patch_offset;
  3455. }
  3456. set_input_i32("patches", patches);
  3457. } break;
  3458. case PROJECTOR_TYPE_GEMMA3:
  3459. case PROJECTOR_TYPE_IDEFICS3:
  3460. case PROJECTOR_TYPE_INTERNVL:
  3461. case PROJECTOR_TYPE_QWEN2A:
  3462. case PROJECTOR_TYPE_ULTRAVOX:
  3463. case PROJECTOR_TYPE_VOXTRAL:
  3464. {
  3465. // do nothing
  3466. } break;
  3467. case PROJECTOR_TYPE_LLAMA4:
  3468. {
  3469. // set the 2D positions
  3470. int n_patches_per_col = image_size_width / patch_size;
  3471. std::vector<int> pos_data(num_patches + 1, 0); // +1 for the [CLS] token
  3472. // last pos is always kept 0, it's for CLS
  3473. // dimension H
  3474. for (int i = 0; i < num_patches; i++) {
  3475. pos_data[i] = (i / n_patches_per_col) + 1;
  3476. }
  3477. set_input_i32("pos_h", pos_data);
  3478. // dimension W
  3479. for (int i = 0; i < num_patches; i++) {
  3480. pos_data[i] = (i % n_patches_per_col) + 1;
  3481. }
  3482. set_input_i32("pos_w", pos_data);
  3483. } break;
  3484. default:
  3485. GGML_ABORT("Unknown projector type");
  3486. }
  3487. // ggml_backend_cpu_set_n_threads(ctx->backend_cpu, n_threads);
  3488. ggml_backend_dev_t dev = ggml_backend_get_device(ctx->backend_cpu);
  3489. ggml_backend_reg_t reg = dev ? ggml_backend_dev_backend_reg(dev) : nullptr;
  3490. if (reg) {
  3491. auto ggml_backend_set_n_threads_fn = (ggml_backend_set_n_threads_t) ggml_backend_reg_get_proc_address(reg, "ggml_backend_set_n_threads");
  3492. if (ggml_backend_set_n_threads_fn) {
  3493. ggml_backend_set_n_threads_fn(ctx->backend_cpu, n_threads);
  3494. }
  3495. }
  3496. auto status = ggml_backend_sched_graph_compute(ctx->sched.get(), gf);
  3497. if (status != GGML_STATUS_SUCCESS) {
  3498. LOG_ERR("%s: ggml_backend_sched_graph_compute failed with error %d\n", __func__, status);
  3499. return false;
  3500. }
  3501. // print debug nodes
  3502. if (ctx->debug_graph) {
  3503. LOG_INF("\n\n---\n\n");
  3504. LOG_INF("\n\nDebug graph:\n\n");
  3505. for (ggml_tensor * t : ctx->debug_print_tensors) {
  3506. std::vector<uint8_t> data(ggml_nbytes(t));
  3507. ggml_backend_tensor_get(t, data.data(), 0, ggml_nbytes(t));
  3508. print_tensor_shape(t);
  3509. print_tensor_data(t, data.data(), 3);
  3510. }
  3511. }
  3512. // the last node is the embedding tensor
  3513. ggml_tensor * embeddings = ggml_graph_node(gf, -1);
  3514. // sanity check (only support batch size of 1 for now)
  3515. const int n_tokens_out = embeddings->ne[1];
  3516. const int expected_n_tokens_out = clip_n_output_tokens(ctx, imgs.entries[0].get());
  3517. if (n_tokens_out != expected_n_tokens_out) {
  3518. LOG_ERR("%s: expected output %d tokens, got %d\n", __func__, expected_n_tokens_out, n_tokens_out);
  3519. GGML_ABORT("Invalid number of output tokens");
  3520. }
  3521. // copy the embeddings to the location passed by the user
  3522. ggml_backend_tensor_get(embeddings, vec, 0, ggml_nbytes(embeddings));
  3523. return true;
  3524. }
  3525. int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
  3526. switch (ctx->model.proj_type) {
  3527. case PROJECTOR_TYPE_LDP:
  3528. return ctx->model.mm_model_block_1_block_2_1_b->ne[0];
  3529. case PROJECTOR_TYPE_LDPV2:
  3530. return ctx->model.mm_model_peg_0_b->ne[0];
  3531. case PROJECTOR_TYPE_MLP:
  3532. case PROJECTOR_TYPE_PIXTRAL:
