ggml.c 322 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  68. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  69. #ifndef __FMA__
  70. #define __FMA__
  71. #endif
  72. #ifndef __F16C__
  73. #define __F16C__
  74. #endif
  75. #ifndef __SSE3__
  76. #define __SSE3__
  77. #endif
  78. #endif
  79. #ifdef __HAIKU__
  80. #define static_assert(cond, msg) _Static_assert(cond, msg)
  81. #endif
  82. #define GGML_MLOCK_SUPPORT 0
  83. #ifdef __has_include
  84. #if __has_include(<sys/mman.h>)
  85. #undef GGML_MLOCK_SUPPORT
  86. #define GGML_MLOCK_SUPPORT 1
  87. #include <sys/mman.h>
  88. #endif
  89. #endif
  90. /*#define GGML_PERF*/
  91. #define GGML_DEBUG 0
  92. #define GGML_GELU_FP16
  93. #define GGML_SILU_FP16
  94. #define GGML_SOFT_MAX_UNROLL 4
  95. #define GGML_VEC_DOT_UNROLL 2
  96. #ifdef GGML_USE_ACCELERATE
  97. // uncomment to use vDSP for soft max computation
  98. // note: not sure if it is actually faster
  99. //#define GGML_SOFT_MAX_ACCELERATE
  100. #endif
  101. #if UINTPTR_MAX == 0xFFFFFFFF
  102. #define GGML_MEM_ALIGN 4
  103. #else
  104. #define GGML_MEM_ALIGN 16
  105. #endif
  106. #define UNUSED(x) (void)(x)
  107. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  108. #define GGML_ASSERT(x) \
  109. do { \
  110. if (!(x)) { \
  111. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  112. abort(); \
  113. } \
  114. } while (0)
  115. #ifdef GGML_USE_ACCELERATE
  116. #include <Accelerate/Accelerate.h>
  117. #elif GGML_USE_OPENBLAS
  118. #include <cblas.h>
  119. #endif
  120. #undef MIN
  121. #undef MAX
  122. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  123. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  124. // floating point type used to accumulate sums
  125. typedef double ggml_float;
  126. // 16-bit float
  127. // on Arm, we use __fp16
  128. // on x86, we use uint16_t
  129. #ifdef __ARM_NEON
  130. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  131. //
  132. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  133. //
  134. #include <arm_neon.h>
  135. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  136. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  137. #define GGML_FP16_TO_FP32(x) ((float) (x))
  138. #define GGML_FP32_TO_FP16(x) (x)
  139. #else
  140. #ifdef __wasm_simd128__
  141. #include <wasm_simd128.h>
  142. #else
  143. #ifdef __POWER9_VECTOR__
  144. #include <altivec.h>
  145. #undef bool
  146. #define bool _Bool
  147. #else
  148. #include <immintrin.h>
  149. #endif
  150. #endif
  151. #ifdef __F16C__
  152. #ifdef _MSC_VER
  153. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  154. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  155. #else
  156. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  157. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  158. #endif
  159. #elif defined(__POWER9_VECTOR__)
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  162. /* the inline asm below is about 12% faster than the lookup method */
  163. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  164. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  165. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  166. register float f;
  167. register double d;
  168. __asm__(
  169. "mtfprd %0,%2\n"
  170. "xscvhpdp %0,%0\n"
  171. "frsp %1,%0\n" :
  172. /* temp */ "=d"(d),
  173. /* out */ "=f"(f):
  174. /* in */ "r"(h));
  175. return f;
  176. }
  177. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  178. register double d;
  179. register ggml_fp16_t r;
  180. __asm__( /* xscvdphp can work on double or single precision */
  181. "xscvdphp %0,%2\n"
  182. "mffprd %1,%0\n" :
  183. /* temp */ "=d"(d),
  184. /* out */ "=r"(r):
  185. /* in */ "f"(f));
  186. return r;
  187. }
  188. #else
  189. // FP16 <-> FP32
  190. // ref: https://github.com/Maratyszcza/FP16
  191. static inline float fp32_from_bits(uint32_t w) {
  192. union {
  193. uint32_t as_bits;
  194. float as_value;
  195. } fp32;
  196. fp32.as_bits = w;
  197. return fp32.as_value;
  198. }
  199. static inline uint32_t fp32_to_bits(float f) {
  200. union {
  201. float as_value;
  202. uint32_t as_bits;
  203. } fp32;
  204. fp32.as_value = f;
  205. return fp32.as_bits;
  206. }
  207. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  208. const uint32_t w = (uint32_t) h << 16;
  209. const uint32_t sign = w & UINT32_C(0x80000000);
  210. const uint32_t two_w = w + w;
  211. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  212. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  213. const float exp_scale = 0x1.0p-112f;
  214. #else
  215. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  216. #endif
  217. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  218. const uint32_t magic_mask = UINT32_C(126) << 23;
  219. const float magic_bias = 0.5f;
  220. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  221. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  222. const uint32_t result = sign |
  223. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  224. return fp32_from_bits(result);
  225. }
  226. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  227. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  228. const float scale_to_inf = 0x1.0p+112f;
  229. const float scale_to_zero = 0x1.0p-110f;
  230. #else
  231. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  232. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  233. #endif
  234. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  235. const uint32_t w = fp32_to_bits(f);
  236. const uint32_t shl1_w = w + w;
  237. const uint32_t sign = w & UINT32_C(0x80000000);
  238. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  239. if (bias < UINT32_C(0x71000000)) {
  240. bias = UINT32_C(0x71000000);
  241. }
  242. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  243. const uint32_t bits = fp32_to_bits(base);
  244. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  245. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  246. const uint32_t nonsign = exp_bits + mantissa_bits;
  247. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  248. }
  249. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  250. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  251. #endif // __F16C__
  252. #endif // __ARM_NEON
  253. //
  254. // global data
  255. //
  256. // precomputed gelu table for f16 (128 KB)
  257. static ggml_fp16_t table_gelu_f16[1 << 16];
  258. // precomputed silu table for f16 (128 KB)
  259. static ggml_fp16_t table_silu_f16[1 << 16];
  260. // precomputed exp table for f16 (128 KB)
  261. static ggml_fp16_t table_exp_f16[1 << 16];
  262. // precomputed f32 table for f16 (256 KB)
  263. static float table_f32_f16[1 << 16];
  264. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  265. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  266. // This is also true for POWER9.
  267. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  268. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  269. uint16_t s;
  270. memcpy(&s, &f, sizeof(uint16_t));
  271. return table_f32_f16[s];
  272. }
  273. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  274. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  275. #endif
  276. // note: do not use these inside ggml.c
  277. // these are meant to be used via the ggml.h API
  278. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  279. return (float) GGML_FP16_TO_FP32(x);
  280. }
  281. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  282. return GGML_FP32_TO_FP16(x);
  283. }
  284. //
  285. // timing
  286. //
  287. #if defined(_MSC_VER) || defined(__MINGW32__)
  288. static int64_t timer_freq;
  289. void ggml_time_init(void) {
  290. LARGE_INTEGER frequency;
  291. QueryPerformanceFrequency(&frequency);
  292. timer_freq = frequency.QuadPart;
  293. }
  294. int64_t ggml_time_ms(void) {
  295. LARGE_INTEGER t;
  296. QueryPerformanceCounter(&t);
  297. return (t.QuadPart * 1000) / timer_freq;
  298. }
  299. int64_t ggml_time_us(void) {
  300. LARGE_INTEGER t;
  301. QueryPerformanceCounter(&t);
  302. return (t.QuadPart * 1000000) / timer_freq;
  303. }
  304. #else
  305. void ggml_time_init(void) {}
  306. int64_t ggml_time_ms(void) {
  307. struct timespec ts;
  308. clock_gettime(CLOCK_MONOTONIC, &ts);
  309. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  310. }
  311. int64_t ggml_time_us(void) {
  312. struct timespec ts;
  313. clock_gettime(CLOCK_MONOTONIC, &ts);
  314. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  315. }
  316. #endif
  317. int64_t ggml_cycles(void) {
  318. return clock();
  319. }
  320. int64_t ggml_cycles_per_ms(void) {
  321. return CLOCKS_PER_SEC/1000;
  322. }
  323. #ifdef GGML_PERF
  324. #define ggml_perf_time_ms() ggml_time_ms()
  325. #define ggml_perf_time_us() ggml_time_us()
  326. #define ggml_perf_cycles() ggml_cycles()
  327. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  328. #else
  329. #define ggml_perf_time_ms() 0
  330. #define ggml_perf_time_us() 0
  331. #define ggml_perf_cycles() 0
  332. #define ggml_perf_cycles_per_ms() 0
  333. #endif
  334. //
  335. // cache line
  336. //
  337. #if defined(__cpp_lib_hardware_interference_size)
  338. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  339. #else
  340. #if defined(__POWER9_VECTOR__)
  341. #define CACHE_LINE_SIZE 128
  342. #else
  343. #define CACHE_LINE_SIZE 64
  344. #endif
  345. #endif
  346. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  347. //
  348. // quantization
  349. //
  350. #define QK 32
  351. // AVX routines provided by GH user Const-me
  352. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  353. #if __AVX2__ || __AVX512F__
  354. // Unpack 32 4-bit fields into 32 bytes
  355. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  356. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  357. {
  358. // Load 16 bytes from memory
  359. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  360. // Expand bytes into uint16_t values
  361. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  362. // Unpack values into individual bytes
  363. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  364. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  365. __m256i low = _mm256_and_si256( lowMask, bytes );
  366. high = _mm256_slli_epi16( high, 4 );
  367. bytes = _mm256_or_si256( low, high );
  368. return bytes;
  369. }
  370. static inline __m128i packNibbles( __m256i bytes )
  371. {
  372. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  373. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  374. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  375. __m256i low = _mm256_and_si256( lowByte, bytes );
  376. high = _mm256_srli_epi16( high, 4 );
  377. bytes = _mm256_or_si256( low, high );
  378. // Compress uint16_t lanes into bytes
  379. __m128i r0 = _mm256_castsi256_si128( bytes );
  380. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  381. return _mm_packus_epi16( r0, r1 );
  382. }
  383. #elif __AVX__
  384. static inline __m128i bytesFromNibbles( const uint8_t* rsi )
  385. {
  386. // Load 8 bytes from memory
  387. __m128i tmp = _mm_loadu_si64( ( const __m128i* )rsi );
  388. // Expand bytes into uint16_t values
  389. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  390. // Unpack values into individual bytes
  391. const __m128i lowMask = _mm_set1_epi8( 0xF );
  392. __m128i high = _mm_andnot_si128( lowMask, bytes );
  393. __m128i low = _mm_and_si128( lowMask, bytes );
  394. high = _mm_slli_epi16( high, 4 );
  395. bytes = _mm_or_si128( low, high );
  396. return bytes;
  397. }
  398. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  399. {
  400. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  401. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  402. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  403. __m128i low = _mm_and_si128( lowByte, bytes1 );
  404. high = _mm_srli_epi16( high, 4 );
  405. bytes1 = _mm_or_si128( low, high );
  406. high = _mm_andnot_si128( lowByte, bytes2 );
  407. low = _mm_and_si128( lowByte, bytes2 );
  408. high = _mm_srli_epi16( high, 4 );
  409. bytes2 = _mm_or_si128( low, high );
  410. return _mm_packus_epi16( bytes1, bytes2);
  411. }
  412. #endif
  413. // method 5
  414. // blocks of QK elements
  415. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  416. typedef struct {
  417. float d; // delta
  418. uint8_t qs[QK / 2]; // nibbles / quants
  419. } block_q4_0;
  420. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  421. // method 4
  422. // blocks of QK elements
  423. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  424. typedef struct {
  425. float d;
  426. float m;
  427. uint8_t qs[QK / 2]; // nibbles / quants
  428. } block_q4_1;
  429. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  430. // reference implementation for deterministic creation of model files
  431. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  432. assert(k % QK == 0);
  433. const int nb = k / QK;
  434. uint8_t pp[QK/2];
  435. for (int i = 0; i < nb; i++) {
  436. float amax = 0.0f; // absolute max
  437. for (int l = 0; l < QK; l++) {
  438. const float v = x[i*QK + l];
  439. amax = MAX(amax, fabsf(v));
  440. }
  441. const float d = amax / ((1 << 3) - 1);
  442. const float id = d ? 1.0f/d : 0.0f;
  443. y[i].d = d;
  444. for (int l = 0; l < QK; l += 2) {
  445. const float v0 = x[i*QK + l + 0]*id;
  446. const float v1 = x[i*QK + l + 1]*id;
  447. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  448. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  449. assert(vi0 < 16);
  450. assert(vi1 < 16);
  451. pp[l/2] = vi0 | (vi1 << 4);
  452. }
  453. memcpy(y[i].qs, pp, sizeof(pp));
  454. }
  455. }
  456. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  457. assert(k % QK == 0);
  458. const int nb = k / QK;
  459. block_q4_0 * restrict y = vy;
  460. #if defined(__POWER9_VECTOR__)
  461. const vector float v85 = vec_splats(8.5f);
  462. for (int i = 0; i < nb; i++) {
  463. float amax = 0.0f; // absolute max
  464. vector float srcv [8];
  465. vector float asrcv[8];
  466. vector float amaxv[8];
  467. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  468. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  469. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  470. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  471. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  472. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  473. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  474. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  475. amax = MAX(
  476. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  477. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  478. const float d = amax / ((1 << 3) - 1);
  479. const float id = d ? 1.0/d : 0.0;
  480. y[i].d = d;
  481. const vector float vid = vec_splats(id);
  482. uint8_t * restrict pb = y[i].qs;
  483. for (int l = 0; l < 8; l++) {
  484. const vector float vf = vec_madd(srcv[l], vid, v85);
  485. const vector signed int vi = vec_signed(vf);
  486. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  487. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  488. }
  489. }
  490. #elif __ARM_NEON
  491. for (int i = 0; i < nb; i++) {
  492. float32x4_t srcv [8];
  493. float32x4_t asrcv[8];
  494. float32x4_t amaxv[8];
  495. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  496. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  497. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  498. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  499. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  500. // absolute max
  501. const float amax = MAX(
  502. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  503. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  504. const float d = amax / ((1 << 3) - 1);
  505. const float id = d ? 1.0f/d : 0.0f;
  506. y[i].d = d;
  507. for (int l = 0; l < 8; l++) {
  508. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  509. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  510. const int32x4_t vi = vcvtq_s32_f32(vf);
  511. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  512. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  513. }
  514. }
  515. #elif defined(__AVX2__)
  516. for (int i = 0; i < nb; i++) {
  517. // Load elements into 4 AVX vectors
  518. __m256 v0 = _mm256_loadu_ps( x );
  519. __m256 v1 = _mm256_loadu_ps( x + 8 );
  520. __m256 v2 = _mm256_loadu_ps( x + 16 );
  521. __m256 v3 = _mm256_loadu_ps( x + 24 );
  522. x += 32;
  523. // Compute max(abs(e)) for the block
  524. const __m256 signBit = _mm256_set1_ps( -0.0f );
  525. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  526. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  527. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  528. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  529. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  530. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  531. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  532. const float maxScalar = _mm_cvtss_f32( max4 );
  533. // Quantize these floats
  534. const float d = maxScalar / 7.0f;
  535. y[i].d = d;
  536. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  537. const __m256 mul = _mm256_set1_ps( id );
  538. // Apply the multiplier
  539. v0 = _mm256_mul_ps( v0, mul );
  540. v1 = _mm256_mul_ps( v1, mul );
  541. v2 = _mm256_mul_ps( v2, mul );
  542. v3 = _mm256_mul_ps( v3, mul );
  543. // Round to nearest integer
  544. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  545. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  546. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  547. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  548. // Convert floats to integers
  549. __m256i i0 = _mm256_cvtps_epi32( v0 );
  550. __m256i i1 = _mm256_cvtps_epi32( v1 );
  551. __m256i i2 = _mm256_cvtps_epi32( v2 );
  552. __m256i i3 = _mm256_cvtps_epi32( v3 );
  553. // Convert int32 to int16
  554. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  555. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  556. // Convert int16 to int8
  557. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  558. // We got our precious signed bytes, but the order is now wrong
  559. // These AVX2 pack instructions process 16-byte pieces independently
  560. // The following instruction is fixing the order
  561. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  562. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  563. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  564. const __m256i off = _mm256_set1_epi8( 8 );
  565. i0 = _mm256_add_epi8( i0, off );
  566. // Compress the vector into 4 bit/value, and store
  567. __m128i res = packNibbles( i0 );
  568. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  569. }
  570. #elif defined(__AVX__)
  571. for (int i = 0; i < nb; i++) {
  572. // Load elements into 4 AVX vectors
  573. __m256 v0 = _mm256_loadu_ps( x );
  574. __m256 v1 = _mm256_loadu_ps( x + 8 );
  575. __m256 v2 = _mm256_loadu_ps( x + 16 );
  576. __m256 v3 = _mm256_loadu_ps( x + 24 );
  577. x += 32;
  578. // Compute max(abs(e)) for the block
  579. const __m256 signBit = _mm256_set1_ps( -0.0f );
  580. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  581. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  582. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  583. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  584. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  585. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  586. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  587. const float maxScalar = _mm_cvtss_f32( max4 );
  588. // Quantize these floats
  589. const float d = maxScalar / 7.0f;
  590. y[i].d = d;
  591. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  592. const __m256 mul = _mm256_set1_ps( id );
  593. // Apply the multiplier
  594. v0 = _mm256_mul_ps( v0, mul );
  595. v1 = _mm256_mul_ps( v1, mul );
  596. v2 = _mm256_mul_ps( v2, mul );
  597. v3 = _mm256_mul_ps( v3, mul );
  598. // Round to nearest integer
  599. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  600. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  601. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  602. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  603. // Convert floats to integers
  604. __m256i i0 = _mm256_cvtps_epi32( v0 );
  605. __m256i i1 = _mm256_cvtps_epi32( v1 );
  606. __m256i i2 = _mm256_cvtps_epi32( v2 );
  607. __m256i i3 = _mm256_cvtps_epi32( v3 );
  608. // Since we don't have in AVX some necessary functions,
  609. // we split the registers in half and call AVX2 analogs from SSE
  610. __m128i ni0 = _mm256_castsi256_si128( i0 );
  611. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  612. __m128i ni2 = _mm256_castsi256_si128( i1 );
  613. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  614. __m128i ni4 = _mm256_castsi256_si128( i2 );
  615. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  616. __m128i ni6 = _mm256_castsi256_si128( i3 );
  617. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  618. // Convert int32 to int16
  619. ni0 = _mm_packs_epi32( ni0, ni1 );
  620. ni2 = _mm_packs_epi32( ni2, ni3 );
  621. ni4 = _mm_packs_epi32( ni4, ni5 );
  622. ni6 = _mm_packs_epi32( ni6, ni7 );
  623. // Convert int16 to int8
  624. ni0 = _mm_packs_epi16( ni0, ni2 );
  625. ni4 = _mm_packs_epi16( ni4, ni6 );
  626. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  627. const __m128i off = _mm_set1_epi8( 8);
  628. ni0 = _mm_add_epi8( ni0, off );
  629. ni4 = _mm_add_epi8( ni4, off );
  630. // Compress the vector into 4 bit/value, and store
  631. __m128i res = packNibbles( ni0, ni4 );
  632. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  633. }
  634. #elif defined(__wasm_simd128__)
  635. for (int i = 0; i < nb; i++) {
  636. float amax = 0.0f; // absolute max
  637. v128_t srcv [8];
  638. v128_t asrcv[8];
  639. v128_t amaxv[8];
  640. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  641. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  642. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  643. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  644. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  645. amax = MAX(
  646. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  647. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  648. const float d = amax / ((1 << 3) - 1);
  649. const float id = d ? 1.0/d : 0.0;
  650. y[i].d = d;
  651. for (int l = 0; l < 8; l++) {
  652. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  653. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  654. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  655. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  656. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  657. }
  658. }
  659. #else
  660. // scalar
  661. quantize_row_q4_0_reference(x, y, k);
  662. #endif
  663. }
  664. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  665. assert(k % QK == 0);
  666. const int nb = k / QK;
  667. block_q4_1 * restrict y = vy;
  668. uint8_t pp[QK/2];
  669. for (int i = 0; i < nb; i++) {
  670. float min = FLT_MAX;
  671. float max = -FLT_MAX;
  672. for (int l = 0; l < QK; l++) {
  673. const float v = x[i*QK + l];
  674. if (v < min) min = v;
  675. if (v > max) max = v;
  676. }
  677. const float d = (max - min) / ((1 << 4) - 1);
  678. const float id = d ? 1.0f/d : 0.0f;
  679. y[i].d = d;
  680. y[i].m = min;
  681. for (int l = 0; l < QK; l += 2) {
  682. const float v0 = (x[i*QK + l + 0] - min)*id;
  683. const float v1 = (x[i*QK + l + 1] - min)*id;
  684. const uint8_t vi0 = roundf(v0);
  685. const uint8_t vi1 = roundf(v1);
  686. assert(vi0 < 16);
  687. assert(vi1 < 16);
  688. pp[l/2] = vi0 | (vi1 << 4);
  689. }
  690. memcpy(y[i].qs, pp, sizeof(pp));
  691. }
  692. }
  693. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  694. assert(k % QK == 0);
  695. const int nb = k / QK;
  696. block_q4_1 * restrict y = vy;
  697. #if defined(__AVX2__)
  698. for (int i = 0; i < nb; i++) {
  699. // Load elements into 4 AVX vectors
  700. __m256 v0 = _mm256_loadu_ps( x );
  701. __m256 v1 = _mm256_loadu_ps( x + 8 );
  702. __m256 v2 = _mm256_loadu_ps( x + 16 );
  703. __m256 v3 = _mm256_loadu_ps( x + 24 );
  704. x += 32;
  705. // Compute max for the block
  706. __m256 vmax;
  707. vmax = _mm256_max_ps( v0, v1 );
  708. vmax = _mm256_max_ps( vmax, v2 );
  709. vmax = _mm256_max_ps( vmax, v3 );
  710. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  711. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  712. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  713. const float maxScalar = _mm_cvtss_f32( max4 );
  714. // Compute min for the block
  715. __m256 vmin;
  716. vmin = _mm256_min_ps( v0, v1 );
  717. vmin = _mm256_min_ps( vmin, v2 );
  718. vmin = _mm256_min_ps( vmin, v3 );
  719. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  720. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  721. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  722. const float minScalar = _mm_cvtss_f32( min4 );
  723. // Quantize these floats
  724. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  725. const float id = d ? 1.0f/d : 0.0f;
  726. y[i].m = minScalar;
  727. y[i].d = d;
  728. // x = (x-min)*id
  729. const __m256 mul = _mm256_set1_ps( id );
  730. const __m256 off = _mm256_set1_ps( minScalar );
  731. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  732. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  733. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  734. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  735. // Round to nearest integer
  736. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  737. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  738. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  739. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  740. // Convert floats to integers
  741. __m256i i0 = _mm256_cvtps_epi32( v0 );
  742. __m256i i1 = _mm256_cvtps_epi32( v1 );
  743. __m256i i2 = _mm256_cvtps_epi32( v2 );
  744. __m256i i3 = _mm256_cvtps_epi32( v3 );
  745. // Convert int32 to int16
  746. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  747. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  748. // Convert int16 to int8
  749. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  750. // We got our precious signed bytes, but the order is now wrong
  751. // These AVX2 pack instructions process 16-byte pieces independently
  752. // The following instruction is fixing the order
  753. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  754. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  755. // Compress the vector into 4 bit/value, and store
  756. __m128i res = packNibbles( i0 );
  757. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  758. }
  759. #elif __ARM_NEON
  760. for (int i = 0; i < nb; i++) {
  761. float32x4_t srcv[8];
  762. float32x4_t minv[8];
  763. float32x4_t maxv[8];
  764. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  765. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  766. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  767. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  768. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  769. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  770. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  771. const float min = vminvq_f32(minv[0]);
  772. const float max = vmaxvq_f32(maxv[0]);
  773. const float d = (max - min) / ((1 << 4) - 1);
  774. const float id = d ? 1.0f/d : 0.0f;
  775. y[i].d = d;
  776. y[i].m = min;
  777. const float32x4_t minv0 = vdupq_n_f32(min);
  778. for (int l = 0; l < 8; l++) {
  779. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  780. const int32x4_t vi = vcvtq_s32_f32(v);
  781. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  782. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  783. }
  784. }
  785. #else
  786. // scalar
  787. quantize_row_q4_1_reference(x, vy, k);
  788. #endif
  789. }
  790. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  791. assert(k % QK == 0);
  792. const int nb = k / QK;
  793. const block_q4_0 * restrict x = vx;
  794. #if defined(__AVX2__)
  795. for (int i = 0; i < nb; i++) {
  796. // scale factor
  797. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  798. const uint8_t * restrict pp = x[i].qs;
  799. for (int l = 0; l < QK; l += 32) {
  800. // Load 32x4-bit integers into 32x8-bit integers
  801. __m256i vx8 = bytesFromNibbles(pp+l/2);
  802. // Subtract 8 from the integers
  803. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  804. // Convert to 16-bit int
  805. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  806. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  807. // Convert to 32-bit int -> float 32
  808. const __m256 vf[4] = {
  809. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  810. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  811. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  812. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  813. };
  814. // Scale and store
  815. for (int j = 0; j < 4; j++) {
  816. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  817. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  818. }
  819. }
  820. }
  821. #elif defined(__ARM_NEON)
  822. for (int i = 0; i < nb; i++) {
  823. const float32x4_t vd = vdupq_n_f32(x[i].d);
  824. const uint8_t * restrict pp = x[i].qs;
  825. for (int l = 0; l < QK; l += 16) {
  826. // Load 16x4-bit integers into 8x8-bit integers
  827. const uint8x8_t v8 = vld1_u8(pp + l/2);
  828. // Expand 4-bit qs to 8-bit bytes
  829. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  830. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  831. // Convert to signed 8-bit integers
  832. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  833. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  834. // Subtract 8 from each byte
  835. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  836. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  837. // Interleave and combine
  838. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  839. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  840. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  841. // convert to 2x int16x8_t
  842. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  843. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  844. // convert to 4x float32x4_t
  845. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  846. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  847. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  848. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  849. // Multiply by d
  850. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  851. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  852. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  853. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  854. // Store
  855. vst1q_f32(y + i*QK + l + 0, r0);
  856. vst1q_f32(y + i*QK + l + 4, r1);
  857. vst1q_f32(y + i*QK + l + 8, r2);
  858. vst1q_f32(y + i*QK + l + 12, r3);
  859. }
  860. }
  861. #else
  862. // scalar
  863. for (int i = 0; i < nb; i++) {
  864. const float d = x[i].d;
  865. const uint8_t * restrict pp = x[i].qs;
  866. for (int l = 0; l < QK; l += 2) {
  867. const uint8_t vi = pp[l/2];
  868. const int8_t vi0 = vi & 0xf;
  869. const int8_t vi1 = vi >> 4;
  870. const float v0 = (vi0 - 8)*d;
  871. const float v1 = (vi1 - 8)*d;
  872. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  873. y[i*QK + l + 0] = v0;
  874. y[i*QK + l + 1] = v1;
  875. assert(!isnan(y[i*QK + l + 0]));
  876. assert(!isnan(y[i*QK + l + 1]));
  877. }
  878. }
  879. #endif
  880. }
  881. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  882. assert(k % QK == 0);
  883. const int nb = k / QK;
  884. const block_q4_1 * restrict x = vx;
  885. #if defined(__AVX2__)
  886. for (int i = 0; i < nb; i++) {
  887. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  888. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  889. const uint8_t * restrict pp = x[i].qs;
  890. for (int l = 0; l < QK; l += 32) {
  891. // Load 32x4-bit integers into 32x8-bit integers
  892. __m256i vx8 = bytesFromNibbles(pp+l/2);
  893. // Convert to 16-bit int
  894. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  895. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  896. // Convert to 32-bit int -> float 32
  897. const __m256 vf[4] = {
  898. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  899. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  900. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  901. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  902. };
  903. // Scale, add m and store
  904. for (int j = 0; j < 4; j++) {
  905. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  906. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  907. }
  908. }
  909. }
  910. #elif defined(__ARM_NEON)
  911. for (int i = 0; i < nb; i++) {
  912. const float32x4_t vd = vdupq_n_f32(x[i].d);
  913. const float32x4_t vm = vdupq_n_f32(x[i].m);
  914. const uint8_t * restrict pp = x[i].qs;
  915. for (int l = 0; l < QK; l += 16) {
  916. // Load 16x4-bit integers into 8x8-bit integers
  917. const uint8x8_t v8 = vld1_u8(pp + l/2);
  918. // Expand 4-bit qs to 8-bit bytes
  919. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  920. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  921. // Interleave and combine
  922. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  923. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  924. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  925. // convert to 2x uint16x8_t
  926. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  927. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  928. // convert to 4x float32x4_t
  929. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  930. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  931. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  932. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  933. // multiply by d and add m
  934. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  935. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  936. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  937. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  938. // Store
  939. vst1q_f32(y + i*QK + l + 0, r0);
  940. vst1q_f32(y + i*QK + l + 4, r1);
  941. vst1q_f32(y + i*QK + l + 8, r2);
  942. vst1q_f32(y + i*QK + l + 12, r3);
  943. }
  944. }
  945. #else
  946. for (int i = 0; i < nb; i++) {
  947. const float d = x[i].d;
  948. const float m = x[i].m;
  949. const uint8_t * restrict pp = x[i].qs;
  950. for (int l = 0; l < QK; l += 2) {
  951. const uint8_t vi = pp[l/2];
  952. const int8_t vi0 = vi & 0xf;
  953. const int8_t vi1 = vi >> 4;
  954. const float v0 = vi0*d + m;
  955. const float v1 = vi1*d + m;
  956. y[i*QK + l + 0] = v0;
  957. y[i*QK + l + 1] = v1;
  958. assert(!isnan(y[i*QK + l + 0]));
  959. assert(!isnan(y[i*QK + l + 1]));
  960. }
  961. }
  962. #endif
  963. }
  964. //
  965. // simd mappings
  966. //
  967. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  968. // we then implement the fundamental computation operations below using only these macros
  969. // adding support for new architectures requires to define the corresponding SIMD macros
  970. //
  971. // GGML_F32_STEP / GGML_F16_STEP
  972. // number of elements to process in a single step
  973. //
  974. // GGML_F32_EPR / GGML_F16_EPR
  975. // number of elements to fit in a single register
  976. //
  977. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  978. #define GGML_SIMD
  979. // F32 NEON
  980. #define GGML_F32_STEP 16
  981. #define GGML_F32_EPR 4
  982. #define GGML_F32x4 float32x4_t
  983. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  984. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  985. #define GGML_F32x4_LOAD vld1q_f32
  986. #define GGML_F32x4_STORE vst1q_f32
  987. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  988. #define GGML_F32x4_ADD vaddq_f32
  989. #define GGML_F32x4_MUL vmulq_f32
  990. #if defined(__ARM_FEATURE_QRDMX)
  991. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  992. #else
  993. #define GGML_F32x4_REDUCE_ONE(x) \
  994. (vgetq_lane_f32(x, 0) + \
  995. vgetq_lane_f32(x, 1) + \
  996. vgetq_lane_f32(x, 2) + \
  997. vgetq_lane_f32(x, 3))
  998. #endif
  999. #define GGML_F32x4_REDUCE(res, x) \
  1000. { \
  1001. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1002. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1003. } \
  1004. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1005. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1006. } \
  1007. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1008. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1009. } \
  1010. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1011. }
  1012. #define GGML_F32_VEC GGML_F32x4
  1013. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1014. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1015. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1016. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1017. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1018. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1019. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1020. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1021. // F16 NEON
  1022. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1023. #define GGML_F16_STEP 32
  1024. #define GGML_F16_EPR 8
  1025. #define GGML_F16x8 float16x8_t
  1026. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1027. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1028. #define GGML_F16x8_LOAD vld1q_f16
  1029. #define GGML_F16x8_STORE vst1q_f16
  1030. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1031. #define GGML_F16x8_ADD vaddq_f16
  1032. #define GGML_F16x8_MUL vmulq_f16
  1033. #define GGML_F16x8_REDUCE(res, x) \
  1034. { \
  1035. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1036. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1037. } \
  1038. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1039. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1040. } \
  1041. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1042. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1043. } \
  1044. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1045. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1046. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1047. }
  1048. #define GGML_F16_VEC GGML_F16x8
  1049. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1050. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1051. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1052. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1053. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1054. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1055. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1056. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1057. #else
  1058. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1059. // and take advantage of the vcvt_ functions to convert to/from FP16
  1060. #define GGML_F16_STEP 16
  1061. #define GGML_F16_EPR 4
  1062. #define GGML_F32Cx4 float32x4_t
  1063. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1064. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1065. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1066. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1067. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1068. #define GGML_F32Cx4_ADD vaddq_f32
  1069. #define GGML_F32Cx4_MUL vmulq_f32
  1070. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1071. #define GGML_F16_VEC GGML_F32Cx4
  1072. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1073. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1074. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1075. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1076. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1077. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1078. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1079. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1080. #endif
  1081. #elif defined(__AVX__)
  1082. #define GGML_SIMD
  1083. // F32 AVX
  1084. #define GGML_F32_STEP 32
  1085. #define GGML_F32_EPR 8
  1086. #define GGML_F32x8 __m256
  1087. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1088. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1089. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1090. #define GGML_F32x8_STORE _mm256_storeu_ps
  1091. #if defined(__FMA__)
  1092. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1093. #else
  1094. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1095. #endif
  1096. #define GGML_F32x8_ADD _mm256_add_ps
  1097. #define GGML_F32x8_MUL _mm256_mul_ps
  1098. #define GGML_F32x8_REDUCE(res, x) \
  1099. { \
  1100. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1101. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1102. } \
  1103. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1104. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1105. } \
  1106. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1107. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1108. } \
  1109. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1110. _mm256_extractf128_ps(x[0], 1)); \
  1111. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1112. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1113. }
  1114. // TODO: is this optimal ?
