constants.py 33 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023
  1. from __future__ import annotations
  2. from enum import Enum, IntEnum, auto
  3. from typing import Any
  4. #
  5. # constants
  6. #
  7. GGUF_MAGIC = 0x46554747 # "GGUF"
  8. GGUF_VERSION = 3
  9. GGUF_DEFAULT_ALIGNMENT = 32
  10. GGML_QUANT_VERSION = 2 # GGML_QNT_VERSION from ggml.h
  11. #
  12. # metadata keys
  13. #
  14. class Keys:
  15. class General:
  16. ARCHITECTURE = "general.architecture"
  17. QUANTIZATION_VERSION = "general.quantization_version"
  18. ALIGNMENT = "general.alignment"
  19. NAME = "general.name"
  20. AUTHOR = "general.author"
  21. VERSION = "general.version"
  22. URL = "general.url"
  23. DESCRIPTION = "general.description"
  24. LICENSE = "general.license"
  25. SOURCE_URL = "general.source.url"
  26. SOURCE_HF_REPO = "general.source.huggingface.repository"
  27. FILE_TYPE = "general.file_type"
  28. class LLM:
  29. VOCAB_SIZE = "{arch}.vocab_size"
  30. CONTEXT_LENGTH = "{arch}.context_length"
  31. EMBEDDING_LENGTH = "{arch}.embedding_length"
  32. BLOCK_COUNT = "{arch}.block_count"
  33. FEED_FORWARD_LENGTH = "{arch}.feed_forward_length"
  34. USE_PARALLEL_RESIDUAL = "{arch}.use_parallel_residual"
  35. TENSOR_DATA_LAYOUT = "{arch}.tensor_data_layout"
  36. EXPERT_COUNT = "{arch}.expert_count"
  37. EXPERT_USED_COUNT = "{arch}.expert_used_count"
  38. POOLING_TYPE = "{arch}.pooling_type"
  39. LOGIT_SCALE = "{arch}.logit_scale"
  40. class Attention:
  41. HEAD_COUNT = "{arch}.attention.head_count"
  42. HEAD_COUNT_KV = "{arch}.attention.head_count_kv"
  43. MAX_ALIBI_BIAS = "{arch}.attention.max_alibi_bias"
  44. CLAMP_KQV = "{arch}.attention.clamp_kqv"
  45. KEY_LENGTH = "{arch}.attention.key_length"
  46. VALUE_LENGTH = "{arch}.attention.value_length"
  47. LAYERNORM_EPS = "{arch}.attention.layer_norm_epsilon"
  48. LAYERNORM_RMS_EPS = "{arch}.attention.layer_norm_rms_epsilon"
  49. CAUSAL = "{arch}.attention.causal"
  50. class Rope:
  51. DIMENSION_COUNT = "{arch}.rope.dimension_count"
  52. FREQ_BASE = "{arch}.rope.freq_base"
  53. SCALING_TYPE = "{arch}.rope.scaling.type"
  54. SCALING_FACTOR = "{arch}.rope.scaling.factor"
  55. SCALING_ORIG_CTX_LEN = "{arch}.rope.scaling.original_context_length"
  56. SCALING_FINETUNED = "{arch}.rope.scaling.finetuned"
  57. class SSM:
  58. CONV_KERNEL = "{arch}.ssm.conv_kernel"
  59. INNER_SIZE = "{arch}.ssm.inner_size"
  60. STATE_SIZE = "{arch}.ssm.state_size"
  61. TIME_STEP_RANK = "{arch}.ssm.time_step_rank"
  62. class Tokenizer:
  63. MODEL = "tokenizer.ggml.model"
  64. PRE = "tokenizer.ggml.pre"
  65. LIST = "tokenizer.ggml.tokens"
  66. TOKEN_TYPE = "tokenizer.ggml.token_type"
  67. TOKEN_TYPE_COUNT = "tokenizer.ggml.token_type_count" # for BERT-style token types
  68. SCORES = "tokenizer.ggml.scores"
  69. MERGES = "tokenizer.ggml.merges"
  70. BOS_ID = "tokenizer.ggml.bos_token_id"
  71. EOS_ID = "tokenizer.ggml.eos_token_id"
  72. UNK_ID = "tokenizer.ggml.unknown_token_id"
  73. SEP_ID = "tokenizer.ggml.seperator_token_id"
  74. PAD_ID = "tokenizer.ggml.padding_token_id"
  75. CLS_ID = "tokenizer.ggml.cls_token_id"
  76. MASK_ID = "tokenizer.ggml.mask_token_id"
  77. ADD_BOS = "tokenizer.ggml.add_bos_token"
  78. ADD_EOS = "tokenizer.ggml.add_eos_token"
  79. ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
  80. HF_JSON = "tokenizer.huggingface.json"
  81. RWKV = "tokenizer.rwkv.world"
  82. CHAT_TEMPLATE = "tokenizer.chat_template"
  83. CHAT_TEMPLATE_N = "tokenizer.chat_template.{name}"
  84. CHAT_TEMPLATES = "tokenizer.chat_templates"
  85. # FIM/Infill special tokens constants
  86. PREFIX_ID = "tokenizer.ggml.prefix_token_id"
  87. SUFFIX_ID = "tokenizer.ggml.suffix_token_id"
  88. MIDDLE_ID = "tokenizer.ggml.middle_token_id"
  89. EOT_ID = "tokenizer.ggml.eot_token_id"
  90. #
  91. # recommended mapping of model tensor names for storage in gguf
  92. #
  93. class MODEL_ARCH(IntEnum):
  94. LLAMA = auto()
  95. FALCON = auto()
  96. BAICHUAN = auto()
  97. GROK = auto()
  98. GPT2 = auto()
  99. GPTJ = auto()
  100. GPTNEOX = auto()
  101. MPT = auto()
  102. STARCODER = auto()
  103. PERSIMMON = auto()
  104. REFACT = auto()
  105. BERT = auto()
  106. NOMIC_BERT = auto()
