main.cpp 36 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024
  1. #include "ggml.h"
  2. #include "utils.h"
  3. #include <cassert>
  4. #include <cmath>
  5. #include <cstdio>
  6. #include <cstring>
  7. #include <fstream>
  8. #include <map>
  9. #include <string>
  10. #include <vector>
  11. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  12. #include <signal.h>
  13. #include <unistd.h>
  14. #endif
  15. #define ANSI_COLOR_RED "\x1b[31m"
  16. #define ANSI_COLOR_GREEN "\x1b[32m"
  17. #define ANSI_COLOR_YELLOW "\x1b[33m"
  18. #define ANSI_COLOR_BLUE "\x1b[34m"
  19. #define ANSI_COLOR_MAGENTA "\x1b[35m"
  20. #define ANSI_COLOR_CYAN "\x1b[36m"
  21. #define ANSI_COLOR_RESET "\x1b[0m"
  22. #define ANSI_BOLD "\x1b[1m"
  23. // determine number of model parts based on the dimension
  24. static const std::map<int, int> LLAMA_N_PARTS = {
  25. { 4096, 1 },
  26. { 5120, 2 },
  27. { 6656, 4 },
  28. { 8192, 8 },
  29. };
  30. // default hparams (LLaMA 7B)
  31. struct llama_hparams {
  32. int32_t n_vocab = 32000;
  33. int32_t n_ctx = 512; // this is provided as user input?
  34. int32_t n_embd = 4096;
  35. int32_t n_mult = 256;
  36. int32_t n_head = 32;
  37. int32_t n_layer = 32;
  38. int32_t n_rot = 64;
  39. int32_t f16 = 1;
  40. };
  41. struct llama_layer {
  42. // normalization
  43. struct ggml_tensor * attention_norm;
  44. // attention
  45. struct ggml_tensor * wq;
  46. struct ggml_tensor * wk;
  47. struct ggml_tensor * wv;
  48. struct ggml_tensor * wo;
  49. // normalization
  50. struct ggml_tensor * ffn_norm;
  51. // ff
  52. struct ggml_tensor * w1;
  53. struct ggml_tensor * w2;
  54. struct ggml_tensor * w3;
  55. };
  56. struct llama_model {
  57. llama_hparams hparams;
  58. struct ggml_tensor * tok_embeddings;
  59. struct ggml_tensor * norm;
  60. struct ggml_tensor * output;
  61. std::vector<llama_layer> layers;
  62. // key + value memory
  63. struct ggml_tensor * memory_k;
  64. struct ggml_tensor * memory_v;
  65. //
  66. struct ggml_context * ctx;
  67. std::map<std::string, struct ggml_tensor *> tensors;
  68. };
  69. // load the model's weights from a file
  70. bool llama_model_load(const std::string & fname, llama_model & model, gpt_vocab & vocab, int n_ctx) {
  71. printf("%s: loading model from '%s' - please wait ...\n", __func__, fname.c_str());
  72. auto fin = std::ifstream(fname, std::ios::binary);
  73. if (!fin) {
  74. fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
  75. return false;
  76. }
  77. // verify magic
  78. {
  79. uint32_t magic;
  80. fin.read((char *) &magic, sizeof(magic));
  81. if (magic != 0x67676d6c) {
  82. fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
  83. return false;
  84. }
  85. }
  86. int n_ff = 0;
  87. int n_parts = 0;
  88. // load hparams
  89. {
  90. auto & hparams = model.hparams;
  91. fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
  92. //fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
  93. fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
  94. fin.read((char *) &hparams.n_mult, sizeof(hparams.n_mult));
  95. fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
  96. fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
  97. fin.read((char *) &hparams.n_rot, sizeof(hparams.n_rot));
  98. fin.read((char *) &hparams.f16, sizeof(hparams.f16));
  99. hparams.n_ctx = n_ctx;
  100. n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  101. n_parts = LLAMA_N_PARTS.at(hparams.n_embd);
  102. printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
  103. printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
  104. printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
  105. printf("%s: n_mult = %d\n", __func__, hparams.n_mult);
  106. printf("%s: n_head = %d\n", __func__, hparams.n_head);
  107. printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
  108. printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
  109. printf("%s: f16 = %d\n", __func__, hparams.f16);
  110. printf("%s: n_ff = %d\n", __func__, n_ff);
  111. printf("%s: n_parts = %d\n", __func__, n_parts);
  112. }
  113. // load vocab
  114. {
  115. const int32_t n_vocab = model.hparams.n_vocab;
