convert_hf_to_gguf.py 400 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. from mistral_common.tokens.tokenizers.base import TokenizerVersion
  28. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
  29. from mistral_common.tokens.tokenizers.tekken import Tekkenizer
  30. from mistral_common.tokens.tokenizers.sentencepiece import (
  31. SentencePieceTokenizer,
  32. )
  33. logger = logging.getLogger("hf-to-gguf")
  34. ###### MODEL DEFINITIONS ######
  35. class SentencePieceTokenTypes(IntEnum):
  36. NORMAL = 1
  37. UNKNOWN = 2
  38. CONTROL = 3
  39. USER_DEFINED = 4
  40. UNUSED = 5
  41. BYTE = 6
  42. class ModelType(IntEnum):
  43. TEXT = 1
  44. MMPROJ = 2
  45. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  46. class ModelBase:
  47. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  48. ModelType.TEXT: {},
  49. ModelType.MMPROJ: {},
  50. }
  51. dir_model: Path
  52. ftype: gguf.LlamaFileType
  53. fname_out: Path
  54. is_big_endian: bool
  55. endianess: gguf.GGUFEndian
  56. use_temp_file: bool
  57. lazy: bool
  58. part_names: list[str]
  59. is_safetensors: bool
  60. hparams: dict[str, Any]
  61. tensor_names: set[str] | None
  62. gguf_writer: gguf.GGUFWriter
  63. model_name: str | None
  64. metadata_override: Path | None
  65. dir_model_card: Path
  66. remote_hf_model_id: str | None
  67. # subclasses should define this!
  68. model_arch: gguf.MODEL_ARCH
  69. # subclasses should initialize this!
  70. block_count: int
  71. tensor_map: gguf.TensorNameMap
  72. is_mistral_format: bool = False
  73. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  74. use_temp_file: bool = False, eager: bool = False,
  75. metadata_override: Path | None = None, model_name: str | None = None,
  76. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  77. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  78. if type(self) is ModelBase or \
  79. type(self) is TextModel or \
  80. type(self) is MmprojModel:
  81. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  82. self.dir_model = dir_model
  83. self.ftype = ftype
  84. self.fname_out = fname_out
  85. self.is_big_endian = is_big_endian
  86. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  87. self.use_temp_file = use_temp_file
  88. self.lazy = not eager or (remote_hf_model_id is not None)
  89. self.remote_hf_model_id = remote_hf_model_id
  90. if remote_hf_model_id is not None:
  91. self.is_safetensors = True
  92. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  93. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  94. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  95. self.tensor_names = set(name for name in remote_tensors.keys())
  96. for name, remote_tensor in remote_tensors.items():
  97. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  98. self.get_tensors = get_remote_tensors
  99. else:
  100. prefix = "model" if not self.is_mistral_format else "consolidated"
  101. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  102. self.is_safetensors = len(self.part_names) > 0
  103. if not self.is_safetensors:
  104. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  105. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  106. self.tensor_names = None
  107. self.metadata_override = metadata_override
  108. self.model_name = model_name
  109. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  110. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  111. if self.ftype == gguf.LlamaFileType.GUESSED:
  112. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  113. _, first_tensor = next(self.get_tensors())
  114. if first_tensor.dtype == torch.float16:
  115. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  116. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  117. else:
  118. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  119. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  120. # Configure GGUF Writer
  121. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  122. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  123. @classmethod
  124. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  125. stem, suffix = path.stem, path.suffix
  126. new_name = f"{prefix}{stem}{suffix}"
  127. return path.with_name(new_name)
  128. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  129. key = next((k for k in keys if k in self.hparams), None)
  130. if key is not None:
  131. return self.hparams[key]
  132. if optional:
  133. return None
  134. raise KeyError(f"could not find any of: {keys}")
  135. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  136. tensor_names_from_parts: set[str] = set()
  137. if not self.is_mistral_format:
  138. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  139. index_name += ".index.json"
  140. index_file = self.dir_model / index_name
  141. if index_file.is_file():
  142. self.tensor_names = set()
  143. logger.info(f"gguf: loading model weight map from '{index_name}'")
  144. with open(index_file, "r", encoding="utf-8") as f:
  145. index: dict[str, Any] = json.load(f)
  146. weight_map = index.get("weight_map")
  147. if weight_map is None or not isinstance(weight_map, dict):
  148. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  149. self.tensor_names.update(weight_map.keys())
  150. else:
  151. self.tensor_names = tensor_names_from_parts
  152. weight_map = {}
  153. else:
  154. self.tensor_names = tensor_names_from_parts
  155. weight_map = {}
  156. for part_name in self.part_names:
  157. logger.info(f"gguf: loading model part '{part_name}'")
  158. ctx: ContextManager[Any]
  159. if self.is_safetensors:
  160. from safetensors import safe_open
  161. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  162. else:
  163. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  164. with ctx as model_part:
  165. tensor_names_from_parts.update(model_part.keys())
  166. for name in model_part.keys():
  167. if self.is_safetensors:
  168. if self.lazy:
  169. data = model_part.get_slice(name)
  170. data = LazyTorchTensor.from_safetensors_slice(data)
  171. else:
  172. data = model_part.get_tensor(name)
  173. else:
  174. data = model_part[name]
  175. if self.lazy:
  176. data = LazyTorchTensor.from_eager(data)
  177. yield name, data
  178. # verify tensor name presence and identify potentially missing files
  179. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  180. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  181. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  182. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  183. if len(extra) == 0 and len(missing_files) > 0:
  184. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  185. f"Missing tensors: {missing}")
  186. else:
  187. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  188. f"Missing tensors: {missing}\n"
  189. f"Extra tensors: {extra}")
  190. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  191. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  192. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  193. name: str = gguf.TENSOR_NAMES[key]
  194. if "{bid}" in name:
  195. assert bid is not None
  196. name = name.format(bid=bid)
  197. return name + suffix
  198. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  199. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  200. return False
  201. key_name: str = gguf.TENSOR_NAMES[key]
  202. if "{bid}" in key_name:
  203. if bid is None:
  204. return False
  205. key_name = key_name.format(bid=bid)
  206. else:
  207. if bid is not None:
  208. return False
  209. return name == (key_name + suffix)
  210. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  211. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  212. if new_name is None:
  213. raise ValueError(f"Can not map tensor {name!r}")
  214. return new_name
  215. def set_gguf_parameters(self):
  216. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  217. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  218. del bid # unused
  219. return [(self.map_tensor_name(name), data_torch)]
  220. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  221. del name, new_name, bid, n_dims # unused
  222. return False
  223. # some models need extra generated tensors (like rope_freqs)
  224. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  225. return ()
  226. def prepare_tensors(self):
  227. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  228. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  229. # we don't need these
  230. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  231. continue
  232. old_dtype = data_torch.dtype
  233. # convert any unsupported data types to float32
  234. if data_torch.dtype not in (torch.float16, torch.float32):
  235. data_torch = data_torch.to(torch.float32)
  236. # use the first number-like part of the tensor name as the block id
  237. bid = None
  238. for part in name.split("."):
  239. if part.isdecimal():
  240. bid = int(part)
  241. break
  242. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  243. # TODO: why do we squeeze here?
  244. # data = data_torch.squeeze().numpy()
  245. data = data_torch.numpy()
  246. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  247. if len(data.shape) == 0:
  248. data = data_torch.numpy()
  249. n_dims = len(data.shape)
  250. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  251. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  252. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  253. data_qtype = gguf.GGMLQuantizationType.F32
  254. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  255. # Some tensor types are always in float32
  256. if data_qtype is False and (
  257. any(
  258. self.match_model_tensor_name(new_name, key, bid)
  259. for key in (
  260. gguf.MODEL_TENSOR.FFN_GATE_INP,
  261. gguf.MODEL_TENSOR.POS_EMBD,
  262. gguf.MODEL_TENSOR.TOKEN_TYPES,
  263. gguf.MODEL_TENSOR.SSM_CONV1D,
  264. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  265. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  266. gguf.MODEL_TENSOR.TIME_MIX_W1,
  267. gguf.MODEL_TENSOR.TIME_MIX_W2,
  268. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  269. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  270. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  271. gguf.MODEL_TENSOR.POSNET_NORM1,
  272. gguf.MODEL_TENSOR.POSNET_NORM2,
  273. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  274. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  275. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  276. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  277. )
  278. )
  279. or not new_name.endswith(".weight")
  280. ):
  281. data_qtype = gguf.GGMLQuantizationType.F32
  282. if data_qtype is False and any(
  283. self.match_model_tensor_name(new_name, key, bid)
  284. for key in (
  285. gguf.MODEL_TENSOR.TOKEN_EMBD,
  286. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  287. gguf.MODEL_TENSOR.OUTPUT,
  288. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  289. gguf.MODEL_TENSOR.LAUREL_L,
  290. gguf.MODEL_TENSOR.LAUREL_R,
  291. )
  292. ):
  293. if self.ftype in (
  294. gguf.LlamaFileType.MOSTLY_TQ1_0,
  295. gguf.LlamaFileType.MOSTLY_TQ2_0,
  296. ):
  297. # TODO: use Q4_K and Q6_K
  298. data_qtype = gguf.GGMLQuantizationType.F16
  299. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  300. if isinstance(data_qtype, bool):
  301. if self.ftype == gguf.LlamaFileType.ALL_F32:
  302. data_qtype = gguf.GGMLQuantizationType.F32
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  304. data_qtype = gguf.GGMLQuantizationType.F16
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  306. data_qtype = gguf.GGMLQuantizationType.BF16
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  308. data_qtype = gguf.GGMLQuantizationType.Q8_0
  309. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  310. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  311. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  312. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  313. else:
  314. raise ValueError(f"Unknown file type: {self.ftype.name}")
  315. try:
  316. data = gguf.quants.quantize(data, data_qtype)
  317. except gguf.QuantError as e:
  318. logger.warning("%s, %s", e, "falling back to F16")
  319. data_qtype = gguf.GGMLQuantizationType.F16
  320. data = gguf.quants.quantize(data, data_qtype)
  321. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  322. # reverse shape to make it similar to the internal ggml dimension order
  323. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  324. # n_dims is implicit in the shape
  325. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  326. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  327. def set_type(self):
  328. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  329. def prepare_metadata(self, vocab_only: bool):
  330. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  331. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  332. # If we are using HF model id, set the metadata name to the model id
  333. if self.remote_hf_model_id:
  334. self.metadata.name = self.remote_hf_model_id
  335. # Fallback to model directory name if metadata name is still missing
  336. if self.metadata.name is None:
  337. self.metadata.name = self.dir_model.name
  338. # Generate parameter weight class (useful for leader boards) if not yet determined
  339. if self.metadata.size_label is None and total_params > 0:
  340. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  341. self.set_type()
  342. logger.info("Set meta model")
  343. self.metadata.set_gguf_meta_model(self.gguf_writer)
  344. logger.info("Set model parameters")
  345. self.set_gguf_parameters()
  346. logger.info("Set model quantization version")
  347. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  348. def write_vocab(self):
  349. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  350. def write(self):
  351. self.prepare_tensors()
  352. self.prepare_metadata(vocab_only=False)
  353. self.gguf_writer.write_header_to_file(path=self.fname_out)
  354. self.gguf_writer.write_kv_data_to_file()
  355. self.gguf_writer.write_tensors_to_file(progress=True)
  356. self.gguf_writer.close()
  357. @staticmethod
  358. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  359. part_names: list[str] = []
  360. for filename in os.listdir(dir_model):
  361. if filename.startswith(prefix) and filename.endswith(suffix):
  362. part_names.append(filename)
  363. part_names.sort()
  364. return part_names
  365. @staticmethod
  366. def load_hparams(dir_model: Path, is_mistral_format: bool):
  367. if is_mistral_format:
  368. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  369. config = json.load(f)
  370. return config
  371. try:
  372. # for security reason, we don't allow loading remote code by default
  373. # if a model need remote code, we will fallback to config.json
  374. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  375. except Exception as e:
  376. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  377. logger.warning("Trying to load config.json instead")
  378. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  379. config = json.load(f)
  380. if "llm_config" in config:
  381. # rename for InternVL
  382. config["text_config"] = config["llm_config"]
  383. if "thinker_config" in config:
  384. # rename for Qwen2.5-Omni
  385. config["text_config"] = config["thinker_config"]["text_config"]
  386. return config
  387. @classmethod
  388. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  389. assert names
  390. def func(modelcls: AnyModel) -> AnyModel:
  391. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  392. for name in names:
  393. cls._model_classes[model_type][name] = modelcls
  394. return modelcls
  395. return func
  396. @classmethod
  397. def print_registered_models(cls):
  398. for model_type, model_classes in cls._model_classes.items():
  399. logger.error(f"{model_type.name} models:")
  400. for name in sorted(model_classes.keys()):
  401. logger.error(f" - {name}")
  402. @classmethod
  403. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  404. try:
  405. return cls._model_classes[model_type][arch]
  406. except KeyError:
  407. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  408. class TextModel(ModelBase):
  409. model_type = ModelType.TEXT
  410. hf_arch: str
  411. def __init__(self, *args, **kwargs):
  412. super().__init__(*args, **kwargs)
  413. if not self.is_mistral_format:
  414. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  415. else:
  416. self.hf_arch = ""
  417. if "text_config" in self.hparams:
  418. # move the text_config to the root level
  419. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  420. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  421. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  422. @classmethod
  423. def __init_subclass__(cls):
  424. # can't use an abstract property, because overriding it without type errors
  425. # would require using decorated functions instead of simply defining the property
  426. if "model_arch" not in cls.__dict__:
  427. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  428. def set_vocab(self):
  429. self._set_vocab_gpt2()
  430. def prepare_metadata(self, vocab_only: bool):
  431. super().prepare_metadata(vocab_only=vocab_only)
  432. total_params = self.gguf_writer.get_total_parameter_count()[0]
  433. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  434. output_type: str = self.ftype.name.partition("_")[2]
  435. # Filename Output
  436. if self.fname_out.is_dir():
  437. # Generate default filename based on model specification and available metadata
  438. if not vocab_only:
  439. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  440. else:
  441. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  442. # Use the default filename
  443. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  444. else:
  445. # Output path is a custom defined templated filename
  446. # Note: `not is_dir()` is used because `.is_file()` will not detect
  447. # file template strings as it doesn't actually exist as a file
  448. # Process templated file name with the output ftype, useful with the "auto" ftype
  449. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  450. logger.info("Set model tokenizer")
  451. self.set_vocab()
  452. def set_gguf_parameters(self):
  453. self.gguf_writer.add_block_count(self.block_count)
  454. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  455. self.gguf_writer.add_context_length(n_ctx)
  456. logger.info(f"gguf: context length = {n_ctx}")
  457. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  458. self.gguf_writer.add_embedding_length(n_embd)
  459. logger.info(f"gguf: embedding length = {n_embd}")
  460. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  461. self.gguf_writer.add_feed_forward_length(n_ff)
  462. logger.info(f"gguf: feed forward length = {n_ff}")
  463. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  464. self.gguf_writer.add_head_count(n_head)
  465. logger.info(f"gguf: head count = {n_head}")
  466. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  467. self.gguf_writer.add_head_count_kv(n_head_kv)
  468. logger.info(f"gguf: key-value head count = {n_head_kv}")
  469. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  470. self.gguf_writer.add_rope_freq_base(rope_theta)
  471. logger.info(f"gguf: rope theta = {rope_theta}")
  472. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  473. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  474. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  475. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  476. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  477. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  478. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  479. self.gguf_writer.add_expert_count(n_experts)
  480. logger.info(f"gguf: expert count = {n_experts}")
  481. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  482. self.gguf_writer.add_expert_used_count(n_experts_used)
  483. logger.info(f"gguf: experts used count = {n_experts_used}")
  484. if (head_dim := self.hparams.get("head_dim")) is not None:
  485. self.gguf_writer.add_key_length(head_dim)
  486. self.gguf_writer.add_value_length(head_dim)
  487. self.gguf_writer.add_file_type(self.ftype)
  488. logger.info(f"gguf: file type = {self.ftype}")
  489. def write_vocab(self):
  490. if len(self.gguf_writer.tensors) != 1:
  491. raise ValueError('Splitting the vocabulary is not supported')
  492. self.prepare_metadata(vocab_only=True)
  493. self.gguf_writer.write_header_to_file(path=self.fname_out)
  494. self.gguf_writer.write_kv_data_to_file()
  495. self.gguf_writer.close()
  496. def does_token_look_special(self, token: str | bytes) -> bool:
  497. if isinstance(token, (bytes, bytearray)):
  498. token_text = token.decode(encoding="utf-8")
  499. elif isinstance(token, memoryview):
  500. token_text = token.tobytes().decode(encoding="utf-8")
  501. else:
  502. token_text = token
  503. # Some models mark some added tokens which ought to be control tokens as not special.
  504. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  505. seems_special = token_text in (
  506. "<pad>", # deepseek-coder
  507. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  508. )
  509. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  510. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  511. # TODO: should these be marked as UNUSED instead? (maybe not)
  512. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  513. return seems_special
  514. # used for GPT-2 BPE and WordPiece vocabs
  515. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  516. tokens: list[str] = []
  517. toktypes: list[int] = []
  518. from transformers import AutoTokenizer
  519. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  520. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  521. assert max(tokenizer.vocab.values()) < vocab_size
  522. tokpre = self.get_vocab_base_pre(tokenizer)
  523. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  524. added_vocab = tokenizer.get_added_vocab()
  525. added_tokens_decoder = tokenizer.added_tokens_decoder
  526. for i in range(vocab_size):
  527. if i not in reverse_vocab:
  528. tokens.append(f"[PAD{i}]")
  529. toktypes.append(gguf.TokenType.UNUSED)
  530. else:
  531. token: str = reverse_vocab[i]
  532. if token in added_vocab:
  533. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  534. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  535. if not added_tokens_decoder[i].normalized:
  536. previous_token = token
  537. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  538. if previous_token != token:
  539. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  540. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  541. toktypes.append(gguf.TokenType.CONTROL)
  542. else:
  543. # NOTE: this was added for Gemma.
  544. # Encoding and decoding the tokens above isn't sufficient for this case.
  545. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  546. toktypes.append(gguf.TokenType.USER_DEFINED)
  547. else:
  548. toktypes.append(gguf.TokenType.NORMAL)
  549. tokens.append(token)
  550. return tokens, toktypes, tokpre
  551. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  552. # do not modify it manually!
  553. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  554. # Marker: Start get_vocab_base_pre
  555. def get_vocab_base_pre(self, tokenizer) -> str:
  556. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  557. # is specific for the BPE pre-tokenizer used by the model
  558. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  559. # use in llama.cpp to implement the same pre-tokenizer
  560. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  561. chktok = tokenizer.encode(chktxt)
  562. chkhsh = sha256(str(chktok).encode()).hexdigest()
  563. logger.debug(f"chktok: {chktok}")
  564. logger.debug(f"chkhsh: {chkhsh}")
  565. res = None
  566. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  567. # or pull the latest version of the model from Huggingface
  568. # don't edit the hashes manually!
  569. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  570. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  571. res = "chatglm-bpe"
  572. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  573. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  574. res = "chatglm-bpe"
  575. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  576. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  577. res = "glm4"
  578. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  579. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  580. res = "glm4"
  581. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  582. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  583. res = "minerva-7b"
  584. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  585. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  586. res = "hunyuan"
  587. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  588. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  589. res = "hunyuan-dense"
  590. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  591. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  592. res = "falcon-h1"
  593. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  594. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  595. res = "falcon-h1"
  596. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  597. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  598. res = "falcon-h1"
  599. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  600. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  601. res = "falcon-h1"
  602. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  603. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  604. res = "kimi-k2"
  605. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  606. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  607. res = "qwen2"
  608. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  609. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  610. res = "llama-bpe"
  611. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  612. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  613. res = "deepseek-llm"
  614. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  615. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  616. res = "deepseek-coder"
  617. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  618. # ref: https://huggingface.co/tiiuae/falcon-7b
  619. res = "falcon"
  620. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  621. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  622. res = "bert-bge"
  623. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  624. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  625. res = "falcon3"
  626. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  627. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  628. res = "bert-bge-large"
  629. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  630. # ref: https://huggingface.co/mosaicml/mpt-7b
  631. res = "mpt"
  632. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  633. # ref: https://huggingface.co/bigcode/starcoder2-3b
  634. res = "starcoder"
  635. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  636. # ref: https://huggingface.co/openai-community/gpt2
  637. res = "gpt-2"
  638. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  639. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  640. res = "stablelm2"
  641. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  642. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  643. res = "refact"
  644. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  645. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  646. res = "command-r"
  647. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  648. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  649. res = "qwen2"
  650. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  651. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  652. res = "olmo"
  653. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  654. # ref: https://huggingface.co/databricks/dbrx-base
  655. res = "dbrx"
  656. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  657. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  658. res = "jina-v1-en"
  659. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  660. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  661. res = "jina-v2-en"
  662. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  663. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  664. res = "jina-v2-es"
  665. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  666. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  667. res = "jina-v2-de"
  668. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  669. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  670. res = "smaug-bpe"
  671. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  672. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  673. res = "poro-chat"
  674. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  675. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  676. res = "jina-v2-code"
  677. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  678. # ref: https://huggingface.co/LumiOpen/Viking-7B
  679. res = "viking"
  680. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  681. # ref: https://huggingface.co/core42/jais-13b
  682. res = "jais"
  683. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  684. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  685. res = "codeshell"
  686. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  687. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  688. res = "tekken"
  689. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  690. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  691. res = "smollm"
  692. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  693. # ref: https://huggingface.co/bigscience/bloom
  694. res = "bloom"
  695. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  696. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  697. res = "gpt3-finnish"
  698. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  699. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  700. res = "exaone"
  701. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  702. # ref: https://huggingface.co/microsoft/phi-2
  703. res = "phi-2"
  704. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  705. # ref: https://huggingface.co/facebook/chameleon-7b
  706. res = "chameleon"
  707. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  708. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  709. res = "roberta-bpe"
  710. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  711. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  712. res = "gigachat"
  713. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  714. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  715. res = "megrez"
  716. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  717. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  718. res = "deepseek-v3"
  719. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  720. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  721. res = "deepseek-r1-qwen"
  722. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  723. # ref: https://huggingface.co/Xenova/gpt-4o
  724. res = "gpt-4o"
  725. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  726. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  727. res = "superbpe"
  728. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  729. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  730. res = "trillion"
  731. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  732. # ref: https://huggingface.co/inclusionAI/Ling-lite
  733. res = "bailingmoe"
  734. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  735. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  736. res = "llama4"
  737. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  738. # ref: https://huggingface.co/mistral-community/pixtral-12b
  739. res = "pixtral"
  740. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  741. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  742. res = "seed-coder"
  743. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  744. # ref: https://huggingface.co/skt/A.X-4.0
  745. res = "a.x-4.0"
  746. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  747. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  748. res = "midm-2.0"
  749. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  750. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  751. res = "lfm2"
  752. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  753. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  754. res = "exaone4"
  755. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  756. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  757. res = "mellum"
  758. if res is None:
  759. logger.warning("\n")
  760. logger.warning("**************************************************************************************")
  761. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  762. logger.warning("** There are 2 possible reasons for this:")
  763. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  764. logger.warning("** - the pre-tokenization config has changed upstream")
  765. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  766. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  767. logger.warning("**")
  768. logger.warning(f"** chkhsh: {chkhsh}")
  769. logger.warning("**************************************************************************************")
  770. logger.warning("\n")
  771. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  772. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  773. logger.debug(f"chkhsh: {chkhsh}")
  774. return res
  775. # Marker: End get_vocab_base_pre
  776. def _set_vocab_none(self) -> None:
  777. self.gguf_writer.add_tokenizer_model("none")
  778. def _set_vocab_gpt2(self) -> None:
  779. tokens, toktypes, tokpre = self.get_vocab_base()
  780. self.gguf_writer.add_tokenizer_model("gpt2")
  781. self.gguf_writer.add_tokenizer_pre(tokpre)
  782. self.gguf_writer.add_token_list(tokens)
  783. self.gguf_writer.add_token_types(toktypes)
  784. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  785. special_vocab.add_to_gguf(self.gguf_writer)
  786. def _set_vocab_qwen(self):
  787. dir_model = self.dir_model
  788. hparams = self.hparams
  789. tokens: list[str] = []
  790. toktypes: list[int] = []
  791. from transformers import AutoTokenizer
  792. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  793. vocab_size = hparams["vocab_size"]
  794. assert max(tokenizer.get_vocab().values()) < vocab_size
  795. tokpre = self.get_vocab_base_pre(tokenizer)
  796. merges = []
  797. vocab = {}
  798. mergeable_ranks = tokenizer.mergeable_ranks
  799. for token, rank in mergeable_ranks.items():
  800. vocab[QwenModel.token_bytes_to_string(token)] = rank
  801. if len(token) == 1:
  802. continue
  803. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  804. assert len(merged) == 2
  805. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  806. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  807. added_vocab = tokenizer.special_tokens
  808. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  809. for i in range(vocab_size):
  810. if i not in reverse_vocab:
  811. tokens.append(f"[PAD{i}]")
  812. toktypes.append(gguf.TokenType.UNUSED)
  813. elif reverse_vocab[i] in added_vocab:
  814. tokens.append(reverse_vocab[i])
  815. toktypes.append(gguf.TokenType.CONTROL)
  816. else:
  817. tokens.append(reverse_vocab[i])
  818. toktypes.append(gguf.TokenType.NORMAL)
  819. self.gguf_writer.add_tokenizer_model("gpt2")
  820. self.gguf_writer.add_tokenizer_pre(tokpre)
  821. self.gguf_writer.add_token_list(tokens)
  822. self.gguf_writer.add_token_types(toktypes)
  823. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  824. special_vocab.merges = merges
  825. # only add special tokens when they were not already loaded from config.json
  826. if len(special_vocab.special_token_ids) == 0:
  827. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  828. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  829. # this one is usually not in config.json anyway
  830. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  831. special_vocab.add_to_gguf(self.gguf_writer)
  832. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  833. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  834. self.gguf_writer.add_tokenizer_model("llama")
  835. self.gguf_writer.add_tokenizer_pre("default")
  836. self.gguf_writer.add_token_list(tokens)
  837. self.gguf_writer.add_token_scores(scores)
  838. self.gguf_writer.add_token_types(toktypes)
  839. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  840. special_vocab.add_to_gguf(self.gguf_writer)
  841. def _create_vocab_sentencepiece(self):
  842. from sentencepiece import SentencePieceProcessor
  843. tokenizer_path = self.dir_model / 'tokenizer.model'
  844. if not tokenizer_path.is_file():
  845. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  846. tokenizer = SentencePieceProcessor()
  847. tokenizer.LoadFromFile(str(tokenizer_path))
  848. vocab_size = self.find_hparam([
  849. "vocab_size_per_layer_input", # gemma3n
  850. "vocab_size",
  851. ], optional=True) or tokenizer.vocab_size()
  852. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  853. scores: list[float] = [-10000.0] * vocab_size
  854. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  855. for token_id in range(tokenizer.vocab_size()):
  856. if token_id >= vocab_size:
  857. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  858. break
  859. piece = tokenizer.IdToPiece(token_id)
  860. text = piece.encode("utf-8")
  861. score = tokenizer.GetScore(token_id)
  862. toktype = SentencePieceTokenTypes.NORMAL
  863. if tokenizer.IsUnknown(token_id):
  864. toktype = SentencePieceTokenTypes.UNKNOWN
  865. elif tokenizer.IsControl(token_id):
  866. toktype = SentencePieceTokenTypes.CONTROL
  867. elif tokenizer.IsUnused(token_id):
  868. toktype = SentencePieceTokenTypes.UNUSED
  869. elif tokenizer.IsByte(token_id):
  870. toktype = SentencePieceTokenTypes.BYTE
  871. tokens[token_id] = text
  872. scores[token_id] = score
  873. toktypes[token_id] = toktype
  874. added_tokens_file = self.dir_model / 'added_tokens.json'
  875. if added_tokens_file.is_file():
  876. with open(added_tokens_file, "r", encoding="utf-8") as f:
  877. added_tokens_json = json.load(f)
  878. for key in added_tokens_json:
  879. token_id = added_tokens_json[key]
  880. if token_id >= vocab_size:
  881. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  882. continue
  883. tokens[token_id] = key.encode("utf-8")
  884. scores[token_id] = -1000.0
  885. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  886. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  887. if tokenizer_config_file.is_file():
  888. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  889. tokenizer_config_json = json.load(f)
  890. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  891. for token_id, token_data in added_tokens_decoder.items():
  892. token_id = int(token_id)
  893. token: str = token_data["content"]
  894. if token_id >= vocab_size:
  895. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  896. continue
  897. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  898. if tokens[token_id] != token.encode("utf-8"):
  899. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  900. if token_data.get("special") or self.does_token_look_special(token):
  901. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  902. else:
  903. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  904. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  905. scores[token_id] = -1000.0
  906. tokens[token_id] = token.encode("utf-8")
  907. if vocab_size > len(tokens):
  908. pad_count = vocab_size - len(tokens)
  909. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  910. for i in range(1, pad_count + 1):
  911. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  912. scores.append(-1000.0)
  913. toktypes.append(SentencePieceTokenTypes.UNUSED)
  914. return tokens, scores, toktypes
  915. def _set_vocab_llama_hf(self):
  916. vocab = gguf.LlamaHfVocab(self.dir_model)
  917. tokens = []
  918. scores = []
  919. toktypes = []
  920. for text, score, toktype in vocab.all_tokens():
  921. tokens.append(text)
  922. scores.append(score)
  923. toktypes.append(toktype)
  924. assert len(tokens) == vocab.vocab_size
  925. self.gguf_writer.add_tokenizer_model("llama")
  926. self.gguf_writer.add_tokenizer_pre("default")
  927. self.gguf_writer.add_token_list(tokens)
  928. self.gguf_writer.add_token_scores(scores)
  929. self.gguf_writer.add_token_types(toktypes)
  930. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  931. special_vocab.add_to_gguf(self.gguf_writer)
  932. def _set_vocab_rwkv_world(self):
  933. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  934. vocab_size = self.hparams.get("vocab_size", 65536)
  935. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  936. toktypes: list[int] = [gguf.TokenType.CONTROL]
  937. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  938. lines = f.readlines()
  939. for line in lines:
  940. parts = line.split(' ')
  941. assert len(parts) >= 3
  942. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  943. token = token.encode("utf-8") if isinstance(token, str) else token
  944. assert isinstance(token, bytes)
  945. assert len(token) == token_len
  946. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  947. tokens.append(token_text.encode("utf-8"))