  1115. #define GGML_F32_VEC GGML_F32x8
  1116. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1117. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1118. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1119. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1120. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1121. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1122. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1123. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1124. // F16 AVX
  1125. #define GGML_F16_STEP 32
  1126. #define GGML_F16_EPR 8
  1127. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1128. #define GGML_F32Cx8 __m256
  1129. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1130. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1131. #if defined(__F16C__)
  1132. // the _mm256_cvt intrinsics require F16C
  1133. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1134. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1135. #else
  1136. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1137. float tmp[8];
  1138. for (int i = 0; i < 8; i++)
  1139. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1140. return _mm256_loadu_ps(tmp);
  1141. }
  1142. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1143. float arr[8];
  1144. _mm256_storeu_ps(arr, y);
  1145. for (int i = 0; i < 8; i++)
  1146. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1147. }
  1148. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1149. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1150. #endif
  1151. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1152. #define GGML_F32Cx8_ADD _mm256_add_ps
  1153. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1154. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1155. #define GGML_F16_VEC GGML_F32Cx8
  1156. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1157. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1158. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1159. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1160. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1161. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1162. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1163. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1164. #elif defined(__POWER9_VECTOR__)
  1165. #define GGML_SIMD
  1166. // F32 POWER9
  1167. #define GGML_F32_STEP 32
  1168. #define GGML_F32_EPR 4
  1169. #define GGML_F32x4 vector float
  1170. #define GGML_F32x4_ZERO 0.0f
  1171. #define GGML_F32x4_SET1 vec_splats
  1172. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1173. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1174. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1175. #define GGML_F32x4_ADD vec_add
  1176. #define GGML_F32x4_MUL vec_mul
  1177. #define GGML_F32x4_REDUCE(res, x) \
  1178. { \
  1179. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1180. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1181. } \
  1182. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1183. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1184. } \
  1185. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1186. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1187. } \
  1188. res = vec_extract(x[0], 0) + \
  1189. vec_extract(x[0], 1) + \
  1190. vec_extract(x[0], 2) + \
  1191. vec_extract(x[0], 3); \
  1192. }
  1193. #define GGML_F32_VEC GGML_F32x4
  1194. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1195. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1196. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1197. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1198. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1199. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1200. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1201. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1202. // F16 POWER9
  1203. #define GGML_F16_STEP GGML_F32_STEP
  1204. #define GGML_F16_EPR GGML_F32_EPR
  1205. #define GGML_F16_VEC GGML_F32x4
  1206. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1207. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1208. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1209. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1210. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1211. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1212. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1213. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1214. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1215. #define GGML_F16_VEC_STORE(p, r, i) \
  1216. if (i & 0x1) \
  1217. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1218. r[i - GGML_ENDIAN_BYTE(0)]), \
  1219. 0, p - GGML_F16_EPR)
  1220. #elif defined(__wasm_simd128__)
  1221. #define GGML_SIMD
  1222. // F32 WASM
  1223. #define GGML_F32_STEP 16
  1224. #define GGML_F32_EPR 4
  1225. #define GGML_F32x4 v128_t
  1226. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1227. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1228. #define GGML_F32x4_LOAD wasm_v128_load
  1229. #define GGML_F32x4_STORE wasm_v128_store
  1230. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1231. #define GGML_F32x4_ADD wasm_f32x4_add
  1232. #define GGML_F32x4_MUL wasm_f32x4_mul
  1233. #define GGML_F32x4_REDUCE(res, x) \
  1234. { \
  1235. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1236. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1237. } \
  1238. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1239. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1240. } \
  1241. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1242. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1243. } \
  1244. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1245. wasm_f32x4_extract_lane(x[0], 1) + \
  1246. wasm_f32x4_extract_lane(x[0], 2) + \
  1247. wasm_f32x4_extract_lane(x[0], 3); \
  1248. }
  1249. #define GGML_F32_VEC GGML_F32x4
  1250. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1251. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1252. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1253. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1254. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1255. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1256. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1257. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1258. // F16 WASM
  1259. #define GGML_F16_STEP 16
  1260. #define GGML_F16_EPR 4
  1261. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1262. float tmp[4];
  1263. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1264. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1265. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1266. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1267. return wasm_v128_load(tmp);
  1268. }
  1269. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1270. float tmp[4];
  1271. wasm_v128_store(tmp, x);
  1272. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1273. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1274. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1275. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1276. }
  1277. #define GGML_F16x4 v128_t
  1278. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1279. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1280. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1281. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1282. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1283. #define GGML_F16x4_ADD wasm_f32x4_add
  1284. #define GGML_F16x4_MUL wasm_f32x4_mul
  1285. #define GGML_F16x4_REDUCE(res, x) \
  1286. { \
  1287. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1288. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1289. } \
  1290. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1291. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1292. } \
  1293. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1294. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1295. } \
  1296. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1297. wasm_f32x4_extract_lane(x[0], 1) + \
  1298. wasm_f32x4_extract_lane(x[0], 2) + \
  1299. wasm_f32x4_extract_lane(x[0], 3); \
  1300. }
  1301. #define GGML_F16_VEC GGML_F16x4
  1302. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1303. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1304. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1305. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1306. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1307. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1308. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1309. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1310. #elif defined(__SSE3__)
  1311. #define GGML_SIMD
  1312. // F32 SSE
  1313. #define GGML_F32_STEP 32
  1314. #define GGML_F32_EPR 4
  1315. #define GGML_F32x4 __m128
  1316. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1317. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1318. #define GGML_F32x4_LOAD _mm_loadu_ps
  1319. #define GGML_F32x4_STORE _mm_storeu_ps
  1320. #if defined(__FMA__)
  1321. // TODO: Does this work?
  1322. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1323. #else
  1324. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1325. #endif
  1326. #define GGML_F32x4_ADD _mm_add_ps
  1327. #define GGML_F32x4_MUL _mm_mul_ps
  1328. #define GGML_F32x4_REDUCE(res, x) \
  1329. { \
  1330. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1331. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1332. } \
  1333. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1334. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1335. } \
  1336. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1337. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1338. } \
  1339. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1340. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1341. }
  1342. // TODO: is this optimal ?
  1343. #define GGML_F32_VEC GGML_F32x4
  1344. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1345. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1346. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1347. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1348. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1349. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1350. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1351. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1352. // F16 SSE
  1353. #define GGML_F16_STEP 32
  1354. #define GGML_F16_EPR 4
  1355. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1356. float tmp[4];
  1357. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1358. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1359. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1360. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1361. return _mm_loadu_ps(tmp);
  1362. }
  1363. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1364. float arr[4];
  1365. _mm_storeu_ps(arr, y);
  1366. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1367. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1368. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1369. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1370. }
  1371. #define GGML_F32Cx4 __m128
  1372. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1373. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1374. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1375. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1376. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1377. #define GGML_F32Cx4_ADD _mm_add_ps
  1378. #define GGML_F32Cx4_MUL _mm_mul_ps
  1379. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1380. #define GGML_F16_VEC GGML_F32Cx4
  1381. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1382. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1383. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1384. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1385. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1386. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1387. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1388. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1389. #endif
  1390. // GGML_F32_ARR / GGML_F16_ARR
  1391. // number of registers to use per step
  1392. #ifdef GGML_SIMD
  1393. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1394. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1395. #endif
  1396. //
  1397. // fundamental operations
  1398. //
  1399. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1400. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1401. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1402. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1403. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1404. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1405. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1406. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1407. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1408. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1409. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1410. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1411. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1412. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1413. #ifdef GGML_SIMD
  1414. float sumf = 0.0f;
  1415. const int np = (n & ~(GGML_F32_STEP - 1));
  1416. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1417. GGML_F32_VEC ax[GGML_F32_ARR];
  1418. GGML_F32_VEC ay[GGML_F32_ARR];
  1419. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1420. for (int j = 0; j < GGML_F32_ARR; j++) {
  1421. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1422. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1423. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1424. }
  1425. }
  1426. // reduce sum0..sum3 to sum0
  1427. GGML_F32_VEC_REDUCE(sumf, sum);
  1428. // leftovers
  1429. for (int i = np; i < n; ++i) {
  1430. sumf += x[i]*y[i];
  1431. }
  1432. #else
  1433. // scalar
  1434. ggml_float sumf = 0.0;
  1435. for (int i = 0; i < n; ++i) {
  1436. sumf += (ggml_float)(x[i]*y[i]);
  1437. }
  1438. #endif
  1439. *s = sumf;
  1440. }
  1441. #if __AVX512F__ && QK == 32
  1442. static inline __m512 dot_q4_0_oneblock_avx512(
  1443. __m512 acc,
  1444. const block_q4_0 * restrict x,
  1445. const block_q4_0 * restrict y,
  1446. int i
  1447. ) {
  1448. // Compute combined scale for the block
  1449. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1450. __m256i bx = bytesFromNibbles( x[i].qs );
  1451. __m256i by = bytesFromNibbles( y[i].qs );
  1452. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1453. const __m256i off = _mm256_set1_epi8( 8 );
  1454. bx = _mm256_sub_epi8( bx, off );
  1455. by = _mm256_sub_epi8( by, off );
  1456. // Sign-extend 16 signed bytes into int16_t
  1457. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1458. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1459. // Compute products of int16_t integers, add pairwise
  1460. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1461. // Convert int32_t to float
  1462. __m512 p = _mm512_cvtepi32_ps( i64 );
  1463. // Apply the scale, and accumulate
  1464. return _mm512_fmadd_ps( d, p, acc );
  1465. }
  1466. #endif
  1467. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1468. ggml_float sumf = 0.0;
  1469. #if defined(GGML_SIMD)
  1470. const int np = (n & ~(GGML_F16_STEP - 1));
  1471. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1472. GGML_F16_VEC ax[GGML_F16_ARR];
  1473. GGML_F16_VEC ay[GGML_F16_ARR];
  1474. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1475. for (int j = 0; j < GGML_F16_ARR; j++) {
  1476. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1477. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1478. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1479. }
  1480. }
  1481. // reduce sum0..sum3 to sum0
  1482. GGML_F16_VEC_REDUCE(sumf, sum);
  1483. // leftovers
  1484. for (int i = np; i < n; ++i) {
  1485. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1486. }
  1487. #else
  1488. for (int i = 0; i < n; ++i) {
  1489. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1490. }
  1491. #endif
  1492. *s = sumf;
  1493. }
  1494. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1495. const int nb = n / QK;
  1496. assert(n % QK == 0);
  1497. assert(nb % 2 == 0);
  1498. const block_q4_0 * restrict x = vx;
  1499. const block_q4_0 * restrict y = vy;
  1500. float sumf = 0.0;
  1501. #if defined(__ARM_NEON)
  1502. float sum0 = 0.0f;
  1503. float sum1 = 0.0f;
  1504. for (int i = 0; i < nb; i += 2) {
  1505. const block_q4_0 * restrict x0 = &x[i + 0];
  1506. const block_q4_0 * restrict y0 = &y[i + 0];
  1507. const block_q4_0 * restrict x1 = &x[i + 1];
  1508. const block_q4_0 * restrict y1 = &y[i + 1];
  1509. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1510. const int8x16_t s8b = vdupq_n_s8(0x8);
  1511. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1512. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1513. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1514. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1515. // 4-bit -> 8-bit
  1516. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1517. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1518. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1519. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1520. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1521. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1522. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1523. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1524. // sub 8
  1525. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1526. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1527. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1528. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1529. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1530. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1531. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1532. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1533. #if defined(__ARM_FEATURE_DOTPROD)
  1534. // dot product into int16x8_t
  1535. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1536. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1537. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1538. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1539. // scalar
  1540. #if defined(__ARM_FEATURE_QRDMX)
  1541. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1542. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1543. #else
  1544. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1545. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1546. #endif
  1547. #else
  1548. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1549. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1550. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1551. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1552. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1553. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1554. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1555. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1556. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1557. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1558. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1559. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1560. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1561. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1562. // scalar
  1563. #if defined(__ARM_FEATURE_QRDMX)
  1564. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1565. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1566. #else
  1567. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1568. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1569. #endif
  1570. #endif
  1571. }
  1572. sumf = sum0 + sum1;
  1573. #elif defined(__AVX512F__)
  1574. // Initialize accumulator with zeros
  1575. __m512 acc0 = _mm512_setzero_ps();
  1576. __m512 acc1 = _mm512_setzero_ps();
  1577. const int superblock_size = 8;
  1578. const int superblock_count = nb / superblock_size;
  1579. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1580. int i = superblock_ix * superblock_size;
  1581. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1582. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1583. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1584. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1585. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1586. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1587. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1588. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1589. }
  1590. // Remainders
  1591. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1592. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1593. }
  1594. // Horizontal sum of all lanes of the accumulator
  1595. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1596. #elif defined(__AVX2__)
  1597. // Initialize accumulator with zeros
  1598. __m256 acc = _mm256_setzero_ps();
  1599. // Main loop
  1600. // TODO: figure a way to do this in a portable way
  1601. #ifdef __GNUC__
  1602. #pragma GCC unroll 16
  1603. #endif
  1604. for (int i = 0; i < nb; ++i) {
  1605. // Compute combined scale for the block
  1606. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1607. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1608. __m256i bx = bytesFromNibbles( x[i].qs );
  1609. __m256i by = bytesFromNibbles( y[i].qs );
  1610. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1611. const __m256i off = _mm256_set1_epi8( 8 );
  1612. bx = _mm256_sub_epi8( bx, off );
  1613. by = _mm256_sub_epi8( by, off );
  1614. // Get absolute values of x vectors
  1615. const __m256i ax = _mm256_sign_epi8(bx, bx);
  1616. // Sign the values of the y vectors
  1617. const __m256i sy = _mm256_sign_epi8(by, bx);
  1618. // Perform multiplication and create 16-bit values
  1619. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  1620. const __m256i ones = _mm256_set1_epi16(1);
  1621. const __m256i i32 = _mm256_madd_epi16(ones, dot);
  1622. // Convert int32_t to float
  1623. const __m256 p = _mm256_cvtepi32_ps( i32 );
  1624. // Apply the scale, and accumulate
  1625. acc = _mm256_fmadd_ps( d, p, acc );
  1626. }
  1627. // Return horizontal sum of the acc vector
  1628. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1629. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1630. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1631. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1632. sumf = _mm_cvtss_f32( res );
  1633. #elif defined(__AVX__)
  1634. // Initialize accumulator with zeros
  1635. __m256 acc = _mm256_setzero_ps();
  1636. // Main loop
  1637. for (int i = 0; i < nb; ++i) {
  1638. // Compute combined scale for the block
  1639. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1640. __m128i i32[2];
  1641. for (int j = 0; j < 2; ++j) {
  1642. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  1643. __m128i bx = bytesFromNibbles( x[i].qs + 8*j );
  1644. __m128i by = bytesFromNibbles( y[i].qs + 8*j );
  1645. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1646. const __m128i off = _mm_set1_epi8( 8 );
  1647. bx = _mm_sub_epi8( bx, off );
  1648. by = _mm_sub_epi8( by, off );
  1649. // Get absolute values of x vectors
  1650. const __m128i ax = _mm_sign_epi8(bx, bx);
  1651. // Sign the values of the y vectors
  1652. const __m128i sy = _mm_sign_epi8(by, bx);
  1653. // Perform multiplication and create 16-bit values
  1654. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  1655. const __m128i ones = _mm_set1_epi16(1);
  1656. i32[j] = _mm_madd_epi16(ones, dot);
  1657. }
  1658. // Convert int32_t to float
  1659. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  1660. // Apply the scale, and accumulate
  1661. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1662. }
  1663. // Return horizontal sum of the acc vector
  1664. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1665. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1666. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1667. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1668. sumf = _mm_cvtss_f32( res );
  1669. #elif defined(__wasm_simd128__)
  1670. // wasm simd
  1671. float sum0 = 0.0f;
  1672. float sum1 = 0.0f;
  1673. for (int i = 0; i < nb; i += 2) {
  1674. const block_q4_0 * restrict x0 = &px[i + 0];
  1675. const block_q4_0 * restrict y0 = &py[i + 0];
  1676. const block_q4_0 * restrict x1 = &px[i + 1];
  1677. const block_q4_0 * restrict y1 = &py[i + 1];
  1678. const v128_t m4b = wasm_u8x16_splat(0xf);
  1679. const v128_t s8b = wasm_i8x16_splat(0x8);
  1680. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1681. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1682. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1683. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1684. // 4-bit -> 8-bit
  1685. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1686. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1687. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1688. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1689. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1690. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1691. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1692. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1693. // sub 8
  1694. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1695. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1696. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1697. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1698. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1699. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1700. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1701. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1702. // dot product into int16x8_t
  1703. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1704. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1705. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1706. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1707. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1708. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1709. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1710. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1711. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1712. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1713. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1714. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1715. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1716. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1717. sum0 += x0->d * y0->d * (
  1718. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1719. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1720. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1721. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1722. sum1 += x1->d * y1->d * (
  1723. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1724. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1725. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1726. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1727. }
  1728. sumf = sum0 + sum1;
  1729. #else
  1730. // scalar
  1731. for (int i = 0; i < nb; i++) {
  1732. const float d0 = x[i].d;
  1733. const float d1 = y[i].d;
  1734. const uint8_t * restrict p0 = x[i].qs;
  1735. const uint8_t * restrict p1 = y[i].qs;
  1736. for (int j = 0; j < QK/2; j++) {
  1737. const uint8_t v0 = p0[j];
  1738. const uint8_t v1 = p1[j];
  1739. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1740. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1741. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1742. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1743. sumf += f0*f2 + f1*f3;
  1744. }
  1745. }
  1746. #endif
  1747. *s = sumf;
  1748. }
  1749. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1750. const int nb = n / QK;
  1751. const block_q4_1 * restrict x = vx;
  1752. const block_q4_1 * restrict y = vy;
  1753. float sumf = 0.0;
  1754. #if defined(__AVX2__)
  1755. // Initialize accumulator with zeros
  1756. __m256 acc = _mm256_setzero_ps();
  1757. // Accumulator for constant offsets
  1758. float acc_offset = 0.0f;
  1759. // Main loop
  1760. for (int i = 0; i < nb; ++i) {
  1761. const float * d0 = &x[i].d;
  1762. const float * d1 = &y[i].d;
  1763. const float * m0 = &x[i].m;
  1764. const float * m1 = &y[i].m;
  1765. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1766. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1767. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1768. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1769. // Compute combined scale for the block
  1770. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1771. // Compute cross scales for the block
  1772. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1773. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1774. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0xAA /* 0b10101010 */ );
  1775. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1776. __m256i bx = bytesFromNibbles( x[i].qs );
  1777. __m256i by = bytesFromNibbles( y[i].qs );
  1778. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1779. // Sign-extend first 16 signed bytes into int16_t
  1780. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1781. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1782. // Compute products of int16_t integers, add pairwise
  1783. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1784. // Sign-extend last 16 signed bytes into int16_t vectors
  1785. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1786. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1787. // Accumulate products of int16_t integers
  1788. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1789. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1790. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1791. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1792. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1793. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1794. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1795. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1796. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1797. // Convert int32_t to float
  1798. __m256 p = _mm256_cvtepi32_ps( i32 );
  1799. // Apply the scale, and accumulate
  1800. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1801. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1802. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1803. // acc_offset += m0*m1 (for each entry in the block)
  1804. acc_offset += (*m0)*(*m1);
  1805. }
  1806. // Return horizontal sum of the acc vector
  1807. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1808. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1809. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1810. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1811. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1812. #elif defined(__ARM_NEON)
  1813. float sum00 = 0.0f;
  1814. float sum01 = 0.0f;
  1815. float sum10 = 0.0f;
  1816. float sum11 = 0.0f;
  1817. for (int i = 0; i < nb; ++i) {
  1818. const block_q4_1 * restrict x0 = &x[i + 0];
  1819. const block_q4_1 * restrict y0 = &y[i + 0];
  1820. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1821. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1822. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1823. // and with 0xf
  1824. const uint8x16_t v0_0l = vandq_u8(v0_0, m4b);
  1825. const uint8x16_t v1_0l = vandq_u8(v1_0, m4b);
  1826. const uint8x16_t v0_0h = vshrq_n_u8(v0_0, 4);
  1827. const uint8x16_t v1_0h = vshrq_n_u8(v1_0, 4);
  1828. // dot product into uint16x8_t
  1829. const uint16x8_t pl0l = vmull_u8(vget_low_u8 (v0_0l), vget_low_u8 (v1_0l));
  1830. const uint16x8_t pl0h = vmull_u8(vget_high_u8(v0_0l), vget_high_u8(v1_0l));
  1831. const uint16x8_t ph0l = vmull_u8(vget_low_u8 (v0_0h), vget_low_u8 (v1_0h));
  1832. const uint16x8_t ph0h = vmull_u8(vget_high_u8(v0_0h), vget_high_u8(v1_0h));
  1833. const uint16x8_t pl0 = vaddq_u16(pl0l, pl0h);
  1834. const uint16x8_t ph0 = vaddq_u16(ph0l, ph0h);
  1835. sum00 += x0->m*y0->m;
  1836. sum01 += y0->m*x0->d*(vaddvq_u8(v0_0l) + vaddvq_u8(v0_0h));
  1837. sum10 += x0->m*y0->d*(vaddvq_u8(v1_0l) + vaddvq_u8(v1_0h));
  1838. sum11 += x0->d*y0->d*vaddvq_u16(vaddq_u16(pl0, ph0));
  1839. }
  1840. sumf = QK*sum00 + sum01 + sum10 + sum11;
  1841. #else
  1842. // scalar
  1843. for (int i = 0; i < nb; i++) {
  1844. const float d0 = x[i].d;
  1845. const float d1 = y[i].d;
  1846. const float m0 = x[i].m;
  1847. const float m1 = y[i].m;
  1848. const uint8_t * restrict p0 = x[i].qs;
  1849. const uint8_t * restrict p1 = y[i].qs;
  1850. for (int j = 0; j < QK/2; j++) {
  1851. const uint8_t v0 = p0[j];
  1852. const uint8_t v1 = p1[j];
  1853. const float f0 = d0*(v0 & 0xf) + m0;
  1854. const float f1 = d0*(v0 >> 4) + m0;
  1855. const float f2 = d1*(v1 & 0xf) + m1;
  1856. const float f3 = d1*(v1 >> 4) + m1;
  1857. sumf += f0*f2 + f1*f3;
  1858. }
  1859. }
  1860. #endif
  1861. *s = sumf;
  1862. }
  1863. // compute GGML_VEC_DOT_UNROLL dot products at once
  1864. // xs - x row stride in bytes
  1865. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1866. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1867. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1868. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1869. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1870. }
  1871. #if defined(GGML_SIMD)
  1872. const int np = (n & ~(GGML_F16_STEP - 1));
  1873. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1874. GGML_F16_VEC ax[GGML_F16_ARR];
  1875. GGML_F16_VEC ay[GGML_F16_ARR];
  1876. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1877. for (int j = 0; j < GGML_F16_ARR; j++) {
  1878. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1879. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1880. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1881. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1882. }
  1883. }
  1884. }
  1885. // reduce sum0..sum3 to sum0
  1886. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1887. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1888. }
  1889. // leftovers
  1890. for (int i = np; i < n; ++i) {
  1891. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1892. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1893. }
  1894. }
  1895. #else
  1896. for (int i = 0; i < n; ++i) {
  1897. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1898. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1899. }
  1900. }
  1901. #endif
  1902. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1903. s[i] = sumf[i];
  1904. }
  1905. }
  1906. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1907. #if defined(GGML_SIMD)
  1908. const int np = (n & ~(GGML_F32_STEP - 1));
  1909. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1910. GGML_F32_VEC ax[GGML_F32_ARR];
  1911. GGML_F32_VEC ay[GGML_F32_ARR];
  1912. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1913. for (int j = 0; j < GGML_F32_ARR; j++) {
  1914. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1915. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1916. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1917. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1918. }
  1919. }
  1920. // leftovers
  1921. for (int i = np; i < n; ++i) {
  1922. y[i] += x[i]*v;
  1923. }
  1924. #else
  1925. // scalar
  1926. for (int i = 0; i < n; ++i) {
  1927. y[i] += x[i]*v;
  1928. }
  1929. #endif
  1930. }
  1931. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1932. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1933. #if defined(GGML_SIMD)
  1934. const int np = (n & ~(GGML_F32_STEP - 1));
  1935. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1936. GGML_F32_VEC ay[GGML_F32_ARR];
  1937. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1938. for (int j = 0; j < GGML_F32_ARR; j++) {
  1939. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1940. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1941. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1942. }
  1943. }
  1944. // leftovers
  1945. for (int i = np; i < n; ++i) {
  1946. y[i] *= v;
  1947. }
  1948. #else
  1949. // scalar
  1950. for (int i = 0; i < n; ++i) {
  1951. y[i] *= v;
  1952. }
  1953. #endif
  1954. }
  1955. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1956. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1957. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1958. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1959. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1960. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1961. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1962. static const float GELU_COEF_A = 0.044715f;
  1963. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1964. inline static float ggml_gelu_f32(float x) {
  1965. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1966. }
  1967. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1968. const uint16_t * i16 = (const uint16_t *) x;
  1969. for (int i = 0; i < n; ++i) {
  1970. y[i] = table_gelu_f16[i16[i]];
  1971. }
  1972. }
  1973. #ifdef GGML_GELU_FP16
  1974. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1975. uint16_t t;
  1976. for (int i = 0; i < n; ++i) {
  1977. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1978. memcpy(&t, &fp16, sizeof(uint16_t));
  1979. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1980. }
  1981. }
  1982. #else
  1983. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1984. for (int i = 0; i < n; ++i) {
  1985. y[i] = ggml_gelu_f32(x[i]);
  1986. }
  1987. }
  1988. #endif
  1989. // Sigmoid Linear Unit (SiLU) function
  1990. inline static float ggml_silu_f32(float x) {
  1991. return x/(1.0f + expf(-x));
  1992. }
  1993. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1994. const uint16_t * i16 = (const uint16_t *) x;
  1995. for (int i = 0; i < n; ++i) {
  1996. y[i] = table_silu_f16[i16[i]];
  1997. }
  1998. }
  1999. #ifdef GGML_SILU_FP16
  2000. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2001. uint16_t t;
  2002. for (int i = 0; i < n; ++i) {
  2003. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2004. memcpy(&t, &fp16, sizeof(uint16_t));
  2005. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2006. }
  2007. }
  2008. #else
  2009. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2010. for (int i = 0; i < n; ++i) {
  2011. y[i] = ggml_silu_f32(x[i]);
  2012. }
  2013. }
  2014. #endif
  2015. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2016. #ifndef GGML_USE_ACCELERATE
  2017. ggml_float sum = 0.0;
  2018. for (int i = 0; i < n; ++i) {
  2019. sum += (ggml_float)x[i];
  2020. }
  2021. *s = sum;
  2022. #else
  2023. vDSP_sve(x, 1, s, n);
  2024. #endif
  2025. }
  2026. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2027. #ifndef GGML_USE_ACCELERATE
  2028. float max = -INFINITY;
  2029. for (int i = 0; i < n; ++i) {
  2030. max = MAX(max, x[i]);
  2031. }
  2032. *s = max;
  2033. #else
  2034. vDSP_maxv(x, 1, s, n);
  2035. #endif
  2036. }
  2037. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2038. ggml_vec_norm_f32(n, s, x);
  2039. *s = 1.f/(*s);
  2040. }
  2041. //
  2042. // logging
  2043. //
  2044. #if (GGML_DEBUG >= 1)
  2045. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2046. #else
  2047. #define GGML_PRINT_DEBUG(...)
  2048. #endif
  2049. #if (GGML_DEBUG >= 5)
  2050. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2051. #else
  2052. #define GGML_PRINT_DEBUG_5(...)
  2053. #endif
  2054. #if (GGML_DEBUG >= 10)
  2055. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2056. #else
  2057. #define GGML_PRINT_DEBUG_10(...)
  2058. #endif
  2059. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2060. //
  2061. // data types
  2062. //
  2063. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2064. QK,
  2065. QK,
  2066. 1,
  2067. 1,
  2068. 1,
  2069. 1,
  2070. 1,
  2071. };
  2072. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2073. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2074. sizeof(block_q4_0),
  2075. sizeof(block_q4_1),
  2076. sizeof(int8_t ),
  2077. sizeof(int16_t),
  2078. sizeof(int32_t),
  2079. sizeof(ggml_fp16_t),
  2080. sizeof(float ),
  2081. };
  2082. // don't forget to update the array above when adding new types
  2083. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  2084. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  2085. "NONE",
  2086. "DUP",
  2087. "ADD",
  2088. "SUB",
  2089. "MUL",
  2090. "DIV",
  2091. "SQR",
  2092. "SQRT",
  2093. "SUM",
  2094. "MEAN",
  2095. "REPEAT",
  2096. "ABS",
  2097. "SGN",
  2098. "NEG",
  2099. "STEP",
  2100. "RELU",
  2101. "GELU",
  2102. "SILU",
  2103. "NORM",
  2104. "RMS_NORM",
  2105. "MUL_MAT",
  2106. "SCALE",
  2107. "CPY",
  2108. "RESHAPE",
  2109. "VIEW",
  2110. "PERMUTE",
  2111. "TRANSPOSE",
  2112. "GET_ROWS",
  2113. "DIAG_MASK_INF",
  2114. "SOFT_MAX",
  2115. "ROPE",
  2116. "CONV_1D_1S",
  2117. "CONV_1D_2S",
  2118. "FLASH_ATTN",
  2119. "FLASH_FF",
  2120. };
  2121. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2122. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2123. "none",
  2124. "x",
  2125. "x+y",
  2126. "x-y",
  2127. "x*y",
  2128. "x/y",
  2129. "x^2",
  2130. "√x",
  2131. "Σx",
  2132. "Σx/n",
  2133. "repeat(x)",
  2134. "abs(x)",
  2135. "sgn(x)",
  2136. "-x",
  2137. "step(x)",
  2138. "relu(x)",
  2139. "gelu(x)",
  2140. "silu(x)",
  2141. "norm(x)",
  2142. "rms_norm(x)",
  2143. "X*Y",
  2144. "x*v",
  2145. "x-\\>y",
  2146. "reshape(x)",
  2147. "view(x)",
  2148. "permute(x)",
  2149. "transpose(x)",
  2150. "get_rows(x)",
  2151. "diag_mask_inf(x)",
  2152. "soft_max(x)",
  2153. "rope(x)",
  2154. "conv_1d_1s(x)",
  2155. "conv_1d_2s(x)",
  2156. "flash_attn(x)",
  2157. "flash_ff(x)",
  2158. };
  2159. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  2160. //
  2161. // ggml object
  2162. //
  2163. struct ggml_object {
  2164. size_t offs;
  2165. size_t size;
  2166. struct ggml_object * next;
  2167. char padding[8];
  2168. };
  2169. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  2170. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2171. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2172. //
  2173. // ggml context
  2174. //
  2175. struct ggml_context {
  2176. size_t mem_size;
  2177. void * mem_buffer;
  2178. bool mem_buffer_owned;
  2179. bool mem_buffer_mlocked;
  2180. bool no_alloc;
  2181. int n_objects;
  2182. struct ggml_object * objects_begin;
  2183. struct ggml_object * objects_end;
  2184. struct ggml_scratch scratch;
  2185. struct ggml_scratch scratch_save;
  2186. };
  2187. struct ggml_context_container {
  2188. bool used;
  2189. struct ggml_context context;
  2190. };
  2191. //
  2192. // compute types
  2193. //
  2194. enum ggml_task_type {
  2195. GGML_TASK_INIT = 0,
  2196. GGML_TASK_COMPUTE,
  2197. GGML_TASK_FINALIZE,
  2198. };
  2199. struct ggml_compute_params {
  2200. enum ggml_task_type type;
  2201. int ith, nth;
  2202. // work buffer for all threads
  2203. size_t wsize;
  2204. void * wdata;
  2205. };
  2206. //
  2207. // ggml state
  2208. //
  2209. struct ggml_state {
  2210. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2211. };
  2212. // global state
  2213. static struct ggml_state g_state;
  2214. static atomic_int g_state_barrier = 0;
  2215. // barrier via spin lock
  2216. inline static void ggml_critical_section_start(void) {
  2217. int processing = atomic_fetch_add(&g_state_barrier, 1);
  2218. while (processing > 0) {
  2219. // wait for other threads to finish
  2220. atomic_fetch_sub(&g_state_barrier, 1);
  2221. sched_yield(); // TODO: reconsider this
  2222. processing = atomic_fetch_add(&g_state_barrier, 1);
  2223. }
  2224. }
  2225. // TODO: make this somehow automatically executed
  2226. // some sort of "sentry" mechanism
  2227. inline static void ggml_critical_section_end(void) {
  2228. atomic_fetch_sub(&g_state_barrier, 1);
  2229. }
  2230. ////////////////////////////////////////////////////////////////////////////////
  2231. void ggml_print_object(const struct ggml_object * obj) {
