ggml.c 308 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) ((float) (x))
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return (float) GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. typedef struct {
  371. float d; // delta
  372. uint8_t qs[QK / 2]; // nibbles / quants
  373. } block_q4_0;
  374. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  375. // method 4
  376. // blocks of QK elements
  377. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  378. typedef struct {
  379. float d;
  380. float m;
  381. uint8_t qs[QK / 2]; // nibbles / quants
  382. } block_q4_1;
  383. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  384. // reference implementation for deterministic creation of model files
  385. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  386. assert(k % QK == 0);
  387. const int nb = k / QK;
  388. uint8_t pp[QK/2];
  389. for (int i = 0; i < nb; i++) {
  390. float amax = 0.0f; // absolute max
  391. for (int l = 0; l < QK; l++) {
  392. const float v = x[i*QK + l];
  393. amax = MAX(amax, fabsf(v));
  394. }
  395. const float d = amax / ((1 << 3) - 1);
  396. const float id = d ? 1.0f/d : 0.0f;
  397. y[i].d = d;
  398. for (int l = 0; l < QK; l += 2) {
  399. const float v0 = x[i*QK + l + 0]*id;
  400. const float v1 = x[i*QK + l + 1]*id;
  401. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  402. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  403. assert(vi0 >= 0 && vi0 < 16);
  404. assert(vi1 >= 0 && vi1 < 16);
  405. pp[l/2] = vi0 | (vi1 << 4);
  406. }
  407. memcpy(y[i].qs, pp, sizeof(pp));
  408. }
  409. }
  410. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  411. assert(k % QK == 0);
  412. const int nb = k / QK;
  413. block_q4_0 * restrict y = vy;
  414. #if defined(__POWER9_VECTOR__)
  415. const vector float v85 = vec_splats(8.5f);
  416. for (int i = 0; i < nb; i++) {
  417. float amax = 0.0f; // absolute max
  418. vector float srcv [8];
  419. vector float asrcv[8];
  420. vector float amaxv[8];
  421. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  422. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  423. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  424. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  425. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  426. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  427. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  428. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  429. amax = MAX(
  430. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  431. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  432. const float d = amax / ((1 << 3) - 1);
  433. const float id = d ? 1.0/d : 0.0;
  434. y[i].d = d;
  435. const vector float vid = vec_splats(id);
  436. uint8_t * restrict pb = y[i].qs;
  437. for (int l = 0; l < 8; l++) {
  438. const vector float vf = vec_madd(srcv[l], vid, v85);
  439. const vector signed int vi = vec_signed(vf);
  440. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  441. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  442. }
  443. }
  444. #elif __ARM_NEON
  445. uint8_t pp[QK/2];
  446. for (int i = 0; i < nb; i++) {
  447. float amax = 0.0f; // absolute max
  448. float32x4_t srcv [8];
  449. float32x4_t asrcv[8];
  450. float32x4_t amaxv[8];
  451. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  452. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  453. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  454. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  455. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  456. amax = MAX(
  457. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  458. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  459. const float d = amax / ((1 << 3) - 1);
  460. const float id = d ? 1.0f/d : 0.0f;
  461. y[i].d = d;
  462. for (int l = 0; l < 8; l++) {
  463. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  464. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  465. const int32x4_t vi = vcvtq_s32_f32(vf);
  466. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  467. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  468. }
  469. memcpy(y[i].qs, pp, sizeof(pp));
  470. }
  471. #elif defined(__AVX2__)
  472. for (int i = 0; i < nb; i++) {
  473. // Load elements into 4 AVX vectors
  474. __m256 v0 = _mm256_loadu_ps( x );
  475. __m256 v1 = _mm256_loadu_ps( x + 8 );
  476. __m256 v2 = _mm256_loadu_ps( x + 16 );
  477. __m256 v3 = _mm256_loadu_ps( x + 24 );
  478. x += 32;
  479. // Compute max(abs(e)) for the block
  480. const __m256 signBit = _mm256_set1_ps( -0.0f );
  481. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  482. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  483. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  484. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  485. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  486. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  487. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  488. const float maxScalar = _mm_cvtss_f32( max4 );
  489. // Quantize these floats
  490. const float d = maxScalar / 7.0f;
  491. y[i].d = d;
  492. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  493. const __m256 mul = _mm256_set1_ps( id );
  494. // Apply the multiplier
  495. v0 = _mm256_mul_ps( v0, mul );
  496. v1 = _mm256_mul_ps( v1, mul );
  497. v2 = _mm256_mul_ps( v2, mul );
  498. v3 = _mm256_mul_ps( v3, mul );
  499. // Round to nearest integer
  500. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  501. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  502. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  503. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  504. // Convert floats to integers
  505. __m256i i0 = _mm256_cvtps_epi32( v0 );
  506. __m256i i1 = _mm256_cvtps_epi32( v1 );
  507. __m256i i2 = _mm256_cvtps_epi32( v2 );
  508. __m256i i3 = _mm256_cvtps_epi32( v3 );
  509. // Convert int32 to int16
  510. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  511. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  512. // Convert int16 to int8
  513. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  514. // We got our precious signed bytes, but the order is now wrong
  515. // These AVX2 pack instructions process 16-byte pieces independently
  516. // The following instruction is fixing the order
  517. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  518. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  519. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  520. const __m256i off = _mm256_set1_epi8( 8 );
  521. i0 = _mm256_add_epi8( i0, off );
  522. // Compress the vector into 4 bit/value, and store
  523. __m128i res = packNibbles( i0 );
  524. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  525. }
  526. #elif defined(__wasm_simd128__)
  527. uint8_t pp[QK/2];
  528. for (int i = 0; i < nb; i++) {
  529. float amax = 0.0f; // absolute max
  530. v128_t srcv [8];
  531. v128_t asrcv[8];
  532. v128_t amaxv[8];
  533. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  534. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  535. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  536. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  537. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  538. amax = MAX(
  539. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  540. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  541. const float d = amax / ((1 << 3) - 1);
  542. const float id = d ? 1.0/d : 0.0;
  543. y[i].d = d;
  544. for (int l = 0; l < 8; l++) {
  545. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  546. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  547. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  548. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  549. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  550. }
  551. memcpy(y[i].qs, pp, sizeof(pp));
  552. }
  553. #else
  554. // scalar
  555. quantize_row_q4_0_reference(x, y, k);
  556. #endif
  557. }
  558. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  559. assert(k % QK == 0);
  560. const int nb = k / QK;
  561. block_q4_1 * restrict y = vy;
  562. uint8_t pp[QK/2];
  563. for (int i = 0; i < nb; i++) {
  564. float min = FLT_MAX;
  565. float max = -FLT_MAX;
  566. for (int l = 0; l < QK; l++) {
  567. const float v = x[i*QK + l];
  568. if (v < min) min = v;
  569. if (v > max) max = v;
  570. }
  571. const float d = (max - min) / ((1 << 4) - 1);
  572. const float id = d ? 1.0f/d : 0.0f;
  573. y[i].d = d;
  574. y[i].m = min;
  575. for (int l = 0; l < QK; l += 2) {
  576. const float v0 = (x[i*QK + l + 0] - min)*id;
  577. const float v1 = (x[i*QK + l + 1] - min)*id;
  578. const uint8_t vi0 = roundf(v0);
  579. const uint8_t vi1 = roundf(v1);
  580. assert(vi0 >= 0 && vi0 < 16);
  581. assert(vi1 >= 0 && vi1 < 16);
  582. pp[l/2] = vi0 | (vi1 << 4);
  583. }
  584. memcpy(y[i].qs, pp, sizeof(pp));
  585. }
  586. }
  587. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  588. assert(k % QK == 0);
  589. const int nb = k / QK;
  590. const block_q4_0 * restrict x = vx;
  591. #if defined(__AVX2__)
  592. for (int i = 0; i < nb; i++) {
  593. // scale factor
  594. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  595. const uint8_t * restrict pp = x[i].qs;
  596. for (int l = 0; l < QK; l += 32) {
  597. // Load 32x4-bit integers into 32x8-bit integers
  598. __m256i vx8 = bytesFromNibbles(pp+l/2);
  599. // Subtract 8 from the integers
  600. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  601. // Convert to 16-bit int
  602. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  603. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  604. // Convert to 32-bit int -> float 32
  605. const __m256 vf[4] = {
  606. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  607. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  608. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  609. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  610. };
  611. // Scale and store
  612. for (int j = 0; j < 4; j++) {
  613. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  614. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  615. }
  616. }
  617. }
  618. #elif defined(__ARM_NEON)
  619. for (int i = 0; i < nb; i++) {
  620. const float32x4_t vd = vdupq_n_f32(x[i].d);
  621. const uint8_t * restrict pp = x[i].qs;
  622. for (int l = 0; l < QK; l += 16) {
  623. // Load 16x4-bit integers into 8x8-bit integers
  624. const uint8x8_t v8 = vld1_u8(pp + l/2);
  625. // Expand 4-bit qs to 8-bit bytes
  626. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  627. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  628. // Convert to signed 8-bit integers
  629. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  630. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  631. // Subtract 8 from each byte
  632. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  633. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  634. // Interleave and combine
  635. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  636. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  637. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  638. // convert to 2x int16x8_t
  639. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  640. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  641. // convert to 4x float32x4_t
  642. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  643. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  644. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  645. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  646. // Multiply by d
  647. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  648. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  649. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  650. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  651. // Store
  652. vst1q_f32(y + i*QK + l + 0, r0);
  653. vst1q_f32(y + i*QK + l + 4, r1);
  654. vst1q_f32(y + i*QK + l + 8, r2);
  655. vst1q_f32(y + i*QK + l + 12, r3);
  656. }
  657. }
  658. #else
  659. // scalar
  660. for (int i = 0; i < nb; i++) {
  661. const float d = x[i].d;
  662. const uint8_t * restrict pp = x[i].qs;
  663. for (int l = 0; l < QK; l += 2) {
  664. const uint8_t vi = pp[l/2];
  665. const int8_t vi0 = vi & 0xf;
  666. const int8_t vi1 = vi >> 4;
  667. const float v0 = (vi0 - 8)*d;
  668. const float v1 = (vi1 - 8)*d;
  669. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  670. y[i*QK + l + 0] = v0;
  671. y[i*QK + l + 1] = v1;
  672. assert(!isnan(y[i*QK + l + 0]));
  673. assert(!isnan(y[i*QK + l + 1]));
  674. }
  675. }
  676. #endif
  677. }
  678. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  679. assert(k % QK == 0);
  680. const int nb = k / QK;
  681. const block_q4_1 * restrict x = vx;
  682. #if defined(__AVX2__)
  683. for (int i = 0; i < nb; i++) {
  684. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  685. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  686. const uint8_t * restrict pp = x[i].qs;
  687. for (int l = 0; l < QK; l += 32) {
  688. // Load 32x4-bit integers into 32x8-bit integers
  689. __m256i vx8 = bytesFromNibbles(pp+l/2);
  690. // Convert to 16-bit int
  691. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  692. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  693. // Convert to 32-bit int -> float 32
  694. const __m256 vf[4] = {
  695. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  696. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  697. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  698. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  699. };
  700. // Scale, add m and store
  701. for (int j = 0; j < 4; j++) {
  702. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  703. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  704. }
  705. }
  706. }
  707. #else
  708. for (int i = 0; i < nb; i++) {
  709. const float d = x[i].d;
  710. const float m = x[i].m;
  711. const uint8_t * restrict pp = x[i].qs;
  712. for (int l = 0; l < QK; l += 2) {
  713. const uint8_t vi = pp[l/2];
  714. const int8_t vi0 = vi & 0xf;
  715. const int8_t vi1 = vi >> 4;
  716. const float v0 = vi0*d + m;
  717. const float v1 = vi1*d + m;
  718. y[i*QK + l + 0] = v0;
  719. y[i*QK + l + 1] = v1;
  720. assert(!isnan(y[i*QK + l + 0]));
  721. assert(!isnan(y[i*QK + l + 1]));
  722. }
  723. }
  724. #endif
  725. }
  726. //
  727. // simd mappings
  728. //
  729. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  730. // we then implement the fundamental computation operations below using only these macros
  731. // adding support for new architectures requires to define the corresponding SIMD macros
  732. //
  733. // GGML_F32_STEP / GGML_F16_STEP
  734. // number of elements to process in a single step
  735. //
  736. // GGML_F32_EPR / GGML_F16_EPR
  737. // number of elements to fit in a single register
  738. //
  739. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  740. #define GGML_SIMD
  741. // F32 NEON
  742. #define GGML_F32_STEP 16
  743. #define GGML_F32_EPR 4
  744. #define GGML_F32x4 float32x4_t
  745. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  746. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  747. #define GGML_F32x4_LOAD vld1q_f32
  748. #define GGML_F32x4_STORE vst1q_f32
  749. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  750. #define GGML_F32x4_ADD vaddq_f32
  751. #define GGML_F32x4_MUL vmulq_f32
  752. #if defined(__ARM_FEATURE_QRDMX)
  753. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  754. #else
  755. #define GGML_F32x4_REDUCE_ONE(x) \
  756. (vgetq_lane_f32(x, 0) + \
  757. vgetq_lane_f32(x, 1) + \
  758. vgetq_lane_f32(x, 2) + \
  759. vgetq_lane_f32(x, 3))
  760. #endif
  761. #define GGML_F32x4_REDUCE(res, x) \
  762. { \
  763. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  764. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  765. } \
  766. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  767. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  768. } \
  769. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  770. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  771. } \
  772. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  773. }
  774. #define GGML_F32_VEC GGML_F32x4
  775. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  776. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  777. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  778. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  779. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  780. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  781. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  782. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  783. // F16 NEON
  784. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  785. #define GGML_F16_STEP 32
  786. #define GGML_F16_EPR 8
  787. #define GGML_F16x8 float16x8_t
  788. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  789. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  790. #define GGML_F16x8_LOAD vld1q_f16
  791. #define GGML_F16x8_STORE vst1q_f16
  792. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  793. #define GGML_F16x8_ADD vaddq_f16
  794. #define GGML_F16x8_MUL vmulq_f16
  795. #define GGML_F16x8_REDUCE(res, x) \
  796. { \
  797. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  798. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  799. } \
  800. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  801. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  802. } \
  803. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  804. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  805. } \
  806. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  807. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  808. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  809. }
  810. #define GGML_F16_VEC GGML_F16x8
  811. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  812. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  813. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  814. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  815. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  816. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  817. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  818. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  819. #else
  820. // if FP16 vector arithmetic is not supported, we use FP32 instead
  821. // and take advantage of the vcvt_ functions to convert to/from FP16
  822. #define GGML_F16_STEP 16
  823. #define GGML_F16_EPR 4
  824. #define GGML_F32Cx4 float32x4_t
  825. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  826. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  827. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  828. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  829. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  830. #define GGML_F32Cx4_ADD vaddq_f32
  831. #define GGML_F32Cx4_MUL vmulq_f32
  832. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  833. #define GGML_F16_VEC GGML_F32Cx4
  834. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  835. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  836. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  837. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  838. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  839. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  840. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  841. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  842. #endif
  843. #elif defined(__AVX__)
  844. #define GGML_SIMD
  845. // F32 AVX
  846. #define GGML_F32_STEP 32
  847. #define GGML_F32_EPR 8
  848. #define GGML_F32x8 __m256
  849. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  850. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  851. #define GGML_F32x8_LOAD _mm256_loadu_ps
  852. #define GGML_F32x8_STORE _mm256_storeu_ps
  853. #if defined(__FMA__)
  854. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  855. #else
  856. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  857. #endif
  858. #define GGML_F32x8_ADD _mm256_add_ps
  859. #define GGML_F32x8_MUL _mm256_mul_ps
  860. #define GGML_F32x8_REDUCE(res, x) \
  861. { \
  862. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  863. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  864. } \
  865. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  866. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  867. } \
  868. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  869. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  870. } \
  871. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  872. _mm256_extractf128_ps(x[0], 1)); \
  873. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  874. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  875. }
  876. // TODO: is this optimal ?
  877. #define GGML_F32_VEC GGML_F32x8
  878. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  879. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  880. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  881. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  882. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  883. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  884. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  885. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  886. // F16 AVX
  887. #define GGML_F16_STEP 32
  888. #define GGML_F16_EPR 8
  889. // F16 arithmetic is not supported by AVX, so we use F32 instead
  890. #define GGML_F32Cx8 __m256
  891. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  892. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  893. #if defined(__F16C__)
  894. // the _mm256_cvt intrinsics require F16C
  895. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  896. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  897. #else
  898. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  899. float tmp[8];
  900. for (int i = 0; i < 8; i++)
  901. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  902. return _mm256_loadu_ps(tmp);
  903. }
  904. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  905. float arr[8];
  906. _mm256_storeu_ps(arr, y);
  907. for (int i = 0; i < 8; i++)
  908. x[i] = GGML_FP16_TO_FP32(arr[i]);
  909. }
  910. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  911. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  912. #endif
  913. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  914. #define GGML_F32Cx8_ADD _mm256_add_ps
  915. #define GGML_F32Cx8_MUL _mm256_mul_ps
  916. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  917. #define GGML_F16_VEC GGML_F32Cx8
  918. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  919. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  920. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  922. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  923. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  924. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  925. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  926. #elif defined(__POWER9_VECTOR__)
  927. #define GGML_SIMD
  928. // F32 POWER9
  929. #define GGML_F32_STEP 32
  930. #define GGML_F32_EPR 4
  931. #define GGML_F32x4 vector float
  932. #define GGML_F32x4_ZERO 0.0f
  933. #define GGML_F32x4_SET1 vec_splats
  934. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  935. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  936. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  937. #define GGML_F32x4_ADD vec_add
  938. #define GGML_F32x4_MUL vec_mul
  939. #define GGML_F32x4_REDUCE(res, x) \
  940. { \
  941. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  942. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  943. } \
  944. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  945. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  946. } \
  947. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  948. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  949. } \
  950. res = vec_extract(x[0], 0) + \
  951. vec_extract(x[0], 1) + \
  952. vec_extract(x[0], 2) + \
  953. vec_extract(x[0], 3); \
  954. }
  955. #define GGML_F32_VEC GGML_F32x4
  956. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  957. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  958. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  959. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  960. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  961. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  962. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  963. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  964. // F16 POWER9
  965. #define GGML_F16_STEP GGML_F32_STEP
  966. #define GGML_F16_EPR GGML_F32_EPR
  967. #define GGML_F16_VEC GGML_F32x4
  968. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  969. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  970. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  971. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  972. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  973. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  974. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  975. vec_extract_fp32_from_shortl(vec_xl(0, p))
  976. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  977. #define GGML_F16_VEC_STORE(p, r, i) \
  978. if (i & 0x1) \
  979. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  980. r[i - GGML_ENDIAN_BYTE(0)]), \
  981. 0, p - GGML_F16_EPR)
  982. #elif defined(__wasm_simd128__)
  983. #define GGML_SIMD
  984. // F32 WASM
  985. #define GGML_F32_STEP 16
  986. #define GGML_F32_EPR 4
  987. #define GGML_F32x4 v128_t
  988. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  989. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  990. #define GGML_F32x4_LOAD wasm_v128_load
  991. #define GGML_F32x4_STORE wasm_v128_store
  992. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  993. #define GGML_F32x4_ADD wasm_f32x4_add
  994. #define GGML_F32x4_MUL wasm_f32x4_mul
  995. #define GGML_F32x4_REDUCE(res, x) \
  996. { \
  997. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  998. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  999. } \
  1000. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1001. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1002. } \
  1003. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1004. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1005. } \
  1006. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1007. wasm_f32x4_extract_lane(x[0], 1) + \
  1008. wasm_f32x4_extract_lane(x[0], 2) + \
  1009. wasm_f32x4_extract_lane(x[0], 3); \
  1010. }
  1011. #define GGML_F32_VEC GGML_F32x4
  1012. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1013. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1014. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1015. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1016. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1017. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1018. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1019. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1020. // F16 WASM
  1021. #define GGML_F16_STEP 16
  1022. #define GGML_F16_EPR 4
  1023. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1024. float tmp[4];
  1025. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1026. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1027. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1028. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1029. return wasm_v128_load(tmp);
  1030. }
  1031. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1032. float tmp[4];
  1033. wasm_v128_store(tmp, x);
  1034. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1035. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1036. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1037. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1038. }
  1039. #define GGML_F16x4 v128_t
  1040. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1041. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1042. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1043. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1044. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1045. #define GGML_F16x4_ADD wasm_f32x4_add
  1046. #define GGML_F16x4_MUL wasm_f32x4_mul
  1047. #define GGML_F16x4_REDUCE(res, x) \
  1048. { \
  1049. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1050. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1051. } \
  1052. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1053. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1054. } \
  1055. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1056. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1057. } \
  1058. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1059. wasm_f32x4_extract_lane(x[0], 1) + \
  1060. wasm_f32x4_extract_lane(x[0], 2) + \
  1061. wasm_f32x4_extract_lane(x[0], 3); \
  1062. }
  1063. #define GGML_F16_VEC GGML_F16x4
  1064. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1065. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1066. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1067. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1068. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1069. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1070. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1071. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1072. #elif defined(__SSE3__)
  1073. #define GGML_SIMD
  1074. // F32 SSE
  1075. #define GGML_F32_STEP 32
  1076. #define GGML_F32_EPR 4
  1077. #define GGML_F32x4 __m128
  1078. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1079. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1080. #define GGML_F32x4_LOAD _mm_loadu_ps
  1081. #define GGML_F32x4_STORE _mm_storeu_ps
  1082. #if defined(__FMA__)
  1083. // TODO: Does this work?
  1084. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1085. #else
  1086. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1087. #endif
  1088. #define GGML_F32x4_ADD _mm_add_ps
  1089. #define GGML_F32x4_MUL _mm_mul_ps
  1090. #define GGML_F32x4_REDUCE(res, x) \
  1091. { \
  1092. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1093. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1094. } \
  1095. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1096. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1097. } \
  1098. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1099. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1100. } \
  1101. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1102. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1103. }
  1104. // TODO: is this optimal ?
  1105. #define GGML_F32_VEC GGML_F32x4
  1106. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1107. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1108. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1109. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1110. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1111. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1112. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1113. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1114. // F16 SSE
  1115. #define GGML_F16_STEP 32
  1116. #define GGML_F16_EPR 4
  1117. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1118. float tmp[4];
  1119. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1120. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1121. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1122. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1123. return _mm_loadu_ps(tmp);
  1124. }
  1125. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1126. float arr[4];
  1127. _mm_storeu_ps(arr, y);
  1128. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1129. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1130. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1131. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1132. }
  1133. #define GGML_F32Cx4 __m128
  1134. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1135. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1136. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1137. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1138. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1139. #define GGML_F32Cx4_ADD _mm_add_ps
  1140. #define GGML_F32Cx4_MUL _mm_mul_ps
  1141. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1142. #define GGML_F16_VEC GGML_F32Cx4
  1143. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1144. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1145. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1146. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1147. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1148. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1149. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1150. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1151. #endif
  1152. // GGML_F32_ARR / GGML_F16_ARR
  1153. // number of registers to use per step
  1154. #ifdef GGML_SIMD
  1155. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1156. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1157. #endif
  1158. //
  1159. // fundamental operations
  1160. //
  1161. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1162. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1163. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1164. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1165. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1166. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1167. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1168. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1169. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1170. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1171. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1172. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1173. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1174. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1175. #ifdef GGML_SIMD
  1176. float sumf = 0.0f;
  1177. const int np = (n & ~(GGML_F32_STEP - 1));
  1178. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1179. GGML_F32_VEC ax[GGML_F32_ARR];
  1180. GGML_F32_VEC ay[GGML_F32_ARR];
  1181. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1182. for (int j = 0; j < GGML_F32_ARR; j++) {
  1183. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1184. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1185. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1186. }
  1187. }
  1188. // reduce sum0..sum3 to sum0
  1189. GGML_F32_VEC_REDUCE(sumf, sum);
  1190. // leftovers
  1191. for (int i = np; i < n; ++i) {
  1192. sumf += x[i]*y[i];
  1193. }
  1194. #else
  1195. // scalar
  1196. ggml_float sumf = 0.0;
  1197. for (int i = 0; i < n; ++i) {
  1198. sumf += (ggml_float)(x[i]*y[i]);
  1199. }
  1200. #endif
  1201. *s = sumf;
  1202. }
  1203. #if __AVX512F__ && QK == 32
  1204. static inline __m512 dot_q4_0_oneblock_avx512(
  1205. __m512 acc,
  1206. const block_q4_0 * restrict x,
  1207. const block_q4_0 * restrict y,
  1208. int i
  1209. ) {
  1210. // Compute combined scale for the block
  1211. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1212. __m256i bx = bytesFromNibbles( x[i].qs );
  1213. __m256i by = bytesFromNibbles( y[i].qs );
  1214. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1215. const __m256i off = _mm256_set1_epi8( 8 );
  1216. bx = _mm256_sub_epi8( bx, off );
  1217. by = _mm256_sub_epi8( by, off );
  1218. // Sign-extend 16 signed bytes into int16_t
  1219. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1220. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1221. // Compute products of int16_t integers, add pairwise
  1222. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1223. // Convert int32_t to float
  1224. __m512 p = _mm512_cvtepi32_ps( i64 );
  1225. // Apply the scale, and accumulate
  1226. return _mm512_fmadd_ps( d, p, acc );
  1227. }
  1228. #endif
  1229. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1230. ggml_float sumf = 0.0;
  1231. #if defined(GGML_SIMD)
  1232. const int np = (n & ~(GGML_F16_STEP - 1));
  1233. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1234. GGML_F16_VEC ax[GGML_F16_ARR];
  1235. GGML_F16_VEC ay[GGML_F16_ARR];
  1236. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1237. for (int j = 0; j < GGML_F16_ARR; j++) {
  1238. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1239. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1240. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1241. }
  1242. }
  1243. // reduce sum0..sum3 to sum0
  1244. GGML_F16_VEC_REDUCE(sumf, sum);
  1245. // leftovers
  1246. for (int i = np; i < n; ++i) {
  1247. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1248. }
  1249. #else
  1250. for (int i = 0; i < n; ++i) {
  1251. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1252. }
  1253. #endif
  1254. *s = sumf;
  1255. }
  1256. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1257. const int nb = n / QK;
  1258. assert(n % QK == 0);
  1259. assert(nb % 2 == 0);
  1260. const block_q4_0 * restrict x = vx;
  1261. const block_q4_0 * restrict y = vy;
  1262. ggml_float sumf = 0.0;
  1263. #if defined(__ARM_NEON)
  1264. float sum0 = 0.0f;
  1265. float sum1 = 0.0f;
  1266. for (int i = 0; i < nb; i += 2) {
  1267. const block_q4_0 * restrict x0 = &x[i + 0];
  1268. const block_q4_0 * restrict y0 = &y[i + 0];
  1269. const block_q4_0 * restrict x1 = &x[i + 1];
  1270. const block_q4_0 * restrict y1 = &y[i + 1];
  1271. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1272. const int8x16_t s8b = vdupq_n_s8(0x8);
  1273. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1274. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1275. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1276. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1277. // 4-bit -> 8-bit
  1278. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1279. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1280. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1281. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1282. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1283. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1284. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1285. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1286. // sub 8
  1287. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1288. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1289. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1290. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1291. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1292. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1293. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1294. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1295. #if defined(__ARM_FEATURE_DOTPROD)
  1296. // dot product into int16x8_t
  1297. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1298. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1299. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1300. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1301. // scalar
  1302. #if defined(__ARM_FEATURE_QRDMX)
  1303. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1304. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1305. #else
  1306. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1307. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1308. #endif
  1309. #else
  1310. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1311. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1312. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1313. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1314. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1315. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1316. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1317. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1318. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1319. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1320. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1321. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1322. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1323. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1324. // scalar
  1325. #if defined(__ARM_FEATURE_QRDMX)
  1326. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1327. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1328. #else
  1329. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1330. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1331. #endif
  1332. #endif
  1333. }
  1334. sumf = (ggml_float)(sum0 + sum1);
  1335. #elif defined(__AVX512F__)
  1336. // Initialize accumulator with zeros
  1337. __m512 acc0 = _mm512_setzero_ps();
  1338. __m512 acc1 = _mm512_setzero_ps();
  1339. const int superblock_size = 8;
  1340. const int superblock_count = nb / superblock_size;
  1341. const int remainder = nb % superblock_size;
  1342. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1343. int i = superblock_ix * superblock_size;
  1344. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1345. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1346. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1347. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1348. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1349. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1350. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1351. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1352. }
  1353. // Remainders
  1354. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1355. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1356. }
  1357. // Horizontal sum of all lanes of the accumulator
  1358. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1359. #elif defined(__AVX2__)
  1360. // Initialize accumulator with zeros
  1361. __m256 acc = _mm256_setzero_ps();
  1362. // Main loop
  1363. for (int i = 0; i < nb; ++i) {
  1364. // Compute combined scale for the block
  1365. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1366. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1367. __m256i bx = bytesFromNibbles( x[i].qs );
  1368. __m256i by = bytesFromNibbles( y[i].qs );
  1369. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1370. const __m256i off = _mm256_set1_epi8( 8 );
  1371. bx = _mm256_sub_epi8( bx, off );
  1372. by = _mm256_sub_epi8( by, off );
  1373. // Sign-extend first 16 signed bytes into int16_t
  1374. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1375. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1376. // Compute products of int16_t integers, add pairwise
  1377. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1378. // Sign-extend last 16 signed bytes into int16_t vectors
  1379. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1380. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1381. // Accumulate products of int16_t integers
  1382. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1383. // Convert int32_t to float
  1384. __m256 p = _mm256_cvtepi32_ps( i32 );
  1385. // Apply the scale, and accumulate
  1386. acc = _mm256_fmadd_ps( d, p, acc );
  1387. }
  1388. // Return horizontal sum of the acc vector
  1389. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1390. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1391. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1392. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1393. sumf = _mm_cvtss_f32( res );
  1394. #elif defined(__wasm_simd128__)
  1395. // wasm simd
  1396. float sum0 = 0.0f;
  1397. float sum1 = 0.0f;
  1398. for (int i = 0; i < nb; i += 2) {
  1399. const block_q4_0 * restrict x0 = &px[i + 0];
  1400. const block_q4_0 * restrict y0 = &py[i + 0];
  1401. const block_q4_0 * restrict x1 = &px[i + 1];
  1402. const block_q4_0 * restrict y1 = &py[i + 1];
  1403. const v128_t m4b = wasm_u8x16_splat(0xf);
  1404. const v128_t s8b = wasm_i8x16_splat(0x8);
  1405. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1406. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1407. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1408. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1409. // 4-bit -> 8-bit
  1410. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1411. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1412. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1413. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1414. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1415. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1416. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1417. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1418. // sub 8
  1419. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1420. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1421. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1422. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1423. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1424. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1425. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1426. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1427. // dot product into int16x8_t
  1428. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1429. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1430. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1431. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1432. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1433. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1434. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1435. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1436. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1437. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1438. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1439. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1440. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1441. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1442. sum0 += x0->d * y0->d * (
  1443. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1444. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1445. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1446. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1447. sum1 += x1->d * y1->d * (
  1448. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1449. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1450. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1451. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1452. }
  1453. sumf = sum0 + sum1;
  1454. #else
  1455. // scalar
  1456. for (int i = 0; i < nb; i++) {
  1457. const float d0 = x[i].d;
  1458. const float d1 = y[i].d;
  1459. const uint8_t * restrict p0 = x[i].qs;
  1460. const uint8_t * restrict p1 = y[i].qs;
  1461. for (int j = 0; j < QK/2; j++) {
  1462. const uint8_t v0 = p0[j];
  1463. const uint8_t v1 = p1[j];
  1464. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1465. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1466. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1467. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1468. sumf += f0*f2 + f1*f3;
  1469. }
  1470. }
  1471. #endif
  1472. *s = sumf;
  1473. }
  1474. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1475. const int nb = n / QK;
  1476. const block_q4_1 * restrict x = vx;
  1477. const block_q4_1 * restrict y = vy;
  1478. float sumf = 0.0;
  1479. #if defined(__AVX2__)
  1480. // Initialize accumulator with zeros
  1481. __m256 acc = _mm256_setzero_ps();
  1482. // Accumulator for constant offsets
  1483. float acc_offset = 0.0f;
  1484. // Main loop
  1485. for (int i = 0; i < nb; ++i) {
  1486. const float * d0 = &x[i].d;
  1487. const float * d1 = &y[i].d;
  1488. const float * m0 = &x[i].m;
  1489. const float * m1 = &y[i].m;
  1490. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1491. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1492. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1493. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1494. // Compute combined scale for the block
  1495. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1496. // Compute cross scales for the block
  1497. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1498. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1499. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1500. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1501. __m256i bx = bytesFromNibbles( x[i].qs );
  1502. __m256i by = bytesFromNibbles( y[i].qs );
  1503. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1504. // Sign-extend first 16 signed bytes into int16_t
  1505. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1506. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1507. // Compute products of int16_t integers, add pairwise
  1508. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1509. // Sign-extend last 16 signed bytes into int16_t vectors
  1510. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1511. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1512. // Accumulate products of int16_t integers
  1513. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1514. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1515. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1516. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1517. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1518. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1519. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1520. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1521. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1522. // Convert int32_t to float
  1523. __m256 p = _mm256_cvtepi32_ps( i32 );
  1524. // Apply the scale, and accumulate
  1525. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1526. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1527. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1528. // acc_offset += m0*m1 (for each entry in the block)
  1529. acc_offset += (*m0)*(*m1);
  1530. }
  1531. // Return horizontal sum of the acc vector
  1532. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1533. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1534. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1535. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1536. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1537. #else
  1538. // scalar
  1539. for (int i = 0; i < nb; i++) {
  1540. const float d0 = x[i].d;
  1541. const float d1 = y[i].d;
  1542. const float m0 = x[i].m;
  1543. const float m1 = y[i].m;
  1544. const uint8_t * restrict p0 = x[i].qs;
  1545. const uint8_t * restrict p1 = y[i].qs;
  1546. for (int j = 0; j < QK/2; j++) {
  1547. const uint8_t v0 = p0[j];
  1548. const uint8_t v1 = p1[j];
  1549. const float f0 = d0*(v0 & 0xf) + m0;
  1550. const float f1 = d0*(v0 >> 4) + m0;
  1551. const float f2 = d1*(v1 & 0xf) + m1;
  1552. const float f3 = d1*(v1 >> 4) + m1;
  1553. sumf += f0*f2 + f1*f3;
  1554. }
  1555. }
  1556. #endif
  1557. *s = sumf;
  1558. }
  1559. // compute GGML_VEC_DOT_UNROLL dot products at once
  1560. // xs - x row stride in bytes
  1561. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1562. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1563. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1564. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1565. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1566. }
  1567. #if defined(GGML_SIMD)
  1568. const int np = (n & ~(GGML_F16_STEP - 1));
  1569. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1570. GGML_F16_VEC ax[GGML_F16_ARR];
  1571. GGML_F16_VEC ay[GGML_F16_ARR];
  1572. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1573. for (int j = 0; j < GGML_F16_ARR; j++) {
  1574. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1575. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1576. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1577. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1578. }
  1579. }
  1580. }
  1581. // reduce sum0..sum3 to sum0
  1582. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1583. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1584. }
  1585. // leftovers
  1586. for (int i = np; i < n; ++i) {
  1587. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1588. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1589. }
  1590. }
  1591. #else
  1592. for (int i = 0; i < n; ++i) {
  1593. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1594. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1595. }
  1596. }
  1597. #endif
  1598. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1599. s[i] = sumf[i];
  1600. }
  1601. }
  1602. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1603. #if defined(GGML_SIMD)
  1604. const int np = (n & ~(GGML_F32_STEP - 1));
  1605. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1606. GGML_F32_VEC ax[GGML_F32_ARR];
  1607. GGML_F32_VEC ay[GGML_F32_ARR];
  1608. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1609. for (int j = 0; j < GGML_F32_ARR; j++) {
  1610. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1611. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1612. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1613. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1614. }
  1615. }
  1616. // leftovers
  1617. for (int i = np; i < n; ++i) {
  1618. y[i] += x[i]*v;
  1619. }
  1620. #else
  1621. // scalar
  1622. for (int i = 0; i < n; ++i) {
  1623. y[i] += x[i]*v;
  1624. }
  1625. #endif
  1626. }
  1627. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1628. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1629. #if defined(GGML_SIMD)
  1630. const int np = (n & ~(GGML_F32_STEP - 1));
  1631. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1632. GGML_F32_VEC ay[GGML_F32_ARR];
  1633. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1634. for (int j = 0; j < GGML_F32_ARR; j++) {
  1635. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1636. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1637. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1638. }
  1639. }
  1640. // leftovers
  1641. for (int i = np; i < n; ++i) {
  1642. y[i] *= v;
  1643. }
  1644. #else
  1645. // scalar
  1646. for (int i = 0; i < n; ++i) {
  1647. y[i] *= v;
  1648. }
  1649. #endif
  1650. }
  1651. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1652. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1653. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1654. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1655. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1656. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1657. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1658. static const float GELU_COEF_A = 0.044715f;
  1659. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1660. inline static float ggml_gelu_f32(float x) {
  1661. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1662. }
  1663. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1664. const uint16_t * i16 = (const uint16_t *) x;
  1665. for (int i = 0; i < n; ++i) {
  1666. y[i] = table_gelu_f16[i16[i]];
  1667. }
  1668. }
  1669. #ifdef GGML_GELU_FP16
  1670. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1671. uint16_t t;
  1672. for (int i = 0; i < n; ++i) {
  1673. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1674. memcpy(&t, &fp16, sizeof(uint16_t));
  1675. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1676. }
  1677. }
  1678. #else
  1679. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1680. for (int i = 0; i < n; ++i) {
  1681. y[i] = ggml_gelu_f32(x[i]);
  1682. }
  1683. }
  1684. #endif
  1685. // Sigmoid Linear Unit (SiLU) function
  1686. inline static float ggml_silu_f32(float x) {
  1687. return x/(1.0f + expf(-x));
  1688. }
  1689. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1690. const uint16_t * i16 = (const uint16_t *) x;
  1691. for (int i = 0; i < n; ++i) {
  1692. y[i] = table_silu_f16[i16[i]];
  1693. }
  1694. }
  1695. #ifdef GGML_SILU_FP16
  1696. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1697. uint16_t t;
  1698. for (int i = 0; i < n; ++i) {
  1699. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1700. memcpy(&t, &fp16, sizeof(uint16_t));
  1701. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1702. }
  1703. }
  1704. #else
  1705. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1706. for (int i = 0; i < n; ++i) {
  1707. y[i] = ggml_silu_f32(x[i]);
  1708. }
  1709. }
  1710. #endif
  1711. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1712. #ifndef GGML_USE_ACCELERATE
  1713. ggml_float sum = 0.0;
  1714. for (int i = 0; i < n; ++i) {
  1715. sum += (ggml_float)x[i];
  1716. }
  1717. *s = sum;
  1718. #else
  1719. vDSP_sve(x, 1, s, n);
  1720. #endif
  1721. }
  1722. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1723. #ifndef GGML_USE_ACCELERATE
  1724. float max = -INFINITY;
  1725. for (int i = 0; i < n; ++i) {
  1726. max = MAX(max, x[i]);
  1727. }
  1728. *s = max;
  1729. #else
  1730. vDSP_maxv(x, 1, s, n);
  1731. #endif
  1732. }
  1733. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1734. ggml_vec_norm_f32(n, s, x);
  1735. *s = 1.f/(*s);
  1736. }
  1737. //
  1738. // logging
  1739. //
  1740. #if (GGML_DEBUG >= 1)
  1741. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1742. #else
  1743. #define GGML_PRINT_DEBUG(...)