  948. toktypes.append(gguf.TokenType.NORMAL)
  949. remainder = vocab_size - len(tokens)
  950. assert remainder >= 0
  951. for i in range(len(tokens), vocab_size):
  952. tokens.append(f"[PAD{i}]".encode("utf-8"))
  953. toktypes.append(gguf.TokenType.UNUSED)
  954. self.gguf_writer.add_tokenizer_model("rwkv")
  955. self.gguf_writer.add_token_list(tokens)
  956. self.gguf_writer.add_token_types(toktypes)
  957. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  958. if special_vocab.chat_template is None:
  959. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  960. if template_path.is_file():
  961. with open(template_path, "r", encoding="utf-8") as f:
  962. template = f.read()
  963. else:
  964. template = "rwkv-world"
  965. special_vocab.chat_template = template
  966. # hack: Add '\n\n' as the EOT token to make it chat normally
  967. special_vocab._set_special_token("eot", 261)
  968. # hack: Override these as they have already been set (incorrectly)
  969. special_vocab.special_token_ids["bos"] = 0
  970. special_vocab.special_token_ids["eos"] = 0
  971. special_vocab.add_to_gguf(self.gguf_writer)
  972. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  973. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  974. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  975. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  976. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  977. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  978. assert field # tokenizer model
  979. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  980. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  981. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  982. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  983. assert field # token list
  984. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  985. if model_name == "llama-spm":
  986. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  987. assert field # token scores
  988. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  989. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  990. assert field # token types
  991. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  992. if model_name != "llama-spm":
  993. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  994. assert field # token merges
  995. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  996. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  997. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  998. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  999. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1000. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1001. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1002. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1003. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1004. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1005. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1006. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1007. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1008. def _try_set_pooling_type(self) -> None:
  1009. # get pooling path
  1010. pooling_path = None
  1011. module_path = self.dir_model / "modules.json"
  1012. if module_path.is_file():
  1013. with open(module_path, encoding="utf-8") as f:
  1014. modules = json.load(f)
  1015. for mod in modules:
  1016. if mod["type"] == "sentence_transformers.models.Pooling":
  1017. pooling_path = mod["path"]
  1018. break
  1019. # get pooling type
  1020. if pooling_path is not None:
  1021. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1022. pooling = json.load(f)
  1023. if pooling["pooling_mode_mean_tokens"]:
  1024. pooling_type = gguf.PoolingType.MEAN
  1025. elif pooling["pooling_mode_cls_token"]:
  1026. pooling_type = gguf.PoolingType.CLS
  1027. elif pooling["pooling_mode_lasttoken"]:
  1028. pooling_type = gguf.PoolingType.LAST
  1029. else:
  1030. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1031. self.gguf_writer.add_pooling_type(pooling_type)
  1032. class MmprojModel(ModelBase):
  1033. model_type = ModelType.MMPROJ
  1034. model_arch = gguf.MODEL_ARCH.MMPROJ
  1035. preprocessor_config: dict[str, Any]
  1036. global_config: dict[str, Any]
  1037. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1038. has_vision_encoder: bool = True # by default
  1039. has_audio_encoder: bool = False
  1040. # for models having multiple encoders, we need to separate their hparams
  1041. hparams_vision: dict[str, Any] | None = None
  1042. hparams_audio: dict[str, Any] | None = None
  1043. def __init__(self, *args, **kwargs):
  1044. super().__init__(*args, **kwargs)
  1045. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1046. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1047. # get n_embd of the text model
  1048. if not self.is_mistral_format:
  1049. if "text_config" not in self.hparams:
  1050. self.hparams["text_config"] = {}
  1051. if "audio_config" not in self.hparams:
  1052. self.hparams["audio_config"] = {}
  1053. text_config = {**self.hparams, **self.hparams["text_config"]}
  1054. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1055. else:
  1056. text_config = {
  1057. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1058. }
  1059. self.n_embd_text = text_config.get("hidden_dim", 0)
  1060. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1061. # move vision config to the top level, while preserving the original hparams in global_config
  1062. import copy
  1063. self.global_config = copy.deepcopy(self.hparams)
  1064. self.hparams_vision = self.get_vision_config()
  1065. self.hparams_audio = self.get_audio_config()
  1066. if self.hparams_vision is None and self.hparams_audio is None:
  1067. raise ValueError("vision_config / audio_config not found in hparams")
  1068. # for compat with vision-only models
  1069. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1070. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1071. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1072. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1073. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1074. # load preprocessor config
  1075. if not self.is_mistral_format:
  1076. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1077. self.preprocessor_config = json.load(f)
  1078. def get_vision_config(self) -> dict[str, Any] | None:
  1079. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1080. return self.global_config.get(config_name)
  1081. def get_audio_config(self) -> dict[str, Any] | None:
  1082. return self.global_config.get("audio_config")
  1083. def set_type(self):
  1084. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1085. def set_gguf_parameters(self):
  1086. self.gguf_writer.add_file_type(self.ftype)
  1087. if self.has_vision_encoder:
  1088. self.gguf_writer.add_clip_has_vision_encoder(True)
  1089. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1090. # vision config
  1091. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1092. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1093. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1094. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1095. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1096. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1097. # preprocessor config
  1098. image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1099. image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1100. self.gguf_writer.add_vision_image_mean(image_mean)
  1101. self.gguf_writer.add_vision_image_std(image_std)
  1102. if self.has_audio_encoder:
  1103. self.gguf_writer.add_clip_has_audio_encoder(True)
  1104. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1105. # audio config
  1106. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1107. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1108. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1109. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1110. if not self.has_vision_encoder and not self.has_audio_encoder:
  1111. raise ValueError("MmprojModel must have either vision or audio encoder")
  1112. def write_vocab(self):
  1113. raise ValueError("MmprojModel does not support vocab writing")
  1114. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1115. assert self.hparams_vision is not None
  1116. return self._find_param(self.hparams_vision, keys, optional)
  1117. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1118. assert self.hparams_audio is not None
  1119. return self._find_param(self.hparams_audio, keys, optional)
  1120. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1121. key = next((k for k in keys if k in obj), None)
  1122. if key is not None:
  1123. return obj[key]
  1124. if optional:
  1125. return None
  1126. raise KeyError(f"could not find any of: {keys}")
  1127. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1128. del bid, name, n_dims # unused
  1129. if ".patch_embd.weight" in new_name:
  1130. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1131. return False
  1132. @ModelBase.register("GPTNeoXForCausalLM")
  1133. class GPTNeoXModel(TextModel):
  1134. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1135. def set_gguf_parameters(self):
  1136. block_count = self.hparams["num_hidden_layers"]
  1137. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1138. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1139. self.gguf_writer.add_block_count(block_count)
  1140. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1141. self.gguf_writer.add_rope_dimension_count(
  1142. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1143. )
  1144. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1145. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1146. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1148. del bid # unused
  1149. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1150. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1151. tensors: list[tuple[str, Tensor]] = []
  1152. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1153. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1154. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1155. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1156. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1157. data_torch = torch.cat(
  1158. (
  1159. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1160. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1161. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1162. ),
  1163. dim=0,
  1164. )
  1165. logger.info("re-format attention.linear_qkv.weight")
  1166. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1167. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1168. data_torch = torch.cat(
  1169. (
  1170. qkv_bias[:, 0, :].reshape((n_embed,)),
  1171. qkv_bias[:, 1, :].reshape((n_embed,)),
  1172. qkv_bias[:, 2, :].reshape((n_embed,)),
  1173. ),
  1174. dim=0,
  1175. )
  1176. logger.info("re-format attention.linear_qkv.bias")
  1177. tensors.append((self.map_tensor_name(name), data_torch))
  1178. return tensors
  1179. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1180. class BloomModel(TextModel):
  1181. model_arch = gguf.MODEL_ARCH.BLOOM
  1182. def set_gguf_parameters(self):
  1183. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1184. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1185. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1186. self.gguf_writer.add_embedding_length(n_embed)
  1187. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1188. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1189. self.gguf_writer.add_head_count(n_head)
  1190. self.gguf_writer.add_head_count_kv(n_head)
  1191. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1192. self.gguf_writer.add_file_type(self.ftype)
  1193. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1194. del bid # unused
  1195. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1196. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1197. name = re.sub(r'transformer\.', '', name)
  1198. tensors: list[tuple[str, Tensor]] = []
  1199. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1200. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1201. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1202. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1203. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1204. data_torch = torch.cat(
  1205. (
  1206. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1207. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1208. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1209. ),
  1210. dim=0,
  1211. )
  1212. logger.info("re-format attention.linear_qkv.weight")
  1213. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1214. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1215. data_torch = torch.cat(
  1216. (
  1217. qkv_bias[:, 0, :].reshape((n_embed,)),
  1218. qkv_bias[:, 1, :].reshape((n_embed,)),
  1219. qkv_bias[:, 2, :].reshape((n_embed,)),
  1220. ),
  1221. dim=0,
  1222. )
  1223. logger.info("re-format attention.linear_qkv.bias")
  1224. tensors.append((self.map_tensor_name(name), data_torch))
  1225. return tensors
  1226. @ModelBase.register("MPTForCausalLM")
  1227. class MPTModel(TextModel):
  1228. model_arch = gguf.MODEL_ARCH.MPT
  1229. def set_vocab(self):
  1230. try:
  1231. self._set_vocab_gpt2()
  1232. except Exception:
  1233. # Fallback for SEA-LION model
  1234. self._set_vocab_sentencepiece()
  1235. self.gguf_writer.add_add_bos_token(False)
  1236. self.gguf_writer.add_pad_token_id(3)
  1237. self.gguf_writer.add_eos_token_id(1)
  1238. self.gguf_writer.add_unk_token_id(0)
  1239. def set_gguf_parameters(self):
  1240. block_count = self.hparams["n_layers"]
  1241. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1242. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1243. self.gguf_writer.add_block_count(block_count)
  1244. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1245. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1246. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1247. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1248. self.gguf_writer.add_layer_norm_eps(1e-5)
  1249. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1250. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1251. if self.hparams["attn_config"]["alibi"]:
  1252. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1253. else:
  1254. self.gguf_writer.add_max_alibi_bias(0.0)
  1255. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1256. del bid # unused
  1257. if "scales" in name:
  1258. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1259. new_name = new_name.replace("scales", "act.scales")
  1260. else:
  1261. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1262. return [(new_name, data_torch)]
  1263. @ModelBase.register("OrionForCausalLM")
  1264. class OrionModel(TextModel):
  1265. model_arch = gguf.MODEL_ARCH.ORION
  1266. def set_vocab(self):
  1267. self._set_vocab_sentencepiece()
  1268. def set_gguf_parameters(self):
  1269. block_count = self.hparams["num_hidden_layers"]
  1270. head_count = self.hparams["num_attention_heads"]
  1271. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1272. ctx_length = 0
  1273. if "max_sequence_length" in self.hparams:
  1274. ctx_length = self.hparams["max_sequence_length"]
  1275. elif "max_position_embeddings" in self.hparams:
  1276. ctx_length = self.hparams["max_position_embeddings"]
  1277. elif "model_max_length" in self.hparams:
  1278. ctx_length = self.hparams["model_max_length"]
  1279. else:
  1280. raise ValueError("gguf: can not find ctx length parameter.")
  1281. self.gguf_writer.add_file_type(self.ftype)
  1282. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1283. self.gguf_writer.add_context_length(ctx_length)
  1284. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1285. self.gguf_writer.add_block_count(block_count)
  1286. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1287. self.gguf_writer.add_head_count(head_count)
  1288. self.gguf_writer.add_head_count_kv(head_count_kv)
  1289. # note: config provides rms norm but it is actually layer norm
  1290. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1291. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1292. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1293. class BaichuanModel(TextModel):
  1294. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1295. def set_vocab(self):
  1296. self._set_vocab_sentencepiece()
  1297. def set_gguf_parameters(self):
  1298. block_count = self.hparams["num_hidden_layers"]
  1299. head_count = self.hparams["num_attention_heads"]
  1300. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1301. ctx_length = 0
  1302. if "max_sequence_length" in self.hparams:
  1303. ctx_length = self.hparams["max_sequence_length"]
  1304. elif "max_position_embeddings" in self.hparams:
  1305. ctx_length = self.hparams["max_position_embeddings"]
  1306. elif "model_max_length" in self.hparams:
  1307. ctx_length = self.hparams["model_max_length"]
  1308. else:
  1309. raise ValueError("gguf: can not find ctx length parameter.")
  1310. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1311. self.gguf_writer.add_context_length(ctx_length)
  1312. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1313. self.gguf_writer.add_block_count(block_count)
  1314. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1315. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1316. self.gguf_writer.add_head_count(head_count)
  1317. self.gguf_writer.add_head_count_kv(head_count_kv)
  1318. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1319. self.gguf_writer.add_file_type(self.ftype)
  1320. rope_scaling = self.hparams.get("rope_scaling") or {}
  1321. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1322. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1323. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1324. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1325. head_count = self.hparams["num_attention_heads"]
  1326. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1327. tensors: list[tuple[str, Tensor]] = []
  1328. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1329. logger.info(f"Unpacking and permuting layer {bid}")
  1330. tensors = [
  1331. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1332. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1333. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1334. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1335. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1336. self._reverse_hf_part(data_torch, 2)),
  1337. ]
  1338. else:
  1339. tensors = [(self.map_tensor_name(name), data_torch)]
  1340. return tensors
  1341. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1342. if n_kv_head is not None and n_head != n_kv_head:
  1343. n_head //= n_kv_head
  1344. return (
  1345. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1346. .swapaxes(1, 2)
  1347. .reshape(weights.shape)
  1348. )
  1349. def _reverse_hf_permute_part(
  1350. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1351. ) -> Tensor:
  1352. r = weights.shape[0] // 3
  1353. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1354. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1355. r = weights.shape[0] // 3
  1356. return weights[r * n_part:r * n_part + r, ...]
  1357. @ModelBase.register("XverseForCausalLM")
  1358. class XverseModel(TextModel):
  1359. model_arch = gguf.MODEL_ARCH.XVERSE
  1360. def set_vocab(self):
  1361. assert (self.dir_model / "tokenizer.json").is_file()
  1362. dir_model = self.dir_model
  1363. hparams = self.hparams
  1364. tokens: list[bytes] = []
  1365. toktypes: list[int] = []
  1366. from transformers import AutoTokenizer
  1367. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1368. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1369. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1370. # because vocab_size is the count of items, and indexes start at 0.
  1371. max_vocab_index = max(tokenizer.get_vocab().values())
  1372. if max_vocab_index >= vocab_size:
  1373. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1374. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1375. added_vocab = tokenizer.get_added_vocab()
  1376. for token_id in range(vocab_size):
  1377. token_text = reverse_vocab[token_id].encode('utf-8')
  1378. # replace "\x00" to string with length > 0
  1379. if token_text == b"\x00":
  1380. toktype = gguf.TokenType.BYTE # special
  1381. token_text = f"<{token_text}>".encode('utf-8')
  1382. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1383. toktype = gguf.TokenType.BYTE # special
  1384. elif reverse_vocab[token_id] in added_vocab:
  1385. if tokenizer.added_tokens_decoder[token_id].special:
  1386. toktype = gguf.TokenType.CONTROL
  1387. else:
  1388. toktype = gguf.TokenType.USER_DEFINED
  1389. else:
  1390. toktype = gguf.TokenType.NORMAL
  1391. tokens.append(token_text)
  1392. toktypes.append(toktype)
  1393. self.gguf_writer.add_tokenizer_model("llama")
  1394. self.gguf_writer.add_tokenizer_pre("default")
  1395. self.gguf_writer.add_token_list(tokens)
  1396. self.gguf_writer.add_token_types(toktypes)
  1397. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1398. special_vocab.add_to_gguf(self.gguf_writer)
  1399. def set_gguf_parameters(self):
  1400. block_count = self.hparams["num_hidden_layers"]
  1401. head_count = self.hparams["num_attention_heads"]
  1402. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1403. ctx_length = 0
  1404. if "max_sequence_length" in self.hparams:
  1405. ctx_length = self.hparams["max_sequence_length"]
  1406. elif "max_position_embeddings" in self.hparams:
  1407. ctx_length = self.hparams["max_position_embeddings"]
  1408. elif "model_max_length" in self.hparams:
  1409. ctx_length = self.hparams["model_max_length"]
  1410. else:
  1411. raise ValueError("gguf: can not find ctx length parameter.")
  1412. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1413. self.gguf_writer.add_context_length(ctx_length)
  1414. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1415. self.gguf_writer.add_block_count(block_count)
  1416. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1417. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1418. self.gguf_writer.add_head_count(head_count)
  1419. self.gguf_writer.add_head_count_kv(head_count_kv)
  1420. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1421. self.gguf_writer.add_file_type(self.ftype)
  1422. rope_scaling = self.hparams.get("rope_scaling") or {}
  1423. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1424. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1425. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1426. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1427. del bid # unused
  1428. head_count = self.hparams["num_attention_heads"]
  1429. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1430. # HF models permute some of the tensors, so we need to undo that
  1431. if name.endswith("q_proj.weight"):
  1432. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1433. if name.endswith("k_proj.weight"):
  1434. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1435. return [(self.map_tensor_name(name), data_torch)]
  1436. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1437. if n_kv_head is not None and n_head != n_kv_head:
  1438. n_head //= n_kv_head
  1439. return (
  1440. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1441. .swapaxes(1, 2)
  1442. .reshape(weights.shape)
  1443. )
  1444. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1445. class FalconModel(TextModel):
  1446. model_arch = gguf.MODEL_ARCH.FALCON
  1447. def set_gguf_parameters(self):
  1448. block_count = self.hparams.get("num_hidden_layers")
  1449. if block_count is None:
  1450. block_count = self.hparams["n_layer"] # old name
  1451. n_head = self.hparams.get("num_attention_heads")
  1452. if n_head is None:
  1453. n_head = self.hparams["n_head"] # old name
  1454. n_head_kv = self.hparams.get("num_kv_heads")
  1455. if n_head_kv is None:
  1456. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1457. self.gguf_writer.add_context_length(2048) # not in config.json
  1458. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1459. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1460. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1461. self.gguf_writer.add_block_count(block_count)
  1462. self.gguf_writer.add_head_count(n_head)
  1463. self.gguf_writer.add_head_count_kv(n_head_kv)
  1464. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1465. self.gguf_writer.add_file_type(self.ftype)
  1466. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1467. del bid # unused
  1468. # QKV tensor transform
  1469. # The original query_key_value tensor contains n_head_kv "kv groups",
  1470. # each consisting of n_head/n_head_kv query weights followed by one key
  1471. # and one value weight (shared by all query heads in the kv group).
  1472. # This layout makes it a big pain to work with in GGML.
  1473. # So we rearrange them here,, so that we have n_head query weights
  1474. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1475. # in contiguous fashion.
  1476. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1477. if "query_key_value" in name:
  1478. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1479. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1480. head_dim = self.hparams["hidden_size"] // n_head
  1481. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1482. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1483. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1484. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1485. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1486. return [(self.map_tensor_name(name), data_torch)]
  1487. @ModelBase.register("GPTBigCodeForCausalLM")
  1488. class StarCoderModel(TextModel):
  1489. model_arch = gguf.MODEL_ARCH.STARCODER
  1490. def set_gguf_parameters(self):
  1491. block_count = self.hparams["n_layer"]
  1492. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1493. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1494. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1495. self.gguf_writer.add_block_count(block_count)
  1496. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1497. self.gguf_writer.add_head_count_kv(1)
  1498. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1499. self.gguf_writer.add_file_type(self.ftype)
  1500. @ModelBase.register("GPTRefactForCausalLM")
  1501. class RefactModel(TextModel):
  1502. model_arch = gguf.MODEL_ARCH.REFACT
  1503. def set_vocab(self):
  1504. super().set_vocab()
  1505. # TODO: how to determine special FIM tokens automatically?
  1506. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1507. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1508. special_vocab._set_special_token("prefix", 1)
  1509. special_vocab._set_special_token("suffix", 3)
  1510. special_vocab._set_special_token("middle", 2)
  1511. special_vocab.chat_template = None # do not add it twice
  1512. special_vocab.add_to_gguf(self.gguf_writer)
  1513. def set_gguf_parameters(self):
  1514. hidden_dim = self.hparams["n_embd"]
  1515. inner_dim = 4 * hidden_dim
  1516. hidden_dim = int(2 * inner_dim / 3)
  1517. multiple_of = 256
  1518. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1519. block_count = self.hparams["n_layer"]
  1520. # refact uses Alibi. So this is from config.json which might be used by training.
  1521. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1522. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1523. self.gguf_writer.add_feed_forward_length(ff_dim)
  1524. self.gguf_writer.add_block_count(block_count)
  1525. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1526. self.gguf_writer.add_head_count_kv(1)
  1527. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1528. self.gguf_writer.add_file_type(self.ftype)
  1529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1530. hidden_dim = self.hparams["n_embd"]
  1531. inner_dim = 4 * hidden_dim
  1532. hidden_dim = int(2 * inner_dim / 3)
  1533. multiple_of = 256
  1534. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1535. n_head = self.hparams["n_head"]
  1536. n_head_kv = 1
  1537. head_dim = self.hparams["n_embd"] // n_head
  1538. tensors: list[tuple[str, Tensor]] = []
  1539. if bid is not None:
  1540. if name == f"transformer.h.{bid}.attn.kv.weight":
  1541. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1542. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1543. elif name == f"transformer.h.{bid}.attn.q.weight":
  1544. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1545. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1546. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1547. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1548. if len(tensors) == 0:
  1549. tensors.append((self.map_tensor_name(name), data_torch))
  1550. return tensors
  1551. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1552. class StableLMModel(TextModel):
  1553. model_arch = gguf.MODEL_ARCH.STABLELM
  1554. def set_vocab(self):
  1555. if (self.dir_model / "tokenizer.json").is_file():
  1556. self._set_vocab_gpt2()
  1557. else:
  1558. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1559. self._set_vocab_qwen()
  1560. def set_gguf_parameters(self):
  1561. hparams = self.hparams
  1562. block_count = hparams["num_hidden_layers"]
  1563. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1564. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1565. self.gguf_writer.add_block_count(block_count)
  1566. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1567. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1568. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1569. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1570. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1571. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1572. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1573. self.gguf_writer.add_file_type(self.ftype)
  1574. _q_norms: list[dict[str, Tensor]] | None = None
  1575. _k_norms: list[dict[str, Tensor]] | None = None
  1576. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1577. n_head = self.hparams["num_attention_heads"]
  1578. n_kv_head = self.hparams["num_key_value_heads"]
  1579. if name.find("q_layernorm.norms") != -1:
  1580. assert bid is not None
  1581. if self._q_norms is None:
  1582. self._q_norms = [{} for _ in range(self.block_count)]
  1583. self._q_norms[bid][name] = data_torch
  1584. if len(self._q_norms[bid]) >= n_head:
  1585. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1586. else:
  1587. return []
  1588. if name.find("k_layernorm.norms") != -1:
  1589. assert bid is not None
  1590. if self._k_norms is None:
  1591. self._k_norms = [{} for _ in range(self.block_count)]
  1592. self._k_norms[bid][name] = data_torch
  1593. if len(self._k_norms[bid]) >= n_kv_head:
  1594. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1595. else:
  1596. return []
  1597. return [(self.map_tensor_name(name), data_torch)]
  1598. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1599. datas: list[Tensor] = []
  1600. # extract the norms in order
  1601. for xid in range(n_head):
  1602. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1603. datas.append(norms[ename])
  1604. del norms[ename]
  1605. data_torch = torch.stack(datas, dim=0)
  1606. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1607. new_name = self.map_tensor_name(merged_name)
  1608. return [(new_name, data_torch)]
  1609. def prepare_tensors(self):
  1610. super().prepare_tensors()
  1611. if self._q_norms is not None or self._k_norms is not None:
  1612. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1613. norms = (
  1614. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1615. ) + (
  1616. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1617. )
  1618. if len(norms) > 0:
  1619. raise ValueError(f"Unprocessed norms: {norms}")
  1620. @ModelBase.register(
  1621. "LLaMAForCausalLM",
  1622. "LlamaForCausalLM",
  1623. "MistralForCausalLM",
  1624. "MixtralForCausalLM",
  1625. "VLlama3ForCausalLM",
  1626. "LlavaForConditionalGeneration",
  1627. "VoxtralForConditionalGeneration",
  1628. "LlamaModel")
  1629. class LlamaModel(TextModel):
  1630. model_arch = gguf.MODEL_ARCH.LLAMA
  1631. undo_permute = True
  1632. def __init__(self, *args, **kwargs):
  1633. super().__init__(*args, **kwargs)
  1634. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1635. if self.hf_arch == "VLlama3ForCausalLM":
  1636. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1637. def _set_vocab_mistral(self):
  1638. vocab = MistralVocab(self.dir_model)
  1639. logger.info(
  1640. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1641. )
  1642. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1643. tokens = []
  1644. scores = []
  1645. toktypes = []
  1646. for text, score, toktype in vocab.all_tokens():
  1647. tokens.append(text)
  1648. scores.append(score)
  1649. toktypes.append(toktype)
  1650. assert len(tokens) == vocab.vocab_size, (
  1651. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1652. )
  1653. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1654. self.gguf_writer.add_tokenizer_pre("tekken")
  1655. self.gguf_writer.add_token_merges(
  1656. vocab.extract_vocab_merges_from_model()
  1657. )
  1658. logger.info(
  1659. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1660. )
  1661. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1662. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1663. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1664. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1665. self.gguf_writer.add_token_list(tokens)
  1666. self.gguf_writer.add_token_scores(scores)
  1667. self.gguf_writer.add_token_types(toktypes)
  1668. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1669. self.gguf_writer.add_add_bos_token(True)
  1670. self.gguf_writer.add_add_eos_token(False)
  1671. template_dir = Path(__file__).parent / "models/templates/"
  1672. template = MistralModel.get_community_chat_template(vocab, template_dir)
  1673. self.gguf_writer.add_chat_template(template)
  1674. def set_vocab(self):
  1675. if self.is_mistral_format:
  1676. return self._set_vocab_mistral()
  1677. path_tekken_json = self.dir_model / "tekken.json"
  1678. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1679. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1680. self._set_vocab_mistral()
  1681. try:
  1682. self._set_vocab_sentencepiece()
  1683. except FileNotFoundError:
  1684. try:
  1685. self._set_vocab_llama_hf()
  1686. except (FileNotFoundError, TypeError):
  1687. # Llama 3
  1688. self._set_vocab_gpt2()
  1689. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1690. if self.hparams.get("vocab_size", 32000) == 32016:
  1691. special_vocab = gguf.SpecialVocab(
  1692. self.dir_model, load_merges=False,
  1693. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1694. )
  1695. special_vocab._set_special_token("prefix", 32007)
  1696. special_vocab._set_special_token("suffix", 32008)
  1697. special_vocab._set_special_token("middle", 32009)
  1698. special_vocab._set_special_token("eot", 32010)
  1699. special_vocab.add_to_gguf(self.gguf_writer)
  1700. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1701. if tokenizer_config_file.is_file():
  1702. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1703. tokenizer_config_json = json.load(f)
  1704. if "add_prefix_space" in tokenizer_config_json:
  1705. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1706. # Apply to granite small models only
  1707. if self.hparams.get("vocab_size", 32000) == 49152:
  1708. self.gguf_writer.add_add_bos_token(False)
  1709. def set_gguf_parameters(self):
  1710. super().set_gguf_parameters()
  1711. hparams = self.hparams
  1712. if not self.is_mistral_format:
  1713. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1714. if (rope_dim := hparams.get("head_dim")) is None:
  1715. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1716. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1717. rope_scaling = self.hparams.get("rope_scaling") or {}
  1718. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1719. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1720. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1721. @staticmethod
  1722. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1723. if n_head_kv is not None and n_head != n_head_kv:
  1724. n_head = n_head_kv
  1725. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1726. .swapaxes(1, 2)
  1727. .reshape(weights.shape))
  1728. _experts: list[dict[str, Tensor]] | None = None
  1729. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1730. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1731. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1732. vision_prefixes = [
  1733. "vision_encoder.",
  1734. "vision_language_adapter.",
  1735. "patch_merger.",
  1736. "pre_mm_projector_norm",
  1737. ]
  1738. is_multimodal_tensor = "vision_tower" in name \
  1739. or "vision_model" in name \
  1740. or "audio_tower" in name \
  1741. or "model.connector" in name \
  1742. or "multi_modal_projector" in name \
  1743. or any(
  1744. name.startswith(prefix)
  1745. for prefix in vision_prefixes
  1746. )
  1747. if is_multimodal_tensor:
  1748. return [] # skip vision tensors
  1749. elif self.hf_arch == "LlamaModel":
  1750. name = "model." + name
  1751. elif name.startswith("model.text_model"):
  1752. name = name.replace("text_model.", "") # for SmolVLM
  1753. elif name.startswith("language_model."):
  1754. name = name.replace("language_model.", "") # for the rest
  1755. if self.undo_permute:
  1756. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1757. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1758. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1759. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1760. # process the experts separately
  1761. if name.find("block_sparse_moe.experts") != -1:
  1762. n_experts = self.hparams["num_local_experts"]
  1763. assert bid is not None
  1764. if self._experts is None:
  1765. self._experts = [{} for _ in range(self.block_count)]
  1766. self._experts[bid][name] = data_torch
  1767. if len(self._experts[bid]) >= n_experts * 3:
  1768. tensors: list[tuple[str, Tensor]] = []
  1769. # merge the experts into a single 3d tensor
  1770. for wid in ["w1", "w2", "w3"]:
  1771. datas: list[Tensor] = []
  1772. for xid in range(n_experts):
  1773. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1774. datas.append(self._experts[bid][ename])
  1775. del self._experts[bid][ename]
  1776. data_torch = torch.stack(datas, dim=0)
  1777. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1778. new_name = self.map_tensor_name(merged_name)
  1779. tensors.append((new_name, data_torch))
  1780. return tensors
  1781. else:
  1782. return []
  1783. return [(self.map_tensor_name(name), data_torch)]
  1784. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1785. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1786. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1787. base = self.hparams.get("rope_theta", 10000.0)
  1788. if (dim := self.hparams.get("head_dim")) is None:
  1789. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1790. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1791. factor = rope_scaling.get("factor", 8.0)
  1792. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1793. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1794. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1795. low_freq_wavelen = old_context_len / low_freq_factor
  1796. high_freq_wavelen = old_context_len / high_freq_factor
  1797. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1798. rope_factors = []
  1799. for freq in freqs:
  1800. wavelen = 2 * math.pi / freq
  1801. if wavelen < high_freq_wavelen:
  1802. rope_factors.append(1)
  1803. elif wavelen > low_freq_wavelen:
  1804. rope_factors.append(factor)
  1805. else:
  1806. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1807. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1808. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1809. def prepare_tensors(self):
  1810. super().prepare_tensors()
  1811. if self._experts is not None:
  1812. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1813. experts = [k for d in self._experts for k in d.keys()]
  1814. if len(experts) > 0:
  1815. raise ValueError(f"Unprocessed experts: {experts}")
  1816. @ModelBase.register("ArceeForCausalLM")
  1817. class ArceeModel(LlamaModel):
  1818. model_arch = gguf.MODEL_ARCH.ARCEE
  1819. def set_gguf_parameters(self):
  1820. super().set_gguf_parameters()
  1821. self._try_set_pooling_type()
  1822. rope_scaling = self.hparams.get("rope_scaling") or {}
  1823. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1824. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1825. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1826. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1827. @ModelBase.register(
  1828. "LlavaForConditionalGeneration", # pixtral
  1829. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1830. )
  1831. class LlavaVisionModel(MmprojModel):
  1832. img_break_tok_id = -1
  1833. def __init__(self, *args, **kwargs):
  1834. super().__init__(*args, **kwargs)
  1835. if self.hparams.get("model_type") == "pixtral":
  1836. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1837. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1838. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1839. elif self.is_mistral_format:
  1840. # hparams is already vision config here so norm_eps is only defined in global_config.