  107. JINA_BERT_V2 = auto()
  108. BLOOM = auto()
  109. STABLELM = auto()
  110. QWEN = auto()
  111. QWEN2 = auto()
  112. QWEN2MOE = auto()
  113. PHI2 = auto()
  114. PHI3 = auto()
  115. PLAMO = auto()
  116. CODESHELL = auto()
  117. ORION = auto()
  118. INTERNLM2 = auto()
  119. MINICPM = auto()
  120. GEMMA = auto()
  121. STARCODER2 = auto()
  122. MAMBA = auto()
  123. XVERSE = auto()
  124. COMMAND_R = auto()
  125. DBRX = auto()
  126. OLMO = auto()
  127. class MODEL_TENSOR(IntEnum):
  128. TOKEN_EMBD = auto()
  129. TOKEN_EMBD_NORM = auto()
  130. TOKEN_TYPES = auto()
  131. POS_EMBD = auto()
  132. OUTPUT = auto()
  133. OUTPUT_NORM = auto()
  134. ROPE_FREQS = auto()
  135. ATTN_Q = auto()
  136. ATTN_K = auto()
  137. ATTN_V = auto()
  138. ATTN_QKV = auto()
  139. ATTN_OUT = auto()
  140. ATTN_NORM = auto()
  141. ATTN_NORM_2 = auto()
  142. ATTN_OUT_NORM = auto()
  143. ATTN_ROT_EMBD = auto()
  144. FFN_GATE_INP = auto()
  145. FFN_GATE_INP_SHEXP = auto()
  146. FFN_NORM = auto()
  147. FFN_GATE = auto()
  148. FFN_DOWN = auto()
  149. FFN_UP = auto()
  150. FFN_ACT = auto()
  151. FFN_GATE_EXP = auto()
  152. FFN_DOWN_EXP = auto()
  153. FFN_UP_EXP = auto()
  154. FFN_GATE_SHEXP = auto()
  155. FFN_DOWN_SHEXP = auto()
  156. FFN_UP_SHEXP = auto()
  157. ATTN_Q_NORM = auto()
  158. ATTN_K_NORM = auto()
  159. LAYER_OUT_NORM = auto()
  160. SSM_IN = auto()
  161. SSM_CONV1D = auto()
  162. SSM_X = auto()
  163. SSM_DT = auto()
  164. SSM_A = auto()
  165. SSM_D = auto()
  166. SSM_OUT = auto()
  167. MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
  168. MODEL_ARCH.LLAMA: "llama",
  169. MODEL_ARCH.FALCON: "falcon",
  170. MODEL_ARCH.BAICHUAN: "baichuan",
  171. MODEL_ARCH.GROK: "grok",
  172. MODEL_ARCH.GPT2: "gpt2",
  173. MODEL_ARCH.GPTJ: "gptj",
  174. MODEL_ARCH.GPTNEOX: "gptneox",
  175. MODEL_ARCH.MPT: "mpt",
  176. MODEL_ARCH.STARCODER: "starcoder",
  177. MODEL_ARCH.PERSIMMON: "persimmon",
  178. MODEL_ARCH.REFACT: "refact",
  179. MODEL_ARCH.BERT: "bert",
  180. MODEL_ARCH.NOMIC_BERT: "nomic-bert",
  181. MODEL_ARCH.JINA_BERT_V2: "jina-bert-v2",
  182. MODEL_ARCH.BLOOM: "bloom",
  183. MODEL_ARCH.STABLELM: "stablelm",
  184. MODEL_ARCH.QWEN: "qwen",
  185. MODEL_ARCH.QWEN2: "qwen2",
  186. MODEL_ARCH.QWEN2MOE: "qwen2moe",
  187. MODEL_ARCH.PHI2: "phi2",
  188. MODEL_ARCH.PHI3: "phi3",
  189. MODEL_ARCH.PLAMO: "plamo",
  190. MODEL_ARCH.CODESHELL: "codeshell",
  191. MODEL_ARCH.ORION: "orion",
  192. MODEL_ARCH.INTERNLM2: "internlm2",
  193. MODEL_ARCH.MINICPM: "minicpm",
  194. MODEL_ARCH.GEMMA: "gemma",
  195. MODEL_ARCH.STARCODER2: "starcoder2",
  196. MODEL_ARCH.MAMBA: "mamba",
  197. MODEL_ARCH.XVERSE: "xverse",
  198. MODEL_ARCH.COMMAND_R: "command-r",
  199. MODEL_ARCH.DBRX: "dbrx",
  200. MODEL_ARCH.OLMO: "olmo",
  201. }
  202. TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
  203. MODEL_TENSOR.TOKEN_EMBD: "token_embd",
  204. MODEL_TENSOR.TOKEN_EMBD_NORM: "token_embd_norm",
  205. MODEL_TENSOR.TOKEN_TYPES: "token_types",
  206. MODEL_TENSOR.POS_EMBD: "position_embd",
  207. MODEL_TENSOR.OUTPUT_NORM: "output_norm",
  208. MODEL_TENSOR.OUTPUT: "output",
  209. MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
  210. MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
  211. MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
  212. MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
  213. MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
  214. MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
  215. MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
  216. MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
  217. MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
  218. MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
  219. MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
  220. MODEL_TENSOR.ATTN_OUT_NORM: "blk.{bid}.attn_output_norm",
  221. MODEL_TENSOR.FFN_GATE_INP: "blk.{bid}.ffn_gate_inp",
  222. MODEL_TENSOR.FFN_GATE_INP_SHEXP: "blk.{bid}.ffn_gate_inp_shexp",
  223. MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
  224. MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
  225. MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