  1744. #endif
  1745. #if (GGML_DEBUG >= 5)
  1746. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1747. #else
  1748. #define GGML_PRINT_DEBUG_5(...)
  1749. #endif
  1750. #if (GGML_DEBUG >= 10)
  1751. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1752. #else
  1753. #define GGML_PRINT_DEBUG_10(...)
  1754. #endif
  1755. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1756. //
  1757. // data types
  1758. //
  1759. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1760. QK,
  1761. QK,
  1762. 1,
  1763. 1,
  1764. 1,
  1765. 1,
  1766. 1,
  1767. };
  1768. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1769. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1770. sizeof(block_q4_0),
  1771. sizeof(block_q4_1),
  1772. sizeof(int8_t ),
  1773. sizeof(int16_t),
  1774. sizeof(int32_t),
  1775. sizeof(ggml_fp16_t),
  1776. sizeof(float ),
  1777. };
  1778. // don't forget to update the array above when adding new types
  1779. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1780. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1781. "NONE",
  1782. "DUP",
  1783. "ADD",
  1784. "SUB",
  1785. "MUL",
  1786. "DIV",
  1787. "SQR",
  1788. "SQRT",
  1789. "SUM",
  1790. "MEAN",
  1791. "REPEAT",
  1792. "ABS",
  1793. "SGN",
  1794. "NEG",
  1795. "STEP",
  1796. "RELU",
  1797. "GELU",
  1798. "SILU",
  1799. "NORM",
  1800. "RMS_NORM",
  1801. "MUL_MAT",
  1802. "SCALE",
  1803. "CPY",
  1804. "RESHAPE",
  1805. "VIEW",
  1806. "PERMUTE",
  1807. "TRANSPOSE",
  1808. "GET_ROWS",
  1809. "DIAG_MASK_INF",
  1810. "SOFT_MAX",
  1811. "ROPE",
  1812. "CONV_1D_1S",
  1813. "CONV_1D_2S",
  1814. "FLASH_ATTN",
  1815. "FLASH_FF",
  1816. };
  1817. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1818. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1819. "none",
  1820. "x",
  1821. "x+y",
  1822. "x-y",
  1823. "x*y",
  1824. "x/y",
  1825. "x^2",
  1826. "√x",
  1827. "Σx",
  1828. "Σx/n",
  1829. "repeat(x)",
  1830. "abs(x)",
  1831. "sgn(x)",
  1832. "-x",
  1833. "step(x)",
  1834. "relu(x)",
  1835. "gelu(x)",
  1836. "silu(x)",
  1837. "norm(x)",
  1838. "rms_norm(x)",
  1839. "X*Y",
  1840. "x*v",
  1841. "x-\\>y",
  1842. "reshape(x)",
  1843. "view(x)",
  1844. "permute(x)",
  1845. "transpose(x)",
  1846. "get_rows(x)",
  1847. "diag_mask_inf(x)",
  1848. "soft_max(x)",
  1849. "rope(x)",
  1850. "conv_1d_1s(x)",
  1851. "conv_1d_2s(x)",
  1852. "flash_attn(x)",
  1853. "flash_ff(x)",
  1854. };
  1855. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1856. //
  1857. // ggml object
  1858. //
  1859. struct ggml_object {
  1860. size_t offs;
  1861. size_t size;
  1862. struct ggml_object * next;
  1863. char padding[8];
  1864. };
  1865. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1866. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1867. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1868. //
  1869. // ggml context
  1870. //
  1871. struct ggml_context {
  1872. size_t mem_size;
  1873. void * mem_buffer;
  1874. bool mem_buffer_owned;
  1875. bool mem_buffer_mlocked;
  1876. int n_objects;
  1877. struct ggml_object * objects_begin;
  1878. struct ggml_object * objects_end;
  1879. struct ggml_scratch scratch;
  1880. struct ggml_scratch scratch_save;
  1881. };
  1882. struct ggml_context_container {
  1883. bool used;
  1884. struct ggml_context context;
  1885. };
  1886. //
  1887. // compute types
  1888. //
  1889. enum ggml_task_type {
  1890. GGML_TASK_INIT = 0,
  1891. GGML_TASK_COMPUTE,
  1892. GGML_TASK_FINALIZE,
  1893. };
  1894. struct ggml_compute_params {
  1895. enum ggml_task_type type;
  1896. int ith, nth;
  1897. // work buffer for all threads
  1898. size_t wsize;
  1899. void * wdata;
  1900. };
  1901. //
  1902. // ggml state
  1903. //
  1904. struct ggml_state {
  1905. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1906. };
  1907. // global state
  1908. static struct ggml_state g_state;
  1909. static atomic_int g_state_barrier = 0;
  1910. // barrier via spin lock
  1911. inline static void ggml_critical_section_start(void) {
  1912. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1913. while (processing > 0) {
  1914. // wait for other threads to finish
  1915. atomic_fetch_sub(&g_state_barrier, 1);
  1916. sched_yield(); // TODO: reconsider this
  1917. processing = atomic_fetch_add(&g_state_barrier, 1);
  1918. }
  1919. }
  1920. // TODO: make this somehow automatically executed
  1921. // some sort of "sentry" mechanism
  1922. inline static void ggml_critical_section_end(void) {
  1923. atomic_fetch_sub(&g_state_barrier, 1);
  1924. }
  1925. ////////////////////////////////////////////////////////////////////////////////
  1926. void ggml_print_object(const struct ggml_object * obj) {
  1927. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1928. obj->offs, obj->size, (const void *) obj->next);
  1929. }
  1930. void ggml_print_objects(const struct ggml_context * ctx) {
  1931. struct ggml_object * obj = ctx->objects_begin;
  1932. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  1933. while (obj != NULL) {
  1934. ggml_print_object(obj);
  1935. obj = obj->next;
  1936. }
  1937. GGML_PRINT("%s: --- end ---\n", __func__);
  1938. }
  1939. int ggml_nelements(const struct ggml_tensor * tensor) {
  1940. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1941. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1942. }
  1943. int ggml_nrows(const struct ggml_tensor * tensor) {
  1944. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1945. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  1946. }
  1947. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  1948. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1949. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  1950. }
  1951. int ggml_blck_size(enum ggml_type type) {
  1952. return GGML_BLCK_SIZE[type];
  1953. }
  1954. size_t ggml_type_size(enum ggml_type type) {
  1955. return GGML_TYPE_SIZE[type];
  1956. }
  1957. float ggml_type_sizef(enum ggml_type type) {
  1958. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  1959. }
  1960. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  1961. return GGML_TYPE_SIZE[tensor->type];
  1962. }
  1963. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  1964. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1965. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1966. }
  1967. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  1968. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1969. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1970. }
  1971. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  1972. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1973. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1974. }
  1975. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  1976. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1977. return
  1978. (t0->ne[0] == t1->ne[0]) &&
  1979. (t0->ne[2] == t1->ne[2]) &&
  1980. (t0->ne[3] == t1->ne[3]);
  1981. }
  1982. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  1983. return tensor->nb[0] > tensor->nb[1];
  1984. }
  1985. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  1986. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1987. return
  1988. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1989. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  1990. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1991. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1992. }
  1993. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  1994. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  1995. return
  1996. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  1997. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  1998. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  1999. }
  2000. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2001. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2002. return
  2003. (t0->ne[0] == t1->ne[0] ) &&
  2004. (t0->ne[1] == t1->ne[1] ) &&
  2005. (t0->ne[2] == t1->ne[2] ) &&
  2006. (t0->ne[3] == t1->ne[3] );
  2007. }
  2008. // check if t1 can be represented as a repeatition of t0
  2009. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2010. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2011. return
  2012. (t1->ne[0]%t0->ne[0] == 0) &&
  2013. (t1->ne[1]%t0->ne[1] == 0) &&
  2014. (t1->ne[2]%t0->ne[2] == 0) &&
  2015. (t1->ne[3]%t0->ne[3] == 0);
  2016. }
  2017. static inline int ggml_up32(int n) {
  2018. return (n + 31) & ~31;
  2019. }
  2020. static inline int ggml_up64(int n) {
  2021. return (n + 63) & ~63;
  2022. }
  2023. static inline int ggml_up(int n, int m) {
  2024. // assert m is a power of 2
  2025. GGML_ASSERT((m & (m - 1)) == 0);
  2026. return (n + m - 1) & ~(m - 1);
  2027. }
  2028. // assert that pointer is aligned to GGML_MEM_ALIGN
  2029. #define ggml_assert_aligned(ptr) \
  2030. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2031. ////////////////////////////////////////////////////////////////////////////////
  2032. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2033. // make this function thread safe
  2034. ggml_critical_section_start();
  2035. static bool is_first_call = true;
  2036. if (is_first_call) {
  2037. // initialize GELU, SILU and EXP F32 tables
  2038. {
  2039. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2040. ggml_fp16_t ii;
  2041. for (int i = 0; i < (1 << 16); ++i) {
  2042. uint16_t ui = i;
  2043. memcpy(&ii, &ui, sizeof(ii));
  2044. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2045. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2046. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2047. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2048. }
  2049. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2050. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2051. }
  2052. // initialize g_state
  2053. {
  2054. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2055. g_state = (struct ggml_state) {
  2056. /*.contexts =*/ { { 0 } },
  2057. };
  2058. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2059. g_state.contexts[i].used = false;
  2060. }
  2061. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2062. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2063. }
  2064. is_first_call = false;
  2065. }
  2066. // find non-used context in g_state
  2067. struct ggml_context * ctx = NULL;
  2068. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2069. if (!g_state.contexts[i].used) {
  2070. g_state.contexts[i].used = true;
  2071. ctx = &g_state.contexts[i].context;
  2072. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2073. break;
  2074. }
  2075. }
  2076. if (ctx == NULL) {
  2077. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2078. ggml_critical_section_end();
  2079. return NULL;
  2080. }
  2081. *ctx = (struct ggml_context) {
  2082. /*.mem_size =*/ params.mem_size,
  2083. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2084. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2085. /*.mem_buffer_mlocked =*/ false,
  2086. /*.n_objects =*/ 0,
  2087. /*.objects_begin =*/ NULL,
  2088. /*.objects_end =*/ NULL,
  2089. /*.scratch =*/ { 0, 0, NULL, },
  2090. /*.scratch_save =*/ { 0, 0, NULL, },
  2091. };
  2092. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2093. ggml_assert_aligned(ctx->mem_buffer);
  2094. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2095. ggml_critical_section_end();
  2096. return ctx;
  2097. }
  2098. void ggml_free(struct ggml_context * ctx) {
  2099. // make this function thread safe
  2100. ggml_critical_section_start();
  2101. bool found = false;
  2102. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2103. if (&g_state.contexts[i].context == ctx) {
  2104. g_state.contexts[i].used = false;
  2105. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2106. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2107. #if GGML_MLOCK_SUPPORT
  2108. if (ctx->mem_buffer_mlocked) {
  2109. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2110. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2111. }
  2112. }
  2113. #endif
  2114. if (ctx->mem_buffer_owned) {
  2115. free(ctx->mem_buffer);
  2116. }
  2117. found = true;
  2118. break;
  2119. }
  2120. }
  2121. if (!found) {
  2122. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2123. }
  2124. ggml_critical_section_end();
  2125. }
  2126. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2127. return ctx->objects_end->offs + ctx->objects_end->size;
  2128. }
  2129. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2130. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2131. ctx->scratch = scratch;
  2132. return result;
  2133. }
  2134. bool ggml_mlock_supported(void) {
  2135. return GGML_MLOCK_SUPPORT;
  2136. }
  2137. #if GGML_MLOCK_SUPPORT
  2138. #ifdef __APPLE__
  2139. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2140. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2141. #else
  2142. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2143. #endif
  2144. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2145. if (ctx->mem_buffer_mlocked) {
  2146. return true;
  2147. }
  2148. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2149. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2150. ctx->mem_size, strerror(errno));
  2151. GGML_ASSERT(ret >= 0);
  2152. return false;
  2153. }
  2154. ctx->mem_buffer_mlocked = true;
  2155. return true;
  2156. }
  2157. #else // GGML_MLOCK_SUPPORT
  2158. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2159. *err_p = strdup("can't mlock because it's not supported on this system");
  2160. return false;
  2161. }
  2162. #endif // GGML_MLOCK_SUPPORT
  2163. ////////////////////////////////////////////////////////////////////////////////
  2164. struct ggml_tensor * ggml_new_tensor_impl(
  2165. struct ggml_context * ctx,
  2166. enum ggml_type type,
  2167. int n_dims,
  2168. const int* ne,
  2169. void* data) {
  2170. // always insert objects at the end of the context's memory pool
  2171. struct ggml_object * obj_cur = ctx->objects_end;
  2172. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2173. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2174. const size_t cur_end = cur_offs + cur_size;
  2175. size_t size_needed = 0;
  2176. if (data == NULL) {
  2177. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2178. for (int i = 1; i < n_dims; i++) {
  2179. size_needed *= ne[i];
  2180. }
  2181. // align to GGML_MEM_ALIGN
  2182. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2183. }
  2184. char * const mem_buffer = ctx->mem_buffer;
  2185. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2186. if (ctx->scratch.data == NULL || data != NULL) {
  2187. size_needed += sizeof(struct ggml_tensor);
  2188. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2189. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2190. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2191. assert(false);
  2192. return NULL;
  2193. }
  2194. *obj_new = (struct ggml_object) {
  2195. .offs = cur_end + GGML_OBJECT_SIZE,
  2196. .size = size_needed,
  2197. .next = NULL,
  2198. };
  2199. } else {
  2200. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2201. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2202. assert(false);
  2203. return NULL;
  2204. }
  2205. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2206. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2207. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2208. assert(false);
  2209. return NULL;
  2210. }
  2211. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2212. *obj_new = (struct ggml_object) {
  2213. .offs = cur_end + GGML_OBJECT_SIZE,
  2214. .size = sizeof(struct ggml_tensor),
  2215. .next = NULL,
  2216. };
  2217. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2218. ctx->scratch.offs += size_needed;
  2219. }
  2220. if (obj_cur != NULL) {
  2221. obj_cur->next = obj_new;
  2222. } else {
  2223. // this is the first object in this context
  2224. ctx->objects_begin = obj_new;
  2225. }
  2226. ctx->objects_end = obj_new;
  2227. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2228. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2229. ggml_assert_aligned(result);
  2230. *result = (struct ggml_tensor) {
  2231. /*.type =*/ type,
  2232. /*.n_dims =*/ n_dims,
  2233. /*.ne =*/ { 1, 1, 1, 1 },
  2234. /*.nb =*/ { 0, 0, 0, 0 },
  2235. /*.op =*/ GGML_OP_NONE,
  2236. /*.is_param =*/ false,
  2237. /*.grad =*/ NULL,
  2238. /*.src0 =*/ NULL,
  2239. /*.src1 =*/ NULL,
  2240. /*.opt =*/ { NULL },
  2241. /*.n_tasks =*/ 0,
  2242. /*.perf_runs =*/ 0,
  2243. /*.perf_cycles =*/ 0,
  2244. /*.perf_time_us =*/ 0,
  2245. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2246. /*.pad =*/ { 0 },
  2247. };
  2248. ggml_assert_aligned(result->data);
  2249. for (int i = 0; i < n_dims; i++) {
  2250. result->ne[i] = ne[i];
  2251. }
  2252. result->nb[0] = GGML_TYPE_SIZE[type];
  2253. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2254. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2255. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2256. }
  2257. ctx->n_objects++;
  2258. return result;
  2259. }
  2260. struct ggml_tensor * ggml_new_tensor(
  2261. struct ggml_context * ctx,
  2262. enum ggml_type type,
  2263. int n_dims,
  2264. const int * ne) {
  2265. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2266. }
  2267. struct ggml_tensor * ggml_new_tensor_1d(
  2268. struct ggml_context * ctx,
  2269. enum ggml_type type,
  2270. int ne0) {
  2271. return ggml_new_tensor(ctx, type, 1, &ne0);
  2272. }
  2273. struct ggml_tensor * ggml_new_tensor_2d(
  2274. struct ggml_context * ctx,
  2275. enum ggml_type type,
  2276. int ne0,
  2277. int ne1) {
  2278. const int ne[2] = { ne0, ne1 };
  2279. return ggml_new_tensor(ctx, type, 2, ne);
  2280. }
  2281. struct ggml_tensor * ggml_new_tensor_3d(
  2282. struct ggml_context * ctx,
  2283. enum ggml_type type,
  2284. int ne0,
  2285. int ne1,
  2286. int ne2) {
  2287. const int ne[3] = { ne0, ne1, ne2 };
  2288. return ggml_new_tensor(ctx, type, 3, ne);
  2289. }
  2290. struct ggml_tensor * ggml_new_tensor_4d(
  2291. struct ggml_context * ctx,
  2292. enum ggml_type type,
  2293. int ne0,
  2294. int ne1,
  2295. int ne2,
  2296. int ne3) {
  2297. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2298. return ggml_new_tensor(ctx, type, 4, ne);
  2299. }
  2300. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2301. ctx->scratch_save = ctx->scratch;
  2302. ctx->scratch.data = NULL;
  2303. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2304. ctx->scratch = ctx->scratch_save;
  2305. ggml_set_i32(result, value);
  2306. return result;
  2307. }
  2308. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2309. ctx->scratch_save = ctx->scratch;
  2310. ctx->scratch.data = NULL;
  2311. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2312. ctx->scratch = ctx->scratch_save;
  2313. ggml_set_f32(result, value);
  2314. return result;
  2315. }
  2316. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2317. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2318. }
  2319. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2320. memset(tensor->data, 0, ggml_nbytes(tensor));
  2321. return tensor;
  2322. }
  2323. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2324. const int n = ggml_nrows(tensor);
  2325. const int nc = tensor->ne[0];
  2326. const size_t n1 = tensor->nb[1];
  2327. char * const data = tensor->data;
  2328. switch (tensor->type) {
  2329. case GGML_TYPE_Q4_0:
  2330. {
  2331. GGML_ASSERT(false);
  2332. } break;
  2333. case GGML_TYPE_Q4_1:
  2334. {
  2335. GGML_ASSERT(false);
  2336. } break;
  2337. case GGML_TYPE_I8:
  2338. {
  2339. assert(tensor->nb[0] == sizeof(int8_t));
  2340. for (int i = 0; i < n; i++) {
  2341. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2342. }
  2343. } break;
  2344. case GGML_TYPE_I16:
  2345. {
  2346. assert(tensor->nb[0] == sizeof(int16_t));
  2347. for (int i = 0; i < n; i++) {
  2348. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2349. }
  2350. } break;
  2351. case GGML_TYPE_I32:
  2352. {
  2353. assert(tensor->nb[0] == sizeof(int32_t));
  2354. for (int i = 0; i < n; i++) {
  2355. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2356. }
  2357. } break;
  2358. case GGML_TYPE_F16:
  2359. {
  2360. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2361. for (int i = 0; i < n; i++) {
  2362. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2363. }
  2364. } break;
  2365. case GGML_TYPE_F32:
  2366. {
  2367. assert(tensor->nb[0] == sizeof(float));
  2368. for (int i = 0; i < n; i++) {
  2369. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2370. }
  2371. } break;
  2372. case GGML_TYPE_COUNT:
  2373. {
  2374. GGML_ASSERT(false);
  2375. } break;
  2376. }
  2377. return tensor;
  2378. }
  2379. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2380. const int n = ggml_nrows(tensor);
  2381. const int nc = tensor->ne[0];
  2382. const size_t n1 = tensor->nb[1];
  2383. char * const data = tensor->data;
  2384. switch (tensor->type) {
  2385. case GGML_TYPE_Q4_0:
  2386. {
  2387. GGML_ASSERT(false);
  2388. } break;
  2389. case GGML_TYPE_Q4_1:
  2390. {
  2391. GGML_ASSERT(false);
  2392. } break;
  2393. case GGML_TYPE_I8:
  2394. {
  2395. assert(tensor->nb[0] == sizeof(int8_t));
  2396. for (int i = 0; i < n; i++) {
  2397. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2398. }
  2399. } break;
  2400. case GGML_TYPE_I16:
  2401. {
  2402. assert(tensor->nb[0] == sizeof(int16_t));
  2403. for (int i = 0; i < n; i++) {
  2404. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2405. }
  2406. } break;
  2407. case GGML_TYPE_I32:
  2408. {
  2409. assert(tensor->nb[0] == sizeof(int32_t));
  2410. for (int i = 0; i < n; i++) {
  2411. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2412. }
  2413. } break;
  2414. case GGML_TYPE_F16:
  2415. {
  2416. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2417. for (int i = 0; i < n; i++) {
  2418. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2419. }
  2420. } break;
  2421. case GGML_TYPE_F32:
  2422. {
  2423. assert(tensor->nb[0] == sizeof(float));
  2424. for (int i = 0; i < n; i++) {
  2425. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2426. }
  2427. } break;
  2428. case GGML_TYPE_COUNT:
  2429. {
  2430. GGML_ASSERT(false);
  2431. } break;
  2432. }
  2433. return tensor;
  2434. }
  2435. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2436. switch (tensor->type) {
  2437. case GGML_TYPE_Q4_0:
  2438. {
  2439. GGML_ASSERT(false);
  2440. } break;
  2441. case GGML_TYPE_Q4_1:
  2442. {
  2443. GGML_ASSERT(false);
  2444. } break;
  2445. case GGML_TYPE_I8:
  2446. {
  2447. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2448. return ((int8_t *)(tensor->data))[i];
  2449. } break;
  2450. case GGML_TYPE_I16:
  2451. {
  2452. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2453. return ((int16_t *)(tensor->data))[i];
  2454. } break;
  2455. case GGML_TYPE_I32:
  2456. {
  2457. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2458. return ((int32_t *)(tensor->data))[i];
  2459. } break;
  2460. case GGML_TYPE_F16:
  2461. {
  2462. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2463. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2464. } break;
  2465. case GGML_TYPE_F32:
  2466. {
  2467. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2468. return ((float *)(tensor->data))[i];
  2469. } break;
  2470. case GGML_TYPE_COUNT:
  2471. {
  2472. GGML_ASSERT(false);
  2473. } break;
  2474. }
  2475. return 0.0f;
  2476. }
  2477. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2478. switch (tensor->type) {
  2479. case GGML_TYPE_Q4_0:
  2480. {
  2481. GGML_ASSERT(false);
  2482. } break;
  2483. case GGML_TYPE_Q4_1:
  2484. {
  2485. GGML_ASSERT(false);
  2486. } break;
  2487. case GGML_TYPE_I8:
  2488. {
  2489. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2490. ((int8_t *)(tensor->data))[i] = value;
  2491. } break;
  2492. case GGML_TYPE_I16:
  2493. {
  2494. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2495. ((int16_t *)(tensor->data))[i] = value;
  2496. } break;
  2497. case GGML_TYPE_I32:
  2498. {
  2499. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2500. ((int32_t *)(tensor->data))[i] = value;
  2501. } break;
  2502. case GGML_TYPE_F16:
  2503. {
  2504. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2505. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2506. } break;
  2507. case GGML_TYPE_F32:
  2508. {
  2509. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2510. ((float *)(tensor->data))[i] = value;
  2511. } break;
  2512. case GGML_TYPE_COUNT:
  2513. {
  2514. GGML_ASSERT(false);
  2515. } break;
  2516. }
  2517. }
  2518. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2519. switch (tensor->type) {
  2520. case GGML_TYPE_Q4_0:
  2521. {
  2522. GGML_ASSERT(false);
  2523. } break;
  2524. case GGML_TYPE_Q4_1:
  2525. {
  2526. GGML_ASSERT(false);
  2527. } break;
  2528. case GGML_TYPE_I8:
  2529. {
  2530. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2531. return ((int8_t *)(tensor->data))[i];
  2532. } break;
  2533. case GGML_TYPE_I16:
  2534. {
  2535. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2536. return ((int16_t *)(tensor->data))[i];
  2537. } break;
  2538. case GGML_TYPE_I32:
  2539. {
  2540. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2541. return ((int32_t *)(tensor->data))[i];
  2542. } break;
  2543. case GGML_TYPE_F16:
