speculative.cpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426
  1. #include "build-info.h"
  2. #include "common.h"
  3. #include "llama.h"
  4. #include <cmath>
  5. #include <cstdio>
  6. #include <string>
  7. #include <vector>
  8. struct seq_draft {
  9. bool active = false;
  10. bool drafting = false;
  11. bool skip = false;
  12. int i_batch_dft = 0;
  13. std::vector<int> i_batch_tgt;
  14. std::vector<llama_token> tokens;
  15. struct llama_sampling_context * ctx_sampling;
  16. };
  17. int main(int argc, char ** argv) {
  18. gpt_params params;
  19. if (gpt_params_parse(argc, argv, params) == false) {
  20. return 1;
  21. }
  22. if (params.model_draft.empty()) {
  23. fprintf(stderr, "%s: error: --model-draft is required\n", __func__);
  24. return 1;
  25. }
  26. // max number of parallel drafting sequences (i.e. tree branches)
  27. const int n_seq_dft = params.n_parallel;
  28. // TODO: make this configurable
  29. const float p_accept = 0.80f;
  30. const float p_split = 0.10f;
  31. #ifndef LOG_DISABLE_LOGS
  32. log_set_target(log_filename_generator("speculative", "log"));
  33. LOG_TEE("Log start\n");
  34. log_dump_cmdline(argc, argv);
  35. #endif // LOG_DISABLE_LOGS
  36. // init llama.cpp
  37. llama_backend_init(params.numa);
  38. llama_model * model_tgt = NULL;
  39. llama_model * model_dft = NULL;
  40. llama_context * ctx_tgt = NULL;
  41. llama_context * ctx_dft = NULL;
  42. // load the target model
  43. params.logits_all = true;
  44. std::tie(model_tgt, ctx_tgt) = llama_init_from_gpt_params(params);
  45. // load the draft model
  46. params.model = params.model_draft;
  47. params.n_gpu_layers = params.n_gpu_layers_draft;
  48. std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
  49. // tokenize the prompt
  50. std::vector<llama_token> inp;
  51. inp = ::llama_tokenize(ctx_tgt, params.prompt, true);
  52. const int max_context_size = llama_n_ctx(ctx_tgt);
  53. const int max_tokens_list_size = max_context_size - 4;
  54. if ((int) inp.size() > max_tokens_list_size) {
  55. fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
  56. return 1;
  57. }
  58. fprintf(stderr, "\n\n");
  59. for (auto id : inp) {
  60. fprintf(stderr, "%s", llama_token_to_piece(ctx_tgt, id).c_str());
  61. }
  62. fflush(stderr);
  63. const int n_input = inp.size();
  64. const auto t_enc_start = ggml_time_us();
  65. // eval the prompt with both models
  66. llama_decode(ctx_tgt, llama_batch_get_one( inp.data(), n_input - 1, 0, 0));
  67. llama_decode(ctx_tgt, llama_batch_get_one(&inp.back(), 1, n_input - 1, 0));
  68. llama_decode(ctx_dft, llama_batch_get_one( inp.data(), n_input, 0, 0));
  69. const auto t_enc_end = ggml_time_us();
  70. // the 2 models should have the same vocab
  71. //GGML_ASSERT(n_vocab == llama_n_vocab(model_dft));
  72. // how many tokens to draft each time
  73. int n_draft = params.n_draft;
  74. int n_predict = 0;
  75. int n_drafted = 0;
  76. int n_accept = 0;
  77. int n_past_tgt = inp.size();
  78. int n_past_dft = inp.size();