  116. if (n_vocab != model.hparams.n_vocab) {
  117. fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
  118. __func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
  119. return false;
  120. }
  121. std::string word;
  122. for (int i = 0; i < n_vocab; i++) {
  123. uint32_t len;
  124. fin.read((char *) &len, sizeof(len));
  125. word.resize(len);
  126. fin.read((char *) word.data(), len);
  127. vocab.token_to_id[word] = i;
  128. vocab.id_to_token[i] = word;
  129. //if (i < 30000) {
  130. // printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str());
  131. //}
  132. }
  133. }
  134. // for the big tensors, we have the option to store the data in 16-bit floats or quantized
  135. // in order to save memory and also to speed up the computation
  136. ggml_type wtype = GGML_TYPE_COUNT;
  137. switch (model.hparams.f16) {
  138. case 0: wtype = GGML_TYPE_F32; break;
  139. case 1: wtype = GGML_TYPE_F16; break;
  140. case 2: wtype = GGML_TYPE_Q4_0; break;
  141. case 3: wtype = GGML_TYPE_Q4_1; break;
  142. default:
  143. {
  144. fprintf(stderr, "%s: invalid model file '%s' (bad f16 value %d)\n",
  145. __func__, fname.c_str(), model.hparams.f16);
  146. return false;
  147. }
  148. }
  149. const ggml_type wtype2 = GGML_TYPE_F32;
  150. auto & ctx = model.ctx;
  151. size_t ctx_size = 0;
  152. {
  153. const auto & hparams = model.hparams;
  154. const int n_embd = hparams.n_embd;
  155. const int n_layer = hparams.n_layer;
  156. const int n_ctx = hparams.n_ctx;
  157. const int n_vocab = hparams.n_vocab;
  158. ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // tok_embeddings
  159. ctx_size += n_embd*ggml_type_sizef(GGML_TYPE_F32); // norm
  160. ctx_size += n_embd*n_vocab*ggml_type_sizef(wtype); // output
  161. ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // attention_norm
  162. ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wq
  163. ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wk
  164. ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wv
  165. ctx_size += n_layer*(n_embd*n_embd*ggml_type_sizef(wtype)); // wo
  166. ctx_size += n_layer*(n_embd*ggml_type_sizef(GGML_TYPE_F32)); // ffn_norm
  167. ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w1
  168. ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w2
  169. ctx_size += n_layer*(n_ff*n_embd*ggml_type_sizef(wtype)); // w3
  170. ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_k
  171. ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32); // memory_v
  172. ctx_size += (5 + 10*n_layer)*256; // object overhead
  173. printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
  174. }
  175. // create the ggml context
  176. {
  177. struct ggml_init_params params = {
  178. /*.mem_size =*/ ctx_size,
  179. /*.mem_buffer =*/ NULL,
  180. };
  181. model.ctx = ggml_init(params);
  182. if (!model.ctx) {
  183. fprintf(stderr, "%s: ggml_init() failed\n", __func__);
  184. return false;
  185. }
  186. }
  187. // prepare memory for the weights
  188. {
  189. const auto & hparams = model.hparams;
  190. const int n_embd = hparams.n_embd;
  191. const int n_layer = hparams.n_layer;
  192. const int n_ctx = hparams.n_ctx;
  193. const int n_vocab = hparams.n_vocab;
  194. model.layers.resize(n_layer);
  195. model.tok_embeddings = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
  196. model.norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  197. model.output = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
  198. // map by name
  199. model.tensors["tok_embeddings.weight"] = model.tok_embeddings;
  200. model.tensors["norm.weight"] = model.norm;
  201. model.tensors["output.weight"] = model.output;
  202. for (int i = 0; i < n_layer; ++i) {
  203. auto & layer = model.layers[i];
  204. layer.attention_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  205. layer.wq = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
  206. layer.wk = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
  207. layer.wv = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
  208. layer.wo = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