  226. MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
  227. MODEL_TENSOR.FFN_GATE_SHEXP: "blk.{bid}.ffn_gate_shexp",
  228. MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
  229. MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
  230. MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
  231. MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
  232. MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
  233. MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
  234. MODEL_TENSOR.LAYER_OUT_NORM: "blk.{bid}.layer_output_norm",
  235. MODEL_TENSOR.SSM_IN: "blk.{bid}.ssm_in",
  236. MODEL_TENSOR.SSM_CONV1D: "blk.{bid}.ssm_conv1d",
  237. MODEL_TENSOR.SSM_X: "blk.{bid}.ssm_x",
  238. MODEL_TENSOR.SSM_DT: "blk.{bid}.ssm_dt",
  239. MODEL_TENSOR.SSM_A: "blk.{bid}.ssm_a",
  240. MODEL_TENSOR.SSM_D: "blk.{bid}.ssm_d",
  241. MODEL_TENSOR.SSM_OUT: "blk.{bid}.ssm_out",
  242. }
  243. MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  244. MODEL_ARCH.LLAMA: [
  245. MODEL_TENSOR.TOKEN_EMBD,
  246. MODEL_TENSOR.OUTPUT_NORM,
  247. MODEL_TENSOR.OUTPUT,
  248. MODEL_TENSOR.ROPE_FREQS,
  249. MODEL_TENSOR.ATTN_NORM,
  250. MODEL_TENSOR.ATTN_Q,
  251. MODEL_TENSOR.ATTN_K,
  252. MODEL_TENSOR.ATTN_V,
  253. MODEL_TENSOR.ATTN_OUT,
  254. MODEL_TENSOR.ATTN_ROT_EMBD,
  255. MODEL_TENSOR.FFN_GATE_INP,
  256. MODEL_TENSOR.FFN_NORM,
  257. MODEL_TENSOR.FFN_GATE,
  258. MODEL_TENSOR.FFN_DOWN,
  259. MODEL_TENSOR.FFN_UP,
  260. MODEL_TENSOR.FFN_GATE_EXP,
  261. MODEL_TENSOR.FFN_DOWN_EXP,
  262. MODEL_TENSOR.FFN_UP_EXP,
  263. ],
  264. MODEL_ARCH.GROK: [
  265. MODEL_TENSOR.TOKEN_EMBD,
  266. MODEL_TENSOR.OUTPUT_NORM,
  267. MODEL_TENSOR.OUTPUT,
  268. MODEL_TENSOR.ROPE_FREQS,
  269. MODEL_TENSOR.ATTN_NORM,
  270. MODEL_TENSOR.ATTN_Q,
  271. MODEL_TENSOR.ATTN_K,
  272. MODEL_TENSOR.ATTN_V,
  273. MODEL_TENSOR.ATTN_OUT,
  274. MODEL_TENSOR.ATTN_ROT_EMBD,
  275. MODEL_TENSOR.ATTN_OUT_NORM,
  276. MODEL_TENSOR.FFN_GATE_INP,
  277. MODEL_TENSOR.FFN_NORM,
  278. MODEL_TENSOR.FFN_GATE,
  279. MODEL_TENSOR.FFN_DOWN,
  280. MODEL_TENSOR.FFN_UP,
  281. MODEL_TENSOR.FFN_GATE_EXP,
  282. MODEL_TENSOR.FFN_DOWN_EXP,
  283. MODEL_TENSOR.FFN_UP_EXP,
  284. MODEL_TENSOR.LAYER_OUT_NORM,
  285. ],
  286. MODEL_ARCH.GPTNEOX: [
  287. MODEL_TENSOR.TOKEN_EMBD,
  288. MODEL_TENSOR.OUTPUT_NORM,
  289. MODEL_TENSOR.OUTPUT,
  290. MODEL_TENSOR.ATTN_NORM,
  291. MODEL_TENSOR.ATTN_QKV,
  292. MODEL_TENSOR.ATTN_OUT,
  293. MODEL_TENSOR.FFN_NORM,
  294. MODEL_TENSOR.FFN_DOWN,
  295. MODEL_TENSOR.FFN_UP,
  296. ],
  297. MODEL_ARCH.FALCON: [
  298. MODEL_TENSOR.TOKEN_EMBD,
  299. MODEL_TENSOR.OUTPUT_NORM,
  300. MODEL_TENSOR.OUTPUT,
  301. MODEL_TENSOR.ATTN_NORM,
  302. MODEL_TENSOR.ATTN_NORM_2,
  303. MODEL_TENSOR.ATTN_QKV,
  304. MODEL_TENSOR.ATTN_OUT,
  305. MODEL_TENSOR.FFN_DOWN,
  306. MODEL_TENSOR.FFN_UP,
  307. ],
  308. MODEL_ARCH.BAICHUAN: [
  309. MODEL_TENSOR.TOKEN_EMBD,
  310. MODEL_TENSOR.OUTPUT_NORM,
  311. MODEL_TENSOR.OUTPUT,
  312. MODEL_TENSOR.ROPE_FREQS,
  313. MODEL_TENSOR.ATTN_NORM,
  314. MODEL_TENSOR.ATTN_Q,
  315. MODEL_TENSOR.ATTN_K,
  316. MODEL_TENSOR.ATTN_V,
  317. MODEL_TENSOR.ATTN_OUT,
  318. MODEL_TENSOR.ATTN_ROT_EMBD,
  319. MODEL_TENSOR.FFN_NORM,
  320. MODEL_TENSOR.FFN_GATE,
  321. MODEL_TENSOR.FFN_DOWN,
  322. MODEL_TENSOR.FFN_UP,
  323. ],
  324. MODEL_ARCH.STARCODER: [
  325. MODEL_TENSOR.TOKEN_EMBD,
  326. MODEL_TENSOR.POS_EMBD,
  327. MODEL_TENSOR.OUTPUT_NORM,
  328. MODEL_TENSOR.OUTPUT,
  329. MODEL_TENSOR.ATTN_NORM,
  330. MODEL_TENSOR.ATTN_QKV,
  331. MODEL_TENSOR.ATTN_OUT,
  332. MODEL_TENSOR.FFN_NORM,
  333. MODEL_TENSOR.FFN_DOWN,
  334. MODEL_TENSOR.FFN_UP,
  335. ],
  336. MODEL_ARCH.BERT: [
  337. MODEL_TENSOR.TOKEN_EMBD,
  338. MODEL_TENSOR.TOKEN_EMBD_NORM,
  339. MODEL_TENSOR.TOKEN_TYPES,
  340. MODEL_TENSOR.POS_EMBD,
  341. MODEL_TENSOR.OUTPUT_NORM,
  342. MODEL_TENSOR.ATTN_OUT_NORM,
  343. MODEL_TENSOR.ATTN_Q,
  344. MODEL_TENSOR.ATTN_K,
  345. MODEL_TENSOR.ATTN_V,
  346. MODEL_TENSOR.ATTN_OUT,
  347. MODEL_TENSOR.FFN_DOWN,
  348. MODEL_TENSOR.FFN_UP,
  349. MODEL_TENSOR.LAYER_OUT_NORM,
  350. ],
  351. MODEL_ARCH.NOMIC_BERT: [
  352. MODEL_TENSOR.TOKEN_EMBD,
  353. MODEL_TENSOR.TOKEN_EMBD_NORM,
  354. MODEL_TENSOR.TOKEN_TYPES,