  1841. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1842. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1843. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1844. else:
  1845. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1846. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1847. def get_token_id(self, token: str) -> int:
  1848. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1849. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1850. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1851. for id_, token_data in added_tokens_decoder.items():
  1852. if token_data["content"] == token:
  1853. return int(id_)
  1854. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1855. def set_gguf_parameters(self):
  1856. super().set_gguf_parameters()
  1857. hparams = self.hparams
  1858. if hparams.get("model_type") == "pixtral":
  1859. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1860. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1861. # hidden_act
  1862. if hparams["hidden_act"] == "silu":
  1863. self.gguf_writer.add_vision_use_silu(True)
  1864. elif hparams["hidden_act"] == "gelu":
  1865. self.gguf_writer.add_vision_use_gelu(True)
  1866. else:
  1867. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1868. # spatial_merge_size
  1869. if "spatial_merge_size" in self.global_config:
  1870. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1871. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1872. del bid # unused
  1873. n_head = (
  1874. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1875. )
  1876. n_kv_head = n_head
  1877. valid_prefixes = (
  1878. "multi_modal_projector.",
  1879. "vision_tower.",
  1880. "vision_encoder.",
  1881. "vision_language_adapter.",
  1882. "patch_merger.",
  1883. "pre_mm_projector_norm",
  1884. )
  1885. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1886. # process vision tensors
  1887. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1888. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1889. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1890. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1891. return [(self.map_tensor_name(name), data_torch)]
  1892. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1893. if self.img_break_tok_id > 0 and embed_key in name:
  1894. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1895. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1896. img_break_embd = data_torch[self.img_break_tok_id]
  1897. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1898. return [(self.map_tensor_name(name), img_break_embd)]
  1899. return [] # skip other tensors
  1900. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1901. class SmolVLMModel(MmprojModel):
  1902. def __init__(self, *args, **kwargs):
  1903. super().__init__(*args, **kwargs)
  1904. if self.hparams["model_type"] == "smolvlm_vision":
  1905. # fix for SmolVLM2, missing some keys in config.json
  1906. # default values are taken from transformers code
  1907. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1908. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1909. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1910. def set_gguf_parameters(self):
  1911. super().set_gguf_parameters()
  1912. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1913. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1914. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1915. self.gguf_writer.add_vision_use_gelu(True)
  1916. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1917. if ".embeddings." in name:
  1918. return gguf.GGMLQuantizationType.F32
  1919. return super().tensor_force_quant(name, new_name, bid, n_dims)
  1920. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1921. del bid # unused
  1922. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1923. if is_vision_tensor:
  1924. return [(self.map_tensor_name(name), data_torch)]
  1925. return [] # skip other tensors
  1926. @ModelBase.register("Llama4ForConditionalGeneration")
  1927. class Llama4Model(LlamaModel):
  1928. model_arch = gguf.MODEL_ARCH.LLAMA4
  1929. undo_permute = False
  1930. def __init__(self, *args, **kwargs):
  1931. super().__init__(*args, **kwargs)
  1932. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1933. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1934. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1935. def set_vocab(self):
  1936. self._set_vocab_gpt2()
  1937. def set_gguf_parameters(self):
  1938. super().set_gguf_parameters()
  1939. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1940. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1941. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1942. if name.startswith("language_model."):
  1943. name = name.replace("language_model.", "")
  1944. # split the gate_up into gate and up
  1945. if "gate_up_proj" in name:
  1946. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1947. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1948. dim_half = data_torch.shape[-1] // 2
  1949. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1950. return [
  1951. (self.map_tensor_name(name_gate), gate_proj_weight),
  1952. (self.map_tensor_name(name_up), up_proj_weight)
  1953. ]
  1954. if name.endswith("down_proj"):
  1955. name += ".weight"
  1956. data_torch = data_torch.transpose(-1, -2)
  1957. if "multi_modal_projector" in name or "vision_model" in name:
  1958. return []
  1959. return super().modify_tensors(data_torch, name, bid)
  1960. @ModelBase.register("Llama4ForConditionalGeneration")
  1961. class Llama4VisionModel(MmprojModel):
  1962. def set_gguf_parameters(self):
  1963. super().set_gguf_parameters()
  1964. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1965. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1966. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1967. assert self.hparams["hidden_act"] == "gelu"
  1968. self.gguf_writer.add_vision_use_gelu(True)
  1969. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1970. del bid # unused
  1971. if "multi_modal_projector" in name or "vision_model" in name:
  1972. # process vision tensors
  1973. if "positional_embedding_vlm" in name and ".weight" not in name:
  1974. name += ".weight"
  1975. if "multi_modal_projector.linear_1" in name:
  1976. # despite the name with number postfix, this is a single fully connected layer
  1977. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1978. return [(self.map_tensor_name(name), data_torch)]
  1979. return []
  1980. @ModelBase.register("Mistral3ForConditionalGeneration")
  1981. class Mistral3Model(LlamaModel):
  1982. model_arch = gguf.MODEL_ARCH.LLAMA
  1983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1984. name = name.replace("language_model.", "")
  1985. if "multi_modal_projector" in name or "vision_tower" in name:
  1986. return []
  1987. return super().modify_tensors(data_torch, name, bid)
  1988. @ModelBase.register("DeciLMForCausalLM")
  1989. class DeciModel(TextModel):
  1990. model_arch = gguf.MODEL_ARCH.DECI
  1991. @staticmethod
  1992. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1993. # DeciLM-specific code
  1994. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1995. return DeciModel._find_multiple(intermediate_size, 256)
  1996. @staticmethod
  1997. def _find_multiple(n: int, k: int) -> int:
  1998. # DeciLM-specific code
  1999. if n % k == 0:
  2000. return n
  2001. return n + k - (n % k)
  2002. def __init__(self, *args, **kwargs):
  2003. super().__init__(*args, **kwargs)
  2004. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2005. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2006. assert self.block_count == len(_block_configs)
  2007. self._num_kv_heads = list()
  2008. self._num_heads = list()
  2009. _ffn_multipliers = list()
  2010. # ***linear attention layer***
  2011. # if n_heads_in_group is None and replace_with_linear is True
  2012. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2013. # ***attention-free layer***
  2014. # if n_heads_in_group is None and replace_with_linear is False
  2015. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2016. # ***normal attention-layer***
  2017. # if n_heads_in_group is not None, then
  2018. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2019. # _num_heads[il] is num_attention_head
  2020. # ***dummy layer*** for nemotron 253B
  2021. # if n_heads_in_group is None and ffn_mult is None
  2022. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2023. for il in range(len(_block_configs)):
  2024. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2025. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2026. self._num_kv_heads.append(0)
  2027. self._num_heads.append(self.hparams["num_attention_heads"])
  2028. else:
  2029. self._num_kv_heads.append(0)
  2030. self._num_heads.append(0)
  2031. else:
  2032. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2033. self._num_heads.append(self.hparams["num_attention_heads"])
  2034. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2035. _ffn_multipliers.append(0.0)
  2036. else:
  2037. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2038. assert self.block_count == len(self._num_kv_heads)
  2039. assert self.block_count == len(self._num_heads)
  2040. assert self.block_count == len(_ffn_multipliers)
  2041. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2042. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2043. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2044. self._ffn_dims: list[int] = [
  2045. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2046. for multiplier in _ffn_multipliers
  2047. ]
  2048. def set_vocab(self):
  2049. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2050. # eos_token from '|eot_id|' to '|end_of_text|'
  2051. if self.hparams.get("vocab_size", 128256) == 128256:
  2052. tokens, toktypes, tokpre = self.get_vocab_base()
  2053. self.gguf_writer.add_tokenizer_model("gpt2")
  2054. self.gguf_writer.add_tokenizer_pre(tokpre)
  2055. self.gguf_writer.add_token_list(tokens)
  2056. self.gguf_writer.add_token_types(toktypes)
  2057. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2058. special_vocab.add_to_gguf(self.gguf_writer)
  2059. else:
  2060. # DeciLM-7B
  2061. self._set_vocab_llama_hf()
  2062. def set_gguf_parameters(self):
  2063. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2064. assert self.block_count == len(self._num_kv_heads)
  2065. assert self.block_count == len(self._num_heads)
  2066. assert self.block_count == len(self._ffn_dims)
  2067. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2068. self.gguf_writer.add_rope_freq_base(rope_theta)
  2069. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2070. self.gguf_writer.add_head_count(self._num_heads)
  2071. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2072. self.gguf_writer.add_block_count(self.block_count)
  2073. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2074. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2075. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2076. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2077. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2078. self.gguf_writer.add_file_type(self.ftype)
  2079. else: # DeciLM-7B
  2080. super().set_gguf_parameters()
  2081. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2082. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2083. assert self.block_count == len(self._num_kv_heads)
  2084. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2085. hparams = self.hparams
  2086. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2087. if (rope_dim := hparams.get("head_dim")) is None:
  2088. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2089. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2090. rope_scaling = self.hparams.get("rope_scaling") or {}
  2091. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2092. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2093. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2094. @staticmethod
  2095. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2096. if n_head_kv is not None and n_head != n_head_kv:
  2097. n_head = n_head_kv
  2098. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2099. .swapaxes(1, 2)
  2100. .reshape(weights.shape))
  2101. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2102. n_head = self.hparams["num_attention_heads"]
  2103. if bid is not None:
  2104. if "num_key_value_heads_per_layer" in self.hparams:
  2105. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2106. elif "block_configs" in self.hparams:
  2107. n_kv_head = self._num_kv_heads[bid]
  2108. n_head = self._num_heads[bid]
  2109. else:
  2110. n_kv_head = self.hparams.get("num_key_value_heads")
  2111. else:
  2112. n_kv_head = self.hparams.get("num_key_value_heads")
  2113. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2114. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2115. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2116. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2117. return [(self.map_tensor_name(name), data_torch)]
  2118. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2119. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2120. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2121. base = self.hparams.get("rope_theta", 10000.0)
  2122. if (dim := self.hparams.get("head_dim")) is None:
  2123. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2124. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2125. factor = rope_scaling.get("factor", 8.0)
  2126. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2127. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2128. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2129. low_freq_wavelen = old_context_len / low_freq_factor
  2130. high_freq_wavelen = old_context_len / high_freq_factor
  2131. assert low_freq_wavelen != high_freq_wavelen
  2132. rope_factors = []
  2133. for freq in freqs:
  2134. wavelen = 2 * math.pi / freq
  2135. if wavelen < high_freq_wavelen:
  2136. rope_factors.append(1)
  2137. elif wavelen > low_freq_wavelen:
  2138. rope_factors.append(factor)
  2139. else:
  2140. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2141. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2142. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2143. def prepare_tensors(self):
  2144. super().prepare_tensors()
  2145. @ModelBase.register("BitnetForCausalLM")
  2146. class BitnetModel(TextModel):
  2147. model_arch = gguf.MODEL_ARCH.BITNET
  2148. def set_vocab(self):
  2149. self._set_vocab_sentencepiece()
  2150. def set_gguf_parameters(self):
  2151. super().set_gguf_parameters()
  2152. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2153. self.gguf_writer.add_rope_scaling_factor(1.0)
  2154. def weight_quant(self, weight: Tensor) -> Tensor:
  2155. dtype = weight.dtype
  2156. weight = weight.float()
  2157. scale = weight.abs().mean().clamp(min=1e-5)
  2158. iscale = 1 / scale
  2159. # TODO: multiply by the scale directly instead of inverting it twice
  2160. # (this is also unnecessarily doubly inverted upstream)
  2161. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2162. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2163. return result.type(dtype)
  2164. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2165. new_name = self.map_tensor_name(name)
  2166. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2167. gguf.MODEL_TENSOR.ATTN_Q,
  2168. gguf.MODEL_TENSOR.ATTN_K,
  2169. gguf.MODEL_TENSOR.ATTN_V,
  2170. gguf.MODEL_TENSOR.ATTN_OUT,
  2171. gguf.MODEL_TENSOR.FFN_UP,
  2172. gguf.MODEL_TENSOR.FFN_DOWN,
  2173. gguf.MODEL_TENSOR.FFN_GATE,
  2174. ]):
  2175. # transform weight into 1/0/-1 (in fp32)
  2176. data_torch = self.weight_quant(data_torch)
  2177. yield (new_name, data_torch)
  2178. @ModelBase.register("GrokForCausalLM")
  2179. class GrokModel(TextModel):
  2180. model_arch = gguf.MODEL_ARCH.GROK
  2181. def set_vocab(self):
  2182. self._set_vocab_sentencepiece()
  2183. def __init__(self, *args, **kwargs):
  2184. super().__init__(*args, **kwargs)
  2185. def set_gguf_parameters(self):
  2186. super().set_gguf_parameters()
  2187. _experts: list[dict[str, Tensor]] | None = None
  2188. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2189. # process the experts separately
  2190. if name.find(".moe.") != -1:
  2191. n_experts = self.hparams["num_local_experts"]
  2192. assert bid is not None
  2193. if self._experts is None:
  2194. self._experts = [{} for _ in range(self.block_count)]
  2195. self._experts[bid][name] = data_torch
  2196. if len(self._experts[bid]) >= n_experts * 3:
  2197. tensors: list[tuple[str, Tensor]] = []
  2198. # merge the experts into a single 3d tensor
  2199. for wid in ["linear", "linear_1", "linear_v"]:
  2200. datas: list[Tensor] = []
  2201. for xid in range(n_experts):
  2202. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2203. datas.append(self._experts[bid][ename])
  2204. del self._experts[bid][ename]
  2205. data_torch = torch.stack(datas, dim=0)
  2206. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2207. new_name = self.map_tensor_name(merged_name)
  2208. tensors.append((new_name, data_torch))
  2209. return tensors
  2210. else:
  2211. return []
  2212. return [(self.map_tensor_name(name), data_torch)]
  2213. @ModelBase.register("DbrxForCausalLM")
  2214. class DbrxModel(TextModel):
  2215. model_arch = gguf.MODEL_ARCH.DBRX
  2216. def set_gguf_parameters(self):
  2217. ffn_config = self.hparams["ffn_config"]
  2218. attn_config = self.hparams["attn_config"]
  2219. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2220. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2221. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2222. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2223. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2224. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2225. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2226. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2227. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2228. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2229. self.gguf_writer.add_layer_norm_eps(1e-5)
  2230. self.gguf_writer.add_file_type(self.ftype)
  2231. logger.info(f"gguf: file type = {self.ftype}")
  2232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2233. del bid # unused
  2234. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2235. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2236. n_embd = self.hparams["d_model"]
  2237. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2238. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2239. # But llama.cpp moe graph works differently
  2240. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2241. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2242. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2243. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2244. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2245. experts = False
  2246. for exp_tensor_name in exp_tensor_names.keys():
  2247. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2248. experts = True
  2249. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2250. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2251. data_torch = data_torch.permute(*permute_tensor)
  2252. break
  2253. # map tensor names
  2254. # In MoE models the ffn tensors are typically most of the model weights,
  2255. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2256. # Every other model has the weight names ending in .weight,
  2257. # let's assume that is the convention which is not the case for dbrx:
  2258. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2259. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2260. return [(new_name, data_torch)]
  2261. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2262. del name, new_name, bid # unused
  2263. return n_dims > 1
  2264. @ModelBase.register("MiniCPMForCausalLM")
  2265. class MiniCPMModel(TextModel):
  2266. model_arch = gguf.MODEL_ARCH.MINICPM
  2267. def set_gguf_parameters(self):
  2268. super().set_gguf_parameters()
  2269. embedding_scale = float(self.hparams["scale_emb"])
  2270. self.gguf_writer.add_embedding_scale(embedding_scale)
  2271. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2272. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2273. self.gguf_writer.add_residual_scale(residual_scale)
  2274. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2275. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2276. self.gguf_writer.add_logit_scale(logit_scale)
  2277. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2278. rope_scaling = self.hparams.get("rope_scaling") or {}
  2279. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2280. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2281. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2282. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2283. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2284. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2285. if rope_scaling is not None:
  2286. long_factors = rope_scaling.get('long_factor', None)
  2287. short_factors = rope_scaling.get('short_factor', None)
  2288. if long_factors is None or short_factors is None:
  2289. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2290. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2291. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2292. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2293. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2294. def set_vocab(self):
  2295. self._set_vocab_sentencepiece()
  2296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2297. del bid # unused
  2298. n_head = self.hparams["num_attention_heads"]
  2299. n_kv_head = self.hparams.get("num_key_value_heads")
  2300. # HF models permute some of the tensors, so we need to undo that
  2301. if name.endswith(("q_proj.weight")):
  2302. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2303. if name.endswith(("k_proj.weight")):
  2304. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2305. return [(self.map_tensor_name(name), data_torch)]
  2306. @ModelBase.register("MiniCPM3ForCausalLM")
  2307. class MiniCPM3Model(TextModel):
  2308. model_arch = gguf.MODEL_ARCH.MINICPM3
  2309. def set_gguf_parameters(self):
  2310. hparams = self.hparams
  2311. self.gguf_writer.add_file_type(self.ftype)
  2312. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2313. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2314. self.gguf_writer.add_block_count(self.block_count)
  2315. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2316. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2317. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2318. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2319. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2320. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2321. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2322. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2323. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2324. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2325. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2326. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2327. if rope_scaling is not None:
  2328. rope_dims = self.hparams["qk_rope_head_dim"]
  2329. long_factors = rope_scaling.get('long_factor', None)
  2330. short_factors = rope_scaling.get('short_factor', None)
  2331. if long_factors is None or short_factors is None:
  2332. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2333. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2334. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2335. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2336. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2337. def set_vocab(self):
  2338. self._set_vocab_sentencepiece()
  2339. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2340. if n_kv_head is not None and n_head != n_kv_head:
  2341. n_head //= n_kv_head
  2342. return (
  2343. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2344. .swapaxes(1, 2)
  2345. .reshape(weights.shape)
  2346. )
  2347. @ModelBase.register("QWenLMHeadModel")
  2348. class QwenModel(TextModel):
  2349. model_arch = gguf.MODEL_ARCH.QWEN
  2350. @staticmethod
  2351. def token_bytes_to_string(b):
  2352. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2353. byte_encoder = bytes_to_unicode()
  2354. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2355. @staticmethod
  2356. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2357. parts = [bytes([b]) for b in token]
  2358. while True:
  2359. min_idx = None
  2360. min_rank = None
  2361. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2362. rank = mergeable_ranks.get(pair[0] + pair[1])
  2363. if rank is not None and (min_rank is None or rank < min_rank):
  2364. min_idx = i
  2365. min_rank = rank
  2366. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2367. break
  2368. assert min_idx is not None
  2369. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2370. return parts
  2371. def set_vocab(self):
  2372. self._set_vocab_qwen()
  2373. def set_gguf_parameters(self):
  2374. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2375. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2376. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2377. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2378. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2379. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2380. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2381. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2382. self.gguf_writer.add_file_type(self.ftype)
  2383. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2384. class Qwen2Model(TextModel):
  2385. model_arch = gguf.MODEL_ARCH.QWEN2
  2386. def set_vocab(self):
  2387. try:
  2388. self._set_vocab_sentencepiece()
  2389. except FileNotFoundError:
  2390. self._set_vocab_gpt2()
  2391. def set_gguf_parameters(self):
  2392. super().set_gguf_parameters()
  2393. self._try_set_pooling_type()
  2394. rope_scaling = self.hparams.get("rope_scaling") or {}
  2395. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2396. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2397. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2398. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2399. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2400. if self.hf_arch == "Qwen2Model":
  2401. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2402. if "language_model." in name:
  2403. name = name.replace("language_model.", "") # for InternVL
  2404. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2405. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2406. # skip vision and audio tensors
  2407. return []
  2408. yield from super().modify_tensors(data_torch, name, bid)
  2409. @ModelBase.register("DreamModel")
  2410. class DreamModel(TextModel):
  2411. model_arch = gguf.MODEL_ARCH.DREAM
  2412. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2413. tokens: list[str] = []
  2414. toktypes: list[int] = []
  2415. from transformers import AutoTokenizer
  2416. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2417. vocab_dict = tokenizer.get_vocab()
  2418. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2419. assert max(vocab_dict.values()) < vocab_size
  2420. tokpre = self.get_vocab_base_pre(tokenizer)
  2421. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2422. added_vocab = tokenizer.get_added_vocab()
  2423. for i in range(vocab_size):
  2424. if i not in reverse_vocab:
  2425. tokens.append(f"[PAD{i}]")
  2426. toktypes.append(gguf.TokenType.UNUSED)
  2427. elif reverse_vocab[i] in added_vocab:
  2428. tokens.append(reverse_vocab[i])
  2429. # Check if it's a special token - treat special tokens as CONTROL tokens
  2430. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2431. if tokenizer.added_tokens_decoder[i].special:
  2432. toktypes.append(gguf.TokenType.CONTROL)
  2433. else:
  2434. toktypes.append(gguf.TokenType.USER_DEFINED)
  2435. else:
  2436. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2437. toktypes.append(gguf.TokenType.CONTROL)
  2438. else:
  2439. tokens.append(reverse_vocab[i])
  2440. toktypes.append(gguf.TokenType.NORMAL)
  2441. return tokens, toktypes, tokpre
  2442. def set_vocab(self):
  2443. try:
  2444. self._set_vocab_sentencepiece()
  2445. except FileNotFoundError:
  2446. self._set_vocab_gpt2()
  2447. def set_gguf_parameters(self):
  2448. super().set_gguf_parameters()
  2449. self._try_set_pooling_type()
  2450. # Dream models use non-causal attention for diffusion
  2451. self.gguf_writer.add_causal_attention(False)
  2452. # Handle RoPE scaling similar to Qwen2
  2453. rope_scaling = self.hparams.get("rope_scaling") or {}
  2454. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2455. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2456. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2457. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2458. # Add Dream-specific parameters
  2459. mask_token_id = self.hparams.get("mask_token_id")
  2460. if mask_token_id is not None:
  2461. self.gguf_writer.add_mask_token_id(mask_token_id)
  2462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2463. # Dream model tensors should be mapped directly since it's the base model
  2464. yield from super().modify_tensors(data_torch, name, bid)
  2465. @ModelBase.register("LLaDAModelLM")
  2466. class LLaDAModel(TextModel):
  2467. model_arch = gguf.MODEL_ARCH.LLADA
  2468. undo_permute = True
  2469. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2470. tokens: list[str] = []
  2471. toktypes: list[int] = []
  2472. from transformers import AutoTokenizer
  2473. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2474. vocab_dict = tokenizer.get_vocab()
  2475. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2476. assert max(vocab_dict.values()) < vocab_size
  2477. tokpre = self.get_vocab_base_pre(tokenizer)
  2478. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2479. added_vocab = tokenizer.get_added_vocab()
  2480. for i in range(vocab_size):
  2481. if i not in reverse_vocab:
  2482. tokens.append(f"[PAD{i}]")
  2483. toktypes.append(gguf.TokenType.UNUSED)
  2484. elif reverse_vocab[i] in added_vocab:
  2485. tokens.append(reverse_vocab[i])
  2486. # Check if it's a special token - treat special tokens as CONTROL tokens
  2487. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2488. if tokenizer.added_tokens_decoder[i].special:
  2489. toktypes.append(gguf.TokenType.CONTROL)
  2490. else:
  2491. toktypes.append(gguf.TokenType.USER_DEFINED)
  2492. else:
  2493. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2494. toktypes.append(gguf.TokenType.CONTROL)
  2495. else:
  2496. tokens.append(reverse_vocab[i])
  2497. toktypes.append(gguf.TokenType.NORMAL)
  2498. return tokens, toktypes, tokpre
  2499. def set_vocab(self):
  2500. self._set_vocab_gpt2()
  2501. # LLaDA specific parameters
  2502. self.gguf_writer.add_add_bos_token(True)
  2503. def set_gguf_parameters(self):
  2504. super().set_gguf_parameters()
  2505. self._try_set_pooling_type()
  2506. # Add parameters similar to LlamaModel
  2507. hparams = self.hparams
  2508. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2509. if (rope_dim := hparams.get("head_dim")) is None:
  2510. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2511. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2512. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2513. # Set context length for LLaDA
  2514. context_length = self.hparams.get("max_sequence_length", 4096)
  2515. self.gguf_writer.add_context_length(context_length)
  2516. # Set embedding length (dimension size)
  2517. embedding_length = self.hparams.get("d_model", 4096)
  2518. self.gguf_writer.add_embedding_length(embedding_length)
  2519. # Set feed forward length (MLP hidden size)
  2520. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2521. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2522. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2523. self.gguf_writer.add_causal_attention(False)
  2524. # LLaDA models don't shift their logits
  2525. self.gguf_writer.add_diffusion_shift_logits(False)
  2526. @staticmethod
  2527. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2528. if n_head_kv is not None and n_head != n_head_kv:
  2529. n_head = n_head_kv
  2530. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2531. .swapaxes(1, 2)
  2532. .reshape(weights.shape))
  2533. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2534. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2535. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2536. if self.undo_permute:
  2537. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2538. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2539. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2540. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2541. # LLaDA model tensors should be mapped directly since it's the base model
  2542. yield from super().modify_tensors(data_torch, name, bid)
  2543. @ModelBase.register("Ernie4_5_ForCausalLM")
  2544. class Ernie4_5Model(TextModel):
  2545. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2546. def set_vocab(self):
  2547. self._set_vocab_sentencepiece()
  2548. def set_gguf_parameters(self):
  2549. super().set_gguf_parameters()
  2550. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2551. num_heads = self.hparams["num_attention_heads"]
  2552. num_kv_heads = self.hparams["num_key_value_heads"]
  2553. if (head_dim := self.hparams.get("head_dim")) is None:
  2554. head_dim = self.hparams["hidden_size"] // num_heads
  2555. if "ernie." in name:
  2556. name = name.replace("ernie.", "model.")