  209. layer.ffn_norm = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
  210. layer.w1 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
  211. layer.w2 = ggml_new_tensor_2d(ctx, wtype, n_ff, n_embd);
  212. layer.w3 = ggml_new_tensor_2d(ctx, wtype, n_embd, n_ff);
  213. // map by name
  214. model.tensors["layers." + std::to_string(i) + ".attention_norm.weight"] = layer.attention_norm;
  215. model.tensors["layers." + std::to_string(i) + ".attention.wq.weight"] = layer.wq;
  216. model.tensors["layers." + std::to_string(i) + ".attention.wk.weight"] = layer.wk;
  217. model.tensors["layers." + std::to_string(i) + ".attention.wv.weight"] = layer.wv;
  218. model.tensors["layers." + std::to_string(i) + ".attention.wo.weight"] = layer.wo;
  219. model.tensors["layers." + std::to_string(i) + ".ffn_norm.weight"] = layer.ffn_norm;
  220. model.tensors["layers." + std::to_string(i) + ".feed_forward.w1.weight"] = layer.w1;
  221. model.tensors["layers." + std::to_string(i) + ".feed_forward.w2.weight"] = layer.w2;
  222. model.tensors["layers." + std::to_string(i) + ".feed_forward.w3.weight"] = layer.w3;
  223. }
  224. }
  225. // key + value memory
  226. {
  227. const auto & hparams = model.hparams;
  228. const int n_embd = hparams.n_embd;
  229. const int n_layer = hparams.n_layer;
  230. const int n_ctx = hparams.n_ctx;
  231. const int n_mem = n_layer*n_ctx;
  232. const int n_elements = n_embd*n_mem;
  233. model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
  234. model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
  235. const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
  236. printf("%s: memory_size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
  237. }
  238. const size_t file_offset = fin.tellg();
  239. fin.close();
  240. std::vector<uint8_t> tmp;
  241. for (int i = 0; i < n_parts; ++i) {
  242. const int part_id = i;
  243. //const int part_id = n_parts - i - 1;
  244. std::string fname_part = fname;
  245. if (i > 0) {
  246. fname_part += "." + std::to_string(i);
  247. }
  248. printf("%s: loading model part %d/%d from '%s'\n", __func__, i+1, n_parts, fname_part.c_str());
  249. fin = std::ifstream(fname_part, std::ios::binary);
  250. fin.seekg(file_offset);
  251. // load weights
  252. {
  253. int n_tensors = 0;
  254. size_t total_size = 0;
  255. printf("%s: ", __func__);
  256. while (true) {
  257. int32_t n_dims;
  258. int32_t length;
  259. int32_t ftype;
  260. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  261. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  262. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  263. if (fin.eof()) {
  264. break;
  265. }
  266. int32_t nelements = 1;
  267. int32_t ne[2] = { 1, 1 };
  268. for (int i = 0; i < n_dims; ++i) {
  269. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  270. nelements *= ne[i];
  271. }
  272. std::string name(length, 0);
  273. fin.read(&name[0], length);
  274. if (model.tensors.find(name.data()) == model.tensors.end()) {
  275. fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
  276. return false;
  277. }
  278. // split_type = 0: split by columns
  279. // split_type = 1: split by rows
  280. int split_type = 0;
  281. // split_type = 0:
  282. // regex:
  283. // - tok_embeddings.*
  284. // - layers.*.attention.wo.weight
  285. // - layers.*.feed_forward.w2.weight
  286. // split_type = 1:
  287. // regex:
  288. // - output.*
  289. // - layers.*.attention.wq.weight
  290. // - layers.*.attention.wk.weight
  291. // - layers.*.attention.wv.weight
  292. // - layers.*.feed_forward.w1.weight
  293. // - layers.*.feed_forward.w3.weight
  294. if (name.find("tok_embeddings") != std::string::npos) {
  295. split_type = 0;
  296. } else if (name.find("layers") != std::string::npos) {
  297. if (name.find("attention.wo.weight") != std::string::npos) {
  298. split_type = 0;
  299. } else if (name.find("feed_forward.w2.weight") != std::string::npos) {
  300. split_type = 0;
  301. } else {
  302. split_type = 1;
  303. }
  304. } else if (name.find("output") != std::string::npos) {
  305. split_type = 1;
  306. }
  307. auto tensor = model.tensors[name.data()];
  308. if (n_dims == 1) {