  355. MODEL_TENSOR.POS_EMBD,
  356. MODEL_TENSOR.OUTPUT_NORM,
  357. MODEL_TENSOR.ATTN_OUT_NORM,
  358. MODEL_TENSOR.ATTN_QKV,
  359. MODEL_TENSOR.ATTN_OUT,
  360. MODEL_TENSOR.FFN_GATE,
  361. MODEL_TENSOR.FFN_DOWN,
  362. MODEL_TENSOR.FFN_UP,
  363. MODEL_TENSOR.LAYER_OUT_NORM,
  364. ],
  365. MODEL_ARCH.JINA_BERT_V2: [
  366. MODEL_TENSOR.TOKEN_EMBD,
  367. MODEL_TENSOR.TOKEN_EMBD_NORM,
  368. MODEL_TENSOR.TOKEN_TYPES,
  369. MODEL_TENSOR.ATTN_OUT_NORM,
  370. MODEL_TENSOR.ATTN_Q,
  371. MODEL_TENSOR.ATTN_Q_NORM,
  372. MODEL_TENSOR.ATTN_K,
  373. MODEL_TENSOR.ATTN_K_NORM,
  374. MODEL_TENSOR.ATTN_V,
  375. MODEL_TENSOR.ATTN_OUT,
  376. MODEL_TENSOR.FFN_UP,
  377. MODEL_TENSOR.FFN_GATE,
  378. MODEL_TENSOR.FFN_DOWN,
  379. MODEL_TENSOR.LAYER_OUT_NORM,
  380. ],
  381. MODEL_ARCH.MPT: [
  382. MODEL_TENSOR.TOKEN_EMBD,
  383. MODEL_TENSOR.OUTPUT_NORM,
  384. MODEL_TENSOR.OUTPUT,
  385. MODEL_TENSOR.ATTN_NORM,
  386. MODEL_TENSOR.ATTN_QKV,
  387. MODEL_TENSOR.ATTN_OUT,
  388. MODEL_TENSOR.FFN_NORM,
  389. MODEL_TENSOR.FFN_DOWN,
  390. MODEL_TENSOR.FFN_UP,
  391. MODEL_TENSOR.FFN_ACT,
  392. MODEL_TENSOR.ATTN_Q_NORM,
  393. MODEL_TENSOR.ATTN_K_NORM,
  394. MODEL_TENSOR.POS_EMBD,
  395. ],
  396. MODEL_ARCH.GPTJ: [
  397. MODEL_TENSOR.TOKEN_EMBD,
  398. MODEL_TENSOR.OUTPUT_NORM,
  399. MODEL_TENSOR.OUTPUT,
  400. MODEL_TENSOR.ATTN_NORM,
  401. MODEL_TENSOR.ATTN_Q,
  402. MODEL_TENSOR.ATTN_K,
  403. MODEL_TENSOR.ATTN_V,
  404. MODEL_TENSOR.ATTN_OUT,
  405. MODEL_TENSOR.FFN_DOWN,
  406. MODEL_TENSOR.FFN_UP,
  407. ],
  408. MODEL_ARCH.PERSIMMON: [
  409. MODEL_TENSOR.TOKEN_EMBD,
  410. MODEL_TENSOR.OUTPUT,
  411. MODEL_TENSOR.OUTPUT_NORM,
  412. MODEL_TENSOR.ATTN_NORM,
  413. MODEL_TENSOR.ATTN_QKV,
  414. MODEL_TENSOR.ATTN_OUT,
  415. MODEL_TENSOR.FFN_NORM,
  416. MODEL_TENSOR.FFN_DOWN,
  417. MODEL_TENSOR.FFN_UP,
  418. MODEL_TENSOR.ATTN_Q_NORM,
  419. MODEL_TENSOR.ATTN_K_NORM,
  420. MODEL_TENSOR.ATTN_ROT_EMBD,
  421. ],
  422. MODEL_ARCH.REFACT: [
  423. MODEL_TENSOR.TOKEN_EMBD,
  424. MODEL_TENSOR.OUTPUT_NORM,
  425. MODEL_TENSOR.OUTPUT,
  426. MODEL_TENSOR.ATTN_NORM,
  427. MODEL_TENSOR.ATTN_Q,
  428. MODEL_TENSOR.ATTN_K,
  429. MODEL_TENSOR.ATTN_V,
  430. MODEL_TENSOR.ATTN_OUT,
  431. MODEL_TENSOR.FFN_NORM,
  432. MODEL_TENSOR.FFN_GATE,
  433. MODEL_TENSOR.FFN_DOWN,
  434. MODEL_TENSOR.FFN_UP,
  435. ],
  436. MODEL_ARCH.BLOOM: [
  437. MODEL_TENSOR.TOKEN_EMBD,
  438. MODEL_TENSOR.TOKEN_EMBD_NORM,
  439. MODEL_TENSOR.OUTPUT_NORM,
  440. MODEL_TENSOR.OUTPUT,
  441. MODEL_TENSOR.ATTN_NORM,
  442. MODEL_TENSOR.ATTN_QKV,
  443. MODEL_TENSOR.ATTN_OUT,
  444. MODEL_TENSOR.FFN_NORM,
  445. MODEL_TENSOR.FFN_DOWN,
  446. MODEL_TENSOR.FFN_UP,
  447. ],
  448. MODEL_ARCH.STABLELM: [
  449. MODEL_TENSOR.TOKEN_EMBD,
  450. MODEL_TENSOR.OUTPUT_NORM,
  451. MODEL_TENSOR.OUTPUT,
  452. MODEL_TENSOR.ROPE_FREQS,
  453. MODEL_TENSOR.ATTN_NORM,
  454. MODEL_TENSOR.ATTN_Q,
  455. MODEL_TENSOR.ATTN_K,
  456. MODEL_TENSOR.ATTN_V,
  457. MODEL_TENSOR.ATTN_OUT,
  458. MODEL_TENSOR.FFN_NORM,
  459. MODEL_TENSOR.FFN_GATE,
  460. MODEL_TENSOR.FFN_DOWN,
  461. MODEL_TENSOR.FFN_UP,
  462. MODEL_TENSOR.ATTN_Q_NORM,
  463. MODEL_TENSOR.ATTN_K_NORM,
  464. ],
  465. MODEL_ARCH.QWEN: [
  466. MODEL_TENSOR.TOKEN_EMBD,
  467. MODEL_TENSOR.OUTPUT_NORM,
  468. MODEL_TENSOR.OUTPUT,
  469. MODEL_TENSOR.ROPE_FREQS,
  470. MODEL_TENSOR.ATTN_NORM,
  471. MODEL_TENSOR.ATTN_QKV,
  472. MODEL_TENSOR.ATTN_OUT,
  473. MODEL_TENSOR.ATTN_ROT_EMBD,
  474. MODEL_TENSOR.FFN_NORM,
  475. MODEL_TENSOR.FFN_GATE,
  476. MODEL_TENSOR.FFN_DOWN,
  477. MODEL_TENSOR.FFN_UP,
  478. ],
  479. MODEL_ARCH.QWEN2: [
  480. MODEL_TENSOR.TOKEN_EMBD,
  481. MODEL_TENSOR.OUTPUT_NORM,
  482. MODEL_TENSOR.OUTPUT,
  483. MODEL_TENSOR.ATTN_NORM,
  484. MODEL_TENSOR.ATTN_Q,
  485. MODEL_TENSOR.ATTN_K,
  486. MODEL_TENSOR.ATTN_V,
  487. MODEL_TENSOR.ATTN_OUT,
  488. MODEL_TENSOR.FFN_NORM,
  489. MODEL_TENSOR.FFN_GATE,
  490. MODEL_TENSOR.FFN_DOWN,
  491. MODEL_TENSOR.FFN_UP,
  492. ],
  493. MODEL_ARCH.QWEN2MOE: [
  494. MODEL_TENSOR.TOKEN_EMBD,
  495. MODEL_TENSOR.OUTPUT_NORM,
  496. MODEL_TENSOR.OUTPUT,
  497. MODEL_TENSOR.ATTN_NORM,
  498. MODEL_TENSOR.ATTN_Q,
  499. MODEL_TENSOR.ATTN_K,
  500. MODEL_TENSOR.ATTN_V,