  2557. # split the qkv weights
  2558. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2559. if "qkv_proj" in name:
  2560. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2561. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2562. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2563. total_q_dim = num_heads * head_dim
  2564. total_k_dim = num_kv_heads * head_dim
  2565. total_v_dim = num_kv_heads * head_dim
  2566. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2567. return [
  2568. (self.map_tensor_name(name_q), q_proj_weight),
  2569. (self.map_tensor_name(name_k), k_proj_weight),
  2570. (self.map_tensor_name(name_v), v_proj_weight)
  2571. ]
  2572. # split the up_gate_proj into gate and up
  2573. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2574. if "up_gate_proj" in name:
  2575. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2576. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2577. dim_half = data_torch.shape[0] // 2
  2578. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2579. return [
  2580. (self.map_tensor_name(name_gate), gate_proj_weight),
  2581. (self.map_tensor_name(name_up), up_proj_weight)
  2582. ]
  2583. return [(self.map_tensor_name(name), data_torch)]
  2584. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2585. class Ernie4_5MoeModel(Ernie4_5Model):
  2586. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2587. _experts: list[dict[str, Tensor]] | None = None
  2588. def __init__(self, *args, **kwargs):
  2589. super().__init__(*args, **kwargs)
  2590. self._experts = [{} for _ in range(self.block_count)]
  2591. def set_gguf_parameters(self):
  2592. super().set_gguf_parameters()
  2593. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2594. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2595. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2596. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2597. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2598. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2599. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2600. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2601. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2602. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2603. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2604. # Modify correction bias name as in DeepseekV2
  2605. if name.endswith("e_score_correction_bias"):
  2606. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2607. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2608. match = re.match(r"model.mtp_block.(\d+)", name)
  2609. if match:
  2610. return []
  2611. # skip all other MTP tensors for now
  2612. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2613. if match:
  2614. return []
  2615. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2616. if match:
  2617. return []
  2618. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2619. if match:
  2620. return []
  2621. # process the experts separately
  2622. if name.find("mlp.experts") != -1:
  2623. n_experts = self.hparams["moe_num_experts"]
  2624. assert bid is not None
  2625. if self._experts is None:
  2626. self._experts = [{} for _ in range(self.block_count)]
  2627. self._experts[bid][name] = data_torch
  2628. if len(self._experts[bid]) >= n_experts * 3:
  2629. tensors: list[tuple[str, Tensor]] = []
  2630. # merge the experts into a single 3d tensor
  2631. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2632. datas: list[Tensor] = []
  2633. for xid in range(n_experts):
  2634. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2635. datas.append(self._experts[bid][ename_to_retrieve])
  2636. del self._experts[bid][ename_to_retrieve]
  2637. data_torch = torch.stack(datas, dim=0)
  2638. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2639. new_name = self.map_tensor_name(merged_name)
  2640. tensors.append((new_name, data_torch))
  2641. return tensors
  2642. else:
  2643. return []
  2644. return [(self.map_tensor_name(name), data_torch)]
  2645. def prepare_tensors(self):
  2646. super().prepare_tensors()
  2647. if self._experts is not None:
  2648. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2649. experts = [k for d in self._experts for k in d.keys()]
  2650. if len(experts) > 0:
  2651. raise ValueError(f"Unprocessed experts: {experts}")
  2652. @ModelBase.register(
  2653. "Qwen2VLModel",
  2654. "Qwen2VLForConditionalGeneration",
  2655. "Qwen2_5_VLForConditionalGeneration",
  2656. "Qwen2_5OmniModel",
  2657. )
  2658. class Qwen2VLModel(TextModel):
  2659. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2660. def set_gguf_parameters(self):
  2661. super().set_gguf_parameters()
  2662. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2663. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2664. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2665. def set_vocab(self):
  2666. try:
  2667. self._set_vocab_sentencepiece()
  2668. except FileNotFoundError:
  2669. self._set_vocab_gpt2()
  2670. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2671. del bid # unused
  2672. if name.startswith("thinker."):
  2673. name = name.replace("thinker.", "")
  2674. if name.startswith("visual") or name.startswith("audio") or \
  2675. name.startswith("talker") or name.startswith("token2wav"):
  2676. # skip multimodal tensors
  2677. return []
  2678. return [(self.map_tensor_name(name), data_torch)]
  2679. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2680. class Qwen2VLVisionModel(MmprojModel):
  2681. def __init__(self, *args, **kwargs):
  2682. super().__init__(*args, **kwargs)
  2683. assert self.hparams_vision is not None
  2684. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2685. # rename config.json values
  2686. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2687. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2688. if "embed_dim" in self.hparams_vision: # qwen2vl
  2689. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2690. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2691. def set_gguf_parameters(self):
  2692. super().set_gguf_parameters()
  2693. assert self.hparams_vision is not None
  2694. hparams = self.hparams_vision
  2695. model_type = self.global_config['model_type']
  2696. if model_type == 'qwen2_vl':
  2697. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2698. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2699. if model_type == 'qwen2_5_omni':
  2700. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2701. else:
  2702. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2703. self.gguf_writer.add_vision_use_silu(True)
  2704. # find n_wa_pattern (window attention pattern)
  2705. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2706. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2707. n_wa_pattern = fullatt_block_indexes[0] + 1
  2708. # validate n_wa_pattern
  2709. for i in range(1, len(fullatt_block_indexes)):
  2710. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2711. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2712. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2713. else:
  2714. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2715. # default values below are taken from HF tranformers code
  2716. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2717. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2718. if ".position_embd." in new_name:
  2719. return gguf.GGMLQuantizationType.F32
  2720. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2721. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2722. del bid # unused
  2723. if name.startswith("visual."):
  2724. # process visual tensors
  2725. # split QKV tensors if needed
  2726. if ".qkv." in name:
  2727. if data_torch.ndim == 2: # weight
  2728. c3, _ = data_torch.shape
  2729. else: # bias
  2730. c3 = data_torch.shape[0]
  2731. assert c3 % 3 == 0
  2732. c = c3 // 3
  2733. wq = data_torch[:c]
  2734. wk = data_torch[c: c * 2]
  2735. wv = data_torch[c * 2:]
  2736. return [
  2737. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2738. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2739. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2740. ]
  2741. elif 'patch_embed.proj.weight' in name:
  2742. # split Conv3D into Conv2Ds
  2743. c1, c2, kt, kh, kw = data_torch.shape
  2744. del c1, c2, kh, kw # unused
  2745. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2746. return [
  2747. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2748. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2749. ]
  2750. else:
  2751. return [(self.map_tensor_name(name), data_torch)]
  2752. return [] # skip other tensors
  2753. @ModelBase.register("Qwen2_5OmniModel")
  2754. class Qwen25OmniModel(Qwen2VLVisionModel):
  2755. has_vision_encoder = True
  2756. has_audio_encoder = True
  2757. def __init__(self, *args, **kwargs):
  2758. super().__init__(*args, **kwargs)
  2759. assert self.hparams_audio is not None
  2760. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2761. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2762. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2763. def set_gguf_parameters(self):
  2764. super().set_gguf_parameters()
  2765. assert self.hparams_audio is not None
  2766. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2767. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2768. def get_vision_config(self) -> dict[str, Any] | None:
  2769. return self.global_config["thinker_config"].get("vision_config")
  2770. def get_audio_config(self) -> dict[str, Any] | None:
  2771. return self.global_config["thinker_config"].get("audio_config")
  2772. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2773. # SinusoidsPositionEmbedding
  2774. assert self.hparams_audio is not None
  2775. max_timescale = 10000
  2776. length = 1500
  2777. channels = self.hparams_audio["hidden_size"]
  2778. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2779. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2780. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2781. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2782. yield ("audio_tower.embed_positions.weight", pos_embd)
  2783. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2784. if ".conv" in name and ".weight" in name:
  2785. return gguf.GGMLQuantizationType.F16
  2786. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2787. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2788. if name.startswith("thinker."):
  2789. name = name.replace("thinker.", "")
  2790. if name.startswith("audio_tower"):
  2791. # process audio tensors
  2792. if "conv1.bias" in name or "conv2.bias" in name:
  2793. # transpose conv1 and conv2 bias
  2794. data_torch = data_torch.unsqueeze(-1)
  2795. if "audio_bos_eos_token" in name:
  2796. # this tensor is left unused in transformers code
  2797. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2798. return []
  2799. return [(self.map_tensor_name(name), data_torch)]
  2800. return super().modify_tensors(data_torch, name, bid)
  2801. @ModelBase.register("InternVisionModel")
  2802. class InternVisionModel(MmprojModel):
  2803. def set_gguf_parameters(self):
  2804. assert self.hparams_vision is not None
  2805. if isinstance(self.hparams_vision['image_size'], list):
  2806. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2807. if isinstance(self.hparams_vision['patch_size'], list):
  2808. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2809. super().set_gguf_parameters()
  2810. hparams = self.hparams
  2811. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2812. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2813. # hidden_act
  2814. if hparams["hidden_act"] == "silu":
  2815. self.gguf_writer.add_vision_use_silu(True)
  2816. elif hparams["hidden_act"] == "gelu":
  2817. self.gguf_writer.add_vision_use_gelu(True)
  2818. else:
  2819. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2820. # downsample_ratio
  2821. downsample_ratio = self.global_config.get("downsample_ratio")
  2822. assert downsample_ratio is not None
  2823. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2824. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2825. if ".position_embd." in new_name:
  2826. return gguf.GGMLQuantizationType.F32
  2827. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2828. def _mapping_interns1_name(self, name):
  2829. names_map = {
  2830. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2831. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2832. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2833. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2834. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2835. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2836. }
  2837. if name in names_map:
  2838. name = names_map[name]
  2839. return name
  2840. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2841. del bid # unused
  2842. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2843. # deal with intern-s1 special case
  2844. name = self._mapping_interns1_name(name)
  2845. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2846. # process visual tensors
  2847. # correct name
  2848. if name.startswith("vision_model"):
  2849. name = "vision_tower." + name
  2850. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2851. name += ".weight"
  2852. # split QKV tensors if needed
  2853. if ".qkv." in name:
  2854. if data_torch.ndim == 2: # weight
  2855. c3, _ = data_torch.shape
  2856. else: # bias
  2857. c3 = data_torch.shape[0]
  2858. assert c3 % 3 == 0
  2859. c = c3 // 3
  2860. wq = data_torch[:c]
  2861. wk = data_torch[c: c * 2]
  2862. wv = data_torch[c * 2:]
  2863. return [
  2864. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2865. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2866. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2867. ]
  2868. return [(self.map_tensor_name(name), data_torch)]
  2869. return [] # skip other tensors
  2870. @ModelBase.register("WavTokenizerDec")
  2871. class WavTokenizerDecModel(TextModel):
  2872. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2873. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2874. del bid # unused
  2875. if \
  2876. name.endswith("codebook.cluster_size") or \
  2877. name.endswith("codebook.embed_avg") or \
  2878. name.endswith("codebook.inited"):
  2879. logger.debug(f"Skipping {name!r}")
  2880. return []
  2881. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2882. return [(self.map_tensor_name(name), data_torch)]
  2883. def set_vocab(self):
  2884. self._set_vocab_none()
  2885. def set_gguf_parameters(self):
  2886. super().set_gguf_parameters()
  2887. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2888. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2889. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2890. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2891. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2892. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2893. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2894. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2895. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2896. self.gguf_writer.add_causal_attention(False)
  2897. @ModelBase.register("Qwen2MoeForCausalLM")
  2898. class Qwen2MoeModel(TextModel):
  2899. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2900. def set_gguf_parameters(self):
  2901. super().set_gguf_parameters()
  2902. if (n_experts := self.hparams.get("num_experts")) is not None:
  2903. self.gguf_writer.add_expert_count(n_experts)
  2904. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2905. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2906. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2907. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2908. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2909. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2910. # YaRN is not enabled by default
  2911. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2912. rope_scaling = self.hparams.get("rope_scaling") or {}
  2913. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2914. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2915. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2916. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2917. _experts: list[dict[str, Tensor]] | None = None
  2918. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2919. # process the experts separately
  2920. name = name.replace("language_model.", "") # InternVL
  2921. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2922. # skip visual tensors
  2923. return []
  2924. if name.find("experts") != -1:
  2925. n_experts = self.hparams["num_experts"]
  2926. assert bid is not None
  2927. if self._experts is None:
  2928. self._experts = [{} for _ in range(self.block_count)]
  2929. self._experts[bid][name] = data_torch
  2930. if len(self._experts[bid]) >= n_experts * 3:
  2931. tensors: list[tuple[str, Tensor]] = []
  2932. # merge the experts into a single 3d tensor
  2933. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2934. datas: list[Tensor] = []
  2935. for xid in range(n_experts):
  2936. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2937. datas.append(self._experts[bid][ename])
  2938. del self._experts[bid][ename]
  2939. data_torch = torch.stack(datas, dim=0)
  2940. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2941. new_name = self.map_tensor_name(merged_name)
  2942. tensors.append((new_name, data_torch))
  2943. return tensors
  2944. else:
  2945. return []
  2946. return [(self.map_tensor_name(name), data_torch)]
  2947. def prepare_tensors(self):
  2948. super().prepare_tensors()
  2949. if self._experts is not None:
  2950. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2951. experts = [k for d in self._experts for k in d.keys()]
  2952. if len(experts) > 0:
  2953. raise ValueError(f"Unprocessed experts: {experts}")
  2954. @ModelBase.register("Qwen3ForCausalLM")
  2955. class Qwen3Model(Qwen2Model):
  2956. model_arch = gguf.MODEL_ARCH.QWEN3
  2957. @ModelBase.register("Qwen3MoeForCausalLM")
  2958. class Qwen3MoeModel(Qwen2MoeModel):
  2959. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2960. def __init__(self, *args, **kwargs):
  2961. super().__init__(*args, **kwargs)
  2962. hparams = ModelBase.load_hparams(self.dir_model, False)
  2963. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2964. def set_vocab(self):
  2965. # deal with intern-s1
  2966. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  2967. self._set_vocab_interns1()
  2968. return
  2969. try:
  2970. self._set_vocab_sentencepiece()
  2971. except FileNotFoundError:
  2972. self._set_vocab_gpt2()
  2973. def _set_vocab_interns1(self):
  2974. tokens: list[str] = []
  2975. toktypes: list[int] = []
  2976. from transformers import AutoTokenizer
  2977. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2978. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  2979. vocab_size = self.hparams.get("vocab_size", len(vocab))
  2980. assert max(vocab.values()) < vocab_size
  2981. tokpre = self.get_vocab_base_pre(tokenizer)
  2982. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  2983. added_vocab = tokenizer.get_added_vocab()
  2984. added_tokens_decoder = tokenizer.added_tokens_decoder
  2985. for i in range(vocab_size):
  2986. if i not in reverse_vocab:
  2987. tokens.append(f"[PAD{i}]")
  2988. toktypes.append(gguf.TokenType.UNUSED)
  2989. else:
  2990. token: str = reverse_vocab[i]
  2991. if token in added_vocab:
  2992. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  2993. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  2994. if not added_tokens_decoder[i].normalized:
  2995. previous_token = token
  2996. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  2997. if previous_token != token:
  2998. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  2999. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  3000. toktypes.append(gguf.TokenType.CONTROL)
  3001. else:
  3002. toktypes.append(gguf.TokenType.USER_DEFINED)
  3003. else:
  3004. toktypes.append(gguf.TokenType.NORMAL)
  3005. tokens.append(token)
  3006. self.gguf_writer.add_tokenizer_model("gpt2")
  3007. self.gguf_writer.add_tokenizer_pre(tokpre)
  3008. self.gguf_writer.add_token_list(tokens)
  3009. self.gguf_writer.add_token_types(toktypes)
  3010. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  3011. special_tokens_map_file = self.dir_model / 'special_tokens_map.json'
  3012. additional_special_tokens = []
  3013. if special_tokens_map_file.is_file():
  3014. with open(special_tokens_map_file, encoding = 'utf-8') as f:
  3015. additional_special_tokens = json.load(f).get('additional_special_tokens', [])
  3016. tokenizer_cfg_file = self.dir_model / 'special_tokens_map.json'
  3017. if tokenizer_cfg_file.is_file():
  3018. with open(tokenizer_cfg_file, encoding = 'utf-8') as f:
  3019. added_tokens_decoder = json.load(f).get('added_tokens_decoder', {})
  3020. token2ids_map = {data['content'] : int(token) for token, data in added_tokens_decoder.items() if data['special']}
  3021. for token in additional_special_tokens:
  3022. if token in token2ids_map:
  3023. special_vocab._set_special_token(token, token2ids_map[token])
  3024. special_vocab._set_special_token('eos', 151645)
  3025. special_vocab._set_special_token("bos", 151643)
  3026. special_vocab.add_to_gguf(self.gguf_writer)
  3027. @ModelBase.register("GPT2LMHeadModel")
  3028. class GPT2Model(TextModel):
  3029. model_arch = gguf.MODEL_ARCH.GPT2
  3030. def set_gguf_parameters(self):
  3031. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3032. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3033. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3034. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3035. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3036. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3037. self.gguf_writer.add_file_type(self.ftype)
  3038. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3039. del bid # unused
  3040. tensors: list[tuple[str, Tensor]] = []
  3041. # we don't need these
  3042. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3043. return tensors
  3044. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3045. data_torch = data_torch.transpose(1, 0)
  3046. new_name = self.map_tensor_name(name)
  3047. tensors.append((new_name, data_torch))
  3048. return tensors
  3049. @ModelBase.register("PhiForCausalLM")
  3050. class Phi2Model(TextModel):
  3051. model_arch = gguf.MODEL_ARCH.PHI2
  3052. def set_gguf_parameters(self):
  3053. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3054. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3055. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3056. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3057. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3058. self.gguf_writer.add_embedding_length(n_embd)
  3059. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3060. self.gguf_writer.add_block_count(block_count)
  3061. self.gguf_writer.add_head_count(n_head)
  3062. self.gguf_writer.add_head_count_kv(n_head)
  3063. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3064. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3065. self.gguf_writer.add_file_type(self.ftype)
  3066. self.gguf_writer.add_add_bos_token(False)
  3067. @ModelBase.register("Phi3ForCausalLM")
  3068. class Phi3MiniModel(TextModel):
  3069. model_arch = gguf.MODEL_ARCH.PHI3
  3070. def set_vocab(self):
  3071. # Phi-4 model uses GPT2Tokenizer
  3072. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3073. if tokenizer_config_file.is_file():
  3074. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3075. tokenizer_config_json = json.load(f)
  3076. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3077. if tokenizer_class == 'GPT2Tokenizer':
  3078. return self._set_vocab_gpt2()
  3079. from sentencepiece import SentencePieceProcessor
  3080. tokenizer_path = self.dir_model / 'tokenizer.model'
  3081. if not tokenizer_path.is_file():
  3082. raise ValueError(f'Error: Missing {tokenizer_path}')
  3083. tokenizer = SentencePieceProcessor()
  3084. tokenizer.LoadFromFile(str(tokenizer_path))
  3085. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3086. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3087. scores: list[float] = [-10000.0] * vocab_size
  3088. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3089. for token_id in range(tokenizer.vocab_size()):
  3090. piece = tokenizer.IdToPiece(token_id)
  3091. text = piece.encode("utf-8")
  3092. score = tokenizer.GetScore(token_id)
  3093. toktype = SentencePieceTokenTypes.NORMAL
  3094. if tokenizer.IsUnknown(token_id):
  3095. toktype = SentencePieceTokenTypes.UNKNOWN
  3096. elif tokenizer.IsControl(token_id):
  3097. toktype = SentencePieceTokenTypes.CONTROL
  3098. elif tokenizer.IsUnused(token_id):
  3099. toktype = SentencePieceTokenTypes.UNUSED
  3100. elif tokenizer.IsByte(token_id):
  3101. toktype = SentencePieceTokenTypes.BYTE
  3102. tokens[token_id] = text
  3103. scores[token_id] = score
  3104. toktypes[token_id] = toktype
  3105. added_tokens_file = self.dir_model / 'added_tokens.json'
  3106. if added_tokens_file.is_file():
  3107. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3108. added_tokens_json = json.load(f)
  3109. for key in added_tokens_json:
  3110. token_id = added_tokens_json[key]
  3111. if token_id >= vocab_size:
  3112. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3113. continue
  3114. tokens[token_id] = key.encode("utf-8")
  3115. scores[token_id] = -1000.0
  3116. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3117. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3118. if tokenizer_config_file.is_file():
  3119. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3120. tokenizer_config_json = json.load(f)
  3121. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3122. for token_id, foken_data in added_tokens_decoder.items():
  3123. token_id = int(token_id)
  3124. token = foken_data["content"].encode("utf-8")
  3125. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3126. if tokens[token_id] != token:
  3127. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3128. tokens[token_id] = token
  3129. scores[token_id] = -1000.0
  3130. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3131. if foken_data.get("special"):
  3132. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3133. tokenizer_file = self.dir_model / 'tokenizer.json'
  3134. if tokenizer_file.is_file():
  3135. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3136. tokenizer_json = json.load(f)
  3137. added_tokens = tokenizer_json.get("added_tokens", [])
  3138. for foken_data in added_tokens:
  3139. token_id = int(foken_data["id"])
  3140. token = foken_data["content"].encode("utf-8")
  3141. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3142. if tokens[token_id] != token:
  3143. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3144. tokens[token_id] = token
  3145. scores[token_id] = -1000.0
  3146. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3147. if foken_data.get("special"):
  3148. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3149. self.gguf_writer.add_tokenizer_model("llama")
  3150. self.gguf_writer.add_tokenizer_pre("default")
  3151. self.gguf_writer.add_token_list(tokens)
  3152. self.gguf_writer.add_token_scores(scores)
  3153. self.gguf_writer.add_token_types(toktypes)
  3154. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3155. special_vocab.add_to_gguf(self.gguf_writer)
  3156. def set_gguf_parameters(self):
  3157. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3158. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3159. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3160. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3161. rms_eps = self.find_hparam(["rms_norm_eps"])
  3162. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3163. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3164. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3165. rope_dims = int(rot_pct * n_embd) // n_head
  3166. self.gguf_writer.add_context_length(max_pos_embds)
  3167. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3168. self.gguf_writer.add_embedding_length(n_embd)
  3169. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3170. self.gguf_writer.add_block_count(block_count)
  3171. self.gguf_writer.add_head_count(n_head)
  3172. self.gguf_writer.add_head_count_kv(n_head_kv)
  3173. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3174. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3175. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3176. self.gguf_writer.add_file_type(self.ftype)
  3177. sliding_window = self.hparams.get("sliding_window")
  3178. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3179. if sliding_window is None:
  3180. sliding_window = 0
  3181. self.gguf_writer.add_sliding_window(sliding_window)
  3182. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3183. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3184. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3185. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3186. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3187. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3188. rope_dims = int(rot_pct * n_embd) // n_head
  3189. # write rope scaling for long context (128k) model
  3190. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3191. if rope_scaling is None:
  3192. return
  3193. scale = max_pos_embds / orig_max_pos_embds
  3194. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3195. if len(rope_scaling_type) == 0:
  3196. raise KeyError('Missing the required key rope_scaling.type')
  3197. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3198. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3199. elif rope_scaling_type == 'yarn':
  3200. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3201. else:
  3202. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3203. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3204. long_factors = rope_scaling.get('long_factor', None)
  3205. short_factors = rope_scaling.get('short_factor', None)
  3206. if long_factors is None or short_factors is None:
  3207. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3208. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3209. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3210. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3211. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3212. @ModelBase.register("PhiMoEForCausalLM")
  3213. class PhiMoeModel(Phi3MiniModel):
  3214. model_arch = gguf.MODEL_ARCH.PHIMOE
  3215. _experts: list[dict[str, Tensor]] | None = None
  3216. def set_gguf_parameters(self):
  3217. super().set_gguf_parameters()
  3218. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3219. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3220. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3221. # process the experts separately
  3222. if name.find("block_sparse_moe.experts") != -1:
  3223. n_experts = self.hparams["num_local_experts"]
  3224. assert bid is not None
  3225. if self._experts is None:
  3226. self._experts = [{} for _ in range(self.block_count)]
  3227. self._experts[bid][name] = data_torch
  3228. if len(self._experts[bid]) >= n_experts * 3:
  3229. tensors: list[tuple[str, Tensor]] = []
  3230. # merge the experts into a single 3d tensor
  3231. for w_name in ["w1", "w2", "w3"]:
  3232. datas: list[Tensor] = []
  3233. for xid in range(n_experts):
  3234. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3235. datas.append(self._experts[bid][ename])
  3236. del self._experts[bid][ename]
  3237. data_torch = torch.stack(datas, dim=0)
  3238. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3239. new_name = self.map_tensor_name(merged_name)
  3240. tensors.append((new_name, data_torch))
  3241. return tensors
  3242. else:
  3243. return []
  3244. return [(self.map_tensor_name(name), data_torch)]
  3245. def prepare_tensors(self):
  3246. super().prepare_tensors()
  3247. if self._experts is not None:
  3248. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3249. experts = [k for d in self._experts for k in d.keys()]
  3250. if len(experts) > 0:
  3251. raise ValueError(f"Unprocessed experts: {experts}")
  3252. @ModelBase.register("PlamoForCausalLM")
  3253. class PlamoModel(TextModel):
  3254. model_arch = gguf.MODEL_ARCH.PLAMO
  3255. def set_vocab(self):
  3256. self._set_vocab_sentencepiece()
  3257. def set_gguf_parameters(self):
  3258. hparams = self.hparams
  3259. block_count = hparams["num_hidden_layers"]
  3260. self.gguf_writer.add_context_length(4096) # not in config.json
  3261. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3262. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3263. self.gguf_writer.add_block_count(block_count)
  3264. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3265. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3266. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3267. self.gguf_writer.add_file_type(self.ftype)
  3268. def shuffle_attn_q_weight(self, data_torch):
  3269. assert data_torch.size() == (5120, 5120)
  3270. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3271. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3272. data_torch = torch.reshape(data_torch, (5120, 5120))
  3273. return data_torch
  3274. def shuffle_attn_output_weight(self, data_torch):
  3275. assert data_torch.size() == (5120, 5120)
  3276. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3277. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3278. data_torch = torch.reshape(data_torch, (5120, 5120))
  3279. return data_torch
  3280. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3281. del bid # unused
  3282. new_name = self.map_tensor_name(name)
  3283. # shuffle for broadcasting of gqa in ggml_mul_mat
  3284. if new_name.endswith("attn_q.weight"):
  3285. data_torch = self.shuffle_attn_q_weight(data_torch)
  3286. elif new_name.endswith("attn_output.weight"):
  3287. data_torch = self.shuffle_attn_output_weight(data_torch)
  3288. return [(new_name, data_torch)]
  3289. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3290. class Plamo2Model(TextModel):
  3291. model_arch = gguf.MODEL_ARCH.PLAMO2
  3292. def set_vocab(self):
  3293. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3294. # We need to handle this specially
  3295. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3296. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3297. if not tokenizer_jsonl_path.is_file():
  3298. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3299. # Load tokenizer config
  3300. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3301. tokenizer_config = json.load(f)
  3302. # Load tokens from JSONL file (actually a list format)
  3303. tokens = []
  3304. scores = []
  3305. toktypes = []
  3306. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3307. for line_num, line in enumerate(f):
  3308. if line.strip():
  3309. token_data = json.loads(line)
  3310. # Format: [token, score, type, ?, ?, ?, ?]
  3311. token = token_data[0].encode("utf-8")
  3312. score = float(token_data[1])
  3313. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3314. tokens.append(token)
  3315. scores.append(score)
  3316. # Map token type strings to GGUF token types
  3317. if token_type_str == "UNKNOWN":
  3318. toktypes.append(gguf.TokenType.UNKNOWN)
  3319. elif token_type_str == "CONTROL":
  3320. toktypes.append(gguf.TokenType.CONTROL)
  3321. elif token_type_str == "BYTE":
  3322. toktypes.append(gguf.TokenType.BYTE)
  3323. else:
  3324. # Check for PLaMo-2 special tokens
  3325. token_str = token_data[0]
  3326. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3327. toktypes.append(gguf.TokenType.CONTROL)
  3328. else:
  3329. toktypes.append(gguf.TokenType.NORMAL)
  3330. vocab_size = self.hparams["vocab_size"]
  3331. if vocab_size > len(tokens):
  3332. pad_count = vocab_size - len(tokens)
  3333. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3334. for i in range(1, pad_count + 1):
  3335. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3336. scores.append(-1000.0)
  3337. toktypes.append(gguf.TokenType.UNUSED)
  3338. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3339. self.gguf_writer.add_tokenizer_model("plamo2")
  3340. self.gguf_writer.add_tokenizer_pre("default")
  3341. self.gguf_writer.add_token_list(tokens)
  3342. self.gguf_writer.add_token_scores(scores)
  3343. self.gguf_writer.add_token_types(toktypes)
  3344. # Add special tokens from config
  3345. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3346. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3347. self.gguf_writer.add_bos_token_id(token_id)
  3348. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3349. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3350. self.gguf_writer.add_eos_token_id(token_id)
  3351. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3352. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3353. self.gguf_writer.add_pad_token_id(token_id)
  3354. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3355. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3356. self.gguf_writer.add_sep_token_id(token_id)
  3357. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3358. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3359. self.gguf_writer.add_unk_token_id(token_id)
  3360. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3361. self.gguf_writer.add_eot_token_id(4)
  3362. self.gguf_writer.add_add_space_prefix(False)
  3363. def set_gguf_parameters(self):
  3364. hparams = self.hparams
  3365. block_count = hparams["num_hidden_layers"]
  3366. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3367. # Which layers are Mamba layers
  3368. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3369. # This logic matches modeling_plamo.py's is_mamba function
  3370. mamba_step = hparams.get("mamba_step", 2)
  3371. mamba_enabled = hparams.get("mamba_enabled", True)
  3372. mamba_layers = []
  3373. if mamba_enabled:
  3374. for i in range(block_count):
  3375. if block_count <= (mamba_step // 2):
  3376. # use attention in last layer
  3377. is_mamba = (i != block_count - 1)
  3378. else:
  3379. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3380. if is_mamba:
  3381. mamba_layers.append(0)
  3382. else:
  3383. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3384. if mamba_layers:
  3385. self.gguf_writer.add_head_count_kv(mamba_layers)
  3386. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3387. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3388. self.gguf_writer.add_block_count(block_count)
  3389. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3390. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3391. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3392. # Mamba parameters
  3393. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3394. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3395. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3396. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3397. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3398. self.gguf_writer.add_ssm_group_count(0)
  3399. # MLP feed forward parameters (for attention layers)
  3400. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3401. self.gguf_writer.add_file_type(self.ftype)
  3402. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3403. del bid # unused
  3404. if name.endswith(".A_log"):
  3405. data_torch = -torch.exp(data_torch)
  3406. elif name.endswith(".dt_bias"):
  3407. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3408. elif name.endswith(".dt_norm_weight"):
  3409. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3410. elif name.endswith(".B_norm_weight"):
  3411. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3412. elif name.endswith(".C_norm_weight"):
  3413. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3414. elif name.endswith(".k_weight"):
  3415. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3416. elif name.endswith(".q_weight"):
  3417. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3418. elif name.endswith(".conv1d.weight"):
  3419. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3420. assert data_torch.ndim == 2
  3421. elif name.endswith(".pre_mixer_norm.weight"):
  3422. data_torch += 1.0
  3423. elif name.endswith(".post_mixer_norm.weight"):
  3424. data_torch += 1.0 / 5
  3425. elif name.endswith(".pre_mlp_norm.weight"):
  3426. data_torch += 1.0
  3427. elif name.endswith(".post_mlp_norm.weight"):
  3428. data_torch += 1.0 / (5**1.5)
  3429. elif name.endswith(".norm.weight"):
  3430. data_torch += 1.0
  3431. new_name = self.map_tensor_name(name)
  3432. return [(new_name, data_torch)]
  3433. @ModelBase.register("CodeShellForCausalLM")
  3434. class CodeShellModel(TextModel):
  3435. model_arch = gguf.MODEL_ARCH.CODESHELL
  3436. def set_gguf_parameters(self):
  3437. block_count = self.hparams["n_layer"]
  3438. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3439. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3440. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3441. self.gguf_writer.add_block_count(block_count)
  3442. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3443. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3444. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3445. self.gguf_writer.add_file_type(self.ftype)
  3446. self.gguf_writer.add_rope_freq_base(10000.0)
  3447. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3448. self.gguf_writer.add_rope_scaling_factor(1.0)
  3449. _has_tok_embd = False
  3450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3451. del bid # unused
  3452. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3453. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3454. new_name = self.map_tensor_name(name)
  3455. # assuming token_embd.weight is seen before output.weight
  3456. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3457. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3458. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3459. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3460. self.tensor_names.remove("transformer.wte.weight")
  3461. elif new_name == tok_embd_name:
  3462. self._has_tok_embd = True
  3463. return [(new_name, data_torch)]
  3464. @ModelBase.register("InternLM2ForCausalLM")
  3465. class InternLM2Model(TextModel):
  3466. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3467. def set_vocab(self):
  3468. # (TODO): Is there a better way?