  309. if (ggml_nelements(tensor) != nelements) {
  310. fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
  311. return false;
  312. }
  313. } else {
  314. if (ggml_nelements(tensor)/n_parts != nelements) {
  315. fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
  316. return false;
  317. }
  318. }
  319. if (n_dims == 1) {
  320. if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
  321. fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
  322. __func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
  323. return false;
  324. }
  325. } else {
  326. if (split_type == 0) {
  327. if (tensor->ne[0]/n_parts != ne[0] || tensor->ne[1] != ne[1]) {
  328. fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
  329. __func__, name.data(), tensor->ne[0]/n_parts, tensor->ne[1], ne[0], ne[1]);
  330. return false;
  331. }
  332. } else {
  333. if (tensor->ne[0] != ne[0] || tensor->ne[1]/n_parts != ne[1]) {
  334. fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
  335. __func__, name.data(), tensor->ne[0], tensor->ne[1]/n_parts, ne[0], ne[1]);
  336. return false;
  337. }
  338. }
  339. }
  340. if (0) {
  341. static const char * ftype_str[] = { "f32", "f16", "q4_0", "q4_1", };
  342. printf("%24s - [%5d, %5d], type = %6s, split = %d\n", name.data(), ne[0], ne[1], ftype_str[ftype], split_type);
  343. }
  344. size_t bpe = 0;
  345. switch (ftype) {
  346. case 0: bpe = ggml_type_size(GGML_TYPE_F32); break;
  347. case 1: bpe = ggml_type_size(GGML_TYPE_F16); break;
  348. case 2: bpe = ggml_type_size(GGML_TYPE_Q4_0); assert(ne[0] % 64 == 0); break;
  349. case 3: bpe = ggml_type_size(GGML_TYPE_Q4_1); assert(ne[0] % 64 == 0); break;
  350. default:
  351. {
  352. fprintf(stderr, "%s: unknown ftype %d in model file\n", __func__, ftype);
  353. return false;
  354. }
  355. };
  356. if (n_dims == 1 || n_parts == 1) {
  357. if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)) {
  358. fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
  359. __func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
  360. return false;
  361. }
  362. if (part_id == 0) {
  363. fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
  364. } else {
  365. fin.seekg(ggml_nbytes(tensor), std::ios::cur);
  366. }
  367. total_size += ggml_nbytes(tensor);
  368. } else {
  369. if ((nelements*bpe)/ggml_blck_size(tensor->type) != ggml_nbytes(tensor)/n_parts) {
  370. fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
  371. __func__, name.data(), ggml_nbytes(tensor)/n_parts, nelements*bpe);
  372. return false;
  373. }
  374. if (split_type == 0) {
  375. const int np0 = ne[0];
  376. const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
  377. assert(row_size == tensor->nb[1]);
  378. for (int i1 = 0; i1 < ne[1]; ++i1) {
  379. const size_t offset_row = i1*row_size;
  380. const size_t offset = offset_row + ((part_id*np0)/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
  381. fin.read(reinterpret_cast<char *>(tensor->data) + offset, row_size/n_parts);
  382. }
  383. } else {
  384. const int np1 = ne[1];
  385. const size_t row_size = (tensor->ne[0]/ggml_blck_size(tensor->type))*ggml_type_size(tensor->type);
  386. for (int i1 = 0; i1 < ne[1]; ++i1) {
  387. const size_t offset_row = (i1 + part_id*np1)*row_size;
  388. fin.read(reinterpret_cast<char *>(tensor->data) + offset_row, row_size);
  389. }
  390. }
  391. total_size += ggml_nbytes(tensor)/n_parts;
  392. }
  393. //printf("%42s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
  394. if (++n_tensors % 8 == 0) {
  395. printf(".");
  396. fflush(stdout);
  397. }
  398. }
  399. printf(" done\n");
  400. printf("%s: model size = %8.2f MB / num tensors = %d\n", __func__, total_size/1024.0/1024.0, n_tensors);
  401. }
  402. fin.close();
  403. }
  404. return true;
  405. }
  406. // evaluate the transformer
  407. //
  408. // - model: the model
  409. // - n_threads: number of threads to use
  410. // - n_past: the context size so far
  411. // - embd_inp: the embeddings of the tokens in the context
  412. // - embd_w: the predicted logits for the next token
  413. //
  414. // The GPT-J model requires about 16MB of memory per input token.