  501. MODEL_TENSOR.ATTN_OUT,
  502. MODEL_TENSOR.FFN_NORM,
  503. MODEL_TENSOR.FFN_GATE_INP,
  504. MODEL_TENSOR.FFN_GATE_EXP,
  505. MODEL_TENSOR.FFN_DOWN_EXP,
  506. MODEL_TENSOR.FFN_UP_EXP,
  507. MODEL_TENSOR.FFN_GATE_INP_SHEXP,
  508. MODEL_TENSOR.FFN_GATE_SHEXP,
  509. MODEL_TENSOR.FFN_DOWN_SHEXP,
  510. MODEL_TENSOR.FFN_UP_SHEXP,
  511. ],
  512. MODEL_ARCH.PLAMO: [
  513. MODEL_TENSOR.TOKEN_EMBD,
  514. MODEL_TENSOR.OUTPUT_NORM,
  515. MODEL_TENSOR.OUTPUT,
  516. MODEL_TENSOR.ROPE_FREQS,
  517. MODEL_TENSOR.ATTN_NORM,
  518. MODEL_TENSOR.ATTN_Q,
  519. MODEL_TENSOR.ATTN_K,
  520. MODEL_TENSOR.ATTN_V,
  521. MODEL_TENSOR.ATTN_OUT,
  522. MODEL_TENSOR.ATTN_ROT_EMBD,
  523. MODEL_TENSOR.FFN_GATE,
  524. MODEL_TENSOR.FFN_DOWN,
  525. MODEL_TENSOR.FFN_UP,
  526. ],
  527. MODEL_ARCH.GPT2: [
  528. MODEL_TENSOR.TOKEN_EMBD,
  529. MODEL_TENSOR.POS_EMBD,
  530. MODEL_TENSOR.OUTPUT_NORM,
  531. MODEL_TENSOR.OUTPUT,
  532. MODEL_TENSOR.ATTN_NORM,
  533. MODEL_TENSOR.ATTN_QKV,
  534. MODEL_TENSOR.ATTN_OUT,
  535. MODEL_TENSOR.FFN_NORM,
  536. MODEL_TENSOR.FFN_DOWN,
  537. MODEL_TENSOR.FFN_UP,
  538. ],
  539. MODEL_ARCH.PHI2: [
  540. MODEL_TENSOR.TOKEN_EMBD,
  541. MODEL_TENSOR.OUTPUT_NORM,
  542. MODEL_TENSOR.OUTPUT,
  543. MODEL_TENSOR.ATTN_NORM,
  544. MODEL_TENSOR.ATTN_QKV,
  545. MODEL_TENSOR.ATTN_Q,
  546. MODEL_TENSOR.ATTN_K,
  547. MODEL_TENSOR.ATTN_V,
  548. MODEL_TENSOR.ATTN_OUT,
  549. MODEL_TENSOR.FFN_NORM,
  550. MODEL_TENSOR.FFN_DOWN,
  551. MODEL_TENSOR.FFN_UP,
  552. ],
  553. MODEL_ARCH.PHI3: [
  554. MODEL_TENSOR.TOKEN_EMBD,
  555. MODEL_TENSOR.OUTPUT_NORM,
  556. MODEL_TENSOR.OUTPUT,
  557. MODEL_TENSOR.ATTN_NORM,
  558. MODEL_TENSOR.ATTN_QKV,
  559. MODEL_TENSOR.ATTN_Q,
  560. MODEL_TENSOR.ATTN_K,
  561. MODEL_TENSOR.ATTN_V,
  562. MODEL_TENSOR.ATTN_OUT,
  563. MODEL_TENSOR.FFN_NORM,
  564. MODEL_TENSOR.FFN_DOWN,
  565. MODEL_TENSOR.FFN_UP,
  566. ],
  567. MODEL_ARCH.CODESHELL: [
  568. MODEL_TENSOR.TOKEN_EMBD,
  569. MODEL_TENSOR.POS_EMBD,
  570. MODEL_TENSOR.OUTPUT_NORM,
  571. MODEL_TENSOR.OUTPUT,
  572. MODEL_TENSOR.ATTN_NORM,
  573. MODEL_TENSOR.ATTN_QKV,
  574. MODEL_TENSOR.ATTN_OUT,
  575. MODEL_TENSOR.ATTN_ROT_EMBD,
  576. MODEL_TENSOR.FFN_NORM,
  577. MODEL_TENSOR.FFN_DOWN,
  578. MODEL_TENSOR.FFN_UP,
  579. ],
  580. MODEL_ARCH.ORION: [
  581. MODEL_TENSOR.TOKEN_EMBD,
  582. MODEL_TENSOR.OUTPUT_NORM,
  583. MODEL_TENSOR.OUTPUT,
  584. MODEL_TENSOR.ROPE_FREQS,
  585. MODEL_TENSOR.ATTN_NORM,
  586. MODEL_TENSOR.ATTN_Q,
  587. MODEL_TENSOR.ATTN_K,
  588. MODEL_TENSOR.ATTN_V,
  589. MODEL_TENSOR.ATTN_OUT,
  590. MODEL_TENSOR.ATTN_ROT_EMBD,
  591. MODEL_TENSOR.FFN_NORM,
  592. MODEL_TENSOR.FFN_GATE,
  593. MODEL_TENSOR.FFN_DOWN,
  594. MODEL_TENSOR.FFN_UP,
  595. ],
  596. MODEL_ARCH.INTERNLM2: [
  597. MODEL_TENSOR.TOKEN_EMBD,
  598. MODEL_TENSOR.OUTPUT_NORM,
  599. MODEL_TENSOR.OUTPUT,
  600. MODEL_TENSOR.ATTN_NORM,
  601. MODEL_TENSOR.ATTN_Q,
  602. MODEL_TENSOR.ATTN_K,
  603. MODEL_TENSOR.ATTN_V,
  604. MODEL_TENSOR.ATTN_OUT,
  605. MODEL_TENSOR.ATTN_ROT_EMBD,
  606. MODEL_TENSOR.FFN_NORM,
  607. MODEL_TENSOR.FFN_GATE,
  608. MODEL_TENSOR.FFN_DOWN,
  609. MODEL_TENSOR.FFN_UP,
  610. ],
  611. MODEL_ARCH.MINICPM: [
  612. MODEL_TENSOR.TOKEN_EMBD,
  613. MODEL_TENSOR.OUTPUT_NORM,
  614. MODEL_TENSOR.ROPE_FREQS,
  615. MODEL_TENSOR.ATTN_NORM,
  616. MODEL_TENSOR.ATTN_Q,
  617. MODEL_TENSOR.ATTN_K,
  618. MODEL_TENSOR.ATTN_V,
  619. MODEL_TENSOR.ATTN_OUT,
  620. MODEL_TENSOR.ATTN_ROT_EMBD,
  621. MODEL_TENSOR.FFN_GATE_INP,
  622. MODEL_TENSOR.FFN_NORM,
  623. MODEL_TENSOR.FFN_GATE,
  624. MODEL_TENSOR.FFN_DOWN,
  625. MODEL_TENSOR.FFN_UP,
  626. MODEL_TENSOR.FFN_GATE_EXP,
  627. MODEL_TENSOR.FFN_DOWN_EXP,
  628. MODEL_TENSOR.FFN_UP_EXP,
  629. ],
  630. MODEL_ARCH.GEMMA: [
  631. MODEL_TENSOR.TOKEN_EMBD,
  632. MODEL_TENSOR.OUTPUT_NORM,
  633. MODEL_TENSOR.ATTN_NORM,
  634. MODEL_TENSOR.ATTN_Q,
  635. MODEL_TENSOR.ATTN_K,
  636. MODEL_TENSOR.ATTN_V,
  637. MODEL_TENSOR.ATTN_OUT,
  638. MODEL_TENSOR.FFN_GATE,
  639. MODEL_TENSOR.FFN_DOWN,
  640. MODEL_TENSOR.FFN_UP,
  641. MODEL_TENSOR.FFN_NORM,
  642. ],
  643. MODEL_ARCH.STARCODER2: [
  644. MODEL_TENSOR.TOKEN_EMBD,
  645. MODEL_TENSOR.OUTPUT_NORM,
  646. MODEL_TENSOR.OUTPUT,
  647. MODEL_TENSOR.ROPE_FREQS,
