oai.hpp 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. #pragma once
  2. #include <string>
  3. #include <vector>
  4. #include <set>
  5. #include <mutex>
  6. #include <condition_variable>
  7. #include <unordered_map>
  8. #include "json.hpp"
  9. #include "utils.hpp"
  10. #define DEFAULT_OAICOMPAT_MODEL "gpt-3.5-turbo-0613"
  11. using json = nlohmann::json;
  12. inline static json oaicompat_completion_params_parse(
  13. const json &body /* openai api json semantics */)
  14. {
  15. json llama_params;
  16. llama_params["__oaicompat"] = true;
  17. // Map OpenAI parameters to llama.cpp parameters
  18. //
  19. // For parameters that are defined by the OpenAI documentation (e.g.
  20. // temperature), we explicitly specify OpenAI's intended default; we
  21. // need to do that because sometimes OpenAI disagrees with llama.cpp
  22. //
  23. // https://platform.openai.com/docs/api-reference/chat/create
  24. llama_sampling_params default_sparams;
  25. llama_params["model"] = json_value(body, "model", std::string("unknown"));
  26. llama_params["prompt"] = format_chatml(body["messages"]); // OpenAI 'messages' to llama.cpp 'prompt'
  27. llama_params["cache_prompt"] = json_value(body, "cache_prompt", false);
  28. llama_params["temperature"] = json_value(body, "temperature", 0.0);
  29. llama_params["top_k"] = json_value(body, "top_k", default_sparams.top_k);
  30. llama_params["top_p"] = json_value(body, "top_p", 1.0);
  31. llama_params["n_predict"] = json_value(body, "max_tokens", -1);
  32. llama_params["logit_bias"] = json_value(body, "logit_bias",json::object());
  33. llama_params["frequency_penalty"] = json_value(body, "frequency_penalty", 0.0);
  34. llama_params["presence_penalty"] = json_value(body, "presence_penalty", 0.0);
  35. llama_params["seed"] = json_value(body, "seed", LLAMA_DEFAULT_SEED);
  36. llama_params["stream"] = json_value(body, "stream", false);
  37. llama_params["mirostat"] = json_value(body, "mirostat", default_sparams.mirostat);
  38. llama_params["mirostat_tau"] = json_value(body, "mirostat_tau", default_sparams.mirostat_tau);
  39. llama_params["mirostat_eta"] = json_value(body, "mirostat_eta", default_sparams.mirostat_eta);
  40. llama_params["penalize_nl"] = json_value(body, "penalize_nl", default_sparams.penalize_nl);
  41. llama_params["typical_p"] = json_value(body, "typical_p", default_sparams.typical_p);
  42. llama_params["repeat_last_n"] = json_value(body, "repeat_last_n", default_sparams.penalty_last_n);
  43. llama_params["ignore_eos"] = json_value(body, "ignore_eos", false);
  44. llama_params["tfs_z"] = json_value(body, "tfs_z", default_sparams.tfs_z);
  45. if (body.count("grammar") != 0) {
  46. llama_params["grammar"] = json_value(body, "grammar", json::object());
  47. }
  48. // Handle 'stop' field
  49. if (body.contains("stop") && body["stop"].is_string()) {
  50. llama_params["stop"] = json::array({body["stop"].get<std::string>()});
  51. } else {
  52. llama_params["stop"] = json_value(body, "stop", json::array());
  53. }
  54. // Ensure there is ChatML-specific end sequence among stop words
  55. llama_params["stop"].push_back("<|im_end|>");
  56. return llama_params;
  57. }
  58. inline static json format_final_response_oaicompat(const json &request, const task_result &response, bool streaming = false)
  59. {
  60. json result = response.result_json;
  61. bool stopped_word = result.count("stopped_word") != 0;
  62. bool stopped_eos = json_value(result, "stopped_eos", false);
  63. int num_tokens_predicted = json_value(result, "tokens_predicted", 0);
  64. int num_prompt_tokens = json_value(result, "tokens_evaluated", 0);
  65. std::string content = json_value(result, "content", std::string(""));
  66. std::string finish_reason = "length";
  67. if (stopped_word || stopped_eos) {
  68. finish_reason = "stop";
  69. }
  70. json choices =
  71. streaming ? json::array({json{{"finish_reason", finish_reason},