  415. //
  416. bool llama_eval(
  417. const llama_model & model,
  418. const int n_threads,
  419. const int n_past,
  420. const std::vector<gpt_vocab::id> & embd_inp,
  421. std::vector<float> & embd_w,
  422. size_t & mem_per_token) {
  423. const int N = embd_inp.size();
  424. const auto & hparams = model.hparams;
  425. const int n_embd = hparams.n_embd;
  426. const int n_layer = hparams.n_layer;
  427. const int n_ctx = hparams.n_ctx;
  428. const int n_head = hparams.n_head;
  429. const int n_vocab = hparams.n_vocab;
  430. const int n_rot = hparams.n_embd/hparams.n_head;
  431. const int d_key = n_embd/n_head;
  432. static size_t buf_size = 512u*1024*1024;
  433. static void * buf = malloc(buf_size);
  434. if (mem_per_token > 0 && mem_per_token*N > buf_size) {
  435. const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
  436. //printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
  437. // reallocate
  438. buf_size = buf_size_new;
  439. buf = realloc(buf, buf_size);
  440. if (buf == nullptr) {
  441. fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
  442. return false;
  443. }
  444. }
  445. struct ggml_init_params params = {
  446. /*.mem_size =*/ buf_size,
  447. /*.mem_buffer =*/ buf,
  448. };
  449. struct ggml_context * ctx0 = ggml_init(params);
  450. ggml_cgraph gf = {};
  451. gf.n_threads = n_threads;
  452. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  453. memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
  454. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
  455. for (int il = 0; il < n_layer; ++il) {
  456. struct ggml_tensor * inpSA = inpL;
  457. struct ggml_tensor * cur;
  458. // norm
  459. {
  460. cur = ggml_norm(ctx0, inpL);
  461. // cur = attention_norm*cur
  462. cur = ggml_mul(ctx0,
  463. ggml_repeat(ctx0, model.layers[il].attention_norm, cur),
  464. cur);
  465. }
  466. // self-attention
  467. {
  468. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  469. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  470. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  471. // store key and value to memory
  472. if (N >= 1) {
  473. struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
  474. struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
  475. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  476. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  477. }
  478. // Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
  479. struct ggml_tensor * Q =
  480. ggml_permute(ctx0,
  481. ggml_rope(ctx0,
  482. ggml_cpy(ctx0,
  483. Qcur,
  484. ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
  485. n_past, n_rot, 0),
  486. 0, 2, 1, 3);
  487. // K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
  488. struct ggml_tensor * K =
  489. ggml_permute(ctx0,
  490. ggml_rope(ctx0,
  491. ggml_reshape_3d(ctx0,
  492. ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
  493. n_embd/n_head, n_head, n_past + N),
  494. n_past, n_rot, 1),
  495. 0, 2, 1, 3);
  496. // K * Q
  497. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  498. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  499. struct ggml_tensor * KQ_scaled =
  500. ggml_scale(ctx0,
  501. KQ,
  502. ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
  503. );
  504. // KQ_masked = mask_past(KQ_scaled)
  505. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
  506. // KQ = soft_max(KQ_masked)
  507. struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
  508. // V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
  509. struct ggml_tensor * V_trans =
  510. ggml_permute(ctx0,