  648. MODEL_TENSOR.ATTN_NORM,
  649. MODEL_TENSOR.ATTN_Q,
  650. MODEL_TENSOR.ATTN_K,
  651. MODEL_TENSOR.ATTN_V,
  652. MODEL_TENSOR.ATTN_OUT,
  653. MODEL_TENSOR.ATTN_ROT_EMBD,
  654. MODEL_TENSOR.FFN_NORM,
  655. MODEL_TENSOR.FFN_DOWN,
  656. MODEL_TENSOR.FFN_UP,
  657. ],
  658. MODEL_ARCH.MAMBA: [
  659. MODEL_TENSOR.TOKEN_EMBD,
  660. MODEL_TENSOR.OUTPUT_NORM,
  661. MODEL_TENSOR.OUTPUT,
  662. MODEL_TENSOR.ATTN_NORM,
  663. MODEL_TENSOR.SSM_IN,
  664. MODEL_TENSOR.SSM_CONV1D,
  665. MODEL_TENSOR.SSM_X,
  666. MODEL_TENSOR.SSM_DT,
  667. MODEL_TENSOR.SSM_A,
  668. MODEL_TENSOR.SSM_D,
  669. MODEL_TENSOR.SSM_OUT,
  670. ],
  671. MODEL_ARCH.XVERSE: [
  672. MODEL_TENSOR.TOKEN_EMBD,
  673. MODEL_TENSOR.OUTPUT_NORM,
  674. MODEL_TENSOR.OUTPUT,
  675. MODEL_TENSOR.ROPE_FREQS,
  676. MODEL_TENSOR.ATTN_NORM,
  677. MODEL_TENSOR.ATTN_Q,
  678. MODEL_TENSOR.ATTN_K,
  679. MODEL_TENSOR.ATTN_V,
  680. MODEL_TENSOR.ATTN_OUT,
  681. MODEL_TENSOR.ATTN_ROT_EMBD,
  682. MODEL_TENSOR.FFN_NORM,
  683. MODEL_TENSOR.FFN_GATE,
  684. MODEL_TENSOR.FFN_DOWN,
  685. MODEL_TENSOR.FFN_UP,
  686. ],
  687. MODEL_ARCH.COMMAND_R: [
  688. MODEL_TENSOR.TOKEN_EMBD,
  689. MODEL_TENSOR.OUTPUT_NORM,
  690. MODEL_TENSOR.ATTN_NORM,
  691. MODEL_TENSOR.ATTN_Q,
  692. MODEL_TENSOR.ATTN_K,
  693. MODEL_TENSOR.ATTN_V,
  694. MODEL_TENSOR.ATTN_OUT,
  695. MODEL_TENSOR.FFN_GATE,
  696. MODEL_TENSOR.FFN_DOWN,
  697. MODEL_TENSOR.FFN_UP,
  698. MODEL_TENSOR.ATTN_K_NORM,
  699. MODEL_TENSOR.ATTN_Q_NORM,
  700. ],
  701. MODEL_ARCH.DBRX: [
  702. MODEL_TENSOR.TOKEN_EMBD,
  703. MODEL_TENSOR.OUTPUT_NORM,
  704. MODEL_TENSOR.OUTPUT,
  705. MODEL_TENSOR.ATTN_NORM,
  706. MODEL_TENSOR.ATTN_QKV,
  707. MODEL_TENSOR.ATTN_OUT,
  708. MODEL_TENSOR.ATTN_OUT_NORM,
  709. MODEL_TENSOR.FFN_GATE_INP,
  710. MODEL_TENSOR.FFN_GATE_EXP,
  711. MODEL_TENSOR.FFN_DOWN_EXP,
  712. MODEL_TENSOR.FFN_UP_EXP,
  713. ],
  714. MODEL_ARCH.OLMO: [
  715. MODEL_TENSOR.TOKEN_EMBD,
  716. MODEL_TENSOR.OUTPUT,
  717. MODEL_TENSOR.ATTN_Q,
  718. MODEL_TENSOR.ATTN_K,
  719. MODEL_TENSOR.ATTN_V,
  720. MODEL_TENSOR.ATTN_OUT,
  721. MODEL_TENSOR.FFN_GATE,
  722. MODEL_TENSOR.FFN_DOWN,
  723. MODEL_TENSOR.FFN_UP,
  724. ],
  725. # TODO
  726. }
  727. # tensors that will not be serialized
  728. MODEL_TENSOR_SKIP: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
  729. MODEL_ARCH.LLAMA: [
  730. MODEL_TENSOR.ROPE_FREQS,
  731. MODEL_TENSOR.ATTN_ROT_EMBD,
  732. ],
  733. MODEL_ARCH.BAICHUAN: [
  734. MODEL_TENSOR.ROPE_FREQS,
  735. MODEL_TENSOR.ATTN_ROT_EMBD,
  736. ],
  737. MODEL_ARCH.PERSIMMON: [
  738. MODEL_TENSOR.ROPE_FREQS,
  739. ],
  740. MODEL_ARCH.QWEN: [
  741. MODEL_TENSOR.ROPE_FREQS,
  742. MODEL_TENSOR.ATTN_ROT_EMBD,
  743. ],
  744. MODEL_ARCH.CODESHELL: [
  745. MODEL_TENSOR.ROPE_FREQS,
  746. MODEL_TENSOR.ATTN_ROT_EMBD,
  747. ],
  748. MODEL_ARCH.ORION: [
  749. MODEL_TENSOR.ROPE_FREQS,
  750. MODEL_TENSOR.ATTN_ROT_EMBD,
  751. ],
  752. MODEL_ARCH.STARCODER2: [
  753. MODEL_TENSOR.ROPE_FREQS,
  754. MODEL_TENSOR.ATTN_ROT_EMBD,
  755. ],
  756. MODEL_ARCH.XVERSE: [
  757. MODEL_TENSOR.ROPE_FREQS,
  758. MODEL_TENSOR.ATTN_ROT_EMBD,
  759. ],
  760. }
  761. #
  762. # types
  763. #
  764. class TokenType(IntEnum):
  765. NORMAL = 1
  766. UNKNOWN = 2
  767. CONTROL = 3
  768. USER_DEFINED = 4
  769. UNUSED = 5
  770. BYTE = 6
  771. class RopeScalingType(Enum):
  772. NONE = 'none'
  773. LINEAR = 'linear'
  774. YARN = 'yarn'
  775. class PoolingType(IntEnum):
  776. NONE = 0
  777. MEAN = 1
  778. CLS = 2
  779. class GGMLQuantizationType(IntEnum):
  780. F32 = 0
  781. F16 = 1
  782. Q4_0 = 2
  783. Q4_1 = 3
  784. Q5_0 = 6
  785. Q5_1 = 7
  786. Q8_0 = 8
  787. Q8_1 = 9
  788. Q2_K = 10
  789. Q3_K = 11
  790. Q4_K = 12
  791. Q5_K = 13
  792. Q6_K = 14
  793. Q8_K = 15
  794. IQ2_XXS = 16
  795. IQ2_XS = 17
  796. IQ3_XXS = 18
  797. IQ1_S = 19
  798. IQ4_NL = 20
  799. IQ3_S = 21
  800. IQ2_S = 22
  801. IQ4_XS = 23
  802. I8 = 24
  803. I16 = 25
  804. I32 = 26
  805. I64 = 27
  806. F64 = 28
  807. IQ1_M = 29
  808. BF16 = 30
  809. # TODO: add GGMLFileType from ggml_ftype in ggml.h
  810. # from llama_ftype in llama.h
  811. # ALL VALUES SHOULD BE THE SAME HERE AS THEY ARE OVER THERE.