  2544. {
  2545. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2546. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2547. } break;
  2548. case GGML_TYPE_F32:
  2549. {
  2550. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2551. return ((float *)(tensor->data))[i];
  2552. } break;
  2553. case GGML_TYPE_COUNT:
  2554. {
  2555. GGML_ASSERT(false);
  2556. } break;
  2557. }
  2558. return 0.0f;
  2559. }
  2560. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2561. switch (tensor->type) {
  2562. case GGML_TYPE_Q4_0:
  2563. {
  2564. GGML_ASSERT(false);
  2565. } break;
  2566. case GGML_TYPE_Q4_1:
  2567. {
  2568. GGML_ASSERT(false);
  2569. } break;
  2570. case GGML_TYPE_I8:
  2571. {
  2572. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2573. ((int8_t *)(tensor->data))[i] = value;
  2574. } break;
  2575. case GGML_TYPE_I16:
  2576. {
  2577. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2578. ((int16_t *)(tensor->data))[i] = value;
  2579. } break;
  2580. case GGML_TYPE_I32:
  2581. {
  2582. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2583. ((int32_t *)(tensor->data))[i] = value;
  2584. } break;
  2585. case GGML_TYPE_F16:
  2586. {
  2587. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2588. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2589. } break;
  2590. case GGML_TYPE_F32:
  2591. {
  2592. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2593. ((float *)(tensor->data))[i] = value;
  2594. } break;
  2595. case GGML_TYPE_COUNT:
  2596. {
  2597. GGML_ASSERT(false);
  2598. } break;
  2599. }
  2600. }
  2601. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2602. return tensor->data;
  2603. }
  2604. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2605. assert(tensor->type == GGML_TYPE_F32);
  2606. return (float *)(tensor->data);
  2607. }
  2608. struct ggml_tensor * ggml_view_tensor(
  2609. struct ggml_context * ctx,
  2610. const struct ggml_tensor * src) {
  2611. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2612. }
  2613. ////////////////////////////////////////////////////////////////////////////////
  2614. // ggml_dup
  2615. struct ggml_tensor * ggml_dup_impl(
  2616. struct ggml_context * ctx,
  2617. struct ggml_tensor * a,
  2618. bool inplace) {
  2619. bool is_node = false;
  2620. if (!inplace && (a->grad)) {
  2621. is_node = true;
  2622. }
  2623. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2624. result->op = GGML_OP_DUP;
  2625. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2626. result->src0 = a;
  2627. result->src1 = NULL;
  2628. return result;
  2629. }
  2630. struct ggml_tensor * ggml_dup(
  2631. struct ggml_context * ctx,
  2632. struct ggml_tensor * a) {
  2633. return ggml_dup_impl(ctx, a, false);
  2634. }
  2635. struct ggml_tensor * ggml_dup_inplace(
  2636. struct ggml_context * ctx,
  2637. struct ggml_tensor * a) {
  2638. return ggml_dup_impl(ctx, a, true);
  2639. }
  2640. // ggml_add
  2641. struct ggml_tensor * ggml_add_impl(
  2642. struct ggml_context * ctx,
  2643. struct ggml_tensor * a,
  2644. struct ggml_tensor * b,
  2645. bool inplace) {
  2646. GGML_ASSERT(ggml_are_same_shape(a, b));
  2647. bool is_node = false;
  2648. if (!inplace && (a->grad || b->grad)) {
  2649. is_node = true;
  2650. }
  2651. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2652. result->op = GGML_OP_ADD;
  2653. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2654. result->src0 = a;
  2655. result->src1 = b;
  2656. return result;
  2657. }
  2658. struct ggml_tensor * ggml_add(
  2659. struct ggml_context * ctx,
  2660. struct ggml_tensor * a,
  2661. struct ggml_tensor * b) {
  2662. return ggml_add_impl(ctx, a, b, false);
  2663. }
  2664. struct ggml_tensor * ggml_add_inplace(
  2665. struct ggml_context * ctx,
  2666. struct ggml_tensor * a,
  2667. struct ggml_tensor * b) {
  2668. return ggml_add_impl(ctx, a, b, true);
  2669. }
  2670. // ggml_sub
  2671. struct ggml_tensor * ggml_sub_impl(
  2672. struct ggml_context * ctx,
  2673. struct ggml_tensor * a,
  2674. struct ggml_tensor * b,
  2675. bool inplace) {
  2676. GGML_ASSERT(ggml_are_same_shape(a, b));
  2677. bool is_node = false;
  2678. if (!inplace && (a->grad || b->grad)) {
  2679. is_node = true;
  2680. }
  2681. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2682. result->op = GGML_OP_SUB;
  2683. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2684. result->src0 = a;
  2685. result->src1 = b;
  2686. return result;
  2687. }
  2688. struct ggml_tensor * ggml_sub(
  2689. struct ggml_context * ctx,
  2690. struct ggml_tensor * a,
  2691. struct ggml_tensor * b) {
  2692. return ggml_sub_impl(ctx, a, b, false);
  2693. }
  2694. struct ggml_tensor * ggml_sub_inplace(
  2695. struct ggml_context * ctx,
  2696. struct ggml_tensor * a,
  2697. struct ggml_tensor * b) {
  2698. return ggml_sub_impl(ctx, a, b, true);
  2699. }
  2700. // ggml_mul
  2701. struct ggml_tensor * ggml_mul_impl(
  2702. struct ggml_context * ctx,
  2703. struct ggml_tensor * a,
  2704. struct ggml_tensor * b,
  2705. bool inplace) {
  2706. GGML_ASSERT(ggml_are_same_shape(a, b));
  2707. bool is_node = false;
  2708. if (!inplace && (a->grad || b->grad)) {
  2709. is_node = true;
  2710. }
  2711. if (inplace) {
  2712. GGML_ASSERT(is_node == false);
  2713. }
  2714. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2715. result->op = GGML_OP_MUL;
  2716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2717. result->src0 = a;
  2718. result->src1 = b;
  2719. return result;
  2720. }
  2721. struct ggml_tensor * ggml_mul(
  2722. struct ggml_context * ctx,
  2723. struct ggml_tensor * a,
  2724. struct ggml_tensor * b) {
  2725. return ggml_mul_impl(ctx, a, b, false);
  2726. }
  2727. struct ggml_tensor * ggml_mul_inplace(
  2728. struct ggml_context * ctx,
  2729. struct ggml_tensor * a,
  2730. struct ggml_tensor * b) {
  2731. return ggml_mul_impl(ctx, a, b, true);
  2732. }
  2733. // ggml_div
  2734. struct ggml_tensor * ggml_div_impl(
  2735. struct ggml_context * ctx,
  2736. struct ggml_tensor * a,
  2737. struct ggml_tensor * b,
  2738. bool inplace) {
  2739. GGML_ASSERT(ggml_are_same_shape(a, b));
  2740. bool is_node = false;
  2741. if (!inplace && (a->grad || b->grad)) {
  2742. is_node = true;
  2743. }
  2744. if (inplace) {
  2745. GGML_ASSERT(is_node == false);
  2746. }
  2747. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2748. result->op = GGML_OP_DIV;
  2749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2750. result->src0 = a;
  2751. result->src1 = b;
  2752. return result;
  2753. }
  2754. struct ggml_tensor * ggml_div(
  2755. struct ggml_context * ctx,
  2756. struct ggml_tensor * a,
  2757. struct ggml_tensor * b) {
  2758. return ggml_div_impl(ctx, a, b, false);
  2759. }
  2760. struct ggml_tensor * ggml_div_inplace(
  2761. struct ggml_context * ctx,
  2762. struct ggml_tensor * a,
  2763. struct ggml_tensor * b) {
  2764. return ggml_div_impl(ctx, a, b, true);
  2765. }
  2766. // ggml_sqr
  2767. struct ggml_tensor * ggml_sqr_impl(
  2768. struct ggml_context * ctx,
  2769. struct ggml_tensor * a,
  2770. bool inplace) {
  2771. bool is_node = false;
  2772. if (!inplace && (a->grad)) {
  2773. is_node = true;
  2774. }
  2775. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2776. result->op = GGML_OP_SQR;
  2777. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2778. result->src0 = a;
  2779. result->src1 = NULL;
  2780. return result;
  2781. }
  2782. struct ggml_tensor * ggml_sqr(
  2783. struct ggml_context * ctx,
  2784. struct ggml_tensor * a) {
  2785. return ggml_sqr_impl(ctx, a, false);
  2786. }
  2787. struct ggml_tensor * ggml_sqr_inplace(
  2788. struct ggml_context * ctx,
  2789. struct ggml_tensor * a) {
  2790. return ggml_sqr_impl(ctx, a, true);
  2791. }
  2792. // ggml_sqrt
  2793. struct ggml_tensor * ggml_sqrt_impl(
  2794. struct ggml_context * ctx,
  2795. struct ggml_tensor * a,
  2796. bool inplace) {
  2797. bool is_node = false;
  2798. if (!inplace && (a->grad)) {
  2799. is_node = true;
  2800. }
  2801. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2802. result->op = GGML_OP_SQRT;
  2803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2804. result->src0 = a;
  2805. result->src1 = NULL;
  2806. return result;
  2807. }
  2808. struct ggml_tensor * ggml_sqrt(
  2809. struct ggml_context * ctx,
  2810. struct ggml_tensor * a) {
  2811. return ggml_sqrt_impl(ctx, a, false);
  2812. }
  2813. struct ggml_tensor * ggml_sqrt_inplace(
  2814. struct ggml_context * ctx,
  2815. struct ggml_tensor * a) {
  2816. return ggml_sqrt_impl(ctx, a, true);
  2817. }
  2818. // ggml_sum
  2819. struct ggml_tensor * ggml_sum(
  2820. struct ggml_context * ctx,
  2821. struct ggml_tensor * a) {
  2822. bool is_node = false;
  2823. if (a->grad) {
  2824. is_node = true;
  2825. }
  2826. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2827. result->op = GGML_OP_SUM;
  2828. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2829. result->src0 = a;
  2830. result->src1 = NULL;
  2831. return result;
  2832. }
  2833. // ggml_mean
  2834. struct ggml_tensor * ggml_mean(
  2835. struct ggml_context * ctx,
  2836. struct ggml_tensor * a) {
  2837. bool is_node = false;
  2838. if (a->grad) {
  2839. GGML_ASSERT(false); // TODO: implement
  2840. is_node = true;
  2841. }
  2842. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2843. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2844. result->op = GGML_OP_MEAN;
  2845. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2846. result->src0 = a;
  2847. result->src1 = NULL;
  2848. return result;
  2849. }
  2850. // ggml_repeat
  2851. struct ggml_tensor * ggml_repeat(
  2852. struct ggml_context * ctx,
  2853. struct ggml_tensor * a,
  2854. struct ggml_tensor * b) {
  2855. GGML_ASSERT(ggml_can_repeat(a, b));
  2856. bool is_node = false;
  2857. if (a->grad) {
  2858. is_node = true;
  2859. }
  2860. if (ggml_are_same_shape(a, b) && !is_node) {
  2861. return a;
  2862. }
  2863. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2864. result->op = GGML_OP_REPEAT;
  2865. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2866. result->src0 = a;
  2867. result->src1 = b;
  2868. return result;
  2869. }
  2870. // ggml_abs
  2871. struct ggml_tensor * ggml_abs_impl(
  2872. struct ggml_context * ctx,
  2873. struct ggml_tensor * a,
  2874. bool inplace) {
  2875. bool is_node = false;
  2876. if (!inplace && (a->grad)) {
  2877. is_node = true;
  2878. }
  2879. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2880. result->op = GGML_OP_ABS;
  2881. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2882. result->src0 = a;
  2883. result->src1 = NULL;
  2884. return result;
  2885. }
  2886. struct ggml_tensor * ggml_abs(
  2887. struct ggml_context * ctx,
  2888. struct ggml_tensor * a) {
  2889. return ggml_abs_impl(ctx, a, false);
  2890. }
  2891. struct ggml_tensor * ggml_abs_inplace(
  2892. struct ggml_context * ctx,
  2893. struct ggml_tensor * a) {
  2894. return ggml_abs_impl(ctx, a, true);
  2895. }
  2896. // ggml_sgn
  2897. struct ggml_tensor * ggml_sgn_impl(
  2898. struct ggml_context * ctx,
  2899. struct ggml_tensor * a,
  2900. bool inplace) {
  2901. bool is_node = false;
  2902. if (!inplace && (a->grad)) {
  2903. is_node = true;
  2904. }
  2905. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2906. result->op = GGML_OP_SGN;
  2907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2908. result->src0 = a;
  2909. result->src1 = NULL;
  2910. return result;
  2911. }
  2912. struct ggml_tensor * ggml_sgn(
  2913. struct ggml_context * ctx,
  2914. struct ggml_tensor * a) {
  2915. return ggml_sgn_impl(ctx, a, false);
  2916. }
  2917. struct ggml_tensor * ggml_sgn_inplace(
  2918. struct ggml_context * ctx,
  2919. struct ggml_tensor * a) {
  2920. return ggml_sgn_impl(ctx, a, true);
  2921. }
  2922. // ggml_neg
  2923. struct ggml_tensor * ggml_neg_impl(
  2924. struct ggml_context * ctx,
  2925. struct ggml_tensor * a,
  2926. bool inplace) {
  2927. bool is_node = false;
  2928. if (!inplace && (a->grad)) {
  2929. is_node = true;
  2930. }
  2931. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2932. result->op = GGML_OP_NEG;
  2933. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2934. result->src0 = a;
  2935. result->src1 = NULL;
  2936. return result;
  2937. }
  2938. struct ggml_tensor * ggml_neg(
  2939. struct ggml_context * ctx,
  2940. struct ggml_tensor * a) {
  2941. return ggml_neg_impl(ctx, a, false);
  2942. }
  2943. struct ggml_tensor * ggml_neg_inplace(
  2944. struct ggml_context * ctx,
  2945. struct ggml_tensor * a) {
  2946. return ggml_neg_impl(ctx, a, true);
  2947. }
  2948. // ggml_step
  2949. struct ggml_tensor * ggml_step_impl(
  2950. struct ggml_context * ctx,
  2951. struct ggml_tensor * a,
  2952. bool inplace) {
  2953. bool is_node = false;
  2954. if (!inplace && (a->grad)) {
  2955. is_node = true;
  2956. }
  2957. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2958. result->op = GGML_OP_STEP;
  2959. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2960. result->src0 = a;
  2961. result->src1 = NULL;
  2962. return result;
  2963. }
  2964. struct ggml_tensor * ggml_step(
  2965. struct ggml_context * ctx,
  2966. struct ggml_tensor * a) {
  2967. return ggml_step_impl(ctx, a, false);
  2968. }
  2969. struct ggml_tensor * ggml_step_inplace(
  2970. struct ggml_context * ctx,
  2971. struct ggml_tensor * a) {
  2972. return ggml_step_impl(ctx, a, true);
  2973. }
  2974. // ggml_relu
  2975. struct ggml_tensor * ggml_relu_impl(
  2976. struct ggml_context * ctx,
  2977. struct ggml_tensor * a,
  2978. bool inplace) {
  2979. bool is_node = false;
  2980. if (!inplace && (a->grad)) {
  2981. is_node = true;
  2982. }
  2983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2984. result->op = GGML_OP_RELU;
  2985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2986. result->src0 = a;
  2987. result->src1 = NULL;
  2988. return result;
  2989. }
  2990. struct ggml_tensor * ggml_relu(
  2991. struct ggml_context * ctx,
  2992. struct ggml_tensor * a) {
  2993. return ggml_relu_impl(ctx, a, false);
  2994. }
  2995. struct ggml_tensor * ggml_relu_inplace(
  2996. struct ggml_context * ctx,
  2997. struct ggml_tensor * a) {
  2998. return ggml_relu_impl(ctx, a, true);
  2999. }
  3000. // ggml_gelu
  3001. struct ggml_tensor * ggml_gelu_impl(
  3002. struct ggml_context * ctx,
  3003. struct ggml_tensor * a,
  3004. bool inplace) {
  3005. bool is_node = false;
  3006. if (!inplace && (a->grad)) {
  3007. is_node = true;
  3008. }
  3009. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3010. result->op = GGML_OP_GELU;
  3011. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3012. result->src0 = a;
  3013. result->src1 = NULL;
  3014. return result;
  3015. }
  3016. struct ggml_tensor * ggml_gelu(
  3017. struct ggml_context * ctx,
  3018. struct ggml_tensor * a) {
  3019. return ggml_gelu_impl(ctx, a, false);
  3020. }
  3021. struct ggml_tensor * ggml_gelu_inplace(
  3022. struct ggml_context * ctx,
  3023. struct ggml_tensor * a) {
  3024. return ggml_gelu_impl(ctx, a, true);
  3025. }
  3026. // ggml_silu
  3027. struct ggml_tensor * ggml_silu_impl(
  3028. struct ggml_context * ctx,
  3029. struct ggml_tensor * a,
  3030. bool inplace) {
  3031. bool is_node = false;
  3032. if (!inplace && (a->grad)) {
  3033. is_node = true;
  3034. }
  3035. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3036. result->op = GGML_OP_SILU;
  3037. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3038. result->src0 = a;
  3039. result->src1 = NULL;
  3040. return result;
  3041. }
  3042. struct ggml_tensor * ggml_silu(
  3043. struct ggml_context * ctx,
  3044. struct ggml_tensor * a) {
  3045. return ggml_silu_impl(ctx, a, false);
  3046. }
  3047. struct ggml_tensor * ggml_silu_inplace(
  3048. struct ggml_context * ctx,
  3049. struct ggml_tensor * a) {
  3050. return ggml_silu_impl(ctx, a, true);
  3051. }
  3052. // ggml_norm
  3053. struct ggml_tensor * ggml_norm_impl(
  3054. struct ggml_context * ctx,
  3055. struct ggml_tensor * a,
  3056. bool inplace) {
  3057. bool is_node = false;
  3058. if (!inplace && (a->grad)) {
  3059. GGML_ASSERT(false); // TODO: implement backward
  3060. is_node = true;
  3061. }
  3062. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3063. result->op = GGML_OP_NORM;
  3064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3065. result->src0 = a;
  3066. result->src1 = NULL; // TODO: maybe store epsilon here?
  3067. return result;
  3068. }
  3069. struct ggml_tensor * ggml_norm(
  3070. struct ggml_context * ctx,
  3071. struct ggml_tensor * a) {
  3072. return ggml_norm_impl(ctx, a, false);
  3073. }
  3074. struct ggml_tensor * ggml_norm_inplace(
  3075. struct ggml_context * ctx,
  3076. struct ggml_tensor * a) {
  3077. return ggml_norm_impl(ctx, a, true);
  3078. }
  3079. struct ggml_tensor * ggml_rms_norm_impl(
  3080. struct ggml_context * ctx,
  3081. struct ggml_tensor * a,
  3082. bool inplace) {
  3083. bool is_node = false;
  3084. if (!inplace && (a->grad)) {
  3085. GGML_ASSERT(false); // TODO: implement backward
  3086. is_node = true;
  3087. }
  3088. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3089. result->op = GGML_OP_RMS_NORM;
  3090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3091. result->src0 = a;
  3092. result->src1 = NULL; // TODO: maybe store epsilon here?
  3093. return result;
  3094. }
  3095. struct ggml_tensor * ggml_rms_norm(
  3096. struct ggml_context * ctx,
  3097. struct ggml_tensor * a) {
  3098. return ggml_rms_norm_impl(ctx, a, false);
  3099. }
  3100. struct ggml_tensor * ggml_rms_norm_inplace(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_rms_norm_impl(ctx, a, true);
  3104. }
  3105. // ggml_mul_mat
  3106. struct ggml_tensor * ggml_mul_mat(
  3107. struct ggml_context * ctx,
  3108. struct ggml_tensor * a,
  3109. struct ggml_tensor * b) {
  3110. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3111. GGML_ASSERT(!ggml_is_transposed(a));
  3112. bool is_node = false;
  3113. if (a->grad || b->grad) {
  3114. is_node = true;
  3115. }
  3116. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3117. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3118. result->op = GGML_OP_MUL_MAT;
  3119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3120. result->src0 = a;
  3121. result->src1 = b;
  3122. return result;
  3123. }
  3124. // ggml_scale
  3125. struct ggml_tensor * ggml_scale_impl(
  3126. struct ggml_context * ctx,
  3127. struct ggml_tensor * a,
  3128. struct ggml_tensor * b,
  3129. bool inplace) {
  3130. GGML_ASSERT(ggml_is_scalar(b));
  3131. GGML_ASSERT(ggml_is_padded_1d(a));
  3132. bool is_node = false;
  3133. if (!inplace && (a->grad || b->grad)) {
  3134. GGML_ASSERT(false); // TODO: implement backward
  3135. is_node = true;
  3136. }
  3137. // TODO: when implement backward, fix this:
  3138. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3139. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3140. result->op = GGML_OP_SCALE;
  3141. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3142. result->src0 = a;
  3143. result->src1 = b;
  3144. return result;
  3145. }
  3146. struct ggml_tensor * ggml_scale(
  3147. struct ggml_context * ctx,
  3148. struct ggml_tensor * a,
  3149. struct ggml_tensor * b) {
  3150. return ggml_scale_impl(ctx, a, b, false);
  3151. }
  3152. struct ggml_tensor * ggml_scale_inplace(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a,
  3155. struct ggml_tensor * b) {
  3156. return ggml_scale_impl(ctx, a, b, true);
  3157. }
  3158. // ggml_cpy
  3159. struct ggml_tensor * ggml_cpy_impl(
  3160. struct ggml_context * ctx,
  3161. struct ggml_tensor * a,
  3162. struct ggml_tensor * b,
  3163. bool inplace) {
  3164. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3165. bool is_node = false;
  3166. if (!inplace && (a->grad || b->grad)) {
  3167. GGML_ASSERT(false); // TODO: implement backward
  3168. is_node = true;
  3169. }
  3170. // make a view of the destination
  3171. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3172. result->op = GGML_OP_CPY;
  3173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3174. result->src0 = a;
  3175. result->src1 = b;
  3176. return result;
  3177. }
  3178. struct ggml_tensor * ggml_cpy(
  3179. struct ggml_context * ctx,
  3180. struct ggml_tensor * a,
  3181. struct ggml_tensor * b) {
  3182. return ggml_cpy_impl(ctx, a, b, false);
  3183. }
  3184. struct ggml_tensor * ggml_cpy_inplace(
  3185. struct ggml_context * ctx,
  3186. struct ggml_tensor * a,
  3187. struct ggml_tensor * b) {
  3188. return ggml_cpy_impl(ctx, a, b, true);
  3189. }
  3190. // ggml_reshape
  3191. struct ggml_tensor * ggml_reshape(
  3192. struct ggml_context * ctx,
  3193. struct ggml_tensor * a,
  3194. struct ggml_tensor * b) {
  3195. GGML_ASSERT(ggml_is_contiguous(a));
  3196. GGML_ASSERT(ggml_is_contiguous(b));
  3197. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3198. bool is_node = false;
  3199. if (a->grad || b->grad) {
  3200. GGML_ASSERT(false); // TODO: implement backward
  3201. is_node = true;
  3202. }
  3203. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3204. result->op = GGML_OP_RESHAPE;
  3205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3206. result->src0 = a;
  3207. result->src1 = NULL;
  3208. return result;
  3209. }
  3210. struct ggml_tensor * ggml_reshape_2d(
  3211. struct ggml_context * ctx,
  3212. struct ggml_tensor * a,
  3213. int ne0,
  3214. int ne1) {
  3215. GGML_ASSERT(ggml_is_contiguous(a));
  3216. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3217. bool is_node = false;
  3218. if (a->grad) {
  3219. GGML_ASSERT(false); // TODO: implement backward
  3220. is_node = true;
  3221. }
  3222. const int ne[2] = { ne0, ne1 };
  3223. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3224. result->op = GGML_OP_RESHAPE;
  3225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3226. result->src0 = a;
  3227. result->src1 = NULL;
  3228. return result;
  3229. }
  3230. struct ggml_tensor * ggml_reshape_3d(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a,
  3233. int ne0,
  3234. int ne1,
  3235. int ne2) {
  3236. GGML_ASSERT(ggml_is_contiguous(a));
  3237. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3238. bool is_node = false;
  3239. if (a->grad) {
  3240. GGML_ASSERT(false); // TODO: implement backward
  3241. is_node = true;
  3242. }
  3243. const int ne[3] = { ne0, ne1, ne2 };
  3244. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3245. result->op = GGML_OP_RESHAPE;
  3246. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3247. result->src0 = a;
  3248. result->src1 = NULL;
  3249. return result;
  3250. }
  3251. // ggml_view_1d
  3252. struct ggml_tensor * ggml_view_1d(
  3253. struct ggml_context * ctx,
  3254. struct ggml_tensor * a,
  3255. int ne0,
  3256. size_t offset) {
  3257. if (a->grad) {
  3258. GGML_ASSERT(false); // gradient propagation is not supported
  3259. }
  3260. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3261. result->op = GGML_OP_VIEW;
  3262. result->grad = NULL;
  3263. result->src0 = a;
  3264. result->src1 = NULL; // TODO: maybe store the offset here?
  3265. return result;
  3266. }
  3267. // ggml_view_2d
  3268. struct ggml_tensor * ggml_view_2d(
  3269. struct ggml_context * ctx,
  3270. struct ggml_tensor * a,
  3271. int ne0,
  3272. int ne1,
  3273. size_t nb1,
  3274. size_t offset) {
  3275. if (a->grad) {
  3276. GGML_ASSERT(false); // gradient propagation is not supported
  3277. }
  3278. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3279. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3280. result->nb[1] = nb1;
  3281. result->nb[2] = result->nb[1]*ne1;
  3282. result->nb[3] = result->nb[2];
  3283. result->op = GGML_OP_VIEW;
  3284. result->grad = NULL;
  3285. result->src0 = a;
  3286. result->src1 = NULL; // TODO: maybe store the offset here?
  3287. return result;
  3288. }
  3289. // ggml_permute
  3290. struct ggml_tensor * ggml_permute(
  3291. struct ggml_context * ctx,
  3292. struct ggml_tensor * a,
  3293. int axis0,
  3294. int axis1,
  3295. int axis2,
  3296. int axis3) {
  3297. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3298. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3299. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3300. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3301. GGML_ASSERT(axis0 != axis1);
  3302. GGML_ASSERT(axis0 != axis2);
  3303. GGML_ASSERT(axis0 != axis3);
  3304. GGML_ASSERT(axis1 != axis2);
  3305. GGML_ASSERT(axis1 != axis3);
  3306. GGML_ASSERT(axis2 != axis3);
  3307. bool is_node = false;
  3308. if (a->grad) {
  3309. GGML_ASSERT(false); // TODO: implement backward
  3310. is_node = true;
  3311. }
  3312. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3313. int ne[GGML_MAX_DIMS];
  3314. int nb[GGML_MAX_DIMS];
  3315. ne[axis0] = a->ne[0];
  3316. ne[axis1] = a->ne[1];
  3317. ne[axis2] = a->ne[2];
  3318. ne[axis3] = a->ne[3];
  3319. nb[axis0] = a->nb[0];
  3320. nb[axis1] = a->nb[1];
  3321. nb[axis2] = a->nb[2];
  3322. nb[axis3] = a->nb[3];
  3323. result->ne[0] = ne[0];
  3324. result->ne[1] = ne[1];
  3325. result->ne[2] = ne[2];
  3326. result->ne[3] = ne[3];
  3327. result->nb[0] = nb[0];
  3328. result->nb[1] = nb[1];
  3329. result->nb[2] = nb[2];
  3330. result->nb[3] = nb[3];
  3331. result->op = GGML_OP_PERMUTE;
  3332. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3333. result->src0 = a;
  3334. result->src1 = NULL; // TODO: maybe store the permutation here?