  511. ggml_reshape_3d(ctx0,
  512. ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
  513. n_embd/n_head, n_head, n_past + N),
  514. 1, 2, 0, 3);
  515. // KQV = transpose(V) * KQ_soft_max
  516. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
  517. // KQV_merged = KQV.permute(0, 2, 1, 3)
  518. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  519. // cur = KQV_merged.contiguous().view(n_embd, N)
  520. cur = ggml_cpy(ctx0,
  521. KQV_merged,
  522. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  523. // projection (no bias)
  524. cur = ggml_mul_mat(ctx0,
  525. model.layers[il].wo,
  526. cur);
  527. }
  528. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  529. // feed-forward network
  530. {
  531. // norm
  532. {
  533. cur = ggml_norm(ctx0, inpFF);
  534. // cur = ffn_norm*cur
  535. cur = ggml_mul(ctx0,
  536. ggml_repeat(ctx0, model.layers[il].ffn_norm, cur),
  537. cur);
  538. }
  539. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  540. model.layers[il].w3,
  541. cur);
  542. cur = ggml_mul_mat(ctx0,
  543. model.layers[il].w1,
  544. cur);
  545. // SILU activation
  546. cur = ggml_silu(ctx0, cur);
  547. cur = ggml_mul(ctx0, cur, tmp);
  548. cur = ggml_mul_mat(ctx0,
  549. model.layers[il].w2,
  550. cur);
  551. }
  552. cur = ggml_add(ctx0, cur, inpFF);
  553. // input for next layer
  554. inpL = cur;
  555. }
  556. // norm
  557. {
  558. inpL = ggml_norm(ctx0, inpL);
  559. // inpL = norm*inpL
  560. inpL = ggml_mul(ctx0,
  561. ggml_repeat(ctx0, model.norm, inpL),
  562. inpL);
  563. }
  564. // lm_head
  565. {
  566. inpL = ggml_mul_mat(ctx0, model.output, inpL);
  567. }
  568. // logits -> probs
  569. //inpL = ggml_soft_max(ctx0, inpL);
  570. // run the computation
  571. ggml_build_forward_expand(&gf, inpL);
  572. ggml_graph_compute (ctx0, &gf);
  573. //if (n_past%100 == 0) {
  574. // ggml_graph_print (&gf);
  575. // ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
  576. //}
  577. //embd_w.resize(n_vocab*N);
  578. //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  579. // return result for just the last token
  580. embd_w.resize(n_vocab);
  581. memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  582. if (mem_per_token == 0) {
  583. mem_per_token = ggml_used_mem(ctx0)/N;
  584. }
  585. //printf("used_mem = %zu\n", ggml_used_mem(ctx0));
  586. ggml_free(ctx0);
  587. return true;
  588. }
  589. static bool is_interacting = false;
  590. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  591. void sigint_handler(int signo) {
  592. if (signo == SIGINT) {
  593. if (!is_interacting) {
  594. is_interacting=true;
  595. } else {
  596. _exit(130);
  597. }
  598. }
  599. }
  600. #endif
  601. int main(int argc, char ** argv) {
  602. ggml_time_init();
  603. const int64_t t_main_start_us = ggml_time_us();
  604. gpt_params params;
  605. params.model = "models/llama-7B/ggml-model.bin";
  606. if (gpt_params_parse(argc, argv, params) == false) {
  607. return 1;
  608. }
  609. if (params.seed < 0) {
  610. params.seed = time(NULL);
  611. }
  612. printf("%s: seed = %d\n", __func__, params.seed);
  613. std::mt19937 rng(params.seed);
  614. if (params.prompt.empty()) {
  615. params.prompt = gpt_random_prompt(rng);
  616. }
  617. // params.prompt = R"(// this function checks if the number n is prime
  618. //bool is_prime(int n) {)";
  619. int64_t t_load_us = 0;
  620. gpt_vocab vocab;
  621. llama_model model;
  622. // load the model
  623. {
  624. const int64_t t_start_us = ggml_time_us();
  625. if (!llama_model_load(params.model, model, vocab, 512)) { // TODO: set context from user input ??