  79. // used to determine end of generation
  80. bool has_eos = false;
  81. // target model sampling context
  82. struct llama_sampling_context * ctx_sampling = llama_sampling_init(params.sparams);
  83. // draft sequence data
  84. std::vector<seq_draft> drafts(n_seq_dft);
  85. params.sparams.grammar.clear(); // the draft samplers will copy the target sampler's grammar
  86. params.sparams.temp = std::max(0.01f, params.sparams.temp);
  87. for (int s = 0; s < n_seq_dft; ++s) {
  88. drafts[s].ctx_sampling = llama_sampling_init(params.sparams);
  89. }
  90. llama_batch batch_dft = llama_batch_init(params.n_ctx, 0, 1);
  91. llama_batch batch_tgt = llama_batch_init(params.n_ctx, 0, n_seq_dft);
  92. const auto t_dec_start = ggml_time_us();
  93. // sample from the last token of the prompt
  94. drafts[0].i_batch_tgt.resize(1);
  95. drafts[0].i_batch_tgt[0] = 0;
  96. while (true) {
  97. // print current draft sequences
  98. for (int s = 0; s < n_seq_dft; ++s) {
  99. if (!drafts[s].active) {
  100. continue;
  101. }
  102. const auto & tokens = drafts[s].tokens;
  103. LOG("draft %d: %s\n", s, LOG_TOKENS_TOSTR_PRETTY(ctx_dft, tokens).c_str());
  104. }
  105. int i_dft = 0;
  106. int s_keep = 0;
  107. while (true) {
  108. LOG("sampling target: s_keep = %3d, i_dft = %3d, i_batch_tgt = %3d\n", s_keep, i_dft, drafts[s_keep].i_batch_tgt[i_dft]);
  109. // sample from the target model
  110. llama_token id = llama_sampling_sample(ctx_sampling, ctx_tgt, NULL, drafts[s_keep].i_batch_tgt[i_dft]);
  111. llama_sampling_accept(ctx_sampling, ctx_tgt, id, true);
  112. //LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_tgt, ctx_sampling->prev).c_str());
  113. const std::string token_str = llama_token_to_piece(ctx_tgt, id);
  114. printf("%s", token_str.c_str());
  115. fflush(stdout);
  116. if (id == llama_token_eos(ctx_tgt)) {
  117. has_eos = true;
  118. }
  119. ++n_predict;
  120. // check if the target token matches any of the drafts
  121. {
  122. bool matches = false;
  123. for (int s = 0; s < n_seq_dft; ++s) {
  124. if (!drafts[s].active) {
  125. continue;
  126. }
  127. if (i_dft < (int) drafts[s].tokens.size() && id == drafts[s].tokens[i_dft]) {
  128. LOG("the sampled target token matches the %dth drafted token of sequence %d (%d, '%s') - accepted\n", i_dft, s, id, token_str.c_str());
  129. s_keep = s;
  130. matches = true;
  131. } else {
  132. drafts[s].active = false;
  133. }
  134. }
  135. if (matches) {
  136. ++n_accept;
  137. ++n_past_tgt;
  138. ++n_past_dft;
  139. ++i_dft;
  140. continue;
  141. }
  142. }
  143. LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
  144. // TODO: simplify
  145. {
  146. LOG("keeping sequence %d, n_past_tgt = %d, n_past_dft = %d\n", s_keep, n_past_tgt, n_past_dft);
  147. llama_kv_cache_seq_keep(ctx_dft, s_keep);
  148. llama_kv_cache_seq_cp (ctx_dft, s_keep, 0, -1, -1);
  149. llama_kv_cache_seq_keep(ctx_dft, 0);
  150. llama_kv_cache_seq_rm (ctx_tgt, s_keep, n_past_tgt, -1);
  151. llama_kv_cache_seq_keep(ctx_tgt, s_keep);
  152. llama_kv_cache_seq_cp (ctx_tgt, s_keep, 0, -1, -1);