  2232. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  2233. obj->offs, obj->size, (const void *) obj->next);
  2234. }
  2235. void ggml_print_objects(const struct ggml_context * ctx) {
  2236. struct ggml_object * obj = ctx->objects_begin;
  2237. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2238. while (obj != NULL) {
  2239. ggml_print_object(obj);
  2240. obj = obj->next;
  2241. }
  2242. GGML_PRINT("%s: --- end ---\n", __func__);
  2243. }
  2244. int ggml_nelements(const struct ggml_tensor * tensor) {
  2245. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2246. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2247. }
  2248. int ggml_nrows(const struct ggml_tensor * tensor) {
  2249. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2250. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2251. }
  2252. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2253. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2254. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2255. }
  2256. int ggml_blck_size(enum ggml_type type) {
  2257. return GGML_BLCK_SIZE[type];
  2258. }
  2259. size_t ggml_type_size(enum ggml_type type) {
  2260. return GGML_TYPE_SIZE[type];
  2261. }
  2262. float ggml_type_sizef(enum ggml_type type) {
  2263. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2264. }
  2265. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2266. return GGML_TYPE_SIZE[tensor->type];
  2267. }
  2268. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2269. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2270. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2271. }
  2272. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2273. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2274. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2275. }
  2276. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2277. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2278. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2279. }
  2280. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2281. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2282. return
  2283. (t0->ne[0] == t1->ne[0]) &&
  2284. (t0->ne[2] == t1->ne[2]) &&
  2285. (t0->ne[3] == t1->ne[3]);
  2286. }
  2287. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2288. return tensor->nb[0] > tensor->nb[1];
  2289. }
  2290. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2291. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2292. return
  2293. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2294. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2295. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2296. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2297. }
  2298. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2299. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2300. return
  2301. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2302. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2303. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2304. }
  2305. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2306. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2307. return
  2308. (t0->ne[0] == t1->ne[0] ) &&
  2309. (t0->ne[1] == t1->ne[1] ) &&
  2310. (t0->ne[2] == t1->ne[2] ) &&
  2311. (t0->ne[3] == t1->ne[3] );
  2312. }
  2313. // check if t1 can be represented as a repeatition of t0
  2314. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2315. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2316. return
  2317. (t1->ne[0]%t0->ne[0] == 0) &&
  2318. (t1->ne[1]%t0->ne[1] == 0) &&
  2319. (t1->ne[2]%t0->ne[2] == 0) &&
  2320. (t1->ne[3]%t0->ne[3] == 0);
  2321. }
  2322. static inline int ggml_up32(int n) {
  2323. return (n + 31) & ~31;
  2324. }
  2325. static inline int ggml_up64(int n) {
  2326. return (n + 63) & ~63;
  2327. }
  2328. static inline int ggml_up(int n, int m) {
  2329. // assert m is a power of 2
  2330. GGML_ASSERT((m & (m - 1)) == 0);
  2331. return (n + m - 1) & ~(m - 1);
  2332. }
  2333. // assert that pointer is aligned to GGML_MEM_ALIGN
  2334. #define ggml_assert_aligned(ptr) \
  2335. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2336. ////////////////////////////////////////////////////////////////////////////////
  2337. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2338. // make this function thread safe
  2339. ggml_critical_section_start();
  2340. static bool is_first_call = true;
  2341. if (is_first_call) {
  2342. // initialize time system (required on Windows)
  2343. ggml_time_init();
  2344. // initialize GELU, SILU and EXP F32 tables
  2345. {
  2346. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2347. ggml_fp16_t ii;
  2348. for (int i = 0; i < (1 << 16); ++i) {
  2349. uint16_t ui = i;
  2350. memcpy(&ii, &ui, sizeof(ii));
  2351. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2352. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2353. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2354. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2355. }
  2356. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2357. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2358. }
  2359. // initialize g_state
  2360. {
  2361. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2362. g_state = (struct ggml_state) {
  2363. /*.contexts =*/ { { 0 } },
  2364. };
  2365. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2366. g_state.contexts[i].used = false;
  2367. }
  2368. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2369. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2370. }
  2371. is_first_call = false;
  2372. }
  2373. // find non-used context in g_state
  2374. struct ggml_context * ctx = NULL;
  2375. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2376. if (!g_state.contexts[i].used) {
  2377. g_state.contexts[i].used = true;
  2378. ctx = &g_state.contexts[i].context;
  2379. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2380. break;
  2381. }
  2382. }
  2383. if (ctx == NULL) {
  2384. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2385. ggml_critical_section_end();
  2386. return NULL;
  2387. }
  2388. *ctx = (struct ggml_context) {
  2389. /*.mem_size =*/ params.mem_size,
  2390. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2391. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2392. /*.mem_buffer_mlocked =*/ false,
  2393. /*.no_alloc =*/ params.no_alloc,
  2394. /*.n_objects =*/ 0,
  2395. /*.objects_begin =*/ NULL,
  2396. /*.objects_end =*/ NULL,
  2397. /*.scratch =*/ { 0, 0, NULL, },
  2398. /*.scratch_save =*/ { 0, 0, NULL, },
  2399. };
  2400. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2401. ggml_assert_aligned(ctx->mem_buffer);
  2402. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2403. ggml_critical_section_end();
  2404. return ctx;
  2405. }
  2406. void ggml_free(struct ggml_context * ctx) {
  2407. // make this function thread safe
  2408. ggml_critical_section_start();
  2409. bool found = false;
  2410. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2411. if (&g_state.contexts[i].context == ctx) {
  2412. g_state.contexts[i].used = false;
  2413. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2414. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2415. #if GGML_MLOCK_SUPPORT
  2416. if (ctx->mem_buffer_mlocked) {
  2417. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2418. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2419. }
  2420. }
  2421. #endif
  2422. if (ctx->mem_buffer_owned) {
  2423. free(ctx->mem_buffer);
  2424. }
  2425. found = true;
  2426. break;
  2427. }
  2428. }
  2429. if (!found) {
  2430. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2431. }
  2432. ggml_critical_section_end();
  2433. }
  2434. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2435. return ctx->objects_end->offs + ctx->objects_end->size;
  2436. }
  2437. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2438. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2439. ctx->scratch = scratch;
  2440. return result;
  2441. }
  2442. #ifdef __APPLE__
  2443. #define MLOCK_SUGGESTION \
  2444. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  2445. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l).\n"
  2446. #else
  2447. #define MLOCK_SUGGESTION \
  2448. "Try increasing RLIMIT_MLOCK ('ulimit -l' as root).\n"
  2449. #endif
  2450. bool ggml_mlock_supported(void) {
  2451. return GGML_MLOCK_SUPPORT;
  2452. }
  2453. bool ggml_mlock(
  2454. struct ggml_context * ctx,
  2455. const void *opt_extra_addr,
  2456. size_t opt_extra_len,
  2457. char **err_p) {
  2458. // TODO: Use SetProcessWorkingSetSize() + VirtualLock() on WIN32
  2459. #if GGML_MLOCK_SUPPORT
  2460. if (ctx->mem_buffer_mlocked) {
  2461. return true;
  2462. }
  2463. if (mlock(ctx->mem_buffer, ctx->mem_size) ||
  2464. (opt_extra_len &&
  2465. mlock(opt_extra_addr, opt_extra_len))) {
  2466. if ((*err_p = malloc(1024))) {
  2467. snprintf(*err_p, 1024,
  2468. "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2469. ctx->mem_size + opt_extra_len,
  2470. strerror(errno));
  2471. }
  2472. return false;
  2473. }
  2474. ctx->mem_buffer_mlocked = true;
  2475. return true;
  2476. #else // GGML_MLOCK_SUPPORT
  2477. *err_p = strdup("can't mlock because it's not supported on this system");
  2478. return false;
  2479. #endif // GGML_MLOCK_SUPPORT
  2480. }
  2481. ////////////////////////////////////////////////////////////////////////////////
  2482. struct ggml_tensor * ggml_new_tensor_impl(
  2483. struct ggml_context * ctx,
  2484. enum ggml_type type,
  2485. int n_dims,
  2486. const int* ne,
  2487. void* data) {
  2488. // always insert objects at the end of the context's memory pool
  2489. struct ggml_object * obj_cur = ctx->objects_end;
  2490. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2491. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2492. const size_t cur_end = cur_offs + cur_size;
  2493. size_t size_needed = 0;
  2494. if (data == NULL && !ctx->no_alloc) {
  2495. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2496. for (int i = 1; i < n_dims; i++) {
  2497. size_needed *= ne[i];
  2498. }
  2499. // align to GGML_MEM_ALIGN
  2500. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2501. }
  2502. char * const mem_buffer = ctx->mem_buffer;
  2503. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2504. if (ctx->scratch.data == NULL || data != NULL) {
  2505. size_needed += sizeof(struct ggml_tensor);
  2506. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2507. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2508. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2509. assert(false);
  2510. return NULL;
  2511. }
  2512. *obj_new = (struct ggml_object) {
  2513. .offs = cur_end + GGML_OBJECT_SIZE,
  2514. .size = size_needed,
  2515. .next = NULL,
  2516. };
  2517. } else {
  2518. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2519. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2520. assert(false);
  2521. return NULL;
  2522. }
  2523. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2524. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2525. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2526. assert(false);
  2527. return NULL;
  2528. }
  2529. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2530. *obj_new = (struct ggml_object) {
  2531. .offs = cur_end + GGML_OBJECT_SIZE,
  2532. .size = sizeof(struct ggml_tensor),
  2533. .next = NULL,
  2534. };
  2535. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2536. ctx->scratch.offs += size_needed;
  2537. }
  2538. if (obj_cur != NULL) {
  2539. obj_cur->next = obj_new;
  2540. } else {
  2541. // this is the first object in this context
  2542. ctx->objects_begin = obj_new;
  2543. }
  2544. ctx->objects_end = obj_new;
  2545. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2546. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2547. ggml_assert_aligned(result);
  2548. *result = (struct ggml_tensor) {
  2549. /*.type =*/ type,
  2550. /*.n_dims =*/ n_dims,
  2551. /*.ne =*/ { 1, 1, 1, 1 },
  2552. /*.nb =*/ { 0, 0, 0, 0 },
  2553. /*.op =*/ GGML_OP_NONE,
  2554. /*.is_param =*/ false,
  2555. /*.grad =*/ NULL,
  2556. /*.src0 =*/ NULL,
  2557. /*.src1 =*/ NULL,
  2558. /*.opt =*/ { NULL },
  2559. /*.n_tasks =*/ 0,
  2560. /*.perf_runs =*/ 0,
  2561. /*.perf_cycles =*/ 0,
  2562. /*.perf_time_us =*/ 0,
  2563. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  2564. /*.pad =*/ { 0 },
  2565. };
  2566. ggml_assert_aligned(result->data);
  2567. for (int i = 0; i < n_dims; i++) {
  2568. result->ne[i] = ne[i];
  2569. }
  2570. result->nb[0] = GGML_TYPE_SIZE[type];
  2571. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2572. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2573. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2574. }
  2575. ctx->n_objects++;
  2576. return result;
  2577. }
  2578. struct ggml_tensor * ggml_new_tensor(
  2579. struct ggml_context * ctx,
  2580. enum ggml_type type,
  2581. int n_dims,
  2582. const int * ne) {
  2583. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2584. }
  2585. struct ggml_tensor * ggml_new_tensor_1d(
  2586. struct ggml_context * ctx,
  2587. enum ggml_type type,
  2588. int ne0) {
  2589. return ggml_new_tensor(ctx, type, 1, &ne0);
  2590. }
  2591. struct ggml_tensor * ggml_new_tensor_2d(
  2592. struct ggml_context * ctx,
  2593. enum ggml_type type,
  2594. int ne0,
  2595. int ne1) {
  2596. const int ne[2] = { ne0, ne1 };
  2597. return ggml_new_tensor(ctx, type, 2, ne);
  2598. }
  2599. struct ggml_tensor * ggml_new_tensor_3d(
  2600. struct ggml_context * ctx,
  2601. enum ggml_type type,
  2602. int ne0,
  2603. int ne1,
  2604. int ne2) {
  2605. const int ne[3] = { ne0, ne1, ne2 };
  2606. return ggml_new_tensor(ctx, type, 3, ne);
  2607. }
  2608. struct ggml_tensor * ggml_new_tensor_4d(
  2609. struct ggml_context * ctx,
  2610. enum ggml_type type,
  2611. int ne0,
  2612. int ne1,
  2613. int ne2,
  2614. int ne3) {
  2615. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2616. return ggml_new_tensor(ctx, type, 4, ne);
  2617. }
  2618. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2619. ctx->scratch_save = ctx->scratch;
  2620. ctx->scratch.data = NULL;
  2621. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2622. ctx->scratch = ctx->scratch_save;
  2623. ggml_set_i32(result, value);
  2624. return result;
  2625. }
  2626. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2627. ctx->scratch_save = ctx->scratch;
  2628. ctx->scratch.data = NULL;
  2629. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2630. ctx->scratch = ctx->scratch_save;
  2631. ggml_set_f32(result, value);
  2632. return result;
  2633. }
  2634. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2635. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2636. }
  2637. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2638. memset(tensor->data, 0, ggml_nbytes(tensor));
  2639. return tensor;
  2640. }
  2641. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2642. const int n = ggml_nrows(tensor);
  2643. const int nc = tensor->ne[0];
  2644. const size_t n1 = tensor->nb[1];
  2645. char * const data = tensor->data;
  2646. switch (tensor->type) {
  2647. case GGML_TYPE_Q4_0:
  2648. {
  2649. GGML_ASSERT(false);
  2650. } break;
  2651. case GGML_TYPE_Q4_1:
  2652. {
  2653. GGML_ASSERT(false);
  2654. } break;
  2655. case GGML_TYPE_I8:
  2656. {
  2657. assert(tensor->nb[0] == sizeof(int8_t));
  2658. for (int i = 0; i < n; i++) {
  2659. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2660. }
  2661. } break;
  2662. case GGML_TYPE_I16:
  2663. {
  2664. assert(tensor->nb[0] == sizeof(int16_t));
  2665. for (int i = 0; i < n; i++) {
  2666. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2667. }
  2668. } break;
  2669. case GGML_TYPE_I32:
  2670. {
  2671. assert(tensor->nb[0] == sizeof(int32_t));
  2672. for (int i = 0; i < n; i++) {
  2673. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2674. }
  2675. } break;
  2676. case GGML_TYPE_F16:
  2677. {
  2678. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2679. for (int i = 0; i < n; i++) {
  2680. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2681. }
  2682. } break;
  2683. case GGML_TYPE_F32:
  2684. {
  2685. assert(tensor->nb[0] == sizeof(float));
  2686. for (int i = 0; i < n; i++) {
  2687. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2688. }
  2689. } break;
  2690. case GGML_TYPE_COUNT:
  2691. {
  2692. GGML_ASSERT(false);
  2693. } break;
  2694. }
  2695. return tensor;
  2696. }
  2697. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2698. const int n = ggml_nrows(tensor);
  2699. const int nc = tensor->ne[0];
  2700. const size_t n1 = tensor->nb[1];
  2701. char * const data = tensor->data;
  2702. switch (tensor->type) {
  2703. case GGML_TYPE_Q4_0:
  2704. {
  2705. GGML_ASSERT(false);
  2706. } break;
  2707. case GGML_TYPE_Q4_1:
  2708. {
  2709. GGML_ASSERT(false);
  2710. } break;
  2711. case GGML_TYPE_I8:
  2712. {
  2713. assert(tensor->nb[0] == sizeof(int8_t));
  2714. for (int i = 0; i < n; i++) {
  2715. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2716. }
  2717. } break;
  2718. case GGML_TYPE_I16:
  2719. {
  2720. assert(tensor->nb[0] == sizeof(int16_t));
  2721. for (int i = 0; i < n; i++) {
  2722. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2723. }
  2724. } break;
  2725. case GGML_TYPE_I32:
  2726. {
  2727. assert(tensor->nb[0] == sizeof(int32_t));
  2728. for (int i = 0; i < n; i++) {
  2729. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2730. }
  2731. } break;
  2732. case GGML_TYPE_F16:
  2733. {
  2734. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2735. for (int i = 0; i < n; i++) {
  2736. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2737. }
  2738. } break;
  2739. case GGML_TYPE_F32:
  2740. {
  2741. assert(tensor->nb[0] == sizeof(float));
  2742. for (int i = 0; i < n; i++) {
  2743. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2744. }
  2745. } break;
  2746. case GGML_TYPE_COUNT:
  2747. {
  2748. GGML_ASSERT(false);
  2749. } break;
  2750. }
  2751. return tensor;
  2752. }
  2753. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2754. switch (tensor->type) {
  2755. case GGML_TYPE_Q4_0:
  2756. {
  2757. GGML_ASSERT(false);
  2758. } break;
  2759. case GGML_TYPE_Q4_1:
  2760. {
  2761. GGML_ASSERT(false);
  2762. } break;
  2763. case GGML_TYPE_I8:
  2764. {
  2765. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2766. return ((int8_t *)(tensor->data))[i];
  2767. } break;
  2768. case GGML_TYPE_I16:
  2769. {
  2770. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2771. return ((int16_t *)(tensor->data))[i];
  2772. } break;
  2773. case GGML_TYPE_I32:
  2774. {
  2775. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2776. return ((int32_t *)(tensor->data))[i];
  2777. } break;
  2778. case GGML_TYPE_F16:
  2779. {
  2780. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2781. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2782. } break;
  2783. case GGML_TYPE_F32:
  2784. {
  2785. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2786. return ((float *)(tensor->data))[i];
  2787. } break;
  2788. case GGML_TYPE_COUNT:
  2789. {
  2790. GGML_ASSERT(false);
  2791. } break;
  2792. }
  2793. return 0.0f;
  2794. }
  2795. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2796. switch (tensor->type) {
  2797. case GGML_TYPE_Q4_0:
  2798. {
  2799. GGML_ASSERT(false);
  2800. } break;
  2801. case GGML_TYPE_Q4_1:
  2802. {
  2803. GGML_ASSERT(false);
  2804. } break;
  2805. case GGML_TYPE_I8:
  2806. {
  2807. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2808. ((int8_t *)(tensor->data))[i] = value;
  2809. } break;
  2810. case GGML_TYPE_I16:
  2811. {
  2812. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2813. ((int16_t *)(tensor->data))[i] = value;
  2814. } break;
  2815. case GGML_TYPE_I32:
  2816. {
  2817. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2818. ((int32_t *)(tensor->data))[i] = value;
  2819. } break;
  2820. case GGML_TYPE_F16:
  2821. {
  2822. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2823. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2824. } break;
  2825. case GGML_TYPE_F32:
  2826. {
  2827. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2828. ((float *)(tensor->data))[i] = value;
  2829. } break;
  2830. case GGML_TYPE_COUNT:
  2831. {
  2832. GGML_ASSERT(false);
  2833. } break;
  2834. }
  2835. }
  2836. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2837. switch (tensor->type) {
  2838. case GGML_TYPE_Q4_0:
  2839. {
  2840. GGML_ASSERT(false);
  2841. } break;
  2842. case GGML_TYPE_Q4_1:
  2843. {
  2844. GGML_ASSERT(false);
  2845. } break;
  2846. case GGML_TYPE_I8:
  2847. {
  2848. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2849. return ((int8_t *)(tensor->data))[i];
  2850. } break;
  2851. case GGML_TYPE_I16:
  2852. {
  2853. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2854. return ((int16_t *)(tensor->data))[i];
  2855. } break;
  2856. case GGML_TYPE_I32:
  2857. {
  2858. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2859. return ((int32_t *)(tensor->data))[i];
  2860. } break;
  2861. case GGML_TYPE_F16:
  2862. {
  2863. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2864. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2865. } break;
  2866. case GGML_TYPE_F32:
  2867. {
  2868. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2869. return ((float *)(tensor->data))[i];
  2870. } break;
  2871. case GGML_TYPE_COUNT:
  2872. {
  2873. GGML_ASSERT(false);
  2874. } break;
  2875. }
  2876. return 0.0f;
  2877. }
  2878. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2879. switch (tensor->type) {
  2880. case GGML_TYPE_Q4_0:
  2881. {
  2882. GGML_ASSERT(false);
  2883. } break;
  2884. case GGML_TYPE_Q4_1:
  2885. {
  2886. GGML_ASSERT(false);
  2887. } break;
  2888. case GGML_TYPE_I8:
  2889. {
  2890. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2891. ((int8_t *)(tensor->data))[i] = value;
  2892. } break;
  2893. case GGML_TYPE_I16:
  2894. {
  2895. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2896. ((int16_t *)(tensor->data))[i] = value;
  2897. } break;
  2898. case GGML_TYPE_I32:
  2899. {
  2900. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2901. ((int32_t *)(tensor->data))[i] = value;
  2902. } break;
  2903. case GGML_TYPE_F16:
  2904. {
  2905. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2906. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2907. } break;
  2908. case GGML_TYPE_F32:
  2909. {
  2910. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2911. ((float *)(tensor->data))[i] = value;
  2912. } break;
  2913. case GGML_TYPE_COUNT:
  2914. {
  2915. GGML_ASSERT(false);
  2916. } break;
  2917. }
  2918. }
  2919. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2920. return tensor->data;
  2921. }
  2922. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2923. assert(tensor->type == GGML_TYPE_F32);
  2924. return (float *)(tensor->data);
  2925. }
  2926. struct ggml_tensor * ggml_view_tensor(
  2927. struct ggml_context * ctx,
  2928. const struct ggml_tensor * src) {
  2929. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2930. }
  2931. ////////////////////////////////////////////////////////////////////////////////
  2932. // ggml_dup
  2933. struct ggml_tensor * ggml_dup_impl(
  2934. struct ggml_context * ctx,
  2935. struct ggml_tensor * a,
  2936. bool inplace) {
  2937. bool is_node = false;
  2938. if (!inplace && (a->grad)) {
  2939. is_node = true;
  2940. }
  2941. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2942. result->op = GGML_OP_DUP;
  2943. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2944. result->src0 = a;
  2945. result->src1 = NULL;
  2946. return result;
  2947. }
  2948. struct ggml_tensor * ggml_dup(
  2949. struct ggml_context * ctx,
  2950. struct ggml_tensor * a) {
  2951. return ggml_dup_impl(ctx, a, false);
  2952. }
  2953. struct ggml_tensor * ggml_dup_inplace(
  2954. struct ggml_context * ctx,
  2955. struct ggml_tensor * a) {
  2956. return ggml_dup_impl(ctx, a, true);
  2957. }
  2958. // ggml_add
  2959. struct ggml_tensor * ggml_add_impl(
  2960. struct ggml_context * ctx,
  2961. struct ggml_tensor * a,
  2962. struct ggml_tensor * b,
  2963. bool inplace) {
  2964. GGML_ASSERT(ggml_are_same_shape(a, b));
  2965. bool is_node = false;
  2966. if (!inplace && (a->grad || b->grad)) {
  2967. is_node = true;
  2968. }
  2969. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2970. result->op = GGML_OP_ADD;
  2971. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2972. result->src0 = a;
  2973. result->src1 = b;
  2974. return result;
  2975. }
  2976. struct ggml_tensor * ggml_add(
  2977. struct ggml_context * ctx,
  2978. struct ggml_tensor * a,
  2979. struct ggml_tensor * b) {
  2980. return ggml_add_impl(ctx, a, b, false);
  2981. }
  2982. struct ggml_tensor * ggml_add_inplace(
  2983. struct ggml_context * ctx,
  2984. struct ggml_tensor * a,
  2985. struct ggml_tensor * b) {
  2986. return ggml_add_impl(ctx, a, b, true);
  2987. }
  2988. // ggml_sub
  2989. struct ggml_tensor * ggml_sub_impl(
  2990. struct ggml_context * ctx,
  2991. struct ggml_tensor * a,
  2992. struct ggml_tensor * b,
  2993. bool inplace) {
  2994. GGML_ASSERT(ggml_are_same_shape(a, b));
  2995. bool is_node = false;
  2996. if (!inplace && (a->grad || b->grad)) {
  2997. is_node = true;
  2998. }
  2999. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3000. result->op = GGML_OP_SUB;
  3001. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3002. result->src0 = a;
  3003. result->src1 = b;
  3004. return result;
  3005. }
  3006. struct ggml_tensor * ggml_sub(
  3007. struct ggml_context * ctx,
  3008. struct ggml_tensor * a,
  3009. struct ggml_tensor * b) {
  3010. return ggml_sub_impl(ctx, a, b, false);
  3011. }
  3012. struct ggml_tensor * ggml_sub_inplace(
  3013. struct ggml_context * ctx,
  3014. struct ggml_tensor * a,
  3015. struct ggml_tensor * b) {
  3016. return ggml_sub_impl(ctx, a, b, true);
  3017. }
  3018. // ggml_mul
  3019. struct ggml_tensor * ggml_mul_impl(
  3020. struct ggml_context * ctx,
  3021. struct ggml_tensor * a,
  3022. struct ggml_tensor * b,
  3023. bool inplace) {
  3024. GGML_ASSERT(ggml_are_same_shape(a, b));
  3025. bool is_node = false;
  3026. if (!inplace && (a->grad || b->grad)) {
  3027. is_node = true;
  3028. }
  3029. if (inplace) {
  3030. GGML_ASSERT(is_node == false);
  3031. }
  3032. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3033. result->op = GGML_OP_MUL;
  3034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3035. result->src0 = a;
  3036. result->src1 = b;
  3037. return result;
  3038. }
  3039. struct ggml_tensor * ggml_mul(
  3040. struct ggml_context * ctx,
  3041. struct ggml_tensor * a,
  3042. struct ggml_tensor * b) {
  3043. return ggml_mul_impl(ctx, a, b, false);
  3044. }
  3045. struct ggml_tensor * ggml_mul_inplace(
  3046. struct ggml_context * ctx,
  3047. struct ggml_tensor * a,
  3048. struct ggml_tensor * b) {
  3049. return ggml_mul_impl(ctx, a, b, true);
  3050. }
  3051. // ggml_div
  3052. struct ggml_tensor * ggml_div_impl(
  3053. struct ggml_context * ctx,
  3054. struct ggml_tensor * a,
  3055. struct ggml_tensor * b,
  3056. bool inplace) {
  3057. GGML_ASSERT(ggml_are_same_shape(a, b));
  3058. bool is_node = false;
  3059. if (!inplace && (a->grad || b->grad)) {
  3060. is_node = true;
  3061. }
  3062. if (inplace) {
  3063. GGML_ASSERT(is_node == false);
  3064. }
  3065. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3066. result->op = GGML_OP_DIV;
  3067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3068. result->src0 = a;
  3069. result->src1 = b;
  3070. return result;
  3071. }
  3072. struct ggml_tensor * ggml_div(
  3073. struct ggml_context * ctx,
  3074. struct ggml_tensor * a,
  3075. struct ggml_tensor * b) {
  3076. return ggml_div_impl(ctx, a, b, false);
  3077. }
  3078. struct ggml_tensor * ggml_div_inplace(
  3079. struct ggml_context * ctx,
  3080. struct ggml_tensor * a,
  3081. struct ggml_tensor * b) {
  3082. return ggml_div_impl(ctx, a, b, true);
  3083. }
  3084. // ggml_sqr
  3085. struct ggml_tensor * ggml_sqr_impl(
  3086. struct ggml_context * ctx,
  3087. struct ggml_tensor * a,
  3088. bool inplace) {
  3089. bool is_node = false;
  3090. if (!inplace && (a->grad)) {
  3091. is_node = true;
  3092. }
  3093. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3094. result->op = GGML_OP_SQR;
  3095. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3096. result->src0 = a;
  3097. result->src1 = NULL;
  3098. return result;
  3099. }
  3100. struct ggml_tensor * ggml_sqr(
  3101. struct ggml_context * ctx,
  3102. struct ggml_tensor * a) {
  3103. return ggml_sqr_impl(ctx, a, false);
  3104. }
  3105. struct ggml_tensor * ggml_sqr_inplace(
  3106. struct ggml_context * ctx,
  3107. struct ggml_tensor * a) {
  3108. return ggml_sqr_impl(ctx, a, true);
  3109. }
  3110. // ggml_sqrt
  3111. struct ggml_tensor * ggml_sqrt_impl(
  3112. struct ggml_context * ctx,
  3113. struct ggml_tensor * a,
  3114. bool inplace) {
  3115. bool is_node = false;
  3116. if (!inplace && (a->grad)) {
  3117. is_node = true;
  3118. }
  3119. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3120. result->op = GGML_OP_SQRT;
  3121. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3122. result->src0 = a;
  3123. result->src1 = NULL;
  3124. return result;
  3125. }
  3126. struct ggml_tensor * ggml_sqrt(
  3127. struct ggml_context * ctx,
  3128. struct ggml_tensor * a) {
  3129. return ggml_sqrt_impl(ctx, a, false);
  3130. }
  3131. struct ggml_tensor * ggml_sqrt_inplace(
  3132. struct ggml_context * ctx,
  3133. struct ggml_tensor * a) {
  3134. return ggml_sqrt_impl(ctx, a, true);
  3135. }
  3136. // ggml_sum
  3137. struct ggml_tensor * ggml_sum(
  3138. struct ggml_context * ctx,
  3139. struct ggml_tensor * a) {
  3140. bool is_node = false;
  3141. if (a->grad) {
  3142. is_node = true;
  3143. }
  3144. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  3145. result->op = GGML_OP_SUM;
  3146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3147. result->src0 = a;
  3148. result->src1 = NULL;
  3149. return result;
  3150. }
  3151. // ggml_mean
  3152. struct ggml_tensor * ggml_mean(
  3153. struct ggml_context * ctx,
  3154. struct ggml_tensor * a) {
  3155. bool is_node = false;
  3156. if (a->grad) {
  3157. GGML_ASSERT(false); // TODO: implement
  3158. is_node = true;
  3159. }
  3160. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  3161. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  3162. result->op = GGML_OP_MEAN;
  3163. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3164. result->src0 = a;
  3165. result->src1 = NULL;
  3166. return result;
  3167. }
  3168. // ggml_repeat
  3169. struct ggml_tensor * ggml_repeat(
  3170. struct ggml_context * ctx,
  3171. struct ggml_tensor * a,
  3172. struct ggml_tensor * b) {
  3173. GGML_ASSERT(ggml_can_repeat(a, b));
  3174. bool is_node = false;
  3175. if (a->grad) {
  3176. is_node = true;
  3177. }
  3178. if (ggml_are_same_shape(a, b) && !is_node) {
  3179. return a;
  3180. }
  3181. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  3182. result->op = GGML_OP_REPEAT;
  3183. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3184. result->src0 = a;
  3185. result->src1 = b;
  3186. return result;
  3187. }
  3188. // ggml_abs
  3189. struct ggml_tensor * ggml_abs_impl(
  3190. struct ggml_context * ctx,
  3191. struct ggml_tensor * a,
  3192. bool inplace) {
  3193. bool is_node = false;
  3194. if (!inplace && (a->grad)) {
  3195. is_node = true;
  3196. }
  3197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3198. result->op = GGML_OP_ABS;
  3199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3200. result->src0 = a;
  3201. result->src1 = NULL;
  3202. return result;
  3203. }
  3204. struct ggml_tensor * ggml_abs(
  3205. struct ggml_context * ctx,
  3206. struct ggml_tensor * a) {
  3207. return ggml_abs_impl(ctx, a, false);
  3208. }
  3209. struct ggml_tensor * ggml_abs_inplace(
  3210. struct ggml_context * ctx,
  3211. struct ggml_tensor * a) {
  3212. return ggml_abs_impl(ctx, a, true);
  3213. }
  3214. // ggml_sgn
  3215. struct ggml_tensor * ggml_sgn_impl(
  3216. struct ggml_context * ctx,
  3217. struct ggml_tensor * a,
  3218. bool inplace) {
  3219. bool is_node = false;
  3220. if (!inplace && (a->grad)) {
  3221. is_node = true;
  3222. }
  3223. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3224. result->op = GGML_OP_SGN;
  3225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3226. result->src0 = a;
  3227. result->src1 = NULL;
  3228. return result;
  3229. }
  3230. struct ggml_tensor * ggml_sgn(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a) {
  3233. return ggml_sgn_impl(ctx, a, false);
  3234. }
  3235. struct ggml_tensor * ggml_sgn_inplace(
  3236. struct ggml_context * ctx,
  3237. struct ggml_tensor * a) {
  3238. return ggml_sgn_impl(ctx, a, true);
  3239. }
  3240. // ggml_neg
  3241. struct ggml_tensor * ggml_neg_impl(
  3242. struct ggml_context * ctx,
  3243. struct ggml_tensor * a,
  3244. bool inplace) {
  3245. bool is_node = false;
  3246. if (!inplace && (a->grad)) {
  3247. is_node = true;
  3248. }
  3249. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3250. result->op = GGML_OP_NEG;
  3251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3252. result->src0 = a;
  3253. result->src1 = NULL;
  3254. return result;
  3255. }
  3256. struct ggml_tensor * ggml_neg(
  3257. struct ggml_context * ctx,
  3258. struct ggml_tensor * a) {
  3259. return ggml_neg_impl(ctx, a, false);
  3260. }
  3261. struct ggml_tensor * ggml_neg_inplace(
  3262. struct ggml_context * ctx,
  3263. struct ggml_tensor * a) {
  3264. return ggml_neg_impl(ctx, a, true);
  3265. }
  3266. // ggml_step
  3267. struct ggml_tensor * ggml_step_impl(
  3268. struct ggml_context * ctx,
  3269. struct ggml_tensor * a,
  3270. bool inplace) {
  3271. bool is_node = false;
  3272. if (!inplace && (a->grad)) {
  3273. is_node = true;
  3274. }
  3275. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3276. result->op = GGML_OP_STEP;
  3277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3278. result->src0 = a;
  3279. result->src1 = NULL;
  3280. return result;
  3281. }
  3282. struct ggml_tensor * ggml_step(
  3283. struct ggml_context * ctx,
  3284. struct ggml_tensor * a) {
  3285. return ggml_step_impl(ctx, a, false);
  3286. }
  3287. struct ggml_tensor * ggml_step_inplace(
  3288. struct ggml_context * ctx,
  3289. struct ggml_tensor * a) {
  3290. return ggml_step_impl(ctx, a, true);
  3291. }
  3292. // ggml_relu
  3293. struct ggml_tensor * ggml_relu_impl(
  3294. struct ggml_context * ctx,
  3295. struct ggml_tensor * a,
  3296. bool inplace) {
  3297. bool is_node = false;
  3298. if (!inplace && (a->grad)) {
  3299. is_node = true;
  3300. }
  3301. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3302. result->op = GGML_OP_RELU;
  3303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3304. result->src0 = a;
  3305. result->src1 = NULL;
  3306. return result;
  3307. }
  3308. struct ggml_tensor * ggml_relu(
  3309. struct ggml_context * ctx,
  3310. struct ggml_tensor * a) {
  3311. return ggml_relu_impl(ctx, a, false);
  3312. }
  3313. struct ggml_tensor * ggml_relu_inplace(
  3314. struct ggml_context * ctx,
  3315. struct ggml_tensor * a) {
  3316. return ggml_relu_impl(ctx, a, true);
  3317. }
  3318. // ggml_gelu
  3319. struct ggml_tensor * ggml_gelu_impl(
  3320. struct ggml_context * ctx,
  3321. struct ggml_tensor * a,
  3322. bool inplace) {
  3323. bool is_node = false;
  3324. if (!inplace && (a->grad)) {
  3325. is_node = true;
  3326. }
  3327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3328. result->op = GGML_OP_GELU;
  3329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3330. result->src0 = a;
  3331. result->src1 = NULL;
  3332. return result;
  3333. }
  3334. struct ggml_tensor * ggml_gelu(
  3335. struct ggml_context * ctx,
  3336. struct ggml_tensor * a) {
  3337. return ggml_gelu_impl(ctx, a, false);
  3338. }
  3339. struct ggml_tensor * ggml_gelu_inplace(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a) {
  3342. return ggml_gelu_impl(ctx, a, true);
  3343. }
  3344. // ggml_silu
  3345. struct ggml_tensor * ggml_silu_impl(
  3346. struct ggml_context * ctx,
  3347. struct ggml_tensor * a,
  3348. bool inplace) {
  3349. bool is_node = false;
  3350. if (!inplace && (a->grad)) {
  3351. is_node = true;
  3352. }
  3353. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3354. result->op = GGML_OP_SILU;
  3355. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3356. result->src0 = a;
  3357. result->src1 = NULL;
  3358. return result;
  3359. }
  3360. struct ggml_tensor * ggml_silu(
  3361. struct ggml_context * ctx,
  3362. struct ggml_tensor * a) {
  3363. return ggml_silu_impl(ctx, a, false);
  3364. }
  3365. struct ggml_tensor * ggml_silu_inplace(
  3366. struct ggml_context * ctx,
  3367. struct ggml_tensor * a) {
  3368. return ggml_silu_impl(ctx, a, true);
  3369. }
  3370. // ggml_norm
  3371. struct ggml_tensor * ggml_norm_impl(
  3372. struct ggml_context * ctx,
  3373. struct ggml_tensor * a,
  3374. bool inplace) {
  3375. bool is_node = false;
  3376. if (!inplace && (a->grad)) {
  3377. GGML_ASSERT(false); // TODO: implement backward
  3378. is_node = true;
  3379. }
  3380. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3381. result->op = GGML_OP_NORM;
  3382. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3383. result->src0 = a;
  3384. result->src1 = NULL; // TODO: maybe store epsilon here?
  3385. return result;
  3386. }
  3387. struct ggml_tensor * ggml_norm(
  3388. struct ggml_context * ctx,
  3389. struct ggml_tensor * a) {
  3390. return ggml_norm_impl(ctx, a, false);
  3391. }
  3392. struct ggml_tensor * ggml_norm_inplace(
  3393. struct ggml_context * ctx,
  3394. struct ggml_tensor * a) {
  3395. return ggml_norm_impl(ctx, a, true);
  3396. }
  3397. struct ggml_tensor * ggml_rms_norm_impl(
  3398. struct ggml_context * ctx,
  3399. struct ggml_tensor * a,
  3400. bool inplace) {
  3401. bool is_node = false;
  3402. if (!inplace && (a->grad)) {
  3403. GGML_ASSERT(false); // TODO: implement backward
  3404. is_node = true;
  3405. }
  3406. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3407. result->op = GGML_OP_RMS_NORM;
  3408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3409. result->src0 = a;
  3410. result->src1 = NULL; // TODO: maybe store epsilon here?
  3411. return result;
  3412. }
  3413. struct ggml_tensor * ggml_rms_norm(
  3414. struct ggml_context * ctx,
  3415. struct ggml_tensor * a) {
  3416. return ggml_rms_norm_impl(ctx, a, false);
  3417. }
  3418. struct ggml_tensor * ggml_rms_norm_inplace(
  3419. struct ggml_context * ctx,
  3420. struct ggml_tensor * a) {
  3421. return ggml_rms_norm_impl(ctx, a, true);
  3422. }
  3423. // ggml_mul_mat
  3424. struct ggml_tensor * ggml_mul_mat(
  3425. struct ggml_context * ctx,
  3426. struct ggml_tensor * a,
  3427. struct ggml_tensor * b) {
  3428. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3429. GGML_ASSERT(!ggml_is_transposed(a));
  3430. bool is_node = false;
  3431. if (a->grad || b->grad) {
  3432. is_node = true;
  3433. }
  3434. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3435. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3436. result->op = GGML_OP_MUL_MAT;
  3437. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3438. result->src0 = a;
  3439. result->src1 = b;
  3440. return result;
  3441. }
  3442. // ggml_scale
  3443. struct ggml_tensor * ggml_scale_impl(
  3444. struct ggml_context * ctx,
  3445. struct ggml_tensor * a,
  3446. struct ggml_tensor * b,
  3447. bool inplace) {
  3448. GGML_ASSERT(ggml_is_scalar(b));
  3449. GGML_ASSERT(ggml_is_padded_1d(a));
  3450. bool is_node = false;
  3451. if (!inplace && (a->grad || b->grad)) {
  3452. GGML_ASSERT(false); // TODO: implement backward
  3453. is_node = true;
  3454. }
  3455. // TODO: when implement backward, fix this:
  3456. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3457. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3458. result->op = GGML_OP_SCALE;
  3459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3460. result->src0 = a;
  3461. result->src1 = b;
  3462. return result;
  3463. }
  3464. struct ggml_tensor * ggml_scale(
  3465. struct ggml_context * ctx,
  3466. struct ggml_tensor * a,
  3467. struct ggml_tensor * b) {
  3468. return ggml_scale_impl(ctx, a, b, false);
  3469. }
  3470. struct ggml_tensor * ggml_scale_inplace(
  3471. struct ggml_context * ctx,
  3472. struct ggml_tensor * a,
  3473. struct ggml_tensor * b) {
  3474. return ggml_scale_impl(ctx, a, b, true);
  3475. }
  3476. // ggml_cpy
  3477. struct ggml_tensor * ggml_cpy_impl(
  3478. struct ggml_context * ctx,
  3479. struct ggml_tensor * a,
  3480. struct ggml_tensor * b,
  3481. bool inplace) {
  3482. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3483. bool is_node = false;
  3484. if (!inplace && (a->grad || b->grad)) {
  3485. GGML_ASSERT(false); // TODO: implement backward
  3486. is_node = true;
  3487. }
  3488. // make a view of the destination
  3489. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3490. result->op = GGML_OP_CPY;
  3491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3492. result->src0 = a;
  3493. result->src1 = b;
  3494. return result;
  3495. }
  3496. struct ggml_tensor * ggml_cpy(
  3497. struct ggml_context * ctx,
  3498. struct ggml_tensor * a,
  3499. struct ggml_tensor * b) {
  3500. return ggml_cpy_impl(ctx, a, b, false);
  3501. }
  3502. struct ggml_tensor * ggml_cpy_inplace(
  3503. struct ggml_context * ctx,
  3504. struct ggml_tensor * a,
  3505. struct ggml_tensor * b) {
  3506. return ggml_cpy_impl(ctx, a, b, true);
  3507. }
  3508. // ggml_reshape
  3509. struct ggml_tensor * ggml_reshape(
  3510. struct ggml_context * ctx,
  3511. struct ggml_tensor * a,
  3512. struct ggml_tensor * b) {
  3513. GGML_ASSERT(ggml_is_contiguous(a));
  3514. GGML_ASSERT(ggml_is_contiguous(b));
  3515. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3516. bool is_node = false;
  3517. if (a->grad || b->grad) {
  3518. GGML_ASSERT(false); // TODO: implement backward
  3519. is_node = true;
  3520. }
  3521. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3522. result->op = GGML_OP_RESHAPE;
  3523. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3524. result->src0 = a;
  3525. result->src1 = NULL;
  3526. return result;
  3527. }
  3528. struct ggml_tensor * ggml_reshape_2d(
  3529. struct ggml_context * ctx,
  3530. struct ggml_tensor * a,
  3531. int ne0,
  3532. int ne1) {
  3533. GGML_ASSERT(ggml_is_contiguous(a));
  3534. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3535. bool is_node = false;
  3536. if (a->grad) {
  3537. GGML_ASSERT(false); // TODO: implement backward
  3538. is_node = true;
  3539. }
  3540. const int ne[2] = { ne0, ne1 };
  3541. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3542. result->op = GGML_OP_RESHAPE;
  3543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3544. result->src0 = a;
  3545. result->src1 = NULL;
  3546. return result;
  3547. }
  3548. struct ggml_tensor * ggml_reshape_3d(
  3549. struct ggml_context * ctx,
  3550. struct ggml_tensor * a,
  3551. int ne0,
  3552. int ne1,
  3553. int ne2) {
  3554. GGML_ASSERT(ggml_is_contiguous(a));
  3555. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3556. bool is_node = false;
  3557. if (a->grad) {
  3558. GGML_ASSERT(false); // TODO: implement backward
  3559. is_node = true;
  3560. }
  3561. const int ne[3] = { ne0, ne1, ne2 };
  3562. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3563. result->op = GGML_OP_RESHAPE;
  3564. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3565. result->src0 = a;
  3566. result->src1 = NULL;
  3567. return result;
  3568. }
  3569. // ggml_view_1d
  3570. struct ggml_tensor * ggml_view_1d(
  3571. struct ggml_context * ctx,
  3572. struct ggml_tensor * a,
  3573. int ne0,
  3574. size_t offset) {
  3575. if (a->grad) {
  3576. GGML_ASSERT(false); // gradient propagation is not supported
  3577. }
  3578. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3579. result->op = GGML_OP_VIEW;
  3580. result->grad = NULL;
  3581. result->src0 = a;
  3582. result->src1 = NULL; // TODO: maybe store the offset here?
