| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024 |
- #include "ggml.h"
- #include "utils.h"
- #include <cassert>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <fstream>
- #include <map>
- #include <string>
- #include <vector>
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- #include <signal.h>
- #include <unistd.h>
- #endif
- #define ANSI_COLOR_RED "\x1b[31m"
- #define ANSI_COLOR_GREEN "\x1b[32m"
- #define ANSI_COLOR_YELLOW "\x1b[33m"
- #define ANSI_COLOR_BLUE "\x1b[34m"
- #define ANSI_COLOR_MAGENTA "\x1b[35m"
- #define ANSI_COLOR_CYAN "\x1b[36m"
- #define ANSI_COLOR_RESET "\x1b[0m"
- #define ANSI_BOLD "\x1b[1m"
- // determine number of model parts based on the dimension
- static const std::map<int, int> LLAMA_N_PARTS = {
- { 4096, 1 },
- { 5120, 2 },
- { 6656, 4 },
- { 8192, 8 },
- };
- // default hparams (LLaMA 7B)
- struct llama_hparams {
- int32_t n_vocab = 32000;
- int32_t n_ctx = 512; // this is provided as user input?
- int32_t n_embd = 4096;
- int32_t n_mult = 256;
- int32_t n_head = 32;
- int32_t n_layer = 32;
- int32_t n_rot = 64;
- int32_t f16 = 1;
- };
- struct llama_layer {
- // normalization
- struct ggml_tensor * attention_norm;
- // attention
- struct ggml_tensor * wq;
- struct ggml_tensor * wk;
- struct ggml_tensor * wv;
- struct ggml_tensor * wo;
- // normalization
- struct ggml_tensor * ffn_norm;
- // ff
- struct ggml_tensor * w1;
- struct ggml_tensor * w2;
- struct ggml_tensor * w3;
- };
- struct llama_model {
- llama_hparams hparams;
- struct ggml_tensor * tok_embeddings;
- struct ggml_tensor * norm;
- struct ggml_tensor * output;
- std::vector<llama_layer> layers;
- // key + value memory
- struct ggml_tensor * memory_k;
- struct ggml_tensor * memory_v;
- //
- struct ggml_context * ctx;
- std::map<std::string, struct ggml_tensor *> tensors;
- };
- // load the model's weights from a file
- bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx) {
- printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
- auto fin = std::ifstream(fname, std::ios::binary);
- if (!fin) {
- fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
- return false;
- }
- // verify magic
- {
- uint32_t magic;
- fin.read((char *) &magic, sizeof(magic));
- if (magic != 0x67676d6c) {
- fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
- return false;
- }
- }
- int n_ff = 0;
- int n_parts = 0;
- // load hparams
- {
- auto & hparams = model.hparams;
- fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
- //fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
- fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
- fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
- fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
- fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
- fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
- fin.read((char *) &hparams.f16, sizeof(hparams.f16));
- hparams.n_ctx = n_ctx;
- n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
- n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
- printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
- printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
- printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
- printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
- printf("%s: n_head = %d\n", __func__, hparams.n_head);
- printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
- printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
- printf("%s: f16 = %d\n", __func__, hparams.f16);
- printf("%s: n_ff = %d\n", __func__, n_ff);
- printf("%s: n_parts = %d\n", __func__, n_parts);
- }
- // load vocab
- {
- const int32_t n_vocab = model.hparams.n_vocab;
- if (n_vocab != model.hparams.n_vocab) {
- fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
- __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
- return false;
- }
- std::string word;
- for (int i = 0; i < n_vocab; i++) {
- uint32_t len;
- fin.read((char *) &len, sizeof(len));
- word.resize(len);
- fin.read((char *) word.data(), len);
- vocab.token_to_id[word] = i;
- vocab.id_to_token[i] = word;
- //if (i < 30000) {
- // printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
- //}
- }
- }
- // for the big tensors, we have the option to store the data in 16-bit floats or quantized
- // in order to save memory and also to speed up the computation
- ggml_type wtype = GGML_TYPE_COUNT;
- switch (model.hparams.f16) {
- case 0: wtype = GGML_TYPE_F32; break;
- case 1: wtype = GGML_TYPE_F16; break;
- case 2: wtype = GGML_TYPE_Q4_0; break;
- case 3: wtype = GGML_TYPE_Q4_1; break;
- default:
- {
- fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