  626. fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, params.model.c_str());
  627. return 1;
  628. }
  629. t_load_us = ggml_time_us() - t_start_us;
  630. }
  631. int n_past = 0;
  632. int64_t t_sample_us = 0;
  633. int64_t t_predict_us = 0;
  634. std::vector<float> logits;
  635. // tokenize the prompt
  636. std::vector<gpt_vocab::id> embd_inp = ::llama_tokenize(vocab, params.prompt, true);
  637. params.n_predict = std::min(params.n_predict, model.hparams.n_ctx - (int) embd_inp.size());
  638. // tokenize the reverse prompt
  639. std::vector<gpt_vocab::id> antiprompt_inp = ::llama_tokenize(vocab, params.antiprompt, false);
  640. printf("\n");
  641. printf("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
  642. printf("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
  643. for (int i = 0; i < (int) embd_inp.size(); i++) {
  644. printf("%6d -> '%s'\n", embd_inp[i], vocab.id_to_token.at(embd_inp[i]).c_str());
  645. }
  646. printf("\n");
  647. if (params.interactive) {
  648. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  649. struct sigaction sigint_action;
  650. sigint_action.sa_handler = sigint_handler;
  651. sigemptyset (&sigint_action.sa_mask);
  652. sigint_action.sa_flags = 0;
  653. sigaction(SIGINT, &sigint_action, NULL);
  654. #endif
  655. printf("%s: interactive mode on.\n", __func__);
  656. if(antiprompt_inp.size()) {
  657. printf("%s: reverse prompt: '%s'\n", __func__, params.antiprompt.c_str());
  658. printf("%s: number of tokens in reverse prompt = %zu\n", __func__, antiprompt_inp.size());
  659. for (int i = 0; i < (int) antiprompt_inp.size(); i++) {
  660. printf("%6d -> '%s'\n", antiprompt_inp[i], vocab.id_to_token.at(antiprompt_inp[i]).c_str());
  661. }
  662. printf("\n");
  663. }
  664. }
  665. printf("sampling parameters: temp = %f, top_k = %d, top_p = %f, repeat_last_n = %i, repeat_penalty = %f\n", params.temp, params.top_k, params.top_p, params.repeat_last_n, params.repeat_penalty);
  666. printf("\n\n");
  667. std::vector<gpt_vocab::id> embd;
  668. // determine the required inference memory per token:
  669. size_t mem_per_token = 0;
  670. llama_eval(model, params.n_threads, 0, { 0, 1, 2, 3 }, logits, mem_per_token);
  671. int last_n_size = params.repeat_last_n;
  672. std::vector<gpt_vocab::id> last_n_tokens(last_n_size);
  673. std::fill(last_n_tokens.begin(), last_n_tokens.end(), 0);
  674. if (params.interactive) {
  675. printf("== Running in interactive mode. ==\n"
  676. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  677. " - Press Ctrl+C to interject at any time.\n"
  678. #endif
  679. " - Press Return to return control to LLaMa.\n"
  680. " - If you want to submit another line, end your input in '\\'.\n");
  681. }
  682. int remaining_tokens = params.n_predict;
  683. int input_consumed = 0;
  684. bool input_noecho = false;
  685. // prompt user immediately after the starting prompt has been loaded
  686. if (params.interactive_start) {
  687. is_interacting = true;
  688. }
  689. // set the color for the prompt which will be output initially
  690. if (params.use_color) {
  691. printf(ANSI_COLOR_YELLOW);
  692. }
  693. while (remaining_tokens > 0) {
  694. // predict
  695. if (embd.size() > 0) {
  696. const int64_t t_start_us = ggml_time_us();
  697. if (!llama_eval(model, params.n_threads, n_past, embd, logits, mem_per_token)) {
  698. printf("Failed to predict\n");
  699. return 1;
  700. }
  701. t_predict_us += ggml_time_us() - t_start_us;
  702. }
  703. n_past += embd.size();
  704. embd.clear();
  705. if (embd_inp.size() <= input_consumed) {
  706. // out of user input, sample next token
  707. const float top_k = params.top_k;