  3469. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3470. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3471. # recognized as an empty string in C++.
  3472. from sentencepiece import SentencePieceProcessor
  3473. from sentencepiece import sentencepiece_model_pb2 as model
  3474. tokenizer_path = self.dir_model / 'tokenizer.model'
  3475. tokens: list[bytes] = []
  3476. scores: list[float] = []
  3477. toktypes: list[int] = []
  3478. if not tokenizer_path.is_file():
  3479. logger.error(f'Error: Missing {tokenizer_path}')
  3480. sys.exit(1)
  3481. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3482. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3483. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3484. tokenizer = SentencePieceProcessor()
  3485. tokenizer.LoadFromFile(str(tokenizer_path))
  3486. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3487. for token_id in range(vocab_size):
  3488. piece = tokenizer.IdToPiece(token_id)
  3489. text = piece.encode("utf-8")
  3490. score = tokenizer.GetScore(token_id)
  3491. if text == b"\x00":
  3492. # (TODO): fixme
  3493. # Hack here and replace the \x00 characters.
  3494. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3495. text = "🐉".encode("utf-8")
  3496. toktype = SentencePieceTokenTypes.NORMAL
  3497. if tokenizer.IsUnknown(token_id):
  3498. toktype = SentencePieceTokenTypes.UNKNOWN
  3499. elif tokenizer.IsControl(token_id):
  3500. toktype = SentencePieceTokenTypes.CONTROL
  3501. elif tokenizer.IsUnused(token_id):
  3502. toktype = SentencePieceTokenTypes.UNUSED
  3503. elif tokenizer.IsByte(token_id):
  3504. toktype = SentencePieceTokenTypes.BYTE
  3505. # take care of ununsed raw token
  3506. if piece.startswith('[UNUSED'):
  3507. toktype = SentencePieceTokenTypes.UNUSED
  3508. tokens.append(text)
  3509. scores.append(score)
  3510. toktypes.append(toktype)
  3511. added_tokens_file = self.dir_model / 'added_tokens.json'
  3512. if added_tokens_file.is_file():
  3513. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3514. added_tokens_json = json.load(f)
  3515. for key in added_tokens_json:
  3516. tokens.append(key.encode("utf-8"))
  3517. scores.append(-1000.0)
  3518. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3519. chat_eos_token = '<|im_end|>'
  3520. chat_eos_token_id = None
  3521. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3522. if tokenizer_config_file.is_file():
  3523. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3524. tokenizer_config_json = json.load(f)
  3525. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3526. for token_id, foken_data in added_tokens_decoder.items():
  3527. token_id = int(token_id)
  3528. token = foken_data["content"]
  3529. if token == chat_eos_token:
  3530. chat_eos_token_id = token_id
  3531. token = token.encode("utf-8")
  3532. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3533. if tokens[token_id] != token:
  3534. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3535. tokens[token_id] = token
  3536. scores[token_id] = -1000.0
  3537. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3538. if foken_data.get("special"):
  3539. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3540. tokenizer_file = self.dir_model / 'tokenizer.json'
  3541. if tokenizer_file.is_file():
  3542. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3543. tokenizer_json = json.load(f)
  3544. added_tokens = tokenizer_json.get("added_tokens", [])
  3545. for foken_data in added_tokens:
  3546. token_id = int(foken_data["id"])
  3547. token = foken_data["content"]
  3548. if token == chat_eos_token:
  3549. chat_eos_token_id = token_id
  3550. token = token.encode("utf-8")
  3551. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3552. if tokens[token_id] != token:
  3553. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3554. tokens[token_id] = token
  3555. scores[token_id] = -1000.0
  3556. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3557. if foken_data.get("special"):
  3558. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3559. self.gguf_writer.add_tokenizer_model("llama")
  3560. self.gguf_writer.add_tokenizer_pre("default")
  3561. self.gguf_writer.add_token_list(tokens)
  3562. self.gguf_writer.add_token_scores(scores)
  3563. self.gguf_writer.add_token_types(toktypes)
  3564. self.gguf_writer.add_add_space_prefix(add_prefix)
  3565. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3566. old_eos = special_vocab.special_token_ids["eos"]
  3567. if chat_eos_token_id is not None:
  3568. # For the chat model, we replace the eos with '<|im_end|>'.
  3569. # TODO: this is a hack, should be fixed
  3570. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3571. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3572. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3573. " in chat mode so that the conversation can end normally.")
  3574. special_vocab.add_to_gguf(self.gguf_writer)
  3575. def set_gguf_parameters(self):
  3576. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3577. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3578. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3579. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3580. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3581. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3582. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3583. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3584. self.gguf_writer.add_file_type(self.ftype)
  3585. rope_scaling = self.hparams.get("rope_scaling") or {}
  3586. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3587. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3588. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3589. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3590. num_heads = self.hparams["num_attention_heads"]
  3591. num_kv_heads = self.hparams["num_key_value_heads"]
  3592. n_embd = self.hparams["hidden_size"]
  3593. q_per_kv = num_heads // num_kv_heads
  3594. head_dim = n_embd // num_heads
  3595. num_groups = num_heads // q_per_kv
  3596. name = name.replace("language_model.", "") # InternVL
  3597. if name.startswith("mlp") or name.startswith("vision_model"):
  3598. # skip visual tensors
  3599. return []
  3600. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3601. qkv = data_torch
  3602. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3603. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3604. # The model weights of q and k equire additional reshape.
  3605. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3606. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3607. v = v.reshape((-1, v.shape[-1]))
  3608. return [
  3609. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3610. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3611. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3612. ]
  3613. else:
  3614. return [(self.map_tensor_name(name), data_torch)]
  3615. @ModelBase.register("InternLM3ForCausalLM")
  3616. class InternLM3Model(TextModel):
  3617. model_arch = gguf.MODEL_ARCH.LLAMA
  3618. def set_vocab(self):
  3619. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3620. self.gguf_writer.add_tokenizer_model("llama")
  3621. self.gguf_writer.add_tokenizer_pre("default")
  3622. self.gguf_writer.add_token_list(tokens)
  3623. self.gguf_writer.add_token_scores(scores)
  3624. self.gguf_writer.add_token_types(toktypes)
  3625. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3626. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3627. if tokenizer_config_file.is_file():
  3628. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3629. tokenizer_config_json = json.load(f)
  3630. if "add_prefix_space" in tokenizer_config_json:
  3631. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3632. if "added_tokens_decoder" in tokenizer_config_json:
  3633. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3634. if token_data.get("special"):
  3635. token_id = int(token_id)
  3636. token = token_data["content"]
  3637. special_vocab._set_special_token(token, token_id)
  3638. # update eos token
  3639. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3640. special_vocab.special_token_ids["eos"] = token_id
  3641. special_vocab.add_to_gguf(self.gguf_writer)
  3642. def set_gguf_parameters(self):
  3643. super().set_gguf_parameters()
  3644. hparams = self.hparams
  3645. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3646. if (rope_dim := hparams.get("head_dim")) is None:
  3647. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3648. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3649. rope_scaling = self.hparams.get("rope_scaling") or {}
  3650. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3651. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3652. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3653. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3654. n_head = self.hparams["num_attention_heads"]
  3655. n_kv_head = self.hparams.get("num_key_value_heads")
  3656. name = name.replace("language_model.", "") # InternVL
  3657. if name.startswith("mlp") or name.startswith("vision_model"):
  3658. # skip visual tensors
  3659. return []
  3660. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3661. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3662. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3663. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3664. return [(self.map_tensor_name(name), data_torch)]
  3665. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3666. class BertModel(TextModel):
  3667. model_arch = gguf.MODEL_ARCH.BERT
  3668. def __init__(self, *args, **kwargs):
  3669. super().__init__(*args, **kwargs)
  3670. self.vocab_size = None
  3671. if cls_out_labels := self.hparams.get("id2label"):
  3672. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3673. # Remove dummy labels added by AutoConfig
  3674. cls_out_labels = None
  3675. self.cls_out_labels = cls_out_labels
  3676. def set_gguf_parameters(self):
  3677. super().set_gguf_parameters()
  3678. self.gguf_writer.add_causal_attention(False)
  3679. self._try_set_pooling_type()
  3680. if self.cls_out_labels:
  3681. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3682. def set_vocab(self):
  3683. tokens, toktypes, tokpre = self.get_vocab_base()
  3684. self.vocab_size = len(tokens)
  3685. # we need this to validate the size of the token_type embeddings
  3686. # though currently we are passing all zeros to the token_type embeddings
  3687. # "Sequence A" or "Sequence B"
  3688. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3689. # convert to phantom space vocab
  3690. def phantom(tok):
  3691. if tok.startswith("[") and tok.endswith("]"):
  3692. return tok
  3693. if tok.startswith("##"):
  3694. return tok[2:]
  3695. return "\u2581" + tok
  3696. tokens = list(map(phantom, tokens))
  3697. # add vocab to gguf
  3698. self.gguf_writer.add_tokenizer_model("bert")
  3699. self.gguf_writer.add_tokenizer_pre(tokpre)
  3700. self.gguf_writer.add_token_list(tokens)
  3701. self.gguf_writer.add_token_types(toktypes)
  3702. # handle special tokens
  3703. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3704. special_vocab.add_to_gguf(self.gguf_writer)
  3705. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3706. del bid # unused
  3707. if name.startswith("bert."):
  3708. name = name[5:]
  3709. if name.endswith(".gamma"):
  3710. name = name[:-6] + ".weight"
  3711. if name.endswith(".beta"):
  3712. name = name[:-5] + ".bias"
  3713. # we are only using BERT for embeddings so we don't need the pooling layer
  3714. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3715. return [] # we don't need these
  3716. if name.startswith("cls.predictions"):
  3717. return []
  3718. if name.startswith("cls.seq_relationship"):
  3719. return []
  3720. if self.cls_out_labels:
  3721. # For BertForSequenceClassification (direct projection layer)
  3722. if name == "classifier.weight":
  3723. name = "classifier.out_proj.weight"
  3724. if name == "classifier.bias":
  3725. name = "classifier.out_proj.bias"
  3726. return [(self.map_tensor_name(name), data_torch)]
  3727. def _xlmroberta_tokenizer_init(self) -> None:
  3728. # we need the pad_token_id to know how to chop down position_embd matrix
  3729. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3730. self._position_offset = 1 + pad_token_id
  3731. if "max_position_embeddings" in self.hparams:
  3732. self.hparams["max_position_embeddings"] -= self._position_offset
  3733. else:
  3734. self._position_offset = None
  3735. def _xlmroberta_set_vocab(self) -> None:
  3736. # to avoid TypeError: Descriptors cannot be created directly
  3737. # exception when importing sentencepiece_model_pb2
  3738. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3739. from sentencepiece import SentencePieceProcessor
  3740. from sentencepiece import sentencepiece_model_pb2 as model
  3741. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3742. tokenizer_json = {}
  3743. tokenizer_config_json = {}
  3744. if not tokenizer_path.is_file():
  3745. tokenizer_path = self.dir_model / 'tokenizer.json'
  3746. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3747. if not tokenizer_path.is_file():
  3748. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3749. from base64 import b64decode
  3750. from transformers import AutoTokenizer
  3751. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3752. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3753. tokenizer_json = json.load(fp)
  3754. if tokenizer_config_path.is_file():
  3755. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3756. tokenizer_config_json = json.load(fp)
  3757. add_prefix = tokenizer.add_prefix_space
  3758. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3759. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3760. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3761. else:
  3762. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3763. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3764. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3765. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3766. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3767. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3768. tokenizer = SentencePieceProcessor()
  3769. tokenizer.LoadFromFile(str(tokenizer_path))
  3770. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3771. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3772. scores: list[float] = [-10000.0] * vocab_size
  3773. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3774. if isinstance(tokenizer, SentencePieceProcessor):
  3775. for token_id in range(tokenizer.vocab_size()):
  3776. piece = tokenizer.IdToPiece(token_id)
  3777. text = piece.encode("utf-8")
  3778. score = tokenizer.GetScore(token_id)
  3779. toktype = SentencePieceTokenTypes.NORMAL
  3780. if tokenizer.IsUnknown(token_id):
  3781. toktype = SentencePieceTokenTypes.UNKNOWN
  3782. elif tokenizer.IsControl(token_id):
  3783. toktype = SentencePieceTokenTypes.CONTROL
  3784. elif tokenizer.IsUnused(token_id):
  3785. toktype = SentencePieceTokenTypes.UNUSED
  3786. elif tokenizer.IsByte(token_id):
  3787. toktype = SentencePieceTokenTypes.BYTE
  3788. tokens[token_id] = text
  3789. scores[token_id] = score
  3790. toktypes[token_id] = toktype
  3791. else:
  3792. added_vocab = tokenizer.get_added_vocab()
  3793. unk_token = tokenizer_config_json.get("unk_token")
  3794. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3795. for token_id in range(tokenizer.vocab_size):
  3796. piece = tokenizer._convert_id_to_token(token_id)
  3797. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3798. text = piece.encode("utf-8")
  3799. score = tokenizer_json["model"]["vocab"][token_id][1]
  3800. toktype = SentencePieceTokenTypes.NORMAL
  3801. if token_id == unk_token_id:
  3802. toktype = SentencePieceTokenTypes.UNKNOWN
  3803. elif token_id in tokenizer.all_special_ids:
  3804. toktype = SentencePieceTokenTypes.CONTROL
  3805. elif token_id in added_vocab.values():
  3806. toktype = SentencePieceTokenTypes.USER_DEFINED
  3807. # No reliable way to detect this, but jina doesn't have any
  3808. # elif tokenizer.IsByte(token_id):
  3809. # toktype = SentencePieceTokenTypes.BYTE
  3810. tokens[token_id] = text
  3811. scores[token_id] = score
  3812. toktypes[token_id] = toktype
  3813. if isinstance(tokenizer, SentencePieceProcessor):
  3814. # realign tokens (see HF tokenizer code)
  3815. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3816. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3817. toktypes = [
  3818. SentencePieceTokenTypes.CONTROL,
  3819. SentencePieceTokenTypes.CONTROL,
  3820. SentencePieceTokenTypes.CONTROL,
  3821. SentencePieceTokenTypes.UNKNOWN,
  3822. ] + toktypes[3:-1]
  3823. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3824. # Add mask token missing from sentencepiece.bpe.model
  3825. tokens[250001] = b'<mask>'
  3826. scores[250001] = 0.0
  3827. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3828. self.gguf_writer.add_tokenizer_model("t5")
  3829. self.gguf_writer.add_tokenizer_pre("default")
  3830. self.gguf_writer.add_token_list(tokens)
  3831. self.gguf_writer.add_token_scores(scores)
  3832. self.gguf_writer.add_token_types(toktypes)
  3833. self.gguf_writer.add_add_space_prefix(add_prefix)
  3834. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3835. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3836. if precompiled_charsmap:
  3837. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3838. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3839. special_vocab.add_to_gguf(self.gguf_writer)
  3840. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3841. class DistilBertModel(BertModel):
  3842. model_arch = gguf.MODEL_ARCH.BERT
  3843. def set_gguf_parameters(self):
  3844. self.gguf_writer.add_layer_norm_eps(1e-12)
  3845. logger.info("gguf: layer norm epsilon = 1e-12")
  3846. super().set_gguf_parameters()
  3847. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3848. if name.startswith("distilbert."):
  3849. name = name[11:]
  3850. # These layers act as MLM head, so we don't need them
  3851. if name.startswith("vocab_"):
  3852. return []
  3853. return super().modify_tensors(data_torch, name, bid)
  3854. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3855. class RobertaModel(BertModel):
  3856. model_arch = gguf.MODEL_ARCH.BERT
  3857. def __init__(self, *args, **kwargs):
  3858. super().__init__(*args, **kwargs)
  3859. # we need the pad_token_id to know how to chop down position_embd matrix
  3860. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3861. self._position_offset = 1 + pad_token_id
  3862. if "max_position_embeddings" in self.hparams:
  3863. self.hparams["max_position_embeddings"] -= self._position_offset
  3864. else:
  3865. self._position_offset = None
  3866. def set_vocab(self):
  3867. """Support BPE tokenizers for roberta models"""
  3868. bpe_tok_path = self.dir_model / "tokenizer.json"
  3869. if bpe_tok_path.exists():
  3870. self._set_vocab_gpt2()
  3871. # we need this to validate the size of the token_type embeddings
  3872. # though currently we are passing all zeros to the token_type embeddings
  3873. # "Sequence A" or "Sequence B"
  3874. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3875. else:
  3876. return super().set_vocab()
  3877. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3878. # if name starts with "roberta.", remove the prefix
  3879. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3880. if name.startswith("roberta."):
  3881. name = name[8:]
  3882. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3883. if name == "embeddings.position_embeddings.weight":
  3884. if self._position_offset is not None:
  3885. data_torch = data_torch[self._position_offset:,:]
  3886. return super().modify_tensors(data_torch, name, bid)
  3887. @ModelBase.register("NomicBertModel")
  3888. class NomicBertModel(BertModel):
  3889. model_arch = gguf.MODEL_ARCH.BERT
  3890. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3891. hparams = kwargs.pop("hparams", None)
  3892. if hparams is None:
  3893. hparams = ModelBase.load_hparams(dir_model, False)
  3894. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3895. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3896. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3897. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3898. if self._tokenizer_is_xlmroberta:
  3899. self._xlmroberta_tokenizer_init()
  3900. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3901. if npos == 8192 and mtp == 2048:
  3902. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3903. elif npos == 2048 and mtp == 2048:
  3904. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3905. else:
  3906. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3907. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3908. # this doesn't do anything in the HF version
  3909. assert self.hparams["causal"] is False
  3910. # no bias tensors unless MoE
  3911. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3912. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3913. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3914. # norm at end of layer
  3915. assert self.hparams["prenorm"] is False
  3916. # standard RoPE
  3917. assert self.hparams["rotary_emb_fraction"] == 1.0
  3918. assert self.hparams["rotary_emb_interleaved"] is False
  3919. assert self.hparams["rotary_emb_scale_base"] is None
  3920. def set_vocab(self) -> None:
  3921. if self._tokenizer_is_xlmroberta:
  3922. return self._xlmroberta_set_vocab()
  3923. return super().set_vocab()
  3924. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3925. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3926. if "mlp.experts.bias" in name:
  3927. return [] # Explicitly return an empty list.
  3928. if "mlp.experts.mlp.w1" in name:
  3929. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3930. name += ".weight"
  3931. if "mlp.experts.mlp.w2" in name:
  3932. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3933. data_torch = data_torch.transpose(1, 2)
  3934. name += ".weight"
  3935. return [(self.map_tensor_name(name), data_torch)]
  3936. def set_gguf_parameters(self):
  3937. super().set_gguf_parameters()
  3938. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3939. if self.is_moe:
  3940. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3941. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3942. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3943. def _is_tokenizer_xlmroberta(self) -> bool:
  3944. with open(self.dir_model / "tokenizer.json") as f:
  3945. tokenizer_json = json.load(f)
  3946. toktyp = tokenizer_json["model"]["type"]
  3947. if toktyp == "Unigram":
  3948. return True
  3949. if toktyp == "WordPiece":
  3950. return False
  3951. raise ValueError(f"unknown tokenizer: {toktyp}")
  3952. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3953. class NeoBert(BertModel):
  3954. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3955. def set_gguf_parameters(self):
  3956. super().set_gguf_parameters()
  3957. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3958. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3959. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3960. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3961. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3962. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3963. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3964. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3965. def modify_tensors(self, data_torch, name, bid):
  3966. if name.startswith("decoder."):
  3967. return []
  3968. if name.startswith("model."):
  3969. name = name[6:]
  3970. return super().modify_tensors(data_torch, name, bid)
  3971. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3972. class XLMRobertaModel(BertModel):
  3973. model_arch = gguf.MODEL_ARCH.BERT
  3974. def __init__(self, *args, **kwargs):
  3975. super().__init__(*args, **kwargs)
  3976. self._xlmroberta_tokenizer_init()
  3977. def set_vocab(self):
  3978. self._xlmroberta_set_vocab()
  3979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3980. # if name starts with "roberta.", remove the prefix
  3981. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3982. if name.startswith("roberta."):
  3983. name = name[8:]
  3984. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3985. if name == "embeddings.position_embeddings.weight":
  3986. if self._position_offset is not None:
  3987. data_torch = data_torch[self._position_offset:,:]
  3988. return super().modify_tensors(data_torch, name, bid)
  3989. @ModelBase.register("GemmaForCausalLM")
  3990. class GemmaModel(TextModel):
  3991. model_arch = gguf.MODEL_ARCH.GEMMA
  3992. def set_vocab(self):
  3993. self._set_vocab_sentencepiece()
  3994. # TODO: these special tokens should be exported only for the CodeGemma family
  3995. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3996. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3997. special_vocab._set_special_token("prefix", 67)
  3998. special_vocab._set_special_token("suffix", 69)
  3999. special_vocab._set_special_token("middle", 68)
  4000. special_vocab._set_special_token("fsep", 70)
  4001. special_vocab._set_special_token("eot", 107)
  4002. special_vocab.chat_template = None # do not add it twice
  4003. special_vocab.add_to_gguf(self.gguf_writer)
  4004. self.gguf_writer.add_add_space_prefix(False)
  4005. def set_gguf_parameters(self):
  4006. hparams = self.hparams
  4007. block_count = hparams["num_hidden_layers"]
  4008. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4009. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4010. self.gguf_writer.add_block_count(block_count)
  4011. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4012. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4013. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4014. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4015. self.gguf_writer.add_key_length(hparams["head_dim"])
  4016. self.gguf_writer.add_value_length(hparams["head_dim"])
  4017. self.gguf_writer.add_file_type(self.ftype)
  4018. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4019. del bid # unused
  4020. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4021. # To prevent errors, skip loading lm_head.weight.
  4022. if name == "lm_head.weight":
  4023. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4024. return []
  4025. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4026. if name.endswith("norm.weight"):
  4027. data_torch = data_torch + 1
  4028. return [(self.map_tensor_name(name), data_torch)]
  4029. @ModelBase.register("Gemma2ForCausalLM")
  4030. class Gemma2Model(TextModel):
  4031. model_arch = gguf.MODEL_ARCH.GEMMA2
  4032. def set_vocab(self):
  4033. self._set_vocab_sentencepiece()
  4034. self.gguf_writer.add_add_space_prefix(False)
  4035. def set_gguf_parameters(self):
  4036. hparams = self.hparams
  4037. block_count = hparams["num_hidden_layers"]
  4038. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4039. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4040. self.gguf_writer.add_block_count(block_count)
  4041. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4042. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4043. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4044. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4045. self.gguf_writer.add_key_length(hparams["head_dim"])
  4046. self.gguf_writer.add_value_length(hparams["head_dim"])
  4047. self.gguf_writer.add_file_type(self.ftype)
  4048. self.gguf_writer.add_attn_logit_softcapping(
  4049. self.hparams["attn_logit_softcapping"]
  4050. )
  4051. self.gguf_writer.add_final_logit_softcapping(
  4052. self.hparams["final_logit_softcapping"]
  4053. )
  4054. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4055. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4056. del bid # unused
  4057. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4058. # To prevent errors, skip loading lm_head.weight.