  3335. return result;
  3336. }
  3337. // ggml_transpose
  3338. struct ggml_tensor * ggml_transpose(
  3339. struct ggml_context * ctx,
  3340. struct ggml_tensor * a) {
  3341. bool is_node = false;
  3342. if (a->grad) {
  3343. GGML_ASSERT(false); // TODO: implement backward
  3344. is_node = true;
  3345. }
  3346. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3347. result->ne[0] = a->ne[1];
  3348. result->ne[1] = a->ne[0];
  3349. result->nb[0] = a->nb[1];
  3350. result->nb[1] = a->nb[0];
  3351. result->op = GGML_OP_TRANSPOSE;
  3352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3353. result->src0 = a;
  3354. result->src1 = NULL;
  3355. return result;
  3356. }
  3357. // ggml_get_rows
  3358. struct ggml_tensor * ggml_get_rows(
  3359. struct ggml_context * ctx,
  3360. struct ggml_tensor * a,
  3361. struct ggml_tensor * b) {
  3362. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3363. bool is_node = false;
  3364. if (a->grad || b->grad) {
  3365. GGML_ASSERT(false); // TODO: implement backward
  3366. is_node = true;
  3367. }
  3368. // TODO: implement non F32 return
  3369. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3370. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3371. result->op = GGML_OP_GET_ROWS;
  3372. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3373. result->src0 = a;
  3374. result->src1 = b;
  3375. return result;
  3376. }
  3377. // ggml_diag_mask_inf
  3378. struct ggml_tensor * ggml_diag_mask_inf(
  3379. struct ggml_context * ctx,
  3380. struct ggml_tensor * a,
  3381. int n_past) {
  3382. bool is_node = false;
  3383. if (a->grad) {
  3384. GGML_ASSERT(false); // TODO: implement backward
  3385. is_node = true;
  3386. }
  3387. // TODO: when implement backward, fix this:
  3388. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3389. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3390. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3391. result->op = GGML_OP_DIAG_MASK_INF;
  3392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3393. result->src0 = a;
  3394. result->src1 = b;
  3395. return result;
  3396. }
  3397. // ggml_soft_max
  3398. struct ggml_tensor * ggml_soft_max(
  3399. struct ggml_context * ctx,
  3400. struct ggml_tensor * a) {
  3401. bool is_node = false;
  3402. if (a->grad) {
  3403. GGML_ASSERT(false); // TODO: implement backward
  3404. is_node = true;
  3405. }
  3406. // TODO: when implement backward, fix this:
  3407. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3408. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3409. result->op = GGML_OP_SOFT_MAX;
  3410. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3411. result->src0 = a;
  3412. result->src1 = NULL;
  3413. return result;
  3414. }
  3415. // ggml_rope
  3416. struct ggml_tensor * ggml_rope(
  3417. struct ggml_context * ctx,
  3418. struct ggml_tensor * a,
  3419. int n_past,
  3420. int n_dims,
  3421. int mode) {
  3422. GGML_ASSERT(n_past >= 0);
  3423. bool is_node = false;
  3424. if (a->grad) {
  3425. GGML_ASSERT(false); // TODO: implement backward
  3426. is_node = true;
  3427. }
  3428. // TODO: when implement backward, fix this:
  3429. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3430. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3431. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3432. ((int32_t *) b->data)[0] = n_past;
  3433. ((int32_t *) b->data)[1] = n_dims;
  3434. ((int32_t *) b->data)[2] = mode;
  3435. result->op = GGML_OP_ROPE;
  3436. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3437. result->src0 = a;
  3438. result->src1 = b;
  3439. return result;
  3440. }
  3441. // ggml_conv_1d_1s
  3442. struct ggml_tensor * ggml_conv_1d_1s(
  3443. struct ggml_context * ctx,
  3444. struct ggml_tensor * a,
  3445. struct ggml_tensor * b) {
  3446. GGML_ASSERT(ggml_is_matrix(b));
  3447. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3448. GGML_ASSERT(a->ne[3] == 1);
  3449. bool is_node = false;
  3450. if (a->grad || b->grad) {
  3451. GGML_ASSERT(false); // TODO: implement backward
  3452. is_node = true;
  3453. }
  3454. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3455. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3456. result->op = GGML_OP_CONV_1D_1S;
  3457. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3458. result->src0 = a;
  3459. result->src1 = b;
  3460. return result;
  3461. }
  3462. // ggml_conv_1d_2s
  3463. struct ggml_tensor * ggml_conv_1d_2s(
  3464. struct ggml_context * ctx,
  3465. struct ggml_tensor * a,
  3466. struct ggml_tensor * b) {
  3467. GGML_ASSERT(ggml_is_matrix(b));
  3468. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3469. GGML_ASSERT(a->ne[3] == 1);
  3470. bool is_node = false;
  3471. if (a->grad || b->grad) {
  3472. GGML_ASSERT(false); // TODO: implement backward
  3473. is_node = true;
  3474. }
  3475. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3476. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3477. result->op = GGML_OP_CONV_1D_2S;
  3478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3479. result->src0 = a;
  3480. result->src1 = b;
  3481. return result;
  3482. }
  3483. // ggml_flash_attn
  3484. struct ggml_tensor * ggml_flash_attn(
  3485. struct ggml_context * ctx,
  3486. struct ggml_tensor * q,
  3487. struct ggml_tensor * k,
  3488. struct ggml_tensor * v,
  3489. bool masked) {
  3490. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3491. // TODO: check if vT can be multiplied by (k*qT)
  3492. bool is_node = false;
  3493. if (q->grad || k->grad || v->grad) {
  3494. GGML_ASSERT(false); // TODO: implement backward
  3495. is_node = true;
  3496. }
  3497. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3498. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3499. result->op = GGML_OP_FLASH_ATTN;
  3500. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3501. result->src0 = q;
  3502. result->src1 = k;
  3503. result->opt[0] = v;
  3504. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3505. return result;
  3506. }
  3507. // ggml_flash_ff
  3508. struct ggml_tensor * ggml_flash_ff(
  3509. struct ggml_context * ctx,
  3510. struct ggml_tensor * a,
  3511. struct ggml_tensor * b0,
  3512. struct ggml_tensor * b1,
  3513. struct ggml_tensor * c0,
  3514. struct ggml_tensor * c1) {
  3515. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3516. // TODO: more checks
  3517. bool is_node = false;
  3518. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3519. GGML_ASSERT(false); // TODO: implement backward
  3520. is_node = true;
  3521. }
  3522. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3523. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3524. result->op = GGML_OP_FLASH_FF;
  3525. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3526. result->src0 = a;
  3527. result->src1 = b0;
  3528. result->opt[0] = b1;
  3529. result->opt[1] = c0;
  3530. result->opt[2] = c1;
  3531. return result;
  3532. }
  3533. ////////////////////////////////////////////////////////////////////////////////
  3534. void ggml_set_param(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * tensor) {
  3537. tensor->is_param = true;
  3538. GGML_ASSERT(tensor->grad == NULL);
  3539. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3540. }
  3541. // ggml_compute_forward_dup
  3542. static void ggml_compute_forward_dup_f16(
  3543. const struct ggml_compute_params * params,
  3544. const struct ggml_tensor * src0,
  3545. struct ggml_tensor * dst) {
  3546. GGML_ASSERT(params->ith == 0);
  3547. GGML_ASSERT(ggml_is_contiguous(dst));
  3548. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3549. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3550. return;
  3551. }
  3552. const int ne00 = src0->ne[0];
  3553. const int ne01 = src0->ne[1];
  3554. const int ne02 = src0->ne[2];
  3555. const int ne03 = src0->ne[3];
  3556. const size_t nb00 = src0->nb[0];
  3557. const size_t nb01 = src0->nb[1];
  3558. const size_t nb02 = src0->nb[2];
  3559. const size_t nb03 = src0->nb[3];
  3560. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3561. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3562. return;
  3563. }
  3564. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3565. if (dst->type == GGML_TYPE_F16) {
  3566. size_t id = 0;
  3567. const size_t rs = ne00*nb00;
  3568. for (int i03 = 0; i03 < ne03; i03++) {
  3569. for (int i02 = 0; i02 < ne02; i02++) {
  3570. for (int i01 = 0; i01 < ne01; i01++) {
  3571. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3572. char * dst_ptr = (char *) dst->data + id*rs;
  3573. memcpy(dst_ptr, src0_ptr, rs);
  3574. id++;
  3575. }
  3576. }
  3577. }
  3578. } else if (dst->type == GGML_TYPE_F32) {
  3579. size_t id = 0;
  3580. float * dst_ptr = (float *) dst->data;
  3581. for (int i03 = 0; i03 < ne03; i03++) {
  3582. for (int i02 = 0; i02 < ne02; i02++) {
  3583. for (int i01 = 0; i01 < ne01; i01++) {
  3584. for (int i00 = 0; i00 < ne00; i00++) {
  3585. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3586. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3587. id++;
  3588. }
  3589. }
  3590. }
  3591. }
  3592. } else {
  3593. GGML_ASSERT(false); // TODO: implement
  3594. }
  3595. } else {
  3596. //printf("%s: this is not optimal - fix me\n", __func__);
  3597. if (dst->type == GGML_TYPE_F32) {
  3598. size_t id = 0;
  3599. float * dst_ptr = (float *) dst->data;
  3600. for (int i03 = 0; i03 < ne03; i03++) {
  3601. for (int i02 = 0; i02 < ne02; i02++) {
  3602. for (int i01 = 0; i01 < ne01; i01++) {
  3603. for (int i00 = 0; i00 < ne00; i00++) {
  3604. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3605. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3606. id++;
  3607. }
  3608. }
  3609. }
  3610. }
  3611. } else if (dst->type == GGML_TYPE_F16) {
  3612. size_t id = 0;
  3613. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3614. for (int i03 = 0; i03 < ne03; i03++) {
  3615. for (int i02 = 0; i02 < ne02; i02++) {
  3616. for (int i01 = 0; i01 < ne01; i01++) {
  3617. for (int i00 = 0; i00 < ne00; i00++) {
  3618. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3619. dst_ptr[id] = *src0_ptr;
  3620. id++;
  3621. }
  3622. }
  3623. }
  3624. }
  3625. } else {
  3626. GGML_ASSERT(false); // TODO: implement
  3627. }
  3628. }
  3629. }
  3630. static void ggml_compute_forward_dup_f32(
  3631. const struct ggml_compute_params * params,
  3632. const struct ggml_tensor * src0,
  3633. struct ggml_tensor * dst) {
  3634. GGML_ASSERT(params->ith == 0);
  3635. GGML_ASSERT(ggml_is_contiguous(dst));
  3636. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3638. return;
  3639. }
  3640. const int ne00 = src0->ne[0];
  3641. const int ne01 = src0->ne[1];
  3642. const int ne02 = src0->ne[2];
  3643. const int ne03 = src0->ne[3];
  3644. const size_t nb00 = src0->nb[0];
  3645. const size_t nb01 = src0->nb[1];
  3646. const size_t nb02 = src0->nb[2];
  3647. const size_t nb03 = src0->nb[3];
  3648. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3649. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3650. return;
  3651. }
  3652. if (src0->nb[0] == sizeof(float)) {
  3653. if (dst->type == GGML_TYPE_F32) {
  3654. size_t id = 0;
  3655. const size_t rs = ne00*nb00;
  3656. for (int i03 = 0; i03 < ne03; i03++) {
  3657. for (int i02 = 0; i02 < ne02; i02++) {
  3658. for (int i01 = 0; i01 < ne01; i01++) {
  3659. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3660. char * dst_ptr = (char *) dst->data + id*rs;
  3661. memcpy(dst_ptr, src0_ptr, rs);
  3662. id++;
  3663. }
  3664. }
  3665. }
  3666. } else if (dst->type == GGML_TYPE_F16) {
  3667. size_t id = 0;
  3668. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3669. for (int i03 = 0; i03 < ne03; i03++) {
  3670. for (int i02 = 0; i02 < ne02; i02++) {
  3671. for (int i01 = 0; i01 < ne01; i01++) {
  3672. for (int i00 = 0; i00 < ne00; i00++) {
  3673. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3674. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3675. id++;
  3676. }
  3677. }
  3678. }
  3679. }
  3680. } else {
  3681. GGML_ASSERT(false); // TODO: implement
  3682. }
  3683. } else {
  3684. //printf("%s: this is not optimal - fix me\n", __func__);
  3685. if (dst->type == GGML_TYPE_F32) {
  3686. size_t id = 0;
  3687. float * dst_ptr = (float *) dst->data;
  3688. for (int i03 = 0; i03 < ne03; i03++) {
  3689. for (int i02 = 0; i02 < ne02; i02++) {
  3690. for (int i01 = 0; i01 < ne01; i01++) {
  3691. for (int i00 = 0; i00 < ne00; i00++) {
  3692. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3693. dst_ptr[id] = *src0_ptr;
  3694. id++;
  3695. }
  3696. }
  3697. }
  3698. }
  3699. } else if (dst->type == GGML_TYPE_F16) {
  3700. size_t id = 0;
  3701. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3702. for (int i03 = 0; i03 < ne03; i03++) {
  3703. for (int i02 = 0; i02 < ne02; i02++) {
  3704. for (int i01 = 0; i01 < ne01; i01++) {
  3705. for (int i00 = 0; i00 < ne00; i00++) {
  3706. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3707. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3708. id++;
  3709. }
  3710. }
  3711. }
  3712. }
  3713. } else {
  3714. GGML_ASSERT(false); // TODO: implement
  3715. }
  3716. }
  3717. }
  3718. static void ggml_compute_forward_dup(
  3719. const struct ggml_compute_params * params,
  3720. const struct ggml_tensor * src0,
  3721. struct ggml_tensor * dst) {
  3722. switch (src0->type) {
  3723. case GGML_TYPE_F16:
  3724. {
  3725. ggml_compute_forward_dup_f16(params, src0, dst);
  3726. } break;
  3727. case GGML_TYPE_F32:
  3728. {
  3729. ggml_compute_forward_dup_f32(params, src0, dst);
  3730. } break;
  3731. case GGML_TYPE_Q4_0:
  3732. case GGML_TYPE_Q4_1:
  3733. case GGML_TYPE_I8:
  3734. case GGML_TYPE_I16:
  3735. case GGML_TYPE_I32:
  3736. case GGML_TYPE_COUNT:
  3737. {
  3738. GGML_ASSERT(false);
  3739. } break;
  3740. }
  3741. }
  3742. // ggml_compute_forward_add
  3743. static void ggml_compute_forward_add_f32(
  3744. const struct ggml_compute_params * params,
  3745. const struct ggml_tensor * src0,
  3746. const struct ggml_tensor * src1,
  3747. struct ggml_tensor * dst) {
  3748. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3749. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3750. return;
  3751. }
  3752. const int ith = params->ith;
  3753. const int nth = params->nth;
  3754. const int n = ggml_nrows(src0);
  3755. const int nc = src0->ne[0];
  3756. const size_t nb00 = src0->nb[0];
  3757. const size_t nb01 = src0->nb[1];
  3758. const size_t nb10 = src1->nb[0];
  3759. const size_t nb11 = src1->nb[1];
  3760. const size_t nb0 = dst->nb[0];
  3761. const size_t nb1 = dst->nb[1];
  3762. GGML_ASSERT( nb0 == sizeof(float));
  3763. GGML_ASSERT(nb00 == sizeof(float));
  3764. if (nb10 == sizeof(float)) {
  3765. const int j0 = (n/nth)*ith;
  3766. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3767. for (int j = j0; j < j1; j++) {
  3768. ggml_vec_add_f32(nc,
  3769. (float *) ((char *) dst->data + j*nb1),
  3770. (float *) ((char *) src0->data + j*nb01),
  3771. (float *) ((char *) src1->data + j*nb11));
  3772. }
  3773. } else {
  3774. // src1 is not contiguous
  3775. for (int j = ith; j < n; j += nth) {
  3776. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3777. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3778. for (int i = 0; i < nc; i++) {
  3779. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3780. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3781. }
  3782. }
  3783. }
  3784. }
  3785. static void ggml_compute_forward_add(
  3786. const struct ggml_compute_params * params,
  3787. const struct ggml_tensor * src0,
  3788. const struct ggml_tensor * src1,
  3789. struct ggml_tensor * dst) {
  3790. switch (src0->type) {
  3791. case GGML_TYPE_F32:
  3792. {
  3793. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3794. } break;
  3795. case GGML_TYPE_Q4_0:
  3796. case GGML_TYPE_Q4_1:
  3797. case GGML_TYPE_I8:
  3798. case GGML_TYPE_I16:
  3799. case GGML_TYPE_I32:
  3800. case GGML_TYPE_F16:
  3801. case GGML_TYPE_COUNT:
  3802. {
  3803. GGML_ASSERT(false);
  3804. } break;
  3805. }
  3806. }
  3807. // ggml_compute_forward_sub
  3808. static void ggml_compute_forward_sub_f32(
  3809. const struct ggml_compute_params * params,
  3810. const struct ggml_tensor * src0,
  3811. const struct ggml_tensor * src1,
  3812. struct ggml_tensor * dst) {
  3813. assert(params->ith == 0);
  3814. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3815. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3816. return;
  3817. }
  3818. const int n = ggml_nrows(src0);
  3819. const int nc = src0->ne[0];
  3820. assert( dst->nb[0] == sizeof(float));
  3821. assert(src0->nb[0] == sizeof(float));
  3822. assert(src1->nb[0] == sizeof(float));
  3823. for (int i = 0; i < n; i++) {
  3824. ggml_vec_sub_f32(nc,
  3825. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3826. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3827. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3828. }
  3829. }
  3830. static void ggml_compute_forward_sub(
  3831. const struct ggml_compute_params * params,
  3832. const struct ggml_tensor * src0,
  3833. const struct ggml_tensor * src1,
  3834. struct ggml_tensor * dst) {
  3835. switch (src0->type) {
  3836. case GGML_TYPE_F32:
  3837. {
  3838. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3839. } break;
  3840. case GGML_TYPE_Q4_0:
  3841. case GGML_TYPE_Q4_1:
  3842. case GGML_TYPE_I8:
  3843. case GGML_TYPE_I16:
  3844. case GGML_TYPE_I32:
  3845. case GGML_TYPE_F16:
  3846. case GGML_TYPE_COUNT:
  3847. {
  3848. GGML_ASSERT(false);
  3849. } break;
  3850. }
  3851. }
  3852. // ggml_compute_forward_mul
  3853. static void ggml_compute_forward_mul_f32(
  3854. const struct ggml_compute_params * params,
  3855. const struct ggml_tensor * src0,
  3856. const struct ggml_tensor * src1,
  3857. struct ggml_tensor * dst) {
  3858. assert(params->ith == 0);
  3859. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3860. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3861. return;
  3862. }
  3863. const int n = ggml_nrows(src0);
  3864. const int nc = src0->ne[0];
  3865. assert( dst->nb[0] == sizeof(float));
  3866. assert(src0->nb[0] == sizeof(float));
  3867. assert(src1->nb[0] == sizeof(float));
  3868. for (int i = 0; i < n; i++) {
  3869. ggml_vec_mul_f32(nc,
  3870. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3871. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3872. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3873. }
  3874. }
  3875. static void ggml_compute_forward_mul(
  3876. const struct ggml_compute_params * params,
  3877. const struct ggml_tensor * src0,
  3878. const struct ggml_tensor * src1,
  3879. struct ggml_tensor * dst) {
  3880. switch (src0->type) {
  3881. case GGML_TYPE_F32:
  3882. {
  3883. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3884. } break;
  3885. case GGML_TYPE_Q4_0:
  3886. case GGML_TYPE_Q4_1:
  3887. case GGML_TYPE_I8:
  3888. case GGML_TYPE_I16:
  3889. case GGML_TYPE_I32:
  3890. case GGML_TYPE_F16:
  3891. case GGML_TYPE_COUNT:
  3892. {
  3893. GGML_ASSERT(false);
  3894. } break;
  3895. }
  3896. }
  3897. // ggml_compute_forward_div
  3898. static void ggml_compute_forward_div_f32(
  3899. const struct ggml_compute_params * params,
  3900. const struct ggml_tensor * src0,
  3901. const struct ggml_tensor * src1,
  3902. struct ggml_tensor * dst) {
  3903. assert(params->ith == 0);
  3904. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3905. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3906. return;
  3907. }
  3908. const int n = ggml_nrows(src0);
  3909. const int nc = src0->ne[0];
  3910. assert( dst->nb[0] == sizeof(float));
  3911. assert(src0->nb[0] == sizeof(float));
  3912. assert(src1->nb[0] == sizeof(float));
  3913. for (int i = 0; i < n; i++) {
  3914. ggml_vec_div_f32(nc,
  3915. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3916. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3917. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3918. }
  3919. }
  3920. static void ggml_compute_forward_div(
  3921. const struct ggml_compute_params * params,
  3922. const struct ggml_tensor * src0,
  3923. const struct ggml_tensor * src1,
  3924. struct ggml_tensor * dst) {
  3925. switch (src0->type) {
  3926. case GGML_TYPE_F32:
  3927. {
  3928. ggml_compute_forward_div_f32(params, src0, src1, dst);
  3929. } break;
  3930. case GGML_TYPE_Q4_0:
  3931. case GGML_TYPE_Q4_1:
  3932. case GGML_TYPE_I8:
  3933. case GGML_TYPE_I16:
  3934. case GGML_TYPE_I32:
  3935. case GGML_TYPE_F16:
  3936. case GGML_TYPE_COUNT:
  3937. {
  3938. GGML_ASSERT(false);
  3939. } break;
  3940. }
  3941. }
  3942. // ggml_compute_forward_sqr
  3943. static void ggml_compute_forward_sqr_f32(
  3944. const struct ggml_compute_params * params,
  3945. const struct ggml_tensor * src0,
  3946. struct ggml_tensor * dst) {
  3947. assert(params->ith == 0);
  3948. assert(ggml_are_same_shape(src0, dst));
  3949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3950. return;
  3951. }
  3952. const int n = ggml_nrows(src0);
  3953. const int nc = src0->ne[0];
  3954. assert( dst->nb[0] == sizeof(float));
  3955. assert(src0->nb[0] == sizeof(float));
  3956. for (int i = 0; i < n; i++) {
  3957. ggml_vec_sqr_f32(nc,
  3958. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3959. (float *) ((char *) src0->data + i*(src0->nb[1])));
  3960. }
  3961. }
  3962. static void ggml_compute_forward_sqr(
  3963. const struct ggml_compute_params * params,
  3964. const struct ggml_tensor * src0,
  3965. struct ggml_tensor * dst) {
  3966. switch (src0->type) {
  3967. case GGML_TYPE_F32:
  3968. {
  3969. ggml_compute_forward_sqr_f32(params, src0, dst);
  3970. } break;
  3971. case GGML_TYPE_Q4_0:
  3972. case GGML_TYPE_Q4_1:
  3973. case GGML_TYPE_I8:
  3974. case GGML_TYPE_I16:
  3975. case GGML_TYPE_I32:
  3976. case GGML_TYPE_F16:
  3977. case GGML_TYPE_COUNT:
  3978. {
  3979. GGML_ASSERT(false);
  3980. } break;
  3981. }
  3982. }
  3983. // ggml_compute_forward_sqrt
  3984. static void ggml_compute_forward_sqrt_f32(
  3985. const struct ggml_compute_params * params,
  3986. const struct ggml_tensor * src0,
  3987. struct ggml_tensor * dst) {
  3988. assert(params->ith == 0);
  3989. assert(ggml_are_same_shape(src0, dst));
  3990. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3991. return;
  3992. }
  3993. const int n = ggml_nrows(src0);
  3994. const int nc = src0->ne[0];
  3995. assert( dst->nb[0] == sizeof(float));
  3996. assert(src0->nb[0] == sizeof(float));
  3997. for (int i = 0; i < n; i++) {
  3998. ggml_vec_sqrt_f32(nc,
  3999. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4000. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4001. }
  4002. }
  4003. static void ggml_compute_forward_sqrt(
  4004. const struct ggml_compute_params * params,
  4005. const struct ggml_tensor * src0,
  4006. struct ggml_tensor * dst) {
  4007. switch (src0->type) {
  4008. case GGML_TYPE_F32:
  4009. {
  4010. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4011. } break;
  4012. case GGML_TYPE_Q4_0:
  4013. case GGML_TYPE_Q4_1:
  4014. case GGML_TYPE_I8:
  4015. case GGML_TYPE_I16:
  4016. case GGML_TYPE_I32:
  4017. case GGML_TYPE_F16:
  4018. case GGML_TYPE_COUNT:
  4019. {
  4020. GGML_ASSERT(false);
  4021. } break;
  4022. }
  4023. }
  4024. // ggml_compute_forward_sum
  4025. static void ggml_compute_forward_sum_f32(
  4026. const struct ggml_compute_params * params,
  4027. const struct ggml_tensor * src0,
  4028. struct ggml_tensor * dst) {
  4029. assert(params->ith == 0);
  4030. assert(ggml_is_scalar(dst));
  4031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4032. return;
  4033. }
  4034. assert(ggml_is_scalar(dst));
  4035. assert(src0->nb[0] == sizeof(float));
  4036. const int ne00 = src0->ne[0];
  4037. const int ne01 = src0->ne[1];
  4038. const int ne02 = src0->ne[2];
  4039. const int ne03 = src0->ne[3];
  4040. const size_t nb01 = src0->nb[1];
  4041. const size_t nb02 = src0->nb[2];
  4042. const size_t nb03 = src0->nb[3];
  4043. for (int i03 = 0; i03 < ne03; i03++) {
  4044. for (int i02 = 0; i02 < ne02; i02++) {
  4045. for (int i01 = 0; i01 < ne01; i01++) {
  4046. ggml_vec_sum_f32(ne00,
  4047. (float *) (dst->data),
  4048. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4049. }
  4050. }
  4051. }
  4052. }
  4053. static void ggml_compute_forward_sum(
  4054. const struct ggml_compute_params * params,
  4055. const struct ggml_tensor * src0,
  4056. struct ggml_tensor * dst) {
  4057. switch (src0->type) {
  4058. case GGML_TYPE_F32:
  4059. {
  4060. ggml_compute_forward_sum_f32(params, src0, dst);
  4061. } break;
  4062. case GGML_TYPE_Q4_0:
  4063. case GGML_TYPE_Q4_1:
  4064. case GGML_TYPE_I8:
  4065. case GGML_TYPE_I16:
  4066. case GGML_TYPE_I32:
  4067. case GGML_TYPE_F16:
  4068. case GGML_TYPE_COUNT:
  4069. {
  4070. GGML_ASSERT(false);
  4071. } break;
  4072. }
  4073. }
  4074. // ggml_compute_forward_mean
  4075. static void ggml_compute_forward_mean_f32(
  4076. const struct ggml_compute_params * params,
  4077. const struct ggml_tensor * src0,
  4078. struct ggml_tensor * dst) {
  4079. assert(params->ith == 0);
  4080. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4081. return;
  4082. }
  4083. assert(src0->nb[0] == sizeof(float));
  4084. const int ne00 = src0->ne[0];
  4085. const int ne01 = src0->ne[1];
  4086. const int ne02 = src0->ne[2];
  4087. const int ne03 = src0->ne[3];
  4088. const size_t nb01 = src0->nb[1];
  4089. const size_t nb02 = src0->nb[2];
  4090. const size_t nb03 = src0->nb[3];
  4091. const int ne0 = dst->ne[0];
  4092. const int ne1 = dst->ne[1];
  4093. const int ne2 = dst->ne[2];
  4094. const int ne3 = dst->ne[3];
  4095. assert(ne0 == 1);
  4096. assert(ne1 == ne01);
  4097. assert(ne2 == ne02);
  4098. assert(ne3 == ne03);
  4099. UNUSED(ne0);
  4100. UNUSED(ne1);
  4101. UNUSED(ne2);
  4102. UNUSED(ne3);
  4103. const size_t nb1 = dst->nb[1];
  4104. const size_t nb2 = dst->nb[2];
  4105. const size_t nb3 = dst->nb[3];
  4106. for (int i03 = 0; i03 < ne03; i03++) {
  4107. for (int i02 = 0; i02 < ne02; i02++) {
  4108. for (int i01 = 0; i01 < ne01; i01++) {
  4109. ggml_vec_sum_f32(ne00,
  4110. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4111. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4112. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4113. }
  4114. }
  4115. }
  4116. }
  4117. static void ggml_compute_forward_mean(
  4118. const struct ggml_compute_params * params,
  4119. const struct ggml_tensor * src0,
  4120. struct ggml_tensor * dst) {
  4121. switch (src0->type) {
  4122. case GGML_TYPE_F32:
  4123. {
  4124. ggml_compute_forward_mean_f32(params, src0, dst);
  4125. } break;
  4126. case GGML_TYPE_Q4_0:
  4127. case GGML_TYPE_Q4_1:
  4128. case GGML_TYPE_I8:
  4129. case GGML_TYPE_I16:
  4130. case GGML_TYPE_I32:
  4131. case GGML_TYPE_F16:
  4132. case GGML_TYPE_COUNT:
  4133. {
  4134. GGML_ASSERT(false);
  4135. } break;
  4136. }
  4137. }
  4138. // ggml_compute_forward_repeat
  4139. static void ggml_compute_forward_repeat_f32(
  4140. const struct ggml_compute_params * params,
  4141. const struct ggml_tensor * src0,
  4142. struct ggml_tensor * dst) {
  4143. assert(params->ith == 0);
  4144. assert(ggml_can_repeat(src0, dst));
  4145. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4146. return;
  4147. }
  4148. // TODO: implement support for rank > 2 tensors
  4149. assert(src0->ne[2] == 1);
  4150. assert(src0->ne[3] == 1);
  4151. assert( dst->ne[2] == 1);
  4152. assert( dst->ne[3] == 1);
  4153. const int nc = dst->ne[0];
  4154. const int nr = dst->ne[1];
  4155. const int nc0 = src0->ne[0];
  4156. const int nr0 = src0->ne[1];
  4157. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4158. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4159. // TODO: support for transposed / permuted tensors
  4160. assert( dst->nb[0] == sizeof(float));
  4161. assert(src0->nb[0] == sizeof(float));
  4162. // TODO: maybe this is not optimal?
  4163. for (int i = 0; i < nrr; i++) {
  4164. for (int j = 0; j < ncr; j++) {
  4165. for (int k = 0; k < nr0; k++) {
  4166. ggml_vec_cpy_f32(nc0,
  4167. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4168. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4169. }
  4170. }
  4171. }
  4172. }
  4173. static void ggml_compute_forward_repeat(
  4174. const struct ggml_compute_params * params,
  4175. const struct ggml_tensor * src0,
  4176. struct ggml_tensor * dst) {
  4177. switch (src0->type) {
  4178. case GGML_TYPE_F32:
  4179. {
  4180. ggml_compute_forward_repeat_f32(params, src0, dst);
  4181. } break;
  4182. case GGML_TYPE_Q4_0:
  4183. case GGML_TYPE_Q4_1:
  4184. case GGML_TYPE_I8:
  4185. case GGML_TYPE_I16:
  4186. case GGML_TYPE_I32:
  4187. case GGML_TYPE_F16:
  4188. case GGML_TYPE_COUNT:
  4189. {
  4190. GGML_ASSERT(false);
  4191. } break;
  4192. }
  4193. }
  4194. // ggml_compute_forward_abs
  4195. static void ggml_compute_forward_abs_f32(
  4196. const struct ggml_compute_params * params,
  4197. const struct ggml_tensor * src0,
  4198. struct ggml_tensor * dst) {
  4199. assert(params->ith == 0);
  4200. assert(ggml_are_same_shape(src0, dst));
  4201. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4202. return;
  4203. }
  4204. const int n = ggml_nrows(src0);
  4205. const int nc = src0->ne[0];
  4206. assert(dst->nb[0] == sizeof(float));
  4207. assert(src0->nb[0] == sizeof(float));
  4208. for (int i = 0; i < n; i++) {
  4209. ggml_vec_abs_f32(nc,
  4210. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4211. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4212. }
  4213. }
  4214. static void ggml_compute_forward_abs(
  4215. const struct ggml_compute_params * params,
  4216. const struct ggml_tensor * src0,
  4217. struct ggml_tensor * dst) {
  4218. switch (src0->type) {
  4219. case GGML_TYPE_F32:
  4220. {
  4221. ggml_compute_forward_abs_f32(params, src0, dst);
  4222. } break;
  4223. case GGML_TYPE_Q4_0:
  4224. case GGML_TYPE_Q4_1:
  4225. case GGML_TYPE_I8:
  4226. case GGML_TYPE_I16:
  4227. case GGML_TYPE_I32:
  4228. case GGML_TYPE_F16:
  4229. case GGML_TYPE_COUNT:
  4230. {
  4231. GGML_ASSERT(false);
  4232. } break;
  4233. }
  4234. }
  4235. // ggml_compute_forward_sgn
  4236. static void ggml_compute_forward_sgn_f32(
  4237. const struct ggml_compute_params * params,
  4238. const struct ggml_tensor * src0,
  4239. struct ggml_tensor * dst) {
  4240. assert(params->ith == 0);
  4241. assert(ggml_are_same_shape(src0, dst));
  4242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4243. return;
  4244. }
  4245. const int n = ggml_nrows(src0);
  4246. const int nc = src0->ne[0];
  4247. assert(dst->nb[0] == sizeof(float));
  4248. assert(src0->nb[0] == sizeof(float));
  4249. for (int i = 0; i < n; i++) {
  4250. ggml_vec_sgn_f32(nc,
  4251. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4252. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4253. }
  4254. }
  4255. static void ggml_compute_forward_sgn(
  4256. const struct ggml_compute_params * params,
  4257. const struct ggml_tensor * src0,
  4258. struct ggml_tensor * dst) {
  4259. switch (src0->type) {
  4260. case GGML_TYPE_F32:
  4261. {
  4262. ggml_compute_forward_sgn_f32(params, src0, dst);
  4263. } break;
  4264. case GGML_TYPE_Q4_0:
  4265. case GGML_TYPE_Q4_1:
  4266. case GGML_TYPE_I8:
  4267. case GGML_TYPE_I16:
  4268. case GGML_TYPE_I32:
  4269. case GGML_TYPE_F16:
  4270. case GGML_TYPE_COUNT:
  4271. {
  4272. GGML_ASSERT(false);
  4273. } break;
  4274. }
  4275. }
  4276. // ggml_compute_forward_neg
  4277. static void ggml_compute_forward_neg_f32(
  4278. const struct ggml_compute_params * params,
  4279. const struct ggml_tensor * src0,
  4280. struct ggml_tensor * dst) {
  4281. assert(params->ith == 0);
  4282. assert(ggml_are_same_shape(src0, dst));
  4283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4284. return;
  4285. }
  4286. const int n = ggml_nrows(src0);
  4287. const int nc = src0->ne[0];
  4288. assert(dst->nb[0] == sizeof(float));
  4289. assert(src0->nb[0] == sizeof(float));
  4290. for (int i = 0; i < n; i++) {
  4291. ggml_vec_neg_f32(nc,
  4292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4294. }
  4295. }
  4296. static void ggml_compute_forward_neg(
  4297. const struct ggml_compute_params * params,
  4298. const struct ggml_tensor * src0,
  4299. struct ggml_tensor * dst) {
  4300. switch (src0->type) {
  4301. case GGML_TYPE_F32:
  4302. {
  4303. ggml_compute_forward_neg_f32(params, src0, dst);
  4304. } break;
  4305. case GGML_TYPE_Q4_0:
  4306. case GGML_TYPE_Q4_1:
  4307. case GGML_TYPE_I8:
  4308. case GGML_TYPE_I16:
  4309. case GGML_TYPE_I32:
  4310. case GGML_TYPE_F16:
  4311. case GGML_TYPE_COUNT:
  4312. {
  4313. GGML_ASSERT(false);
  4314. } break;
  4315. }
  4316. }
  4317. // ggml_compute_forward_step
  4318. static void ggml_compute_forward_step_f32(
  4319. const struct ggml_compute_params * params,
  4320. const struct ggml_tensor * src0,
  4321. struct ggml_tensor * dst) {
  4322. assert(params->ith == 0);
  4323. assert(ggml_are_same_shape(src0, dst));
  4324. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4325. return;
  4326. }
  4327. const int n = ggml_nrows(src0);
  4328. const int nc = src0->ne[0];
  4329. assert(dst->nb[0] == sizeof(float));
  4330. assert(src0->nb[0] == sizeof(float));
  4331. for (int i = 0; i < n; i++) {
  4332. ggml_vec_step_f32(nc,