- __func__, fname.c_str(), model.hparams.f16);
- return false;
- }
- }
- const ggml_type wtype2 = GGML_TYPE_F32;
- auto & ctx = model.ctx;
- size_t ctx_size = 0;
- {
- const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // tok_embeddings
- ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
- ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // output
- ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
- ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
- ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
- ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
- ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
- ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
- ctx_size += (5 + 10*n_layer)*256; // object overhead
- printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
- }
- // create the ggml context
- {
- struct ggml_init_params params = {
- /*.mem_size =*/ ctx_size,
- /*.mem_buffer =*/ NULL,
- };
- model.ctx = ggml_init(params);
- if (!model.ctx) {
- fprintf(stderr, "%s: ggml_init() failed\n", __func__);
- return false;
- }
- }
- // prepare memory for the weights
- {
- const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_vocab = hparams.n_vocab;
- model.layers.resize(n_layer);
- model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
- model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- model.output = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
- // map by name
- model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
- model.tensors["norm.weight"] = model.norm;
- model.tensors["output.weight"] = model.output;
- for (int i = 0; i < n_layer; ++i) {
- auto & layer = model.layers[i];
- layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
- layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
- layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
- layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
- layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
- // map by name
- model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
- model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
- model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
- model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
- model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
- model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
- model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
- }
- }
- // key + value memory
- {
- const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_mem = n_layer*n_ctx;
- const int n_elements = n_embd*n_mem;
- model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
- model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
- const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
- printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
- }
- const size_t file_offset = fin.tellg();
- fin.close();
- std::vector<uint8_t> tmp;
- for (int i = 0; i < n_parts; ++i) {
- const int part_id = i;
- //const int part_id = n_parts - i - 1;
- std::string fname_part = fname;
- if (i > 0) {
- fname_part += "." + std::to_string(i);
- }
- printf("%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
- fin = std::ifstream(fname_part, std::ios::binary);
- fin.seekg(file_offset);
- // load weights
- {
- int n_tensors = 0;
- size_t total_size = 0;
- printf("%s: ", __func__);
- while (true) {
- int32_t n_dims;
- int32_t length;
- int32_t ftype;
- fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
- fin.read(reinterpret_cast<char *>(&length), sizeof(length));
- fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
- if (fin.eof()) {
- break;
- }
- int32_t nelements = 1;
- int32_t ne[2] = { 1, 1 };
- for (int i = 0; i < n_dims; ++i) {
- fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
- nelements *= ne[i];
- }
- std::string name(length, 0);
- fin.read(&name[0], length);
- if (model.tensors.find(name.data()) == model.tensors.end()) {
- fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
- return false;
- }
- // split_type = 0: split by columns
- // split_type = 1: split by rows
- int split_type = 0;
- // split_type = 0:
- // regex:
- // - tok_embeddings.*
- // - layers.*.attention.wo.weight
- // - layers.*.feed_forward.w2.weight
- // split_type = 1:
- // regex:
- // - output.*
- // - layers.*.attention.wq.weight
- // - layers.*.attention.wk.weight
- // - layers.*.attention.wv.weight
- // - layers.*.feed_forward.w1.weight
- // - layers.*.feed_forward.w3.weight
- if (name.find("tok_embeddings") != std::string::npos) {
- split_type = 0;
- } else if (name.find("layers") != std::string::npos) {
- if (name.find("attention.wo.weight") != std::string::npos) {