  4059. if name == "lm_head.weight":
  4060. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4061. return []
  4062. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4063. if name.endswith("norm.weight"):
  4064. data_torch = data_torch + 1
  4065. return [(self.map_tensor_name(name), data_torch)]
  4066. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4067. class Gemma3Model(TextModel):
  4068. model_arch = gguf.MODEL_ARCH.GEMMA3
  4069. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4070. def set_vocab(self):
  4071. self._set_vocab_sentencepiece()
  4072. self.gguf_writer.add_add_space_prefix(False)
  4073. def set_gguf_parameters(self):
  4074. hparams = self.hparams
  4075. block_count = hparams["num_hidden_layers"]
  4076. # some default values are not specified in the hparams
  4077. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4078. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4079. self.gguf_writer.add_block_count(block_count)
  4080. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4081. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4082. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4083. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4084. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4085. self.gguf_writer.add_file_type(self.ftype)
  4086. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4087. # attn_logit_softcapping is removed in Gemma3
  4088. assert hparams.get("attn_logit_softcapping") is None
  4089. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4090. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4091. if hparams.get("rope_scaling") is not None:
  4092. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4093. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4094. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4095. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4097. del bid # unused
  4098. if "language_model." in name:
  4099. name = name.replace("language_model.", "")
  4100. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4101. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4102. return [] # skip vision tensors
  4103. # remove OOV (out-of-vocabulary) rows in token_embd
  4104. if "embed_tokens.weight" in name:
  4105. vocab = self._create_vocab_sentencepiece()
  4106. tokens = vocab[0]
  4107. data_torch = data_torch[:len(tokens)]
  4108. # ref code in Gemma3RMSNorm
  4109. # output = output * (1.0 + self.weight.float())
  4110. # note: this is not the case on gemma3n
  4111. if name.endswith("norm.weight"):
  4112. data_torch = data_torch + self.norm_shift
  4113. return [(self.map_tensor_name(name), data_torch)]
  4114. @ModelBase.register("Gemma3ForConditionalGeneration")
  4115. class Gemma3VisionModel(MmprojModel):
  4116. def set_gguf_parameters(self):
  4117. super().set_gguf_parameters()
  4118. hparams = self.hparams
  4119. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4120. # default values below are taken from HF tranformers code
  4121. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4122. self.gguf_writer.add_vision_use_gelu(True)
  4123. # calculate proj_scale_factor (used by tinygemma3 test model)
  4124. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4125. n_per_side = int(image_seq_length ** 0.5)
  4126. image_size = self.hparams["image_size"]
  4127. patch_size = self.hparams["patch_size"]
  4128. proj_scale_factor = (image_size // patch_size) // n_per_side
  4129. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4130. # we only need to write this if it's not the default value
  4131. # in this case, we are converting a test model
  4132. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4133. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4134. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4135. if "input_projection" in name:
  4136. return gguf.GGMLQuantizationType.F16
  4137. if ".embeddings." in name:
  4138. return gguf.GGMLQuantizationType.F32
  4139. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4140. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4141. del bid # unused
  4142. if "vision_model.head." in name:
  4143. return [] # skip redundant tensors for tinygemma3
  4144. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4145. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4146. # process vision tensors
  4147. name = name.replace("_weight", ".weight")
  4148. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4149. # the other norm values are part of SigLIP model, and they are already correct
  4150. # ref code: Gemma3RMSNorm
  4151. if "soft_emb_norm.weight" in name:
  4152. logger.info(f"Correcting norm value for '{name}'")
  4153. data_torch = data_torch + 1
  4154. return [(self.map_tensor_name(name), data_torch)]
  4155. return [] # skip other tensors
  4156. @ModelBase.register("Gemma3nForConditionalGeneration")
  4157. class Gemma3NModel(Gemma3Model):
  4158. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4159. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4160. _altup_proj: list[Tensor] = []
  4161. _altup_unembd: list[Tensor] = []
  4162. def __init__(self, *args, **kwargs):
  4163. super().__init__(*args, **kwargs)
  4164. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4165. self._altup_proj = [
  4166. torch.Tensor(), # to be replaced
  4167. torch.Tensor(), # to be replaced
  4168. torch.Tensor(), # to be replaced
  4169. ]
  4170. self._altup_unembd = [
  4171. torch.Tensor(), # to be replaced
  4172. torch.Tensor(), # to be replaced
  4173. torch.Tensor(), # to be replaced
  4174. ]
  4175. def set_vocab(self):
  4176. super().set_vocab()
  4177. def set_gguf_parameters(self):
  4178. super().set_gguf_parameters()
  4179. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4180. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4181. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4182. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4183. activation_sparsity_scale = []
  4184. for s in self.hparams["activation_sparsity_pattern"]:
  4185. normal_dist = torch.distributions.normal.Normal(0, 1)
  4186. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4187. activation_sparsity_scale.append(std_multiplier.item())
  4188. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4189. sliding_window_pattern = []
  4190. for t in self.hparams["layer_types"]:
  4191. sliding_window_pattern.append(t == "sliding_attention")
  4192. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4193. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4194. has_all = all(m.numel() > 0 for m in matrices)
  4195. if not has_all:
  4196. return None
  4197. else:
  4198. return torch.stack(matrices, dim=0)
  4199. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4200. if name.endswith("_scale"):
  4201. name = name + ".weight"
  4202. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4203. if "language_model." not in name:
  4204. return [] # skip non-language model tensors
  4205. if "altup_unembed_projections" in name:
  4206. data_torch = data_torch.to(device="cpu")
  4207. if ".0." in name:
  4208. self._altup_unembd[0] = data_torch
  4209. elif ".1." in name:
  4210. self._altup_unembd[1] = data_torch
  4211. elif ".2." in name:
  4212. self._altup_unembd[2] = data_torch
  4213. else:
  4214. raise ValueError(f"Unknown name: {name}")
  4215. out = self._stack_matrices(self._altup_unembd)
  4216. if out is not None:
  4217. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4218. else:
  4219. return []
  4220. if "altup_projections" in name:
  4221. data_torch = data_torch.to(device="cpu")
  4222. if ".0." in name:
  4223. self._altup_proj[0] = data_torch
  4224. elif ".1." in name:
  4225. self._altup_proj[1] = data_torch
  4226. elif ".2." in name:
  4227. self._altup_proj[2] = data_torch
  4228. else:
  4229. raise ValueError(f"Unknown name: {name}")
  4230. out = self._stack_matrices(self._altup_proj)
  4231. if out is not None:
  4232. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4233. else:
  4234. return []
  4235. return super().modify_tensors(data_torch, name, bid)
  4236. @ModelBase.register("Starcoder2ForCausalLM")
  4237. class StarCoder2Model(TextModel):
  4238. model_arch = gguf.MODEL_ARCH.STARCODER2
  4239. @ModelBase.register("Rwkv6ForCausalLM")
  4240. class Rwkv6Model(TextModel):
  4241. model_arch = gguf.MODEL_ARCH.RWKV6
  4242. def set_vocab(self):
  4243. self._set_vocab_rwkv_world()
  4244. def set_gguf_parameters(self):
  4245. block_count = self.hparams["num_hidden_layers"]
  4246. head_size = self.hparams["head_size"]
  4247. hidden_size = self.hparams["hidden_size"]
  4248. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4249. rescale_every_n_layers = self.hparams["rescale_every"]
  4250. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4251. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4252. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4253. # RWKV isn't context limited
  4254. self.gguf_writer.add_context_length(1048576)
  4255. self.gguf_writer.add_embedding_length(hidden_size)
  4256. self.gguf_writer.add_block_count(block_count)
  4257. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4258. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4259. self.gguf_writer.add_wkv_head_size(head_size)
  4260. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4261. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4262. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4263. self.gguf_writer.add_file_type(self.ftype)
  4264. # required by llama.cpp, unused
  4265. self.gguf_writer.add_head_count(0)
  4266. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4268. new_name = self.map_tensor_name(name)
  4269. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4270. new_name += ".weight"
  4271. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4272. data_torch = data_torch.transpose(0, 1)
  4273. if new_name.endswith("time_mix_w2.weight"):
  4274. data_torch = data_torch.permute(0, 2, 1)
  4275. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4276. data_torch = data_torch.squeeze()
  4277. try:
  4278. rescale_every_n_layers = self.hparams["rescale_every"]
  4279. if rescale_every_n_layers > 0:
  4280. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4281. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4282. except KeyError:
  4283. pass
  4284. # concat time_mix_lerp weights to reduce some cpu overhead
  4285. # also reduces the number of tensors in the model
  4286. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4287. try:
  4288. self.lerp_weights[bid][new_name] = data_torch
  4289. except KeyError:
  4290. self.lerp_weights[bid] = {new_name: data_torch}
  4291. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4292. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4293. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4294. yield (new_name, data)
  4295. return
  4296. yield (new_name, data_torch)
  4297. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4298. class RWKV6Qwen2Model(Rwkv6Model):
  4299. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4300. def set_vocab(self):
  4301. try:
  4302. self._set_vocab_sentencepiece()
  4303. except FileNotFoundError:
  4304. self._set_vocab_gpt2()
  4305. def set_gguf_parameters(self):
  4306. block_count = self.hparams["num_hidden_layers"]
  4307. num_attention_heads = self.hparams["num_attention_heads"]
  4308. num_key_value_heads = self.hparams["num_key_value_heads"]
  4309. hidden_size = self.hparams["hidden_size"]
  4310. head_size = hidden_size // num_attention_heads
  4311. rms_norm_eps = self.hparams["rms_norm_eps"]
  4312. intermediate_size = self.hparams["intermediate_size"]
  4313. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4314. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4315. # RWKV isn't context limited
  4316. self.gguf_writer.add_context_length(1048576)
  4317. self.gguf_writer.add_embedding_length(hidden_size)
  4318. self.gguf_writer.add_block_count(block_count)
  4319. self.gguf_writer.add_wkv_head_size(head_size)
  4320. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4321. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4322. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4323. self.gguf_writer.add_file_type(self.ftype)
  4324. # special parameters for time_mixing in RWKV6QWEN2
  4325. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4326. self.gguf_writer.add_token_shift_count(1)
  4327. # RWKV6QWEN2 use grouped key/value like GQA
  4328. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4329. # required by llama.cpp, unused
  4330. self.gguf_writer.add_head_count(0)
  4331. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4332. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4333. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4334. data = data.view(5, -1, data.shape[-1])
  4335. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4336. # permute them here to avoid code changes
  4337. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4338. if "w2" in new_name:
  4339. data = data.view(5, -1, data.shape[-1])
  4340. yield (new_name, data)
  4341. continue
  4342. yield (new_name, data)
  4343. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4344. class Rwkv7Model(TextModel):
  4345. model_arch = gguf.MODEL_ARCH.RWKV7
  4346. def set_vocab(self):
  4347. self._set_vocab_rwkv_world()
  4348. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4349. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4350. def set_gguf_parameters(self):
  4351. block_count = self.hparams["num_hidden_layers"]
  4352. try:
  4353. head_size = self.hparams["head_size"]
  4354. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4355. except KeyError:
  4356. head_size = self.hparams["head_dim"]
  4357. layer_norm_eps = self.hparams["norm_eps"]
  4358. hidden_size = self.hparams["hidden_size"]
  4359. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4360. # ICLR: In-Context-Learning-Rate
  4361. try:
  4362. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4363. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4364. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4365. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4366. except KeyError:
  4367. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4368. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4369. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4370. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4371. # RWKV isn't context limited
  4372. self.gguf_writer.add_context_length(1048576)
  4373. self.gguf_writer.add_embedding_length(hidden_size)
  4374. self.gguf_writer.add_block_count(block_count)
  4375. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4376. self.gguf_writer.add_wkv_head_size(head_size)
  4377. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4378. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4379. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4380. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4381. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4382. self.gguf_writer.add_file_type(self.ftype)
  4383. # required by llama.cpp, unused
  4384. self.gguf_writer.add_head_count(0)
  4385. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4386. lora_needs_transpose: bool = True
  4387. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4388. # unify tensor names here to make life easier
  4389. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4390. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4391. name = name.replace("time_mixer.", "")
  4392. # lora layer names in fla-hub's impl
  4393. if "_lora.lora" in name:
  4394. self.lora_needs_transpose = False
  4395. name = name.replace("_lora.lora.0.weight", "1.weight")
  4396. name = name.replace("_lora.lora.2.weight", "2.weight")
  4397. name = name.replace("_lora.lora.2.bias", "0.weight")
  4398. name = name.replace("feed_forward_norm", "ln2")
  4399. name = name.replace("g_norm", "ln_x")
  4400. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4401. # some models have dummy v0/v1/v2 on first layer while others don't
  4402. # ignore them all since they are not used
  4403. return
  4404. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4405. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4406. if bid is not None and "attention.x_" in name:
  4407. if "attention.x_x" in name:
  4408. # already concatenated
  4409. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4410. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4411. yield (new_name, data)
  4412. else:
  4413. try:
  4414. self.lerp_weights[bid][name] = data_torch
  4415. except KeyError:
  4416. self.lerp_weights[bid] = {name: data_torch}
  4417. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4418. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4419. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4420. yield (new_name, data)
  4421. return
  4422. else:
  4423. data_torch = data_torch.squeeze()
  4424. new_name = self.map_tensor_name(name)
  4425. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4426. new_name += ".weight"
  4427. if self.lora_needs_transpose and any(
  4428. new_name.endswith(t) for t in [
  4429. "time_mix_w1.weight", "time_mix_w2.weight",
  4430. "time_mix_a1.weight", "time_mix_a2.weight",
  4431. "time_mix_v1.weight", "time_mix_v2.weight",
  4432. "time_mix_g1.weight", "time_mix_g2.weight",
  4433. ]
  4434. ):
  4435. data_torch = data_torch.transpose(0, 1)
  4436. if 'r_k' in new_name:
  4437. data_torch = data_torch.flatten()
  4438. if bid == 0 and "time_mix_a" in new_name:
  4439. # dummy v0/v1/v2 on first layer
  4440. # easist way to make llama happy
  4441. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4442. yield (new_name, data_torch)
  4443. @ModelBase.register("RwkvHybridForCausalLM")
  4444. class ARwkv7Model(Rwkv7Model):
  4445. model_arch = gguf.MODEL_ARCH.ARWKV7
  4446. def set_vocab(self):
  4447. try:
  4448. self._set_vocab_sentencepiece()
  4449. except FileNotFoundError:
  4450. self._set_vocab_gpt2()
  4451. def set_gguf_parameters(self):
  4452. block_count = self.hparams["num_hidden_layers"]
  4453. hidden_size = self.hparams["hidden_size"]
  4454. head_size = self.hparams["head_size"]
  4455. rms_norm_eps = self.hparams["rms_norm_eps"]
  4456. intermediate_size = self.hparams["intermediate_size"]
  4457. wkv_has_gate = self.hparams["wkv_has_gate"]
  4458. assert self.hparams["wkv_version"] == 7
  4459. # ICLR: In-Context-Learning-Rate
  4460. lora_rank_decay = 64
  4461. lora_rank_iclr = 64
  4462. lora_rank_value_residual_mix = 32
  4463. lora_rank_gate = 128 if wkv_has_gate else 0
  4464. # RWKV isn't context limited
  4465. self.gguf_writer.add_context_length(1048576)
  4466. self.gguf_writer.add_embedding_length(hidden_size)
  4467. self.gguf_writer.add_block_count(block_count)
  4468. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4469. self.gguf_writer.add_wkv_head_size(head_size)
  4470. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4471. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4472. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4473. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4474. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4475. self.gguf_writer.add_file_type(self.ftype)
  4476. self.gguf_writer.add_token_shift_count(1)
  4477. # required by llama.cpp, unused
  4478. self.gguf_writer.add_head_count(0)
  4479. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4480. class MambaModel(TextModel):
  4481. model_arch = gguf.MODEL_ARCH.MAMBA
  4482. def __init__(self, dir_model: Path, *args, **kwargs):
  4483. # Avoid using AutoConfig for hparams
  4484. hparams = kwargs.pop("hparams", None)
  4485. if hparams is None:
  4486. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4487. hparams = json.load(f)
  4488. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4489. def set_vocab(self):
  4490. vocab_size = self.hparams["vocab_size"]
  4491. # Round vocab size to next multiple of 8
  4492. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4493. # pad using ceiling division
  4494. # ref: https://stackoverflow.com/a/17511341/22827863
  4495. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4496. self.hparams["vocab_size"] = vocab_size
  4497. if (self.dir_model / "tokenizer.json").is_file():
  4498. self._set_vocab_gpt2()
  4499. elif (self.dir_model / "tokenizer.model").is_file():
  4500. self._set_vocab_sentencepiece()
  4501. else:
  4502. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4503. self._set_vocab_builtin("gpt-neox", vocab_size)
  4504. def set_gguf_parameters(self):
  4505. d_model = self.find_hparam(["hidden_size", "d_model"])
  4506. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4507. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4508. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4509. # ceiling division
  4510. # ref: https://stackoverflow.com/a/17511341/22827863
  4511. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4512. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4513. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4514. use_dt_b_c_norm = False
  4515. # For falconmamba we do apply RMS norm on B / DT and C layers
  4516. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4517. use_dt_b_c_norm = True
  4518. # Fail early for models which don't have a block expansion factor of 2
  4519. assert d_inner == 2 * d_model
  4520. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4521. self.gguf_writer.add_embedding_length(d_model)
  4522. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4523. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4524. self.gguf_writer.add_block_count(self.block_count)
  4525. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4526. self.gguf_writer.add_ssm_inner_size(d_inner)
  4527. self.gguf_writer.add_ssm_state_size(d_state)
  4528. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4529. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4530. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4531. self.gguf_writer.add_file_type(self.ftype)
  4532. _tok_embd = None
  4533. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4534. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4535. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4536. new_name = self.map_tensor_name(name)
  4537. if name.endswith(".A_log"):
  4538. logger.debug("A_log --> A ==> " + new_name)
  4539. data_torch = -torch.exp(data_torch)
  4540. # [4 1 8192 1] -> [4 8192 1 1]
  4541. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4542. data_torch = data_torch.squeeze()
  4543. # assuming token_embd.weight is seen before output.weight
  4544. if self._tok_embd is not None and new_name == output_name:
  4545. if torch.equal(self._tok_embd, data_torch):
  4546. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4547. return []
  4548. elif new_name == tok_embd_name:
  4549. self._tok_embd = data_torch
  4550. return [(new_name, data_torch)]
  4551. @ModelBase.register("Mamba2ForCausalLM")
  4552. class Mamba2Model(TextModel):
  4553. model_arch = gguf.MODEL_ARCH.MAMBA2
  4554. def __init__(self, dir_model: Path, *args, **kwargs):
  4555. # Avoid using AutoConfig for hparams
  4556. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4557. hparams = kwargs.pop("hparams", None)
  4558. if hparams is None:
  4559. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4560. hparams = json.load(f)
  4561. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4562. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4563. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4564. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4565. def set_vocab(self):
  4566. vocab_size = self.hparams["vocab_size"]
  4567. # Round vocab size to next multiple of 16
  4568. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4569. # pad using ceiling division
  4570. # ref: https://stackoverflow.com/a/17511341/22827863
  4571. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4572. self.hparams["vocab_size"] = vocab_size
  4573. if (self.dir_model / "tokenizer.model").is_file():
  4574. self._set_vocab_sentencepiece()
  4575. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4576. # mamba-codestral
  4577. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4578. elif (self.dir_model / "tokenizer.json").is_file():
  4579. self._set_vocab_gpt2()
  4580. else:
  4581. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4582. self._set_vocab_builtin("gpt-neox", vocab_size)
  4583. def set_gguf_parameters(self):
  4584. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4585. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4586. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4587. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4588. # Fail early for models which don't have a block expansion factor of 2
  4589. # TODO: does this really matter?
  4590. # skip the assertion for FalconH1 Model
  4591. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4592. assert self.d_inner == 2 * self.d_model
  4593. assert self.d_inner % head_dim == 0
  4594. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4595. self.gguf_writer.add_embedding_length(self.d_model)
  4596. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4597. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4598. self.gguf_writer.add_block_count(self.block_count)
  4599. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4600. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4601. self.gguf_writer.add_ssm_state_size(d_state)
  4602. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4603. self.gguf_writer.add_ssm_group_count(self.n_group)
  4604. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4605. self.gguf_writer.add_file_type(self.ftype)
  4606. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4607. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4608. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4609. name = name.removeprefix("model.")
  4610. if name.endswith(".dt_bias"):
  4611. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4612. new_name = self.map_tensor_name(name)
  4613. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4614. data_torch = data_torch.squeeze()
  4615. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4616. gguf.MODEL_TENSOR.SSM_A,
  4617. gguf.MODEL_TENSOR.SSM_D,
  4618. ]):
  4619. # unsqueeze A to use similar shape semantics as Mamba-1
  4620. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4621. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4622. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4623. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4624. if name.endswith(".A_log"):
  4625. logger.debug("A_log --> A ==> " + new_name)
  4626. data_torch = -torch.exp(data_torch)
  4627. yield (new_name, data_torch)
  4628. @ModelBase.register("JambaForCausalLM")
  4629. class JambaModel(TextModel):
  4630. model_arch = gguf.MODEL_ARCH.JAMBA
  4631. def get_vocab_base_pre(self, tokenizer) -> str:
  4632. del tokenizer # unused
  4633. return "gpt-2"
  4634. def set_vocab(self):
  4635. if (self.dir_model / "tokenizer.model").is_file():
  4636. # Using Jamba's tokenizer.json causes errors on model load
  4637. # (something about "byte not found in vocab"),
  4638. # but there's a working tokenizer.model
  4639. self._set_vocab_sentencepiece()
  4640. else:
  4641. # Some Jamba models only have a tokenizer.json, which works.
  4642. self._set_vocab_gpt2()
  4643. def set_gguf_parameters(self):
  4644. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4645. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4646. d_inner = self.hparams["mamba_expand"] * d_model
  4647. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4648. # ceiling division
  4649. # ref: https://stackoverflow.com/a/17511341/22827863
  4650. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4651. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4652. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4653. n_kv_head = self.hparams["num_key_value_heads"]
  4654. attn_offset = self.hparams["attn_layer_offset"]
  4655. attn_period = self.hparams["attn_layer_period"]
  4656. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4657. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4658. ]
  4659. self.gguf_writer.add_block_count(self.block_count)
  4660. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4661. self.gguf_writer.add_embedding_length(d_model)
  4662. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4663. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4664. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4665. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4666. self.gguf_writer.add_ssm_inner_size(d_inner)
  4667. self.gguf_writer.add_ssm_state_size(d_state)
  4668. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4669. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4670. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4671. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4672. self.gguf_writer.add_file_type(self.ftype)
  4673. _experts: list[dict[str, Tensor]] | None = None
  4674. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4675. # Mini-Jamba
  4676. name = name.replace(".moe.", ".feed_forward.")
  4677. if bid is not None:
  4678. moe_offset = self.hparams["expert_layer_offset"]
  4679. moe_period = self.hparams["expert_layer_period"]
  4680. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4681. name = name.replace(".experts.0.", ".")
  4682. # process the experts separately
  4683. if ".feed_forward.experts." in name:
  4684. n_experts = self.hparams["num_experts"]
  4685. assert bid is not None
  4686. if self._experts is None:
  4687. self._experts = [{} for _ in range(self.block_count)]
  4688. self._experts[bid][name] = data_torch
  4689. if len(self._experts[bid]) >= n_experts * 3:
  4690. # merge the experts into a single 3d tensor
  4691. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4692. datas: list[Tensor] = []
  4693. for xid in range(n_experts):
  4694. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4695. datas.append(self._experts[bid][ename])
  4696. del self._experts[bid][ename]
  4697. data_torch = torch.stack(datas, dim=0)
  4698. # using the same merged name as qwen2moe
  4699. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4700. new_name = self.map_tensor_name(merged_name)
  4701. yield new_name, data_torch
  4702. return
  4703. new_name = self.map_tensor_name(name)
  4704. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4705. data_torch = data_torch.squeeze()
  4706. if name.endswith(".A_log"):
  4707. logger.debug("A_log --> A ==> " + new_name)
  4708. data_torch = -torch.exp(data_torch)
  4709. yield (new_name, data_torch)
  4710. def prepare_tensors(self):
  4711. super().prepare_tensors()
  4712. if self._experts is not None:
  4713. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4714. experts = [k for d in self._experts for k in d.keys()]
  4715. if len(experts) > 0:
  4716. raise ValueError(f"Unprocessed experts: {experts}")
  4717. @ModelBase.register("CohereForCausalLM")
  4718. class CommandR2Model(TextModel):
  4719. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4720. def __init__(self, *args, **kwargs):
  4721. super().__init__(*args, **kwargs)
  4722. # max_position_embeddings = 8192 in config.json but model was actually
  4723. # trained on 128k context length
  4724. # aya-23 models don't have model_max_length specified
  4725. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4726. def set_gguf_parameters(self):
  4727. super().set_gguf_parameters()
  4728. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4729. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4730. @ModelBase.register("Cohere2ForCausalLM")
  4731. class Cohere2Model(TextModel):
  4732. model_arch = gguf.MODEL_ARCH.COHERE2
  4733. def set_gguf_parameters(self):
  4734. super().set_gguf_parameters()
  4735. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4736. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4737. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4738. rotary_pct = self.hparams["rotary_pct"]
  4739. hidden_size = self.hparams["hidden_size"]
  4740. num_attention_heads = self.hparams["num_attention_heads"]
  4741. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4742. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4743. @ModelBase.register("OlmoForCausalLM")
  4744. @ModelBase.register("OLMoForCausalLM")
  4745. class OlmoModel(TextModel):
  4746. model_arch = gguf.MODEL_ARCH.OLMO
  4747. def set_gguf_parameters(self):
  4748. super().set_gguf_parameters()
  4749. self.gguf_writer.add_layer_norm_eps(1e-5)
  4750. clip_qkv = self.hparams.get("clip_qkv")
  4751. if clip_qkv is not None:
  4752. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4753. # Same as super class, but permuting q_proj, k_proj
  4754. # Copied from: LlamaModel
  4755. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4756. del bid # unused
  4757. n_head = self.hparams["num_attention_heads"]
  4758. n_kv_head = self.hparams.get("num_key_value_heads")
  4759. if name.endswith("q_proj.weight"):
  4760. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4761. if name.endswith("k_proj.weight"):
  4762. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4763. return [(self.map_tensor_name(name), data_torch)]
  4764. @ModelBase.register("Olmo2ForCausalLM")
  4765. class Olmo2Model(TextModel):
  4766. model_arch = gguf.MODEL_ARCH.OLMO2
  4767. @ModelBase.register("OlmoeForCausalLM")
  4768. class OlmoeModel(TextModel):
  4769. model_arch = gguf.MODEL_ARCH.OLMOE
  4770. def set_gguf_parameters(self):
  4771. super().set_gguf_parameters()
  4772. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4773. if (n_experts := self.hparams.get("num_experts")) is not None:
  4774. self.gguf_writer.add_expert_count(n_experts)
  4775. _experts: list[dict[str, Tensor]] | None = None
  4776. # Copied from: Qwen2MoeModel
  4777. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4778. # process the experts separately
  4779. if name.find("experts") != -1:
  4780. n_experts = self.hparams["num_experts"]
  4781. assert bid is not None
  4782. if self._experts is None:
  4783. self._experts = [{} for _ in range(self.block_count)]
  4784. self._experts[bid][name] = data_torch
  4785. if len(self._experts[bid]) >= n_experts * 3:
  4786. tensors: list[tuple[str, Tensor]] = []
  4787. # merge the experts into a single 3d tensor
  4788. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4789. datas: list[Tensor] = []
  4790. for xid in range(n_experts):
  4791. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4792. datas.append(self._experts[bid][ename])
  4793. del self._experts[bid][ename]
  4794. data_torch = torch.stack(datas, dim=0)
  4795. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4796. new_name = self.map_tensor_name(merged_name)
  4797. tensors.append((new_name, data_torch))
  4798. return tensors
  4799. else:
  4800. return []
  4801. return [(self.map_tensor_name(name), data_torch)]
  4802. # Copied from: Qwen2MoeModel
  4803. def prepare_tensors(self):
  4804. super().prepare_tensors()
  4805. if self._experts is not None:
  4806. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4807. experts = [k for d in self._experts for k in d.keys()]
  4808. if len(experts) > 0:
  4809. raise ValueError(f"Unprocessed experts: {experts}")
  4810. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4811. class JinaBertV2Model(BertModel):
  4812. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4813. def set_vocab(self):
  4814. tokenizer_class = 'BertTokenizer'
  4815. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4816. tokenizer_class = json.load(f)['tokenizer_class']
  4817. if tokenizer_class == 'BertTokenizer':
  4818. super().set_vocab()
  4819. elif tokenizer_class == 'RobertaTokenizer':
  4820. self._set_vocab_gpt2()
  4821. self.gguf_writer.add_token_type_count(2)
  4822. else:
  4823. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4824. @ModelBase.register("OpenELMForCausalLM")
  4825. class OpenELMModel(TextModel):
  4826. model_arch = gguf.MODEL_ARCH.OPENELM
  4827. @staticmethod
  4828. def _make_divisible(v: float | int, divisor: int) -> int:
  4829. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4830. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4831. # Make sure that round down does not go down by more than 10%.
  4832. if new_v < 0.9 * v:
  4833. new_v += divisor
  4834. return new_v
  4835. def __init__(self, *args, **kwargs):
  4836. super().__init__(*args, **kwargs)
  4837. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4838. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4839. self._n_embd: int = self.hparams["model_dim"]
  4840. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4841. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4842. self._ffn_dims: list[int] = [
  4843. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4844. for multiplier in ffn_multipliers
  4845. ]
  4846. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4847. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4848. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4849. def set_vocab(self):
  4850. try:
  4851. self._set_vocab_sentencepiece()
  4852. except FileNotFoundError:
  4853. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4854. def set_gguf_parameters(self):
  4855. n_embd = self._n_embd
  4856. head_dim = self.hparams["head_dim"]
  4857. rot_pct = 1.0
  4858. assert self.block_count == len(self._num_kv_heads)
  4859. assert self.block_count == len(self._num_query_heads)
  4860. assert self.block_count == len(self._ffn_dims)
  4861. self.gguf_writer.add_block_count(self.block_count)
  4862. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4863. self.gguf_writer.add_embedding_length(n_embd)
  4864. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4865. self.gguf_writer.add_head_count(self._num_query_heads)
  4866. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4867. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4868. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4869. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4870. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4871. self.gguf_writer.add_key_length(head_dim)
  4872. self.gguf_writer.add_value_length(head_dim)
  4873. self.gguf_writer.add_file_type(self.ftype)
  4874. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4875. if "n_layers" in keys:
  4876. return self.hparams["num_transformer_layers"]
  4877. return super().find_hparam(keys, optional)
  4878. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4879. # split ff
  4880. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4881. ff_dim = self._ffn_dims[bid]
  4882. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4883. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4884. return
  4885. yield (self.map_tensor_name(name), data_torch)
  4886. @ModelBase.register("ArcticForCausalLM")
  4887. class ArcticModel(TextModel):
  4888. model_arch = gguf.MODEL_ARCH.ARCTIC
  4889. def set_vocab(self):
  4890. # The reason for using a custom implementation here is that the
  4891. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4892. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4893. from sentencepiece import SentencePieceProcessor
  4894. tokenizer_path = self.dir_model / 'tokenizer.model'
  4895. if not tokenizer_path.is_file():
  4896. logger.error(f'Error: Missing {tokenizer_path}')
  4897. sys.exit(1)
  4898. # Read the whole vocabulary from the tokenizer.model file
  4899. tokenizer = SentencePieceProcessor()
  4900. tokenizer.LoadFromFile(str(tokenizer_path))
  4901. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4902. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4903. scores: list[float] = [-10000.0] * vocab_size
  4904. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4905. for token_id in range(tokenizer.vocab_size()):
  4906. piece = tokenizer.IdToPiece(token_id)
  4907. text = piece.encode("utf-8")
  4908. score = tokenizer.GetScore(token_id)
  4909. toktype = SentencePieceTokenTypes.NORMAL
  4910. if tokenizer.IsUnknown(token_id):
  4911. toktype = SentencePieceTokenTypes.UNKNOWN
  4912. elif tokenizer.IsControl(token_id):
  4913. toktype = SentencePieceTokenTypes.CONTROL
  4914. elif tokenizer.IsUnused(token_id):
  4915. toktype = SentencePieceTokenTypes.UNUSED
  4916. elif tokenizer.IsByte(token_id):
  4917. toktype = SentencePieceTokenTypes.BYTE
  4918. tokens[token_id] = text
  4919. scores[token_id] = score
  4920. toktypes[token_id] = toktype
  4921. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4922. # of information about added/redefined tokens and modify them accordingly.
