| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305 |
- #include <sycl/sycl.hpp>
- #include "wkv.hpp"
- constexpr int WKV_BLOCK_SIZE = 64; // Matching CUDA_WKV_BLOCK_SIZE
- // Helper function for the main kernel
- template <int block_size>
- static void rwkv_wkv6_f32_kernel(
- const int B, const int T, const int C, const int H,
- const float* k, const float* v, const float* r,
- const float* tf, const float* td, const float* s,
- float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
- const int tid = item_ct1.get_local_id(2);
- const int bid = item_ct1.get_group(2);
- const int head_size = block_size;
- const int batch_i = bid / H;
- const int head_i = bid % H;
- const int state_size = C * head_size;
- const int n_seq_tokens = T / B;
- // Set up shared memory pointers
- float* _k = shared_mem;
- float* _r = _k + head_size;
- float* _tf = _r + head_size;
- float* _td = _tf + head_size;
- // Local state array
- float state[block_size];
- // Load initial state
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid];
- }
- // Sync threads before shared memory operations
- item_ct1.barrier(sycl::access::fence_space::local_space);
- // Load time-mixing parameters
- _tf[tid] = tf[head_i * head_size + tid];
- item_ct1.barrier(sycl::access::fence_space::local_space);
- // Main sequence processing loop
- for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
- t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
- t += C) {
- item_ct1.barrier(sycl::access::fence_space::local_space);
- // Load current timestep data to shared memory
- _k[tid] = k[t];
- _r[tid] = r[t];
- _td[tid] = td[t];
- item_ct1.barrier(sycl::access::fence_space::local_space);
- const float _v = v[t];
- float y = 0;
- // Process in chunks of 4 for better vectorization
- sycl::float4 k4, r4, tf4, td4, s4;
- #pragma unroll
- for (int j = 0; j < head_size; j += 4) {
- // Load data in vec4 chunks
- k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
- r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
- tf4 = sycl::float4(_tf[j], _tf[j+1], _tf[j+2], _tf[j+3]);
- td4 = sycl::float4(_td[j], _td[j+1], _td[j+2], _td[j+3]);
- s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
- // Compute key-value product
- sycl::float4 kv4 = k4 * _v;
- // Accumulate weighted sum
- y += sycl::dot(r4, tf4 * kv4 + s4);
- // Update state
- s4 = s4 * td4 + kv4;
- // Store updated state
- state[j] = s4.x();
- state[j+1] = s4.y();
- state[j+2] = s4.z();
- state[j+3] = s4.w();
- }
- dst[t] = y;
- }
- // Save final state
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i];
- }
- }
- template <int block_size>
- static void rwkv_wkv7_f32_kernel(
- const int B, const int T, const int C, const int H,
- const float* r, const float* w, const float* k, const float* v,
- const float* a, const float* b, const float* s,
- float* dst, const sycl::nd_item<3>& item_ct1, float* shared_mem) {
- const int tid = item_ct1.get_local_id(2);
- const int bid = item_ct1.get_group(2);
- const int head_size = block_size;
- const int batch_i = bid / H;
- const int head_i = bid % H;
- const int state_size = C * head_size;
- const int n_seq_tokens = T / B;
- float* _r = shared_mem;
- float* _w = _r + head_size;
- float* _k = _w + head_size;
- float* _a = _k + head_size;
- float* _b = _a + head_size;
- float state[block_size];
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- state[i] = s[batch_i * state_size + head_i * head_size * head_size + tid * head_size + i];
- }
- for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid;
- t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid;
- t += C) {
- item_ct1.barrier(sycl::access::fence_space::local_space);
- _r[tid] = r[t];
- _w[tid] = w[t];
- _k[tid] = k[t];
- _a[tid] = a[t];
- _b[tid] = b[t];
- item_ct1.barrier(sycl::access::fence_space::local_space);
- const float _v = v[t];
- float y = 0, sa = 0;
- sycl::float4 a4, s4;
- #pragma unroll
- for (int j = 0; j < head_size; j += 4) {
- a4 = sycl::float4(_a[j], _a[j+1], _a[j+2], _a[j+3]);
- s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
- sa += sycl::dot(a4, s4);
- }
- sycl::float4 r4, w4, k4, b4;
- #pragma unroll
- for (int j = 0; j < head_size; j += 4) {
- r4 = sycl::float4(_r[j], _r[j+1], _r[j+2], _r[j+3]);
- w4 = sycl::float4(_w[j], _w[j+1], _w[j+2], _w[j+3]);
- k4 = sycl::float4(_k[j], _k[j+1], _k[j+2], _k[j+3]);
- b4 = sycl::float4(_b[j], _b[j+1], _b[j+2], _b[j+3]);