- split_type = 0;
- } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
- split_type = 0;
- } else {
- split_type = 1;
- }
- } else if (name.find("output") != std::string::npos) {
- split_type = 1;
- }
- auto tensor = model.tensors[name.data()];
- if (n_dims == 1) {
- if (ggml_nelements(tensor) != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- } else {
- if (ggml_nelements(tensor)/n_parts != nelements) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
- return false;
- }
- }
- if (n_dims == 1) {
- if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- } else {
- if (split_type == 0) {
- if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
- return false;
- }
- } else {
- if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
- fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
- __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
- return false;
- }
- }
- }
- if (0) {
- static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
- printf("%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
- }
- size_t bpe = 0;
- switch (ftype) {
- case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
- case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
- case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
- case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
- default:
- {
- fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
- return false;
- }
- };
- if (n_dims == 1 || n_parts == 1) {
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
- return false;
- }
- if (part_id == 0) {
- fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
- } else {
- fin.seekg(ggml_nbytes(tensor), std::ios::cur);
- }
- total_size += ggml_nbytes(tensor);
- } else {
- if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
- fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
- __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
- return false;
- }
- if (split_type == 0) {
- const int np0 = ne[0];
- const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- assert(row_size == tensor->nb[1]);
- for (int i1 = 0; i1 < ne[1]; ++i1) {
- const size_t offset_row = i1*row_size;
- const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
- }
- } else {
- const int np1 = ne[1];
- const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
- for (int i1 = 0; i1 < ne[1]; ++i1) {
- const size_t offset_row = (i1 + part_id*np1)*row_size;
- fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
- }
- }
- total_size += ggml_nbytes(tensor)/n_parts;
- }
- //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
- if (++n_tensors % 8 == 0) {
- printf(".");
- fflush(stdout);
- }
- }
- printf(" done\n");
- printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
- }
- fin.close();
- }
- return true;
- }
- // evaluate the transformer
- //
- // - model: the model
- // - n_threads: number of threads to use
- // - n_past: the context size so far
- // - embd_inp: the embeddings of the tokens in the context
- // - embd_w: the predicted logits for the next token
- //
- // The GPT-J model requires about 16MB of memory per input token.
- //
- bool llama_eval(
- const llama_model & model,
- const int n_threads,
- const int n_past,
- const std::vector<gpt_vocab::id> & embd_inp,
- std::vector<float> & embd_w,
- size_t & mem_per_token) {
- const int N = embd_inp.size();
- const auto & hparams = model.hparams;
- const int n_embd = hparams.n_embd;
- const int n_layer = hparams.n_layer;
- const int n_ctx = hparams.n_ctx;
- const int n_head = hparams.n_head;
- const int n_vocab = hparams.n_vocab;
- const int n_rot = hparams.n_embd/hparams.n_head;
- const int d_key = n_embd/n_head;
- static size_t buf_size = 512u*1024*1024;
- static void * buf = malloc(buf_size);
- if (mem_per_token > 0 && mem_per_token*N > buf_size) {
- const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
- //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
- // reallocate
- buf_size = buf_size_new;
- buf = realloc(buf, buf_size);
- if (buf == nullptr) {
- fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
- return false;
- }
- }
- struct ggml_init_params params = {
- /*.mem_size =*/ buf_size,
- /*.mem_buffer =*/ buf,
- };
- struct ggml_context * ctx0 = ggml_init(params);
- ggml_cgraph gf = {};
- gf.n_threads = n_threads;
- struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
- memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
- struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
- for (int il = 0; il < n_layer; ++il) {
- struct ggml_tensor * inpSA = inpL;
- struct ggml_tensor * cur;
- // norm
- {
- cur = ggml_norm(ctx0, inpL);