  3583. return result;
  3584. }
  3585. // ggml_view_2d
  3586. struct ggml_tensor * ggml_view_2d(
  3587. struct ggml_context * ctx,
  3588. struct ggml_tensor * a,
  3589. int ne0,
  3590. int ne1,
  3591. size_t nb1,
  3592. size_t offset) {
  3593. if (a->grad) {
  3594. GGML_ASSERT(false); // gradient propagation is not supported
  3595. }
  3596. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3597. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3598. result->nb[1] = nb1;
  3599. result->nb[2] = result->nb[1]*ne1;
  3600. result->nb[3] = result->nb[2];
  3601. result->op = GGML_OP_VIEW;
  3602. result->grad = NULL;
  3603. result->src0 = a;
  3604. result->src1 = NULL; // TODO: maybe store the offset here?
  3605. return result;
  3606. }
  3607. // ggml_permute
  3608. struct ggml_tensor * ggml_permute(
  3609. struct ggml_context * ctx,
  3610. struct ggml_tensor * a,
  3611. int axis0,
  3612. int axis1,
  3613. int axis2,
  3614. int axis3) {
  3615. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3616. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3617. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3618. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3619. GGML_ASSERT(axis0 != axis1);
  3620. GGML_ASSERT(axis0 != axis2);
  3621. GGML_ASSERT(axis0 != axis3);
  3622. GGML_ASSERT(axis1 != axis2);
  3623. GGML_ASSERT(axis1 != axis3);
  3624. GGML_ASSERT(axis2 != axis3);
  3625. bool is_node = false;
  3626. if (a->grad) {
  3627. GGML_ASSERT(false); // TODO: implement backward
  3628. is_node = true;
  3629. }
  3630. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3631. int ne[GGML_MAX_DIMS];
  3632. int nb[GGML_MAX_DIMS];
  3633. ne[axis0] = a->ne[0];
  3634. ne[axis1] = a->ne[1];
  3635. ne[axis2] = a->ne[2];
  3636. ne[axis3] = a->ne[3];
  3637. nb[axis0] = a->nb[0];
  3638. nb[axis1] = a->nb[1];
  3639. nb[axis2] = a->nb[2];
  3640. nb[axis3] = a->nb[3];
  3641. result->ne[0] = ne[0];
  3642. result->ne[1] = ne[1];
  3643. result->ne[2] = ne[2];
  3644. result->ne[3] = ne[3];
  3645. result->nb[0] = nb[0];
  3646. result->nb[1] = nb[1];
  3647. result->nb[2] = nb[2];
  3648. result->nb[3] = nb[3];
  3649. result->op = GGML_OP_PERMUTE;
  3650. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3651. result->src0 = a;
  3652. result->src1 = NULL; // TODO: maybe store the permutation here?
  3653. return result;
  3654. }
  3655. // ggml_transpose
  3656. struct ggml_tensor * ggml_transpose(
  3657. struct ggml_context * ctx,
  3658. struct ggml_tensor * a) {
  3659. bool is_node = false;
  3660. if (a->grad) {
  3661. GGML_ASSERT(false); // TODO: implement backward
  3662. is_node = true;
  3663. }
  3664. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3665. result->ne[0] = a->ne[1];
  3666. result->ne[1] = a->ne[0];
  3667. result->nb[0] = a->nb[1];
  3668. result->nb[1] = a->nb[0];
  3669. result->op = GGML_OP_TRANSPOSE;
  3670. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3671. result->src0 = a;
  3672. result->src1 = NULL;
  3673. return result;
  3674. }
  3675. // ggml_get_rows
  3676. struct ggml_tensor * ggml_get_rows(
  3677. struct ggml_context * ctx,
  3678. struct ggml_tensor * a,
  3679. struct ggml_tensor * b) {
  3680. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3681. bool is_node = false;
  3682. if (a->grad || b->grad) {
  3683. GGML_ASSERT(false); // TODO: implement backward
  3684. is_node = true;
  3685. }
  3686. // TODO: implement non F32 return
  3687. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3688. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3689. result->op = GGML_OP_GET_ROWS;
  3690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3691. result->src0 = a;
  3692. result->src1 = b;
  3693. return result;
  3694. }
  3695. // ggml_diag_mask_inf
  3696. struct ggml_tensor * ggml_diag_mask_inf(
  3697. struct ggml_context * ctx,
  3698. struct ggml_tensor * a,
  3699. int n_past) {
  3700. bool is_node = false;
  3701. if (a->grad) {
  3702. GGML_ASSERT(false); // TODO: implement backward
  3703. is_node = true;
  3704. }
  3705. // TODO: when implement backward, fix this:
  3706. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3707. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3708. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3709. result->op = GGML_OP_DIAG_MASK_INF;
  3710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3711. result->src0 = a;
  3712. result->src1 = b;
  3713. return result;
  3714. }
  3715. // ggml_soft_max
  3716. struct ggml_tensor * ggml_soft_max(
  3717. struct ggml_context * ctx,
  3718. struct ggml_tensor * a) {
  3719. bool is_node = false;
  3720. if (a->grad) {
  3721. GGML_ASSERT(false); // TODO: implement backward
  3722. is_node = true;
  3723. }
  3724. // TODO: when implement backward, fix this:
  3725. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3726. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3727. result->op = GGML_OP_SOFT_MAX;
  3728. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3729. result->src0 = a;
  3730. result->src1 = NULL;
  3731. return result;
  3732. }
  3733. // ggml_rope
  3734. struct ggml_tensor * ggml_rope(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a,
  3737. int n_past,
  3738. int n_dims,
  3739. int mode) {
  3740. GGML_ASSERT(n_past >= 0);
  3741. bool is_node = false;
  3742. if (a->grad) {
  3743. GGML_ASSERT(false); // TODO: implement backward
  3744. is_node = true;
  3745. }
  3746. // TODO: when implement backward, fix this:
  3747. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3748. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3749. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3750. ((int32_t *) b->data)[0] = n_past;
  3751. ((int32_t *) b->data)[1] = n_dims;
  3752. ((int32_t *) b->data)[2] = mode;
  3753. result->op = GGML_OP_ROPE;
  3754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3755. result->src0 = a;
  3756. result->src1 = b;
  3757. return result;
  3758. }
  3759. // ggml_conv_1d_1s
  3760. struct ggml_tensor * ggml_conv_1d_1s(
  3761. struct ggml_context * ctx,
  3762. struct ggml_tensor * a,
  3763. struct ggml_tensor * b) {
  3764. GGML_ASSERT(ggml_is_matrix(b));
  3765. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3766. GGML_ASSERT(a->ne[3] == 1);
  3767. bool is_node = false;
  3768. if (a->grad || b->grad) {
  3769. GGML_ASSERT(false); // TODO: implement backward
  3770. is_node = true;
  3771. }
  3772. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3773. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3774. result->op = GGML_OP_CONV_1D_1S;
  3775. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3776. result->src0 = a;
  3777. result->src1 = b;
  3778. return result;
  3779. }
  3780. // ggml_conv_1d_2s
  3781. struct ggml_tensor * ggml_conv_1d_2s(
  3782. struct ggml_context * ctx,
  3783. struct ggml_tensor * a,
  3784. struct ggml_tensor * b) {
  3785. GGML_ASSERT(ggml_is_matrix(b));
  3786. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3787. GGML_ASSERT(a->ne[3] == 1);
  3788. bool is_node = false;
  3789. if (a->grad || b->grad) {
  3790. GGML_ASSERT(false); // TODO: implement backward
  3791. is_node = true;
  3792. }
  3793. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3794. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3795. result->op = GGML_OP_CONV_1D_2S;
  3796. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3797. result->src0 = a;
  3798. result->src1 = b;
  3799. return result;
  3800. }
  3801. // ggml_flash_attn
  3802. struct ggml_tensor * ggml_flash_attn(
  3803. struct ggml_context * ctx,
  3804. struct ggml_tensor * q,
  3805. struct ggml_tensor * k,
  3806. struct ggml_tensor * v,
  3807. bool masked) {
  3808. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3809. // TODO: check if vT can be multiplied by (k*qT)
  3810. bool is_node = false;
  3811. if (q->grad || k->grad || v->grad) {
  3812. GGML_ASSERT(false); // TODO: implement backward
  3813. is_node = true;
  3814. }
  3815. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3816. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3817. result->op = GGML_OP_FLASH_ATTN;
  3818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3819. result->src0 = q;
  3820. result->src1 = k;
  3821. result->opt[0] = v;
  3822. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3823. return result;
  3824. }
  3825. // ggml_flash_ff
  3826. struct ggml_tensor * ggml_flash_ff(
  3827. struct ggml_context * ctx,
  3828. struct ggml_tensor * a,
  3829. struct ggml_tensor * b0,
  3830. struct ggml_tensor * b1,
  3831. struct ggml_tensor * c0,
  3832. struct ggml_tensor * c1) {
  3833. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3834. // TODO: more checks
  3835. bool is_node = false;
  3836. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3837. GGML_ASSERT(false); // TODO: implement backward
  3838. is_node = true;
  3839. }
  3840. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3841. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3842. result->op = GGML_OP_FLASH_FF;
  3843. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3844. result->src0 = a;
  3845. result->src1 = b0;
  3846. result->opt[0] = b1;
  3847. result->opt[1] = c0;
  3848. result->opt[2] = c1;
  3849. return result;
  3850. }
  3851. ////////////////////////////////////////////////////////////////////////////////
  3852. void ggml_set_param(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * tensor) {
  3855. tensor->is_param = true;
  3856. GGML_ASSERT(tensor->grad == NULL);
  3857. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3858. }
  3859. // ggml_compute_forward_dup
  3860. static void ggml_compute_forward_dup_f16(
  3861. const struct ggml_compute_params * params,
  3862. const struct ggml_tensor * src0,
  3863. struct ggml_tensor * dst) {
  3864. GGML_ASSERT(params->ith == 0);
  3865. GGML_ASSERT(ggml_is_contiguous(dst));
  3866. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3867. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3868. return;
  3869. }
  3870. const int ne00 = src0->ne[0];
  3871. const int ne01 = src0->ne[1];
  3872. const int ne02 = src0->ne[2];
  3873. const int ne03 = src0->ne[3];
  3874. const size_t nb00 = src0->nb[0];
  3875. const size_t nb01 = src0->nb[1];
  3876. const size_t nb02 = src0->nb[2];
  3877. const size_t nb03 = src0->nb[3];
  3878. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3879. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3880. return;
  3881. }
  3882. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3883. if (dst->type == GGML_TYPE_F16) {
  3884. size_t id = 0;
  3885. const size_t rs = ne00*nb00;
  3886. for (int i03 = 0; i03 < ne03; i03++) {
  3887. for (int i02 = 0; i02 < ne02; i02++) {
  3888. for (int i01 = 0; i01 < ne01; i01++) {
  3889. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3890. char * dst_ptr = (char *) dst->data + id*rs;
  3891. memcpy(dst_ptr, src0_ptr, rs);
  3892. id++;
  3893. }
  3894. }
  3895. }
  3896. } else if (dst->type == GGML_TYPE_F32) {
  3897. size_t id = 0;
  3898. float * dst_ptr = (float *) dst->data;
  3899. for (int i03 = 0; i03 < ne03; i03++) {
  3900. for (int i02 = 0; i02 < ne02; i02++) {
  3901. for (int i01 = 0; i01 < ne01; i01++) {
  3902. for (int i00 = 0; i00 < ne00; i00++) {
  3903. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3904. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3905. id++;
  3906. }
  3907. }
  3908. }
  3909. }
  3910. } else {
  3911. GGML_ASSERT(false); // TODO: implement
  3912. }
  3913. } else {
  3914. //printf("%s: this is not optimal - fix me\n", __func__);
  3915. if (dst->type == GGML_TYPE_F32) {
  3916. size_t id = 0;
  3917. float * dst_ptr = (float *) dst->data;
  3918. for (int i03 = 0; i03 < ne03; i03++) {
  3919. for (int i02 = 0; i02 < ne02; i02++) {
  3920. for (int i01 = 0; i01 < ne01; i01++) {
  3921. for (int i00 = 0; i00 < ne00; i00++) {
  3922. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3923. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3924. id++;
  3925. }
  3926. }
  3927. }
  3928. }
  3929. } else if (dst->type == GGML_TYPE_F16) {
  3930. size_t id = 0;
  3931. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3932. for (int i03 = 0; i03 < ne03; i03++) {
  3933. for (int i02 = 0; i02 < ne02; i02++) {
  3934. for (int i01 = 0; i01 < ne01; i01++) {
  3935. for (int i00 = 0; i00 < ne00; i00++) {
  3936. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3937. dst_ptr[id] = *src0_ptr;
  3938. id++;
  3939. }
  3940. }
  3941. }
  3942. }
  3943. } else {
  3944. GGML_ASSERT(false); // TODO: implement
  3945. }
  3946. }
  3947. }
  3948. static void ggml_compute_forward_dup_f32(
  3949. const struct ggml_compute_params * params,
  3950. const struct ggml_tensor * src0,
  3951. struct ggml_tensor * dst) {
  3952. GGML_ASSERT(params->ith == 0);
  3953. GGML_ASSERT(ggml_is_contiguous(dst));
  3954. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3955. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3956. return;
  3957. }
  3958. const int ne00 = src0->ne[0];
  3959. const int ne01 = src0->ne[1];
  3960. const int ne02 = src0->ne[2];
  3961. const int ne03 = src0->ne[3];
  3962. const size_t nb00 = src0->nb[0];
  3963. const size_t nb01 = src0->nb[1];
  3964. const size_t nb02 = src0->nb[2];
  3965. const size_t nb03 = src0->nb[3];
  3966. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3967. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3968. return;
  3969. }
  3970. if (src0->nb[0] == sizeof(float)) {
  3971. if (dst->type == GGML_TYPE_F32) {
  3972. size_t id = 0;
  3973. const size_t rs = ne00*nb00;
  3974. for (int i03 = 0; i03 < ne03; i03++) {
  3975. for (int i02 = 0; i02 < ne02; i02++) {
  3976. for (int i01 = 0; i01 < ne01; i01++) {
  3977. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3978. char * dst_ptr = (char *) dst->data + id*rs;
  3979. memcpy(dst_ptr, src0_ptr, rs);
  3980. id++;
  3981. }
  3982. }
  3983. }
  3984. } else if (dst->type == GGML_TYPE_F16) {
  3985. size_t id = 0;
  3986. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3987. for (int i03 = 0; i03 < ne03; i03++) {
  3988. for (int i02 = 0; i02 < ne02; i02++) {
  3989. for (int i01 = 0; i01 < ne01; i01++) {
  3990. for (int i00 = 0; i00 < ne00; i00++) {
  3991. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3992. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3993. id++;
  3994. }
  3995. }
  3996. }
  3997. }
  3998. } else {
  3999. GGML_ASSERT(false); // TODO: implement
  4000. }
  4001. } else {
  4002. //printf("%s: this is not optimal - fix me\n", __func__);
  4003. if (dst->type == GGML_TYPE_F32) {
  4004. size_t id = 0;
  4005. float * dst_ptr = (float *) dst->data;
  4006. for (int i03 = 0; i03 < ne03; i03++) {
  4007. for (int i02 = 0; i02 < ne02; i02++) {
  4008. for (int i01 = 0; i01 < ne01; i01++) {
  4009. for (int i00 = 0; i00 < ne00; i00++) {
  4010. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4011. dst_ptr[id] = *src0_ptr;
  4012. id++;
  4013. }
  4014. }
  4015. }
  4016. }
  4017. } else if (dst->type == GGML_TYPE_F16) {
  4018. size_t id = 0;
  4019. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  4020. for (int i03 = 0; i03 < ne03; i03++) {
  4021. for (int i02 = 0; i02 < ne02; i02++) {
  4022. for (int i01 = 0; i01 < ne01; i01++) {
  4023. for (int i00 = 0; i00 < ne00; i00++) {
  4024. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  4025. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  4026. id++;
  4027. }
  4028. }
  4029. }
  4030. }
  4031. } else {
  4032. GGML_ASSERT(false); // TODO: implement
  4033. }
  4034. }
  4035. }
  4036. static void ggml_compute_forward_dup(
  4037. const struct ggml_compute_params * params,
  4038. const struct ggml_tensor * src0,
  4039. struct ggml_tensor * dst) {
  4040. switch (src0->type) {
  4041. case GGML_TYPE_F16:
  4042. {
  4043. ggml_compute_forward_dup_f16(params, src0, dst);
  4044. } break;
  4045. case GGML_TYPE_F32:
  4046. {
  4047. ggml_compute_forward_dup_f32(params, src0, dst);
  4048. } break;
  4049. case GGML_TYPE_Q4_0:
  4050. case GGML_TYPE_Q4_1:
  4051. case GGML_TYPE_I8:
  4052. case GGML_TYPE_I16:
  4053. case GGML_TYPE_I32:
  4054. case GGML_TYPE_COUNT:
  4055. {
  4056. GGML_ASSERT(false);
  4057. } break;
  4058. }
  4059. }
  4060. // ggml_compute_forward_add
  4061. static void ggml_compute_forward_add_f32(
  4062. const struct ggml_compute_params * params,
  4063. const struct ggml_tensor * src0,
  4064. const struct ggml_tensor * src1,
  4065. struct ggml_tensor * dst) {
  4066. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4067. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4068. return;
  4069. }
  4070. const int ith = params->ith;
  4071. const int nth = params->nth;
  4072. const int n = ggml_nrows(src0);
  4073. const int nc = src0->ne[0];
  4074. const size_t nb00 = src0->nb[0];
  4075. const size_t nb01 = src0->nb[1];
  4076. const size_t nb10 = src1->nb[0];
  4077. const size_t nb11 = src1->nb[1];
  4078. const size_t nb0 = dst->nb[0];
  4079. const size_t nb1 = dst->nb[1];
  4080. GGML_ASSERT( nb0 == sizeof(float));
  4081. GGML_ASSERT(nb00 == sizeof(float));
  4082. if (nb10 == sizeof(float)) {
  4083. const int j0 = (n/nth)*ith;
  4084. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  4085. for (int j = j0; j < j1; j++) {
  4086. ggml_vec_add_f32(nc,
  4087. (float *) ((char *) dst->data + j*nb1),
  4088. (float *) ((char *) src0->data + j*nb01),
  4089. (float *) ((char *) src1->data + j*nb11));
  4090. }
  4091. } else {
  4092. // src1 is not contiguous
  4093. for (int j = ith; j < n; j += nth) {
  4094. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  4095. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  4096. for (int i = 0; i < nc; i++) {
  4097. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  4098. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  4099. }
  4100. }
  4101. }
  4102. }
  4103. static void ggml_compute_forward_add(
  4104. const struct ggml_compute_params * params,
  4105. const struct ggml_tensor * src0,
  4106. const struct ggml_tensor * src1,
  4107. struct ggml_tensor * dst) {
  4108. switch (src0->type) {
  4109. case GGML_TYPE_F32:
  4110. {
  4111. ggml_compute_forward_add_f32(params, src0, src1, dst);
  4112. } break;
  4113. case GGML_TYPE_Q4_0:
  4114. case GGML_TYPE_Q4_1:
  4115. case GGML_TYPE_I8:
  4116. case GGML_TYPE_I16:
  4117. case GGML_TYPE_I32:
  4118. case GGML_TYPE_F16:
  4119. case GGML_TYPE_COUNT:
  4120. {
  4121. GGML_ASSERT(false);
  4122. } break;
  4123. }
  4124. }
  4125. // ggml_compute_forward_sub
  4126. static void ggml_compute_forward_sub_f32(
  4127. const struct ggml_compute_params * params,
  4128. const struct ggml_tensor * src0,
  4129. const struct ggml_tensor * src1,
  4130. struct ggml_tensor * dst) {
  4131. assert(params->ith == 0);
  4132. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4134. return;
  4135. }
  4136. const int n = ggml_nrows(src0);
  4137. const int nc = src0->ne[0];
  4138. assert( dst->nb[0] == sizeof(float));
  4139. assert(src0->nb[0] == sizeof(float));
  4140. assert(src1->nb[0] == sizeof(float));
  4141. for (int i = 0; i < n; i++) {
  4142. ggml_vec_sub_f32(nc,
  4143. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4144. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4145. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4146. }
  4147. }
  4148. static void ggml_compute_forward_sub(
  4149. const struct ggml_compute_params * params,
  4150. const struct ggml_tensor * src0,
  4151. const struct ggml_tensor * src1,
  4152. struct ggml_tensor * dst) {
  4153. switch (src0->type) {
  4154. case GGML_TYPE_F32:
  4155. {
  4156. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  4157. } break;
  4158. case GGML_TYPE_Q4_0:
  4159. case GGML_TYPE_Q4_1:
  4160. case GGML_TYPE_I8:
  4161. case GGML_TYPE_I16:
  4162. case GGML_TYPE_I32:
  4163. case GGML_TYPE_F16:
  4164. case GGML_TYPE_COUNT:
  4165. {
  4166. GGML_ASSERT(false);
  4167. } break;
  4168. }
  4169. }
  4170. // ggml_compute_forward_mul
  4171. static void ggml_compute_forward_mul_f32(
  4172. const struct ggml_compute_params * params,
  4173. const struct ggml_tensor * src0,
  4174. const struct ggml_tensor * src1,
  4175. struct ggml_tensor * dst) {
  4176. assert(params->ith == 0);
  4177. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4178. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4179. return;
  4180. }
  4181. const int n = ggml_nrows(src0);
  4182. const int nc = src0->ne[0];
  4183. assert( dst->nb[0] == sizeof(float));
  4184. assert(src0->nb[0] == sizeof(float));
  4185. assert(src1->nb[0] == sizeof(float));
  4186. for (int i = 0; i < n; i++) {
  4187. ggml_vec_mul_f32(nc,
  4188. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4189. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4190. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4191. }
  4192. }
  4193. static void ggml_compute_forward_mul(
  4194. const struct ggml_compute_params * params,
  4195. const struct ggml_tensor * src0,
  4196. const struct ggml_tensor * src1,
  4197. struct ggml_tensor * dst) {
  4198. switch (src0->type) {
  4199. case GGML_TYPE_F32:
  4200. {
  4201. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  4202. } break;
  4203. case GGML_TYPE_Q4_0:
  4204. case GGML_TYPE_Q4_1:
  4205. case GGML_TYPE_I8:
  4206. case GGML_TYPE_I16:
  4207. case GGML_TYPE_I32:
  4208. case GGML_TYPE_F16:
  4209. case GGML_TYPE_COUNT:
  4210. {
  4211. GGML_ASSERT(false);
  4212. } break;
  4213. }
  4214. }
  4215. // ggml_compute_forward_div
  4216. static void ggml_compute_forward_div_f32(
  4217. const struct ggml_compute_params * params,
  4218. const struct ggml_tensor * src0,
  4219. const struct ggml_tensor * src1,
  4220. struct ggml_tensor * dst) {
  4221. assert(params->ith == 0);
  4222. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  4223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4224. return;
  4225. }
  4226. const int n = ggml_nrows(src0);
  4227. const int nc = src0->ne[0];
  4228. assert( dst->nb[0] == sizeof(float));
  4229. assert(src0->nb[0] == sizeof(float));
  4230. assert(src1->nb[0] == sizeof(float));
  4231. for (int i = 0; i < n; i++) {
  4232. ggml_vec_div_f32(nc,
  4233. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4234. (float *) ((char *) src0->data + i*(src0->nb[1])),
  4235. (float *) ((char *) src1->data + i*(src1->nb[1])));
  4236. }
  4237. }
  4238. static void ggml_compute_forward_div(
  4239. const struct ggml_compute_params * params,
  4240. const struct ggml_tensor * src0,
  4241. const struct ggml_tensor * src1,
  4242. struct ggml_tensor * dst) {
  4243. switch (src0->type) {
  4244. case GGML_TYPE_F32:
  4245. {
  4246. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4247. } break;
  4248. case GGML_TYPE_Q4_0:
  4249. case GGML_TYPE_Q4_1:
  4250. case GGML_TYPE_I8:
  4251. case GGML_TYPE_I16:
  4252. case GGML_TYPE_I32:
  4253. case GGML_TYPE_F16:
  4254. case GGML_TYPE_COUNT:
  4255. {
  4256. GGML_ASSERT(false);
  4257. } break;
  4258. }
  4259. }
  4260. // ggml_compute_forward_sqr
  4261. static void ggml_compute_forward_sqr_f32(
  4262. const struct ggml_compute_params * params,
  4263. const struct ggml_tensor * src0,
  4264. struct ggml_tensor * dst) {
  4265. assert(params->ith == 0);
  4266. assert(ggml_are_same_shape(src0, dst));
  4267. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4268. return;
  4269. }
  4270. const int n = ggml_nrows(src0);
  4271. const int nc = src0->ne[0];
  4272. assert( dst->nb[0] == sizeof(float));
  4273. assert(src0->nb[0] == sizeof(float));
  4274. for (int i = 0; i < n; i++) {
  4275. ggml_vec_sqr_f32(nc,
  4276. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4277. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4278. }
  4279. }
  4280. static void ggml_compute_forward_sqr(
  4281. const struct ggml_compute_params * params,
  4282. const struct ggml_tensor * src0,
  4283. struct ggml_tensor * dst) {
  4284. switch (src0->type) {
  4285. case GGML_TYPE_F32:
  4286. {
  4287. ggml_compute_forward_sqr_f32(params, src0, dst);
  4288. } break;
  4289. case GGML_TYPE_Q4_0:
  4290. case GGML_TYPE_Q4_1:
  4291. case GGML_TYPE_I8:
  4292. case GGML_TYPE_I16:
  4293. case GGML_TYPE_I32:
  4294. case GGML_TYPE_F16:
  4295. case GGML_TYPE_COUNT:
  4296. {
  4297. GGML_ASSERT(false);
  4298. } break;
  4299. }
  4300. }
  4301. // ggml_compute_forward_sqrt
  4302. static void ggml_compute_forward_sqrt_f32(
  4303. const struct ggml_compute_params * params,
  4304. const struct ggml_tensor * src0,
  4305. struct ggml_tensor * dst) {
  4306. assert(params->ith == 0);
  4307. assert(ggml_are_same_shape(src0, dst));
  4308. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4309. return;
  4310. }
  4311. const int n = ggml_nrows(src0);
  4312. const int nc = src0->ne[0];
  4313. assert( dst->nb[0] == sizeof(float));
  4314. assert(src0->nb[0] == sizeof(float));
  4315. for (int i = 0; i < n; i++) {
  4316. ggml_vec_sqrt_f32(nc,
  4317. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4318. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4319. }
  4320. }
  4321. static void ggml_compute_forward_sqrt(
  4322. const struct ggml_compute_params * params,
  4323. const struct ggml_tensor * src0,
  4324. struct ggml_tensor * dst) {
  4325. switch (src0->type) {
  4326. case GGML_TYPE_F32:
  4327. {
  4328. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4329. } break;
  4330. case GGML_TYPE_Q4_0:
  4331. case GGML_TYPE_Q4_1:
  4332. case GGML_TYPE_I8:
  4333. case GGML_TYPE_I16:
  4334. case GGML_TYPE_I32:
  4335. case GGML_TYPE_F16:
  4336. case GGML_TYPE_COUNT:
  4337. {
  4338. GGML_ASSERT(false);
  4339. } break;
  4340. }
  4341. }
  4342. // ggml_compute_forward_sum
  4343. static void ggml_compute_forward_sum_f32(
  4344. const struct ggml_compute_params * params,
  4345. const struct ggml_tensor * src0,
  4346. struct ggml_tensor * dst) {
  4347. assert(params->ith == 0);
  4348. assert(ggml_is_scalar(dst));
  4349. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4350. return;
  4351. }
  4352. assert(ggml_is_scalar(dst));
  4353. assert(src0->nb[0] == sizeof(float));
  4354. const int ne00 = src0->ne[0];
  4355. const int ne01 = src0->ne[1];
  4356. const int ne02 = src0->ne[2];
  4357. const int ne03 = src0->ne[3];
  4358. const size_t nb01 = src0->nb[1];
  4359. const size_t nb02 = src0->nb[2];
  4360. const size_t nb03 = src0->nb[3];
  4361. for (int i03 = 0; i03 < ne03; i03++) {
  4362. for (int i02 = 0; i02 < ne02; i02++) {
  4363. for (int i01 = 0; i01 < ne01; i01++) {
  4364. ggml_vec_sum_f32(ne00,
  4365. (float *) (dst->data),
  4366. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4367. }
  4368. }
  4369. }
  4370. }
  4371. static void ggml_compute_forward_sum(
  4372. const struct ggml_compute_params * params,
  4373. const struct ggml_tensor * src0,
  4374. struct ggml_tensor * dst) {
  4375. switch (src0->type) {
  4376. case GGML_TYPE_F32:
  4377. {
  4378. ggml_compute_forward_sum_f32(params, src0, dst);
  4379. } break;
  4380. case GGML_TYPE_Q4_0:
  4381. case GGML_TYPE_Q4_1:
  4382. case GGML_TYPE_I8:
  4383. case GGML_TYPE_I16:
  4384. case GGML_TYPE_I32:
  4385. case GGML_TYPE_F16:
  4386. case GGML_TYPE_COUNT:
  4387. {
  4388. GGML_ASSERT(false);
  4389. } break;
  4390. }
  4391. }
  4392. // ggml_compute_forward_mean
  4393. static void ggml_compute_forward_mean_f32(
  4394. const struct ggml_compute_params * params,
  4395. const struct ggml_tensor * src0,
  4396. struct ggml_tensor * dst) {
  4397. assert(params->ith == 0);
  4398. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4399. return;
  4400. }
  4401. assert(src0->nb[0] == sizeof(float));
  4402. const int ne00 = src0->ne[0];
  4403. const int ne01 = src0->ne[1];
  4404. const int ne02 = src0->ne[2];
  4405. const int ne03 = src0->ne[3];
  4406. const size_t nb01 = src0->nb[1];
  4407. const size_t nb02 = src0->nb[2];
  4408. const size_t nb03 = src0->nb[3];
  4409. const int ne0 = dst->ne[0];
  4410. const int ne1 = dst->ne[1];
  4411. const int ne2 = dst->ne[2];
  4412. const int ne3 = dst->ne[3];
  4413. assert(ne0 == 1);
  4414. assert(ne1 == ne01);
  4415. assert(ne2 == ne02);
  4416. assert(ne3 == ne03);
  4417. UNUSED(ne0);
  4418. UNUSED(ne1);
  4419. UNUSED(ne2);
  4420. UNUSED(ne3);
  4421. const size_t nb1 = dst->nb[1];
  4422. const size_t nb2 = dst->nb[2];
  4423. const size_t nb3 = dst->nb[3];
  4424. for (int i03 = 0; i03 < ne03; i03++) {
  4425. for (int i02 = 0; i02 < ne02; i02++) {
  4426. for (int i01 = 0; i01 < ne01; i01++) {
  4427. ggml_vec_sum_f32(ne00,
  4428. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4429. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4430. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4431. }
  4432. }
  4433. }
  4434. }
  4435. static void ggml_compute_forward_mean(
  4436. const struct ggml_compute_params * params,
  4437. const struct ggml_tensor * src0,
  4438. struct ggml_tensor * dst) {
  4439. switch (src0->type) {
  4440. case GGML_TYPE_F32:
  4441. {
  4442. ggml_compute_forward_mean_f32(params, src0, dst);
  4443. } break;
  4444. case GGML_TYPE_Q4_0:
  4445. case GGML_TYPE_Q4_1:
  4446. case GGML_TYPE_I8:
  4447. case GGML_TYPE_I16:
  4448. case GGML_TYPE_I32:
  4449. case GGML_TYPE_F16:
  4450. case GGML_TYPE_COUNT:
  4451. {
  4452. GGML_ASSERT(false);
  4453. } break;
  4454. }
  4455. }
  4456. // ggml_compute_forward_repeat
  4457. static void ggml_compute_forward_repeat_f32(
  4458. const struct ggml_compute_params * params,
  4459. const struct ggml_tensor * src0,
  4460. struct ggml_tensor * dst) {
  4461. assert(params->ith == 0);
  4462. assert(ggml_can_repeat(src0, dst));
  4463. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4464. return;
  4465. }
  4466. // TODO: implement support for rank > 2 tensors
  4467. assert(src0->ne[2] == 1);
  4468. assert(src0->ne[3] == 1);
  4469. assert( dst->ne[2] == 1);
  4470. assert( dst->ne[3] == 1);
  4471. const int nc = dst->ne[0];
  4472. const int nr = dst->ne[1];
  4473. const int nc0 = src0->ne[0];
  4474. const int nr0 = src0->ne[1];
  4475. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4476. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4477. // TODO: support for transposed / permuted tensors
  4478. assert( dst->nb[0] == sizeof(float));
  4479. assert(src0->nb[0] == sizeof(float));
  4480. // TODO: maybe this is not optimal?