  4923. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4924. if tokenizer_config_file.is_file():
  4925. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4926. tokenizer_config_json = json.load(f)
  4927. if "added_tokens_decoder" in tokenizer_config_json:
  4928. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4929. for token_id, token_json in added_tokens_decoder.items():
  4930. token_id = int(token_id)
  4931. if token_id >= vocab_size:
  4932. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4933. continue
  4934. token_content = token_json["content"]
  4935. token_type = SentencePieceTokenTypes.USER_DEFINED
  4936. token_score = -10000.0
  4937. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4938. # Set the score to 0.0 as in the original tokenizer.model
  4939. if ("special" in token_json) and token_json["special"]:
  4940. if token_content == tokenizer_config_json["unk_token"]:
  4941. token_type = SentencePieceTokenTypes.UNKNOWN
  4942. else:
  4943. token_type = SentencePieceTokenTypes.CONTROL
  4944. token_score = 0.0
  4945. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4946. tokens[token_id] = token_content.encode("utf-8")
  4947. toktypes[token_id] = token_type
  4948. scores[token_id] = token_score
  4949. self.gguf_writer.add_tokenizer_model("llama")
  4950. self.gguf_writer.add_tokenizer_pre("default")
  4951. self.gguf_writer.add_token_list(tokens)
  4952. self.gguf_writer.add_token_scores(scores)
  4953. self.gguf_writer.add_token_types(toktypes)
  4954. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4955. special_vocab.add_to_gguf(self.gguf_writer)
  4956. def set_gguf_parameters(self):
  4957. super().set_gguf_parameters()
  4958. hparams = self.hparams
  4959. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4960. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4961. _experts: list[dict[str, Tensor]] | None = None
  4962. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4963. n_head = self.hparams["num_attention_heads"]
  4964. n_kv_head = self.hparams.get("num_key_value_heads")
  4965. if name.endswith("q_proj.weight"):
  4966. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4967. if name.endswith("k_proj.weight"):
  4968. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4969. # process the experts separately
  4970. if name.find("block_sparse_moe.experts") != -1:
  4971. n_experts = self.hparams["num_local_experts"]
  4972. assert bid is not None
  4973. if self._experts is None:
  4974. self._experts = [{} for _ in range(self.block_count)]
  4975. self._experts[bid][name] = data_torch
  4976. if len(self._experts[bid]) >= n_experts * 3:
  4977. tensors: list[tuple[str, Tensor]] = []
  4978. # merge the experts into a single 3d tensor
  4979. for wid in ["w1", "w2", "w3"]:
  4980. datas: list[Tensor] = []
  4981. for xid in range(n_experts):
  4982. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4983. datas.append(self._experts[bid][ename])
  4984. del self._experts[bid][ename]
  4985. data_torch = torch.stack(datas, dim=0)
  4986. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4987. new_name = self.map_tensor_name(merged_name)
  4988. tensors.append((new_name, data_torch))
  4989. return tensors
  4990. else:
  4991. return []
  4992. return [(self.map_tensor_name(name), data_torch)]
  4993. def prepare_tensors(self):
  4994. super().prepare_tensors()
  4995. if self._experts is not None:
  4996. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4997. experts = [k for d in self._experts for k in d.keys()]
  4998. if len(experts) > 0:
  4999. raise ValueError(f"Unprocessed experts: {experts}")
  5000. @ModelBase.register("DeepseekForCausalLM")
  5001. class DeepseekModel(TextModel):
  5002. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5003. def set_vocab(self):
  5004. try:
  5005. self._set_vocab_sentencepiece()
  5006. except FileNotFoundError:
  5007. self._set_vocab_gpt2()
  5008. def set_gguf_parameters(self):
  5009. super().set_gguf_parameters()
  5010. hparams = self.hparams
  5011. if (rope_dim := hparams.get("head_dim")) is None:
  5012. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5013. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5014. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5015. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5016. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5017. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5018. self.gguf_writer.add_expert_weights_scale(1.0)
  5019. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5020. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5021. _experts: list[dict[str, Tensor]] | None = None
  5022. @staticmethod
  5023. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5024. if n_head_kv is not None and n_head != n_head_kv:
  5025. n_head = n_head_kv
  5026. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5027. .swapaxes(1, 2)
  5028. .reshape(weights.shape))
  5029. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5030. n_head = self.hparams["num_attention_heads"]
  5031. n_kv_head = self.hparams.get("num_key_value_heads")
  5032. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5033. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5034. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5035. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5036. # process the experts separately
  5037. if name.find("mlp.experts") != -1:
  5038. n_experts = self.hparams["n_routed_experts"]
  5039. assert bid is not None
  5040. if self._experts is None:
  5041. self._experts = [{} for _ in range(self.block_count)]
  5042. self._experts[bid][name] = data_torch
  5043. if len(self._experts[bid]) >= n_experts * 3:
  5044. tensors: list[tuple[str, Tensor]] = []
  5045. # merge the experts into a single 3d tensor
  5046. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5047. datas: list[Tensor] = []
  5048. for xid in range(n_experts):
  5049. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5050. datas.append(self._experts[bid][ename])
  5051. del self._experts[bid][ename]
  5052. data_torch = torch.stack(datas, dim=0)
  5053. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5054. new_name = self.map_tensor_name(merged_name)
  5055. tensors.append((new_name, data_torch))
  5056. return tensors
  5057. else:
  5058. return []
  5059. return [(self.map_tensor_name(name), data_torch)]
  5060. def prepare_tensors(self):
  5061. super().prepare_tensors()
  5062. if self._experts is not None:
  5063. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5064. experts = [k for d in self._experts for k in d.keys()]
  5065. if len(experts) > 0:
  5066. raise ValueError(f"Unprocessed experts: {experts}")
  5067. @ModelBase.register("DeepseekV2ForCausalLM")
  5068. @ModelBase.register("DeepseekV3ForCausalLM")
  5069. @ModelBase.register("KimiVLForConditionalGeneration")
  5070. class DeepseekV2Model(TextModel):
  5071. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5072. def set_vocab(self):
  5073. try:
  5074. self._set_vocab_gpt2()
  5075. return
  5076. except Exception:
  5077. pass
  5078. from transformers import AutoTokenizer
  5079. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5080. tokpre = self.get_vocab_base_pre(tokenizer)
  5081. if tokpre == "kimi-k2":
  5082. # Build merges list using the approach similar to HunYuanMoE
  5083. merges = []
  5084. vocab = {}
  5085. mergeable_ranks = tokenizer.model._mergeable_ranks
  5086. for token, rank in mergeable_ranks.items():
  5087. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5088. if len(token) == 1:
  5089. continue
  5090. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5091. if len(merged) == 2:
  5092. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5093. # Build token list
  5094. vocab_size = self.hparams["vocab_size"]
  5095. special_tokens = tokenizer.special_tokens
  5096. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5097. tokens: list[str] = []
  5098. toktypes: list[int] = []
  5099. for i in range(vocab_size):
  5100. if i not in reverse_vocab:
  5101. tokens.append(f"[PAD{i}]")
  5102. toktypes.append(gguf.TokenType.UNUSED)
  5103. else:
  5104. token = reverse_vocab[i]
  5105. tokens.append(token)
  5106. if i in special_tokens.values():
  5107. toktypes.append(gguf.TokenType.CONTROL)
  5108. else:
  5109. toktypes.append(gguf.TokenType.NORMAL)
  5110. self.gguf_writer.add_tokenizer_model("gpt2")
  5111. self.gguf_writer.add_tokenizer_pre(tokpre)
  5112. self.gguf_writer.add_token_list(tokens)
  5113. self.gguf_writer.add_token_types(toktypes)
  5114. self.gguf_writer.add_token_merges(merges)
  5115. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5116. special_vocab.add_to_gguf(self.gguf_writer)
  5117. else:
  5118. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5119. def set_gguf_parameters(self):
  5120. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5121. self.hparams["num_key_value_heads"] = 1
  5122. super().set_gguf_parameters()
  5123. hparams = self.hparams
  5124. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5125. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5126. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5127. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5128. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5129. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5130. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5131. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5132. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5133. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5134. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5135. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5136. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5137. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5138. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5139. if hparams["scoring_func"] == "sigmoid":
  5140. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5141. elif hparams["scoring_func"] == "softmax":
  5142. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5143. else:
  5144. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5145. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5146. rope_scaling = self.hparams.get("rope_scaling") or {}
  5147. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5148. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5149. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5150. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5151. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5152. _experts: list[dict[str, Tensor]] | None = None
  5153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5154. # skip vision tensors and remove "language_model." for Kimi-VL
  5155. if "vision_tower" in name or "multi_modal_projector" in name:
  5156. return []
  5157. if name.startswith("language_model."):
  5158. name = name.replace("language_model.", "")
  5159. # rename e_score_correction_bias tensors
  5160. if name.endswith("e_score_correction_bias"):
  5161. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5162. # skip Multi-Token Prediction (MTP) layers
  5163. block_count = self.hparams["num_hidden_layers"]
  5164. match = re.match(r"model.layers.(\d+)", name)
  5165. if match and int(match.group(1)) >= block_count:
  5166. return []
  5167. # process the experts separately
  5168. if name.find("mlp.experts") != -1:
  5169. n_experts = self.hparams["n_routed_experts"]
  5170. assert bid is not None
  5171. if self._experts is None:
  5172. self._experts = [{} for _ in range(self.block_count)]
  5173. self._experts[bid][name] = data_torch
  5174. if len(self._experts[bid]) >= n_experts * 3:
  5175. tensors: list[tuple[str, Tensor]] = []
  5176. # merge the experts into a single 3d tensor
  5177. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5178. datas: list[Tensor] = []
  5179. for xid in range(n_experts):
  5180. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5181. datas.append(self._experts[bid][ename])
  5182. del self._experts[bid][ename]
  5183. data_torch = torch.stack(datas, dim=0)
  5184. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5185. new_name = self.map_tensor_name(merged_name)
  5186. tensors.append((new_name, data_torch))
  5187. return tensors
  5188. else:
  5189. return []
  5190. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5191. if name.endswith("kv_b_proj.weight"):
  5192. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5193. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5194. n_head_kv = self.hparams["num_key_value_heads"]
  5195. v_head_dim = self.hparams["v_head_dim"]
  5196. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5197. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5198. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5199. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5200. k_b = k_b.transpose(1, 2)
  5201. return [
  5202. (self.map_tensor_name(name_kb), k_b),
  5203. (self.map_tensor_name(name_vb), v_b)
  5204. ]
  5205. return [(self.map_tensor_name(name), data_torch)]
  5206. def prepare_tensors(self):
  5207. super().prepare_tensors()
  5208. if self._experts is not None:
  5209. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5210. experts = [k for d in self._experts for k in d.keys()]
  5211. if len(experts) > 0:
  5212. raise ValueError(f"Unprocessed experts: {experts}")
  5213. @ModelBase.register("Dots1ForCausalLM")
  5214. class Dots1Model(Qwen2MoeModel):
  5215. model_arch = gguf.MODEL_ARCH.DOTS1
  5216. def __init__(self, *args, **kwargs):
  5217. super().__init__(*args, **kwargs)
  5218. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5219. def set_gguf_parameters(self):
  5220. super().set_gguf_parameters()
  5221. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5222. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5223. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5224. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5225. if self.hparams["scoring_func"] == "noaux_tc":
  5226. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5227. else:
  5228. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5229. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5230. if name.endswith("e_score_correction_bias"):
  5231. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5232. if "shared_experts" in name:
  5233. return [(self.map_tensor_name(name), data_torch)]
  5234. return super().modify_tensors(data_torch, name, bid)
  5235. @ModelBase.register("PLMForCausalLM")
  5236. class PLMModel(TextModel):
  5237. model_arch = gguf.MODEL_ARCH.PLM
  5238. def set_vocab(self):
  5239. self._set_vocab_gpt2()
  5240. def set_gguf_parameters(self):
  5241. super().set_gguf_parameters()
  5242. hparams = self.hparams
  5243. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5244. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5245. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5246. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5247. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5248. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5249. return [(self.map_tensor_name(name), data_torch)]
  5250. def prepare_tensors(self):
  5251. super().prepare_tensors()
  5252. @ModelBase.register("T5WithLMHeadModel")
  5253. @ModelBase.register("T5ForConditionalGeneration")
  5254. @ModelBase.register("MT5ForConditionalGeneration")
  5255. @ModelBase.register("UMT5ForConditionalGeneration")
  5256. class T5Model(TextModel):
  5257. model_arch = gguf.MODEL_ARCH.T5
  5258. def __init__(self, *args, **kwargs):
  5259. super().__init__(*args, **kwargs)
  5260. self.shared_token_embeddings_found = False
  5261. def set_vocab(self):
  5262. # to avoid TypeError: Descriptors cannot be created directly
  5263. # exception when importing sentencepiece_model_pb2
  5264. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5265. from sentencepiece import SentencePieceProcessor
  5266. from sentencepiece import sentencepiece_model_pb2 as model
  5267. tokenizer_path = self.dir_model / 'tokenizer.model'
  5268. # many older models use spiece.model tokenizer model filename
  5269. if not tokenizer_path.is_file():
  5270. tokenizer_path = self.dir_model / 'spiece.model'
  5271. if not tokenizer_path.is_file():
  5272. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5273. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5274. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5275. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5276. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5277. # assure the tokenizer model file name is correct
  5278. assert tokenizer_path.name == 'tokenizer.model'
  5279. return self._set_vocab_sentencepiece()
  5280. else:
  5281. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5282. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5283. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5284. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5285. tokenizer = SentencePieceProcessor()
  5286. tokenizer.LoadFromFile(str(tokenizer_path))
  5287. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5288. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5289. scores: list[float] = [-10000.0] * vocab_size
  5290. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5291. for token_id in range(tokenizer.vocab_size()):
  5292. piece = tokenizer.IdToPiece(token_id)
  5293. text = piece.encode("utf-8")
  5294. score = tokenizer.GetScore(token_id)
  5295. toktype = SentencePieceTokenTypes.NORMAL
  5296. if tokenizer.IsUnknown(token_id):
  5297. toktype = SentencePieceTokenTypes.UNKNOWN
  5298. elif tokenizer.IsControl(token_id):
  5299. toktype = SentencePieceTokenTypes.CONTROL
  5300. elif tokenizer.IsUnused(token_id):
  5301. toktype = SentencePieceTokenTypes.UNUSED
  5302. elif tokenizer.IsByte(token_id):
  5303. toktype = SentencePieceTokenTypes.BYTE
  5304. tokens[token_id] = text
  5305. scores[token_id] = score
  5306. toktypes[token_id] = toktype
  5307. added_tokens_file = self.dir_model / 'added_tokens.json'
  5308. if added_tokens_file.is_file():
  5309. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5310. added_tokens_json = json.load(f)
  5311. for key in added_tokens_json:
  5312. token_id = added_tokens_json[key]
  5313. if token_id >= vocab_size:
  5314. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5315. continue
  5316. tokens[token_id] = key.encode("utf-8")
  5317. scores[token_id] = -1000.0
  5318. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5319. if vocab_size > len(tokens):
  5320. pad_count = vocab_size - len(tokens)
  5321. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5322. for i in range(1, pad_count + 1):
  5323. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5324. scores.append(-1000.0)
  5325. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5326. self.gguf_writer.add_tokenizer_model("t5")
  5327. self.gguf_writer.add_tokenizer_pre("default")
  5328. self.gguf_writer.add_token_list(tokens)
  5329. self.gguf_writer.add_token_scores(scores)
  5330. self.gguf_writer.add_token_types(toktypes)
  5331. self.gguf_writer.add_add_space_prefix(add_prefix)
  5332. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5333. if precompiled_charsmap:
  5334. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5335. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5336. special_vocab.add_to_gguf(self.gguf_writer)
  5337. def set_gguf_parameters(self):
  5338. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5339. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5340. n_ctx = 512
  5341. self.gguf_writer.add_context_length(n_ctx)
  5342. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5343. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5344. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5345. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5346. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5347. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5348. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5349. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5350. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5351. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5352. self.gguf_writer.add_file_type(self.ftype)
  5353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5354. del bid # unused
  5355. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5356. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5357. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5358. # and decoder and ignore the remaining ones.
  5359. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5360. if not self.shared_token_embeddings_found:
  5361. name = "shared.weight"
  5362. self.shared_token_embeddings_found = True
  5363. else:
  5364. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5365. return []
  5366. return [(self.map_tensor_name(name), data_torch)]
  5367. @ModelBase.register("T5EncoderModel")
  5368. class T5EncoderModel(TextModel):
  5369. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5370. def __init__(self, *args, **kwargs):
  5371. super().__init__(*args, **kwargs)
  5372. self.shared_token_embeddings_found = False
  5373. def set_vocab(self):
  5374. # to avoid TypeError: Descriptors cannot be created directly
  5375. # exception when importing sentencepiece_model_pb2
  5376. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5377. from sentencepiece import SentencePieceProcessor
  5378. from sentencepiece import sentencepiece_model_pb2 as model
  5379. tokenizer_path = self.dir_model / 'tokenizer.model'
  5380. # many older models use spiece.model tokenizer model filename
  5381. if not tokenizer_path.is_file():
  5382. tokenizer_path = self.dir_model / 'spiece.model'
  5383. if not tokenizer_path.is_file():
  5384. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5385. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5386. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5387. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5388. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5389. # assure the tokenizer model file name is correct
  5390. assert tokenizer_path.name == 'tokenizer.model'
  5391. return self._set_vocab_sentencepiece()
  5392. else:
  5393. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5394. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5395. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5396. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5397. tokenizer = SentencePieceProcessor()
  5398. tokenizer.LoadFromFile(str(tokenizer_path))
  5399. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5400. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5401. scores: list[float] = [-10000.0] * vocab_size
  5402. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5403. for token_id in range(tokenizer.vocab_size()):
  5404. piece = tokenizer.IdToPiece(token_id)
  5405. text = piece.encode("utf-8")
  5406. score = tokenizer.GetScore(token_id)
  5407. toktype = SentencePieceTokenTypes.NORMAL
  5408. if tokenizer.IsUnknown(token_id):
  5409. toktype = SentencePieceTokenTypes.UNKNOWN
  5410. elif tokenizer.IsControl(token_id):
  5411. toktype = SentencePieceTokenTypes.CONTROL
  5412. elif tokenizer.IsUnused(token_id):
  5413. toktype = SentencePieceTokenTypes.UNUSED
  5414. elif tokenizer.IsByte(token_id):
  5415. toktype = SentencePieceTokenTypes.BYTE
  5416. tokens[token_id] = text
  5417. scores[token_id] = score
  5418. toktypes[token_id] = toktype
  5419. added_tokens_file = self.dir_model / 'added_tokens.json'
  5420. if added_tokens_file.is_file():
  5421. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5422. added_tokens_json = json.load(f)
  5423. for key in added_tokens_json:
  5424. token_id = added_tokens_json[key]
  5425. if token_id >= vocab_size:
  5426. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5427. continue
  5428. tokens[token_id] = key.encode("utf-8")
  5429. scores[token_id] = -1000.0
  5430. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5431. if vocab_size > len(tokens):
  5432. pad_count = vocab_size - len(tokens)
  5433. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5434. for i in range(1, pad_count + 1):
  5435. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5436. scores.append(-1000.0)
  5437. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5438. self.gguf_writer.add_tokenizer_model("t5")
  5439. self.gguf_writer.add_tokenizer_pre("default")
  5440. self.gguf_writer.add_token_list(tokens)
  5441. self.gguf_writer.add_token_scores(scores)
  5442. self.gguf_writer.add_token_types(toktypes)
  5443. self.gguf_writer.add_add_space_prefix(add_prefix)
  5444. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5445. if precompiled_charsmap:
  5446. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5447. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5448. special_vocab.add_to_gguf(self.gguf_writer)
  5449. def set_gguf_parameters(self):
  5450. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5451. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5452. n_ctx = 512
  5453. self.gguf_writer.add_context_length(n_ctx)
  5454. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5455. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5456. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5457. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5458. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5459. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5460. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5461. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5462. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5463. self.gguf_writer.add_file_type(self.ftype)
  5464. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5465. del bid # unused
  5466. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5467. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5468. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5469. # and decoder and ignore the remaining ones.
  5470. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5471. if not self.shared_token_embeddings_found:
  5472. name = "shared.weight"
  5473. self.shared_token_embeddings_found = True
  5474. else:
  5475. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5476. return []
  5477. return [(self.map_tensor_name(name), data_torch)]
  5478. @ModelBase.register("JAISLMHeadModel")
  5479. class JaisModel(TextModel):
  5480. model_arch = gguf.MODEL_ARCH.JAIS
  5481. def __init__(self, *args, **kwargs):
  5482. super().__init__(*args, **kwargs)
  5483. # SwigLU activation
  5484. assert self.hparams["activation_function"] == "swiglu"
  5485. # ALiBi position embedding
  5486. assert self.hparams["position_embedding_type"] == "alibi"
  5487. # Embeddings scale
  5488. self.embeddings_scale = 1.0
  5489. if 'mup_embeddings_scale' in self.hparams:
  5490. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5491. elif 'embeddings_scale' in self.hparams:
  5492. self.embeddings_scale = self.hparams['embeddings_scale']
  5493. else:
  5494. assert False
  5495. self.width_scale = 1.0
  5496. if 'mup_output_alpha' in self.hparams:
  5497. assert 'mup_width_scale' in self.hparams
  5498. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5499. elif 'width_scale' in self.hparams:
  5500. self.width_scale = self.hparams['width_scale']
  5501. else:
  5502. assert False
  5503. self.max_alibi_bias = 8.0
  5504. def set_vocab(self):
  5505. self._set_vocab_gpt2()
  5506. def set_gguf_parameters(self):
  5507. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5508. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5509. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5510. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5511. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5512. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5513. self.gguf_writer.add_file_type(self.ftype)
  5514. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5515. del bid # unused
  5516. tensors: list[tuple[str, Tensor]] = []
  5517. # we don't need these
  5518. if name.endswith((".attn.bias")):
  5519. return tensors
  5520. if name.endswith(("relative_pe.slopes")):
  5521. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5522. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5523. # but Jais's PyTorch model simply precalculates the slope values and places them
  5524. # in relative_pes.slopes
  5525. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5526. first_val = float(data_torch[0].item())
  5527. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5528. return tensors
  5529. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5530. data_torch = data_torch.transpose(1, 0)
  5531. new_name = self.map_tensor_name(name)
  5532. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5533. tensors.append((new_name, data_torch * self.embeddings_scale))
  5534. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5535. tensors.append((new_name, data_torch * self.width_scale))
  5536. else:
  5537. tensors.append((new_name, data_torch))
  5538. return tensors
  5539. def prepare_tensors(self):
  5540. super().prepare_tensors()
  5541. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5542. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5543. class Glm4Model(TextModel):
  5544. model_arch = gguf.MODEL_ARCH.GLM4
  5545. def set_vocab(self):
  5546. from transformers import AutoTokenizer
  5547. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5548. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5549. tokens, toktypes, tokpre = self.get_vocab_base()
  5550. self.gguf_writer.add_tokenizer_model("gpt2")
  5551. self.gguf_writer.add_tokenizer_pre(tokpre)
  5552. self.gguf_writer.add_token_list(tokens)
  5553. self.gguf_writer.add_token_types(toktypes)
  5554. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5555. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5556. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5557. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5558. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5559. special_vocab.add_to_gguf(self.gguf_writer)
  5560. def set_gguf_parameters(self):
  5561. super().set_gguf_parameters()
  5562. if (rope_dim := self.hparams.get("head_dim")) is None:
  5563. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5564. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5565. rope_scaling = self.hparams.get("rope_scaling") or {}
  5566. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5567. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5568. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5569. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5570. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5571. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5572. return []
  5573. elif name.startswith("model.language_model."):
  5574. name = name.replace("language_model.", "") # for Glm4v
  5575. return super().modify_tensors(data_torch, name, bid)
  5576. @ModelBase.register("Glm4MoeForCausalLM")
  5577. class Glm4MoeModel(TextModel):
  5578. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5579. def __init__(self, *args, **kwargs):
  5580. super().__init__(*args, **kwargs)
  5581. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5582. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5583. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5584. def set_vocab(self):
  5585. from transformers import AutoTokenizer
  5586. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5587. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5588. tokens, toktypes, tokpre = self.get_vocab_base()
  5589. self.gguf_writer.add_tokenizer_model("gpt2")
  5590. self.gguf_writer.add_tokenizer_pre(tokpre)
  5591. self.gguf_writer.add_token_list(tokens)
  5592. self.gguf_writer.add_token_types(toktypes)
  5593. # Special tokens
  5594. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5595. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5596. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5597. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5598. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5599. # Patch broken chat template
  5600. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5601. special_vocab.chat_template = special_vocab.chat_template.replace(
  5602. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5603. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5604. special_vocab.add_to_gguf(self.gguf_writer)
  5605. def set_gguf_parameters(self):
  5606. super().set_gguf_parameters()
  5607. if (rope_dim := self.hparams.get("head_dim")) is None:
  5608. rope_dim = (
  5609. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5610. )
  5611. self.gguf_writer.add_rope_dimension_count(
  5612. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5613. )
  5614. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5615. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5616. self.gguf_writer.add_expert_count(n_routed_experts)
  5617. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5618. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5619. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5620. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5621. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5622. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5623. # Expert gating function (sigmoid for GLM4_MOE)
  5624. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5625. # Routed scaling factor
  5626. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5627. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5628. # Normalise topk probabilities
  5629. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5630. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5631. # NextN/MTP prediction layers
  5632. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5633. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5634. _experts: list[dict[str, Tensor]] | None = None
  5635. def modify_tensors(
  5636. self, data_torch: Tensor, name: str, bid: int | None
  5637. ) -> Iterable[tuple[str, Tensor]]:
  5638. if name.startswith("model.visual."): # ignore visual part
  5639. return []
  5640. elif name.startswith("model.language_model."):
  5641. name = name.replace("language_model.", "") # for multimodal variants
  5642. # Handle main token embedding (but not layer-specific NextN embeddings)
  5643. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5644. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5645. # Handle routed experts
  5646. if name.find("mlp.experts") != -1:
  5647. n_experts = self.hparams["n_routed_experts"]
  5648. assert bid is not None
  5649. if self._experts is None:
  5650. self._experts = [{} for _ in range(self.block_count)]
  5651. self._experts[bid][name] = data_torch
  5652. if len(self._experts[bid]) >= n_experts * 3:
  5653. tensors: list[tuple[str, Tensor]] = []
  5654. # merge the experts into a single 3d tensor
  5655. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5656. datas: list[Tensor] = []
  5657. for xid in range(n_experts):
  5658. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5659. datas.append(self._experts[bid][ename])
  5660. del self._experts[bid][ename]
  5661. data_torch = torch.stack(datas, dim=0)
  5662. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5663. new_name = self.map_tensor_name(merged_name)
  5664. tensors.append((new_name, data_torch))
  5665. return tensors
  5666. else:
  5667. return []
  5668. if name.endswith("e_score_correction_bias"):
  5669. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5670. new_name = self.map_tensor_name(name)
  5671. return [(new_name, data_torch)]
  5672. def prepare_tensors(self):
  5673. super().prepare_tensors()
  5674. if self._experts is not None:
  5675. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5676. experts = [k for d in self._experts for k in d.keys()]
  5677. if len(experts) > 0:
  5678. raise ValueError(f"Unprocessed experts: {experts}")
  5679. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5680. class ChatGLMModel(TextModel):
  5681. model_arch = gguf.MODEL_ARCH.CHATGLM
  5682. def set_vocab_chatglm3(self):
  5683. dir_model = self.dir_model
  5684. hparams = self.hparams
  5685. tokens: list[bytes] = []
  5686. toktypes: list[int] = []
  5687. scores: list[float] = []
  5688. from transformers import AutoTokenizer
  5689. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5690. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5691. assert max(tokenizer.get_vocab().values()) < vocab_size
  5692. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5693. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5694. for token_id in range(vocab_size):
  5695. piece = tokenizer._convert_id_to_token(token_id)
  5696. if token_id == 0:
  5697. piece = "<unk>"
  5698. elif token_id == 1:
  5699. piece = "<bos>"
  5700. elif token_id == 2:
  5701. piece = "<eos>"
  5702. text = piece.encode("utf-8")
  5703. score = 0.0
  5704. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5705. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5706. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5707. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5708. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5709. if piece in special_tokens:
  5710. toktype = SentencePieceTokenTypes.CONTROL
  5711. elif len(piece) == 0:
  5712. text = f"[PAD{token_id}]".encode("utf-8")
  5713. toktype = SentencePieceTokenTypes.UNUSED
  5714. else:
  5715. toktype = SentencePieceTokenTypes.USER_DEFINED
  5716. tokens.append(text)
  5717. scores.append(score)
  5718. toktypes.append(toktype)
  5719. continue
  5720. toktype = SentencePieceTokenTypes.NORMAL
  5721. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5722. toktype = SentencePieceTokenTypes.UNKNOWN
  5723. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5724. toktype = SentencePieceTokenTypes.CONTROL
  5725. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5726. toktype = SentencePieceTokenTypes.UNUSED
  5727. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5728. toktype = SentencePieceTokenTypes.BYTE
  5729. tokens.append(text)
  5730. scores.append(score)
  5731. toktypes.append(toktype)
  5732. self.gguf_writer.add_tokenizer_model("llama")
  5733. # glm3 needs prefix and suffix formatted as:
  5734. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5735. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5736. self.gguf_writer.add_token_list(tokens)
  5737. self.gguf_writer.add_token_scores(scores)
  5738. self.gguf_writer.add_token_types(toktypes)
  5739. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5740. special_vocab.add_to_gguf(self.gguf_writer)
  5741. @staticmethod
  5742. def token_bytes_to_string(b):
  5743. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5744. byte_encoder = bytes_to_unicode()
  5745. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5746. @staticmethod
  5747. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5748. parts = [bytes([b]) for b in token]
  5749. while True:
  5750. min_idx = None
  5751. min_rank = None
  5752. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5753. rank = mergeable_ranks.get(pair[0] + pair[1])
  5754. if rank is not None and (min_rank is None or rank < min_rank):
  5755. min_idx = i
  5756. min_rank = rank
  5757. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5758. break
  5759. assert min_idx is not None
  5760. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5761. return parts
  5762. def set_vocab(self):
  5763. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5764. self.set_vocab_chatglm3()
  5765. return
  5766. dir_model = self.dir_model
  5767. hparams = self.hparams
  5768. tokens: list[str] = []
  5769. toktypes: list[int] = []
  5770. from transformers import AutoTokenizer
  5771. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5772. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5773. assert max(tokenizer.get_vocab().values()) < vocab_size
  5774. tokens, toktypes, tokpre = self.get_vocab_base()
  5775. self.gguf_writer.add_tokenizer_model("gpt2")
  5776. self.gguf_writer.add_tokenizer_pre(tokpre)
  5777. self.gguf_writer.add_token_list(tokens)
  5778. self.gguf_writer.add_token_types(toktypes)
  5779. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5780. # only add special tokens when they were not already loaded from config.json
  5781. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5782. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5783. # this one is usually not in config.json anyway
  5784. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5785. special_vocab.add_to_gguf(self.gguf_writer)
  5786. def set_gguf_parameters(self):
  5787. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5788. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5789. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5790. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5791. self.gguf_writer.add_embedding_length(n_embed)
  5792. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5793. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5794. self.gguf_writer.add_head_count(n_head)
  5795. self.gguf_writer.add_head_count_kv(n_head_kv)
  5796. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5797. self.gguf_writer.add_file_type(self.ftype)
  5798. if "attention_dim" in self.hparams:
  5799. rope_dim = self.hparams["attention_dim"]
  5800. else:
  5801. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5802. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5803. self.gguf_writer.add_add_bos_token(False)
  5804. rope_freq = 10000
  5805. if "rope_ratio" in self.hparams:
  5806. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5807. self.gguf_writer.add_rope_freq_base(rope_freq)
  5808. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5809. del bid # unused
  5810. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5811. return []
  5812. name = name.removeprefix("transformer.")