  4333. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4334. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4335. }
  4336. }
  4337. static void ggml_compute_forward_step(
  4338. const struct ggml_compute_params * params,
  4339. const struct ggml_tensor * src0,
  4340. struct ggml_tensor * dst) {
  4341. switch (src0->type) {
  4342. case GGML_TYPE_F32:
  4343. {
  4344. ggml_compute_forward_step_f32(params, src0, dst);
  4345. } break;
  4346. case GGML_TYPE_Q4_0:
  4347. case GGML_TYPE_Q4_1:
  4348. case GGML_TYPE_I8:
  4349. case GGML_TYPE_I16:
  4350. case GGML_TYPE_I32:
  4351. case GGML_TYPE_F16:
  4352. case GGML_TYPE_COUNT:
  4353. {
  4354. GGML_ASSERT(false);
  4355. } break;
  4356. }
  4357. }
  4358. // ggml_compute_forward_relu
  4359. static void ggml_compute_forward_relu_f32(
  4360. const struct ggml_compute_params * params,
  4361. const struct ggml_tensor * src0,
  4362. struct ggml_tensor * dst) {
  4363. assert(params->ith == 0);
  4364. assert(ggml_are_same_shape(src0, dst));
  4365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4366. return;
  4367. }
  4368. const int n = ggml_nrows(src0);
  4369. const int nc = src0->ne[0];
  4370. assert(dst->nb[0] == sizeof(float));
  4371. assert(src0->nb[0] == sizeof(float));
  4372. for (int i = 0; i < n; i++) {
  4373. ggml_vec_relu_f32(nc,
  4374. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4375. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4376. }
  4377. }
  4378. static void ggml_compute_forward_relu(
  4379. const struct ggml_compute_params * params,
  4380. const struct ggml_tensor * src0,
  4381. struct ggml_tensor * dst) {
  4382. switch (src0->type) {
  4383. case GGML_TYPE_F32:
  4384. {
  4385. ggml_compute_forward_relu_f32(params, src0, dst);
  4386. } break;
  4387. case GGML_TYPE_Q4_0:
  4388. case GGML_TYPE_Q4_1:
  4389. case GGML_TYPE_I8:
  4390. case GGML_TYPE_I16:
  4391. case GGML_TYPE_I32:
  4392. case GGML_TYPE_F16:
  4393. case GGML_TYPE_COUNT:
  4394. {
  4395. GGML_ASSERT(false);
  4396. } break;
  4397. }
  4398. }
  4399. // ggml_compute_forward_gelu
  4400. static void ggml_compute_forward_gelu_f32(
  4401. const struct ggml_compute_params * params,
  4402. const struct ggml_tensor * src0,
  4403. struct ggml_tensor * dst) {
  4404. GGML_ASSERT(ggml_is_contiguous(src0));
  4405. GGML_ASSERT(ggml_is_contiguous(dst));
  4406. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4408. return;
  4409. }
  4410. const int ith = params->ith;
  4411. const int nth = params->nth;
  4412. const int nc = src0->ne[0];
  4413. const int nr = ggml_nrows(src0);
  4414. // rows per thread
  4415. const int dr = (nr + nth - 1)/nth;
  4416. // row range for this thread
  4417. const int ir0 = dr*ith;
  4418. const int ir1 = MIN(ir0 + dr, nr);
  4419. for (int i1 = ir0; i1 < ir1; i1++) {
  4420. ggml_vec_gelu_f32(nc,
  4421. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4422. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4423. #ifndef NDEBUG
  4424. for (int k = 0; k < nc; k++) {
  4425. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4426. UNUSED(x);
  4427. assert(!isnan(x));
  4428. assert(!isinf(x));
  4429. }
  4430. #endif
  4431. }
  4432. }
  4433. static void ggml_compute_forward_gelu(
  4434. const struct ggml_compute_params * params,
  4435. const struct ggml_tensor * src0,
  4436. struct ggml_tensor * dst) {
  4437. switch (src0->type) {
  4438. case GGML_TYPE_F32:
  4439. {
  4440. ggml_compute_forward_gelu_f32(params, src0, dst);
  4441. } break;
  4442. case GGML_TYPE_Q4_0:
  4443. case GGML_TYPE_Q4_1:
  4444. case GGML_TYPE_I8:
  4445. case GGML_TYPE_I16:
  4446. case GGML_TYPE_I32:
  4447. case GGML_TYPE_F16:
  4448. case GGML_TYPE_COUNT:
  4449. {
  4450. GGML_ASSERT(false);
  4451. } break;
  4452. }
  4453. //printf("XXXXXXXX gelu\n");
  4454. }
  4455. // ggml_compute_forward_silu
  4456. static void ggml_compute_forward_silu_f32(
  4457. const struct ggml_compute_params * params,
  4458. const struct ggml_tensor * src0,
  4459. struct ggml_tensor * dst) {
  4460. GGML_ASSERT(ggml_is_contiguous(src0));
  4461. GGML_ASSERT(ggml_is_contiguous(dst));
  4462. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4463. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4464. return;
  4465. }
  4466. const int ith = params->ith;
  4467. const int nth = params->nth;
  4468. const int nc = src0->ne[0];
  4469. const int nr = ggml_nrows(src0);
  4470. // rows per thread
  4471. const int dr = (nr + nth - 1)/nth;
  4472. // row range for this thread
  4473. const int ir0 = dr*ith;
  4474. const int ir1 = MIN(ir0 + dr, nr);
  4475. for (int i1 = ir0; i1 < ir1; i1++) {
  4476. ggml_vec_silu_f32(nc,
  4477. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4478. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4479. #ifndef NDEBUG
  4480. for (int k = 0; k < nc; k++) {
  4481. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4482. UNUSED(x);
  4483. assert(!isnan(x));
  4484. assert(!isinf(x));
  4485. }
  4486. #endif
  4487. }
  4488. }
  4489. static void ggml_compute_forward_silu(
  4490. const struct ggml_compute_params * params,
  4491. const struct ggml_tensor * src0,
  4492. struct ggml_tensor * dst) {
  4493. switch (src0->type) {
  4494. case GGML_TYPE_F32:
  4495. {
  4496. ggml_compute_forward_silu_f32(params, src0, dst);
  4497. } break;
  4498. case GGML_TYPE_Q4_0:
  4499. case GGML_TYPE_Q4_1:
  4500. case GGML_TYPE_I8:
  4501. case GGML_TYPE_I16:
  4502. case GGML_TYPE_I32:
  4503. case GGML_TYPE_F16:
  4504. case GGML_TYPE_COUNT:
  4505. {
  4506. GGML_ASSERT(false);
  4507. } break;
  4508. }
  4509. }
  4510. // ggml_compute_forward_norm
  4511. static void ggml_compute_forward_norm_f32(
  4512. const struct ggml_compute_params * params,
  4513. const struct ggml_tensor * src0,
  4514. struct ggml_tensor * dst) {
  4515. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4516. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4517. return;
  4518. }
  4519. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4520. const int ith = params->ith;
  4521. const int nth = params->nth;
  4522. const int ne00 = src0->ne[0];
  4523. const int ne01 = src0->ne[1];
  4524. const int ne02 = src0->ne[2];
  4525. const int ne03 = src0->ne[3];
  4526. const size_t nb01 = src0->nb[1];
  4527. const size_t nb02 = src0->nb[2];
  4528. const size_t nb03 = src0->nb[3];
  4529. const size_t nb1 = dst->nb[1];
  4530. const size_t nb2 = dst->nb[2];
  4531. const size_t nb3 = dst->nb[3];
  4532. const float eps = 1e-5f; // TODO: make this a parameter
  4533. // TODO: optimize
  4534. for (int i03 = 0; i03 < ne03; i03++) {
  4535. for (int i02 = 0; i02 < ne02; i02++) {
  4536. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4537. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4538. ggml_float sum = 0.0;
  4539. for (int i00 = 0; i00 < ne00; i00++) {
  4540. sum += (ggml_float)x[i00];
  4541. }
  4542. float mean = sum/ne00;
  4543. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4544. ggml_float sum2 = 0.0;
  4545. for (int i00 = 0; i00 < ne00; i00++) {
  4546. float v = x[i00] - mean;
  4547. y[i00] = v;
  4548. sum2 += (ggml_float)(v*v);
  4549. }
  4550. float variance = sum2/ne00;
  4551. const float scale = 1.0f/sqrtf(variance + eps);
  4552. ggml_vec_scale_f32(ne00, y, scale);
  4553. }
  4554. }
  4555. }
  4556. }
  4557. static void ggml_compute_forward_norm(
  4558. const struct ggml_compute_params * params,
  4559. const struct ggml_tensor * src0,
  4560. struct ggml_tensor * dst) {
  4561. switch (src0->type) {
  4562. case GGML_TYPE_F32:
  4563. {
  4564. ggml_compute_forward_norm_f32(params, src0, dst);
  4565. } break;
  4566. case GGML_TYPE_Q4_0:
  4567. case GGML_TYPE_Q4_1:
  4568. case GGML_TYPE_I8:
  4569. case GGML_TYPE_I16:
  4570. case GGML_TYPE_I32:
  4571. case GGML_TYPE_F16:
  4572. case GGML_TYPE_COUNT:
  4573. {
  4574. GGML_ASSERT(false);
  4575. } break;
  4576. }
  4577. }
  4578. static void ggml_compute_forward_rms_norm_f32(
  4579. const struct ggml_compute_params * params,
  4580. const struct ggml_tensor * src0,
  4581. struct ggml_tensor * dst) {
  4582. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4583. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4584. return;
  4585. }
  4586. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4587. const int ith = params->ith;
  4588. const int nth = params->nth;
  4589. const int ne00 = src0->ne[0];
  4590. const int ne01 = src0->ne[1];
  4591. const int ne02 = src0->ne[2];
  4592. const int ne03 = src0->ne[3];
  4593. const size_t nb01 = src0->nb[1];
  4594. const size_t nb02 = src0->nb[2];
  4595. const size_t nb03 = src0->nb[3];
  4596. const size_t nb1 = dst->nb[1];
  4597. const size_t nb2 = dst->nb[2];
  4598. const size_t nb3 = dst->nb[3];
  4599. const float eps = 1e-6f; // TODO: make this a parameter
  4600. // TODO: optimize
  4601. for (int i03 = 0; i03 < ne03; i03++) {
  4602. for (int i02 = 0; i02 < ne02; i02++) {
  4603. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4604. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4605. ggml_float sum = 0.0;
  4606. for (int i00 = 0; i00 < ne00; i00++) {
  4607. sum += (ggml_float)(x[i00] * x[i00]);
  4608. }
  4609. float mean = sum/ne00;
  4610. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4611. memcpy(y, x, ne00 * sizeof(float));
  4612. // for (int i00 = 0; i00 < ne00; i00++) {
  4613. // y[i00] = x[i00];
  4614. // }
  4615. const float scale = 1.0f/sqrtf(mean + eps);
  4616. ggml_vec_scale_f32(ne00, y, scale);
  4617. }
  4618. }
  4619. }
  4620. }
  4621. static void ggml_compute_forward_rms_norm(
  4622. const struct ggml_compute_params * params,
  4623. const struct ggml_tensor * src0,
  4624. struct ggml_tensor * dst) {
  4625. switch (src0->type) {
  4626. case GGML_TYPE_F32:
  4627. {
  4628. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4629. } break;
  4630. case GGML_TYPE_Q4_0:
  4631. case GGML_TYPE_Q4_1:
  4632. case GGML_TYPE_I8:
  4633. case GGML_TYPE_I16:
  4634. case GGML_TYPE_I32:
  4635. case GGML_TYPE_F16:
  4636. case GGML_TYPE_COUNT:
  4637. {
  4638. GGML_ASSERT(false);
  4639. } break;
  4640. }
  4641. }
  4642. // ggml_compute_forward_mul_mat
  4643. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4644. // helper function to determine if it is better to use BLAS or not
  4645. // for large matrices, BLAS is faster
  4646. static bool ggml_compute_forward_mul_mat_use_blas(
  4647. const struct ggml_tensor * src0,
  4648. const struct ggml_tensor * src1,
  4649. struct ggml_tensor * dst) {
  4650. //const int ne00 = src0->ne[0];
  4651. //const int ne01 = src0->ne[1];
  4652. const int ne10 = src1->ne[0];
  4653. const int ne0 = dst->ne[0];
  4654. const int ne1 = dst->ne[1];
  4655. // TODO: find the optimal values for these
  4656. if (ggml_is_contiguous(src0) &&
  4657. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4658. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4659. return true;
  4660. }
  4661. return false;
  4662. }
  4663. #endif
  4664. static void ggml_compute_forward_mul_mat_f32(
  4665. const struct ggml_compute_params * params,
  4666. const struct ggml_tensor * src0,
  4667. const struct ggml_tensor * src1,
  4668. struct ggml_tensor * dst) {
  4669. int64_t t0 = ggml_perf_time_us();
  4670. UNUSED(t0);
  4671. const int ne00 = src0->ne[0];
  4672. const int ne01 = src0->ne[1];
  4673. const int ne02 = src0->ne[2];
  4674. const int ne03 = src0->ne[3];
  4675. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4676. const int ne10 = src1->ne[0];
  4677. #endif
  4678. const int ne11 = src1->ne[1];
  4679. #ifndef NDEBUG
  4680. const int ne12 = src1->ne[2];
  4681. const int ne13 = src1->ne[3];
  4682. const int ne0 = dst->ne[0];
  4683. const int ne1 = dst->ne[1];
  4684. const int ne2 = dst->ne[2];
  4685. const int ne3 = dst->ne[3];
  4686. const int nb00 = src0->nb[0];
  4687. #endif
  4688. const int nb01 = src0->nb[1];
  4689. const int nb02 = src0->nb[2];
  4690. const int nb03 = src0->nb[3];
  4691. #ifndef NDEBUG
  4692. const int nb10 = src1->nb[0];
  4693. #endif
  4694. const int nb11 = src1->nb[1];
  4695. const int nb12 = src1->nb[2];
  4696. const int nb13 = src1->nb[3];
  4697. const int nb0 = dst->nb[0];
  4698. const int nb1 = dst->nb[1];
  4699. const int nb2 = dst->nb[2];
  4700. const int nb3 = dst->nb[3];
  4701. const int ith = params->ith;
  4702. const int nth = params->nth;
  4703. assert(ne02 == ne12);
  4704. assert(ne03 == ne13);
  4705. assert(ne2 == ne12);
  4706. assert(ne3 == ne13);
  4707. // we don't support permuted src0 or src1
  4708. assert(nb00 == sizeof(float));
  4709. assert(nb10 == sizeof(float));
  4710. // dst cannot be transposed or permuted
  4711. assert(nb0 == sizeof(float));
  4712. assert(nb0 <= nb1);
  4713. assert(nb1 <= nb2);
  4714. assert(nb2 <= nb3);
  4715. assert(ne0 == ne01);
  4716. assert(ne1 == ne11);
  4717. assert(ne2 == ne02);
  4718. assert(ne3 == ne03);
  4719. // nb01 >= nb00 - src0 is not transposed
  4720. // compute by src0 rows
  4721. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4722. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4723. if (params->ith != 0) {
  4724. return;
  4725. }
  4726. if (params->type == GGML_TASK_INIT) {
  4727. return;
  4728. }
  4729. if (params->type == GGML_TASK_FINALIZE) {
  4730. return;
  4731. }
  4732. for (int i03 = 0; i03 < ne03; i03++) {
  4733. for (int i02 = 0; i02 < ne02; i02++) {
  4734. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4735. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4736. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4737. // zT = y * xT
  4738. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4739. ne11, ne01, ne10,
  4740. 1.0f, y, ne10,
  4741. x, ne10,
  4742. 0.0f, d, ne01);
  4743. }
  4744. }
  4745. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4746. return;
  4747. }
  4748. #endif
  4749. if (params->type == GGML_TASK_INIT) {
  4750. return;
  4751. }
  4752. if (params->type == GGML_TASK_FINALIZE) {
  4753. return;
  4754. }
  4755. // parallelize by src0 rows using ggml_vec_dot_f32
  4756. // total rows in src0
  4757. const int nr = ne01*ne02*ne03;
  4758. // rows per thread
  4759. const int dr = (nr + nth - 1)/nth;
  4760. // row range for this thread
  4761. const int ir0 = dr*ith;
  4762. const int ir1 = MIN(ir0 + dr, nr);
  4763. for (int ir = ir0; ir < ir1; ++ir) {
  4764. // src0 indices
  4765. const int i03 = ir/(ne02*ne01);
  4766. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4767. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4768. for (int ic = 0; ic < ne11; ++ic) {
  4769. // src1 indices
  4770. const int i13 = i03;
  4771. const int i12 = i02;
  4772. const int i11 = ic;
  4773. // dst indices
  4774. const int i0 = i01;
  4775. const int i1 = i11;
  4776. const int i2 = i02;
  4777. const int i3 = i03;
  4778. ggml_vec_dot_f32(ne00,
  4779. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4780. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4781. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4782. }
  4783. }
  4784. //int64_t t1 = ggml_perf_time_us();
  4785. //static int64_t acc = 0;
  4786. //acc += t1 - t0;
  4787. //if (t1 - t0 > 10) {
  4788. // printf("\n");
  4789. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4790. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4791. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4792. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4793. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4794. //}
  4795. }
  4796. static void ggml_compute_forward_mul_mat_f16_f32(
  4797. const struct ggml_compute_params * params,
  4798. const struct ggml_tensor * src0,
  4799. const struct ggml_tensor * src1,
  4800. struct ggml_tensor * dst) {
  4801. int64_t t0 = ggml_perf_time_us();
  4802. UNUSED(t0);
  4803. const int ne00 = src0->ne[0];
  4804. const int ne01 = src0->ne[1];
  4805. const int ne02 = src0->ne[2];
  4806. const int ne03 = src0->ne[3];
  4807. const int ne10 = src1->ne[0];
  4808. const int ne11 = src1->ne[1];
  4809. const int ne12 = src1->ne[2];
  4810. const int ne13 = src1->ne[3];
  4811. const int ne0 = dst->ne[0];
  4812. const int ne1 = dst->ne[1];
  4813. const int ne2 = dst->ne[2];
  4814. const int ne3 = dst->ne[3];
  4815. //const int ne = ne0*ne1*ne2*ne3;
  4816. const int nb00 = src0->nb[0];
  4817. const int nb01 = src0->nb[1];
  4818. const int nb02 = src0->nb[2];
  4819. const int nb03 = src0->nb[3];
  4820. const int nb10 = src1->nb[0];
  4821. const int nb11 = src1->nb[1];
  4822. const int nb12 = src1->nb[2];
  4823. const int nb13 = src1->nb[3];
  4824. const int nb0 = dst->nb[0];
  4825. const int nb1 = dst->nb[1];
  4826. const int nb2 = dst->nb[2];
  4827. const int nb3 = dst->nb[3];
  4828. const int ith = params->ith;
  4829. const int nth = params->nth;
  4830. GGML_ASSERT(ne02 == ne12);
  4831. GGML_ASSERT(ne03 == ne13);
  4832. GGML_ASSERT(ne2 == ne12);
  4833. GGML_ASSERT(ne3 == ne13);
  4834. // TODO: we don't support permuted src0
  4835. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4836. // dst cannot be transposed or permuted
  4837. GGML_ASSERT(nb0 == sizeof(float));
  4838. GGML_ASSERT(nb0 <= nb1);
  4839. GGML_ASSERT(nb1 <= nb2);
  4840. GGML_ASSERT(nb2 <= nb3);
  4841. GGML_ASSERT(ne0 == ne01);
  4842. GGML_ASSERT(ne1 == ne11);
  4843. GGML_ASSERT(ne2 == ne02);
  4844. GGML_ASSERT(ne3 == ne03);
  4845. // nb01 >= nb00 - src0 is not transposed
  4846. // compute by src0 rows
  4847. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4848. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4849. GGML_ASSERT(nb10 == sizeof(float));
  4850. if (params->ith != 0) {
  4851. return;
  4852. }
  4853. if (params->type == GGML_TASK_INIT) {
  4854. return;
  4855. }
  4856. if (params->type == GGML_TASK_FINALIZE) {
  4857. return;
  4858. }
  4859. float * const wdata = params->wdata;
  4860. for (int i03 = 0; i03 < ne03; i03++) {
  4861. for (int i02 = 0; i02 < ne02; i02++) {
  4862. {
  4863. size_t id = 0;
  4864. for (int i01 = 0; i01 < ne01; ++i01) {
  4865. for (int i00 = 0; i00 < ne00; ++i00) {
  4866. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4867. }
  4868. }
  4869. }
  4870. const float * x = wdata;
  4871. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4872. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4873. // zT = y * xT
  4874. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4875. ne11, ne01, ne10,
  4876. 1.0f, y, ne10,
  4877. x, ne10,
  4878. 0.0f, d, ne01);
  4879. }
  4880. }
  4881. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4882. return;
  4883. }
  4884. #endif
  4885. if (params->type == GGML_TASK_INIT) {
  4886. ggml_fp16_t * const wdata = params->wdata;
  4887. size_t id = 0;
  4888. for (int i13 = 0; i13 < ne13; ++i13) {
  4889. for (int i12 = 0; i12 < ne12; ++i12) {
  4890. for (int i11 = 0; i11 < ne11; ++i11) {
  4891. for (int i10 = 0; i10 < ne10; ++i10) {
  4892. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4893. }
  4894. }
  4895. }
  4896. }
  4897. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4898. return;
  4899. }
  4900. if (params->type == GGML_TASK_FINALIZE) {
  4901. return;
  4902. }
  4903. // fp16 -> half the size, so divide by 2
  4904. // TODO: do not support transposed src1
  4905. assert(nb10/2 == sizeof(ggml_fp16_t));
  4906. // parallelize by src0 rows using ggml_vec_dot_f16
  4907. // total rows in src0
  4908. const int nr = ne01*ne02*ne03;
  4909. // rows per thread
  4910. const int dr = (nr + nth - 1)/nth;
  4911. // row range for this thread
  4912. const int ir0 = dr*ith;
  4913. const int ir1 = MIN(ir0 + dr, nr);
  4914. ggml_fp16_t * wdata = params->wdata;
  4915. for (int ir = ir0; ir < ir1; ++ir) {
  4916. // src0 indices
  4917. const int i03 = ir/(ne02*ne01);
  4918. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4919. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4920. const int i13 = i03;
  4921. const int i12 = i02;
  4922. const int i0 = i01;
  4923. const int i2 = i02;
  4924. const int i3 = i03;
  4925. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4926. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4927. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4928. for (int ic = 0; ic < ne11; ++ic) {
  4929. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  4930. }
  4931. }
  4932. //int64_t t1 = ggml_time_us();
  4933. //static int64_t acc = 0;
  4934. //acc += t1 - t0;
  4935. //if (t1 - t0 > 10) {
  4936. // printf("\n");
  4937. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4938. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4939. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4940. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4941. //}
  4942. }
  4943. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  4944. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  4945. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  4946. typedef struct {
  4947. dequantize_row_q_t dequantize_row_q;
  4948. quantize_row_q_t quantize_row_q;
  4949. vec_dot_q_t vec_dot_q;
  4950. } quantize_fns_t;
  4951. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  4952. [GGML_TYPE_Q4_0] = {
  4953. .dequantize_row_q = dequantize_row_q4_0,
  4954. .quantize_row_q = quantize_row_q4_0,
  4955. .vec_dot_q = ggml_vec_dot_q4_0,
  4956. },
  4957. [GGML_TYPE_Q4_1] = {
  4958. .dequantize_row_q = dequantize_row_q4_1,
  4959. .quantize_row_q = quantize_row_q4_1,
  4960. .vec_dot_q = ggml_vec_dot_q4_1,
  4961. },
  4962. };
  4963. static void ggml_compute_forward_mul_mat_q_f32(
  4964. const struct ggml_compute_params * params,
  4965. const struct ggml_tensor * src0,
  4966. const struct ggml_tensor * src1,
  4967. struct ggml_tensor * dst) {
  4968. int64_t t0 = ggml_perf_time_us();
  4969. UNUSED(t0);
  4970. const int ne00 = src0->ne[0];
  4971. const int ne01 = src0->ne[1];
  4972. const int ne02 = src0->ne[2];
  4973. const int ne03 = src0->ne[3];
  4974. const int ne10 = src1->ne[0];
  4975. const int ne11 = src1->ne[1];
  4976. const int ne12 = src1->ne[2];
  4977. const int ne13 = src1->ne[3];
  4978. const int ne0 = dst->ne[0];
  4979. const int ne1 = dst->ne[1];
  4980. const int ne2 = dst->ne[2];
  4981. const int ne3 = dst->ne[3];
  4982. const int nb00 = src0->nb[0];
  4983. const int nb01 = src0->nb[1];
  4984. const int nb02 = src0->nb[2];
  4985. const int nb03 = src0->nb[3];
  4986. const int nb10 = src1->nb[0];
  4987. const int nb11 = src1->nb[1];
  4988. const int nb12 = src1->nb[2];
  4989. const int nb13 = src1->nb[3];
  4990. const int nb0 = dst->nb[0];
  4991. const int nb1 = dst->nb[1];
  4992. const int nb2 = dst->nb[2];
  4993. const int nb3 = dst->nb[3];
  4994. const int ith = params->ith;
  4995. const int nth = params->nth;
  4996. GGML_ASSERT(ne02 == ne12);
  4997. GGML_ASSERT(ne03 == ne13);
  4998. GGML_ASSERT(ne2 == ne12);
  4999. GGML_ASSERT(ne3 == ne13);
  5000. const enum ggml_type type = src0->type;
  5001. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5002. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5003. // we don't support permuted src0 or src1
  5004. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5005. GGML_ASSERT(nb10 == sizeof(float));
  5006. // dst cannot be transposed or permuted
  5007. GGML_ASSERT(nb0 == sizeof(float));
  5008. GGML_ASSERT(nb0 <= nb1);
  5009. GGML_ASSERT(nb1 <= nb2);
  5010. GGML_ASSERT(nb2 <= nb3);
  5011. GGML_ASSERT(ne0 == ne01);
  5012. GGML_ASSERT(ne1 == ne11);
  5013. GGML_ASSERT(ne2 == ne02);
  5014. GGML_ASSERT(ne3 == ne03);
  5015. // nb01 >= nb00 - src0 is not transposed
  5016. // compute by src0 rows
  5017. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5018. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5019. if (params->ith != 0) {
  5020. return;
  5021. }
  5022. if (params->type == GGML_TASK_INIT) {
  5023. return;
  5024. }
  5025. if (params->type == GGML_TASK_FINALIZE) {
  5026. return;
  5027. }
  5028. float * const wdata = params->wdata;
  5029. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5030. for (int i03 = 0; i03 < ne03; i03++) {
  5031. for (int i02 = 0; i02 < ne02; i02++) {
  5032. {
  5033. size_t id = 0;
  5034. for (int i01 = 0; i01 < ne01; ++i01) {
  5035. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5036. id += ne00;
  5037. }
  5038. }
  5039. const float * x = wdata;
  5040. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5041. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5042. // zT = y * xT
  5043. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5044. ne11, ne01, ne10,
  5045. 1.0f, y, ne10,
  5046. x, ne10,
  5047. 0.0f, d, ne01);
  5048. }
  5049. }
  5050. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5051. return;
  5052. }
  5053. #endif
  5054. if (params->type == GGML_TASK_INIT) {
  5055. char * wdata = params->wdata;
  5056. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5057. for (int i13 = 0; i13 < ne13; ++i13) {
  5058. for (int i12 = 0; i12 < ne12; ++i12) {
  5059. for (int i11 = 0; i11 < ne11; ++i11) {
  5060. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5061. wdata += row_size;
  5062. }
  5063. }
  5064. }
  5065. return;
  5066. }
  5067. if (params->type == GGML_TASK_FINALIZE) {
  5068. return;
  5069. }
  5070. // parallelize by src0 rows using ggml_vec_dot_q
  5071. // total rows in src0
  5072. const int nr = ne01*ne02*ne03;
  5073. // rows per thread
  5074. const int dr = (nr + nth - 1)/nth;
  5075. // row range for this thread
  5076. const int ir0 = dr*ith;
  5077. const int ir1 = MIN(ir0 + dr, nr);
  5078. void * wdata = params->wdata;
  5079. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5080. for (int ir = ir0; ir < ir1; ++ir) {
  5081. // src0 indices
  5082. const int i03 = ir/(ne02*ne01);
  5083. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5084. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5085. const int i13 = i03;
  5086. const int i12 = i02;
  5087. const int i0 = i01;
  5088. const int i2 = i02;
  5089. const int i3 = i03;
  5090. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5091. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5092. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5093. assert(ne00 % 32 == 0);
  5094. for (int ic = 0; ic < ne11; ++ic) {
  5095. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5096. }
  5097. }
  5098. //int64_t t1 = ggml_time_us();
  5099. //static int64_t acc = 0;
  5100. //acc += t1 - t0;
  5101. //if (t1 - t0 > 10) {
  5102. // printf("\n");
  5103. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5104. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5105. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5106. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5107. //}
  5108. }
  5109. static void ggml_compute_forward_mul_mat(
  5110. const struct ggml_compute_params * params,
  5111. const struct ggml_tensor * src0,
  5112. const struct ggml_tensor * src1,
  5113. struct ggml_tensor * dst) {
  5114. switch (src0->type) {
  5115. case GGML_TYPE_Q4_0:
  5116. case GGML_TYPE_Q4_1:
  5117. {
  5118. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5119. } break;
  5120. case GGML_TYPE_F16:
  5121. {
  5122. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5123. } break;
  5124. case GGML_TYPE_F32:
  5125. {
  5126. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5127. } break;
  5128. case GGML_TYPE_I8:
  5129. case GGML_TYPE_I16:
  5130. case GGML_TYPE_I32:
  5131. case GGML_TYPE_COUNT:
  5132. {
  5133. GGML_ASSERT(false);
  5134. } break;
  5135. }
  5136. #if 0
  5137. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5138. static int first = 8;
  5139. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5140. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5141. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5142. if (first) {
  5143. --first;
  5144. } else {
  5145. for (int k = 0; k < dst->ne[1]; ++k) {
  5146. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5147. for (int i = 0; i < 16; ++i) {
  5148. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5149. }
  5150. printf("\n");
  5151. }
  5152. printf("\n");
  5153. }
  5154. printf("\n");
  5155. exit(0);
  5156. }
  5157. } else {
  5158. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5159. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5160. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5161. }
  5162. #endif
  5163. }
  5164. // ggml_compute_forward_scale
  5165. static void ggml_compute_forward_scale_f32(
  5166. const struct ggml_compute_params * params,
  5167. const struct ggml_tensor * src0,
  5168. const struct ggml_tensor * src1,
  5169. struct ggml_tensor * dst) {
  5170. GGML_ASSERT(ggml_is_contiguous(src0));
  5171. GGML_ASSERT(ggml_is_contiguous(dst));
  5172. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5173. GGML_ASSERT(ggml_is_scalar(src1));
  5174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5175. return;
  5176. }
  5177. // scale factor
  5178. const float v = *(float *) src1->data;
  5179. const int ith = params->ith;
  5180. const int nth = params->nth;
  5181. const int nc = src0->ne[0];
  5182. const int nr = ggml_nrows(src0);
  5183. // rows per thread
  5184. const int dr = (nr + nth - 1)/nth;
  5185. // row range for this thread
  5186. const int ir0 = dr*ith;
  5187. const int ir1 = MIN(ir0 + dr, nr);
  5188. for (int i1 = ir0; i1 < ir1; i1++) {
  5189. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5190. }
  5191. }
  5192. static void ggml_compute_forward_scale(
  5193. const struct ggml_compute_params * params,
  5194. const struct ggml_tensor * src0,
  5195. const struct ggml_tensor * src1,
  5196. struct ggml_tensor * dst) {
  5197. switch (src0->type) {
  5198. case GGML_TYPE_F32:
  5199. {
  5200. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5201. } break;
  5202. case GGML_TYPE_Q4_0:
  5203. case GGML_TYPE_Q4_1:
  5204. case GGML_TYPE_I8:
  5205. case GGML_TYPE_I16:
  5206. case GGML_TYPE_I32:
  5207. case GGML_TYPE_F16:
  5208. case GGML_TYPE_COUNT:
  5209. {
  5210. GGML_ASSERT(false);
  5211. } break;
  5212. }
  5213. }
  5214. // ggml_compute_forward_cpy
  5215. static void ggml_compute_forward_cpy(
  5216. const struct ggml_compute_params * params,
  5217. const struct ggml_tensor * src0,
  5218. struct ggml_tensor * dst) {
  5219. ggml_compute_forward_dup(params, src0, dst);
  5220. }
  5221. // ggml_compute_forward_reshape
  5222. static void ggml_compute_forward_reshape(
  5223. const struct ggml_compute_params * params,
  5224. const struct ggml_tensor * src0,
  5225. struct ggml_tensor * dst) {
  5226. // NOP
  5227. UNUSED(params);
  5228. UNUSED(src0);
  5229. UNUSED(dst);
  5230. }
  5231. // ggml_compute_forward_view
  5232. static void ggml_compute_forward_view(
  5233. const struct ggml_compute_params * params,
  5234. const struct ggml_tensor * src0) {
  5235. // NOP
  5236. UNUSED(params);
  5237. UNUSED(src0);
  5238. }
  5239. // ggml_compute_forward_permute
  5240. static void ggml_compute_forward_permute(
  5241. const struct ggml_compute_params * params,
  5242. const struct ggml_tensor * src0) {
  5243. // NOP
  5244. UNUSED(params);
  5245. UNUSED(src0);
  5246. }
  5247. // ggml_compute_forward_transpose
  5248. static void ggml_compute_forward_transpose(
  5249. const struct ggml_compute_params * params,
  5250. const struct ggml_tensor * src0) {
  5251. // NOP
  5252. UNUSED(params);
  5253. UNUSED(src0);
  5254. }
  5255. // ggml_compute_forward_get_rows
  5256. static void ggml_compute_forward_get_rows_q(
  5257. const struct ggml_compute_params * params,
  5258. const struct ggml_tensor * src0,
  5259. const struct ggml_tensor * src1,
  5260. struct ggml_tensor * dst) {
  5261. assert(params->ith == 0);
  5262. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5263. return;
  5264. }
  5265. const int nc = src0->ne[0];
  5266. const int nr = ggml_nelements(src1);
  5267. const enum ggml_type type = src0->type;
  5268. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5269. assert( dst->ne[0] == nc);
  5270. assert( dst->ne[1] == nr);
  5271. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5272. for (int i = 0; i < nr; ++i) {
  5273. const int r = ((int32_t *) src1->data)[i];
  5274. dequantize_row_q(
  5275. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5276. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5277. }
  5278. }
  5279. static void ggml_compute_forward_get_rows_f16(
  5280. const struct ggml_compute_params * params,
  5281. const struct ggml_tensor * src0,
  5282. const struct ggml_tensor * src1,
  5283. struct ggml_tensor * dst) {
  5284. assert(params->ith == 0);
  5285. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5286. return;
  5287. }
  5288. const int nc = src0->ne[0];
  5289. const int nr = ggml_nelements(src1);
  5290. assert( dst->ne[0] == nc);
  5291. assert( dst->ne[1] == nr);
  5292. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5293. for (int i = 0; i < nr; ++i) {
  5294. const int r = ((int32_t *) src1->data)[i];
  5295. for (int j = 0; j < nc; ++j) {
  5296. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5297. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5298. }
  5299. }
  5300. }
  5301. static void ggml_compute_forward_get_rows_f32(
  5302. const struct ggml_compute_params * params,
  5303. const struct ggml_tensor * src0,
  5304. const struct ggml_tensor * src1,
  5305. struct ggml_tensor * dst) {
  5306. assert(params->ith == 0);
  5307. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5308. return;
  5309. }
  5310. const int nc = src0->ne[0];
  5311. const int nr = ggml_nelements(src1);
  5312. assert( dst->ne[0] == nc);
  5313. assert( dst->ne[1] == nr);