  4481. for (int i = 0; i < nrr; i++) {
  4482. for (int j = 0; j < ncr; j++) {
  4483. for (int k = 0; k < nr0; k++) {
  4484. ggml_vec_cpy_f32(nc0,
  4485. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4486. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4487. }
  4488. }
  4489. }
  4490. }
  4491. static void ggml_compute_forward_repeat(
  4492. const struct ggml_compute_params * params,
  4493. const struct ggml_tensor * src0,
  4494. struct ggml_tensor * dst) {
  4495. switch (src0->type) {
  4496. case GGML_TYPE_F32:
  4497. {
  4498. ggml_compute_forward_repeat_f32(params, src0, dst);
  4499. } break;
  4500. case GGML_TYPE_Q4_0:
  4501. case GGML_TYPE_Q4_1:
  4502. case GGML_TYPE_I8:
  4503. case GGML_TYPE_I16:
  4504. case GGML_TYPE_I32:
  4505. case GGML_TYPE_F16:
  4506. case GGML_TYPE_COUNT:
  4507. {
  4508. GGML_ASSERT(false);
  4509. } break;
  4510. }
  4511. }
  4512. // ggml_compute_forward_abs
  4513. static void ggml_compute_forward_abs_f32(
  4514. const struct ggml_compute_params * params,
  4515. const struct ggml_tensor * src0,
  4516. struct ggml_tensor * dst) {
  4517. assert(params->ith == 0);
  4518. assert(ggml_are_same_shape(src0, dst));
  4519. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4520. return;
  4521. }
  4522. const int n = ggml_nrows(src0);
  4523. const int nc = src0->ne[0];
  4524. assert(dst->nb[0] == sizeof(float));
  4525. assert(src0->nb[0] == sizeof(float));
  4526. for (int i = 0; i < n; i++) {
  4527. ggml_vec_abs_f32(nc,
  4528. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4529. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4530. }
  4531. }
  4532. static void ggml_compute_forward_abs(
  4533. const struct ggml_compute_params * params,
  4534. const struct ggml_tensor * src0,
  4535. struct ggml_tensor * dst) {
  4536. switch (src0->type) {
  4537. case GGML_TYPE_F32:
  4538. {
  4539. ggml_compute_forward_abs_f32(params, src0, dst);
  4540. } break;
  4541. case GGML_TYPE_Q4_0:
  4542. case GGML_TYPE_Q4_1:
  4543. case GGML_TYPE_I8:
  4544. case GGML_TYPE_I16:
  4545. case GGML_TYPE_I32:
  4546. case GGML_TYPE_F16:
  4547. case GGML_TYPE_COUNT:
  4548. {
  4549. GGML_ASSERT(false);
  4550. } break;
  4551. }
  4552. }
  4553. // ggml_compute_forward_sgn
  4554. static void ggml_compute_forward_sgn_f32(
  4555. const struct ggml_compute_params * params,
  4556. const struct ggml_tensor * src0,
  4557. struct ggml_tensor * dst) {
  4558. assert(params->ith == 0);
  4559. assert(ggml_are_same_shape(src0, dst));
  4560. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4561. return;
  4562. }
  4563. const int n = ggml_nrows(src0);
  4564. const int nc = src0->ne[0];
  4565. assert(dst->nb[0] == sizeof(float));
  4566. assert(src0->nb[0] == sizeof(float));
  4567. for (int i = 0; i < n; i++) {
  4568. ggml_vec_sgn_f32(nc,
  4569. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4570. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4571. }
  4572. }
  4573. static void ggml_compute_forward_sgn(
  4574. const struct ggml_compute_params * params,
  4575. const struct ggml_tensor * src0,
  4576. struct ggml_tensor * dst) {
  4577. switch (src0->type) {
  4578. case GGML_TYPE_F32:
  4579. {
  4580. ggml_compute_forward_sgn_f32(params, src0, dst);
  4581. } break;
  4582. case GGML_TYPE_Q4_0:
  4583. case GGML_TYPE_Q4_1:
  4584. case GGML_TYPE_I8:
  4585. case GGML_TYPE_I16:
  4586. case GGML_TYPE_I32:
  4587. case GGML_TYPE_F16:
  4588. case GGML_TYPE_COUNT:
  4589. {
  4590. GGML_ASSERT(false);
  4591. } break;
  4592. }
  4593. }
  4594. // ggml_compute_forward_neg
  4595. static void ggml_compute_forward_neg_f32(
  4596. const struct ggml_compute_params * params,
  4597. const struct ggml_tensor * src0,
  4598. struct ggml_tensor * dst) {
  4599. assert(params->ith == 0);
  4600. assert(ggml_are_same_shape(src0, dst));
  4601. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4602. return;
  4603. }
  4604. const int n = ggml_nrows(src0);
  4605. const int nc = src0->ne[0];
  4606. assert(dst->nb[0] == sizeof(float));
  4607. assert(src0->nb[0] == sizeof(float));
  4608. for (int i = 0; i < n; i++) {
  4609. ggml_vec_neg_f32(nc,
  4610. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4611. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4612. }
  4613. }
  4614. static void ggml_compute_forward_neg(
  4615. const struct ggml_compute_params * params,
  4616. const struct ggml_tensor * src0,
  4617. struct ggml_tensor * dst) {
  4618. switch (src0->type) {
  4619. case GGML_TYPE_F32:
  4620. {
  4621. ggml_compute_forward_neg_f32(params, src0, dst);
  4622. } break;
  4623. case GGML_TYPE_Q4_0:
  4624. case GGML_TYPE_Q4_1:
  4625. case GGML_TYPE_I8:
  4626. case GGML_TYPE_I16:
  4627. case GGML_TYPE_I32:
  4628. case GGML_TYPE_F16:
  4629. case GGML_TYPE_COUNT:
  4630. {
  4631. GGML_ASSERT(false);
  4632. } break;
  4633. }
  4634. }
  4635. // ggml_compute_forward_step
  4636. static void ggml_compute_forward_step_f32(
  4637. const struct ggml_compute_params * params,
  4638. const struct ggml_tensor * src0,
  4639. struct ggml_tensor * dst) {
  4640. assert(params->ith == 0);
  4641. assert(ggml_are_same_shape(src0, dst));
  4642. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4643. return;
  4644. }
  4645. const int n = ggml_nrows(src0);
  4646. const int nc = src0->ne[0];
  4647. assert(dst->nb[0] == sizeof(float));
  4648. assert(src0->nb[0] == sizeof(float));
  4649. for (int i = 0; i < n; i++) {
  4650. ggml_vec_step_f32(nc,
  4651. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4652. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4653. }
  4654. }
  4655. static void ggml_compute_forward_step(
  4656. const struct ggml_compute_params * params,
  4657. const struct ggml_tensor * src0,
  4658. struct ggml_tensor * dst) {
  4659. switch (src0->type) {
  4660. case GGML_TYPE_F32:
  4661. {
  4662. ggml_compute_forward_step_f32(params, src0, dst);
  4663. } break;
  4664. case GGML_TYPE_Q4_0:
  4665. case GGML_TYPE_Q4_1:
  4666. case GGML_TYPE_I8:
  4667. case GGML_TYPE_I16:
  4668. case GGML_TYPE_I32:
  4669. case GGML_TYPE_F16:
  4670. case GGML_TYPE_COUNT:
  4671. {
  4672. GGML_ASSERT(false);
  4673. } break;
  4674. }
  4675. }
  4676. // ggml_compute_forward_relu
  4677. static void ggml_compute_forward_relu_f32(
  4678. const struct ggml_compute_params * params,
  4679. const struct ggml_tensor * src0,
  4680. struct ggml_tensor * dst) {
  4681. assert(params->ith == 0);
  4682. assert(ggml_are_same_shape(src0, dst));
  4683. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4684. return;
  4685. }
  4686. const int n = ggml_nrows(src0);
  4687. const int nc = src0->ne[0];
  4688. assert(dst->nb[0] == sizeof(float));
  4689. assert(src0->nb[0] == sizeof(float));
  4690. for (int i = 0; i < n; i++) {
  4691. ggml_vec_relu_f32(nc,
  4692. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4693. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4694. }
  4695. }
  4696. static void ggml_compute_forward_relu(
  4697. const struct ggml_compute_params * params,
  4698. const struct ggml_tensor * src0,
  4699. struct ggml_tensor * dst) {
  4700. switch (src0->type) {
  4701. case GGML_TYPE_F32:
  4702. {
  4703. ggml_compute_forward_relu_f32(params, src0, dst);
  4704. } break;
  4705. case GGML_TYPE_Q4_0:
  4706. case GGML_TYPE_Q4_1:
  4707. case GGML_TYPE_I8:
  4708. case GGML_TYPE_I16:
  4709. case GGML_TYPE_I32:
  4710. case GGML_TYPE_F16:
  4711. case GGML_TYPE_COUNT:
  4712. {
  4713. GGML_ASSERT(false);
  4714. } break;
  4715. }
  4716. }
  4717. // ggml_compute_forward_gelu
  4718. static void ggml_compute_forward_gelu_f32(
  4719. const struct ggml_compute_params * params,
  4720. const struct ggml_tensor * src0,
  4721. struct ggml_tensor * dst) {
  4722. GGML_ASSERT(ggml_is_contiguous(src0));
  4723. GGML_ASSERT(ggml_is_contiguous(dst));
  4724. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4725. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4726. return;
  4727. }
  4728. const int ith = params->ith;
  4729. const int nth = params->nth;
  4730. const int nc = src0->ne[0];
  4731. const int nr = ggml_nrows(src0);
  4732. // rows per thread
  4733. const int dr = (nr + nth - 1)/nth;
  4734. // row range for this thread
  4735. const int ir0 = dr*ith;
  4736. const int ir1 = MIN(ir0 + dr, nr);
  4737. for (int i1 = ir0; i1 < ir1; i1++) {
  4738. ggml_vec_gelu_f32(nc,
  4739. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4740. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4741. #ifndef NDEBUG
  4742. for (int k = 0; k < nc; k++) {
  4743. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4744. UNUSED(x);
  4745. assert(!isnan(x));
  4746. assert(!isinf(x));
  4747. }
  4748. #endif
  4749. }
  4750. }
  4751. static void ggml_compute_forward_gelu(
  4752. const struct ggml_compute_params * params,
  4753. const struct ggml_tensor * src0,
  4754. struct ggml_tensor * dst) {
  4755. switch (src0->type) {
  4756. case GGML_TYPE_F32:
  4757. {
  4758. ggml_compute_forward_gelu_f32(params, src0, dst);
  4759. } break;
  4760. case GGML_TYPE_Q4_0:
  4761. case GGML_TYPE_Q4_1:
  4762. case GGML_TYPE_I8:
  4763. case GGML_TYPE_I16:
  4764. case GGML_TYPE_I32:
  4765. case GGML_TYPE_F16:
  4766. case GGML_TYPE_COUNT:
  4767. {
  4768. GGML_ASSERT(false);
  4769. } break;
  4770. }
  4771. //printf("XXXXXXXX gelu\n");
  4772. }
  4773. // ggml_compute_forward_silu
  4774. static void ggml_compute_forward_silu_f32(
  4775. const struct ggml_compute_params * params,
  4776. const struct ggml_tensor * src0,
  4777. struct ggml_tensor * dst) {
  4778. GGML_ASSERT(ggml_is_contiguous(src0));
  4779. GGML_ASSERT(ggml_is_contiguous(dst));
  4780. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4781. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4782. return;
  4783. }
  4784. const int ith = params->ith;
  4785. const int nth = params->nth;
  4786. const int nc = src0->ne[0];
  4787. const int nr = ggml_nrows(src0);
  4788. // rows per thread
  4789. const int dr = (nr + nth - 1)/nth;
  4790. // row range for this thread
  4791. const int ir0 = dr*ith;
  4792. const int ir1 = MIN(ir0 + dr, nr);
  4793. for (int i1 = ir0; i1 < ir1; i1++) {
  4794. ggml_vec_silu_f32(nc,
  4795. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4796. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4797. #ifndef NDEBUG
  4798. for (int k = 0; k < nc; k++) {
  4799. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4800. UNUSED(x);
  4801. assert(!isnan(x));
  4802. assert(!isinf(x));
  4803. }
  4804. #endif
  4805. }
  4806. }
  4807. static void ggml_compute_forward_silu(
  4808. const struct ggml_compute_params * params,
  4809. const struct ggml_tensor * src0,
  4810. struct ggml_tensor * dst) {
  4811. switch (src0->type) {
  4812. case GGML_TYPE_F32:
  4813. {
  4814. ggml_compute_forward_silu_f32(params, src0, dst);
  4815. } break;
  4816. case GGML_TYPE_Q4_0:
  4817. case GGML_TYPE_Q4_1:
  4818. case GGML_TYPE_I8:
  4819. case GGML_TYPE_I16:
  4820. case GGML_TYPE_I32:
  4821. case GGML_TYPE_F16:
  4822. case GGML_TYPE_COUNT:
  4823. {
  4824. GGML_ASSERT(false);
  4825. } break;
  4826. }
  4827. }
  4828. // ggml_compute_forward_norm
  4829. static void ggml_compute_forward_norm_f32(
  4830. const struct ggml_compute_params * params,
  4831. const struct ggml_tensor * src0,
  4832. struct ggml_tensor * dst) {
  4833. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4834. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4835. return;
  4836. }
  4837. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4838. const int ith = params->ith;
  4839. const int nth = params->nth;
  4840. const int ne00 = src0->ne[0];
  4841. const int ne01 = src0->ne[1];
  4842. const int ne02 = src0->ne[2];
  4843. const int ne03 = src0->ne[3];
  4844. const size_t nb01 = src0->nb[1];
  4845. const size_t nb02 = src0->nb[2];
  4846. const size_t nb03 = src0->nb[3];
  4847. const size_t nb1 = dst->nb[1];
  4848. const size_t nb2 = dst->nb[2];
  4849. const size_t nb3 = dst->nb[3];
  4850. const float eps = 1e-5f; // TODO: make this a parameter
  4851. // TODO: optimize
  4852. for (int i03 = 0; i03 < ne03; i03++) {
  4853. for (int i02 = 0; i02 < ne02; i02++) {
  4854. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4855. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4856. ggml_float sum = 0.0;
  4857. for (int i00 = 0; i00 < ne00; i00++) {
  4858. sum += (ggml_float)x[i00];
  4859. }
  4860. float mean = sum/ne00;
  4861. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4862. ggml_float sum2 = 0.0;
  4863. for (int i00 = 0; i00 < ne00; i00++) {
  4864. float v = x[i00] - mean;
  4865. y[i00] = v;
  4866. sum2 += (ggml_float)(v*v);
  4867. }
  4868. float variance = sum2/ne00;
  4869. const float scale = 1.0f/sqrtf(variance + eps);
  4870. ggml_vec_scale_f32(ne00, y, scale);
  4871. }
  4872. }
  4873. }
  4874. }
  4875. static void ggml_compute_forward_norm(
  4876. const struct ggml_compute_params * params,
  4877. const struct ggml_tensor * src0,
  4878. struct ggml_tensor * dst) {
  4879. switch (src0->type) {
  4880. case GGML_TYPE_F32:
  4881. {
  4882. ggml_compute_forward_norm_f32(params, src0, dst);
  4883. } break;
  4884. case GGML_TYPE_Q4_0:
  4885. case GGML_TYPE_Q4_1:
  4886. case GGML_TYPE_I8:
  4887. case GGML_TYPE_I16:
  4888. case GGML_TYPE_I32:
  4889. case GGML_TYPE_F16:
  4890. case GGML_TYPE_COUNT:
  4891. {
  4892. GGML_ASSERT(false);
  4893. } break;
  4894. }
  4895. }
  4896. static void ggml_compute_forward_rms_norm_f32(
  4897. const struct ggml_compute_params * params,
  4898. const struct ggml_tensor * src0,
  4899. struct ggml_tensor * dst) {
  4900. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4901. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4902. return;
  4903. }
  4904. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4905. const int ith = params->ith;
  4906. const int nth = params->nth;
  4907. const int ne00 = src0->ne[0];
  4908. const int ne01 = src0->ne[1];
  4909. const int ne02 = src0->ne[2];
  4910. const int ne03 = src0->ne[3];
  4911. const size_t nb01 = src0->nb[1];
  4912. const size_t nb02 = src0->nb[2];
  4913. const size_t nb03 = src0->nb[3];
  4914. const size_t nb1 = dst->nb[1];
  4915. const size_t nb2 = dst->nb[2];
  4916. const size_t nb3 = dst->nb[3];
  4917. const float eps = 1e-6f; // TODO: make this a parameter
  4918. // TODO: optimize
  4919. for (int i03 = 0; i03 < ne03; i03++) {
  4920. for (int i02 = 0; i02 < ne02; i02++) {
  4921. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4922. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4923. ggml_float sum = 0.0;
  4924. for (int i00 = 0; i00 < ne00; i00++) {
  4925. sum += (ggml_float)(x[i00] * x[i00]);
  4926. }
  4927. float mean = sum/ne00;
  4928. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4929. memcpy(y, x, ne00 * sizeof(float));
  4930. // for (int i00 = 0; i00 < ne00; i00++) {
  4931. // y[i00] = x[i00];
  4932. // }
  4933. const float scale = 1.0f/sqrtf(mean + eps);
  4934. ggml_vec_scale_f32(ne00, y, scale);
  4935. }
  4936. }
  4937. }
  4938. }
  4939. static void ggml_compute_forward_rms_norm(
  4940. const struct ggml_compute_params * params,
  4941. const struct ggml_tensor * src0,
  4942. struct ggml_tensor * dst) {
  4943. switch (src0->type) {
  4944. case GGML_TYPE_F32:
  4945. {
  4946. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4947. } break;
  4948. case GGML_TYPE_Q4_0:
  4949. case GGML_TYPE_Q4_1:
  4950. case GGML_TYPE_I8:
  4951. case GGML_TYPE_I16:
  4952. case GGML_TYPE_I32:
  4953. case GGML_TYPE_F16:
  4954. case GGML_TYPE_COUNT:
  4955. {
  4956. GGML_ASSERT(false);
  4957. } break;
  4958. }
  4959. }
  4960. // ggml_compute_forward_mul_mat
  4961. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4962. // helper function to determine if it is better to use BLAS or not
  4963. // for large matrices, BLAS is faster
  4964. static bool ggml_compute_forward_mul_mat_use_blas(
  4965. const struct ggml_tensor * src0,
  4966. const struct ggml_tensor * src1,
  4967. struct ggml_tensor * dst) {
  4968. //const int ne00 = src0->ne[0];
  4969. //const int ne01 = src0->ne[1];
  4970. const int ne10 = src1->ne[0];
  4971. const int ne0 = dst->ne[0];
  4972. const int ne1 = dst->ne[1];
  4973. // TODO: find the optimal values for these
  4974. if (ggml_is_contiguous(src0) &&
  4975. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4976. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4977. return true;
  4978. }
  4979. return false;
  4980. }
  4981. #endif
  4982. static void ggml_compute_forward_mul_mat_f32(
  4983. const struct ggml_compute_params * params,
  4984. const struct ggml_tensor * src0,
  4985. const struct ggml_tensor * src1,
  4986. struct ggml_tensor * dst) {
  4987. int64_t t0 = ggml_perf_time_us();
  4988. UNUSED(t0);
  4989. const int ne00 = src0->ne[0];
  4990. const int ne01 = src0->ne[1];
  4991. const int ne02 = src0->ne[2];
  4992. const int ne03 = src0->ne[3];
  4993. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4994. const int ne10 = src1->ne[0];
  4995. #endif
  4996. const int ne11 = src1->ne[1];
  4997. #ifndef NDEBUG
  4998. const int ne12 = src1->ne[2];
  4999. const int ne13 = src1->ne[3];
  5000. const int ne0 = dst->ne[0];
  5001. const int ne1 = dst->ne[1];
  5002. const int ne2 = dst->ne[2];
  5003. const int ne3 = dst->ne[3];
  5004. const int nb00 = src0->nb[0];
  5005. #endif
  5006. const int nb01 = src0->nb[1];
  5007. const int nb02 = src0->nb[2];
  5008. const int nb03 = src0->nb[3];
  5009. #ifndef NDEBUG
  5010. const int nb10 = src1->nb[0];
  5011. #endif
  5012. const int nb11 = src1->nb[1];
  5013. const int nb12 = src1->nb[2];
  5014. const int nb13 = src1->nb[3];
  5015. const int nb0 = dst->nb[0];
  5016. const int nb1 = dst->nb[1];
  5017. const int nb2 = dst->nb[2];
  5018. const int nb3 = dst->nb[3];
  5019. const int ith = params->ith;
  5020. const int nth = params->nth;
  5021. assert(ne02 == ne12);
  5022. assert(ne03 == ne13);
  5023. assert(ne2 == ne12);
  5024. assert(ne3 == ne13);
  5025. // we don't support permuted src0 or src1
  5026. assert(nb00 == sizeof(float));
  5027. assert(nb10 == sizeof(float));
  5028. // dst cannot be transposed or permuted
  5029. assert(nb0 == sizeof(float));
  5030. assert(nb0 <= nb1);
  5031. assert(nb1 <= nb2);
  5032. assert(nb2 <= nb3);
  5033. assert(ne0 == ne01);
  5034. assert(ne1 == ne11);
  5035. assert(ne2 == ne02);
  5036. assert(ne3 == ne03);
  5037. // nb01 >= nb00 - src0 is not transposed
  5038. // compute by src0 rows
  5039. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5040. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5041. if (params->ith != 0) {
  5042. return;
  5043. }
  5044. if (params->type == GGML_TASK_INIT) {
  5045. return;
  5046. }
  5047. if (params->type == GGML_TASK_FINALIZE) {
  5048. return;
  5049. }
  5050. for (int i03 = 0; i03 < ne03; i03++) {
  5051. for (int i02 = 0; i02 < ne02; i02++) {
  5052. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  5053. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5054. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5055. // zT = y * xT
  5056. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5057. ne11, ne01, ne10,
  5058. 1.0f, y, ne10,
  5059. x, ne10,
  5060. 0.0f, d, ne01);
  5061. }
  5062. }
  5063. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5064. return;
  5065. }
  5066. #endif
  5067. if (params->type == GGML_TASK_INIT) {
  5068. return;
  5069. }
  5070. if (params->type == GGML_TASK_FINALIZE) {
  5071. return;
  5072. }
  5073. // parallelize by src0 rows using ggml_vec_dot_f32
  5074. // total rows in src0
  5075. const int nr = ne01*ne02*ne03;
  5076. // rows per thread
  5077. const int dr = (nr + nth - 1)/nth;
  5078. // row range for this thread
  5079. const int ir0 = dr*ith;
  5080. const int ir1 = MIN(ir0 + dr, nr);
  5081. for (int ir = ir0; ir < ir1; ++ir) {
  5082. // src0 indices
  5083. const int i03 = ir/(ne02*ne01);
  5084. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5085. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5086. for (int ic = 0; ic < ne11; ++ic) {
  5087. // src1 indices
  5088. const int i13 = i03;
  5089. const int i12 = i02;
  5090. const int i11 = ic;
  5091. // dst indices
  5092. const int i0 = i01;
  5093. const int i1 = i11;
  5094. const int i2 = i02;
  5095. const int i3 = i03;
  5096. ggml_vec_dot_f32(ne00,
  5097. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  5098. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  5099. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  5100. }
  5101. }
  5102. //int64_t t1 = ggml_perf_time_us();
  5103. //static int64_t acc = 0;
  5104. //acc += t1 - t0;
  5105. //if (t1 - t0 > 10) {
  5106. // printf("\n");
  5107. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5108. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5109. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5110. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  5111. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5112. //}
  5113. }
  5114. static void ggml_compute_forward_mul_mat_f16_f32(
  5115. const struct ggml_compute_params * params,
  5116. const struct ggml_tensor * src0,
  5117. const struct ggml_tensor * src1,
  5118. struct ggml_tensor * dst) {
  5119. int64_t t0 = ggml_perf_time_us();
  5120. UNUSED(t0);
  5121. const int ne00 = src0->ne[0];
  5122. const int ne01 = src0->ne[1];
  5123. const int ne02 = src0->ne[2];
  5124. const int ne03 = src0->ne[3];
  5125. const int ne10 = src1->ne[0];
  5126. const int ne11 = src1->ne[1];
  5127. const int ne12 = src1->ne[2];
  5128. const int ne13 = src1->ne[3];
  5129. const int ne0 = dst->ne[0];
  5130. const int ne1 = dst->ne[1];
  5131. const int ne2 = dst->ne[2];
  5132. const int ne3 = dst->ne[3];
  5133. //const int ne = ne0*ne1*ne2*ne3;
  5134. const int nb00 = src0->nb[0];
  5135. const int nb01 = src0->nb[1];
  5136. const int nb02 = src0->nb[2];
  5137. const int nb03 = src0->nb[3];
  5138. const int nb10 = src1->nb[0];
  5139. const int nb11 = src1->nb[1];
  5140. const int nb12 = src1->nb[2];
  5141. const int nb13 = src1->nb[3];
  5142. const int nb0 = dst->nb[0];
  5143. const int nb1 = dst->nb[1];
  5144. const int nb2 = dst->nb[2];
  5145. const int nb3 = dst->nb[3];
  5146. const int ith = params->ith;
  5147. const int nth = params->nth;
  5148. GGML_ASSERT(ne02 == ne12);
  5149. GGML_ASSERT(ne03 == ne13);
  5150. GGML_ASSERT(ne2 == ne12);
  5151. GGML_ASSERT(ne3 == ne13);
  5152. // TODO: we don't support permuted src0
  5153. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5154. // dst cannot be transposed or permuted
  5155. GGML_ASSERT(nb0 == sizeof(float));
  5156. GGML_ASSERT(nb0 <= nb1);
  5157. GGML_ASSERT(nb1 <= nb2);
  5158. GGML_ASSERT(nb2 <= nb3);
  5159. GGML_ASSERT(ne0 == ne01);
  5160. GGML_ASSERT(ne1 == ne11);
  5161. GGML_ASSERT(ne2 == ne02);
  5162. GGML_ASSERT(ne3 == ne03);
  5163. // nb01 >= nb00 - src0 is not transposed
  5164. // compute by src0 rows
  5165. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5166. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5167. GGML_ASSERT(nb10 == sizeof(float));
  5168. if (params->ith != 0) {
  5169. return;
  5170. }
  5171. if (params->type == GGML_TASK_INIT) {
  5172. return;
  5173. }
  5174. if (params->type == GGML_TASK_FINALIZE) {
  5175. return;
  5176. }
  5177. float * const wdata = params->wdata;
  5178. for (int i03 = 0; i03 < ne03; i03++) {
  5179. for (int i02 = 0; i02 < ne02; i02++) {
  5180. {
  5181. size_t id = 0;
  5182. for (int i01 = 0; i01 < ne01; ++i01) {
  5183. for (int i00 = 0; i00 < ne00; ++i00) {
  5184. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  5185. }
  5186. }
  5187. }
  5188. const float * x = wdata;
  5189. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5190. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5191. // zT = y * xT
  5192. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5193. ne11, ne01, ne10,
  5194. 1.0f, y, ne10,
  5195. x, ne10,
  5196. 0.0f, d, ne01);
  5197. }
  5198. }
  5199. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  5200. return;
  5201. }
  5202. #endif
  5203. if (params->type == GGML_TASK_INIT) {
  5204. ggml_fp16_t * const wdata = params->wdata;
  5205. size_t id = 0;
  5206. for (int i13 = 0; i13 < ne13; ++i13) {
  5207. for (int i12 = 0; i12 < ne12; ++i12) {
  5208. for (int i11 = 0; i11 < ne11; ++i11) {
  5209. for (int i10 = 0; i10 < ne10; ++i10) {
  5210. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  5211. }
  5212. }
  5213. }
  5214. }
  5215. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  5216. return;
  5217. }
  5218. if (params->type == GGML_TASK_FINALIZE) {
  5219. return;
  5220. }
  5221. // fp16 -> half the size, so divide by 2
  5222. // TODO: do not support transposed src1
  5223. assert(nb10/2 == sizeof(ggml_fp16_t));
  5224. // parallelize by src0 rows using ggml_vec_dot_f16
  5225. // total rows in src0
  5226. const int nr = ne01*ne02*ne03;
  5227. // rows per thread
  5228. const int dr = (nr + nth - 1)/nth;
  5229. // row range for this thread
  5230. const int ir0 = dr*ith;
  5231. const int ir1 = MIN(ir0 + dr, nr);
  5232. ggml_fp16_t * wdata = params->wdata;
  5233. for (int ir = ir0; ir < ir1; ++ir) {
  5234. // src0 indices
  5235. const int i03 = ir/(ne02*ne01);
  5236. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5237. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5238. const int i13 = i03;
  5239. const int i12 = i02;
  5240. const int i0 = i01;
  5241. const int i2 = i02;
  5242. const int i3 = i03;
  5243. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5244. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  5245. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5246. for (int ic = 0; ic < ne11; ++ic) {
  5247. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5248. }
  5249. }
  5250. //int64_t t1 = ggml_time_us();
  5251. //static int64_t acc = 0;
  5252. //acc += t1 - t0;
  5253. //if (t1 - t0 > 10) {
  5254. // printf("\n");
  5255. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5256. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5257. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5258. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5259. //}
  5260. }
  5261. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5262. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5263. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5264. typedef struct {
  5265. dequantize_row_q_t dequantize_row_q;
  5266. quantize_row_q_t quantize_row_q;
  5267. vec_dot_q_t vec_dot_q;
  5268. } quantize_fns_t;
  5269. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5270. [GGML_TYPE_Q4_0] = {
  5271. .dequantize_row_q = dequantize_row_q4_0,
  5272. .quantize_row_q = quantize_row_q4_0,
  5273. .vec_dot_q = ggml_vec_dot_q4_0,
  5274. },
  5275. [GGML_TYPE_Q4_1] = {
  5276. .dequantize_row_q = dequantize_row_q4_1,
  5277. .quantize_row_q = quantize_row_q4_1,
  5278. .vec_dot_q = ggml_vec_dot_q4_1,
  5279. },
  5280. };
  5281. static void ggml_compute_forward_mul_mat_q_f32(
  5282. const struct ggml_compute_params * params,
  5283. const struct ggml_tensor * src0,
  5284. const struct ggml_tensor * src1,
  5285. struct ggml_tensor * dst) {
  5286. int64_t t0 = ggml_perf_time_us();
  5287. UNUSED(t0);
  5288. const int ne00 = src0->ne[0];
  5289. const int ne01 = src0->ne[1];
  5290. const int ne02 = src0->ne[2];
  5291. const int ne03 = src0->ne[3];
  5292. const int ne10 = src1->ne[0];
  5293. const int ne11 = src1->ne[1];
  5294. const int ne12 = src1->ne[2];
  5295. const int ne13 = src1->ne[3];
  5296. const int ne0 = dst->ne[0];
  5297. const int ne1 = dst->ne[1];
  5298. const int ne2 = dst->ne[2];
  5299. const int ne3 = dst->ne[3];
  5300. const int nb00 = src0->nb[0];
  5301. const int nb01 = src0->nb[1];
  5302. const int nb02 = src0->nb[2];
  5303. const int nb03 = src0->nb[3];
  5304. const int nb10 = src1->nb[0];
  5305. const int nb11 = src1->nb[1];
  5306. const int nb12 = src1->nb[2];
  5307. const int nb13 = src1->nb[3];
  5308. const int nb0 = dst->nb[0];
  5309. const int nb1 = dst->nb[1];
  5310. const int nb2 = dst->nb[2];
  5311. const int nb3 = dst->nb[3];
  5312. const int ith = params->ith;
  5313. const int nth = params->nth;
  5314. GGML_ASSERT(ne02 == ne12);
  5315. GGML_ASSERT(ne03 == ne13);
  5316. GGML_ASSERT(ne2 == ne12);
  5317. GGML_ASSERT(ne3 == ne13);
  5318. const enum ggml_type type = src0->type;
  5319. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5320. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5321. // we don't support permuted src0 or src1
  5322. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5323. GGML_ASSERT(nb10 == sizeof(float));
  5324. // dst cannot be transposed or permuted
  5325. GGML_ASSERT(nb0 == sizeof(float));
  5326. GGML_ASSERT(nb0 <= nb1);
  5327. GGML_ASSERT(nb1 <= nb2);
  5328. GGML_ASSERT(nb2 <= nb3);
  5329. GGML_ASSERT(ne0 == ne01);
  5330. GGML_ASSERT(ne1 == ne11);
  5331. GGML_ASSERT(ne2 == ne02);
  5332. GGML_ASSERT(ne3 == ne03);
  5333. // nb01 >= nb00 - src0 is not transposed
  5334. // compute by src0 rows
  5335. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5336. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5337. if (params->ith != 0) {
  5338. return;
  5339. }
  5340. if (params->type == GGML_TASK_INIT) {
  5341. return;
  5342. }
  5343. if (params->type == GGML_TASK_FINALIZE) {
  5344. return;
  5345. }
  5346. float * const wdata = params->wdata;
  5347. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5348. for (int i03 = 0; i03 < ne03; i03++) {
  5349. for (int i02 = 0; i02 < ne02; i02++) {
  5350. {
  5351. size_t id = 0;
  5352. for (int i01 = 0; i01 < ne01; ++i01) {
  5353. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5354. id += ne00;
  5355. }
  5356. }
  5357. const float * x = wdata;
  5358. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5359. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5360. // zT = y * xT
  5361. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5362. ne11, ne01, ne10,
  5363. 1.0f, y, ne10,
  5364. x, ne10,
  5365. 0.0f, d, ne01);
  5366. }
  5367. }
  5368. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5369. return;
  5370. }
  5371. #endif
  5372. if (params->type == GGML_TASK_INIT) {
  5373. char * wdata = params->wdata;
  5374. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5375. for (int i13 = 0; i13 < ne13; ++i13) {
  5376. for (int i12 = 0; i12 < ne12; ++i12) {
  5377. for (int i11 = 0; i11 < ne11; ++i11) {
  5378. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5379. wdata += row_size;
  5380. }
  5381. }
  5382. }
  5383. return;
  5384. }
  5385. if (params->type == GGML_TASK_FINALIZE) {
  5386. return;
  5387. }
  5388. // parallelize by src0 rows using ggml_vec_dot_q
  5389. // total rows in src0
  5390. const int nr = ne01*ne02*ne03;
  5391. // rows per thread
  5392. const int dr = (nr + nth - 1)/nth;
  5393. // row range for this thread
  5394. const int ir0 = dr*ith;
  5395. const int ir1 = MIN(ir0 + dr, nr);
  5396. void * wdata = params->wdata;
  5397. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5398. for (int ir = ir0; ir < ir1; ++ir) {
  5399. // src0 indices
  5400. const int i03 = ir/(ne02*ne01);
  5401. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5402. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5403. const int i13 = i03;
  5404. const int i12 = i02;
  5405. const int i0 = i01;
  5406. const int i2 = i02;
  5407. const int i3 = i03;
  5408. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5409. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5410. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5411. assert(ne00 % 32 == 0);
  5412. for (int ic = 0; ic < ne11; ++ic) {
  5413. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5414. }
  5415. }
  5416. //int64_t t1 = ggml_time_us();
  5417. //static int64_t acc = 0;
  5418. //acc += t1 - t0;
  5419. //if (t1 - t0 > 10) {
  5420. // printf("\n");
  5421. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5422. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5423. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5424. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5425. //}
  5426. }
  5427. static void ggml_compute_forward_mul_mat(
  5428. const struct ggml_compute_params * params,
  5429. const struct ggml_tensor * src0,
  5430. const struct ggml_tensor * src1,
  5431. struct ggml_tensor * dst) {
  5432. switch (src0->type) {
  5433. case GGML_TYPE_Q4_0:
  5434. case GGML_TYPE_Q4_1:
  5435. {
  5436. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5437. } break;
  5438. case GGML_TYPE_F16:
  5439. {
  5440. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5441. } break;
  5442. case GGML_TYPE_F32:
  5443. {
  5444. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5445. } break;
  5446. case GGML_TYPE_I8:
  5447. case GGML_TYPE_I16:
  5448. case GGML_TYPE_I32:
  5449. case GGML_TYPE_COUNT:
  5450. {
  5451. GGML_ASSERT(false);
  5452. } break;
  5453. }
  5454. #if 0
  5455. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5456. static int first = 8;
  5457. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5458. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5459. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5460. if (first) {
  5461. --first;
  5462. } else {
  5463. for (int k = 0; k < dst->ne[1]; ++k) {
  5464. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5465. for (int i = 0; i < 16; ++i) {
  5466. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5467. }
  5468. printf("\n");
  5469. }
  5470. printf("\n");
  5471. }
  5472. printf("\n");
  5473. exit(0);
  5474. }
  5475. } else {
  5476. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5477. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5478. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5479. }
  5480. #endif
  5481. }
  5482. // ggml_compute_forward_scale
  5483. static void ggml_compute_forward_scale_f32(
  5484. const struct ggml_compute_params * params,
  5485. const struct ggml_tensor * src0,
  5486. const struct ggml_tensor * src1,
  5487. struct ggml_tensor * dst) {
  5488. GGML_ASSERT(ggml_is_contiguous(src0));
  5489. GGML_ASSERT(ggml_is_contiguous(dst));
  5490. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5491. GGML_ASSERT(ggml_is_scalar(src1));
  5492. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5493. return;
  5494. }
  5495. // scale factor
  5496. const float v = *(float *) src1->data;
  5497. const int ith = params->ith;
  5498. const int nth = params->nth;
  5499. const int nc = src0->ne[0];
  5500. const int nr = ggml_nrows(src0);
  5501. // rows per thread
  5502. const int dr = (nr + nth - 1)/nth;
  5503. // row range for this thread
  5504. const int ir0 = dr*ith;
  5505. const int ir1 = MIN(ir0 + dr, nr);
  5506. for (int i1 = ir0; i1 < ir1; i1++) {
  5507. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5508. }
  5509. }