  72. {"index", 0},
  73. {"delta", json::object()}}})
  74. : json::array({json{{"finish_reason", finish_reason},
  75. {"index", 0},
  76. {"message", json{{"content", content},
  77. {"role", "assistant"}}}}});
  78. std::time_t t = std::time(0);
  79. json res =
  80. json{{"choices", choices},
  81. {"created", t},
  82. {"model",
  83. json_value(request, "model", std::string(DEFAULT_OAICOMPAT_MODEL))},
  84. {"object", streaming ? "chat.completion.chunk" : "chat.completion"},
  85. {"usage",
  86. json{{"completion_tokens", num_tokens_predicted},
  87. {"prompt_tokens", num_prompt_tokens},
  88. {"total_tokens", num_tokens_predicted + num_prompt_tokens}}},
  89. {"id", gen_chatcmplid()}};
  90. if (server_verbose) {
  91. res["__verbose"] = result;
  92. }
  93. if (result.contains("completion_probabilities")) {
  94. res["completion_probabilities"] = json_value(result, "completion_probabilities", json::array());
  95. }
  96. return res;
  97. }
  98. // return value is vector as there is one case where we might need to generate two responses
  99. inline static std::vector<json> format_partial_response_oaicompat(const task_result &response) {
  100. json result = response.result_json;
  101. if (!result.contains("model") || !result.contains("oaicompat_token_ctr")) {
  102. return std::vector<json>({response.result_json});
  103. }
  104. bool first = json_value(result, "oaicompat_token_ctr", 0) == 0;
  105. std::string modelname = json_value(result, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  106. bool stopped_word = json_value(result, "stopped_word", false);
  107. bool stopped_eos = json_value(result, "stopped_eos", false);
  108. bool stopped_limit = json_value(result, "stopped_limit", false);
  109. std::string content = json_value(result, "content", std::string(""));
  110. std::string finish_reason;
  111. if (stopped_word || stopped_eos) {
  112. finish_reason = "stop";
  113. }
  114. if (stopped_limit) {
  115. finish_reason = "length";
  116. }
  117. std::time_t t = std::time(0);
  118. json choices;
  119. if (!finish_reason.empty()) {
  120. choices = json::array({json{{"finish_reason", finish_reason},
  121. {"index", 0},
  122. {"delta", json::object()}}});
  123. } else {
  124. if (first) {
  125. if (content.empty()) {
  126. choices = json::array({json{{"finish_reason", nullptr},
  127. {"index", 0},
  128. {"delta", json{{"role", "assistant"}}}}});
  129. } else {
  130. // We have to send this as two updates to conform to openai behavior
  131. json initial_ret = json{{"choices", json::array({json{
  132. {"finish_reason", nullptr},
  133. {"index", 0},
  134. {"delta", json{
  135. {"role", "assistant"}
  136. }}}})},
  137. {"created", t},
  138. {"id", gen_chatcmplid()},
  139. {"model", modelname},
  140. {"object", "chat.completion.chunk"}};
  141. json second_ret = json{
  142. {"choices", json::array({json{{"finish_reason", nullptr},
  143. {"index", 0},
  144. {"delta", json{
  145. {"content", content}}}
  146. }})},
  147. {"created", t},
  148. {"id", gen_chatcmplid()},
  149. {"model", modelname},
  150. {"object", "chat.completion.chunk"}};
  151. return std::vector<json>({initial_ret, second_ret});
  152. }
  153. } else {
  154. // Some idiosyncrasy in task processing logic makes several trailing calls
  155. // with empty content, we ignore these at the calee site.
  156. if (content.empty()) {
  157. return std::vector<json>({json::object()});
  158. }
  159. choices = json::array({json{
  160. {"finish_reason", nullptr},
  161. {"index", 0},
  162. {"delta",
  163. json{
  164. {"content", content},
  165. }},
  166. }});
  167. }
  168. }
  169. json ret = json{{"choices", choices},
  170. {"created", t},
  171. {"id", gen_chatcmplid()},
  172. {"model", modelname},
  173. {"object", "chat.completion.chunk"}};
  174. return std::vector<json>({ret});
  175. }