  5314. assert(src0->nb[0] == sizeof(float));
  5315. for (int i = 0; i < nr; ++i) {
  5316. const int r = ((int32_t *) src1->data)[i];
  5317. ggml_vec_cpy_f32(nc,
  5318. (float *) ((char *) dst->data + i*dst->nb[1]),
  5319. (float *) ((char *) src0->data + r*src0->nb[1]));
  5320. }
  5321. }
  5322. static void ggml_compute_forward_get_rows(
  5323. const struct ggml_compute_params * params,
  5324. const struct ggml_tensor * src0,
  5325. const struct ggml_tensor * src1,
  5326. struct ggml_tensor * dst) {
  5327. switch (src0->type) {
  5328. case GGML_TYPE_Q4_0:
  5329. case GGML_TYPE_Q4_1:
  5330. {
  5331. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5332. } break;
  5333. case GGML_TYPE_F16:
  5334. {
  5335. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5336. } break;
  5337. case GGML_TYPE_F32:
  5338. {
  5339. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5340. } break;
  5341. case GGML_TYPE_I8:
  5342. case GGML_TYPE_I16:
  5343. case GGML_TYPE_I32:
  5344. case GGML_TYPE_COUNT:
  5345. {
  5346. GGML_ASSERT(false);
  5347. } break;
  5348. }
  5349. //static bool first = true;
  5350. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5351. //if (first) {
  5352. // first = false;
  5353. //} else {
  5354. // for (int k = 0; k < dst->ne[1]; ++k) {
  5355. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5356. // for (int i = 0; i < 16; ++i) {
  5357. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5358. // }
  5359. // printf("\n");
  5360. // }
  5361. // printf("\n");
  5362. // }
  5363. // printf("\n");
  5364. // exit(0);
  5365. //}
  5366. }
  5367. // ggml_compute_forward_diag_mask_inf
  5368. static void ggml_compute_forward_diag_mask_inf_f32(
  5369. const struct ggml_compute_params * params,
  5370. const struct ggml_tensor * src0,
  5371. const struct ggml_tensor * src1,
  5372. struct ggml_tensor * dst) {
  5373. assert(params->ith == 0);
  5374. assert(src1->type == GGML_TYPE_I32);
  5375. assert(ggml_nelements(src1) == 1);
  5376. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5377. return;
  5378. }
  5379. const int n_past = ((int32_t *) src1->data)[0];
  5380. // TODO: handle transposed/permuted matrices
  5381. const int n = ggml_nrows(src0);
  5382. const int nc = src0->ne[0];
  5383. const int nr = src0->ne[1];
  5384. const int nz = n/nr;
  5385. assert( dst->nb[0] == sizeof(float));
  5386. assert(src0->nb[0] == sizeof(float));
  5387. for (int k = 0; k < nz; k++) {
  5388. for (int j = 0; j < nr; j++) {
  5389. for (int i = n_past; i < nc; i++) {
  5390. if (i > n_past + j) {
  5391. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5392. }
  5393. }
  5394. }
  5395. }
  5396. }
  5397. static void ggml_compute_forward_diag_mask_inf(
  5398. const struct ggml_compute_params * params,
  5399. const struct ggml_tensor * src0,
  5400. const struct ggml_tensor * src1,
  5401. struct ggml_tensor * dst) {
  5402. switch (src0->type) {
  5403. case GGML_TYPE_F32:
  5404. {
  5405. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5406. } break;
  5407. case GGML_TYPE_Q4_0:
  5408. case GGML_TYPE_Q4_1:
  5409. case GGML_TYPE_I8:
  5410. case GGML_TYPE_I16:
  5411. case GGML_TYPE_I32:
  5412. case GGML_TYPE_F16:
  5413. case GGML_TYPE_COUNT:
  5414. {
  5415. GGML_ASSERT(false);
  5416. } break;
  5417. }
  5418. }
  5419. // ggml_compute_forward_soft_max
  5420. static void ggml_compute_forward_soft_max_f32(
  5421. const struct ggml_compute_params * params,
  5422. const struct ggml_tensor * src0,
  5423. struct ggml_tensor * dst) {
  5424. GGML_ASSERT(ggml_is_contiguous(src0));
  5425. GGML_ASSERT(ggml_is_contiguous(dst));
  5426. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5427. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5428. return;
  5429. }
  5430. // TODO: handle transposed/permuted matrices
  5431. const int ith = params->ith;
  5432. const int nth = params->nth;
  5433. const int nc = src0->ne[0];
  5434. const int nr = ggml_nrows(src0);
  5435. // rows per thread
  5436. const int dr = (nr + nth - 1)/nth;
  5437. // row range for this thread
  5438. const int ir0 = dr*ith;
  5439. const int ir1 = MIN(ir0 + dr, nr);
  5440. for (int i1 = ir0; i1 < ir1; i1++) {
  5441. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5442. #ifndef NDEBUG
  5443. for (int i = 0; i < nc; ++i) {
  5444. //printf("p[%d] = %f\n", i, p[i]);
  5445. assert(!isnan(p[i]));
  5446. }
  5447. #endif
  5448. float max = -INFINITY;
  5449. ggml_vec_max_f32(nc, &max, p);
  5450. ggml_float sum = 0.0;
  5451. uint16_t scvt;
  5452. for (int i = 0; i < nc; i++) {
  5453. if (p[i] == -INFINITY) {
  5454. p[i] = 0.0f;
  5455. } else {
  5456. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5457. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5458. memcpy(&scvt, &s, sizeof(scvt));
  5459. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5460. sum += (ggml_float)val;
  5461. p[i] = val;
  5462. }
  5463. }
  5464. assert(sum > 0.0);
  5465. sum = 1.0/sum;
  5466. ggml_vec_scale_f32(nc, p, sum);
  5467. #ifndef NDEBUG
  5468. for (int i = 0; i < nc; ++i) {
  5469. assert(!isnan(p[i]));
  5470. assert(!isinf(p[i]));
  5471. }
  5472. #endif
  5473. }
  5474. }
  5475. static void ggml_compute_forward_soft_max(
  5476. const struct ggml_compute_params * params,
  5477. const struct ggml_tensor * src0,
  5478. struct ggml_tensor * dst) {
  5479. switch (src0->type) {
  5480. case GGML_TYPE_F32:
  5481. {
  5482. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5483. } break;
  5484. case GGML_TYPE_Q4_0:
  5485. case GGML_TYPE_Q4_1:
  5486. case GGML_TYPE_I8:
  5487. case GGML_TYPE_I16:
  5488. case GGML_TYPE_I32:
  5489. case GGML_TYPE_F16:
  5490. case GGML_TYPE_COUNT:
  5491. {
  5492. GGML_ASSERT(false);
  5493. } break;
  5494. }
  5495. }
  5496. // ggml_compute_forward_rope
  5497. static void ggml_compute_forward_rope_f32(
  5498. const struct ggml_compute_params * params,
  5499. const struct ggml_tensor * src0,
  5500. const struct ggml_tensor * src1,
  5501. struct ggml_tensor * dst) {
  5502. assert(params->ith == 0);
  5503. assert(src1->type == GGML_TYPE_I32);
  5504. assert(ggml_nelements(src1) == 3);
  5505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5506. return;
  5507. }
  5508. const int n_past = ((int32_t *) src1->data)[0];
  5509. const int n_dims = ((int32_t *) src1->data)[1];
  5510. const int mode = ((int32_t *) src1->data)[2];
  5511. //const int ne0 = src0->ne[0];
  5512. const int ne1 = src0->ne[1];
  5513. const int ne2 = src0->ne[2];
  5514. const int ne3 = src0->ne[3];
  5515. const int nb0 = src0->nb[0];
  5516. const int nb1 = src0->nb[1];
  5517. const int nb2 = src0->nb[2];
  5518. const int nb3 = src0->nb[3];
  5519. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5520. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5521. assert(nb0 == sizeof(float));
  5522. // TODO: optimize
  5523. for (int i3 = 0; i3 < ne3; i3++) {
  5524. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5525. const int p = (mode == 0 ? n_past + i2 : i2);
  5526. for (int i1 = 0; i1 < ne1; i1++) {
  5527. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5528. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5529. const float cos_theta = cosf(p*theta);
  5530. const float sin_theta = sinf(p*theta);
  5531. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5532. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5533. const float x0 = src[0];
  5534. const float x1 = src[1];
  5535. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5536. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5537. }
  5538. }
  5539. }
  5540. }
  5541. }
  5542. static void ggml_compute_forward_rope_f16(
  5543. const struct ggml_compute_params * params,
  5544. const struct ggml_tensor * src0,
  5545. const struct ggml_tensor * src1,
  5546. struct ggml_tensor * dst) {
  5547. assert(params->ith == 0);
  5548. assert(src1->type == GGML_TYPE_I32);
  5549. assert(ggml_nelements(src1) == 3);
  5550. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5551. return;
  5552. }
  5553. const int n_past = ((int32_t *) src1->data)[0];
  5554. const int n_dims = ((int32_t *) src1->data)[1];
  5555. const int mode = ((int32_t *) src1->data)[2];
  5556. //const int ne0 = src0->ne[0];
  5557. const int ne1 = src0->ne[1];
  5558. const int ne2 = src0->ne[2];
  5559. const int ne3 = src0->ne[3];
  5560. const int nb0 = src0->nb[0];
  5561. const int nb1 = src0->nb[1];
  5562. const int nb2 = src0->nb[2];
  5563. const int nb3 = src0->nb[3];
  5564. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5565. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5566. assert(nb0 == sizeof(ggml_fp16_t));
  5567. for (int i3 = 0; i3 < ne3; i3++) {
  5568. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5569. const int p = (mode == 0 ? n_past + i2 : i2);
  5570. for (int i1 = 0; i1 < ne1; i1++) {
  5571. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5572. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5573. const float cos_theta = cosf(p*theta);
  5574. const float sin_theta = sinf(p*theta);
  5575. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5576. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5577. const float x0 = ggml_fp16_to_fp32(src[0]);
  5578. const float x1 = ggml_fp16_to_fp32(src[1]);
  5579. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5580. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5581. }
  5582. }
  5583. }
  5584. }
  5585. }
  5586. static void ggml_compute_forward_rope(
  5587. const struct ggml_compute_params * params,
  5588. const struct ggml_tensor * src0,
  5589. const struct ggml_tensor * src1,
  5590. struct ggml_tensor * dst) {
  5591. switch (src0->type) {
  5592. case GGML_TYPE_F16:
  5593. {
  5594. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5595. } break;
  5596. case GGML_TYPE_F32:
  5597. {
  5598. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5599. } break;
  5600. case GGML_TYPE_Q4_0:
  5601. case GGML_TYPE_Q4_1:
  5602. case GGML_TYPE_I8:
  5603. case GGML_TYPE_I16:
  5604. case GGML_TYPE_I32:
  5605. case GGML_TYPE_COUNT:
  5606. {
  5607. GGML_ASSERT(false);
  5608. } break;
  5609. }
  5610. }
  5611. // ggml_compute_forward_conv_1d_1s
  5612. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5613. const struct ggml_compute_params * params,
  5614. const struct ggml_tensor * src0,
  5615. const struct ggml_tensor * src1,
  5616. struct ggml_tensor * dst) {
  5617. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5618. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5619. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5620. int64_t t0 = ggml_perf_time_us();
  5621. UNUSED(t0);
  5622. const int ne00 = src0->ne[0];
  5623. const int ne01 = src0->ne[1];
  5624. const int ne02 = src0->ne[2];
  5625. //const int ne03 = src0->ne[3];
  5626. const int ne10 = src1->ne[0];
  5627. const int ne11 = src1->ne[1];
  5628. //const int ne12 = src1->ne[2];
  5629. //const int ne13 = src1->ne[3];
  5630. //const int ne0 = dst->ne[0];
  5631. //const int ne1 = dst->ne[1];
  5632. //const int ne2 = dst->ne[2];
  5633. //const int ne3 = dst->ne[3];
  5634. //const int ne = ne0*ne1*ne2*ne3;
  5635. const int nb00 = src0->nb[0];
  5636. const int nb01 = src0->nb[1];
  5637. const int nb02 = src0->nb[2];
  5638. //const int nb03 = src0->nb[3];
  5639. const int nb10 = src1->nb[0];
  5640. const int nb11 = src1->nb[1];
  5641. //const int nb12 = src1->nb[2];
  5642. //const int nb13 = src1->nb[3];
  5643. //const int nb0 = dst->nb[0];
  5644. const int nb1 = dst->nb[1];
  5645. //const int nb2 = dst->nb[2];
  5646. //const int nb3 = dst->nb[3];
  5647. const int ith = params->ith;
  5648. const int nth = params->nth;
  5649. const int nk = ne00;
  5650. const int nh = nk/2;
  5651. const int ew0 = ggml_up32(ne01);
  5652. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5653. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5654. GGML_ASSERT(nb10 == sizeof(float));
  5655. if (params->type == GGML_TASK_INIT) {
  5656. // TODO: fix this memset (wsize is overestimated)
  5657. memset(params->wdata, 0, params->wsize);
  5658. // prepare kernel data (src0)
  5659. {
  5660. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5661. for (int i02 = 0; i02 < ne02; i02++) {
  5662. for (int i01 = 0; i01 < ne01; i01++) {
  5663. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5664. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5665. for (int i00 = 0; i00 < ne00; i00++) {
  5666. dst_data[i00*ew0 + i01] = src[i00];
  5667. }
  5668. }
  5669. }
  5670. }
  5671. // prepare source data (src1)
  5672. {
  5673. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5674. for (int i11 = 0; i11 < ne11; i11++) {
  5675. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5676. ggml_fp16_t * dst_data = wdata;
  5677. for (int i10 = 0; i10 < ne10; i10++) {
  5678. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5679. }
  5680. }
  5681. }
  5682. return;
  5683. }
  5684. if (params->type == GGML_TASK_FINALIZE) {
  5685. return;
  5686. }
  5687. // total rows in dst
  5688. const int nr = ne02;
  5689. // rows per thread
  5690. const int dr = (nr + nth - 1)/nth;
  5691. // row range for this thread
  5692. const int ir0 = dr*ith;
  5693. const int ir1 = MIN(ir0 + dr, nr);
  5694. for (int i1 = ir0; i1 < ir1; i1++) {
  5695. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5696. for (int i0 = 0; i0 < ne10; ++i0) {
  5697. dst_data[i0] = 0;
  5698. for (int k = -nh; k <= nh; k++) {
  5699. float v = 0.0f;
  5700. ggml_vec_dot_f16(ew0, &v,
  5701. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5702. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5703. dst_data[i0] += v;
  5704. }
  5705. }
  5706. }
  5707. }
  5708. static void ggml_compute_forward_conv_1d_1s_f32(
  5709. const struct ggml_compute_params * params,
  5710. const struct ggml_tensor * src0,
  5711. const struct ggml_tensor * src1,
  5712. struct ggml_tensor * dst) {
  5713. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5714. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5715. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5716. int64_t t0 = ggml_perf_time_us();
  5717. UNUSED(t0);
  5718. const int ne00 = src0->ne[0];
  5719. const int ne01 = src0->ne[1];
  5720. const int ne02 = src0->ne[2];
  5721. //const int ne03 = src0->ne[3];
  5722. const int ne10 = src1->ne[0];
  5723. const int ne11 = src1->ne[1];
  5724. //const int ne12 = src1->ne[2];
  5725. //const int ne13 = src1->ne[3];
  5726. //const int ne0 = dst->ne[0];
  5727. //const int ne1 = dst->ne[1];
  5728. //const int ne2 = dst->ne[2];
  5729. //const int ne3 = dst->ne[3];
  5730. //const int ne = ne0*ne1*ne2*ne3;
  5731. const int nb00 = src0->nb[0];
  5732. const int nb01 = src0->nb[1];
  5733. const int nb02 = src0->nb[2];
  5734. //const int nb03 = src0->nb[3];
  5735. const int nb10 = src1->nb[0];
  5736. const int nb11 = src1->nb[1];
  5737. //const int nb12 = src1->nb[2];
  5738. //const int nb13 = src1->nb[3];
  5739. //const int nb0 = dst->nb[0];
  5740. const int nb1 = dst->nb[1];
  5741. //const int nb2 = dst->nb[2];
  5742. //const int nb3 = dst->nb[3];
  5743. const int ith = params->ith;
  5744. const int nth = params->nth;
  5745. const int nk = ne00;
  5746. const int nh = nk/2;
  5747. const int ew0 = ggml_up32(ne01);
  5748. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5749. GGML_ASSERT(nb00 == sizeof(float));
  5750. GGML_ASSERT(nb10 == sizeof(float));
  5751. if (params->type == GGML_TASK_INIT) {
  5752. // TODO: fix this memset (wsize is overestimated)
  5753. memset(params->wdata, 0, params->wsize);
  5754. // prepare kernel data (src0)
  5755. {
  5756. float * const wdata = (float *) params->wdata + 0;
  5757. for (int i02 = 0; i02 < ne02; i02++) {
  5758. for (int i01 = 0; i01 < ne01; i01++) {
  5759. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5760. float * dst_data = wdata + i02*ew0*ne00;
  5761. for (int i00 = 0; i00 < ne00; i00++) {
  5762. dst_data[i00*ew0 + i01] = src[i00];
  5763. }
  5764. }
  5765. }
  5766. }
  5767. // prepare source data (src1)
  5768. {
  5769. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5770. for (int i11 = 0; i11 < ne11; i11++) {
  5771. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5772. float * dst_data = wdata;
  5773. for (int i10 = 0; i10 < ne10; i10++) {
  5774. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5775. }
  5776. }
  5777. }
  5778. return;
  5779. }
  5780. if (params->type == GGML_TASK_FINALIZE) {
  5781. return;
  5782. }
  5783. // total rows in dst
  5784. const int nr = ne02;
  5785. // rows per thread
  5786. const int dr = (nr + nth - 1)/nth;
  5787. // row range for this thread
  5788. const int ir0 = dr*ith;
  5789. const int ir1 = MIN(ir0 + dr, nr);
  5790. for (int i1 = ir0; i1 < ir1; i1++) {
  5791. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5792. for (int i0 = 0; i0 < ne10; ++i0) {
  5793. dst_data[i0] = 0;
  5794. for (int k = -nh; k <= nh; k++) {
  5795. float v = 0.0f;
  5796. ggml_vec_dot_f32(ew0, &v,
  5797. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5798. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5799. dst_data[i0] += v;
  5800. }
  5801. }
  5802. }
  5803. }
  5804. static void ggml_compute_forward_conv_1d_1s(
  5805. const struct ggml_compute_params * params,
  5806. const struct ggml_tensor * src0,
  5807. const struct ggml_tensor * src1,
  5808. struct ggml_tensor * dst) {
  5809. switch (src0->type) {
  5810. case GGML_TYPE_F16:
  5811. {
  5812. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5813. } break;
  5814. case GGML_TYPE_F32:
  5815. {
  5816. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5817. } break;
  5818. case GGML_TYPE_Q4_0:
  5819. case GGML_TYPE_Q4_1:
  5820. case GGML_TYPE_I8:
  5821. case GGML_TYPE_I16:
  5822. case GGML_TYPE_I32:
  5823. case GGML_TYPE_COUNT:
  5824. {
  5825. GGML_ASSERT(false);
  5826. } break;
  5827. }
  5828. }
  5829. // ggml_compute_forward_conv_1d_2s
  5830. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  5831. const struct ggml_compute_params * params,
  5832. const struct ggml_tensor * src0,
  5833. const struct ggml_tensor * src1,
  5834. struct ggml_tensor * dst) {
  5835. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5836. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5837. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5838. int64_t t0 = ggml_perf_time_us();
  5839. UNUSED(t0);
  5840. const int ne00 = src0->ne[0];
  5841. const int ne01 = src0->ne[1];
  5842. const int ne02 = src0->ne[2];
  5843. //const int ne03 = src0->ne[3];
  5844. const int ne10 = src1->ne[0];
  5845. const int ne11 = src1->ne[1];
  5846. //const int ne12 = src1->ne[2];
  5847. //const int ne13 = src1->ne[3];
  5848. //const int ne0 = dst->ne[0];
  5849. //const int ne1 = dst->ne[1];
  5850. //const int ne2 = dst->ne[2];
  5851. //const int ne3 = dst->ne[3];
  5852. //const int ne = ne0*ne1*ne2*ne3;
  5853. const int nb00 = src0->nb[0];
  5854. const int nb01 = src0->nb[1];
  5855. const int nb02 = src0->nb[2];
  5856. //const int nb03 = src0->nb[3];
  5857. const int nb10 = src1->nb[0];
  5858. const int nb11 = src1->nb[1];
  5859. //const int nb12 = src1->nb[2];
  5860. //const int nb13 = src1->nb[3];
  5861. //const int nb0 = dst->nb[0];
  5862. const int nb1 = dst->nb[1];
  5863. //const int nb2 = dst->nb[2];
  5864. //const int nb3 = dst->nb[3];
  5865. const int ith = params->ith;
  5866. const int nth = params->nth;
  5867. const int nk = ne00;
  5868. const int nh = nk/2;
  5869. const int ew0 = ggml_up32(ne01);
  5870. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5871. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5872. GGML_ASSERT(nb10 == sizeof(float));
  5873. if (params->type == GGML_TASK_INIT) {
  5874. // TODO: fix this memset (wsize is overestimated)
  5875. memset(params->wdata, 0, params->wsize);
  5876. // prepare kernel data (src0)
  5877. {
  5878. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5879. for (int i02 = 0; i02 < ne02; i02++) {
  5880. for (int i01 = 0; i01 < ne01; i01++) {
  5881. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5882. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5883. for (int i00 = 0; i00 < ne00; i00++) {
  5884. dst_data[i00*ew0 + i01] = src[i00];
  5885. }
  5886. }
  5887. }
  5888. }
  5889. // prepare source data (src1)
  5890. {
  5891. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5892. for (int i11 = 0; i11 < ne11; i11++) {
  5893. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5894. ggml_fp16_t * dst_data = wdata;
  5895. for (int i10 = 0; i10 < ne10; i10++) {
  5896. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5897. }
  5898. }
  5899. }
  5900. return;
  5901. }
  5902. if (params->type == GGML_TASK_FINALIZE) {
  5903. return;
  5904. }
  5905. // total rows in dst
  5906. const int nr = ne02;
  5907. // rows per thread
  5908. const int dr = (nr + nth - 1)/nth;
  5909. // row range for this thread
  5910. const int ir0 = dr*ith;
  5911. const int ir1 = MIN(ir0 + dr, nr);
  5912. for (int i1 = ir0; i1 < ir1; i1++) {
  5913. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5914. for (int i0 = 0; i0 < ne10; i0 += 2) {
  5915. dst_data[i0/2] = 0;
  5916. for (int k = -nh; k <= nh; k++) {
  5917. float v = 0.0f;
  5918. ggml_vec_dot_f16(ew0, &v,
  5919. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5920. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5921. dst_data[i0/2] += v;
  5922. }
  5923. }
  5924. }
  5925. }
  5926. static void ggml_compute_forward_conv_1d_2s_f32(
  5927. const struct ggml_compute_params * params,
  5928. const struct ggml_tensor * src0,
  5929. const struct ggml_tensor * src1,
  5930. struct ggml_tensor * dst) {
  5931. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5932. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5933. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5934. int64_t t0 = ggml_perf_time_us();
  5935. UNUSED(t0);
  5936. const int ne00 = src0->ne[0];
  5937. const int ne01 = src0->ne[1];
  5938. const int ne02 = src0->ne[2];
  5939. //const int ne03 = src0->ne[3];
  5940. const int ne10 = src1->ne[0];
  5941. const int ne11 = src1->ne[1];
  5942. //const int ne12 = src1->ne[2];
  5943. //const int ne13 = src1->ne[3];
  5944. //const int ne0 = dst->ne[0];
  5945. //const int ne1 = dst->ne[1];
  5946. //const int ne2 = dst->ne[2];
  5947. //const int ne3 = dst->ne[3];
  5948. //const int ne = ne0*ne1*ne2*ne3;
  5949. const int nb00 = src0->nb[0];
  5950. const int nb01 = src0->nb[1];
  5951. const int nb02 = src0->nb[2];
  5952. //const int nb03 = src0->nb[3];
  5953. const int nb10 = src1->nb[0];
  5954. const int nb11 = src1->nb[1];
  5955. //const int nb12 = src1->nb[2];
  5956. //const int nb13 = src1->nb[3];
  5957. //const int nb0 = dst->nb[0];
  5958. const int nb1 = dst->nb[1];
  5959. //const int nb2 = dst->nb[2];
  5960. //const int nb3 = dst->nb[3];
  5961. const int ith = params->ith;
  5962. const int nth = params->nth;
  5963. const int nk = ne00;
  5964. const int nh = nk/2;
  5965. const int ew0 = ggml_up32(ne01);
  5966. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5967. GGML_ASSERT(nb00 == sizeof(float));
  5968. GGML_ASSERT(nb10 == sizeof(float));
  5969. if (params->type == GGML_TASK_INIT) {
  5970. // TODO: fix this memset (wsize is overestimated)
  5971. memset(params->wdata, 0, params->wsize);
  5972. // prepare kernel data (src0)
  5973. {
  5974. float * const wdata = (float *) params->wdata + 0;
  5975. for (int i02 = 0; i02 < ne02; i02++) {
  5976. for (int i01 = 0; i01 < ne01; i01++) {
  5977. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5978. float * dst_data = wdata + i02*ew0*ne00;
  5979. for (int i00 = 0; i00 < ne00; i00++) {
  5980. dst_data[i00*ew0 + i01] = src[i00];
  5981. }
  5982. }
  5983. }
  5984. }
  5985. // prepare source data (src1)
  5986. {
  5987. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5988. for (int i11 = 0; i11 < ne11; i11++) {
  5989. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5990. float * dst_data = wdata;
  5991. for (int i10 = 0; i10 < ne10; i10++) {
  5992. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5993. }
  5994. }
  5995. }
  5996. return;
  5997. }
  5998. if (params->type == GGML_TASK_FINALIZE) {
  5999. return;
  6000. }
  6001. // total rows in dst
  6002. const int nr = ne02;
  6003. // rows per thread
  6004. const int dr = (nr + nth - 1)/nth;
  6005. // row range for this thread
  6006. const int ir0 = dr*ith;
  6007. const int ir1 = MIN(ir0 + dr, nr);
  6008. for (int i1 = ir0; i1 < ir1; i1++) {
  6009. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6010. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6011. dst_data[i0/2] = 0;
  6012. for (int k = -nh; k <= nh; k++) {
  6013. float v = 0.0f;
  6014. ggml_vec_dot_f32(ew0, &v,
  6015. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6016. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6017. dst_data[i0/2] += v;
  6018. }
  6019. }
  6020. }
  6021. }
  6022. static void ggml_compute_forward_conv_1d_2s(
  6023. const struct ggml_compute_params * params,
  6024. const struct ggml_tensor * src0,
  6025. const struct ggml_tensor * src1,
  6026. struct ggml_tensor * dst) {
  6027. switch (src0->type) {
  6028. case GGML_TYPE_F16:
  6029. {
  6030. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6031. } break;
  6032. case GGML_TYPE_F32:
  6033. {
  6034. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6035. } break;
  6036. case GGML_TYPE_Q4_0:
  6037. case GGML_TYPE_Q4_1:
  6038. case GGML_TYPE_I8:
  6039. case GGML_TYPE_I16:
  6040. case GGML_TYPE_I32:
  6041. case GGML_TYPE_COUNT:
  6042. {
  6043. GGML_ASSERT(false);
  6044. } break;
  6045. }
  6046. }
  6047. // ggml_compute_forward_flash_attn
  6048. static void ggml_compute_forward_flash_attn_f32(
  6049. const struct ggml_compute_params * params,
  6050. const struct ggml_tensor * q,
  6051. const struct ggml_tensor * k,
  6052. const struct ggml_tensor * v,
  6053. const bool masked,
  6054. struct ggml_tensor * dst) {
  6055. int64_t t0 = ggml_perf_time_us();
  6056. UNUSED(t0);
  6057. const int neq0 = q->ne[0];
  6058. const int neq1 = q->ne[1];
  6059. const int neq2 = q->ne[2];
  6060. const int neq3 = q->ne[3];
  6061. const int nek0 = k->ne[0];
  6062. const int nek1 = k->ne[1];
  6063. //const int nek2 = k->ne[2];
  6064. //const int nek3 = k->ne[3];
  6065. //const int nev0 = v->ne[0];
  6066. const int nev1 = v->ne[1];
  6067. //const int nev2 = v->ne[2];
  6068. //const int nev3 = v->ne[3];
  6069. const int ne0 = dst->ne[0];
  6070. const int ne1 = dst->ne[1];
  6071. //const int ne2 = dst->ne[2];
  6072. //const int ne3 = dst->ne[3];
  6073. const int nbk0 = k->nb[0];
  6074. const int nbk1 = k->nb[1];
  6075. const int nbk2 = k->nb[2];
  6076. const int nbk3 = k->nb[3];
  6077. const int nbq0 = q->nb[0];
  6078. const int nbq1 = q->nb[1];
  6079. const int nbq2 = q->nb[2];
  6080. const int nbq3 = q->nb[3];
  6081. const int nbv0 = v->nb[0];
  6082. const int nbv1 = v->nb[1];
  6083. const int nbv2 = v->nb[2];
  6084. const int nbv3 = v->nb[3];
  6085. const int nb0 = dst->nb[0];
  6086. const int nb1 = dst->nb[1];
  6087. const int nb2 = dst->nb[2];
  6088. const int nb3 = dst->nb[3];
  6089. const int ith = params->ith;
  6090. const int nth = params->nth;
  6091. const int D = neq0;
  6092. const int N = neq1;
  6093. const int P = nek1 - N;
  6094. const int M = P + N;
  6095. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6096. GGML_ASSERT(ne0 == D);
  6097. GGML_ASSERT(ne1 == N);
  6098. GGML_ASSERT(P >= 0);
  6099. GGML_ASSERT(nbq0 == sizeof(float));
  6100. GGML_ASSERT(nbk0 == sizeof(float));
  6101. GGML_ASSERT(nbv0 == sizeof(float));
  6102. GGML_ASSERT(neq0 == D);
  6103. GGML_ASSERT(nek0 == D);
  6104. GGML_ASSERT(nev1 == D);
  6105. GGML_ASSERT(neq1 == N);
  6106. GGML_ASSERT(nek1 == N + P);
  6107. GGML_ASSERT(nev1 == D);
  6108. // dst cannot be transposed or permuted
  6109. GGML_ASSERT(nb0 == sizeof(float));
  6110. GGML_ASSERT(nb0 <= nb1);
  6111. GGML_ASSERT(nb1 <= nb2);
  6112. GGML_ASSERT(nb2 <= nb3);
  6113. if (params->type == GGML_TASK_INIT) {
  6114. return;
  6115. }
  6116. if (params->type == GGML_TASK_FINALIZE) {
  6117. return;
  6118. }
  6119. // parallelize by q rows using ggml_vec_dot_f32
  6120. // total rows in q
  6121. const int nr = neq1*neq2*neq3;
  6122. // rows per thread
  6123. const int dr = (nr + nth - 1)/nth;
  6124. // row range for this thread
  6125. const int ir0 = dr*ith;
  6126. const int ir1 = MIN(ir0 + dr, nr);
  6127. const float scale = 1.0f/sqrtf(D);
  6128. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6129. for (int ir = ir0; ir < ir1; ++ir) {
  6130. // q indices
  6131. const int iq3 = ir/(neq2*neq1);
  6132. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6133. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6134. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6135. for (int i = M; i < Mup; ++i) {
  6136. S[i] = -INFINITY;
  6137. }
  6138. for (int ic = 0; ic < nek1; ++ic) {
  6139. // k indices
  6140. const int ik3 = iq3;
  6141. const int ik2 = iq2;
  6142. const int ik1 = ic;
  6143. // S indices
  6144. const int i1 = ik1;
  6145. ggml_vec_dot_f32(neq0,
  6146. S + i1,
  6147. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6148. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6149. }
  6150. // scale
  6151. ggml_vec_scale_f32(nek1, S, scale);
  6152. if (masked) {
  6153. for (int i = P; i < M; i++) {
  6154. if (i > P + iq1) {
  6155. S[i] = -INFINITY;
  6156. }
  6157. }
  6158. }
  6159. // softmax
  6160. {
  6161. float max = -INFINITY;
  6162. ggml_vec_max_f32(M, &max, S);
  6163. ggml_float sum = 0.0;
  6164. {
  6165. #ifdef GGML_SOFT_MAX_ACCELERATE
  6166. max = -max;
  6167. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6168. vvexpf(S, S, &Mup);
  6169. ggml_vec_sum_f32(Mup, &sum, S);
  6170. #else
  6171. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6172. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6173. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6174. float * SS = S + i;
  6175. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6176. if (SS[j] == -INFINITY) {
  6177. SS[j] = 0.0f;
  6178. } else {
  6179. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6180. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6181. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6182. sump[j] += (ggml_float)val;
  6183. SS[j] = val;
  6184. }
  6185. }
  6186. }
  6187. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6188. sum += sump[i];
  6189. }
  6190. #endif
  6191. }
  6192. assert(sum > 0.0);
  6193. sum = 1.0/sum;
  6194. ggml_vec_scale_f32(M, S, sum);
  6195. #ifndef NDEBUG
  6196. for (int i = 0; i < M; ++i) {
  6197. assert(!isnan(S[i]));
  6198. assert(!isinf(S[i]));
  6199. }
  6200. #endif
  6201. }
  6202. for (int ic = 0; ic < nev1; ++ic) {
  6203. // dst indices
  6204. const int i1 = iq1;
  6205. const int i2 = iq2;
  6206. const int i3 = iq3;
  6207. ggml_vec_dot_f32(nek1,
  6208. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6209. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6210. S);
  6211. }
  6212. }
  6213. }
  6214. static void ggml_compute_forward_flash_attn_f16(
  6215. const struct ggml_compute_params * params,
  6216. const struct ggml_tensor * q,
  6217. const struct ggml_tensor * k,
  6218. const struct ggml_tensor * v,
  6219. const bool masked,
  6220. struct ggml_tensor * dst) {
  6221. int64_t t0 = ggml_perf_time_us();
  6222. UNUSED(t0);
  6223. const int neq0 = q->ne[0];
  6224. const int neq1 = q->ne[1];
  6225. const int neq2 = q->ne[2];
  6226. const int neq3 = q->ne[3];
  6227. const int nek0 = k->ne[0];
  6228. const int nek1 = k->ne[1];
  6229. //const int nek2 = k->ne[2];
  6230. //const int nek3 = k->ne[3];
  6231. //const int nev0 = v->ne[0];
  6232. const int nev1 = v->ne[1];
  6233. //const int nev2 = v->ne[2];
  6234. //const int nev3 = v->ne[3];
  6235. const int ne0 = dst->ne[0];
  6236. const int ne1 = dst->ne[1];
  6237. //const int ne2 = dst->ne[2];
  6238. //const int ne3 = dst->ne[3];
  6239. const int nbk0 = k->nb[0];
  6240. const int nbk1 = k->nb[1];
  6241. const int nbk2 = k->nb[2];
  6242. const int nbk3 = k->nb[3];
  6243. const int nbq0 = q->nb[0];
  6244. const int nbq1 = q->nb[1];
  6245. const int nbq2 = q->nb[2];
  6246. const int nbq3 = q->nb[3];
  6247. const int nbv0 = v->nb[0];
  6248. const int nbv1 = v->nb[1];
  6249. const int nbv2 = v->nb[2];
  6250. const int nbv3 = v->nb[3];
  6251. const int nb0 = dst->nb[0];
  6252. const int nb1 = dst->nb[1];
  6253. const int nb2 = dst->nb[2];
  6254. const int nb3 = dst->nb[3];
  6255. const int ith = params->ith;
  6256. const int nth = params->nth;
  6257. const int D = neq0;
  6258. const int N = neq1;
  6259. const int P = nek1 - N;
  6260. const int M = P + N;
  6261. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6262. GGML_ASSERT(ne0 == D);
  6263. GGML_ASSERT(ne1 == N);
  6264. GGML_ASSERT(P >= 0);
  6265. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6266. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6267. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6268. GGML_ASSERT(neq0 == D);
  6269. GGML_ASSERT(nek0 == D);
  6270. GGML_ASSERT(nev1 == D);
  6271. GGML_ASSERT(neq1 == N);
  6272. GGML_ASSERT(nek1 == N + P);
  6273. GGML_ASSERT(nev1 == D);
  6274. // dst cannot be transposed or permuted
  6275. GGML_ASSERT(nb0 == sizeof(float));
  6276. GGML_ASSERT(nb0 <= nb1);
  6277. GGML_ASSERT(nb1 <= nb2);
  6278. GGML_ASSERT(nb2 <= nb3);
  6279. if (params->type == GGML_TASK_INIT) {