  5510. static void ggml_compute_forward_scale(
  5511. const struct ggml_compute_params * params,
  5512. const struct ggml_tensor * src0,
  5513. const struct ggml_tensor * src1,
  5514. struct ggml_tensor * dst) {
  5515. switch (src0->type) {
  5516. case GGML_TYPE_F32:
  5517. {
  5518. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5519. } break;
  5520. case GGML_TYPE_Q4_0:
  5521. case GGML_TYPE_Q4_1:
  5522. case GGML_TYPE_I8:
  5523. case GGML_TYPE_I16:
  5524. case GGML_TYPE_I32:
  5525. case GGML_TYPE_F16:
  5526. case GGML_TYPE_COUNT:
  5527. {
  5528. GGML_ASSERT(false);
  5529. } break;
  5530. }
  5531. }
  5532. // ggml_compute_forward_cpy
  5533. static void ggml_compute_forward_cpy(
  5534. const struct ggml_compute_params * params,
  5535. const struct ggml_tensor * src0,
  5536. struct ggml_tensor * dst) {
  5537. ggml_compute_forward_dup(params, src0, dst);
  5538. }
  5539. // ggml_compute_forward_reshape
  5540. static void ggml_compute_forward_reshape(
  5541. const struct ggml_compute_params * params,
  5542. const struct ggml_tensor * src0,
  5543. struct ggml_tensor * dst) {
  5544. // NOP
  5545. UNUSED(params);
  5546. UNUSED(src0);
  5547. UNUSED(dst);
  5548. }
  5549. // ggml_compute_forward_view
  5550. static void ggml_compute_forward_view(
  5551. const struct ggml_compute_params * params,
  5552. const struct ggml_tensor * src0) {
  5553. // NOP
  5554. UNUSED(params);
  5555. UNUSED(src0);
  5556. }
  5557. // ggml_compute_forward_permute
  5558. static void ggml_compute_forward_permute(
  5559. const struct ggml_compute_params * params,
  5560. const struct ggml_tensor * src0) {
  5561. // NOP
  5562. UNUSED(params);
  5563. UNUSED(src0);
  5564. }
  5565. // ggml_compute_forward_transpose
  5566. static void ggml_compute_forward_transpose(
  5567. const struct ggml_compute_params * params,
  5568. const struct ggml_tensor * src0) {
  5569. // NOP
  5570. UNUSED(params);
  5571. UNUSED(src0);
  5572. }
  5573. // ggml_compute_forward_get_rows
  5574. static void ggml_compute_forward_get_rows_q(
  5575. const struct ggml_compute_params * params,
  5576. const struct ggml_tensor * src0,
  5577. const struct ggml_tensor * src1,
  5578. struct ggml_tensor * dst) {
  5579. assert(params->ith == 0);
  5580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5581. return;
  5582. }
  5583. const int nc = src0->ne[0];
  5584. const int nr = ggml_nelements(src1);
  5585. const enum ggml_type type = src0->type;
  5586. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5587. assert( dst->ne[0] == nc);
  5588. assert( dst->ne[1] == nr);
  5589. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5590. for (int i = 0; i < nr; ++i) {
  5591. const int r = ((int32_t *) src1->data)[i];
  5592. dequantize_row_q(
  5593. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5594. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5595. }
  5596. }
  5597. static void ggml_compute_forward_get_rows_f16(
  5598. const struct ggml_compute_params * params,
  5599. const struct ggml_tensor * src0,
  5600. const struct ggml_tensor * src1,
  5601. struct ggml_tensor * dst) {
  5602. assert(params->ith == 0);
  5603. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5604. return;
  5605. }
  5606. const int nc = src0->ne[0];
  5607. const int nr = ggml_nelements(src1);
  5608. assert( dst->ne[0] == nc);
  5609. assert( dst->ne[1] == nr);
  5610. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5611. for (int i = 0; i < nr; ++i) {
  5612. const int r = ((int32_t *) src1->data)[i];
  5613. for (int j = 0; j < nc; ++j) {
  5614. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5615. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5616. }
  5617. }
  5618. }
  5619. static void ggml_compute_forward_get_rows_f32(
  5620. const struct ggml_compute_params * params,
  5621. const struct ggml_tensor * src0,
  5622. const struct ggml_tensor * src1,
  5623. struct ggml_tensor * dst) {
  5624. assert(params->ith == 0);
  5625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5626. return;
  5627. }
  5628. const int nc = src0->ne[0];
  5629. const int nr = ggml_nelements(src1);
  5630. assert( dst->ne[0] == nc);
  5631. assert( dst->ne[1] == nr);
  5632. assert(src0->nb[0] == sizeof(float));
  5633. for (int i = 0; i < nr; ++i) {
  5634. const int r = ((int32_t *) src1->data)[i];
  5635. ggml_vec_cpy_f32(nc,
  5636. (float *) ((char *) dst->data + i*dst->nb[1]),
  5637. (float *) ((char *) src0->data + r*src0->nb[1]));
  5638. }
  5639. }
  5640. static void ggml_compute_forward_get_rows(
  5641. const struct ggml_compute_params * params,
  5642. const struct ggml_tensor * src0,
  5643. const struct ggml_tensor * src1,
  5644. struct ggml_tensor * dst) {
  5645. switch (src0->type) {
  5646. case GGML_TYPE_Q4_0:
  5647. case GGML_TYPE_Q4_1:
  5648. {
  5649. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5650. } break;
  5651. case GGML_TYPE_F16:
  5652. {
  5653. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5654. } break;
  5655. case GGML_TYPE_F32:
  5656. {
  5657. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5658. } break;
  5659. case GGML_TYPE_I8:
  5660. case GGML_TYPE_I16:
  5661. case GGML_TYPE_I32:
  5662. case GGML_TYPE_COUNT:
  5663. {
  5664. GGML_ASSERT(false);
  5665. } break;
  5666. }
  5667. //static bool first = true;
  5668. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5669. //if (first) {
  5670. // first = false;
  5671. //} else {
  5672. // for (int k = 0; k < dst->ne[1]; ++k) {
  5673. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5674. // for (int i = 0; i < 16; ++i) {
  5675. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5676. // }
  5677. // printf("\n");
  5678. // }
  5679. // printf("\n");
  5680. // }
  5681. // printf("\n");
  5682. // exit(0);
  5683. //}
  5684. }
  5685. // ggml_compute_forward_diag_mask_inf
  5686. static void ggml_compute_forward_diag_mask_inf_f32(
  5687. const struct ggml_compute_params * params,
  5688. const struct ggml_tensor * src0,
  5689. const struct ggml_tensor * src1,
  5690. struct ggml_tensor * dst) {
  5691. assert(params->ith == 0);
  5692. assert(src1->type == GGML_TYPE_I32);
  5693. assert(ggml_nelements(src1) == 1);
  5694. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5695. return;
  5696. }
  5697. const int n_past = ((int32_t *) src1->data)[0];
  5698. // TODO: handle transposed/permuted matrices
  5699. const int n = ggml_nrows(src0);
  5700. const int nc = src0->ne[0];
  5701. const int nr = src0->ne[1];
  5702. const int nz = n/nr;
  5703. assert( dst->nb[0] == sizeof(float));
  5704. assert(src0->nb[0] == sizeof(float));
  5705. for (int k = 0; k < nz; k++) {
  5706. for (int j = 0; j < nr; j++) {
  5707. for (int i = n_past; i < nc; i++) {
  5708. if (i > n_past + j) {
  5709. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5710. }
  5711. }
  5712. }
  5713. }
  5714. }
  5715. static void ggml_compute_forward_diag_mask_inf(
  5716. const struct ggml_compute_params * params,
  5717. const struct ggml_tensor * src0,
  5718. const struct ggml_tensor * src1,
  5719. struct ggml_tensor * dst) {
  5720. switch (src0->type) {
  5721. case GGML_TYPE_F32:
  5722. {
  5723. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5724. } break;
  5725. case GGML_TYPE_Q4_0:
  5726. case GGML_TYPE_Q4_1:
  5727. case GGML_TYPE_I8:
  5728. case GGML_TYPE_I16:
  5729. case GGML_TYPE_I32:
  5730. case GGML_TYPE_F16:
  5731. case GGML_TYPE_COUNT:
  5732. {
  5733. GGML_ASSERT(false);
  5734. } break;
  5735. }
  5736. }
  5737. // ggml_compute_forward_soft_max
  5738. static void ggml_compute_forward_soft_max_f32(
  5739. const struct ggml_compute_params * params,
  5740. const struct ggml_tensor * src0,
  5741. struct ggml_tensor * dst) {
  5742. GGML_ASSERT(ggml_is_contiguous(src0));
  5743. GGML_ASSERT(ggml_is_contiguous(dst));
  5744. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5745. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5746. return;
  5747. }
  5748. // TODO: handle transposed/permuted matrices
  5749. const int ith = params->ith;
  5750. const int nth = params->nth;
  5751. const int nc = src0->ne[0];
  5752. const int nr = ggml_nrows(src0);
  5753. // rows per thread
  5754. const int dr = (nr + nth - 1)/nth;
  5755. // row range for this thread
  5756. const int ir0 = dr*ith;
  5757. const int ir1 = MIN(ir0 + dr, nr);
  5758. for (int i1 = ir0; i1 < ir1; i1++) {
  5759. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5760. #ifndef NDEBUG
  5761. for (int i = 0; i < nc; ++i) {
  5762. //printf("p[%d] = %f\n", i, p[i]);
  5763. assert(!isnan(p[i]));
  5764. }
  5765. #endif
  5766. float max = -INFINITY;
  5767. ggml_vec_max_f32(nc, &max, p);
  5768. ggml_float sum = 0.0;
  5769. uint16_t scvt;
  5770. for (int i = 0; i < nc; i++) {
  5771. if (p[i] == -INFINITY) {
  5772. p[i] = 0.0f;
  5773. } else {
  5774. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5775. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5776. memcpy(&scvt, &s, sizeof(scvt));
  5777. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5778. sum += (ggml_float)val;
  5779. p[i] = val;
  5780. }
  5781. }
  5782. assert(sum > 0.0);
  5783. sum = 1.0/sum;
  5784. ggml_vec_scale_f32(nc, p, sum);
  5785. #ifndef NDEBUG
  5786. for (int i = 0; i < nc; ++i) {
  5787. assert(!isnan(p[i]));
  5788. assert(!isinf(p[i]));
  5789. }
  5790. #endif
  5791. }
  5792. }
  5793. static void ggml_compute_forward_soft_max(
  5794. const struct ggml_compute_params * params,
  5795. const struct ggml_tensor * src0,
  5796. struct ggml_tensor * dst) {
  5797. switch (src0->type) {
  5798. case GGML_TYPE_F32:
  5799. {
  5800. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5801. } break;
  5802. case GGML_TYPE_Q4_0:
  5803. case GGML_TYPE_Q4_1:
  5804. case GGML_TYPE_I8:
  5805. case GGML_TYPE_I16:
  5806. case GGML_TYPE_I32:
  5807. case GGML_TYPE_F16:
  5808. case GGML_TYPE_COUNT:
  5809. {
  5810. GGML_ASSERT(false);
  5811. } break;
  5812. }
  5813. }
  5814. // ggml_compute_forward_rope
  5815. static void ggml_compute_forward_rope_f32(
  5816. const struct ggml_compute_params * params,
  5817. const struct ggml_tensor * src0,
  5818. const struct ggml_tensor * src1,
  5819. struct ggml_tensor * dst) {
  5820. assert(params->ith == 0);
  5821. assert(src1->type == GGML_TYPE_I32);
  5822. assert(ggml_nelements(src1) == 3);
  5823. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5824. return;
  5825. }
  5826. const int n_past = ((int32_t *) src1->data)[0];
  5827. const int n_dims = ((int32_t *) src1->data)[1];
  5828. const int mode = ((int32_t *) src1->data)[2];
  5829. //const int ne0 = src0->ne[0];
  5830. const int ne1 = src0->ne[1];
  5831. const int ne2 = src0->ne[2];
  5832. const int ne3 = src0->ne[3];
  5833. const int nb0 = src0->nb[0];
  5834. const int nb1 = src0->nb[1];
  5835. const int nb2 = src0->nb[2];
  5836. const int nb3 = src0->nb[3];
  5837. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5838. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5839. assert(nb0 == sizeof(float));
  5840. // TODO: optimize
  5841. for (int i3 = 0; i3 < ne3; i3++) {
  5842. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5843. const int p = (mode == 0 ? n_past + i2 : i2);
  5844. for (int i1 = 0; i1 < ne1; i1++) {
  5845. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5846. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5847. const float cos_theta = cosf(p*theta);
  5848. const float sin_theta = sinf(p*theta);
  5849. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5850. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5851. const float x0 = src[0];
  5852. const float x1 = src[1];
  5853. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5854. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5855. }
  5856. }
  5857. }
  5858. }
  5859. }
  5860. static void ggml_compute_forward_rope_f16(
  5861. const struct ggml_compute_params * params,
  5862. const struct ggml_tensor * src0,
  5863. const struct ggml_tensor * src1,
  5864. struct ggml_tensor * dst) {
  5865. assert(params->ith == 0);
  5866. assert(src1->type == GGML_TYPE_I32);
  5867. assert(ggml_nelements(src1) == 3);
  5868. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5869. return;
  5870. }
  5871. const int n_past = ((int32_t *) src1->data)[0];
  5872. const int n_dims = ((int32_t *) src1->data)[1];
  5873. const int mode = ((int32_t *) src1->data)[2];
  5874. //const int ne0 = src0->ne[0];
  5875. const int ne1 = src0->ne[1];
  5876. const int ne2 = src0->ne[2];
  5877. const int ne3 = src0->ne[3];
  5878. const int nb0 = src0->nb[0];
  5879. const int nb1 = src0->nb[1];
  5880. const int nb2 = src0->nb[2];
  5881. const int nb3 = src0->nb[3];
  5882. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5883. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5884. assert(nb0 == sizeof(ggml_fp16_t));
  5885. for (int i3 = 0; i3 < ne3; i3++) {
  5886. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5887. const int p = (mode == 0 ? n_past + i2 : i2);
  5888. for (int i1 = 0; i1 < ne1; i1++) {
  5889. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5890. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5891. const float cos_theta = cosf(p*theta);
  5892. const float sin_theta = sinf(p*theta);
  5893. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5894. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5895. const float x0 = ggml_fp16_to_fp32(src[0]);
  5896. const float x1 = ggml_fp16_to_fp32(src[1]);
  5897. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5898. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5899. }
  5900. }
  5901. }
  5902. }
  5903. }
  5904. static void ggml_compute_forward_rope(
  5905. const struct ggml_compute_params * params,
  5906. const struct ggml_tensor * src0,
  5907. const struct ggml_tensor * src1,
  5908. struct ggml_tensor * dst) {
  5909. switch (src0->type) {
  5910. case GGML_TYPE_F16:
  5911. {
  5912. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5913. } break;
  5914. case GGML_TYPE_F32:
  5915. {
  5916. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5917. } break;
  5918. case GGML_TYPE_Q4_0:
  5919. case GGML_TYPE_Q4_1:
  5920. case GGML_TYPE_I8:
  5921. case GGML_TYPE_I16:
  5922. case GGML_TYPE_I32:
  5923. case GGML_TYPE_COUNT:
  5924. {
  5925. GGML_ASSERT(false);
  5926. } break;
  5927. }
  5928. }
  5929. // ggml_compute_forward_conv_1d_1s
  5930. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5931. const struct ggml_compute_params * params,
  5932. const struct ggml_tensor * src0,
  5933. const struct ggml_tensor * src1,
  5934. struct ggml_tensor * dst) {
  5935. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5936. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5937. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5938. int64_t t0 = ggml_perf_time_us();
  5939. UNUSED(t0);
  5940. const int ne00 = src0->ne[0];
  5941. const int ne01 = src0->ne[1];
  5942. const int ne02 = src0->ne[2];
  5943. //const int ne03 = src0->ne[3];
  5944. const int ne10 = src1->ne[0];
  5945. const int ne11 = src1->ne[1];
  5946. //const int ne12 = src1->ne[2];
  5947. //const int ne13 = src1->ne[3];
  5948. //const int ne0 = dst->ne[0];
  5949. //const int ne1 = dst->ne[1];
  5950. //const int ne2 = dst->ne[2];
  5951. //const int ne3 = dst->ne[3];
  5952. //const int ne = ne0*ne1*ne2*ne3;
  5953. const int nb00 = src0->nb[0];
  5954. const int nb01 = src0->nb[1];
  5955. const int nb02 = src0->nb[2];
  5956. //const int nb03 = src0->nb[3];
  5957. const int nb10 = src1->nb[0];
  5958. const int nb11 = src1->nb[1];
  5959. //const int nb12 = src1->nb[2];
  5960. //const int nb13 = src1->nb[3];
  5961. //const int nb0 = dst->nb[0];
  5962. const int nb1 = dst->nb[1];
  5963. //const int nb2 = dst->nb[2];
  5964. //const int nb3 = dst->nb[3];
  5965. const int ith = params->ith;
  5966. const int nth = params->nth;
  5967. const int nk = ne00;
  5968. const int nh = nk/2;
  5969. const int ew0 = ggml_up32(ne01);
  5970. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5971. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5972. GGML_ASSERT(nb10 == sizeof(float));
  5973. if (params->type == GGML_TASK_INIT) {
  5974. // TODO: fix this memset (wsize is overestimated)
  5975. memset(params->wdata, 0, params->wsize);
  5976. // prepare kernel data (src0)
  5977. {
  5978. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5979. for (int i02 = 0; i02 < ne02; i02++) {
  5980. for (int i01 = 0; i01 < ne01; i01++) {
  5981. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5982. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5983. for (int i00 = 0; i00 < ne00; i00++) {
  5984. dst_data[i00*ew0 + i01] = src[i00];
  5985. }
  5986. }
  5987. }
  5988. }
  5989. // prepare source data (src1)
  5990. {
  5991. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5992. for (int i11 = 0; i11 < ne11; i11++) {
  5993. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5994. ggml_fp16_t * dst_data = wdata;
  5995. for (int i10 = 0; i10 < ne10; i10++) {
  5996. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5997. }
  5998. }
  5999. }
  6000. return;
  6001. }
  6002. if (params->type == GGML_TASK_FINALIZE) {
  6003. return;
  6004. }
  6005. // total rows in dst
  6006. const int nr = ne02;
  6007. // rows per thread
  6008. const int dr = (nr + nth - 1)/nth;
  6009. // row range for this thread
  6010. const int ir0 = dr*ith;
  6011. const int ir1 = MIN(ir0 + dr, nr);
  6012. for (int i1 = ir0; i1 < ir1; i1++) {
  6013. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6014. for (int i0 = 0; i0 < ne10; ++i0) {
  6015. dst_data[i0] = 0;
  6016. for (int k = -nh; k <= nh; k++) {
  6017. float v = 0.0f;
  6018. ggml_vec_dot_f16(ew0, &v,
  6019. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6020. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6021. dst_data[i0] += v;
  6022. }
  6023. }
  6024. }
  6025. }
  6026. static void ggml_compute_forward_conv_1d_1s_f32(
  6027. const struct ggml_compute_params * params,
  6028. const struct ggml_tensor * src0,
  6029. const struct ggml_tensor * src1,
  6030. struct ggml_tensor * dst) {
  6031. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6032. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6033. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6034. int64_t t0 = ggml_perf_time_us();
  6035. UNUSED(t0);
  6036. const int ne00 = src0->ne[0];
  6037. const int ne01 = src0->ne[1];
  6038. const int ne02 = src0->ne[2];
  6039. //const int ne03 = src0->ne[3];
  6040. const int ne10 = src1->ne[0];
  6041. const int ne11 = src1->ne[1];
  6042. //const int ne12 = src1->ne[2];
  6043. //const int ne13 = src1->ne[3];
  6044. //const int ne0 = dst->ne[0];
  6045. //const int ne1 = dst->ne[1];
  6046. //const int ne2 = dst->ne[2];
  6047. //const int ne3 = dst->ne[3];
  6048. //const int ne = ne0*ne1*ne2*ne3;
  6049. const int nb00 = src0->nb[0];
  6050. const int nb01 = src0->nb[1];
  6051. const int nb02 = src0->nb[2];
  6052. //const int nb03 = src0->nb[3];
  6053. const int nb10 = src1->nb[0];
  6054. const int nb11 = src1->nb[1];
  6055. //const int nb12 = src1->nb[2];
  6056. //const int nb13 = src1->nb[3];
  6057. //const int nb0 = dst->nb[0];
  6058. const int nb1 = dst->nb[1];
  6059. //const int nb2 = dst->nb[2];
  6060. //const int nb3 = dst->nb[3];
  6061. const int ith = params->ith;
  6062. const int nth = params->nth;
  6063. const int nk = ne00;
  6064. const int nh = nk/2;
  6065. const int ew0 = ggml_up32(ne01);
  6066. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6067. GGML_ASSERT(nb00 == sizeof(float));
  6068. GGML_ASSERT(nb10 == sizeof(float));
  6069. if (params->type == GGML_TASK_INIT) {
  6070. // TODO: fix this memset (wsize is overestimated)
  6071. memset(params->wdata, 0, params->wsize);
  6072. // prepare kernel data (src0)
  6073. {
  6074. float * const wdata = (float *) params->wdata + 0;
  6075. for (int i02 = 0; i02 < ne02; i02++) {
  6076. for (int i01 = 0; i01 < ne01; i01++) {
  6077. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6078. float * dst_data = wdata + i02*ew0*ne00;
  6079. for (int i00 = 0; i00 < ne00; i00++) {
  6080. dst_data[i00*ew0 + i01] = src[i00];
  6081. }
  6082. }
  6083. }
  6084. }
  6085. // prepare source data (src1)
  6086. {
  6087. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6088. for (int i11 = 0; i11 < ne11; i11++) {
  6089. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6090. float * dst_data = wdata;
  6091. for (int i10 = 0; i10 < ne10; i10++) {
  6092. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6093. }
  6094. }
  6095. }
  6096. return;
  6097. }
  6098. if (params->type == GGML_TASK_FINALIZE) {
  6099. return;
  6100. }
  6101. // total rows in dst
  6102. const int nr = ne02;
  6103. // rows per thread
  6104. const int dr = (nr + nth - 1)/nth;
  6105. // row range for this thread
  6106. const int ir0 = dr*ith;
  6107. const int ir1 = MIN(ir0 + dr, nr);
  6108. for (int i1 = ir0; i1 < ir1; i1++) {
  6109. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6110. for (int i0 = 0; i0 < ne10; ++i0) {
  6111. dst_data[i0] = 0;
  6112. for (int k = -nh; k <= nh; k++) {
  6113. float v = 0.0f;
  6114. ggml_vec_dot_f32(ew0, &v,
  6115. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6116. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6117. dst_data[i0] += v;
  6118. }
  6119. }
  6120. }
  6121. }
  6122. static void ggml_compute_forward_conv_1d_1s(
  6123. const struct ggml_compute_params * params,
  6124. const struct ggml_tensor * src0,
  6125. const struct ggml_tensor * src1,
  6126. struct ggml_tensor * dst) {
  6127. switch (src0->type) {
  6128. case GGML_TYPE_F16:
  6129. {
  6130. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  6131. } break;
  6132. case GGML_TYPE_F32:
  6133. {
  6134. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  6135. } break;
  6136. case GGML_TYPE_Q4_0:
  6137. case GGML_TYPE_Q4_1:
  6138. case GGML_TYPE_I8:
  6139. case GGML_TYPE_I16:
  6140. case GGML_TYPE_I32:
  6141. case GGML_TYPE_COUNT:
  6142. {
  6143. GGML_ASSERT(false);
  6144. } break;
  6145. }
  6146. }
  6147. // ggml_compute_forward_conv_1d_2s
  6148. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  6149. const struct ggml_compute_params * params,
  6150. const struct ggml_tensor * src0,
  6151. const struct ggml_tensor * src1,
  6152. struct ggml_tensor * dst) {
  6153. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6154. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6155. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6156. int64_t t0 = ggml_perf_time_us();
  6157. UNUSED(t0);
  6158. const int ne00 = src0->ne[0];
  6159. const int ne01 = src0->ne[1];
  6160. const int ne02 = src0->ne[2];
  6161. //const int ne03 = src0->ne[3];
  6162. const int ne10 = src1->ne[0];
  6163. const int ne11 = src1->ne[1];
  6164. //const int ne12 = src1->ne[2];
  6165. //const int ne13 = src1->ne[3];
  6166. //const int ne0 = dst->ne[0];
  6167. //const int ne1 = dst->ne[1];
  6168. //const int ne2 = dst->ne[2];
  6169. //const int ne3 = dst->ne[3];
  6170. //const int ne = ne0*ne1*ne2*ne3;
  6171. const int nb00 = src0->nb[0];
  6172. const int nb01 = src0->nb[1];
  6173. const int nb02 = src0->nb[2];
  6174. //const int nb03 = src0->nb[3];
  6175. const int nb10 = src1->nb[0];
  6176. const int nb11 = src1->nb[1];
  6177. //const int nb12 = src1->nb[2];
  6178. //const int nb13 = src1->nb[3];
  6179. //const int nb0 = dst->nb[0];
  6180. const int nb1 = dst->nb[1];
  6181. //const int nb2 = dst->nb[2];
  6182. //const int nb3 = dst->nb[3];
  6183. const int ith = params->ith;
  6184. const int nth = params->nth;
  6185. const int nk = ne00;
  6186. const int nh = nk/2;
  6187. const int ew0 = ggml_up32(ne01);
  6188. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6189. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6190. GGML_ASSERT(nb10 == sizeof(float));
  6191. if (params->type == GGML_TASK_INIT) {
  6192. // TODO: fix this memset (wsize is overestimated)
  6193. memset(params->wdata, 0, params->wsize);
  6194. // prepare kernel data (src0)
  6195. {
  6196. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  6197. for (int i02 = 0; i02 < ne02; i02++) {
  6198. for (int i01 = 0; i01 < ne01; i01++) {
  6199. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  6200. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  6201. for (int i00 = 0; i00 < ne00; i00++) {
  6202. dst_data[i00*ew0 + i01] = src[i00];
  6203. }
  6204. }
  6205. }
  6206. }
  6207. // prepare source data (src1)
  6208. {
  6209. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  6210. for (int i11 = 0; i11 < ne11; i11++) {
  6211. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6212. ggml_fp16_t * dst_data = wdata;
  6213. for (int i10 = 0; i10 < ne10; i10++) {
  6214. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  6215. }
  6216. }
  6217. }
  6218. return;
  6219. }
  6220. if (params->type == GGML_TASK_FINALIZE) {
  6221. return;
  6222. }
  6223. // total rows in dst
  6224. const int nr = ne02;
  6225. // rows per thread
  6226. const int dr = (nr + nth - 1)/nth;
  6227. // row range for this thread
  6228. const int ir0 = dr*ith;
  6229. const int ir1 = MIN(ir0 + dr, nr);
  6230. for (int i1 = ir0; i1 < ir1; i1++) {
  6231. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6232. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6233. dst_data[i0/2] = 0;
  6234. for (int k = -nh; k <= nh; k++) {
  6235. float v = 0.0f;
  6236. ggml_vec_dot_f16(ew0, &v,
  6237. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6238. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6239. dst_data[i0/2] += v;
  6240. }
  6241. }
  6242. }
  6243. }
  6244. static void ggml_compute_forward_conv_1d_2s_f32(
  6245. const struct ggml_compute_params * params,
  6246. const struct ggml_tensor * src0,
  6247. const struct ggml_tensor * src1,
  6248. struct ggml_tensor * dst) {
  6249. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6250. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6251. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6252. int64_t t0 = ggml_perf_time_us();
  6253. UNUSED(t0);
  6254. const int ne00 = src0->ne[0];
  6255. const int ne01 = src0->ne[1];
  6256. const int ne02 = src0->ne[2];
  6257. //const int ne03 = src0->ne[3];
  6258. const int ne10 = src1->ne[0];
  6259. const int ne11 = src1->ne[1];
  6260. //const int ne12 = src1->ne[2];
  6261. //const int ne13 = src1->ne[3];
  6262. //const int ne0 = dst->ne[0];
  6263. //const int ne1 = dst->ne[1];
  6264. //const int ne2 = dst->ne[2];
  6265. //const int ne3 = dst->ne[3];
  6266. //const int ne = ne0*ne1*ne2*ne3;
  6267. const int nb00 = src0->nb[0];
  6268. const int nb01 = src0->nb[1];
  6269. const int nb02 = src0->nb[2];
  6270. //const int nb03 = src0->nb[3];
  6271. const int nb10 = src1->nb[0];
  6272. const int nb11 = src1->nb[1];
  6273. //const int nb12 = src1->nb[2];
  6274. //const int nb13 = src1->nb[3];
  6275. //const int nb0 = dst->nb[0];
  6276. const int nb1 = dst->nb[1];
  6277. //const int nb2 = dst->nb[2];
  6278. //const int nb3 = dst->nb[3];
  6279. const int ith = params->ith;
  6280. const int nth = params->nth;
  6281. const int nk = ne00;
  6282. const int nh = nk/2;
  6283. const int ew0 = ggml_up32(ne01);
  6284. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6285. GGML_ASSERT(nb00 == sizeof(float));
  6286. GGML_ASSERT(nb10 == sizeof(float));
  6287. if (params->type == GGML_TASK_INIT) {
  6288. // TODO: fix this memset (wsize is overestimated)
  6289. memset(params->wdata, 0, params->wsize);
  6290. // prepare kernel data (src0)
  6291. {
  6292. float * const wdata = (float *) params->wdata + 0;
  6293. for (int i02 = 0; i02 < ne02; i02++) {
  6294. for (int i01 = 0; i01 < ne01; i01++) {
  6295. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6296. float * dst_data = wdata + i02*ew0*ne00;
  6297. for (int i00 = 0; i00 < ne00; i00++) {
  6298. dst_data[i00*ew0 + i01] = src[i00];
  6299. }
  6300. }
  6301. }
  6302. }
  6303. // prepare source data (src1)
  6304. {
  6305. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6306. for (int i11 = 0; i11 < ne11; i11++) {
  6307. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6308. float * dst_data = wdata;
  6309. for (int i10 = 0; i10 < ne10; i10++) {
  6310. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6311. }
  6312. }
  6313. }
  6314. return;
  6315. }
  6316. if (params->type == GGML_TASK_FINALIZE) {
  6317. return;
  6318. }
  6319. // total rows in dst
  6320. const int nr = ne02;
  6321. // rows per thread
  6322. const int dr = (nr + nth - 1)/nth;
  6323. // row range for this thread
  6324. const int ir0 = dr*ith;
  6325. const int ir1 = MIN(ir0 + dr, nr);
  6326. for (int i1 = ir0; i1 < ir1; i1++) {
  6327. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6328. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6329. dst_data[i0/2] = 0;
  6330. for (int k = -nh; k <= nh; k++) {
  6331. float v = 0.0f;
  6332. ggml_vec_dot_f32(ew0, &v,
  6333. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6334. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6335. dst_data[i0/2] += v;
  6336. }
  6337. }
  6338. }
  6339. }
  6340. static void ggml_compute_forward_conv_1d_2s(
  6341. const struct ggml_compute_params * params,
  6342. const struct ggml_tensor * src0,
  6343. const struct ggml_tensor * src1,
  6344. struct ggml_tensor * dst) {
  6345. switch (src0->type) {
  6346. case GGML_TYPE_F16:
  6347. {
  6348. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6349. } break;
  6350. case GGML_TYPE_F32:
  6351. {
  6352. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6353. } break;
  6354. case GGML_TYPE_Q4_0:
  6355. case GGML_TYPE_Q4_1:
  6356. case GGML_TYPE_I8:
  6357. case GGML_TYPE_I16:
  6358. case GGML_TYPE_I32:
  6359. case GGML_TYPE_COUNT:
  6360. {
  6361. GGML_ASSERT(false);
  6362. } break;
  6363. }
  6364. }
  6365. // ggml_compute_forward_flash_attn
  6366. static void ggml_compute_forward_flash_attn_f32(
  6367. const struct ggml_compute_params * params,
  6368. const struct ggml_tensor * q,
  6369. const struct ggml_tensor * k,
  6370. const struct ggml_tensor * v,
  6371. const bool masked,
  6372. struct ggml_tensor * dst) {
  6373. int64_t t0 = ggml_perf_time_us();
  6374. UNUSED(t0);
  6375. const int neq0 = q->ne[0];
  6376. const int neq1 = q->ne[1];
  6377. const int neq2 = q->ne[2];
  6378. const int neq3 = q->ne[3];
  6379. const int nek0 = k->ne[0];
  6380. const int nek1 = k->ne[1];
  6381. //const int nek2 = k->ne[2];
  6382. //const int nek3 = k->ne[3];
  6383. //const int nev0 = v->ne[0];
  6384. const int nev1 = v->ne[1];
  6385. //const int nev2 = v->ne[2];
  6386. //const int nev3 = v->ne[3];
  6387. const int ne0 = dst->ne[0];
  6388. const int ne1 = dst->ne[1];
  6389. //const int ne2 = dst->ne[2];
  6390. //const int ne3 = dst->ne[3];
  6391. const int nbk0 = k->nb[0];
  6392. const int nbk1 = k->nb[1];
  6393. const int nbk2 = k->nb[2];
  6394. const int nbk3 = k->nb[3];
  6395. const int nbq0 = q->nb[0];
  6396. const int nbq1 = q->nb[1];
  6397. const int nbq2 = q->nb[2];
  6398. const int nbq3 = q->nb[3];
  6399. const int nbv0 = v->nb[0];
  6400. const int nbv1 = v->nb[1];
  6401. const int nbv2 = v->nb[2];
  6402. const int nbv3 = v->nb[3];
  6403. const int nb0 = dst->nb[0];
  6404. const int nb1 = dst->nb[1];
  6405. const int nb2 = dst->nb[2];
  6406. const int nb3 = dst->nb[3];
  6407. const int ith = params->ith;
  6408. const int nth = params->nth;
  6409. const int D = neq0;
  6410. const int N = neq1;
  6411. const int P = nek1 - N;
  6412. const int M = P + N;
  6413. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6414. GGML_ASSERT(ne0 == D);
  6415. GGML_ASSERT(ne1 == N);
  6416. GGML_ASSERT(P >= 0);
  6417. GGML_ASSERT(nbq0 == sizeof(float));
  6418. GGML_ASSERT(nbk0 == sizeof(float));
  6419. GGML_ASSERT(nbv0 == sizeof(float));
  6420. GGML_ASSERT(neq0 == D);
  6421. GGML_ASSERT(nek0 == D);
  6422. GGML_ASSERT(nev1 == D);
  6423. GGML_ASSERT(neq1 == N);
  6424. GGML_ASSERT(nek1 == N + P);
  6425. GGML_ASSERT(nev1 == D);
  6426. // dst cannot be transposed or permuted
  6427. GGML_ASSERT(nb0 == sizeof(float));
  6428. GGML_ASSERT(nb0 <= nb1);
  6429. GGML_ASSERT(nb1 <= nb2);
  6430. GGML_ASSERT(nb2 <= nb3);
  6431. if (params->type == GGML_TASK_INIT) {
  6432. return;
  6433. }
  6434. if (params->type == GGML_TASK_FINALIZE) {
  6435. return;
  6436. }
  6437. // parallelize by q rows using ggml_vec_dot_f32
  6438. // total rows in q
  6439. const int nr = neq1*neq2*neq3;
  6440. // rows per thread
  6441. const int dr = (nr + nth - 1)/nth;
  6442. // row range for this thread
  6443. const int ir0 = dr*ith;
  6444. const int ir1 = MIN(ir0 + dr, nr);
  6445. const float scale = 1.0f/sqrtf(D);
  6446. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6447. for (int ir = ir0; ir < ir1; ++ir) {
  6448. // q indices
  6449. const int iq3 = ir/(neq2*neq1);
  6450. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6451. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6452. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6453. for (int i = M; i < Mup; ++i) {
  6454. S[i] = -INFINITY;
  6455. }
  6456. for (int ic = 0; ic < nek1; ++ic) {
  6457. // k indices
  6458. const int ik3 = iq3;
  6459. const int ik2 = iq2;
  6460. const int ik1 = ic;
  6461. // S indices
  6462. const int i1 = ik1;
  6463. ggml_vec_dot_f32(neq0,
  6464. S + i1,
  6465. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6466. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6467. }
  6468. // scale
  6469. ggml_vec_scale_f32(nek1, S, scale);
  6470. if (masked) {
  6471. for (int i = P; i < M; i++) {
  6472. if (i > P + iq1) {
  6473. S[i] = -INFINITY;
  6474. }
  6475. }
  6476. }
  6477. // softmax
  6478. {
  6479. float max = -INFINITY;
  6480. ggml_vec_max_f32(M, &max, S);
  6481. ggml_float sum = 0.0;
  6482. {
  6483. #ifdef GGML_SOFT_MAX_ACCELERATE
  6484. max = -max;
  6485. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6486. vvexpf(S, S, &Mup);
  6487. ggml_vec_sum_f32(Mup, &sum, S);
  6488. #else
  6489. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6490. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6491. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6492. float * SS = S + i;
  6493. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6494. if (SS[j] == -INFINITY) {
  6495. SS[j] = 0.0f;
  6496. } else {
  6497. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6498. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6499. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6500. sump[j] += (ggml_float)val;
  6501. SS[j] = val;
  6502. }
  6503. }
  6504. }
  6505. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6506. sum += sump[i];
  6507. }
  6508. #endif
  6509. }
  6510. assert(sum > 0.0);
  6511. sum = 1.0/sum;
  6512. ggml_vec_scale_f32(M, S, sum);
  6513. #ifndef NDEBUG
  6514. for (int i = 0; i < M; ++i) {
  6515. assert(!isnan(S[i]));
  6516. assert(!isinf(S[i]));