  812. class LlamaFileType(IntEnum):
  813. ALL_F32 = 0
  814. MOSTLY_F16 = 1 # except 1d tensors
  815. MOSTLY_Q4_0 = 2 # except 1d tensors
  816. MOSTLY_Q4_1 = 3 # except 1d tensors
  817. MOSTLY_Q4_1_SOME_F16 = 4 # tok_embeddings.weight and output.weight are F16
  818. # MOSTLY_Q4_2 = 5 # support has been removed
  819. # MOSTLY_Q4_3 = 6 # support has been removed
  820. MOSTLY_Q8_0 = 7 # except 1d tensors
  821. MOSTLY_Q5_0 = 8 # except 1d tensors
  822. MOSTLY_Q5_1 = 9 # except 1d tensors
  823. MOSTLY_Q2_K = 10 # except 1d tensors
  824. MOSTLY_Q3_K_S = 11 # except 1d tensors
  825. MOSTLY_Q3_K_M = 12 # except 1d tensors
  826. MOSTLY_Q3_K_L = 13 # except 1d tensors
  827. MOSTLY_Q4_K_S = 14 # except 1d tensors
  828. MOSTLY_Q4_K_M = 15 # except 1d tensors
  829. MOSTLY_Q5_K_S = 16 # except 1d tensors
  830. MOSTLY_Q5_K_M = 17 # except 1d tensors
  831. MOSTLY_Q6_K = 18 # except 1d tensors
  832. MOSTLY_IQ2_XXS = 19 # except 1d tensors
  833. MOSTLY_IQ2_XS = 20 # except 1d tensors
  834. MOSTLY_Q2_K_S = 21 # except 1d tensors
  835. MOSTLY_IQ3_XS = 22 # except 1d tensors
  836. MOSTLY_IQ3_XXS = 23 # except 1d tensors
  837. MOSTLY_IQ1_S = 24 # except 1d tensors
  838. MOSTLY_IQ4_NL = 25 # except 1d tensors
  839. MOSTLY_IQ3_S = 26 # except 1d tensors
  840. MOSTLY_IQ3_M = 27 # except 1d tensors
  841. MOSTLY_IQ2_S = 28 # except 1d tensors
  842. MOSTLY_IQ2_M = 29 # except 1d tensors
  843. MOSTLY_IQ4_XS = 30 # except 1d tensors
  844. MOSTLY_IQ1_M = 31 # except 1d tensors
  845. MOSTLY_BF16 = 32 # except 1d tensors
  846. GUESSED = 1024 # not specified in the model file
  847. class GGUFEndian(IntEnum):
  848. LITTLE = 0
  849. BIG = 1
  850. class GGUFValueType(IntEnum):
  851. UINT8 = 0
  852. INT8 = 1
  853. UINT16 = 2
  854. INT16 = 3
  855. UINT32 = 4
  856. INT32 = 5
  857. FLOAT32 = 6
  858. BOOL = 7
  859. STRING = 8
  860. ARRAY = 9
  861. UINT64 = 10
  862. INT64 = 11
  863. FLOAT64 = 12
  864. @staticmethod
  865. def get_type(val: Any) -> GGUFValueType:
  866. if isinstance(val, (str, bytes, bytearray)):
  867. return GGUFValueType.STRING
  868. elif isinstance(val, list):
  869. return GGUFValueType.ARRAY
  870. elif isinstance(val, float):
  871. return GGUFValueType.FLOAT32
  872. elif isinstance(val, bool):
  873. return GGUFValueType.BOOL
  874. elif isinstance(val, int):
  875. return GGUFValueType.INT32
  876. # TODO: need help with 64-bit types in Python
  877. else:
  878. raise ValueError(f"Unknown type: {type(val)}")
  879. # Note: Does not support GGML_QKK_64
  880. QK_K = 256
  881. # Items here are (block size, type size)
  882. GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
  883. GGMLQuantizationType.F32: (1, 4),
  884. GGMLQuantizationType.F16: (1, 2),
  885. GGMLQuantizationType.Q4_0: (32, 2 + 16),
  886. GGMLQuantizationType.Q4_1: (32, 2 + 2 + 16),
  887. GGMLQuantizationType.Q5_0: (32, 2 + 4 + 16),
  888. GGMLQuantizationType.Q5_1: (32, 2 + 2 + 4 + 16),
  889. GGMLQuantizationType.Q8_0: (32, 2 + 32),
  890. GGMLQuantizationType.Q8_1: (32, 4 + 4 + 32),
  891. GGMLQuantizationType.Q2_K: (256, 2 + 2 + QK_K // 16 + QK_K // 4),
  892. GGMLQuantizationType.Q3_K: (256, 2 + QK_K // 4 + QK_K // 8 + 12),
  893. GGMLQuantizationType.Q4_K: (256, 2 + 2 + QK_K // 2 + 12),
  894. GGMLQuantizationType.Q5_K: (256, 2 + 2 + QK_K // 2 + QK_K // 8 + 12),
  895. GGMLQuantizationType.Q6_K: (256, 2 + QK_K // 2 + QK_K // 4 + QK_K // 16),
  896. GGMLQuantizationType.Q8_K: (256, 4 + QK_K + QK_K // 8),
  897. GGMLQuantizationType.IQ2_XXS: (256, 2 + QK_K // 4),
  898. GGMLQuantizationType.IQ2_XS: (256, 2 + QK_K // 4 + QK_K // 32),
  899. GGMLQuantizationType.IQ3_XXS: (256, 2 + QK_K // 4 + QK_K // 8),
  900. GGMLQuantizationType.IQ1_S: (256, 2 + QK_K // 8 + QK_K // 16),
  901. GGMLQuantizationType.IQ4_NL: (32, 2 + 16),
  902. GGMLQuantizationType.IQ3_S: (256, 2 + QK_K // 4 + QK_K // 8 + QK_K // 32 + 4),
  903. GGMLQuantizationType.IQ2_S: (256, 2 + QK_K // 4 + QK_K // 16),
  904. GGMLQuantizationType.IQ4_XS: (256, 2 + 2 + QK_K // 2 + QK_K // 64),
  905. GGMLQuantizationType.I8: (1, 1),
  906. GGMLQuantizationType.I16: (1, 2),
  907. GGMLQuantizationType.I32: (1, 4),
  908. GGMLQuantizationType.I64: (1, 8),
  909. GGMLQuantizationType.F64: (1, 8),
  910. GGMLQuantizationType.IQ1_M: (256, QK_K // 8 + QK_K // 16 + QK_K // 32),
  911. GGMLQuantizationType.BF16: (1, 2),
  912. }
  913. # Aliases for backward compatibility.