  6280. return;
  6281. }
  6282. if (params->type == GGML_TASK_FINALIZE) {
  6283. return;
  6284. }
  6285. // parallelize by q rows using ggml_vec_dot_f32
  6286. // total rows in q
  6287. const int nr = neq1*neq2*neq3;
  6288. // rows per thread
  6289. const int dr = (nr + nth - 1)/nth;
  6290. // row range for this thread
  6291. const int ir0 = dr*ith;
  6292. const int ir1 = MIN(ir0 + dr, nr);
  6293. const float scale = 1.0f/sqrtf(D);
  6294. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6295. for (int ir = ir0; ir < ir1; ++ir) {
  6296. // q indices
  6297. const int iq3 = ir/(neq2*neq1);
  6298. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6299. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6300. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6301. for (int i = M; i < Mup; ++i) {
  6302. S[i] = -INFINITY;
  6303. }
  6304. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6305. for (int ic = 0; ic < nek1; ++ic) {
  6306. // k indices
  6307. const int ik3 = iq3;
  6308. const int ik2 = iq2;
  6309. const int ik1 = ic;
  6310. // S indices
  6311. const int i1 = ik1;
  6312. ggml_vec_dot_f16(neq0,
  6313. S + i1,
  6314. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6315. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6316. }
  6317. } else {
  6318. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6319. // k indices
  6320. const int ik3 = iq3;
  6321. const int ik2 = iq2;
  6322. const int ik1 = ic;
  6323. // S indices
  6324. const int i1 = ik1;
  6325. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6326. S + i1,
  6327. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6328. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6329. }
  6330. }
  6331. // scale
  6332. ggml_vec_scale_f32(nek1, S, scale);
  6333. if (masked) {
  6334. for (int i = P; i < M; i++) {
  6335. if (i > P + iq1) {
  6336. S[i] = -INFINITY;
  6337. }
  6338. }
  6339. }
  6340. // softmax
  6341. {
  6342. float max = -INFINITY;
  6343. ggml_vec_max_f32(M, &max, S);
  6344. ggml_float sum = 0.0;
  6345. {
  6346. #ifdef GGML_SOFT_MAX_ACCELERATE
  6347. max = -max;
  6348. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6349. vvexpf(S, S, &Mup);
  6350. ggml_vec_sum_f32(Mup, &sum, S);
  6351. #else
  6352. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6353. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6354. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6355. float * SS = S + i;
  6356. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6357. if (SS[j] == -INFINITY) {
  6358. SS[j] = 0.0f;
  6359. } else {
  6360. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6361. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6362. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6363. sump[j] += (ggml_float)val;
  6364. SS[j] = val;
  6365. }
  6366. }
  6367. }
  6368. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6369. sum += sump[i];
  6370. }
  6371. #endif
  6372. }
  6373. assert(sum > 0.0);
  6374. sum = 1.0/sum;
  6375. ggml_vec_scale_f32(M, S, sum);
  6376. #ifndef NDEBUG
  6377. for (int i = 0; i < M; ++i) {
  6378. assert(!isnan(S[i]));
  6379. assert(!isinf(S[i]));
  6380. }
  6381. #endif
  6382. }
  6383. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6384. for (int i = 0; i < M; i++) {
  6385. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6386. }
  6387. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6388. for (int ic = 0; ic < nev1; ++ic) {
  6389. // dst indices
  6390. const int i1 = iq1;
  6391. const int i2 = iq2;
  6392. const int i3 = iq3;
  6393. ggml_vec_dot_f16(nek1,
  6394. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6395. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6396. S16);
  6397. }
  6398. } else {
  6399. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6400. // dst indices
  6401. const int i1 = iq1;
  6402. const int i2 = iq2;
  6403. const int i3 = iq3;
  6404. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6405. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6406. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6407. S16);
  6408. }
  6409. }
  6410. }
  6411. }
  6412. static void ggml_compute_forward_flash_attn(
  6413. const struct ggml_compute_params * params,
  6414. const struct ggml_tensor * q,
  6415. const struct ggml_tensor * k,
  6416. const struct ggml_tensor * v,
  6417. const bool masked,
  6418. struct ggml_tensor * dst) {
  6419. switch (q->type) {
  6420. case GGML_TYPE_F16:
  6421. {
  6422. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6423. } break;
  6424. case GGML_TYPE_F32:
  6425. {
  6426. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6427. } break;
  6428. case GGML_TYPE_Q4_0:
  6429. case GGML_TYPE_Q4_1:
  6430. case GGML_TYPE_I8:
  6431. case GGML_TYPE_I16:
  6432. case GGML_TYPE_I32:
  6433. case GGML_TYPE_COUNT:
  6434. {
  6435. GGML_ASSERT(false);
  6436. } break;
  6437. }
  6438. }
  6439. // ggml_compute_forward_flash_ff
  6440. static void ggml_compute_forward_flash_ff_f16(
  6441. const struct ggml_compute_params * params,
  6442. const struct ggml_tensor * a, // F16
  6443. const struct ggml_tensor * b0, // F16 fc_w
  6444. const struct ggml_tensor * b1, // F32 fc_b
  6445. const struct ggml_tensor * c0, // F16 proj_w
  6446. const struct ggml_tensor * c1, // F32 proj_b
  6447. struct ggml_tensor * dst) {
  6448. int64_t t0 = ggml_perf_time_us();
  6449. UNUSED(t0);
  6450. const int nea0 = a->ne[0];
  6451. const int nea1 = a->ne[1];
  6452. const int nea2 = a->ne[2];
  6453. const int nea3 = a->ne[3];
  6454. const int neb00 = b0->ne[0];
  6455. const int neb01 = b0->ne[1];
  6456. //const int neb02 = b0->ne[2];
  6457. //const int neb03 = b0->ne[3];
  6458. const int neb10 = b1->ne[0];
  6459. const int neb11 = b1->ne[1];
  6460. //const int neb12 = b1->ne[2];
  6461. //const int neb13 = b1->ne[3];
  6462. const int nec00 = c0->ne[0];
  6463. const int nec01 = c0->ne[1];
  6464. //const int nec02 = c0->ne[2];
  6465. //const int nec03 = c0->ne[3];
  6466. const int nec10 = c1->ne[0];
  6467. const int nec11 = c1->ne[1];
  6468. //const int nec12 = c1->ne[2];
  6469. //const int nec13 = c1->ne[3];
  6470. const int ne0 = dst->ne[0];
  6471. const int ne1 = dst->ne[1];
  6472. const int ne2 = dst->ne[2];
  6473. //const int ne3 = dst->ne[3];
  6474. const int nba0 = a->nb[0];
  6475. const int nba1 = a->nb[1];
  6476. const int nba2 = a->nb[2];
  6477. const int nba3 = a->nb[3];
  6478. const int nbb00 = b0->nb[0];
  6479. const int nbb01 = b0->nb[1];
  6480. const int nbb02 = b0->nb[2];
  6481. const int nbb03 = b0->nb[3];
  6482. const int nbb10 = b1->nb[0];
  6483. //const int nbb11 = b1->nb[1];
  6484. //const int nbb12 = b1->nb[2];
  6485. //const int nbb13 = b1->nb[3];
  6486. const int nbc00 = c0->nb[0];
  6487. const int nbc01 = c0->nb[1];
  6488. const int nbc02 = c0->nb[2];
  6489. const int nbc03 = c0->nb[3];
  6490. const int nbc10 = c1->nb[0];
  6491. //const int nbc11 = c1->nb[1];
  6492. //const int nbc12 = c1->nb[2];
  6493. //const int nbc13 = c1->nb[3];
  6494. const int nb0 = dst->nb[0];
  6495. const int nb1 = dst->nb[1];
  6496. const int nb2 = dst->nb[2];
  6497. const int nb3 = dst->nb[3];
  6498. const int ith = params->ith;
  6499. const int nth = params->nth;
  6500. const int D = nea0;
  6501. //const int N = nea1;
  6502. const int M = neb01;
  6503. GGML_ASSERT(ne0 == nea0);
  6504. GGML_ASSERT(ne1 == nea1);
  6505. GGML_ASSERT(ne2 == nea2);
  6506. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6507. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6508. GGML_ASSERT(nbb10 == sizeof(float));
  6509. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6510. GGML_ASSERT(nbc10 == sizeof(float));
  6511. GGML_ASSERT(neb00 == D);
  6512. GGML_ASSERT(neb01 == M);
  6513. GGML_ASSERT(neb10 == M);
  6514. GGML_ASSERT(neb11 == 1);
  6515. GGML_ASSERT(nec00 == M);
  6516. GGML_ASSERT(nec01 == D);
  6517. GGML_ASSERT(nec10 == D);
  6518. GGML_ASSERT(nec11 == 1);
  6519. // dst cannot be transposed or permuted
  6520. GGML_ASSERT(nb0 == sizeof(float));
  6521. GGML_ASSERT(nb0 <= nb1);
  6522. GGML_ASSERT(nb1 <= nb2);
  6523. GGML_ASSERT(nb2 <= nb3);
  6524. if (params->type == GGML_TASK_INIT) {
  6525. return;
  6526. }
  6527. if (params->type == GGML_TASK_FINALIZE) {
  6528. return;
  6529. }
  6530. // parallelize by a rows using ggml_vec_dot_f32
  6531. // total rows in a
  6532. const int nr = nea1*nea2*nea3;
  6533. // rows per thread
  6534. const int dr = (nr + nth - 1)/nth;
  6535. // row range for this thread
  6536. const int ir0 = dr*ith;
  6537. const int ir1 = MIN(ir0 + dr, nr);
  6538. for (int ir = ir0; ir < ir1; ++ir) {
  6539. // a indices
  6540. const int ia3 = ir/(nea2*nea1);
  6541. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6542. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6543. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6544. for (int ic = 0; ic < neb01; ++ic) {
  6545. // b0 indices
  6546. const int ib03 = ia3;
  6547. const int ib02 = ia2;
  6548. const int ib01 = ic;
  6549. // S indices
  6550. const int i1 = ib01;
  6551. ggml_vec_dot_f16(nea0,
  6552. S + i1,
  6553. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6554. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6555. }
  6556. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6557. //ggml_vec_gelu_f32(neb01, S, S);
  6558. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6559. for (int i = 0; i < M; i++) {
  6560. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6561. }
  6562. ggml_vec_gelu_f16(neb01, S16, S16);
  6563. {
  6564. // dst indices
  6565. const int i1 = ia1;
  6566. const int i2 = ia2;
  6567. const int i3 = ia3;
  6568. for (int ic = 0; ic < nec01; ++ic) {
  6569. ggml_vec_dot_f16(neb01,
  6570. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6571. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6572. S16);
  6573. }
  6574. ggml_vec_add_f32(nec01,
  6575. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6576. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6577. (float *) c1->data);
  6578. }
  6579. }
  6580. }
  6581. static void ggml_compute_forward_flash_ff(
  6582. const struct ggml_compute_params * params,
  6583. const struct ggml_tensor * a,
  6584. const struct ggml_tensor * b0,
  6585. const struct ggml_tensor * b1,
  6586. const struct ggml_tensor * c0,
  6587. const struct ggml_tensor * c1,
  6588. struct ggml_tensor * dst) {
  6589. switch (b0->type) {
  6590. case GGML_TYPE_F16:
  6591. {
  6592. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6593. } break;
  6594. case GGML_TYPE_F32:
  6595. {
  6596. GGML_ASSERT(false); // TODO
  6597. } break;
  6598. case GGML_TYPE_Q4_0:
  6599. case GGML_TYPE_Q4_1:
  6600. case GGML_TYPE_I8:
  6601. case GGML_TYPE_I16:
  6602. case GGML_TYPE_I32:
  6603. case GGML_TYPE_COUNT:
  6604. {
  6605. GGML_ASSERT(false);
  6606. } break;
  6607. }
  6608. }
  6609. /////////////////////////////////
  6610. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6611. GGML_ASSERT(params);
  6612. switch (tensor->op) {
  6613. case GGML_OP_DUP:
  6614. {
  6615. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6616. } break;
  6617. case GGML_OP_ADD:
  6618. {
  6619. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6620. } break;
  6621. case GGML_OP_SUB:
  6622. {
  6623. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6624. } break;
  6625. case GGML_OP_MUL:
  6626. {
  6627. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6628. } break;
  6629. case GGML_OP_DIV:
  6630. {
  6631. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6632. } break;
  6633. case GGML_OP_SQR:
  6634. {
  6635. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6636. } break;
  6637. case GGML_OP_SQRT:
  6638. {
  6639. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6640. } break;
  6641. case GGML_OP_SUM:
  6642. {
  6643. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6644. } break;
  6645. case GGML_OP_MEAN:
  6646. {
  6647. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6648. } break;
  6649. case GGML_OP_REPEAT:
  6650. {
  6651. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6652. } break;
  6653. case GGML_OP_ABS:
  6654. {
  6655. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6656. } break;
  6657. case GGML_OP_SGN:
  6658. {
  6659. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6660. } break;
  6661. case GGML_OP_NEG:
  6662. {
  6663. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6664. } break;
  6665. case GGML_OP_STEP:
  6666. {
  6667. ggml_compute_forward_step(params, tensor->src0, tensor);
  6668. } break;
  6669. case GGML_OP_RELU:
  6670. {
  6671. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6672. } break;
  6673. case GGML_OP_GELU:
  6674. {
  6675. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6676. } break;
  6677. case GGML_OP_SILU:
  6678. {
  6679. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6680. } break;
  6681. case GGML_OP_NORM:
  6682. {
  6683. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6684. } break;
  6685. case GGML_OP_RMS_NORM:
  6686. {
  6687. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6688. } break;
  6689. case GGML_OP_MUL_MAT:
  6690. {
  6691. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6692. } break;
  6693. case GGML_OP_SCALE:
  6694. {
  6695. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6696. } break;
  6697. case GGML_OP_CPY:
  6698. {
  6699. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6700. } break;
  6701. case GGML_OP_RESHAPE:
  6702. {
  6703. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6704. } break;
  6705. case GGML_OP_VIEW:
  6706. {
  6707. ggml_compute_forward_view(params, tensor->src0);
  6708. } break;
  6709. case GGML_OP_PERMUTE:
  6710. {
  6711. ggml_compute_forward_permute(params, tensor->src0);
  6712. } break;
  6713. case GGML_OP_TRANSPOSE:
  6714. {
  6715. ggml_compute_forward_transpose(params, tensor->src0);
  6716. } break;
  6717. case GGML_OP_GET_ROWS:
  6718. {
  6719. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6720. } break;
  6721. case GGML_OP_DIAG_MASK_INF:
  6722. {
  6723. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6724. } break;
  6725. case GGML_OP_SOFT_MAX:
  6726. {
  6727. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6728. } break;
  6729. case GGML_OP_ROPE:
  6730. {
  6731. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6732. } break;
  6733. case GGML_OP_CONV_1D_1S:
  6734. {
  6735. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6736. } break;
  6737. case GGML_OP_CONV_1D_2S:
  6738. {
  6739. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6740. } break;
  6741. case GGML_OP_FLASH_ATTN:
  6742. {
  6743. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6744. GGML_ASSERT(t == 0 || t == 1);
  6745. bool masked = t != 0;
  6746. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6747. } break;
  6748. case GGML_OP_FLASH_FF:
  6749. {
  6750. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6751. } break;
  6752. case GGML_OP_NONE:
  6753. {
  6754. // nop
  6755. } break;
  6756. case GGML_OP_COUNT:
  6757. {
  6758. GGML_ASSERT(false);
  6759. } break;
  6760. }
  6761. }
  6762. ////////////////////////////////////////////////////////////////////////////////
  6763. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6764. struct ggml_tensor * src0 = tensor->src0;
  6765. struct ggml_tensor * src1 = tensor->src1;
  6766. switch (tensor->op) {
  6767. case GGML_OP_DUP:
  6768. {
  6769. if (src0->grad) {
  6770. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6771. }
  6772. } break;
  6773. case GGML_OP_ADD:
  6774. {
  6775. if (src0->grad) {
  6776. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6777. }
  6778. if (src1->grad) {
  6779. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6780. }
  6781. } break;
  6782. case GGML_OP_SUB:
  6783. {
  6784. if (src0->grad) {
  6785. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6786. }
  6787. if (src1->grad) {
  6788. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6789. }
  6790. } break;
  6791. case GGML_OP_MUL:
  6792. {
  6793. if (src0->grad) {
  6794. src0->grad =
  6795. ggml_add_impl(ctx,
  6796. src0->grad,
  6797. ggml_mul(ctx, src1, tensor->grad),
  6798. inplace);
  6799. }
  6800. if (src1->grad) {
  6801. src1->grad =
  6802. ggml_add_impl(ctx,
  6803. src1->grad,
  6804. ggml_mul(ctx, src0, tensor->grad),
  6805. inplace);
  6806. }
  6807. } break;
  6808. case GGML_OP_DIV:
  6809. {
  6810. if (src0->grad) {
  6811. src0->grad =
  6812. ggml_add_impl(ctx,
  6813. src0->grad,
  6814. ggml_div(ctx, tensor->grad, src1),
  6815. inplace);
  6816. }
  6817. if (src1->grad) {
  6818. src1->grad =
  6819. ggml_sub_impl(ctx,
  6820. src1->grad,
  6821. ggml_mul(ctx,
  6822. tensor->grad,
  6823. ggml_div(ctx, tensor, src1)),
  6824. inplace);
  6825. }
  6826. } break;
  6827. case GGML_OP_SQR:
  6828. {
  6829. if (src0->grad) {
  6830. src0->grad =
  6831. ggml_add_impl(ctx,
  6832. src0->grad,
  6833. ggml_mul(ctx,
  6834. ggml_mul(ctx, src0, tensor->grad),
  6835. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  6836. inplace);
  6837. }
  6838. } break;
  6839. case GGML_OP_SQRT:
  6840. {
  6841. if (src0->grad) {
  6842. src0->grad =
  6843. ggml_add_impl(ctx,
  6844. src0->grad,
  6845. ggml_div(ctx,
  6846. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  6847. tensor),
  6848. inplace);
  6849. }
  6850. } break;
  6851. case GGML_OP_SUM:
  6852. {
  6853. if (src0->grad) {
  6854. src0->grad =
  6855. ggml_add_impl(ctx,
  6856. src0->grad,
  6857. ggml_repeat(ctx, tensor->grad, src0->grad),
  6858. inplace);
  6859. }
  6860. } break;
  6861. case GGML_OP_MEAN:
  6862. {
  6863. GGML_ASSERT(false); // TODO: implement
  6864. } break;
  6865. case GGML_OP_REPEAT:
  6866. {
  6867. if (src0->grad) {
  6868. src0->grad =
  6869. ggml_add_impl(ctx,
  6870. src0->grad,
  6871. ggml_sum(ctx, tensor->grad),
  6872. inplace);
  6873. }
  6874. } break;
  6875. case GGML_OP_ABS:
  6876. {
  6877. if (src0->grad) {
  6878. src0->grad =
  6879. ggml_add_impl(ctx,
  6880. src0->grad,
  6881. ggml_mul(ctx,
  6882. ggml_sgn(ctx, src0),
  6883. tensor->grad),
  6884. inplace);
  6885. }
  6886. } break;
  6887. case GGML_OP_SGN:
  6888. {
  6889. if (src0->grad) {
  6890. // noop
  6891. }
  6892. } break;
  6893. case GGML_OP_NEG:
  6894. {
  6895. if (src0->grad) {
  6896. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  6897. }
  6898. } break;
  6899. case GGML_OP_STEP:
  6900. {
  6901. if (src0->grad) {
  6902. // noop
  6903. }
  6904. } break;
  6905. case GGML_OP_RELU:
  6906. {
  6907. if (src0->grad) {
  6908. src0->grad = ggml_sub_impl(ctx,
  6909. src0->grad,
  6910. ggml_mul(ctx,
  6911. ggml_step(ctx, src0),
  6912. tensor->grad),
  6913. inplace);
  6914. }
  6915. } break;
  6916. case GGML_OP_GELU:
  6917. {
  6918. GGML_ASSERT(false); // TODO: not implemented
  6919. } break;
  6920. case GGML_OP_SILU:
  6921. {
  6922. GGML_ASSERT(false); // TODO: not implemented
  6923. } break;
  6924. case GGML_OP_NORM:
  6925. {
  6926. GGML_ASSERT(false); // TODO: not implemented
  6927. } break;
  6928. case GGML_OP_RMS_NORM:
  6929. {
  6930. GGML_ASSERT(false); // TODO: not implemented
  6931. } break;
  6932. case GGML_OP_MUL_MAT:
  6933. {
  6934. if (src0->grad) {
  6935. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  6936. GGML_ASSERT(false);
  6937. }
  6938. if (src1->grad) {
  6939. src1->grad =
  6940. ggml_add_impl(ctx,
  6941. src1->grad,
  6942. // TODO: fix transpose, the node will break the graph connections
  6943. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  6944. inplace);
  6945. }
  6946. } break;
  6947. case GGML_OP_SCALE:
  6948. {
  6949. GGML_ASSERT(false); // TODO: not implemented
  6950. } break;
  6951. case GGML_OP_CPY:
  6952. {
  6953. GGML_ASSERT(false); // TODO: not implemented
  6954. } break;
  6955. case GGML_OP_RESHAPE:
  6956. {
  6957. GGML_ASSERT(false); // TODO: not implemented
  6958. } break;
  6959. case GGML_OP_VIEW:
  6960. {
  6961. GGML_ASSERT(false); // not supported
  6962. } break;
  6963. case GGML_OP_PERMUTE:
  6964. {
  6965. GGML_ASSERT(false); // TODO: not implemented
  6966. } break;
  6967. case GGML_OP_TRANSPOSE:
  6968. {
  6969. GGML_ASSERT(false); // TODO: not implemented
  6970. } break;
  6971. case GGML_OP_GET_ROWS:
  6972. {
  6973. GGML_ASSERT(false); // TODO: not implemented
  6974. } break;
  6975. case GGML_OP_DIAG_MASK_INF:
  6976. {
  6977. GGML_ASSERT(false); // TODO: not implemented
  6978. } break;
  6979. case GGML_OP_SOFT_MAX:
  6980. {
  6981. GGML_ASSERT(false); // TODO: not implemented
  6982. } break;
  6983. case GGML_OP_ROPE:
  6984. {
  6985. GGML_ASSERT(false); // TODO: not implemented
  6986. } break;
  6987. case GGML_OP_CONV_1D_1S:
  6988. {
  6989. GGML_ASSERT(false); // TODO: not implemented
  6990. } break;
  6991. case GGML_OP_CONV_1D_2S:
  6992. {
  6993. GGML_ASSERT(false); // TODO: not implemented
  6994. } break;
  6995. case GGML_OP_FLASH_ATTN:
  6996. {
  6997. GGML_ASSERT(false); // not supported
  6998. } break;
  6999. case GGML_OP_FLASH_FF:
  7000. {
  7001. GGML_ASSERT(false); // not supported
  7002. } break;
  7003. case GGML_OP_NONE:
  7004. {
  7005. // nop
  7006. } break;
  7007. case GGML_OP_COUNT:
  7008. {
  7009. GGML_ASSERT(false);
  7010. } break;
  7011. }
  7012. }
  7013. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7014. if (node->grad == NULL) {
  7015. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7016. // it can also happen during forward pass, if the user performs computations with constants
  7017. if (node->op != GGML_OP_NONE) {
  7018. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7019. }
  7020. }
  7021. // check if already visited
  7022. for (int i = 0; i < cgraph->n_nodes; i++) {
  7023. if (cgraph->nodes[i] == node) {
  7024. return;
  7025. }
  7026. }
  7027. for (int i = 0; i < cgraph->n_leafs; i++) {
  7028. if (cgraph->leafs[i] == node) {
  7029. return;
  7030. }
  7031. }
  7032. if (node->src0) {
  7033. ggml_visit_parents(cgraph, node->src0);
  7034. }
  7035. if (node->src1) {
  7036. ggml_visit_parents(cgraph, node->src1);
  7037. }
  7038. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7039. if (node->opt[i]) {
  7040. ggml_visit_parents(cgraph, node->opt[i]);
  7041. }
  7042. }
  7043. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7044. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7045. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7046. cgraph->leafs[cgraph->n_leafs] = node;
  7047. cgraph->n_leafs++;
  7048. } else {
  7049. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7050. cgraph->nodes[cgraph->n_nodes] = node;
  7051. cgraph->grads[cgraph->n_nodes] = node->grad;
  7052. cgraph->n_nodes++;
  7053. }
  7054. }
  7055. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7056. if (!expand) {
  7057. cgraph->n_nodes = 0;
  7058. cgraph->n_leafs = 0;
  7059. }
  7060. const int n0 = cgraph->n_nodes;
  7061. UNUSED(n0);
  7062. ggml_visit_parents(cgraph, tensor);
  7063. const int n_new = cgraph->n_nodes - n0;
  7064. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7065. if (n_new > 0) {
  7066. // the last added node should always be starting point
  7067. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7068. }
  7069. }
  7070. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7071. ggml_build_forward_impl(cgraph, tensor, true);
  7072. }
  7073. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7074. struct ggml_cgraph result = {
  7075. /*.n_nodes =*/ 0,
  7076. /*.n_leafs =*/ 0,
  7077. /*.n_threads =*/ 0,
  7078. /*.work_size =*/ 0,
  7079. /*.work =*/ NULL,
  7080. /*.nodes =*/ { NULL },
  7081. /*.grads =*/ { NULL },
  7082. /*.leafs =*/ { NULL },
  7083. /*.perf_runs =*/ 0,
  7084. /*.perf_cycles =*/ 0,
  7085. /*.perf_time_us =*/ 0,
  7086. };
  7087. ggml_build_forward_impl(&result, tensor, false);
  7088. return result;
  7089. }
  7090. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7091. struct ggml_cgraph result = *gf;
  7092. GGML_ASSERT(gf->n_nodes > 0);
  7093. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7094. if (keep) {
  7095. for (int i = 0; i < gf->n_nodes; i++) {
  7096. struct ggml_tensor * node = gf->nodes[i];
  7097. if (node->grad) {
  7098. node->grad = ggml_dup_tensor(ctx, node);
  7099. gf->grads[i] = node->grad;
  7100. }
  7101. }
  7102. }
  7103. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7104. struct ggml_tensor * node = gf->nodes[i];
  7105. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7106. if (node->grad) {
  7107. ggml_compute_backward(ctx, node, keep);
  7108. }
  7109. }
  7110. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7111. struct ggml_tensor * node = gf->nodes[i];
  7112. if (node->is_param) {
  7113. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7114. ggml_build_forward_impl(&result, node->grad, true);
  7115. }
  7116. }
  7117. return result;
  7118. }
  7119. //
  7120. // thread data
  7121. //
  7122. // synchronization is done via busy loops
  7123. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7124. //
  7125. #ifdef __APPLE__
  7126. //#include <os/lock.h>
  7127. //
  7128. //typedef os_unfair_lock ggml_lock_t;
  7129. //
  7130. //#define ggml_lock_init(x) UNUSED(x)
  7131. //#define ggml_lock_destroy(x) UNUSED(x)
  7132. //#define ggml_lock_lock os_unfair_lock_lock
  7133. //#define ggml_lock_unlock os_unfair_lock_unlock
  7134. //
  7135. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7136. typedef int ggml_lock_t;
  7137. #define ggml_lock_init(x) UNUSED(x)
  7138. #define ggml_lock_destroy(x) UNUSED(x)
  7139. #define ggml_lock_lock(x) UNUSED(x)
  7140. #define ggml_lock_unlock(x) UNUSED(x)
  7141. #define GGML_LOCK_INITIALIZER 0
  7142. typedef pthread_t ggml_thread_t;
  7143. #define ggml_thread_create pthread_create
  7144. #define ggml_thread_join pthread_join
  7145. #else
  7146. //typedef pthread_spinlock_t ggml_lock_t;
  7147. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7148. //#define ggml_lock_destroy pthread_spin_destroy
  7149. //#define ggml_lock_lock pthread_spin_lock
  7150. //#define ggml_lock_unlock pthread_spin_unlock
  7151. typedef int ggml_lock_t;
  7152. #define ggml_lock_init(x) UNUSED(x)
  7153. #define ggml_lock_destroy(x) UNUSED(x)
  7154. #define ggml_lock_lock(x) UNUSED(x)
  7155. #define ggml_lock_unlock(x) UNUSED(x)
  7156. #define GGML_LOCK_INITIALIZER 0
  7157. typedef pthread_t ggml_thread_t;
  7158. #define ggml_thread_create pthread_create
  7159. #define ggml_thread_join pthread_join
  7160. #endif
  7161. struct ggml_compute_state_shared {
  7162. ggml_lock_t spin;
  7163. int n_threads;
  7164. // synchronization primitives
  7165. atomic_int n_ready;
  7166. atomic_bool has_work;
  7167. atomic_bool stop; // stop all threads
  7168. };
  7169. struct ggml_compute_state {
  7170. ggml_thread_t thrd;
  7171. struct ggml_compute_params params;
  7172. struct ggml_tensor * node;
  7173. struct ggml_compute_state_shared * shared;
  7174. };
  7175. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7176. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7177. const int n_threads = state->shared->n_threads;
  7178. while (true) {
  7179. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7180. atomic_store(&state->shared->has_work, false);
  7181. } else {
  7182. while (atomic_load(&state->shared->has_work)) {
  7183. if (atomic_load(&state->shared->stop)) {
  7184. return 0;
  7185. }
  7186. ggml_lock_lock (&state->shared->spin);
  7187. ggml_lock_unlock(&state->shared->spin);
  7188. }
  7189. }
  7190. atomic_fetch_sub(&state->shared->n_ready, 1);
  7191. // wait for work
  7192. while (!atomic_load(&state->shared->has_work)) {
  7193. if (atomic_load(&state->shared->stop)) {
  7194. return 0;
  7195. }
  7196. ggml_lock_lock (&state->shared->spin);
  7197. ggml_lock_unlock(&state->shared->spin);
  7198. }
  7199. // check if we should stop
  7200. if (atomic_load(&state->shared->stop)) {
  7201. break;
  7202. }
  7203. if (state->node) {
  7204. if (state->params.ith < state->params.nth) {
  7205. ggml_compute_forward(&state->params, state->node);
  7206. }
  7207. state->node = NULL;
  7208. } else {
  7209. break;
  7210. }
  7211. }
  7212. return 0;
  7213. }
  7214. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7215. const int n_threads = cgraph->n_threads;
  7216. struct ggml_compute_state_shared state_shared = {
  7217. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7218. /*.n_threads =*/ n_threads,
  7219. /*.n_ready =*/ 0,
  7220. /*.has_work =*/ false,
  7221. /*.stop =*/ false,
  7222. };
  7223. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7224. // create thread pool
  7225. if (n_threads > 1) {
  7226. ggml_lock_init(&state_shared.spin);
  7227. atomic_store(&state_shared.has_work, true);
  7228. for (int j = 0; j < n_threads - 1; j++) {
  7229. workers[j] = (struct ggml_compute_state) {
  7230. .thrd = 0,
  7231. .params = {
  7232. .type = GGML_TASK_COMPUTE,
  7233. .ith = j + 1,
  7234. .nth = n_threads,
  7235. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7236. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7237. },
  7238. .node = NULL,
  7239. .shared = &state_shared,
  7240. };
  7241. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7242. GGML_ASSERT(rc == 0);
  7243. UNUSED(rc);
  7244. }
  7245. }
  7246. // initialize tasks + work buffer
  7247. {
  7248. size_t work_size = 0;
  7249. // thread scheduling for the different operations
  7250. for (int i = 0; i < cgraph->n_nodes; i++) {
  7251. struct ggml_tensor * node = cgraph->nodes[i];
  7252. switch (node->op) {
  7253. case GGML_OP_DUP:
  7254. {
  7255. node->n_tasks = 1;
  7256. } break;
  7257. case GGML_OP_ADD:
  7258. {
  7259. node->n_tasks = n_threads;
  7260. } break;
  7261. case GGML_OP_SUB:
  7262. case GGML_OP_MUL:
  7263. case GGML_OP_DIV:
  7264. case GGML_OP_SQR:
  7265. case GGML_OP_SQRT:
  7266. case GGML_OP_SUM:
  7267. case GGML_OP_MEAN:
  7268. case GGML_OP_REPEAT:
  7269. case GGML_OP_ABS:
  7270. case GGML_OP_SGN:
  7271. case GGML_OP_NEG:
  7272. case GGML_OP_STEP:
  7273. case GGML_OP_RELU:
  7274. {
  7275. node->n_tasks = 1;
  7276. } break;
  7277. case GGML_OP_GELU:
  7278. {
  7279. node->n_tasks = n_threads;
  7280. } break;
  7281. case GGML_OP_SILU:
  7282. {
  7283. node->n_tasks = n_threads;
  7284. } break;
  7285. case GGML_OP_NORM:
  7286. case GGML_OP_RMS_NORM:
  7287. {
  7288. node->n_tasks = n_threads;
  7289. } break;
  7290. case GGML_OP_MUL_MAT:
  7291. {
  7292. node->n_tasks = n_threads;
  7293. // TODO: use different scheduling for different matrix sizes
  7294. //const int nr0 = ggml_nrows(node->src0);
  7295. //const int nr1 = ggml_nrows(node->src1);
  7296. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7297. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7298. size_t cur = 0;
  7299. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7300. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7301. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7302. node->n_tasks = 1; // TODO: this actually is doing nothing
  7303. // the threads are still spinning
  7304. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7305. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7306. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7307. //printf("cur = %zu\n", cur);
  7308. } else {
  7309. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7310. }
  7311. #else
  7312. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7313. #endif
  7314. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7315. cur = 0;
  7316. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7317. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7318. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7319. node->n_tasks = 1;
  7320. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7321. } else
  7322. #endif
  7323. {
  7324. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7325. }
  7326. } else {
  7327. GGML_ASSERT(false);
  7328. }
  7329. work_size = MAX(work_size, cur);
  7330. } break;
  7331. case GGML_OP_SCALE:
  7332. {
  7333. node->n_tasks = n_threads;
  7334. } break;
  7335. case GGML_OP_CPY:
  7336. case GGML_OP_RESHAPE:
  7337. case GGML_OP_VIEW:
  7338. case GGML_OP_PERMUTE:
  7339. case GGML_OP_TRANSPOSE:
  7340. case GGML_OP_GET_ROWS:
  7341. case GGML_OP_DIAG_MASK_INF:
  7342. {
  7343. node->n_tasks = 1;
  7344. } break;
  7345. case GGML_OP_SOFT_MAX:
  7346. {
  7347. node->n_tasks = n_threads;
  7348. } break;
  7349. case GGML_OP_ROPE:
  7350. {
  7351. node->n_tasks = 1;
  7352. } break;
  7353. case GGML_OP_CONV_1D_1S:
  7354. case GGML_OP_CONV_1D_2S:
  7355. {
  7356. node->n_tasks = n_threads;
  7357. GGML_ASSERT(node->src0->ne[3] == 1);
  7358. GGML_ASSERT(node->src1->ne[2] == 1);
  7359. GGML_ASSERT(node->src1->ne[3] == 1);
  7360. size_t cur = 0;
  7361. const int nk = node->src0->ne[0];
  7362. if (node->src0->type == GGML_TYPE_F16 &&
  7363. node->src1->type == GGML_TYPE_F32) {
  7364. cur = sizeof(ggml_fp16_t)*(
  7365. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7366. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7367. );
  7368. } else if (node->src0->type == GGML_TYPE_F32 &&
  7369. node->src1->type == GGML_TYPE_F32) {
  7370. cur = sizeof(float)*(
  7371. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7372. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7373. );
  7374. } else {
  7375. GGML_ASSERT(false);
  7376. }
  7377. work_size = MAX(work_size, cur);