  6517. }
  6518. #endif
  6519. }
  6520. for (int ic = 0; ic < nev1; ++ic) {
  6521. // dst indices
  6522. const int i1 = iq1;
  6523. const int i2 = iq2;
  6524. const int i3 = iq3;
  6525. ggml_vec_dot_f32(nek1,
  6526. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6527. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6528. S);
  6529. }
  6530. }
  6531. }
  6532. static void ggml_compute_forward_flash_attn_f16(
  6533. const struct ggml_compute_params * params,
  6534. const struct ggml_tensor * q,
  6535. const struct ggml_tensor * k,
  6536. const struct ggml_tensor * v,
  6537. const bool masked,
  6538. struct ggml_tensor * dst) {
  6539. int64_t t0 = ggml_perf_time_us();
  6540. UNUSED(t0);
  6541. const int neq0 = q->ne[0];
  6542. const int neq1 = q->ne[1];
  6543. const int neq2 = q->ne[2];
  6544. const int neq3 = q->ne[3];
  6545. const int nek0 = k->ne[0];
  6546. const int nek1 = k->ne[1];
  6547. //const int nek2 = k->ne[2];
  6548. //const int nek3 = k->ne[3];
  6549. //const int nev0 = v->ne[0];
  6550. const int nev1 = v->ne[1];
  6551. //const int nev2 = v->ne[2];
  6552. //const int nev3 = v->ne[3];
  6553. const int ne0 = dst->ne[0];
  6554. const int ne1 = dst->ne[1];
  6555. //const int ne2 = dst->ne[2];
  6556. //const int ne3 = dst->ne[3];
  6557. const int nbk0 = k->nb[0];
  6558. const int nbk1 = k->nb[1];
  6559. const int nbk2 = k->nb[2];
  6560. const int nbk3 = k->nb[3];
  6561. const int nbq0 = q->nb[0];
  6562. const int nbq1 = q->nb[1];
  6563. const int nbq2 = q->nb[2];
  6564. const int nbq3 = q->nb[3];
  6565. const int nbv0 = v->nb[0];
  6566. const int nbv1 = v->nb[1];
  6567. const int nbv2 = v->nb[2];
  6568. const int nbv3 = v->nb[3];
  6569. const int nb0 = dst->nb[0];
  6570. const int nb1 = dst->nb[1];
  6571. const int nb2 = dst->nb[2];
  6572. const int nb3 = dst->nb[3];
  6573. const int ith = params->ith;
  6574. const int nth = params->nth;
  6575. const int D = neq0;
  6576. const int N = neq1;
  6577. const int P = nek1 - N;
  6578. const int M = P + N;
  6579. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6580. GGML_ASSERT(ne0 == D);
  6581. GGML_ASSERT(ne1 == N);
  6582. GGML_ASSERT(P >= 0);
  6583. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6584. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6585. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6586. GGML_ASSERT(neq0 == D);
  6587. GGML_ASSERT(nek0 == D);
  6588. GGML_ASSERT(nev1 == D);
  6589. GGML_ASSERT(neq1 == N);
  6590. GGML_ASSERT(nek1 == N + P);
  6591. GGML_ASSERT(nev1 == D);
  6592. // dst cannot be transposed or permuted
  6593. GGML_ASSERT(nb0 == sizeof(float));
  6594. GGML_ASSERT(nb0 <= nb1);
  6595. GGML_ASSERT(nb1 <= nb2);
  6596. GGML_ASSERT(nb2 <= nb3);
  6597. if (params->type == GGML_TASK_INIT) {
  6598. return;
  6599. }
  6600. if (params->type == GGML_TASK_FINALIZE) {
  6601. return;
  6602. }
  6603. // parallelize by q rows using ggml_vec_dot_f32
  6604. // total rows in q
  6605. const int nr = neq1*neq2*neq3;
  6606. // rows per thread
  6607. const int dr = (nr + nth - 1)/nth;
  6608. // row range for this thread
  6609. const int ir0 = dr*ith;
  6610. const int ir1 = MIN(ir0 + dr, nr);
  6611. const float scale = 1.0f/sqrtf(D);
  6612. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6613. for (int ir = ir0; ir < ir1; ++ir) {
  6614. // q indices
  6615. const int iq3 = ir/(neq2*neq1);
  6616. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6617. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6618. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6619. for (int i = M; i < Mup; ++i) {
  6620. S[i] = -INFINITY;
  6621. }
  6622. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6623. for (int ic = 0; ic < nek1; ++ic) {
  6624. // k indices
  6625. const int ik3 = iq3;
  6626. const int ik2 = iq2;
  6627. const int ik1 = ic;
  6628. // S indices
  6629. const int i1 = ik1;
  6630. ggml_vec_dot_f16(neq0,
  6631. S + i1,
  6632. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6633. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6634. }
  6635. } else {
  6636. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6637. // k indices
  6638. const int ik3 = iq3;
  6639. const int ik2 = iq2;
  6640. const int ik1 = ic;
  6641. // S indices
  6642. const int i1 = ik1;
  6643. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6644. S + i1,
  6645. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6646. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6647. }
  6648. }
  6649. // scale
  6650. ggml_vec_scale_f32(nek1, S, scale);
  6651. if (masked) {
  6652. for (int i = P; i < M; i++) {
  6653. if (i > P + iq1) {
  6654. S[i] = -INFINITY;
  6655. }
  6656. }
  6657. }
  6658. // softmax
  6659. {
  6660. float max = -INFINITY;
  6661. ggml_vec_max_f32(M, &max, S);
  6662. ggml_float sum = 0.0;
  6663. {
  6664. #ifdef GGML_SOFT_MAX_ACCELERATE
  6665. max = -max;
  6666. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6667. vvexpf(S, S, &Mup);
  6668. ggml_vec_sum_f32(Mup, &sum, S);
  6669. #else
  6670. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6671. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6672. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6673. float * SS = S + i;
  6674. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6675. if (SS[j] == -INFINITY) {
  6676. SS[j] = 0.0f;
  6677. } else {
  6678. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6679. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6680. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6681. sump[j] += (ggml_float)val;
  6682. SS[j] = val;
  6683. }
  6684. }
  6685. }
  6686. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6687. sum += sump[i];
  6688. }
  6689. #endif
  6690. }
  6691. assert(sum > 0.0);
  6692. sum = 1.0/sum;
  6693. ggml_vec_scale_f32(M, S, sum);
  6694. #ifndef NDEBUG
  6695. for (int i = 0; i < M; ++i) {
  6696. assert(!isnan(S[i]));
  6697. assert(!isinf(S[i]));
  6698. }
  6699. #endif
  6700. }
  6701. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6702. for (int i = 0; i < M; i++) {
  6703. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6704. }
  6705. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6706. for (int ic = 0; ic < nev1; ++ic) {
  6707. // dst indices
  6708. const int i1 = iq1;
  6709. const int i2 = iq2;
  6710. const int i3 = iq3;
  6711. ggml_vec_dot_f16(nek1,
  6712. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6713. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6714. S16);
  6715. }
  6716. } else {
  6717. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6718. // dst indices
  6719. const int i1 = iq1;
  6720. const int i2 = iq2;
  6721. const int i3 = iq3;
  6722. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6723. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6724. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6725. S16);
  6726. }
  6727. }
  6728. }
  6729. }
  6730. static void ggml_compute_forward_flash_attn(
  6731. const struct ggml_compute_params * params,
  6732. const struct ggml_tensor * q,
  6733. const struct ggml_tensor * k,
  6734. const struct ggml_tensor * v,
  6735. const bool masked,
  6736. struct ggml_tensor * dst) {
  6737. switch (q->type) {
  6738. case GGML_TYPE_F16:
  6739. {
  6740. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6741. } break;
  6742. case GGML_TYPE_F32:
  6743. {
  6744. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6745. } break;
  6746. case GGML_TYPE_Q4_0:
  6747. case GGML_TYPE_Q4_1:
  6748. case GGML_TYPE_I8:
  6749. case GGML_TYPE_I16:
  6750. case GGML_TYPE_I32:
  6751. case GGML_TYPE_COUNT:
  6752. {
  6753. GGML_ASSERT(false);
  6754. } break;
  6755. }
  6756. }
  6757. // ggml_compute_forward_flash_ff
  6758. static void ggml_compute_forward_flash_ff_f16(
  6759. const struct ggml_compute_params * params,
  6760. const struct ggml_tensor * a, // F16
  6761. const struct ggml_tensor * b0, // F16 fc_w
  6762. const struct ggml_tensor * b1, // F32 fc_b
  6763. const struct ggml_tensor * c0, // F16 proj_w
  6764. const struct ggml_tensor * c1, // F32 proj_b
  6765. struct ggml_tensor * dst) {
  6766. int64_t t0 = ggml_perf_time_us();
  6767. UNUSED(t0);
  6768. const int nea0 = a->ne[0];
  6769. const int nea1 = a->ne[1];
  6770. const int nea2 = a->ne[2];
  6771. const int nea3 = a->ne[3];
  6772. const int neb00 = b0->ne[0];
  6773. const int neb01 = b0->ne[1];
  6774. //const int neb02 = b0->ne[2];
  6775. //const int neb03 = b0->ne[3];
  6776. const int neb10 = b1->ne[0];
  6777. const int neb11 = b1->ne[1];
  6778. //const int neb12 = b1->ne[2];
  6779. //const int neb13 = b1->ne[3];
  6780. const int nec00 = c0->ne[0];
  6781. const int nec01 = c0->ne[1];
  6782. //const int nec02 = c0->ne[2];
  6783. //const int nec03 = c0->ne[3];
  6784. const int nec10 = c1->ne[0];
  6785. const int nec11 = c1->ne[1];
  6786. //const int nec12 = c1->ne[2];
  6787. //const int nec13 = c1->ne[3];
  6788. const int ne0 = dst->ne[0];
  6789. const int ne1 = dst->ne[1];
  6790. const int ne2 = dst->ne[2];
  6791. //const int ne3 = dst->ne[3];
  6792. const int nba0 = a->nb[0];
  6793. const int nba1 = a->nb[1];
  6794. const int nba2 = a->nb[2];
  6795. const int nba3 = a->nb[3];
  6796. const int nbb00 = b0->nb[0];
  6797. const int nbb01 = b0->nb[1];
  6798. const int nbb02 = b0->nb[2];
  6799. const int nbb03 = b0->nb[3];
  6800. const int nbb10 = b1->nb[0];
  6801. //const int nbb11 = b1->nb[1];
  6802. //const int nbb12 = b1->nb[2];
  6803. //const int nbb13 = b1->nb[3];
  6804. const int nbc00 = c0->nb[0];
  6805. const int nbc01 = c0->nb[1];
  6806. const int nbc02 = c0->nb[2];
  6807. const int nbc03 = c0->nb[3];
  6808. const int nbc10 = c1->nb[0];
  6809. //const int nbc11 = c1->nb[1];
  6810. //const int nbc12 = c1->nb[2];
  6811. //const int nbc13 = c1->nb[3];
  6812. const int nb0 = dst->nb[0];
  6813. const int nb1 = dst->nb[1];
  6814. const int nb2 = dst->nb[2];
  6815. const int nb3 = dst->nb[3];
  6816. const int ith = params->ith;
  6817. const int nth = params->nth;
  6818. const int D = nea0;
  6819. //const int N = nea1;
  6820. const int M = neb01;
  6821. GGML_ASSERT(ne0 == nea0);
  6822. GGML_ASSERT(ne1 == nea1);
  6823. GGML_ASSERT(ne2 == nea2);
  6824. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6825. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6826. GGML_ASSERT(nbb10 == sizeof(float));
  6827. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6828. GGML_ASSERT(nbc10 == sizeof(float));
  6829. GGML_ASSERT(neb00 == D);
  6830. GGML_ASSERT(neb01 == M);
  6831. GGML_ASSERT(neb10 == M);
  6832. GGML_ASSERT(neb11 == 1);
  6833. GGML_ASSERT(nec00 == M);
  6834. GGML_ASSERT(nec01 == D);
  6835. GGML_ASSERT(nec10 == D);
  6836. GGML_ASSERT(nec11 == 1);
  6837. // dst cannot be transposed or permuted
  6838. GGML_ASSERT(nb0 == sizeof(float));
  6839. GGML_ASSERT(nb0 <= nb1);
  6840. GGML_ASSERT(nb1 <= nb2);
  6841. GGML_ASSERT(nb2 <= nb3);
  6842. if (params->type == GGML_TASK_INIT) {
  6843. return;
  6844. }
  6845. if (params->type == GGML_TASK_FINALIZE) {
  6846. return;
  6847. }
  6848. // parallelize by a rows using ggml_vec_dot_f32
  6849. // total rows in a
  6850. const int nr = nea1*nea2*nea3;
  6851. // rows per thread
  6852. const int dr = (nr + nth - 1)/nth;
  6853. // row range for this thread
  6854. const int ir0 = dr*ith;
  6855. const int ir1 = MIN(ir0 + dr, nr);
  6856. for (int ir = ir0; ir < ir1; ++ir) {
  6857. // a indices
  6858. const int ia3 = ir/(nea2*nea1);
  6859. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6860. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6861. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6862. for (int ic = 0; ic < neb01; ++ic) {
  6863. // b0 indices
  6864. const int ib03 = ia3;
  6865. const int ib02 = ia2;
  6866. const int ib01 = ic;
  6867. // S indices
  6868. const int i1 = ib01;
  6869. ggml_vec_dot_f16(nea0,
  6870. S + i1,
  6871. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6872. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6873. }
  6874. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6875. //ggml_vec_gelu_f32(neb01, S, S);
  6876. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6877. for (int i = 0; i < M; i++) {
  6878. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6879. }
  6880. ggml_vec_gelu_f16(neb01, S16, S16);
  6881. {
  6882. // dst indices
  6883. const int i1 = ia1;
  6884. const int i2 = ia2;
  6885. const int i3 = ia3;
  6886. for (int ic = 0; ic < nec01; ++ic) {
  6887. ggml_vec_dot_f16(neb01,
  6888. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6889. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6890. S16);
  6891. }
  6892. ggml_vec_add_f32(nec01,
  6893. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6894. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6895. (float *) c1->data);
  6896. }
  6897. }
  6898. }
  6899. static void ggml_compute_forward_flash_ff(
  6900. const struct ggml_compute_params * params,
  6901. const struct ggml_tensor * a,
  6902. const struct ggml_tensor * b0,
  6903. const struct ggml_tensor * b1,
  6904. const struct ggml_tensor * c0,
  6905. const struct ggml_tensor * c1,
  6906. struct ggml_tensor * dst) {
  6907. switch (b0->type) {
  6908. case GGML_TYPE_F16:
  6909. {
  6910. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6911. } break;
  6912. case GGML_TYPE_F32:
  6913. {
  6914. GGML_ASSERT(false); // TODO
  6915. } break;
  6916. case GGML_TYPE_Q4_0:
  6917. case GGML_TYPE_Q4_1:
  6918. case GGML_TYPE_I8:
  6919. case GGML_TYPE_I16:
  6920. case GGML_TYPE_I32:
  6921. case GGML_TYPE_COUNT:
  6922. {
  6923. GGML_ASSERT(false);
  6924. } break;
  6925. }
  6926. }
  6927. /////////////////////////////////
  6928. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6929. GGML_ASSERT(params);
  6930. switch (tensor->op) {
  6931. case GGML_OP_DUP:
  6932. {
  6933. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6934. } break;
  6935. case GGML_OP_ADD:
  6936. {
  6937. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6938. } break;
  6939. case GGML_OP_SUB:
  6940. {
  6941. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6942. } break;
  6943. case GGML_OP_MUL:
  6944. {
  6945. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6946. } break;
  6947. case GGML_OP_DIV:
  6948. {
  6949. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6950. } break;
  6951. case GGML_OP_SQR:
  6952. {
  6953. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6954. } break;
  6955. case GGML_OP_SQRT:
  6956. {
  6957. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6958. } break;
  6959. case GGML_OP_SUM:
  6960. {
  6961. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6962. } break;
  6963. case GGML_OP_MEAN:
  6964. {
  6965. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6966. } break;
  6967. case GGML_OP_REPEAT:
  6968. {
  6969. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6970. } break;
  6971. case GGML_OP_ABS:
  6972. {
  6973. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6974. } break;
  6975. case GGML_OP_SGN:
  6976. {
  6977. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6978. } break;
  6979. case GGML_OP_NEG:
  6980. {
  6981. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6982. } break;
  6983. case GGML_OP_STEP:
  6984. {
  6985. ggml_compute_forward_step(params, tensor->src0, tensor);
  6986. } break;
  6987. case GGML_OP_RELU:
  6988. {
  6989. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6990. } break;
  6991. case GGML_OP_GELU:
  6992. {
  6993. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6994. } break;
  6995. case GGML_OP_SILU:
  6996. {
  6997. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6998. } break;
  6999. case GGML_OP_NORM:
  7000. {
  7001. ggml_compute_forward_norm(params, tensor->src0, tensor);
  7002. } break;
  7003. case GGML_OP_RMS_NORM:
  7004. {
  7005. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  7006. } break;
  7007. case GGML_OP_MUL_MAT:
  7008. {
  7009. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  7010. } break;
  7011. case GGML_OP_SCALE:
  7012. {
  7013. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  7014. } break;
  7015. case GGML_OP_CPY:
  7016. {
  7017. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  7018. } break;
  7019. case GGML_OP_RESHAPE:
  7020. {
  7021. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  7022. } break;
  7023. case GGML_OP_VIEW:
  7024. {
  7025. ggml_compute_forward_view(params, tensor->src0);
  7026. } break;
  7027. case GGML_OP_PERMUTE:
  7028. {
  7029. ggml_compute_forward_permute(params, tensor->src0);
  7030. } break;
  7031. case GGML_OP_TRANSPOSE:
  7032. {
  7033. ggml_compute_forward_transpose(params, tensor->src0);
  7034. } break;
  7035. case GGML_OP_GET_ROWS:
  7036. {
  7037. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  7038. } break;
  7039. case GGML_OP_DIAG_MASK_INF:
  7040. {
  7041. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  7042. } break;
  7043. case GGML_OP_SOFT_MAX:
  7044. {
  7045. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  7046. } break;
  7047. case GGML_OP_ROPE:
  7048. {
  7049. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  7050. } break;
  7051. case GGML_OP_CONV_1D_1S:
  7052. {
  7053. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  7054. } break;
  7055. case GGML_OP_CONV_1D_2S:
  7056. {
  7057. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  7058. } break;
  7059. case GGML_OP_FLASH_ATTN:
  7060. {
  7061. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  7062. GGML_ASSERT(t == 0 || t == 1);
  7063. bool masked = t != 0;
  7064. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  7065. } break;
  7066. case GGML_OP_FLASH_FF:
  7067. {
  7068. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  7069. } break;
  7070. case GGML_OP_NONE:
  7071. {
  7072. // nop
  7073. } break;
  7074. case GGML_OP_COUNT:
  7075. {
  7076. GGML_ASSERT(false);
  7077. } break;
  7078. }
  7079. }
  7080. ////////////////////////////////////////////////////////////////////////////////
  7081. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  7082. struct ggml_tensor * src0 = tensor->src0;
  7083. struct ggml_tensor * src1 = tensor->src1;
  7084. switch (tensor->op) {
  7085. case GGML_OP_DUP:
  7086. {
  7087. if (src0->grad) {
  7088. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7089. }
  7090. } break;
  7091. case GGML_OP_ADD:
  7092. {
  7093. if (src0->grad) {
  7094. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7095. }
  7096. if (src1->grad) {
  7097. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  7098. }
  7099. } break;
  7100. case GGML_OP_SUB:
  7101. {
  7102. if (src0->grad) {
  7103. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  7104. }
  7105. if (src1->grad) {
  7106. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  7107. }
  7108. } break;
  7109. case GGML_OP_MUL:
  7110. {
  7111. if (src0->grad) {
  7112. src0->grad =
  7113. ggml_add_impl(ctx,
  7114. src0->grad,
  7115. ggml_mul(ctx, src1, tensor->grad),
  7116. inplace);
  7117. }
  7118. if (src1->grad) {
  7119. src1->grad =
  7120. ggml_add_impl(ctx,
  7121. src1->grad,
  7122. ggml_mul(ctx, src0, tensor->grad),
  7123. inplace);
  7124. }
  7125. } break;
  7126. case GGML_OP_DIV:
  7127. {
  7128. if (src0->grad) {
  7129. src0->grad =
  7130. ggml_add_impl(ctx,
  7131. src0->grad,
  7132. ggml_div(ctx, tensor->grad, src1),
  7133. inplace);
  7134. }
  7135. if (src1->grad) {
  7136. src1->grad =
  7137. ggml_sub_impl(ctx,
  7138. src1->grad,
  7139. ggml_mul(ctx,
  7140. tensor->grad,
  7141. ggml_div(ctx, tensor, src1)),
  7142. inplace);
  7143. }
  7144. } break;
  7145. case GGML_OP_SQR:
  7146. {
  7147. if (src0->grad) {
  7148. src0->grad =
  7149. ggml_add_impl(ctx,
  7150. src0->grad,
  7151. ggml_mul(ctx,
  7152. ggml_mul(ctx, src0, tensor->grad),
  7153. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  7154. inplace);
  7155. }
  7156. } break;
  7157. case GGML_OP_SQRT:
  7158. {
  7159. if (src0->grad) {
  7160. src0->grad =
  7161. ggml_add_impl(ctx,
  7162. src0->grad,
  7163. ggml_div(ctx,
  7164. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  7165. tensor),
  7166. inplace);
  7167. }
  7168. } break;
  7169. case GGML_OP_SUM:
  7170. {
  7171. if (src0->grad) {
  7172. src0->grad =
  7173. ggml_add_impl(ctx,
  7174. src0->grad,
  7175. ggml_repeat(ctx, tensor->grad, src0->grad),
  7176. inplace);
  7177. }
  7178. } break;
  7179. case GGML_OP_MEAN:
  7180. {
  7181. GGML_ASSERT(false); // TODO: implement
  7182. } break;
  7183. case GGML_OP_REPEAT:
  7184. {
  7185. if (src0->grad) {
  7186. src0->grad =
  7187. ggml_add_impl(ctx,
  7188. src0->grad,
  7189. ggml_sum(ctx, tensor->grad),
  7190. inplace);
  7191. }
  7192. } break;
  7193. case GGML_OP_ABS:
  7194. {
  7195. if (src0->grad) {
  7196. src0->grad =
  7197. ggml_add_impl(ctx,
  7198. src0->grad,
  7199. ggml_mul(ctx,
  7200. ggml_sgn(ctx, src0),
  7201. tensor->grad),
  7202. inplace);
  7203. }
  7204. } break;
  7205. case GGML_OP_SGN:
  7206. {
  7207. if (src0->grad) {
  7208. // noop
  7209. }
  7210. } break;
  7211. case GGML_OP_NEG:
  7212. {
  7213. if (src0->grad) {
  7214. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  7215. }
  7216. } break;
  7217. case GGML_OP_STEP:
  7218. {
  7219. if (src0->grad) {
  7220. // noop
  7221. }
  7222. } break;
  7223. case GGML_OP_RELU:
  7224. {
  7225. if (src0->grad) {
  7226. src0->grad = ggml_sub_impl(ctx,
  7227. src0->grad,
  7228. ggml_mul(ctx,
  7229. ggml_step(ctx, src0),
  7230. tensor->grad),
  7231. inplace);
  7232. }
  7233. } break;
  7234. case GGML_OP_GELU:
  7235. {
  7236. GGML_ASSERT(false); // TODO: not implemented
  7237. } break;
  7238. case GGML_OP_SILU:
  7239. {
  7240. GGML_ASSERT(false); // TODO: not implemented
  7241. } break;
  7242. case GGML_OP_NORM:
  7243. {
  7244. GGML_ASSERT(false); // TODO: not implemented
  7245. } break;
  7246. case GGML_OP_RMS_NORM:
  7247. {
  7248. GGML_ASSERT(false); // TODO: not implemented
  7249. } break;
  7250. case GGML_OP_MUL_MAT:
  7251. {
  7252. if (src0->grad) {
  7253. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7254. GGML_ASSERT(false);
  7255. }
  7256. if (src1->grad) {
  7257. src1->grad =
  7258. ggml_add_impl(ctx,
  7259. src1->grad,
  7260. // TODO: fix transpose, the node will break the graph connections
  7261. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7262. inplace);
  7263. }
  7264. } break;
  7265. case GGML_OP_SCALE:
  7266. {
  7267. GGML_ASSERT(false); // TODO: not implemented
  7268. } break;
  7269. case GGML_OP_CPY:
  7270. {
  7271. GGML_ASSERT(false); // TODO: not implemented
  7272. } break;
  7273. case GGML_OP_RESHAPE:
  7274. {
  7275. GGML_ASSERT(false); // TODO: not implemented
  7276. } break;
  7277. case GGML_OP_VIEW:
  7278. {
  7279. GGML_ASSERT(false); // not supported
  7280. } break;
  7281. case GGML_OP_PERMUTE:
  7282. {
  7283. GGML_ASSERT(false); // TODO: not implemented
  7284. } break;
  7285. case GGML_OP_TRANSPOSE:
  7286. {
  7287. GGML_ASSERT(false); // TODO: not implemented
  7288. } break;
  7289. case GGML_OP_GET_ROWS:
  7290. {
  7291. GGML_ASSERT(false); // TODO: not implemented
  7292. } break;
  7293. case GGML_OP_DIAG_MASK_INF:
  7294. {
  7295. GGML_ASSERT(false); // TODO: not implemented
  7296. } break;
  7297. case GGML_OP_SOFT_MAX:
  7298. {
  7299. GGML_ASSERT(false); // TODO: not implemented
  7300. } break;
  7301. case GGML_OP_ROPE:
  7302. {
  7303. GGML_ASSERT(false); // TODO: not implemented
  7304. } break;
  7305. case GGML_OP_CONV_1D_1S:
  7306. {
  7307. GGML_ASSERT(false); // TODO: not implemented
  7308. } break;
  7309. case GGML_OP_CONV_1D_2S:
  7310. {
  7311. GGML_ASSERT(false); // TODO: not implemented
  7312. } break;
  7313. case GGML_OP_FLASH_ATTN:
  7314. {
  7315. GGML_ASSERT(false); // not supported
  7316. } break;
  7317. case GGML_OP_FLASH_FF:
  7318. {
  7319. GGML_ASSERT(false); // not supported
  7320. } break;
  7321. case GGML_OP_NONE:
  7322. {
  7323. // nop
  7324. } break;
  7325. case GGML_OP_COUNT:
  7326. {
  7327. GGML_ASSERT(false);
  7328. } break;
  7329. }
  7330. }
  7331. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7332. if (node->grad == NULL) {
  7333. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7334. // it can also happen during forward pass, if the user performs computations with constants
  7335. if (node->op != GGML_OP_NONE) {
  7336. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7337. }
  7338. }
  7339. // check if already visited
  7340. for (int i = 0; i < cgraph->n_nodes; i++) {
  7341. if (cgraph->nodes[i] == node) {
  7342. return;
  7343. }
  7344. }
  7345. for (int i = 0; i < cgraph->n_leafs; i++) {
  7346. if (cgraph->leafs[i] == node) {
  7347. return;
  7348. }
  7349. }
  7350. if (node->src0) {
  7351. ggml_visit_parents(cgraph, node->src0);
  7352. }
  7353. if (node->src1) {
  7354. ggml_visit_parents(cgraph, node->src1);
  7355. }
  7356. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7357. if (node->opt[i]) {
  7358. ggml_visit_parents(cgraph, node->opt[i]);
  7359. }
  7360. }
  7361. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7362. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7363. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7364. cgraph->leafs[cgraph->n_leafs] = node;
  7365. cgraph->n_leafs++;
  7366. } else {
  7367. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7368. cgraph->nodes[cgraph->n_nodes] = node;
  7369. cgraph->grads[cgraph->n_nodes] = node->grad;
  7370. cgraph->n_nodes++;
  7371. }
  7372. }
  7373. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7374. if (!expand) {
  7375. cgraph->n_nodes = 0;
  7376. cgraph->n_leafs = 0;
  7377. }
  7378. const int n0 = cgraph->n_nodes;
  7379. UNUSED(n0);
  7380. ggml_visit_parents(cgraph, tensor);
  7381. const int n_new = cgraph->n_nodes - n0;
  7382. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7383. if (n_new > 0) {
  7384. // the last added node should always be starting point
  7385. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7386. }
  7387. }
  7388. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7389. ggml_build_forward_impl(cgraph, tensor, true);
  7390. }
  7391. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7392. struct ggml_cgraph result = {
  7393. /*.n_nodes =*/ 0,
  7394. /*.n_leafs =*/ 0,
  7395. /*.n_threads =*/ 0,
  7396. /*.work_size =*/ 0,
  7397. /*.work =*/ NULL,
  7398. /*.nodes =*/ { NULL },
  7399. /*.grads =*/ { NULL },
  7400. /*.leafs =*/ { NULL },
  7401. /*.perf_runs =*/ 0,
  7402. /*.perf_cycles =*/ 0,
  7403. /*.perf_time_us =*/ 0,
  7404. };
  7405. ggml_build_forward_impl(&result, tensor, false);
  7406. return result;
  7407. }
  7408. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7409. struct ggml_cgraph result = *gf;
  7410. GGML_ASSERT(gf->n_nodes > 0);
  7411. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7412. if (keep) {
  7413. for (int i = 0; i < gf->n_nodes; i++) {
  7414. struct ggml_tensor * node = gf->nodes[i];
  7415. if (node->grad) {
  7416. node->grad = ggml_dup_tensor(ctx, node);
  7417. gf->grads[i] = node->grad;
  7418. }
  7419. }
  7420. }
  7421. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7422. struct ggml_tensor * node = gf->nodes[i];
  7423. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7424. if (node->grad) {
  7425. ggml_compute_backward(ctx, node, keep);
  7426. }
  7427. }
  7428. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7429. struct ggml_tensor * node = gf->nodes[i];
  7430. if (node->is_param) {
  7431. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7432. ggml_build_forward_impl(&result, node->grad, true);
  7433. }
  7434. }
  7435. return result;
  7436. }
  7437. //
  7438. // thread data
  7439. //
  7440. // synchronization is done via busy loops
  7441. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7442. //
  7443. #ifdef __APPLE__
  7444. //#include <os/lock.h>
  7445. //
  7446. //typedef os_unfair_lock ggml_lock_t;
  7447. //
  7448. //#define ggml_lock_init(x) UNUSED(x)
  7449. //#define ggml_lock_destroy(x) UNUSED(x)
  7450. //#define ggml_lock_lock os_unfair_lock_lock
  7451. //#define ggml_lock_unlock os_unfair_lock_unlock
  7452. //
  7453. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7454. typedef int ggml_lock_t;
  7455. #define ggml_lock_init(x) UNUSED(x)
  7456. #define ggml_lock_destroy(x) UNUSED(x)
  7457. #define ggml_lock_lock(x) UNUSED(x)
  7458. #define ggml_lock_unlock(x) UNUSED(x)
  7459. #define GGML_LOCK_INITIALIZER 0
  7460. typedef pthread_t ggml_thread_t;
  7461. #define ggml_thread_create pthread_create
  7462. #define ggml_thread_join pthread_join
  7463. #else
  7464. //typedef pthread_spinlock_t ggml_lock_t;
  7465. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7466. //#define ggml_lock_destroy pthread_spin_destroy
  7467. //#define ggml_lock_lock pthread_spin_lock
  7468. //#define ggml_lock_unlock pthread_spin_unlock
  7469. typedef int ggml_lock_t;
  7470. #define ggml_lock_init(x) UNUSED(x)
  7471. #define ggml_lock_destroy(x) UNUSED(x)
  7472. #define ggml_lock_lock(x) UNUSED(x)
  7473. #define ggml_lock_unlock(x) UNUSED(x)
  7474. #define GGML_LOCK_INITIALIZER 0
  7475. typedef pthread_t ggml_thread_t;
  7476. #define ggml_thread_create pthread_create
  7477. #define ggml_thread_join pthread_join
  7478. #endif
  7479. struct ggml_compute_state_shared {
  7480. ggml_lock_t spin;
  7481. int n_threads;
  7482. // synchronization primitives
  7483. atomic_int n_ready;
  7484. atomic_bool has_work;
  7485. atomic_bool stop; // stop all threads
  7486. };
  7487. struct ggml_compute_state {
  7488. ggml_thread_t thrd;
  7489. struct ggml_compute_params params;
  7490. struct ggml_tensor * node;
  7491. struct ggml_compute_state_shared * shared;
  7492. };
  7493. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7494. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7495. const int n_threads = state->shared->n_threads;
  7496. while (true) {
  7497. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7498. atomic_store(&state->shared->has_work, false);
  7499. } else {
  7500. while (atomic_load(&state->shared->has_work)) {
  7501. if (atomic_load(&state->shared->stop)) {
  7502. return 0;
  7503. }
  7504. ggml_lock_lock (&state->shared->spin);
  7505. ggml_lock_unlock(&state->shared->spin);
  7506. }
  7507. }
  7508. atomic_fetch_sub(&state->shared->n_ready, 1);
  7509. // wait for work
  7510. while (!atomic_load(&state->shared->has_work)) {
  7511. if (atomic_load(&state->shared->stop)) {
  7512. return 0;
  7513. }
  7514. ggml_lock_lock (&state->shared->spin);
  7515. ggml_lock_unlock(&state->shared->spin);
  7516. }
  7517. // check if we should stop
  7518. if (atomic_load(&state->shared->stop)) {
  7519. break;
  7520. }
  7521. if (state->node) {
  7522. if (state->params.ith < state->params.nth) {
  7523. ggml_compute_forward(&state->params, state->node);
  7524. }
  7525. state->node = NULL;
  7526. } else {
  7527. break;
  7528. }
  7529. }
  7530. return 0;
  7531. }
  7532. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7533. const int n_threads = cgraph->n_threads;
  7534. struct ggml_compute_state_shared state_shared = {
  7535. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7536. /*.n_threads =*/ n_threads,
  7537. /*.n_ready =*/ 0,
  7538. /*.has_work =*/ false,
  7539. /*.stop =*/ false,
  7540. };
  7541. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7542. // create thread pool
  7543. if (n_threads > 1) {
  7544. ggml_lock_init(&state_shared.spin);
  7545. atomic_store(&state_shared.has_work, true);
  7546. for (int j = 0; j < n_threads - 1; j++) {
  7547. workers[j] = (struct ggml_compute_state) {
  7548. .thrd = 0,
  7549. .params = {
  7550. .type = GGML_TASK_COMPUTE,
  7551. .ith = j + 1,
  7552. .nth = n_threads,
  7553. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7554. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7555. },
  7556. .node = NULL,
  7557. .shared = &state_shared,
  7558. };
  7559. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7560. GGML_ASSERT(rc == 0);
  7561. UNUSED(rc);
  7562. }
  7563. }
  7564. // initialize tasks + work buffer
  7565. {
  7566. size_t work_size = 0;
  7567. // thread scheduling for the different operations
  7568. for (int i = 0; i < cgraph->n_nodes; i++) {
  7569. struct ggml_tensor * node = cgraph->nodes[i];
  7570. switch (node->op) {
  7571. case GGML_OP_DUP:
  7572. {
  7573. node->n_tasks = 1;
  7574. } break;
  7575. case GGML_OP_ADD:
  7576. {
  7577. node->n_tasks = n_threads;
  7578. } break;
  7579. case GGML_OP_SUB:
  7580. case GGML_OP_MUL:
  7581. case GGML_OP_DIV:
  7582. case GGML_OP_SQR:
  7583. case GGML_OP_SQRT:
  7584. case GGML_OP_SUM:
  7585. case GGML_OP_MEAN:
  7586. case GGML_OP_REPEAT:
  7587. case GGML_OP_ABS:
  7588. case GGML_OP_SGN:
  7589. case GGML_OP_NEG:
  7590. case GGML_OP_STEP:
  7591. case GGML_OP_RELU:
  7592. {
  7593. node->n_tasks = 1;
  7594. } break;
  7595. case GGML_OP_GELU:
  7596. {
  7597. node->n_tasks = n_threads;
  7598. } break;
  7599. case GGML_OP_SILU:
  7600. {
  7601. node->n_tasks = n_threads;
  7602. } break;
  7603. case GGML_OP_NORM:
  7604. case GGML_OP_RMS_NORM:
  7605. {
  7606. node->n_tasks = n_threads;
  7607. } break;
  7608. case GGML_OP_MUL_MAT:
  7609. {
  7610. node->n_tasks = n_threads;
  7611. // TODO: use different scheduling for different matrix sizes
  7612. //const int nr0 = ggml_nrows(node->src0);
  7613. //const int nr1 = ggml_nrows(node->src1);
  7614. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7615. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7616. size_t cur = 0;
  7617. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7618. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7619. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7620. node->n_tasks = 1; // TODO: this actually is doing nothing
  7621. // the threads are still spinning
  7622. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7623. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7624. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7625. //printf("cur = %zu\n", cur);
  7626. } else {
  7627. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7628. }
  7629. #else
  7630. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7631. #endif
  7632. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7633. cur = 0;
  7634. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7635. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7636. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7637. node->n_tasks = 1;
  7638. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7639. } else
  7640. #endif
  7641. {
  7642. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7643. }
  7644. } else {
  7645. GGML_ASSERT(false);
  7646. }
  7647. work_size = MAX(work_size, cur);
  7648. } break;
  7649. case GGML_OP_SCALE:
  7650. {