- // cur = attention_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
- cur);
- }
- // self-attention
- {
- struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
- struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
- struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
- // store key and value to memory
- if (N >= 1) {
- struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
- struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
- ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
- }
- // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
- struct ggml_tensor * Q =
- ggml_permute(ctx0,
- ggml_rope(ctx0,
- ggml_cpy(ctx0,
- Qcur,
- ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
- n_past, n_rot, 0),
- 0, 2, 1, 3);
- // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
- struct ggml_tensor * K =
- ggml_permute(ctx0,
- ggml_rope(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- n_past, n_rot, 1),
- 0, 2, 1, 3);
- // K * Q
- struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
- // KQ_scaled = KQ / sqrt(n_embd/n_head)
- struct ggml_tensor * KQ_scaled =
- ggml_scale(ctx0,
- KQ,
- ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
- );
- // KQ_masked = mask_past(KQ_scaled)
- struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
- // KQ = soft_max(KQ_masked)
- struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
- // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
- struct ggml_tensor * V_trans =
- ggml_permute(ctx0,
- ggml_reshape_3d(ctx0,
- ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
- n_embd/n_head, n_head, n_past + N),
- 1, 2, 0, 3);
- // KQV = transpose(V) * KQ_soft_max
- struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
- // KQV_merged = KQV.permute(0, 2, 1, 3)
- struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
- // cur = KQV_merged.contiguous().view(n_embd, N)
- cur = ggml_cpy(ctx0,
- KQV_merged,
- ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
- // projection (no bias)
- cur = ggml_mul_mat(ctx0,
- model.layers[il].wo,
- cur);
- }
- struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
- // feed-forward network
- {
- // norm
- {
- cur = ggml_norm(ctx0, inpFF);
- // cur = ffn_norm*cur
- cur = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
- cur);
- }
- struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
- model.layers[il].w3,
- cur);
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w1,
- cur);
- // SILU activation
- cur = ggml_silu(ctx0, cur);
- cur = ggml_mul(ctx0, cur, tmp);
- cur = ggml_mul_mat(ctx0,
- model.layers[il].w2,
- cur);
- }
- cur = ggml_add(ctx0, cur, inpFF);
- // input for next layer
- inpL = cur;
- }
- // norm
- {
- inpL = ggml_norm(ctx0, inpL);
- // inpL = norm*inpL
- inpL = ggml_mul(ctx0,
- ggml_repeat(ctx0, model.norm, inpL),
- inpL);
- }
- // lm_head
- {
- inpL = ggml_mul_mat(ctx0, model.output, inpL);
- }
- // logits -> probs
- //inpL = ggml_soft_max(ctx0, inpL);
- // run the computation
- ggml_build_forward_expand(&gf, inpL);
- ggml_graph_compute (ctx0, &gf);
- //if (n_past%100 == 0) {
- // ggml_graph_print (&gf);
- // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
- //}
- //embd_w.resize(n_vocab*N);
- //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
- // return result for just the last token
- embd_w.resize(n_vocab);
- memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
- if (mem_per_token == 0) {
- mem_per_token = ggml_used_mem(ctx0)/N;
- }
- //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
- ggml_free(ctx0);
- return true;
- }
- static bool is_interacting = false;
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- void sigint_handler(int signo) {
- if (signo == SIGINT) {
- if (!is_interacting) {
- is_interacting=true;
- } else {
- _exit(130);
- }
- }
- }
- #endif
- int main(int argc, char ** argv) {
- ggml_time_init();
- const int64_t t_main_start_us = ggml_time_us();
- gpt_params params;
- params.model = "models/llama-7B/ggml-model.bin";
- if (gpt_params_parse(argc, argv, params) == false) {
- return 1;
- }
- if (params.seed < 0) {
- params.seed = time(NULL);
- }
- printf("%s: seed = %d\n", __func__, params.seed);
- std::mt19937 rng(params.seed);
- if (params.prompt.empty()) {
- params.prompt = gpt_random_prompt(rng);
- }
- // params.prompt = R"(// this function checks if the number n is prime
- //bool is_prime(int n) {)";
- int64_t t_load_us = 0;
- gpt_vocab vocab;
- llama_model model;
- // load the model
- {
- const int64_t t_start_us = ggml_time_us();
- if (!llama_model_load(params.model, model, vocab, 512)) { // TODO: set context from user input ??
- fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
- return 1;
- }
- t_load_us = ggml_time_us() - t_start_us;
- }
- int n_past = 0;
- int64_t t_sample_us = 0;
- int64_t t_predict_us = 0;
- std::vector<float> logits;
- // tokenize the prompt
- std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
- params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
- // tokenize the reverse prompt
- std::vector<gpt_vocab::id> antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false);
- printf("\n");
- printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
- printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
- for (int i = 0; i < (int) embd_inp.size(); i++) {
- printf("%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
- }
- printf("\n");
- if (params.interactive) {
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- struct sigaction sigint_action;
- sigint_action.sa_handler = sigint_handler;
- sigemptyset (&sigint_action.sa_mask);
- sigint_action.sa_flags = 0;
- sigaction(SIGINT, &sigint_action, NULL);
- #endif
- printf("%s: interactive mode on.\n", __func__);
- if(antiprompt_inp.size()) {
- printf("%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str());
- printf("%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size());
- for (int i = 0; i < (int) antiprompt_inp.size(); i++) {
- printf("%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str());
- }
- printf("\n");
- }
- }
- printf("sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
- printf("\n\n");
- std::vector<gpt_vocab::id> embd;
- // determine the required inference memory per token:
- size_t mem_per_token = 0;
- llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
- int last_n_size = params.repeat_last_n;
- std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
- std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
- if (params.interactive) {
- printf("== Running in interactive mode. ==\n"
- #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
- " - Press Ctrl+C to interject at any time.\n"
- #endif
- " - Press Return to return control to LLaMa.\n"
- " - If you want to submit another line, end your input in '\\'.\n");
- }
- int remaining_tokens = params.n_predict;
- int input_consumed = 0;
- bool input_noecho = false;
- // prompt user immediately after the starting prompt has been loaded
- if (params.interactive_start) {
- is_interacting = true;
- }
- // set the color for the prompt which will be output initially
- if (params.use_color) {
- printf(ANSI_COLOR_YELLOW);
- }
- while (remaining_tokens > 0) {
- // predict
- if (embd.size() > 0) {
- const int64_t t_start_us = ggml_time_us();
- if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
- printf("Failed to predict\n");
- return 1;
- }
- t_predict_us += ggml_time_us() - t_start_us;
- }
- n_past += embd.size();
- embd.clear();
- if (embd_inp.size() <= input_consumed) {
- // out of user input, sample next token
- const float top_k = params.top_k;
- const float top_p = params.top_p;
- const float temp = params.temp;
- const float repeat_penalty = params.repeat_penalty;
- const int n_vocab = model.hparams.n_vocab;
- gpt_vocab::id id = 0;
- {
- const int64_t t_start_sample_us = ggml_time_us();
- id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(id);
- t_sample_us += ggml_time_us() - t_start_sample_us;
- }
- // add it to the context
- embd.push_back(id);
- // echo this to console
- input_noecho = false;
- // decrement remaining sampling budget
- --remaining_tokens;
- } else {
- // some user input remains from prompt or interaction, forward it to processing
- while (embd_inp.size() > input_consumed) {
- embd.push_back(embd_inp[input_consumed]);
- last_n_tokens.erase(last_n_tokens.begin());
- last_n_tokens.push_back(embd_inp[input_consumed]);
- ++input_consumed;
- if (embd.size() > params.n_batch) {
- break;
- }
- }
- }
- // display text
- if (!input_noecho) {
- for (auto id : embd) {
- printf("%s", vocab.id_to_token[id].c_str());
- }
- // reset color to default if we there is no pending user input
- if (params.use_color && embd_inp.size() <= input_consumed) {
- printf(ANSI_COLOR_RESET);
- }
- fflush(stdout);
- }
- // in interactive mode, and not currently processing queued inputs;
- // check if we should prompt the user for more
- if (params.interactive && embd_inp.size() <= input_consumed) {
- // check for reverse prompt
- if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) {
- // reverse prompt found
- is_interacting = true;
- }
- if (is_interacting) {
- // currently being interactive
- bool another_line=true;
- while (another_line) {
- fflush(stdout);
- char buf[256] = {0};
- int n_read;
- if(params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN);
- if (scanf("%255[^\n]%n%*c", buf, &n_read) <= 0) {
- // presumable empty line, consume the newline
- scanf("%*c");
- n_read=0;
- }
- if(params.use_color) printf(ANSI_COLOR_RESET);
- if (n_read > 0 && buf[n_read-1]=='\\') {
- another_line = true;
- buf[n_read-1] = '\n';
- buf[n_read] = 0;
- } else {
- another_line = false;
- buf[n_read] = '\n';
- buf[n_read+1] = 0;
- }
- std::vector<gpt_vocab::id> line_inp = ::llama_tokenize(vocab, buf, false);
- embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
- remaining_tokens -= line_inp.size();
- input_noecho = true; // do not echo this again
- }
- is_interacting = false;
- }
- }
- // end of text token
- if (embd.back() == 2) {
- printf(" [end of text]\n");
- break;
- }
- }
- // report timing
- {
- const int64_t t_main_end_us = ggml_time_us();
- printf("\n\n");
- printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
- printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
- printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
- printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
- printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
- }
- ggml_free(model.ctx);
- return 0;
- }
|