  153. llama_kv_cache_seq_keep(ctx_tgt, 0);
  154. }
  155. for (int s = 0; s < n_seq_dft; ++s) {
  156. drafts[s].active = false;
  157. drafts[s].tokens.clear();
  158. drafts[s].i_batch_tgt.clear();
  159. }
  160. // note: will be erased after the speculation phase
  161. drafts[0].tokens.push_back(id);
  162. drafts[0].i_batch_tgt.push_back(0);
  163. llama_batch_clear(batch_dft);
  164. llama_batch_add (batch_dft, id, n_past_dft, { 0 }, true);
  165. llama_kv_cache_seq_rm(ctx_dft, 0, n_past_dft, -1);
  166. llama_decode (ctx_dft, batch_dft);
  167. ++n_past_dft;
  168. break;
  169. }
  170. if (n_predict > params.n_predict || has_eos) {
  171. break;
  172. }
  173. llama_sampling_cp(ctx_sampling, drafts[0].ctx_sampling);
  174. int n_seq_cur = 1;
  175. int n_past_cur = n_past_dft;
  176. for (int s = 0; s < n_seq_dft; ++s) {
  177. drafts[s].active = false;
  178. drafts[s].drafting = false;
  179. }
  180. drafts[0].active = true;
  181. drafts[0].drafting = true;
  182. drafts[0].i_batch_dft = 0;
  183. llama_batch_clear(batch_tgt);
  184. llama_batch_add (batch_tgt, drafts[0].tokens[0], n_past_tgt, { 0 }, true);
  185. // sample n_draft tokens from the draft model using tree-based sampling
  186. for (int i = 0; i < n_draft; ++i) {
  187. batch_dft.n_tokens = 0;
  188. for (int s = 0; s < n_seq_dft; ++s) {
  189. drafts[s].skip = false;
  190. }
  191. for (int s = 0; s < n_seq_dft; ++s) {
  192. if (!drafts[s].drafting || drafts[s].skip) {
  193. continue;
  194. }
  195. llama_sampling_sample(drafts[s].ctx_sampling, ctx_dft, NULL, drafts[s].i_batch_dft);
  196. const auto & cur_p = drafts[s].ctx_sampling->cur;
  197. for (int k = 0; k < std::min(n_seq_dft + 3, (int) cur_p.size()); ++k) {
  198. LOG(" - draft candidate %3d for seq %3d, pos %3d: %6d (%8.3f) '%s'\n",
  199. k, s, i, cur_p[k].id, cur_p[k].p, llama_token_to_piece(ctx_dft, cur_p[k].id).c_str());
  200. }
  201. if (cur_p[0].p < p_accept) {
  202. LOG("stopping drafting for seq %3d, probability too low: %.3f < %.3f\n", s, cur_p[0].p, p_accept);
  203. drafts[s].drafting = false;
  204. continue;
  205. }
  206. std::vector<int> sa(1, s);
  207. // attempt to split the branch if the probability is high enough
  208. for (int f = 1; f < 8; ++f) {
  209. if (n_seq_cur < n_seq_dft && cur_p[f].p > p_split) {
  210. LOG("splitting seq %3d into %3d\n", s, n_seq_cur);
  211. llama_kv_cache_seq_rm(ctx_dft, n_seq_cur, -1, -1);
  212. llama_kv_cache_seq_cp(ctx_dft, s, n_seq_cur, -1, -1);
  213. // all previous tokens from this branch are now also part of the new branch
  214. for (int t = 0; t < batch_tgt.n_tokens; ++t) {
  215. for (int p = 0; p < batch_tgt.n_seq_id[t]; ++p) {
  216. if (batch_tgt.seq_id[t][p] == s) {
  217. batch_tgt.seq_id[t][batch_tgt.n_seq_id[t]] = n_seq_cur;
  218. batch_tgt.n_seq_id[t]++;
  219. break;
  220. }
  221. }
  222. }
  223. // copy the draft state
  224. drafts[n_seq_cur].active = true;
  225. drafts[n_seq_cur].drafting = true;
  226. drafts[n_seq_cur].skip = true;