  7651. node->n_tasks = n_threads;
  7652. } break;
  7653. case GGML_OP_CPY:
  7654. case GGML_OP_RESHAPE:
  7655. case GGML_OP_VIEW:
  7656. case GGML_OP_PERMUTE:
  7657. case GGML_OP_TRANSPOSE:
  7658. case GGML_OP_GET_ROWS:
  7659. case GGML_OP_DIAG_MASK_INF:
  7660. {
  7661. node->n_tasks = 1;
  7662. } break;
  7663. case GGML_OP_SOFT_MAX:
  7664. {
  7665. node->n_tasks = n_threads;
  7666. } break;
  7667. case GGML_OP_ROPE:
  7668. {
  7669. node->n_tasks = 1;
  7670. } break;
  7671. case GGML_OP_CONV_1D_1S:
  7672. case GGML_OP_CONV_1D_2S:
  7673. {
  7674. node->n_tasks = n_threads;
  7675. GGML_ASSERT(node->src0->ne[3] == 1);
  7676. GGML_ASSERT(node->src1->ne[2] == 1);
  7677. GGML_ASSERT(node->src1->ne[3] == 1);
  7678. size_t cur = 0;
  7679. const int nk = node->src0->ne[0];
  7680. if (node->src0->type == GGML_TYPE_F16 &&
  7681. node->src1->type == GGML_TYPE_F32) {
  7682. cur = sizeof(ggml_fp16_t)*(
  7683. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7684. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7685. );
  7686. } else if (node->src0->type == GGML_TYPE_F32 &&
  7687. node->src1->type == GGML_TYPE_F32) {
  7688. cur = sizeof(float)*(
  7689. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7690. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7691. );
  7692. } else {
  7693. GGML_ASSERT(false);
  7694. }
  7695. work_size = MAX(work_size, cur);
  7696. } break;
  7697. case GGML_OP_FLASH_ATTN:
  7698. {
  7699. node->n_tasks = n_threads;
  7700. size_t cur = 0;
  7701. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7702. if (node->src1->type == GGML_TYPE_F32) {
  7703. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7704. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7705. }
  7706. if (node->src1->type == GGML_TYPE_F16) {
  7707. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7708. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7709. }
  7710. work_size = MAX(work_size, cur);
  7711. } break;
  7712. case GGML_OP_FLASH_FF:
  7713. {
  7714. node->n_tasks = n_threads;
  7715. size_t cur = 0;
  7716. if (node->src1->type == GGML_TYPE_F32) {
  7717. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7718. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7719. }
  7720. if (node->src1->type == GGML_TYPE_F16) {
  7721. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7722. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7723. }
  7724. work_size = MAX(work_size, cur);
  7725. } break;
  7726. case GGML_OP_NONE:
  7727. {
  7728. node->n_tasks = 1;
  7729. } break;
  7730. case GGML_OP_COUNT:
  7731. {
  7732. GGML_ASSERT(false);
  7733. } break;
  7734. }
  7735. }
  7736. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7737. GGML_ASSERT(false); // TODO: better handling
  7738. }
  7739. if (work_size > 0 && cgraph->work == NULL) {
  7740. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7741. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7742. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7743. }
  7744. }
  7745. const int64_t perf_start_cycles = ggml_perf_cycles();
  7746. const int64_t perf_start_time_us = ggml_perf_time_us();
  7747. for (int i = 0; i < cgraph->n_nodes; i++) {
  7748. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7749. struct ggml_tensor * node = cgraph->nodes[i];
  7750. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7751. //if (node->grad == NULL && node->perf_runs > 0) {
  7752. // continue;
  7753. //}
  7754. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7755. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7756. // INIT
  7757. struct ggml_compute_params params = {
  7758. /*.type =*/ GGML_TASK_INIT,
  7759. /*.ith =*/ 0,
  7760. /*.nth =*/ node->n_tasks,
  7761. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7762. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7763. };
  7764. ggml_compute_forward(&params, node);
  7765. // COMPUTE
  7766. if (node->n_tasks > 1) {
  7767. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7768. atomic_store(&state_shared.has_work, false);
  7769. }
  7770. while (atomic_load(&state_shared.has_work)) {
  7771. ggml_lock_lock (&state_shared.spin);
  7772. ggml_lock_unlock(&state_shared.spin);
  7773. }
  7774. // launch thread pool
  7775. for (int j = 0; j < n_threads - 1; j++) {
  7776. workers[j].params = (struct ggml_compute_params) {
  7777. .type = GGML_TASK_COMPUTE,
  7778. .ith = j + 1,
  7779. .nth = node->n_tasks,
  7780. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7781. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7782. };
  7783. workers[j].node = node;
  7784. }
  7785. atomic_fetch_sub(&state_shared.n_ready, 1);
  7786. while (atomic_load(&state_shared.n_ready) > 0) {
  7787. ggml_lock_lock (&state_shared.spin);
  7788. ggml_lock_unlock(&state_shared.spin);
  7789. }
  7790. atomic_store(&state_shared.has_work, true);
  7791. }
  7792. params.type = GGML_TASK_COMPUTE;
  7793. ggml_compute_forward(&params, node);
  7794. // wait for thread pool
  7795. if (node->n_tasks > 1) {
  7796. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7797. atomic_store(&state_shared.has_work, false);
  7798. }
  7799. while (atomic_load(&state_shared.has_work)) {
  7800. ggml_lock_lock (&state_shared.spin);
  7801. ggml_lock_unlock(&state_shared.spin);
  7802. }
  7803. atomic_fetch_sub(&state_shared.n_ready, 1);
  7804. while (atomic_load(&state_shared.n_ready) != 0) {
  7805. ggml_lock_lock (&state_shared.spin);
  7806. ggml_lock_unlock(&state_shared.spin);
  7807. }
  7808. }
  7809. // FINALIZE
  7810. if (node->n_tasks > 1) {
  7811. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7812. atomic_store(&state_shared.has_work, false);
  7813. }
  7814. while (atomic_load(&state_shared.has_work)) {
  7815. ggml_lock_lock (&state_shared.spin);
  7816. ggml_lock_unlock(&state_shared.spin);
  7817. }
  7818. // launch thread pool
  7819. for (int j = 0; j < n_threads - 1; j++) {
  7820. workers[j].params = (struct ggml_compute_params) {
  7821. .type = GGML_TASK_FINALIZE,
  7822. .ith = j + 1,
  7823. .nth = node->n_tasks,
  7824. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7825. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7826. };
  7827. workers[j].node = node;
  7828. }
  7829. atomic_fetch_sub(&state_shared.n_ready, 1);
  7830. while (atomic_load(&state_shared.n_ready) > 0) {
  7831. ggml_lock_lock (&state_shared.spin);
  7832. ggml_lock_unlock(&state_shared.spin);
  7833. }
  7834. atomic_store(&state_shared.has_work, true);
  7835. }
  7836. params.type = GGML_TASK_FINALIZE;
  7837. ggml_compute_forward(&params, node);
  7838. // wait for thread pool
  7839. if (node->n_tasks > 1) {
  7840. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7841. atomic_store(&state_shared.has_work, false);
  7842. }
  7843. while (atomic_load(&state_shared.has_work)) {
  7844. ggml_lock_lock (&state_shared.spin);
  7845. ggml_lock_unlock(&state_shared.spin);
  7846. }
  7847. atomic_fetch_sub(&state_shared.n_ready, 1);
  7848. while (atomic_load(&state_shared.n_ready) != 0) {
  7849. ggml_lock_lock (&state_shared.spin);
  7850. ggml_lock_unlock(&state_shared.spin);
  7851. }
  7852. }
  7853. // performance stats (node)
  7854. {
  7855. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7856. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7857. node->perf_runs++;
  7858. node->perf_cycles += perf_cycles_cur;
  7859. node->perf_time_us += perf_time_us_cur;
  7860. }
  7861. }
  7862. // join thread pool
  7863. if (n_threads > 1) {
  7864. atomic_store(&state_shared.stop, true);
  7865. atomic_store(&state_shared.has_work, true);
  7866. for (int j = 0; j < n_threads - 1; j++) {
  7867. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7868. GGML_ASSERT(rc == 0);
  7869. UNUSED(rc);
  7870. }
  7871. ggml_lock_destroy(&state_shared.spin);
  7872. }
  7873. // performance stats (graph)
  7874. {
  7875. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7876. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7877. cgraph->perf_runs++;
  7878. cgraph->perf_cycles += perf_cycles_cur;
  7879. cgraph->perf_time_us += perf_time_us_cur;
  7880. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7881. __func__, cgraph->perf_runs,
  7882. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7883. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7884. (double) perf_time_us_cur / 1000.0,
  7885. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7886. }
  7887. }
  7888. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7889. for (int i = 0; i < cgraph->n_nodes; i++) {
  7890. struct ggml_tensor * grad = cgraph->grads[i];
  7891. if (grad) {
  7892. ggml_set_zero(grad);
  7893. }
  7894. }
  7895. }
  7896. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7897. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7898. GGML_PRINT("=== GRAPH ===\n");
  7899. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7900. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7901. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7902. for (int i = 0; i < cgraph->n_nodes; i++) {
  7903. struct ggml_tensor * node = cgraph->nodes[i];
  7904. perf_total_per_op_us[node->op] += node->perf_time_us;
  7905. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7906. i,
  7907. node->ne[0], node->ne[1], node->ne[2],
  7908. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7909. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7910. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7911. (double) node->perf_time_us / 1000.0,
  7912. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7913. }
  7914. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7915. for (int i = 0; i < cgraph->n_leafs; i++) {
  7916. struct ggml_tensor * node = cgraph->leafs[i];
  7917. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7918. i,
  7919. node->ne[0], node->ne[1],
  7920. GGML_OP_LABEL[node->op]);
  7921. }
  7922. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7923. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7924. }
  7925. GGML_PRINT("========================================\n");
  7926. }
  7927. // check if node is part of the graph
  7928. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7929. if (cgraph == NULL) {
  7930. return true;
  7931. }
  7932. for (int i = 0; i < cgraph->n_nodes; i++) {
  7933. if (cgraph->nodes[i] == node) {
  7934. return true;
  7935. }
  7936. }
  7937. return false;
  7938. }
  7939. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7940. for (int i = 0; i < cgraph->n_nodes; i++) {
  7941. struct ggml_tensor * parent = cgraph->nodes[i];
  7942. if (parent->grad == node) {
  7943. return parent;
  7944. }
  7945. }
  7946. return NULL;
  7947. }
  7948. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7949. char color[16];
  7950. FILE * fp = fopen(filename, "w");
  7951. GGML_ASSERT(fp);
  7952. fprintf(fp, "digraph G {\n");
  7953. fprintf(fp, " newrank = true;\n");
  7954. fprintf(fp, " rankdir = LR;\n");
  7955. for (int i = 0; i < gb->n_nodes; i++) {
  7956. struct ggml_tensor * node = gb->nodes[i];
  7957. if (ggml_graph_get_parent(gb, node) != NULL) {
  7958. continue;
  7959. }
  7960. if (node->is_param) {
  7961. snprintf(color, sizeof(color), "yellow");
  7962. } else if (node->grad) {
  7963. if (ggml_graph_find(gf, node)) {
  7964. snprintf(color, sizeof(color), "green");
  7965. } else {
  7966. snprintf(color, sizeof(color), "lightblue");
  7967. }
  7968. } else {
  7969. snprintf(color, sizeof(color), "white");
  7970. }
  7971. fprintf(fp, " \"%p\" [ \
  7972. style = filled; fillcolor = %s; shape = record; \
  7973. label=\"%d [%d, %d] | <x>%s",
  7974. (void *) node, color,
  7975. i, node->ne[0], node->ne[1],
  7976. GGML_OP_SYMBOL[node->op]);
  7977. if (node->grad) {
  7978. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7979. } else {
  7980. fprintf(fp, "\"; ]\n");
  7981. }
  7982. }
  7983. for (int i = 0; i < gb->n_leafs; i++) {
  7984. struct ggml_tensor * node = gb->leafs[i];
  7985. snprintf(color, sizeof(color), "pink");
  7986. if (ggml_nelements(node) == 1) {
  7987. fprintf(fp, " \"%p\" [ \
  7988. style = filled; fillcolor = %s; shape = record; \
  7989. label=\"<x>%.1e\"; ]\n",
  7990. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7991. } else {
  7992. fprintf(fp, " \"%p\" [ \
  7993. style = filled; fillcolor = %s; shape = record; \
  7994. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7995. (void *) node, color,
  7996. i, node->ne[0], node->ne[1]);
  7997. }
  7998. }
  7999. for (int i = 0; i < gb->n_nodes; i++) {
  8000. struct ggml_tensor * node = gb->nodes[i];
  8001. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  8002. if (node->src0) {
  8003. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  8004. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  8005. parent0 ? (void *) parent0 : (void *) node->src0,
  8006. parent0 ? "g" : "x",
  8007. parent ? (void *) parent : (void *) node,
  8008. parent ? "g" : "x",
  8009. parent ? "empty" : "vee",
  8010. parent ? "dashed" : "solid");
  8011. }
  8012. if (node->src1) {
  8013. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  8014. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  8015. parent1 ? (void *) parent1 : (void *) node->src1,
  8016. parent1 ? "g" : "x",
  8017. parent ? (void *) parent : (void *) node,
  8018. parent ? "g" : "x",
  8019. parent ? "empty" : "vee",
  8020. parent ? "dashed" : "solid");
  8021. }
  8022. }
  8023. for (int i = 0; i < gb->n_leafs; i++) {
  8024. struct ggml_tensor * node = gb->leafs[i];
  8025. if (node->src0) {
  8026. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  8027. (void *) node->src0, "x",
  8028. (void *) node, "x");
  8029. }
  8030. if (node->src1) {
  8031. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  8032. (void *) node->src1, "x",
  8033. (void *) node, "x");
  8034. }
  8035. }
  8036. fprintf(fp, "}\n");
  8037. fclose(fp);
  8038. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  8039. }
  8040. ////////////////////////////////////////////////////////////////////////////////
  8041. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  8042. int i = 0;
  8043. for (int p = 0; p < np; ++p) {
  8044. const int ne = ggml_nelements(ps[p]) ;
  8045. // TODO: add function to set tensor from array
  8046. for (int j = 0; j < ne; ++j) {
  8047. ggml_set_f32_1d(ps[p], j, x[i++]);
  8048. }
  8049. }
  8050. }
  8051. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  8052. int i = 0;
  8053. for (int p = 0; p < np; ++p) {
  8054. const int ne = ggml_nelements(ps[p]) ;
  8055. // TODO: add function to get all elements at once
  8056. for (int j = 0; j < ne; ++j) {
  8057. x[i++] = ggml_get_f32_1d(ps[p], j);
  8058. }
  8059. }
  8060. }
  8061. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  8062. int i = 0;
  8063. for (int p = 0; p < np; ++p) {
  8064. const int ne = ggml_nelements(ps[p]) ;
  8065. // TODO: add function to get all elements at once
  8066. for (int j = 0; j < ne; ++j) {
  8067. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  8068. }
  8069. }
  8070. }
  8071. //
  8072. // ADAM
  8073. //
  8074. // ref: https://arxiv.org/pdf/1412.6980.pdf
  8075. //
  8076. static enum ggml_opt_result ggml_opt_adam(
  8077. struct ggml_context * ctx,
  8078. struct ggml_opt_params params,
  8079. struct ggml_tensor * f,
  8080. struct ggml_cgraph * gf,
  8081. struct ggml_cgraph * gb) {
  8082. GGML_ASSERT(ggml_is_scalar(f));
  8083. gf->n_threads = params.n_threads;
  8084. gb->n_threads = params.n_threads;
  8085. // these will store the parameters we want to optimize
  8086. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8087. int np = 0;
  8088. int nx = 0;
  8089. for (int i = 0; i < gf->n_nodes; ++i) {
  8090. if (gf->nodes[i]->is_param) {
  8091. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8092. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8093. ps[np++] = gf->nodes[i];
  8094. nx += ggml_nelements(gf->nodes[i]);
  8095. }
  8096. }
  8097. // constants
  8098. const float alpha = params.adam.alpha;
  8099. const float beta1 = params.adam.beta1;
  8100. const float beta2 = params.adam.beta2;
  8101. const float eps = params.adam.eps;
  8102. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  8103. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  8104. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  8105. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  8106. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  8107. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  8108. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  8109. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8110. // initialize
  8111. ggml_vec_set_f32(nx, m, 0.0f);
  8112. ggml_vec_set_f32(nx, v, 0.0f);
  8113. // update view
  8114. ggml_opt_get_params(np, ps, x);
  8115. // compute the function value
  8116. ggml_graph_reset (gf);
  8117. ggml_set_f32 (f->grad, 1.0f);
  8118. ggml_graph_compute(ctx, gb);
  8119. float fx_prev = ggml_get_f32_1d(f, 0);
  8120. if (pf) {
  8121. pf[0] = fx_prev;
  8122. }
  8123. int n_no_improvement = 0;
  8124. float fx_best = fx_prev;
  8125. // run the optimizer
  8126. for (int t = 0; t < params.adam.n_iter; ++t) {
  8127. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  8128. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8129. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  8130. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  8131. for (int i = 0; i < np; ++i) {
  8132. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  8133. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  8134. }
  8135. const int64_t t_start_wall = ggml_time_us();
  8136. const int64_t t_start_cpu = ggml_cycles();
  8137. UNUSED(t_start_wall);
  8138. UNUSED(t_start_cpu);
  8139. {
  8140. // update the gradient
  8141. ggml_opt_get_grad(np, ps, g1);
  8142. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  8143. ggml_vec_scale_f32(nx, m, beta1);
  8144. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  8145. // g2 = g1^2
  8146. ggml_vec_sqr_f32 (nx, g2, g1);
  8147. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  8148. ggml_vec_scale_f32(nx, v, beta2);
  8149. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  8150. // m^hat = m_t / (1 - beta1^t)
  8151. // v^hat = v_t / (1 - beta2^t)
  8152. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  8153. ggml_vec_cpy_f32 (nx, mh, m);
  8154. ggml_vec_cpy_f32 (nx, vh, v);
  8155. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  8156. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  8157. ggml_vec_sqrt_f32 (nx, vh, vh);
  8158. ggml_vec_acc1_f32 (nx, vh, eps);
  8159. ggml_vec_div_f32 (nx, mh, mh, vh);
  8160. ggml_vec_sub_f32 (nx, x, x, mh);
  8161. // update the parameters
  8162. ggml_opt_set_params(np, ps, x);
  8163. }
  8164. ggml_graph_reset (gf);
  8165. ggml_set_f32 (f->grad, 1.0f);
  8166. ggml_graph_compute(ctx, gb);
  8167. const float fx = ggml_get_f32_1d(f, 0);
  8168. // check convergence
  8169. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  8170. GGML_PRINT_DEBUG("converged\n");
  8171. return GGML_OPT_OK;
  8172. }
  8173. // delta-based convergence test
  8174. if (pf != NULL) {
  8175. // need at least params.past iterations to start checking for convergence
  8176. if (params.past <= t) {
  8177. const float rate = (pf[t%params.past] - fx)/fx;
  8178. if (fabsf(rate) < params.delta) {
  8179. return GGML_OPT_OK;
  8180. }
  8181. }
  8182. pf[t%params.past] = fx;
  8183. }
  8184. // check for improvement
  8185. if (params.max_no_improvement > 0) {
  8186. if (fx_best > fx) {
  8187. fx_best = fx;
  8188. n_no_improvement = 0;
  8189. } else {
  8190. ++n_no_improvement;
  8191. if (n_no_improvement >= params.max_no_improvement) {
  8192. return GGML_OPT_OK;
  8193. }
  8194. }
  8195. }
  8196. fx_prev = fx;
  8197. {
  8198. const int64_t t_end_cpu = ggml_cycles();
  8199. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  8200. UNUSED(t_end_cpu);
  8201. const int64_t t_end_wall = ggml_time_us();
  8202. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  8203. UNUSED(t_end_wall);
  8204. }
  8205. }
  8206. return GGML_OPT_DID_NOT_CONVERGE;
  8207. }
  8208. //
  8209. // L-BFGS
  8210. //
  8211. // the L-BFGS implementation below is based on the following implementation:
  8212. //
  8213. // https://github.com/chokkan/liblbfgs
  8214. //
  8215. struct ggml_lbfgs_iteration_data {
  8216. float alpha;
  8217. float ys;
  8218. float * s;
  8219. float * y;
  8220. };
  8221. static enum ggml_opt_result linesearch_backtracking(
  8222. struct ggml_context * ctx,
  8223. const struct ggml_opt_params * params,
  8224. int nx,
  8225. float * x,
  8226. float * fx,
  8227. float * g,
  8228. float * d,
  8229. float * step,
  8230. const float * xp,
  8231. struct ggml_tensor * f,
  8232. struct ggml_cgraph * gf,
  8233. struct ggml_cgraph * gb,
  8234. const int np,
  8235. struct ggml_tensor * ps[]) {
  8236. int count = 0;
  8237. float width = 0.0f;
  8238. float dg = 0.0f;
  8239. float finit = 0.0f;
  8240. float dginit = 0.0f;
  8241. float dgtest = 0.0f;
  8242. const float dec = 0.5f;
  8243. const float inc = 2.1f;
  8244. if (*step <= 0.f) {
  8245. return GGML_LINESEARCH_INVALID_PARAMETERS;
  8246. }
  8247. // compute the initial gradient in the search direction
  8248. ggml_vec_dot_f32(nx, &dginit, g, d);
  8249. // make sure that d points to a descent direction
  8250. if (0 < dginit) {
  8251. return GGML_LINESEARCH_FAIL;
  8252. }
  8253. // initialize local variables
  8254. finit = *fx;
  8255. dgtest = params->lbfgs.ftol*dginit;
  8256. while (true) {
  8257. ggml_vec_cpy_f32(nx, x, xp);
  8258. ggml_vec_mad_f32(nx, x, d, *step);
  8259. // evaluate the function and gradient values
  8260. {
  8261. ggml_opt_set_params(np, ps, x);
  8262. ggml_graph_reset (gf);
  8263. ggml_set_f32 (f->grad, 1.0f);
  8264. ggml_graph_compute(ctx, gb);
  8265. ggml_opt_get_grad(np, ps, g);
  8266. *fx = ggml_get_f32_1d(f, 0);
  8267. }
  8268. ++count;
  8269. if (*fx > finit + (*step)*dgtest) {
  8270. width = dec;
  8271. } else {
  8272. // Armijo condition is satisfied
  8273. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8274. return count;
  8275. }
  8276. ggml_vec_dot_f32(nx, &dg, g, d);
  8277. // check the Wolfe condition
  8278. if (dg < params->lbfgs.wolfe * dginit) {
  8279. width = inc;
  8280. } else {
  8281. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8282. // regular Wolfe conditions
  8283. return count;
  8284. }
  8285. if(dg > -params->lbfgs.wolfe*dginit) {
  8286. width = dec;
  8287. } else {
  8288. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8289. return count;
  8290. }
  8291. return count;
  8292. }
  8293. }
  8294. if (*step < params->lbfgs.min_step) {
  8295. return GGML_LINESEARCH_MINIMUM_STEP;
  8296. }
  8297. if (*step > params->lbfgs.max_step) {
  8298. return GGML_LINESEARCH_MAXIMUM_STEP;
  8299. }
  8300. if (params->lbfgs.max_linesearch <= count) {
  8301. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8302. }
  8303. (*step) *= width;
  8304. }
  8305. return GGML_LINESEARCH_FAIL;
  8306. }
  8307. static enum ggml_opt_result ggml_opt_lbfgs(
  8308. struct ggml_context * ctx,
  8309. struct ggml_opt_params params,
  8310. struct ggml_tensor * f,
  8311. struct ggml_cgraph * gf,
  8312. struct ggml_cgraph * gb) {
  8313. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8314. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8315. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8316. return GGML_OPT_INVALID_WOLFE;
  8317. }
  8318. }
  8319. gf->n_threads = params.n_threads;
  8320. gb->n_threads = params.n_threads;
  8321. const int m = params.lbfgs.m;
  8322. // these will store the parameters we want to optimize
  8323. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8324. int np = 0;
  8325. int nx = 0;
  8326. for (int i = 0; i < gf->n_nodes; ++i) {
  8327. if (gf->nodes[i]->is_param) {
  8328. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8329. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8330. ps[np++] = gf->nodes[i];
  8331. nx += ggml_nelements(gf->nodes[i]);
  8332. }
  8333. }
  8334. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8335. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8336. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8337. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8338. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8339. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8340. float fx = 0.0f; // cost function value
  8341. float xnorm = 0.0f; // ||x||
  8342. float gnorm = 0.0f; // ||g||
  8343. float step = 0.0f;
  8344. // initialize x from the graph nodes
  8345. ggml_opt_get_params(np, ps, x);
  8346. // the L-BFGS memory
  8347. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8348. for (int i = 0; i < m; ++i) {
  8349. lm[i].alpha = 0.0f;
  8350. lm[i].ys = 0.0f;
  8351. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8352. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8353. }
  8354. // evaluate the function value and its gradient
  8355. {
  8356. ggml_opt_set_params(np, ps, x);
  8357. ggml_graph_reset (gf);
  8358. ggml_set_f32 (f->grad, 1.0f);
  8359. ggml_graph_compute(ctx, gb);
  8360. ggml_opt_get_grad(np, ps, g);
  8361. fx = ggml_get_f32_1d(f, 0);
  8362. }
  8363. if (pf) {
  8364. pf[0] = fx;
  8365. }
  8366. float fx_best = fx;
  8367. // search direction = -gradient
  8368. ggml_vec_neg_f32(nx, d, g);
  8369. // ||x||, ||g||
  8370. ggml_vec_norm_f32(nx, &xnorm, x);
  8371. ggml_vec_norm_f32(nx, &gnorm, g);
  8372. if (xnorm < 1.0f) {
  8373. xnorm = 1.0f;
  8374. }
  8375. // already optimized
  8376. if (gnorm/xnorm <= params.lbfgs.eps) {
  8377. return GGML_OPT_OK;
  8378. }
  8379. // initial step
  8380. ggml_vec_norm_inv_f32(nx, &step, d);
  8381. int j = 0;
  8382. int k = 1;
  8383. int ls = 0;
  8384. int end = 0;
  8385. int bound = 0;
  8386. int n_no_improvement = 0;
  8387. float ys = 0.0f;
  8388. float yy = 0.0f;
  8389. float beta = 0.0f;
  8390. while (true) {
  8391. // store the current position and gradient vectors
  8392. ggml_vec_cpy_f32(nx, xp, x);
  8393. ggml_vec_cpy_f32(nx, gp, g);
  8394. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8395. if (ls < 0) {
  8396. // linesearch failed - go back to the previous point and return
  8397. ggml_vec_cpy_f32(nx, x, xp);
  8398. ggml_vec_cpy_f32(nx, g, gp);
  8399. return ls;
  8400. }
  8401. ggml_vec_norm_f32(nx, &xnorm, x);
  8402. ggml_vec_norm_f32(nx, &gnorm, g);
  8403. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8404. if (xnorm < 1.0f) {
  8405. xnorm = 1.0f;
  8406. }
  8407. if (gnorm/xnorm <= params.lbfgs.eps) {
  8408. // converged
  8409. return GGML_OPT_OK;
  8410. }
  8411. // delta-based convergence test
  8412. if (pf != NULL) {
  8413. // need at least params.past iterations to start checking for convergence
  8414. if (params.past <= k) {
  8415. const float rate = (pf[k%params.past] - fx)/fx;
  8416. if (fabsf(rate) < params.delta) {
  8417. return GGML_OPT_OK;
  8418. }
  8419. }
  8420. pf[k%params.past] = fx;
  8421. }
  8422. // check for improvement
  8423. if (params.max_no_improvement > 0) {
  8424. if (fx < fx_best) {
  8425. fx_best = fx;
  8426. n_no_improvement = 0;
  8427. } else {
  8428. n_no_improvement++;
  8429. if (n_no_improvement >= params.max_no_improvement) {
  8430. return GGML_OPT_OK;
  8431. }
  8432. }
  8433. }
  8434. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8435. // reached the maximum number of iterations
  8436. return GGML_OPT_DID_NOT_CONVERGE;
  8437. }
  8438. // update vectors s and y:
  8439. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8440. // y_{k+1} = g_{k+1} - g_{k}.
  8441. //
  8442. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8443. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8444. // compute scalars ys and yy:
  8445. // ys = y^t \cdot s -> 1 / \rho.
  8446. // yy = y^t \cdot y.
  8447. //
  8448. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8449. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8450. lm[end].ys = ys;
  8451. // find new search direction
  8452. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8453. bound = (m <= k) ? m : k;
  8454. k++;
  8455. end = (end + 1)%m;
  8456. // initialize search direction with -g
  8457. ggml_vec_neg_f32(nx, d, g);
  8458. j = end;
  8459. for (int i = 0; i < bound; ++i) {
  8460. j = (j + m - 1) % m;
  8461. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8462. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8463. lm[j].alpha /= lm[j].ys;
  8464. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8465. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8466. }
  8467. ggml_vec_scale_f32(nx, d, ys/yy);
  8468. for (int i = 0; i < bound; ++i) {
  8469. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8470. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8471. beta /= lm[j].ys;
  8472. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8473. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8474. j = (j + 1)%m;
  8475. }
  8476. step = 1.0;
  8477. }
  8478. return GGML_OPT_DID_NOT_CONVERGE;
  8479. }
  8480. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8481. struct ggml_opt_params result;
  8482. switch (type) {
  8483. case GGML_OPT_ADAM:
  8484. {
  8485. result = (struct ggml_opt_params) {
  8486. .type = GGML_OPT_ADAM,
  8487. .n_threads = 1,
  8488. .past = 0,
  8489. .delta = 1e-5f,
  8490. .max_no_improvement = 100,
  8491. .print_forward_graph = true,
  8492. .print_backward_graph = true,
  8493. .adam = {
  8494. .n_iter = 10000,
  8495. .alpha = 0.001f,
  8496. .beta1 = 0.9f,
  8497. .beta2 = 0.999f,
  8498. .eps = 1e-8f,
  8499. .eps_f = 1e-5f,
  8500. .eps_g = 1e-3f,
  8501. },
  8502. };
  8503. } break;
  8504. case GGML_OPT_LBFGS:
  8505. {
  8506. result = (struct ggml_opt_params) {
  8507. .type = GGML_OPT_LBFGS,
  8508. .n_threads = 1,
  8509. .past = 0,
  8510. .delta = 1e-5f,
  8511. .max_no_improvement = 0,
  8512. .print_forward_graph = true,
  8513. .print_backward_graph = true,
  8514. .lbfgs = {
  8515. .m = 6,
  8516. .n_iter = 100,
  8517. .max_linesearch = 20,
  8518. .eps = 1e-5f,
  8519. .ftol = 1e-4f,
  8520. .wolfe = 0.9f,
  8521. .min_step = 1e-20f,
  8522. .max_step = 1e+20f,
  8523. .linesearch = GGML_LINESEARCH_DEFAULT,
  8524. },
  8525. };
  8526. } break;
  8527. }
  8528. return result;
  8529. }
  8530. enum ggml_opt_result ggml_opt(
  8531. struct ggml_context * ctx,
  8532. struct ggml_opt_params params,
  8533. struct ggml_tensor * f) {
  8534. bool free_ctx = false;
  8535. if (ctx == NULL) {
  8536. struct ggml_init_params params_ctx = {
  8537. .mem_size = 16*1024*1024,
  8538. .mem_buffer = NULL,
  8539. .no_alloc = false,
  8540. };
  8541. ctx = ggml_init(params_ctx);
  8542. if (ctx == NULL) {
  8543. return GGML_OPT_NO_CONTEXT;
  8544. }
  8545. free_ctx = true;
  8546. }
  8547. enum ggml_opt_result result = GGML_OPT_OK;
  8548. // build forward + backward compute graphs
  8549. struct ggml_cgraph gf = ggml_build_forward (f);
  8550. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8551. switch (params.type) {
  8552. case GGML_OPT_ADAM:
  8553. {
  8554. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8555. } break;
  8556. case GGML_OPT_LBFGS:
  8557. {
  8558. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8559. } break;
  8560. }
  8561. if (params.print_forward_graph) {
  8562. ggml_graph_print (&gf);
  8563. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8564. }
  8565. if (params.print_backward_graph) {
  8566. ggml_graph_print (&gb);
  8567. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8568. }
  8569. if (free_ctx) {
  8570. ggml_free(ctx);
  8571. }
  8572. return result;
  8573. }
  8574. ////////////////////////////////////////////////////////////////////////////////
  8575. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8576. assert(k % QK == 0);
  8577. const int nb = k / QK;
  8578. for (int j = 0; j < n; j += k) {
  8579. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8580. quantize_row_q4_0_reference(src + j, y, k);
  8581. for (int i = 0; i < nb; i++) {
  8582. for (int l = 0; l < QK; l += 2) {
  8583. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8584. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8585. hist[vi0]++;
  8586. hist[vi1]++;
  8587. }
  8588. }
  8589. }
  8590. return (n/QK*sizeof(block_q4_0));
  8591. }
  8592. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8593. assert(k % QK == 0);
  8594. const int nb = k / QK;
  8595. for (int j = 0; j < n; j += k) {
  8596. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8597. quantize_row_q4_1_reference(src + j, y, k);
  8598. for (int i = 0; i < nb; i++) {
  8599. for (int l = 0; l < QK; l += 2) {
  8600. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8601. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8602. hist[vi0]++;
  8603. hist[vi1]++;
  8604. }
  8605. }
  8606. }
  8607. return (n/QK*sizeof(block_q4_1));
  8608. }
  8609. ////////////////////////////////////////////////////////////////////////////////
  8610. int ggml_cpu_has_avx(void) {
  8611. #if defined(__AVX__)
  8612. return 1;
  8613. #else
  8614. return 0;
  8615. #endif
  8616. }
  8617. int ggml_cpu_has_avx2(void) {
  8618. #if defined(__AVX2__)
  8619. return 1;
  8620. #else
  8621. return 0;
  8622. #endif
  8623. }
  8624. int ggml_cpu_has_avx512(void) {
  8625. #if defined(__AVX512F__)
  8626. return 1;
  8627. #else
  8628. return 0;
  8629. #endif
  8630. }
  8631. int ggml_cpu_has_fma(void) {
  8632. #if defined(__FMA__)
  8633. return 1;
  8634. #else
  8635. return 0;
  8636. #endif
  8637. }
  8638. int ggml_cpu_has_neon(void) {
  8639. #if defined(__ARM_NEON)
  8640. return 1;
  8641. #else
  8642. return 0;
  8643. #endif
  8644. }
  8645. int ggml_cpu_has_arm_fma(void) {
  8646. #if defined(__ARM_FEATURE_FMA)
  8647. return 1;
  8648. #else
  8649. return 0;
  8650. #endif
  8651. }
  8652. int ggml_cpu_has_f16c(void) {
  8653. #if defined(__F16C__)
  8654. return 1;
  8655. #else
  8656. return 0;
  8657. #endif
  8658. }
  8659. int ggml_cpu_has_fp16_va(void) {
  8660. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8661. return 1;
  8662. #else
  8663. return 0;
  8664. #endif
  8665. }
  8666. int ggml_cpu_has_wasm_simd(void) {
  8667. #if defined(__wasm_simd128__)
  8668. return 1;
  8669. #else
  8670. return 0;
  8671. #endif
  8672. }
  8673. int ggml_cpu_has_blas(void) {
  8674. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8675. return 1;
  8676. #else
  8677. return 0;
  8678. #endif
  8679. }
  8680. int ggml_cpu_has_sse3(void) {
  8681. #if defined(__SSE3__)
  8682. return 1;
  8683. #else
  8684. return 0;
  8685. #endif
  8686. }
  8687. int ggml_cpu_has_vsx(void) {
  8688. #if defined(__POWER9_VECTOR__)
  8689. return 1;
  8690. #else
  8691. return 0;
  8692. #endif
  8693. }
  8694. ////////////////////////////////////////////////////////////////////////////////