- s4 = sycl::float4(state[j], state[j+1], state[j+2], state[j+3]);
- sycl::float4 kv4 = k4 * _v;
- s4 = s4 * w4 + kv4 + sa * b4;
- y += sycl::dot(r4, s4);
- state[j] = s4.x();
- state[j+1] = s4.y();
- state[j+2] = s4.z();
- state[j+3] = s4.w();
- }
- dst[t] = y;
- }
- #pragma unroll
- for (int i = 0; i < head_size; i++) {
- dst[T * C + batch_i * state_size + head_i * head_size * head_size + tid * head_size + i] = state[i];
- }
- }
- void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
- const ggml_tensor *src0 = dst->src[0];
- const ggml_tensor *src1 = dst->src[1];
- const float* k_d = (const float*)dst->src[0]->data;
- const float* v_d = (const float*)dst->src[1]->data;
- const float* r_d = (const float*)dst->src[2]->data;
- const float* tf_d = (const float*)dst->src[3]->data;
- const float* td_d = (const float*)dst->src[4]->data;
- const float* s_d = (const float*)dst->src[5]->data;
- float* dst_d = (float*)dst->data;
- const int64_t B = dst->src[5]->ne[1];
- const int64_t T = dst->src[0]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t H = dst->src[0]->ne[1];
- GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32);
- GGML_ASSERT(C % H == 0);
- GGML_ASSERT(C / H == WKV_BLOCK_SIZE || C / H == WKV_BLOCK_SIZE * 2); // The current sycl kernel is designed for RWKV6, HEAD_SIZE == 64
- dpct::queue_ptr stream = ctx.stream();
- // Calculate execution configuration
- const size_t shared_mem_size = C / H * 4 * sizeof(float); // For k, r, tf, td
- sycl::range<3> block_dims(1, 1, C / H);
- sycl::range<3> grid_dims(1, 1, B * H);
- // Submit kernel
- if (C / H == WKV_BLOCK_SIZE) {
- stream->submit([&](sycl::handler& cgh) {
- sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(grid_dims * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rwkv_wkv6_f32_kernel<WKV_BLOCK_SIZE>(
- B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
- item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
- );
- });
- });
- } else {
- stream->submit([&](sycl::handler& cgh) {
- sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(grid_dims * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rwkv_wkv6_f32_kernel<WKV_BLOCK_SIZE * 2>(
- B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d,
- item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
- );
- });
- });
- }
- GGML_UNUSED(src0);
- GGML_UNUSED(src1);
- }
- void ggml_sycl_op_rwkv_wkv7(ggml_backend_sycl_context& ctx, ggml_tensor* dst) {
- const ggml_tensor *src0 = dst->src[0];
- const ggml_tensor *src1 = dst->src[1];
- const float* r_d = (const float*)dst->src[0]->data;
- const float* w_d = (const float*)dst->src[1]->data;
- const float* k_d = (const float*)dst->src[2]->data;
- const float* v_d = (const float*)dst->src[3]->data;
- const float* a_d = (const float*)dst->src[4]->data;
- const float* b_d = (const float*)dst->src[5]->data;
- const float* s_d = (const float*)dst->src[6]->data;
- float* dst_d = (float*)dst->data;
- const int64_t B = dst->src[6]->ne[1];
- const int64_t T = dst->src[0]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t H = dst->src[0]->ne[1];
- GGML_ASSERT(dst->src[6]->type == GGML_TYPE_F32);
- GGML_ASSERT(C % H == 0);
- GGML_ASSERT(C / H == WKV_BLOCK_SIZE || C / H == WKV_BLOCK_SIZE * 2);
- dpct::queue_ptr stream = ctx.stream();
- // Calculate execution configuration
- const size_t shared_mem_size = C / H * 5 * sizeof(float); // For r, w, k, a, b
- sycl::range<3> block_dims(1, 1, C / H);
- sycl::range<3> grid_dims(1, 1, B * H);
- // Submit kernel
- if (C / H == WKV_BLOCK_SIZE) {
- stream->submit([&](sycl::handler& cgh) {
- sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(grid_dims * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rwkv_wkv7_f32_kernel<WKV_BLOCK_SIZE>(
- B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d,
- item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
- );
- });
- });
- } else {
- stream->submit([&](sycl::handler& cgh) {
- sycl::local_accessor<float, 1> shared_mem_acc(shared_mem_size, cgh);
- cgh.parallel_for(
- sycl::nd_range<3>(grid_dims * block_dims, block_dims),
- [=](sycl::nd_item<3> item_ct1) {
- rwkv_wkv7_f32_kernel<WKV_BLOCK_SIZE * 2>(
- B, T, C, H, r_d, w_d, k_d, v_d, a_d, b_d, s_d, dst_d,
- item_ct1, (float*)shared_mem_acc.get_multi_ptr<sycl::access::decorated::no>().get()
- );
- });
- });
- }
- GGML_UNUSED(src0);
- GGML_UNUSED(src1);
- }
|