  708. const float top_p = params.top_p;
  709. const float temp = params.temp;
  710. const float repeat_penalty = params.repeat_penalty;
  711. const int n_vocab = model.hparams.n_vocab;
  712. gpt_vocab::id id = 0;
  713. {
  714. const int64_t t_start_sample_us = ggml_time_us();
  715. id = llama_sample_top_p_top_k(vocab, logits.data() + (logits.size() - n_vocab), last_n_tokens, repeat_penalty, top_k, top_p, temp, rng);
  716. last_n_tokens.erase(last_n_tokens.begin());
  717. last_n_tokens.push_back(id);
  718. t_sample_us += ggml_time_us() - t_start_sample_us;
  719. }
  720. // add it to the context
  721. embd.push_back(id);
  722. // echo this to console
  723. input_noecho = false;
  724. // decrement remaining sampling budget
  725. --remaining_tokens;
  726. } else {
  727. // some user input remains from prompt or interaction, forward it to processing
  728. while (embd_inp.size() > input_consumed) {
  729. embd.push_back(embd_inp[input_consumed]);
  730. last_n_tokens.erase(last_n_tokens.begin());
  731. last_n_tokens.push_back(embd_inp[input_consumed]);
  732. ++input_consumed;
  733. if (embd.size() > params.n_batch) {
  734. break;
  735. }
  736. }
  737. }
  738. // display text
  739. if (!input_noecho) {
  740. for (auto id : embd) {
  741. printf("%s", vocab.id_to_token[id].c_str());
  742. }
  743. // reset color to default if we there is no pending user input
  744. if (params.use_color && embd_inp.size() <= input_consumed) {
  745. printf(ANSI_COLOR_RESET);
  746. }
  747. fflush(stdout);
  748. }
  749. // in interactive mode, and not currently processing queued inputs;
  750. // check if we should prompt the user for more
  751. if (params.interactive && embd_inp.size() <= input_consumed) {
  752. // check for reverse prompt
  753. if (antiprompt_inp.size() && std::equal(antiprompt_inp.rbegin(), antiprompt_inp.rend(), last_n_tokens.rbegin())) {
  754. // reverse prompt found
  755. is_interacting = true;
  756. }
  757. if (is_interacting) {
  758. // currently being interactive
  759. bool another_line=true;
  760. while (another_line) {
  761. fflush(stdout);
  762. char buf[256] = {0};
  763. int n_read;
  764. if(params.use_color) printf(ANSI_BOLD ANSI_COLOR_GREEN);
  765. if (scanf("%255[^\n]%n%*c", buf, &n_read) <= 0) {
  766. // presumable empty line, consume the newline
  767. scanf("%*c");
  768. n_read=0;
  769. }
  770. if(params.use_color) printf(ANSI_COLOR_RESET);
  771. if (n_read > 0 && buf[n_read-1]=='\\') {
  772. another_line = true;
  773. buf[n_read-1] = '\n';
  774. buf[n_read] = 0;
  775. } else {
  776. another_line = false;
  777. buf[n_read] = '\n';
  778. buf[n_read+1] = 0;
  779. }
  780. std::vector<gpt_vocab::id> line_inp = ::llama_tokenize(vocab, buf, false);
  781. embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
  782. remaining_tokens -= line_inp.size();
  783. input_noecho = true; // do not echo this again
  784. }
  785. is_interacting = false;
  786. }
  787. }
  788. // end of text token
  789. if (embd.back() == 2) {
  790. printf(" [end of text]\n");
  791. break;
  792. }
  793. }
  794. // report timing
  795. {
  796. const int64_t t_main_end_us = ggml_time_us();
  797. printf("\n\n");
  798. printf("%s: mem per token = %8zu bytes\n", __func__, mem_per_token);
  799. printf("%s: load time = %8.2f ms\n", __func__, t_load_us/1000.0f);
  800. printf("%s: sample time = %8.2f ms\n", __func__, t_sample_us/1000.0f);
  801. printf("%s: predict time = %8.2f ms / %.2f ms per token\n", __func__, t_predict_us/1000.0f, t_predict_us/1000.0f/n_past);
  802. printf("%s: total time = %8.2f ms\n", __func__, (t_main_end_us - t_main_start_us)/1000.0f);
  803. }
  804. ggml_free(model.ctx);
  805. return 0;
  806. }