  7378. } break;
  7379. case GGML_OP_FLASH_ATTN:
  7380. {
  7381. node->n_tasks = n_threads;
  7382. size_t cur = 0;
  7383. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7384. if (node->src1->type == GGML_TYPE_F32) {
  7385. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7386. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7387. }
  7388. if (node->src1->type == GGML_TYPE_F16) {
  7389. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7390. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7391. }
  7392. work_size = MAX(work_size, cur);
  7393. } break;
  7394. case GGML_OP_FLASH_FF:
  7395. {
  7396. node->n_tasks = n_threads;
  7397. size_t cur = 0;
  7398. if (node->src1->type == GGML_TYPE_F32) {
  7399. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7400. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7401. }
  7402. if (node->src1->type == GGML_TYPE_F16) {
  7403. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7404. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7405. }
  7406. work_size = MAX(work_size, cur);
  7407. } break;
  7408. case GGML_OP_NONE:
  7409. {
  7410. node->n_tasks = 1;
  7411. } break;
  7412. case GGML_OP_COUNT:
  7413. {
  7414. GGML_ASSERT(false);
  7415. } break;
  7416. }
  7417. }
  7418. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7419. GGML_ASSERT(false); // TODO: better handling
  7420. }
  7421. if (work_size > 0 && cgraph->work == NULL) {
  7422. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7423. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7424. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7425. }
  7426. }
  7427. const int64_t perf_start_cycles = ggml_perf_cycles();
  7428. const int64_t perf_start_time_us = ggml_perf_time_us();
  7429. for (int i = 0; i < cgraph->n_nodes; i++) {
  7430. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7431. struct ggml_tensor * node = cgraph->nodes[i];
  7432. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7433. //if (node->grad == NULL && node->perf_runs > 0) {
  7434. // continue;
  7435. //}
  7436. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7437. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7438. // INIT
  7439. struct ggml_compute_params params = {
  7440. /*.type =*/ GGML_TASK_INIT,
  7441. /*.ith =*/ 0,
  7442. /*.nth =*/ node->n_tasks,
  7443. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7444. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7445. };
  7446. ggml_compute_forward(&params, node);
  7447. // COMPUTE
  7448. if (node->n_tasks > 1) {
  7449. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7450. atomic_store(&state_shared.has_work, false);
  7451. }
  7452. while (atomic_load(&state_shared.has_work)) {
  7453. ggml_lock_lock (&state_shared.spin);
  7454. ggml_lock_unlock(&state_shared.spin);
  7455. }
  7456. // launch thread pool
  7457. for (int j = 0; j < n_threads - 1; j++) {
  7458. workers[j].params = (struct ggml_compute_params) {
  7459. .type = GGML_TASK_COMPUTE,
  7460. .ith = j + 1,
  7461. .nth = node->n_tasks,
  7462. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7463. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7464. };
  7465. workers[j].node = node;
  7466. }
  7467. atomic_fetch_sub(&state_shared.n_ready, 1);
  7468. while (atomic_load(&state_shared.n_ready) > 0) {
  7469. ggml_lock_lock (&state_shared.spin);
  7470. ggml_lock_unlock(&state_shared.spin);
  7471. }
  7472. atomic_store(&state_shared.has_work, true);
  7473. }
  7474. params.type = GGML_TASK_COMPUTE;
  7475. ggml_compute_forward(&params, node);
  7476. // wait for thread pool
  7477. if (node->n_tasks > 1) {
  7478. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7479. atomic_store(&state_shared.has_work, false);
  7480. }
  7481. while (atomic_load(&state_shared.has_work)) {
  7482. ggml_lock_lock (&state_shared.spin);
  7483. ggml_lock_unlock(&state_shared.spin);
  7484. }
  7485. atomic_fetch_sub(&state_shared.n_ready, 1);
  7486. while (atomic_load(&state_shared.n_ready) != 0) {
  7487. ggml_lock_lock (&state_shared.spin);
  7488. ggml_lock_unlock(&state_shared.spin);
  7489. }
  7490. }
  7491. // FINALIZE
  7492. if (node->n_tasks > 1) {
  7493. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7494. atomic_store(&state_shared.has_work, false);
  7495. }
  7496. while (atomic_load(&state_shared.has_work)) {
  7497. ggml_lock_lock (&state_shared.spin);
  7498. ggml_lock_unlock(&state_shared.spin);
  7499. }
  7500. // launch thread pool
  7501. for (int j = 0; j < n_threads - 1; j++) {
  7502. workers[j].params = (struct ggml_compute_params) {
  7503. .type = GGML_TASK_FINALIZE,
  7504. .ith = j + 1,
  7505. .nth = node->n_tasks,
  7506. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7507. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7508. };
  7509. workers[j].node = node;
  7510. }
  7511. atomic_fetch_sub(&state_shared.n_ready, 1);
  7512. while (atomic_load(&state_shared.n_ready) > 0) {
  7513. ggml_lock_lock (&state_shared.spin);
  7514. ggml_lock_unlock(&state_shared.spin);
  7515. }
  7516. atomic_store(&state_shared.has_work, true);
  7517. }
  7518. params.type = GGML_TASK_FINALIZE;
  7519. ggml_compute_forward(&params, node);
  7520. // wait for thread pool
  7521. if (node->n_tasks > 1) {
  7522. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7523. atomic_store(&state_shared.has_work, false);
  7524. }
  7525. while (atomic_load(&state_shared.has_work)) {
  7526. ggml_lock_lock (&state_shared.spin);
  7527. ggml_lock_unlock(&state_shared.spin);
  7528. }
  7529. atomic_fetch_sub(&state_shared.n_ready, 1);
  7530. while (atomic_load(&state_shared.n_ready) != 0) {
  7531. ggml_lock_lock (&state_shared.spin);
  7532. ggml_lock_unlock(&state_shared.spin);
  7533. }
  7534. }
  7535. // performance stats (node)
  7536. {
  7537. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7538. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7539. node->perf_runs++;
  7540. node->perf_cycles += perf_cycles_cur;
  7541. node->perf_time_us += perf_time_us_cur;
  7542. }
  7543. }
  7544. // join thread pool
  7545. if (n_threads > 1) {
  7546. atomic_store(&state_shared.stop, true);
  7547. atomic_store(&state_shared.has_work, true);
  7548. for (int j = 0; j < n_threads - 1; j++) {
  7549. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7550. GGML_ASSERT(rc == 0);
  7551. UNUSED(rc);
  7552. }
  7553. ggml_lock_destroy(&state_shared.spin);
  7554. }
  7555. // performance stats (graph)
  7556. {
  7557. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7558. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7559. cgraph->perf_runs++;
  7560. cgraph->perf_cycles += perf_cycles_cur;
  7561. cgraph->perf_time_us += perf_time_us_cur;
  7562. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7563. __func__, cgraph->perf_runs,
  7564. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7565. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7566. (double) perf_time_us_cur / 1000.0,
  7567. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7568. }
  7569. }
  7570. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7571. for (int i = 0; i < cgraph->n_nodes; i++) {
  7572. struct ggml_tensor * grad = cgraph->grads[i];
  7573. if (grad) {
  7574. ggml_set_zero(grad);
  7575. }
  7576. }
  7577. }
  7578. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7579. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7580. GGML_PRINT("=== GRAPH ===\n");
  7581. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7582. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7583. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7584. for (int i = 0; i < cgraph->n_nodes; i++) {
  7585. struct ggml_tensor * node = cgraph->nodes[i];
  7586. perf_total_per_op_us[node->op] += node->perf_time_us;
  7587. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7588. i,
  7589. node->ne[0], node->ne[1], node->ne[2],
  7590. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7591. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7592. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7593. (double) node->perf_time_us / 1000.0,
  7594. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7595. }
  7596. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7597. for (int i = 0; i < cgraph->n_leafs; i++) {
  7598. struct ggml_tensor * node = cgraph->leafs[i];
  7599. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7600. i,
  7601. node->ne[0], node->ne[1],
  7602. GGML_OP_LABEL[node->op]);
  7603. }
  7604. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7605. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7606. }
  7607. GGML_PRINT("========================================\n");
  7608. }
  7609. // check if node is part of the graph
  7610. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7611. if (cgraph == NULL) {
  7612. return true;
  7613. }
  7614. for (int i = 0; i < cgraph->n_nodes; i++) {
  7615. if (cgraph->nodes[i] == node) {
  7616. return true;
  7617. }
  7618. }
  7619. return false;
  7620. }
  7621. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7622. for (int i = 0; i < cgraph->n_nodes; i++) {
  7623. struct ggml_tensor * parent = cgraph->nodes[i];
  7624. if (parent->grad == node) {
  7625. return parent;
  7626. }
  7627. }
  7628. return NULL;
  7629. }
  7630. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7631. char color[16];
  7632. FILE * fp = fopen(filename, "w");
  7633. GGML_ASSERT(fp);
  7634. fprintf(fp, "digraph G {\n");
  7635. fprintf(fp, " newrank = true;\n");
  7636. fprintf(fp, " rankdir = LR;\n");
  7637. for (int i = 0; i < gb->n_nodes; i++) {
  7638. struct ggml_tensor * node = gb->nodes[i];
  7639. if (ggml_graph_get_parent(gb, node) != NULL) {
  7640. continue;
  7641. }
  7642. if (node->is_param) {
  7643. snprintf(color, sizeof(color), "yellow");
  7644. } else if (node->grad) {
  7645. if (ggml_graph_find(gf, node)) {
  7646. snprintf(color, sizeof(color), "green");
  7647. } else {
  7648. snprintf(color, sizeof(color), "lightblue");
  7649. }
  7650. } else {
  7651. snprintf(color, sizeof(color), "white");
  7652. }
  7653. fprintf(fp, " \"%p\" [ \
  7654. style = filled; fillcolor = %s; shape = record; \
  7655. label=\"%d [%d, %d] | <x>%s",
  7656. (void *) node, color,
  7657. i, node->ne[0], node->ne[1],
  7658. GGML_OP_SYMBOL[node->op]);
  7659. if (node->grad) {
  7660. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7661. } else {
  7662. fprintf(fp, "\"; ]\n");
  7663. }
  7664. }
  7665. for (int i = 0; i < gb->n_leafs; i++) {
  7666. struct ggml_tensor * node = gb->leafs[i];
  7667. snprintf(color, sizeof(color), "pink");
  7668. if (ggml_nelements(node) == 1) {
  7669. fprintf(fp, " \"%p\" [ \
  7670. style = filled; fillcolor = %s; shape = record; \
  7671. label=\"<x>%.1e\"; ]\n",
  7672. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7673. } else {
  7674. fprintf(fp, " \"%p\" [ \
  7675. style = filled; fillcolor = %s; shape = record; \
  7676. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7677. (void *) node, color,
  7678. i, node->ne[0], node->ne[1]);
  7679. }
  7680. }
  7681. for (int i = 0; i < gb->n_nodes; i++) {
  7682. struct ggml_tensor * node = gb->nodes[i];
  7683. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7684. if (node->src0) {
  7685. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7686. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7687. parent0 ? (void *) parent0 : (void *) node->src0,
  7688. parent0 ? "g" : "x",
  7689. parent ? (void *) parent : (void *) node,
  7690. parent ? "g" : "x",
  7691. parent ? "empty" : "vee",
  7692. parent ? "dashed" : "solid");
  7693. }
  7694. if (node->src1) {
  7695. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7696. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7697. parent1 ? (void *) parent1 : (void *) node->src1,
  7698. parent1 ? "g" : "x",
  7699. parent ? (void *) parent : (void *) node,
  7700. parent ? "g" : "x",
  7701. parent ? "empty" : "vee",
  7702. parent ? "dashed" : "solid");
  7703. }
  7704. }
  7705. for (int i = 0; i < gb->n_leafs; i++) {
  7706. struct ggml_tensor * node = gb->leafs[i];
  7707. if (node->src0) {
  7708. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7709. (void *) node->src0, "x",
  7710. (void *) node, "x");
  7711. }
  7712. if (node->src1) {
  7713. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7714. (void *) node->src1, "x",
  7715. (void *) node, "x");
  7716. }
  7717. }
  7718. fprintf(fp, "}\n");
  7719. fclose(fp);
  7720. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7721. }
  7722. ////////////////////////////////////////////////////////////////////////////////
  7723. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7724. int i = 0;
  7725. for (int p = 0; p < np; ++p) {
  7726. const int ne = ggml_nelements(ps[p]) ;
  7727. // TODO: add function to set tensor from array
  7728. for (int j = 0; j < ne; ++j) {
  7729. ggml_set_f32_1d(ps[p], j, x[i++]);
  7730. }
  7731. }
  7732. }
  7733. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7734. int i = 0;
  7735. for (int p = 0; p < np; ++p) {
  7736. const int ne = ggml_nelements(ps[p]) ;
  7737. // TODO: add function to get all elements at once
  7738. for (int j = 0; j < ne; ++j) {
  7739. x[i++] = ggml_get_f32_1d(ps[p], j);
  7740. }
  7741. }
  7742. }
  7743. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7744. int i = 0;
  7745. for (int p = 0; p < np; ++p) {
  7746. const int ne = ggml_nelements(ps[p]) ;
  7747. // TODO: add function to get all elements at once
  7748. for (int j = 0; j < ne; ++j) {
  7749. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7750. }
  7751. }
  7752. }
  7753. //
  7754. // ADAM
  7755. //
  7756. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7757. //
  7758. static enum ggml_opt_result ggml_opt_adam(
  7759. struct ggml_context * ctx,
  7760. struct ggml_opt_params params,
  7761. struct ggml_tensor * f,
  7762. struct ggml_cgraph * gf,
  7763. struct ggml_cgraph * gb) {
  7764. GGML_ASSERT(ggml_is_scalar(f));
  7765. gf->n_threads = params.n_threads;
  7766. gb->n_threads = params.n_threads;
  7767. // these will store the parameters we want to optimize
  7768. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7769. int np = 0;
  7770. int nx = 0;
  7771. for (int i = 0; i < gf->n_nodes; ++i) {
  7772. if (gf->nodes[i]->is_param) {
  7773. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7774. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7775. ps[np++] = gf->nodes[i];
  7776. nx += ggml_nelements(gf->nodes[i]);
  7777. }
  7778. }
  7779. // constants
  7780. const float alpha = params.adam.alpha;
  7781. const float beta1 = params.adam.beta1;
  7782. const float beta2 = params.adam.beta2;
  7783. const float eps = params.adam.eps;
  7784. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7785. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7786. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7787. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7788. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7789. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7790. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7791. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7792. // initialize
  7793. ggml_vec_set_f32(nx, m, 0.0f);
  7794. ggml_vec_set_f32(nx, v, 0.0f);
  7795. // update view
  7796. ggml_opt_get_params(np, ps, x);
  7797. // compute the function value
  7798. ggml_graph_reset (gf);
  7799. ggml_set_f32 (f->grad, 1.0f);
  7800. ggml_graph_compute(ctx, gb);
  7801. float fx_prev = ggml_get_f32_1d(f, 0);
  7802. if (pf) {
  7803. pf[0] = fx_prev;
  7804. }
  7805. int n_no_improvement = 0;
  7806. float fx_best = fx_prev;
  7807. // run the optimizer
  7808. for (int t = 0; t < params.adam.n_iter; ++t) {
  7809. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7810. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7811. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7812. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7813. for (int i = 0; i < np; ++i) {
  7814. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7815. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7816. }
  7817. const int64_t t_start_wall = ggml_time_us();
  7818. const int64_t t_start_cpu = ggml_cycles();
  7819. UNUSED(t_start_wall);
  7820. UNUSED(t_start_cpu);
  7821. {
  7822. // update the gradient
  7823. ggml_opt_get_grad(np, ps, g1);
  7824. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  7825. ggml_vec_scale_f32(nx, m, beta1);
  7826. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  7827. // g2 = g1^2
  7828. ggml_vec_sqr_f32 (nx, g2, g1);
  7829. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  7830. ggml_vec_scale_f32(nx, v, beta2);
  7831. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  7832. // m^hat = m_t / (1 - beta1^t)
  7833. // v^hat = v_t / (1 - beta2^t)
  7834. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  7835. ggml_vec_cpy_f32 (nx, mh, m);
  7836. ggml_vec_cpy_f32 (nx, vh, v);
  7837. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  7838. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  7839. ggml_vec_sqrt_f32 (nx, vh, vh);
  7840. ggml_vec_acc1_f32 (nx, vh, eps);
  7841. ggml_vec_div_f32 (nx, mh, mh, vh);
  7842. ggml_vec_sub_f32 (nx, x, x, mh);
  7843. // update the parameters
  7844. ggml_opt_set_params(np, ps, x);
  7845. }
  7846. ggml_graph_reset (gf);
  7847. ggml_set_f32 (f->grad, 1.0f);
  7848. ggml_graph_compute(ctx, gb);
  7849. const float fx = ggml_get_f32_1d(f, 0);
  7850. // check convergence
  7851. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  7852. GGML_PRINT_DEBUG("converged\n");
  7853. return GGML_OPT_OK;
  7854. }
  7855. // delta-based convergence test
  7856. if (pf != NULL) {
  7857. // need at least params.past iterations to start checking for convergence
  7858. if (params.past <= t) {
  7859. const float rate = (pf[t%params.past] - fx)/fx;
  7860. if (fabsf(rate) < params.delta) {
  7861. return GGML_OPT_OK;
  7862. }
  7863. }
  7864. pf[t%params.past] = fx;
  7865. }
  7866. // check for improvement
  7867. if (params.max_no_improvement > 0) {
  7868. if (fx_best > fx) {
  7869. fx_best = fx;
  7870. n_no_improvement = 0;
  7871. } else {
  7872. ++n_no_improvement;
  7873. if (n_no_improvement >= params.max_no_improvement) {
  7874. return GGML_OPT_OK;
  7875. }
  7876. }
  7877. }
  7878. fx_prev = fx;
  7879. {
  7880. const int64_t t_end_cpu = ggml_cycles();
  7881. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  7882. UNUSED(t_end_cpu);
  7883. const int64_t t_end_wall = ggml_time_us();
  7884. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  7885. UNUSED(t_end_wall);
  7886. }
  7887. }
  7888. return GGML_OPT_DID_NOT_CONVERGE;
  7889. }
  7890. //
  7891. // L-BFGS
  7892. //
  7893. // the L-BFGS implementation below is based on the following implementation:
  7894. //
  7895. // https://github.com/chokkan/liblbfgs
  7896. //
  7897. struct ggml_lbfgs_iteration_data {
  7898. float alpha;
  7899. float ys;
  7900. float * s;
  7901. float * y;
  7902. };
  7903. static enum ggml_opt_result linesearch_backtracking(
  7904. struct ggml_context * ctx,
  7905. const struct ggml_opt_params * params,
  7906. int nx,
  7907. float * x,
  7908. float * fx,
  7909. float * g,
  7910. float * d,
  7911. float * step,
  7912. const float * xp,
  7913. struct ggml_tensor * f,
  7914. struct ggml_cgraph * gf,
  7915. struct ggml_cgraph * gb,
  7916. const int np,
  7917. struct ggml_tensor * ps[]) {
  7918. int count = 0;
  7919. float width = 0.0f;
  7920. float dg = 0.0f;
  7921. float finit = 0.0f;
  7922. float dginit = 0.0f;
  7923. float dgtest = 0.0f;
  7924. const float dec = 0.5f;
  7925. const float inc = 2.1f;
  7926. if (*step <= 0.f) {
  7927. return GGML_LINESEARCH_INVALID_PARAMETERS;
  7928. }
  7929. // compute the initial gradient in the search direction
  7930. ggml_vec_dot_f32(nx, &dginit, g, d);
  7931. // make sure that d points to a descent direction
  7932. if (0 < dginit) {
  7933. return GGML_LINESEARCH_FAIL;
  7934. }
  7935. // initialize local variables
  7936. finit = *fx;
  7937. dgtest = params->lbfgs.ftol*dginit;
  7938. while (true) {
  7939. ggml_vec_cpy_f32(nx, x, xp);
  7940. ggml_vec_mad_f32(nx, x, d, *step);
  7941. // evaluate the function and gradient values
  7942. {
  7943. ggml_opt_set_params(np, ps, x);
  7944. ggml_graph_reset (gf);
  7945. ggml_set_f32 (f->grad, 1.0f);
  7946. ggml_graph_compute(ctx, gb);
  7947. ggml_opt_get_grad(np, ps, g);
  7948. *fx = ggml_get_f32_1d(f, 0);
  7949. }
  7950. ++count;
  7951. if (*fx > finit + (*step)*dgtest) {
  7952. width = dec;
  7953. } else {
  7954. // Armijo condition is satisfied
  7955. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  7956. return count;
  7957. }
  7958. ggml_vec_dot_f32(nx, &dg, g, d);
  7959. // check the Wolfe condition
  7960. if (dg < params->lbfgs.wolfe * dginit) {
  7961. width = inc;
  7962. } else {
  7963. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  7964. // regular Wolfe conditions
  7965. return count;
  7966. }
  7967. if(dg > -params->lbfgs.wolfe*dginit) {
  7968. width = dec;
  7969. } else {
  7970. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  7971. return count;
  7972. }
  7973. return count;
  7974. }
  7975. }
  7976. if (*step < params->lbfgs.min_step) {
  7977. return GGML_LINESEARCH_MINIMUM_STEP;
  7978. }
  7979. if (*step > params->lbfgs.max_step) {
  7980. return GGML_LINESEARCH_MAXIMUM_STEP;
  7981. }
  7982. if (params->lbfgs.max_linesearch <= count) {
  7983. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  7984. }
  7985. (*step) *= width;
  7986. }
  7987. return GGML_LINESEARCH_FAIL;
  7988. }
  7989. static enum ggml_opt_result ggml_opt_lbfgs(
  7990. struct ggml_context * ctx,
  7991. struct ggml_opt_params params,
  7992. struct ggml_tensor * f,
  7993. struct ggml_cgraph * gf,
  7994. struct ggml_cgraph * gb) {
  7995. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  7996. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  7997. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  7998. return GGML_OPT_INVALID_WOLFE;
  7999. }
  8000. }
  8001. gf->n_threads = params.n_threads;
  8002. gb->n_threads = params.n_threads;
  8003. const int m = params.lbfgs.m;
  8004. // these will store the parameters we want to optimize
  8005. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8006. int np = 0;
  8007. int nx = 0;
  8008. for (int i = 0; i < gf->n_nodes; ++i) {
  8009. if (gf->nodes[i]->is_param) {
  8010. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8011. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8012. ps[np++] = gf->nodes[i];
  8013. nx += ggml_nelements(gf->nodes[i]);
  8014. }
  8015. }
  8016. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8017. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8018. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8019. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8020. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8021. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8022. float fx = 0.0f; // cost function value
  8023. float xnorm = 0.0f; // ||x||
  8024. float gnorm = 0.0f; // ||g||
  8025. float step = 0.0f;
  8026. // initialize x from the graph nodes
  8027. ggml_opt_get_params(np, ps, x);
  8028. // the L-BFGS memory
  8029. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8030. for (int i = 0; i < m; ++i) {
  8031. lm[i].alpha = 0.0f;
  8032. lm[i].ys = 0.0f;
  8033. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8034. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8035. }
  8036. // evaluate the function value and its gradient
  8037. {
  8038. ggml_opt_set_params(np, ps, x);
  8039. ggml_graph_reset (gf);
  8040. ggml_set_f32 (f->grad, 1.0f);
  8041. ggml_graph_compute(ctx, gb);
  8042. ggml_opt_get_grad(np, ps, g);
  8043. fx = ggml_get_f32_1d(f, 0);
  8044. }
  8045. if (pf) {
  8046. pf[0] = fx;
  8047. }
  8048. float fx_best = fx;
  8049. // search direction = -gradient
  8050. ggml_vec_neg_f32(nx, d, g);
  8051. // ||x||, ||g||
  8052. ggml_vec_norm_f32(nx, &xnorm, x);
  8053. ggml_vec_norm_f32(nx, &gnorm, g);
  8054. if (xnorm < 1.0f) {
  8055. xnorm = 1.0f;
  8056. }
  8057. // already optimized
  8058. if (gnorm/xnorm <= params.lbfgs.eps) {
  8059. return GGML_OPT_OK;
  8060. }
  8061. // initial step
  8062. ggml_vec_norm_inv_f32(nx, &step, d);
  8063. int j = 0;
  8064. int k = 1;
  8065. int ls = 0;
  8066. int end = 0;
  8067. int bound = 0;
  8068. int n_no_improvement = 0;
  8069. float ys = 0.0f;
  8070. float yy = 0.0f;
  8071. float beta = 0.0f;
  8072. while (true) {
  8073. // store the current position and gradient vectors
  8074. ggml_vec_cpy_f32(nx, xp, x);
  8075. ggml_vec_cpy_f32(nx, gp, g);
  8076. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8077. if (ls < 0) {
  8078. // linesearch failed - go back to the previous point and return
  8079. ggml_vec_cpy_f32(nx, x, xp);
  8080. ggml_vec_cpy_f32(nx, g, gp);
  8081. return ls;
  8082. }
  8083. ggml_vec_norm_f32(nx, &xnorm, x);
  8084. ggml_vec_norm_f32(nx, &gnorm, g);
  8085. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8086. if (xnorm < 1.0f) {
  8087. xnorm = 1.0f;
  8088. }
  8089. if (gnorm/xnorm <= params.lbfgs.eps) {
  8090. // converged
  8091. return GGML_OPT_OK;
  8092. }
  8093. // delta-based convergence test
  8094. if (pf != NULL) {
  8095. // need at least params.past iterations to start checking for convergence
  8096. if (params.past <= k) {
  8097. const float rate = (pf[k%params.past] - fx)/fx;
  8098. if (fabsf(rate) < params.delta) {
  8099. return GGML_OPT_OK;
  8100. }
  8101. }
  8102. pf[k%params.past] = fx;
  8103. }
  8104. // check for improvement
  8105. if (params.max_no_improvement > 0) {
  8106. if (fx < fx_best) {
  8107. fx_best = fx;
  8108. n_no_improvement = 0;
  8109. } else {
  8110. n_no_improvement++;
  8111. if (n_no_improvement >= params.max_no_improvement) {
  8112. return GGML_OPT_OK;
  8113. }
  8114. }
  8115. }
  8116. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8117. // reached the maximum number of iterations
  8118. return GGML_OPT_DID_NOT_CONVERGE;
  8119. }
  8120. // update vectors s and y:
  8121. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8122. // y_{k+1} = g_{k+1} - g_{k}.
  8123. //
  8124. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8125. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8126. // compute scalars ys and yy:
  8127. // ys = y^t \cdot s -> 1 / \rho.
  8128. // yy = y^t \cdot y.
  8129. //
  8130. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8131. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8132. lm[end].ys = ys;
  8133. // find new search direction
  8134. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8135. bound = (m <= k) ? m : k;
  8136. k++;
  8137. end = (end + 1)%m;
  8138. // initialize search direction with -g
  8139. ggml_vec_neg_f32(nx, d, g);
  8140. j = end;
  8141. for (int i = 0; i < bound; ++i) {
  8142. j = (j + m - 1) % m;
  8143. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8144. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8145. lm[j].alpha /= lm[j].ys;
  8146. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8147. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8148. }
  8149. ggml_vec_scale_f32(nx, d, ys/yy);
  8150. for (int i = 0; i < bound; ++i) {
  8151. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8152. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8153. beta /= lm[j].ys;
  8154. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8155. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8156. j = (j + 1)%m;
  8157. }
  8158. step = 1.0;
  8159. }
  8160. return GGML_OPT_DID_NOT_CONVERGE;
  8161. }
  8162. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8163. struct ggml_opt_params result;
  8164. switch (type) {
  8165. case GGML_OPT_ADAM:
  8166. {
  8167. result = (struct ggml_opt_params) {
  8168. .type = GGML_OPT_ADAM,
  8169. .n_threads = 1,
  8170. .past = 0,
  8171. .delta = 1e-5f,
  8172. .max_no_improvement = 100,
  8173. .print_forward_graph = true,
  8174. .print_backward_graph = true,
  8175. .adam = {
  8176. .n_iter = 10000,
  8177. .alpha = 0.001f,
  8178. .beta1 = 0.9f,
  8179. .beta2 = 0.999f,
  8180. .eps = 1e-8f,
  8181. .eps_f = 1e-5f,
  8182. .eps_g = 1e-3f,
  8183. },
  8184. };
  8185. } break;
  8186. case GGML_OPT_LBFGS:
  8187. {
  8188. result = (struct ggml_opt_params) {
  8189. .type = GGML_OPT_LBFGS,
  8190. .n_threads = 1,
  8191. .past = 0,
  8192. .delta = 1e-5f,
  8193. .max_no_improvement = 0,
  8194. .print_forward_graph = true,
  8195. .print_backward_graph = true,
  8196. .lbfgs = {
  8197. .m = 6,
  8198. .n_iter = 100,
  8199. .max_linesearch = 20,
  8200. .eps = 1e-5f,
  8201. .ftol = 1e-4f,
  8202. .wolfe = 0.9f,
  8203. .min_step = 1e-20f,
  8204. .max_step = 1e+20f,
  8205. .linesearch = GGML_LINESEARCH_DEFAULT,
  8206. },
  8207. };
  8208. } break;
  8209. }
  8210. return result;
  8211. }
  8212. enum ggml_opt_result ggml_opt(
  8213. struct ggml_context * ctx,
  8214. struct ggml_opt_params params,
  8215. struct ggml_tensor * f) {
  8216. bool free_ctx = false;
  8217. if (ctx == NULL) {
  8218. struct ggml_init_params params_ctx = {
  8219. .mem_size = 16*1024*1024,
  8220. .mem_buffer = NULL,
  8221. };
  8222. ctx = ggml_init(params_ctx);
  8223. if (ctx == NULL) {
  8224. return GGML_OPT_NO_CONTEXT;
  8225. }
  8226. free_ctx = true;
  8227. }
  8228. enum ggml_opt_result result = GGML_OPT_OK;
  8229. // build forward + backward compute graphs
  8230. struct ggml_cgraph gf = ggml_build_forward (f);
  8231. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8232. switch (params.type) {
  8233. case GGML_OPT_ADAM:
  8234. {
  8235. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8236. } break;
  8237. case GGML_OPT_LBFGS:
  8238. {
  8239. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8240. } break;
  8241. }
  8242. if (params.print_forward_graph) {
  8243. ggml_graph_print (&gf);
  8244. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8245. }
  8246. if (params.print_backward_graph) {
  8247. ggml_graph_print (&gb);
  8248. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8249. }
  8250. if (free_ctx) {
  8251. ggml_free(ctx);
  8252. }
  8253. return result;
  8254. }
  8255. ////////////////////////////////////////////////////////////////////////////////
  8256. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8257. assert(k % QK == 0);
  8258. const int nb = k / QK;
  8259. for (int j = 0; j < n; j += k) {
  8260. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8261. quantize_row_q4_0_reference(src + j, y, k);
  8262. for (int i = 0; i < nb; i++) {
  8263. for (int l = 0; l < QK; l += 2) {
  8264. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8265. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8266. hist[vi0]++;
  8267. hist[vi1]++;
  8268. }
  8269. }
  8270. }
  8271. return (n/QK*sizeof(block_q4_0));
  8272. }
  8273. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8274. assert(k % QK == 0);
  8275. const int nb = k / QK;
  8276. for (int j = 0; j < n; j += k) {
  8277. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8278. quantize_row_q4_1(src + j, y, k);
  8279. for (int i = 0; i < nb; i++) {
  8280. for (int l = 0; l < QK; l += 2) {
  8281. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8282. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8283. hist[vi0]++;
  8284. hist[vi1]++;
  8285. }
  8286. }
  8287. }
  8288. return (n/QK*sizeof(block_q4_1));
  8289. }
  8290. ////////////////////////////////////////////////////////////////////////////////
  8291. int ggml_cpu_has_avx(void) {
  8292. #if defined(__AVX__)
  8293. return 1;
  8294. #else
  8295. return 0;
  8296. #endif
  8297. }
  8298. int ggml_cpu_has_avx2(void) {
  8299. #if defined(__AVX2__)
  8300. return 1;
  8301. #else
  8302. return 0;
  8303. #endif
  8304. }
  8305. int ggml_cpu_has_avx512(void) {
  8306. #if defined(__AVX512F__)
  8307. return 1;
  8308. #else
  8309. return 0;
  8310. #endif
  8311. }
  8312. int ggml_cpu_has_fma(void) {
  8313. #if defined(__FMA__)
  8314. return 1;
  8315. #else
  8316. return 0;
  8317. #endif
  8318. }
  8319. int ggml_cpu_has_neon(void) {
  8320. #if defined(__ARM_NEON)
  8321. return 1;
  8322. #else
  8323. return 0;
  8324. #endif
  8325. }
  8326. int ggml_cpu_has_arm_fma(void) {
  8327. #if defined(__ARM_FEATURE_FMA)
  8328. return 1;
  8329. #else
  8330. return 0;
  8331. #endif
  8332. }
  8333. int ggml_cpu_has_f16c(void) {
  8334. #if defined(__F16C__)
  8335. return 1;
  8336. #else
  8337. return 0;
  8338. #endif
  8339. }
  8340. int ggml_cpu_has_fp16_va(void) {
  8341. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8342. return 1;
  8343. #else
  8344. return 0;
  8345. #endif
  8346. }
  8347. int ggml_cpu_has_wasm_simd(void) {
  8348. #if defined(__wasm_simd128__)
  8349. return 1;
  8350. #else
  8351. return 0;
  8352. #endif
  8353. }
  8354. int ggml_cpu_has_blas(void) {
  8355. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8356. return 1;
  8357. #else
  8358. return 0;
  8359. #endif
  8360. }
  8361. int ggml_cpu_has_sse3(void) {
  8362. #if defined(__SSE3__)
  8363. return 1;
  8364. #else
  8365. return 0;
  8366. #endif
  8367. }
  8368. int ggml_cpu_has_vsx(void) {
  8369. #if defined(__POWER9_VECTOR__)
  8370. return 1;
  8371. #else
  8372. return 0;
  8373. #endif
  8374. }
  8375. ////////////////////////////////////////////////////////////////////////////////