  914. # general
  915. KEY_GENERAL_ARCHITECTURE = Keys.General.ARCHITECTURE
  916. KEY_GENERAL_QUANTIZATION_VERSION = Keys.General.QUANTIZATION_VERSION
  917. KEY_GENERAL_ALIGNMENT = Keys.General.ALIGNMENT
  918. KEY_GENERAL_NAME = Keys.General.NAME
  919. KEY_GENERAL_AUTHOR = Keys.General.AUTHOR
  920. KEY_GENERAL_URL = Keys.General.URL
  921. KEY_GENERAL_DESCRIPTION = Keys.General.DESCRIPTION
  922. KEY_GENERAL_LICENSE = Keys.General.LICENSE
  923. KEY_GENERAL_SOURCE_URL = Keys.General.SOURCE_URL
  924. KEY_GENERAL_SOURCE_HF_REPO = Keys.General.SOURCE_HF_REPO
  925. KEY_GENERAL_FILE_TYPE = Keys.General.FILE_TYPE
  926. # LLM
  927. KEY_VOCAB_SIZE = Keys.LLM.VOCAB_SIZE
  928. KEY_CONTEXT_LENGTH = Keys.LLM.CONTEXT_LENGTH
  929. KEY_EMBEDDING_LENGTH = Keys.LLM.EMBEDDING_LENGTH
  930. KEY_BLOCK_COUNT = Keys.LLM.BLOCK_COUNT
  931. KEY_FEED_FORWARD_LENGTH = Keys.LLM.FEED_FORWARD_LENGTH
  932. KEY_USE_PARALLEL_RESIDUAL = Keys.LLM.USE_PARALLEL_RESIDUAL
  933. KEY_TENSOR_DATA_LAYOUT = Keys.LLM.TENSOR_DATA_LAYOUT
  934. # attention
  935. KEY_ATTENTION_HEAD_COUNT = Keys.Attention.HEAD_COUNT
  936. KEY_ATTENTION_HEAD_COUNT_KV = Keys.Attention.HEAD_COUNT_KV
  937. KEY_ATTENTION_MAX_ALIBI_BIAS = Keys.Attention.MAX_ALIBI_BIAS
  938. KEY_ATTENTION_CLAMP_KQV = Keys.Attention.CLAMP_KQV
  939. KEY_ATTENTION_LAYERNORM_EPS = Keys.Attention.LAYERNORM_EPS
  940. KEY_ATTENTION_LAYERNORM_RMS_EPS = Keys.Attention.LAYERNORM_RMS_EPS
  941. # RoPE
  942. KEY_ROPE_DIMENSION_COUNT = Keys.Rope.DIMENSION_COUNT
  943. KEY_ROPE_FREQ_BASE = Keys.Rope.FREQ_BASE
  944. KEY_ROPE_SCALING_TYPE = Keys.Rope.SCALING_TYPE
  945. KEY_ROPE_SCALING_FACTOR = Keys.Rope.SCALING_FACTOR
  946. KEY_ROPE_SCALING_ORIG_CTX_LEN = Keys.Rope.SCALING_ORIG_CTX_LEN
  947. KEY_ROPE_SCALING_FINETUNED = Keys.Rope.SCALING_FINETUNED
  948. # SSM
  949. KEY_SSM_CONV_KERNEL = Keys.SSM.CONV_KERNEL
  950. KEY_SSM_INNER_SIZE = Keys.SSM.INNER_SIZE
  951. KEY_SSM_STATE_SIZE = Keys.SSM.STATE_SIZE
  952. KEY_SSM_TIME_STEP_RANK = Keys.SSM.TIME_STEP_RANK
  953. # tokenization
  954. KEY_TOKENIZER_MODEL = Keys.Tokenizer.MODEL
  955. KEY_TOKENIZER_PRE = Keys.Tokenizer.PRE
  956. KEY_TOKENIZER_LIST = Keys.Tokenizer.LIST
  957. KEY_TOKENIZER_TOKEN_TYPE = Keys.Tokenizer.TOKEN_TYPE
  958. KEY_TOKENIZER_SCORES = Keys.Tokenizer.SCORES
  959. KEY_TOKENIZER_MERGES = Keys.Tokenizer.MERGES
  960. KEY_TOKENIZER_BOS_ID = Keys.Tokenizer.BOS_ID
  961. KEY_TOKENIZER_EOS_ID = Keys.Tokenizer.EOS_ID
  962. KEY_TOKENIZER_UNK_ID = Keys.Tokenizer.UNK_ID
  963. KEY_TOKENIZER_SEP_ID = Keys.Tokenizer.SEP_ID
  964. KEY_TOKENIZER_PAD_ID = Keys.Tokenizer.PAD_ID
  965. KEY_TOKENIZER_CLS_ID = Keys.Tokenizer.CLS_ID
  966. KEY_TOKENIZER_MASK_ID = Keys.Tokenizer.MASK_ID
  967. KEY_TOKENIZER_HF_JSON = Keys.Tokenizer.HF_JSON
  968. KEY_TOKENIZER_RWKV = Keys.Tokenizer.RWKV
  969. KEY_TOKENIZER_PRIFIX_ID = Keys.Tokenizer.PREFIX_ID
  970. KEY_TOKENIZER_SUFFIX_ID = Keys.Tokenizer.SUFFIX_ID
  971. KEY_TOKENIZER_MIDDLE_ID = Keys.Tokenizer.MIDDLE_ID
  972. KEY_TOKENIZER_EOT_ID = Keys.Tokenizer.EOT_ID