  227. drafts[n_seq_cur].tokens = drafts[s].tokens;
  228. drafts[n_seq_cur].i_batch_dft = drafts[s].i_batch_dft;
  229. drafts[n_seq_cur].i_batch_tgt = drafts[s].i_batch_tgt;
  230. llama_sampling_cp(drafts[s].ctx_sampling, drafts[n_seq_cur].ctx_sampling);
  231. sa.push_back(n_seq_cur);
  232. n_seq_cur++;
  233. } else {
  234. break;
  235. }
  236. }
  237. // add drafted token for each sequence
  238. for (int is = 0; is < (int) sa.size(); ++is) {
  239. const llama_token id = cur_p[is].id;
  240. const int s = sa[is];
  241. llama_sampling_accept(drafts[s].ctx_sampling, ctx_dft, id, true);
  242. drafts[s].tokens.push_back(id);
  243. // add unique drafted tokens to the target batch
  244. drafts[s].i_batch_tgt.push_back(batch_tgt.n_tokens);
  245. llama_batch_add(batch_tgt, id, n_past_tgt + i + 1, { s }, true);
  246. // add the token to the batch for batched decoding with the draft model
  247. drafts[s].i_batch_dft = batch_dft.n_tokens;
  248. llama_batch_add(batch_dft, id, n_past_cur, { s }, true);
  249. if (batch_tgt.n_tokens > n_draft) {
  250. drafts[s].drafting = false;
  251. }
  252. }
  253. }
  254. // no sequence is drafting anymore
  255. if (batch_dft.n_tokens == 0) {
  256. break;
  257. }
  258. // evaluate the drafted tokens on the draft model
  259. llama_decode(ctx_dft, batch_dft);
  260. ++n_past_cur;
  261. ++n_drafted;
  262. if (batch_tgt.n_tokens > n_draft) {
  263. break;
  264. }
  265. }
  266. // evaluate the target model on the drafted tokens
  267. {
  268. llama_kv_cache_seq_keep(ctx_tgt, 0);
  269. for (int s = 1; s < n_seq_dft; ++s) {
  270. llama_kv_cache_seq_cp(ctx_tgt, 0, s, -1, -1);
  271. }
  272. //LOG("target batch: %s\n", LOG_BATCH_TOSTR_PRETTY(ctx_tgt, batch_tgt));
  273. llama_decode(ctx_tgt, batch_tgt);
  274. ++n_past_tgt;
  275. }
  276. // the first token is always proposed by the traget model before the speculation loop so we erase it here
  277. for (int s = 0; s < n_seq_dft; ++s) {
  278. if (!drafts[s].active) {
  279. continue;
  280. }
  281. drafts[s].tokens.erase(drafts[s].tokens.begin());
  282. }
  283. }
  284. auto t_dec_end = ggml_time_us();
  285. LOG_TEE("\n\n");
  286. LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
  287. LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
  288. LOG_TEE("\n");
  289. LOG_TEE("n_draft = %d\n", n_draft);
  290. LOG_TEE("n_predict = %d\n", n_predict);
  291. LOG_TEE("n_drafted = %d\n", n_drafted);
  292. LOG_TEE("n_accept = %d\n", n_accept);
  293. LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
  294. LOG_TEE("\ndraft:\n");
  295. llama_print_timings(ctx_dft);
  296. LOG_TEE("\ntarget:\n");
  297. llama_print_timings(ctx_tgt);
  298. llama_sampling_free(ctx_sampling);
  299. for (int s = 0; s < n_seq_dft; ++s) {
  300. llama_sampling_free(drafts[s].ctx_sampling);
  301. }
  302. llama_batch_free(batch_dft);
  303. llama_free(ctx_tgt);
  304. llama_free_model(model_tgt);
  305. llama_free(ctx_dft);
  306. llama_free_model(model_dft);
  307. llama_backend_free();
  308. fprintf(stderr, "\n\n");
  309. return 0;
  310. }