  3533. return ctx->model.mm_2_w->ne[1];
  3534. case PROJECTOR_TYPE_MLP_NORM:
  3535. return ctx->model.mm_3_b->ne[0];
  3536. case PROJECTOR_TYPE_MINICPMV:
  3537. return ctx->model.mm_model_proj->ne[0];
  3538. case PROJECTOR_TYPE_GLM_EDGE:
  3539. return ctx->model.mm_model_mlp_3_w->ne[1];
  3540. case PROJECTOR_TYPE_QWEN2VL:
  3541. case PROJECTOR_TYPE_QWEN25VL:
  3542. return ctx->model.mm_1_b->ne[0];
  3543. case PROJECTOR_TYPE_GEMMA3:
  3544. return ctx->model.mm_input_proj_w->ne[0];
  3545. case PROJECTOR_TYPE_IDEFICS3:
  3546. return ctx->model.projection->ne[1];
  3547. case PROJECTOR_TYPE_ULTRAVOX:
  3548. case PROJECTOR_TYPE_VOXTRAL:
  3549. return ctx->model.mm_2_w->ne[1];
  3550. case PROJECTOR_TYPE_INTERNVL:
  3551. return ctx->model.mm_3_w->ne[1];
  3552. case PROJECTOR_TYPE_LLAMA4:
  3553. return ctx->model.mm_model_proj->ne[1];
  3554. case PROJECTOR_TYPE_QWEN2A:
  3555. return ctx->model.mm_fc_w->ne[1];
  3556. default:
  3557. GGML_ABORT("Unknown projector type");
  3558. }
  3559. }
  3560. int clip_is_minicpmv(const struct clip_ctx * ctx) {
  3561. if (ctx->proj_type() == PROJECTOR_TYPE_MINICPMV) {
  3562. return ctx->model.hparams.minicpmv_version;
  3563. }
  3564. return 0;
  3565. }
  3566. bool clip_is_glm(const struct clip_ctx * ctx) {
  3567. return ctx->proj_type() == PROJECTOR_TYPE_GLM_EDGE;
  3568. }
  3569. bool clip_is_qwen2vl(const struct clip_ctx * ctx) {
  3570. return ctx->proj_type() == PROJECTOR_TYPE_QWEN2VL
  3571. || ctx->proj_type() == PROJECTOR_TYPE_QWEN25VL;
  3572. }
  3573. bool clip_is_llava(const struct clip_ctx * ctx) {
  3574. return ctx->model.hparams.has_llava_projector;
  3575. }
  3576. bool clip_is_gemma3(const struct clip_ctx * ctx) {
  3577. return ctx->proj_type() == PROJECTOR_TYPE_GEMMA3;
  3578. }
  3579. bool clip_has_vision_encoder(const struct clip_ctx * ctx) {
  3580. return ctx->model.modality == CLIP_MODALITY_VISION;
  3581. }
  3582. bool clip_has_audio_encoder(const struct clip_ctx * ctx) {
  3583. return ctx->model.modality == CLIP_MODALITY_AUDIO;
  3584. }
  3585. bool clip_has_whisper_encoder(const struct clip_ctx * ctx) {
  3586. return ctx->proj_type() == PROJECTOR_TYPE_ULTRAVOX
  3587. || ctx->proj_type() == PROJECTOR_TYPE_QWEN2A
  3588. || ctx->proj_type() == PROJECTOR_TYPE_VOXTRAL;
  3589. }
  3590. bool clip_encode_float_image (struct clip_ctx * ctx, int n_threads, float * img, int h, int w, float * vec) {
  3591. clip_image_f32 clip_img;
  3592. clip_img.buf.resize(h * w * 3);
  3593. for (int i = 0; i < h*w*3; i++)
  3594. {
  3595. clip_img.buf[i] = img[i];
  3596. }
  3597. clip_img.nx = w;
  3598. clip_img.ny = h;
  3599. clip_image_encode(ctx, n_threads, &clip_img, vec);
  3600. return true;
  3601. }
  3602. //
  3603. // API used internally with mtmd
  3604. //
  3605. projector_type clip_get_projector_type(const struct clip_ctx * ctx) {
  3606. return ctx->proj_type();
  3607. }
  3608. void clip_image_f32_batch_add_mel(struct clip_image_f32_batch * batch, int n_mel, int n_frames, float * mel) {
  3609. clip_image_f32 * audio = new clip_image_f32;
  3610. audio->nx = n_frames;
  3611. audio->ny = n_mel;
  3612. audio->buf.resize(n_frames * n_mel);
  3613. std::memcpy(audio->buf.data(), mel, n_frames * n_mel * sizeof(float));
  3614. batch->entries.push_back(clip_image_f32_ptr(audio));
  3615. batch->is_audio = true;
  3616. }