  5813. return [(self.map_tensor_name(name), data_torch)]
  5814. @ModelBase.register("NemotronForCausalLM")
  5815. class NemotronModel(TextModel):
  5816. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5817. def set_vocab(self):
  5818. self._set_vocab_sentencepiece()
  5819. self.gguf_writer.add_pad_token_id(0)
  5820. self.gguf_writer.add_unk_token_id(1)
  5821. def set_gguf_parameters(self):
  5822. super().set_gguf_parameters()
  5823. hparams = self.hparams
  5824. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5825. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5826. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5827. # * Partial RoPE
  5828. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5829. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5830. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5831. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5832. # * RopeScaling for Nemotron
  5833. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5834. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5835. else:
  5836. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5837. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5838. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5839. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5840. # model.layers.{l}.input_layernorm.weight
  5841. # model.layers.{l}.post_attention_layernorm.weight
  5842. # model.norm.weight
  5843. if name.endswith("norm.weight"):
  5844. data_torch = data_torch + 1
  5845. return [(self.map_tensor_name(name), data_torch)]
  5846. @ModelBase.register("ExaoneForCausalLM")
  5847. class ExaoneModel(TextModel):
  5848. model_arch = gguf.MODEL_ARCH.EXAONE
  5849. def set_gguf_parameters(self):
  5850. hparams = self.hparams
  5851. assert (hparams["activation_function"] == "silu")
  5852. max_position_embeddings = hparams["max_position_embeddings"]
  5853. embed_dim = hparams["hidden_size"]
  5854. num_heads = hparams["num_attention_heads"]
  5855. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5856. layer_norm_eps = hparams["layer_norm_epsilon"]
  5857. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5858. num_layers = hparams["num_layers"]
  5859. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5860. # attention_dropout_rate = hparams["attention_dropout"]
  5861. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5862. # embed_dropout_rate = hparams["embed_dropout"]
  5863. self.gguf_writer.add_embedding_length(embed_dim)
  5864. self.gguf_writer.add_head_count(num_heads)
  5865. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5866. self.gguf_writer.add_context_length(max_position_embeddings)
  5867. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5868. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5869. self.gguf_writer.add_block_count(num_layers)
  5870. self.gguf_writer.add_file_type(self.ftype)
  5871. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5872. self.gguf_writer.add_rope_freq_base(rope_theta)
  5873. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5874. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5875. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5876. rope_scaling = self.hparams.get("rope_scaling") or {}
  5877. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5878. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5879. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5880. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5881. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5882. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5883. base = self.hparams.get("rope_theta", 10000.0)
  5884. if (dim := self.hparams.get("head_dim")) is None:
  5885. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5886. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5887. factor = rope_scaling.get("factor", 8.0)
  5888. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5889. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5890. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5891. low_freq_wavelen = old_context_len / low_freq_factor
  5892. high_freq_wavelen = old_context_len / high_freq_factor
  5893. assert low_freq_wavelen != high_freq_wavelen
  5894. rope_factors = []
  5895. for freq in freqs:
  5896. wavelen = 2 * math.pi / freq
  5897. if wavelen < high_freq_wavelen:
  5898. rope_factors.append(1)
  5899. elif wavelen > low_freq_wavelen:
  5900. rope_factors.append(factor)
  5901. else:
  5902. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5903. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5904. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5905. @ModelBase.register("Exaone4ForCausalLM")
  5906. class Exaone4Model(TextModel):
  5907. model_arch = gguf.MODEL_ARCH.EXAONE4
  5908. def set_vocab(self):
  5909. tokens, toktypes, tokpre = self.get_vocab_base()
  5910. self.gguf_writer.add_tokenizer_model("gpt2")
  5911. self.gguf_writer.add_tokenizer_pre(tokpre)
  5912. self.gguf_writer.add_token_list(tokens)
  5913. self.gguf_writer.add_token_types(toktypes)
  5914. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5915. special_vocab.add_to_gguf(self.gguf_writer)
  5916. def set_gguf_parameters(self):
  5917. super().set_gguf_parameters()
  5918. hparams = self.hparams
  5919. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5920. if hparams.get("sliding_window") is not None:
  5921. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5922. if "layer_types" in hparams:
  5923. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5924. elif "sliding_window_pattern" in hparams:
  5925. sliding_window_pattern = []
  5926. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5927. for i in range(hparams["num_hidden_layers"]):
  5928. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5929. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5930. for i in range(hparams["num_hidden_layers"]):
  5931. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5932. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5933. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5934. rope_scaling = self.hparams.get("rope_scaling") or {}
  5935. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5936. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5937. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5938. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5939. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5940. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5941. base = self.hparams.get("rope_theta", 10_000.0)
  5942. if (dim := self.hparams.get("head_dim")) is None:
  5943. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5944. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5945. factor = rope_scaling.get("factor", 16.0)
  5946. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5947. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5948. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5949. low_freq_wavelen = old_context_len / low_freq_factor
  5950. high_freq_wavelen = old_context_len / high_freq_factor
  5951. rope_factors = []
  5952. for freq in freqs:
  5953. wavelen = 2 * math.pi / freq
  5954. if wavelen < high_freq_wavelen:
  5955. rope_factors.append(1)
  5956. elif wavelen > low_freq_wavelen:
  5957. rope_factors.append(factor)
  5958. else:
  5959. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5960. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5961. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5962. @ModelBase.register("GraniteForCausalLM")
  5963. class GraniteModel(LlamaModel):
  5964. """Conversion for IBM's GraniteForCausalLM"""
  5965. model_arch = gguf.MODEL_ARCH.GRANITE
  5966. def set_gguf_parameters(self):
  5967. """Granite uses standard llama parameters with the following differences:
  5968. - No head_dim support
  5969. - New multiplier params:
  5970. - attention_scale
  5971. - embedding_scale
  5972. - residual_scale
  5973. - logits_scaling
  5974. """
  5975. if head_dim := self.hparams.pop("head_dim", None):
  5976. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5977. super().set_gguf_parameters()
  5978. # NOTE: Convert _multiplier params to _scale params for naming
  5979. # consistency
  5980. if attention_scale := self.hparams.get("attention_multiplier"):
  5981. self.gguf_writer.add_attention_scale(attention_scale)
  5982. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5983. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5984. self.gguf_writer.add_embedding_scale(embedding_scale)
  5985. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5986. if residual_scale := self.hparams.get("residual_multiplier"):
  5987. self.gguf_writer.add_residual_scale(residual_scale)
  5988. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5989. if logits_scale := self.hparams.get("logits_scaling"):
  5990. self.gguf_writer.add_logit_scale(logits_scale)
  5991. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5992. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5993. class GraniteMoeModel(GraniteModel):
  5994. """Conversion for IBM's GraniteMoeForCausalLM"""
  5995. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5996. def set_gguf_parameters(self):
  5997. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5998. - shared_intermediate_size
  5999. """
  6000. super().set_gguf_parameters()
  6001. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6002. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6003. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6004. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6005. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6006. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6007. the hidden size that is then split during forward. To keep compatibility
  6008. with existing mixtral support, we pull them apart here.
  6009. """
  6010. if name.endswith("block_sparse_moe.input_linear.weight"):
  6011. ffn_dim = self.hparams["intermediate_size"]
  6012. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6013. gate, up = data_torch.split(ffn_dim, dim=-2)
  6014. return [
  6015. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6016. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6017. ]
  6018. has_experts = bool(self.hparams.get('num_local_experts'))
  6019. if name.endswith("shared_mlp.input_linear.weight"):
  6020. ffn_dim = self.hparams["shared_intermediate_size"]
  6021. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6022. gate, up = data_torch.split(ffn_dim, dim=-2)
  6023. if has_experts:
  6024. return [
  6025. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6026. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6027. ]
  6028. return [
  6029. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6030. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6031. ]
  6032. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6033. return [
  6034. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6035. ]
  6036. return super().modify_tensors(data_torch, name, bid)
  6037. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6038. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6039. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6040. layers and optionally uses MoE w/ a shared expert"""
  6041. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6042. undo_permute = True
  6043. def __init__(self, *args, **kwargs):
  6044. # Hybrid mamba models use a prefix for the mamba-specific params.
  6045. # TODO: Extend this if the prefix(es) need to be configurable
  6046. self.hparam_prefixes = ["mamba"]
  6047. super().__init__(*args, **kwargs)
  6048. # Lists of which layers use ssm vs attention
  6049. self._attn_layers = self.get_attn_layers()
  6050. self._ssm_layers = [
  6051. i for i in range(self.block_count)
  6052. if i not in self._attn_layers
  6053. ]
  6054. # n_group and d_inner are used during reshape_tensors for mamba2
  6055. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  6056. self.n_group = self.find_hparam(["n_groups"])
  6057. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  6058. def get_attn_layers(self):
  6059. # Explicit list of layer type names
  6060. if layer_types := self.hparams.get("layer_types"):
  6061. return [
  6062. i for i, typ in enumerate(layer_types)
  6063. if typ == "attention"
  6064. ]
  6065. # Layer types indicated by index or period
  6066. attn_layers = self.hparams.get("attn_layer_indices", [])
  6067. if not attn_layers:
  6068. attn_period = self.hparams.get("attn_layer_period")
  6069. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6070. attn_offset = self.hparams.get("attn_layer_offset")
  6071. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6072. attn_layers = [
  6073. i for i in range(self.block_count)
  6074. if i % attn_period == attn_offset
  6075. ]
  6076. return attn_layers
  6077. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6078. prefixed = []
  6079. for pfx in self.hparam_prefixes:
  6080. prefixed.extend(
  6081. "_".join([pfx, k])
  6082. for k in keys
  6083. )
  6084. keys = list(keys) + prefixed
  6085. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6086. def modify_tensors(
  6087. self, data_torch: Tensor, name: str, bid: int | None
  6088. ) -> Iterable[tuple[str, Tensor]]:
  6089. if (
  6090. name.endswith("block_sparse_moe.input_linear.weight")
  6091. or "shared_mlp" in name
  6092. ):
  6093. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6094. # Determine whether this is a mamba layer or an attention layer
  6095. if bid in self._ssm_layers:
  6096. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6097. elif bid in self._attn_layers:
  6098. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6099. return [(self.map_tensor_name(name), data_torch)]
  6100. def set_gguf_parameters(self):
  6101. """This method merges params from both parents and some that are
  6102. specific to this model. The result is some duplication of how the params
  6103. get set. The following warnings are expected during conversion:
  6104. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6105. WARNING:Duplicated key name 'granitehybrid.context_length'
  6106. """
  6107. GraniteMoeModel.set_gguf_parameters(self)
  6108. ## Mamba mixer params ##
  6109. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6110. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  6111. self.gguf_writer.add_ssm_group_count(self.n_group)
  6112. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6113. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6114. # in llama.cpp
  6115. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  6116. ## Attention params ##
  6117. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6118. head_count_kv_vec = [
  6119. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6120. ]
  6121. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6122. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6123. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6124. ## If Bamba, use rope, otherwise don't
  6125. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  6126. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6127. if not use_rope:
  6128. self.gguf_writer.add_context_length(2**20)
  6129. ## Validation ##
  6130. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6131. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6132. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6133. def set_vocab(self):
  6134. self.hparams["pad_vocab_size_multiple"] = 8
  6135. Mamba2Model.set_vocab(self)
  6136. @ModelBase.register("BailingMoeForCausalLM")
  6137. class BailingMoeModel(TextModel):
  6138. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6139. def set_vocab(self):
  6140. self._set_vocab_gpt2()
  6141. def set_gguf_parameters(self):
  6142. super().set_gguf_parameters()
  6143. hparams = self.hparams
  6144. if (rope_dim := hparams.get("head_dim")) is None:
  6145. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6146. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6147. rope_scaling = self.hparams.get("rope_scaling") or {}
  6148. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6149. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6150. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6151. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6152. else:
  6153. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6154. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6155. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6156. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6157. self.gguf_writer.add_expert_weights_scale(1.0)
  6158. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6159. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6160. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6161. _experts: list[dict[str, Tensor]] | None = None
  6162. @staticmethod
  6163. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6164. if n_head_kv is not None and n_head != n_head_kv:
  6165. n_head = n_head_kv
  6166. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6167. .swapaxes(1, 2)
  6168. .reshape(weights.shape))
  6169. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6170. n_head = self.hparams["num_attention_heads"]
  6171. n_kv_head = self.hparams.get("num_key_value_heads")
  6172. n_embd = self.hparams["hidden_size"]
  6173. if (head_dim := self.hparams.get("head_dim")) is None:
  6174. head_dim = n_embd // n_head
  6175. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6176. if name.endswith("attention.dense.weight"):
  6177. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6178. elif name.endswith("query_key_value.weight"):
  6179. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6180. return [
  6181. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6182. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6183. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6184. ]
  6185. elif name.find("mlp.experts") != -1:
  6186. n_experts = self.hparams["num_experts"]
  6187. assert bid is not None
  6188. tensors: list[tuple[str, Tensor]] = []
  6189. if self._experts is None:
  6190. self._experts = [{} for _ in range(self.block_count)]
  6191. self._experts[bid][name] = data_torch
  6192. if len(self._experts[bid]) >= n_experts * 3:
  6193. # merge the experts into a single 3d tensor
  6194. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6195. datas: list[Tensor] = []
  6196. for xid in range(n_experts):
  6197. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6198. datas.append(self._experts[bid][ename])
  6199. del self._experts[bid][ename]
  6200. data_torch = torch.stack(datas, dim=0)
  6201. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6202. new_name = self.map_tensor_name(merged_name)
  6203. tensors.append((new_name, data_torch))
  6204. return tensors
  6205. new_name = self.map_tensor_name(name)
  6206. if new_name == output_name and self.hparams.get("norm_head"):
  6207. data_torch = data_torch.float()
  6208. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6209. return [(new_name, data_torch)]
  6210. def prepare_tensors(self):
  6211. super().prepare_tensors()
  6212. if self._experts is not None:
  6213. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6214. experts = [k for d in self._experts for k in d.keys()]
  6215. if len(experts) > 0:
  6216. raise ValueError(f"Unprocessed experts: {experts}")
  6217. @ModelBase.register("ChameleonForConditionalGeneration")
  6218. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6219. class ChameleonModel(TextModel):
  6220. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6221. def set_gguf_parameters(self):
  6222. super().set_gguf_parameters()
  6223. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6224. def set_vocab(self):
  6225. self._set_vocab_gpt2()
  6226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6227. # ignore image tokenizer for now
  6228. # TODO: remove this once image support is implemented for Chameleon
  6229. if name.startswith("model.vqmodel"):
  6230. return []
  6231. n_head = self.hparams["num_attention_heads"]
  6232. n_kv_head = self.hparams.get("num_key_value_heads")
  6233. hidden_dim = self.hparams.get("hidden_size")
  6234. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6235. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6236. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6237. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6238. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6239. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6240. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6241. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6242. return [(self.map_tensor_name(name), data_torch)]
  6243. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6244. @staticmethod
  6245. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6246. head_dim = hidden_dim // n_heads
  6247. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6248. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6249. return data_torch
  6250. @ModelBase.register("UltravoxModel")
  6251. class UltravoxModel(TextModel):
  6252. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6253. def __init__(self, *args, **kwargs):
  6254. super().__init__(*args, **kwargs)
  6255. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6256. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6257. class WhisperEncoderModel(MmprojModel):
  6258. has_vision_encoder = False # no vision encoder
  6259. has_audio_encoder = True
  6260. def __init__(self, *args, **kwargs):
  6261. super().__init__(*args, **kwargs)
  6262. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6263. self.hparams["hidden_size"] = self.hparams["d_model"]
  6264. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6265. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6266. def set_gguf_parameters(self):
  6267. super().set_gguf_parameters()
  6268. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6269. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6270. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6271. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6272. if ".conv" in name and ".weight" in name:
  6273. return gguf.GGMLQuantizationType.F16
  6274. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6275. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6276. del bid # unused
  6277. if name.startswith("language_model."):
  6278. # skip language model tensors
  6279. return []
  6280. # prevent clash naming with vision tensors
  6281. if name.startswith("multi_modal_projector"):
  6282. name = "audio." + name
  6283. if "conv1.bias" in name or "conv2.bias" in name:
  6284. # transpose conv1 and conv2 bias
  6285. data_torch = data_torch.unsqueeze(-1)
  6286. return [(self.map_tensor_name(name), data_torch)]
  6287. @ModelBase.register("UltravoxModel")
  6288. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6289. has_vision_encoder = False # no vision encoder
  6290. has_audio_encoder = True
  6291. def set_gguf_parameters(self):
  6292. super().set_gguf_parameters()
  6293. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6294. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6295. @ModelBase.register("VoxtralForConditionalGeneration")
  6296. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6297. has_vision_encoder = False # no vision encoder
  6298. has_audio_encoder = True
  6299. def set_gguf_parameters(self):
  6300. super().set_gguf_parameters()
  6301. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6302. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6303. @ModelBase.register("FalconH1ForCausalLM")
  6304. class FalconH1Model(Mamba2Model):
  6305. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6306. def __init__(self, *args, **kwargs):
  6307. # Set the hparam prefixes for Falcon Mamba2
  6308. self.hparam_prefixes = ["mamba"]
  6309. # Initialize the base Mamba2Model
  6310. super().__init__(*args, **kwargs)
  6311. # Use Llama conversion for attention
  6312. self._transformer_model_class = LlamaModel
  6313. # n_group and d_inner are used during reshape_tensors for mamba2
  6314. self.n_group = self.find_hparam(["n_groups"])
  6315. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6316. self.d_head = self.find_hparam(["d_head"])
  6317. # Initialize any Falcon Mamba2 specific attributes
  6318. self.has_attention = True # Falcon Mamba2 has attention components
  6319. # Load Falcon-H1 multipliers from hyperparameters
  6320. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6321. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6322. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6323. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6324. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6325. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6326. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6327. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6328. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6329. prefixed = []
  6330. for pfx in self.hparam_prefixes:
  6331. prefixed.extend(
  6332. "_".join([pfx, k])
  6333. for k in keys
  6334. )
  6335. keys = list(keys) + prefixed
  6336. return super().find_hparam(keys, *args, **kwargs)
  6337. def set_vocab(self):
  6338. self._set_vocab_gpt2()
  6339. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6340. tensors = list(super().modify_tensors(data_torch, name, bid))
  6341. tensor = tensors[0][1]
  6342. if "down_proj" in name:
  6343. tensor = tensor * self.mlp_multipliers[1]
  6344. elif "gate_proj" in name:
  6345. tensor = tensor * self.mlp_multipliers[0]
  6346. elif "k_proj" in name:
  6347. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6348. elif "q_proj" in name:
  6349. tensor = tensor * self.attention_in_multiplier
  6350. elif "v_proj" in name:
  6351. tensor = tensor * self.attention_in_multiplier
  6352. elif "o_proj" in name:
  6353. tensor = tensor * self.attention_out_multiplier
  6354. elif "out_proj" in name:
  6355. tensor = tensor * self.ssm_out_multiplier
  6356. elif "in_proj" in name:
  6357. tensor = tensor * self.ssm_in_multiplier
  6358. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6359. intermediate_size = self.hparams["mamba_d_ssm"]
  6360. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6361. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6362. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6363. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6364. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6365. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6366. elif "lm_head" in name:
  6367. tensor = tensor * self.hparams["lm_head_multiplier"]
  6368. elif "embed_tokens" in name:
  6369. tensor = tensor * self.hparams["embedding_multiplier"]
  6370. elif "mamba.norm" in name:
  6371. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6372. tensors = [(tensors[0][0], tensor)]
  6373. return tensors
  6374. def set_gguf_parameters(self):
  6375. super().set_gguf_parameters()
  6376. ## General Params ##
  6377. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6378. # Override some Mamba2 defaults
  6379. self.gguf_writer.add_block_count(self.block_count)
  6380. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6381. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6382. ## Attention params ##
  6383. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6384. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6385. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6386. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6387. ## Validation ##
  6388. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6389. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6390. # Add any other Falcon Mamba2 specific configuration
  6391. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6392. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6393. class HunYuanMoEModel(TextModel):
  6394. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6395. def set_vocab(self):
  6396. from transformers import AutoTokenizer
  6397. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6398. # 1. Get the pre-tokenizer identifier hash
  6399. tokpre = self.get_vocab_base_pre(tokenizer)
  6400. # 2. Reverse-engineer the merges list from mergeable_ranks
  6401. merges = []
  6402. vocab = {}
  6403. mergeable_ranks = tokenizer.mergeable_ranks
  6404. for token, rank in mergeable_ranks.items():
  6405. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6406. if len(token) == 1:
  6407. continue
  6408. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6409. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6410. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6411. # 3. Generate the tokens and toktypes lists
  6412. vocab_size = self.hparams["vocab_size"]
  6413. assert tokenizer.vocab_size == vocab_size
  6414. special_tokens = tokenizer.special_tokens
  6415. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6416. tokens: list[str] = []
  6417. toktypes: list[int] = []
  6418. for i in range(vocab_size):
  6419. if i not in reverse_vocab:
  6420. tokens.append(f"[PAD{i}]")
  6421. toktypes.append(gguf.TokenType.UNUSED)
  6422. else:
  6423. token = reverse_vocab[i]
  6424. tokens.append(token)
  6425. if i in special_tokens.values():
  6426. toktypes.append(gguf.TokenType.CONTROL)
  6427. else:
  6428. toktypes.append(gguf.TokenType.NORMAL)
  6429. # 4. Write all vocab-related fields to the GGUF writer
  6430. self.gguf_writer.add_tokenizer_model("gpt2")
  6431. self.gguf_writer.add_tokenizer_pre(tokpre)
  6432. self.gguf_writer.add_token_list(tokens)
  6433. self.gguf_writer.add_token_types(toktypes)
  6434. self.gguf_writer.add_token_merges(merges)
  6435. # 5. Add special tokens and chat templates
  6436. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6437. special_vocab.add_to_gguf(self.gguf_writer)
  6438. # FIX for BOS token: Overwrite incorrect id read from config.json
  6439. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6440. def set_gguf_parameters(self):
  6441. super().set_gguf_parameters()
  6442. hparams = self.hparams
  6443. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6444. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6445. moe_intermediate_size = hparams["moe_intermediate_size"]
  6446. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6447. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6448. moe_topk = hparams["moe_topk"]
  6449. assert all(topk == moe_topk[0] for topk in moe_topk)
  6450. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6451. moe_shared_expert = hparams["num_shared_expert"]
  6452. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6453. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6454. # Rope
  6455. rope_scaling = hparams.get("rope_scaling", {})
  6456. if rope_scaling.get("type") == "dynamic":
  6457. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6458. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6459. alpha = rope_scaling.get("alpha", 1000)
  6460. base = hparams.get("rope_theta", 10000.0)
  6461. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6462. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6463. self.gguf_writer.add_rope_freq_base(scaled_base)
  6464. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6465. self.gguf_writer.add_rope_scaling_factor(1)
  6466. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6467. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6468. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6469. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6470. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6471. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6472. _experts: list[dict[str, Tensor]] | None = None
  6473. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6474. if name == "lm_head.weight":
  6475. if self.hparams.get("tie_word_embeddings", False):
  6476. logger.info("Skipping tied output layer 'lm_head.weight'")
  6477. return []
  6478. if name.find("mlp.experts") != -1:
  6479. n_experts = self.hparams["num_experts"]
  6480. assert bid is not None
  6481. if self._experts is None:
  6482. self._experts = [{} for _ in range(self.block_count)]
  6483. self._experts[bid][name] = data_torch
  6484. if len(self._experts[bid]) >= n_experts * 3:
  6485. # merge the experts into a single 3d tensor
  6486. tensors: list[tuple[str, Tensor]] = []
  6487. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6488. datas: list[Tensor] = []
  6489. for xid in range(n_experts):
  6490. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6491. datas.append(self._experts[bid][ename])
  6492. del self._experts[bid][ename]
  6493. data_torch = torch.stack(datas, dim=0)
  6494. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6495. new_name = self.map_tensor_name(merged_name)
  6496. tensors.append((new_name, data_torch))
  6497. return tensors
  6498. else:
  6499. return []
  6500. return [(self.map_tensor_name(name), data_torch)]
  6501. def prepare_tensors(self):
  6502. super().prepare_tensors()
  6503. if self._experts is not None:
  6504. experts = [k for d in self._experts for k in d.keys()]
  6505. if len(experts) > 0:
  6506. raise ValueError(f"Unprocessed experts: {experts}")
  6507. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6508. class HunYuanModel(TextModel):
  6509. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6510. def set_vocab(self):
  6511. if (self.dir_model / "tokenizer.json").is_file():
  6512. self._set_vocab_gpt2()
  6513. else:
  6514. from transformers import AutoTokenizer
  6515. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6516. # 1. Get the pre-tokenizer identifier hash
  6517. tokpre = self.get_vocab_base_pre(tokenizer)
  6518. # 2. Reverse-engineer the merges list from mergeable_ranks
  6519. merges = []
  6520. vocab = {}
  6521. mergeable_ranks = tokenizer.mergeable_ranks
  6522. for token, rank in mergeable_ranks.items():
  6523. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6524. if len(token) == 1:
  6525. continue
  6526. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6527. if len(merged) == 2:
  6528. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6529. # 3. Generate the tokens and toktypes lists
  6530. vocab_size = self.hparams["vocab_size"]
  6531. assert tokenizer.vocab_size == vocab_size
  6532. special_tokens = tokenizer.special_tokens
  6533. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6534. tokens: list[str] = []
  6535. toktypes: list[int] = []
  6536. for i in range(vocab_size):
  6537. if i not in reverse_vocab:
  6538. tokens.append(f"[PAD{i}]")
  6539. toktypes.append(gguf.TokenType.UNUSED)
  6540. else:
  6541. token = reverse_vocab[i]
  6542. tokens.append(token)
  6543. if i in special_tokens.values():
  6544. toktypes.append(gguf.TokenType.CONTROL)
  6545. else:
  6546. toktypes.append(gguf.TokenType.NORMAL)
  6547. # 4. Write all vocab-related fields to the GGUF writer
  6548. self.gguf_writer.add_tokenizer_model("gpt2")
  6549. self.gguf_writer.add_tokenizer_pre(tokpre)
  6550. self.gguf_writer.add_token_list(tokens)
  6551. self.gguf_writer.add_token_types(toktypes)
  6552. self.gguf_writer.add_token_merges(merges)
  6553. # 5. Add special tokens and chat templates
  6554. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6555. special_vocab.add_to_gguf(self.gguf_writer)
  6556. # FIX for BOS token: Overwrite incorrect id read from config.json
  6557. if self.hparams['hidden_size'] == 4096:
  6558. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6559. def set_gguf_parameters(self):
  6560. super().set_gguf_parameters()
  6561. hparams = self.hparams
  6562. # Rope
  6563. rope_scaling = hparams.get("rope_scaling", {})
  6564. if rope_scaling.get("type") == "dynamic":
  6565. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6566. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6567. alpha = rope_scaling.get("alpha", 50)
  6568. base = hparams.get("rope_theta", 10000.0)
  6569. dim = hparams["head_dim"]
  6570. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6571. self.gguf_writer.add_rope_freq_base(scaled_base)
  6572. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6573. self.gguf_writer.add_rope_scaling_factor(1)
  6574. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6575. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6576. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6577. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6578. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6579. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6580. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6581. if name == "lm_head.weight":
  6582. if self.hparams.get("tie_word_embeddings", False):
  6583. logger.info("Skipping tied output layer 'lm_head.weight'")
  6584. return []
  6585. return [(self.map_tensor_name(name), data_torch)]
  6586. @ModelBase.register("SmolLM3ForCausalLM")
  6587. class SmolLM3Model(LlamaModel):
  6588. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6589. def set_vocab(self):
  6590. super().set_vocab()
  6591. # remove unsupported array slicing in chat template
  6592. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6593. from transformers import AutoTokenizer
  6594. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6595. if tokenizer.chat_template is not None:
  6596. chat_template = tokenizer.chat_template.replace("[:]", "")
  6597. self.gguf_writer.add_chat_template(chat_template)
  6598. @ModelBase.register("GptOssForCausalLM")
  6599. class GptOssModel(TextModel):
  6600. model_arch = gguf.MODEL_ARCH.GPT_OSS
  6601. def transform_nibble_layout(self, tensor):
  6602. assert tensor.dtype == torch.uint8
  6603. assert tensor.shape[-1] == 16
  6604. # swap nibbles
  6605. t_lo = tensor & 0x0F
  6606. t_hi = tensor & 0xF0
  6607. t_swapped = (t_lo << 4) | (t_hi >> 4)
  6608. tensor = t_swapped
  6609. # transform aaaa...bbbb... to abababab...
  6610. blk_a, blk_b = tensor.chunk(2, dim=-1)
  6611. # get a_
  6612. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  6613. blk_a1 = (blk_a << 4).view(-1, 1)
  6614. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  6615. # get _b
  6616. blk_b0 = (blk_b >> 4).view(-1, 1)
  6617. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  6618. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  6619. # swap once more
  6620. out = blk_a | blk_b
  6621. out_h = out & 0xF0
  6622. out_l = out & 0x0F
  6623. out = (out_h >> 4) | (out_l << 4)
  6624. return out
  6625. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  6626. assert blocks.dtype == torch.uint8
  6627. assert scales.dtype == torch.uint8
  6628. scales = scales.unsqueeze(-1)
  6629. assert len(blocks.shape) == 4
  6630. assert len(scales.shape) == 4
  6631. blocks = self.transform_nibble_layout(blocks)
  6632. new_data = torch.concat((scales, blocks), dim=-1)
  6633. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  6634. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  6635. # flatten last dim
  6636. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  6637. new_data = new_data.numpy()
  6638. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  6639. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6640. blocks0: Tensor = torch.zeros(1)
  6641. blocks1: Tensor = torch.zeros(1)
  6642. # we assume that tensors are loaded in the correct order
  6643. for name, data_torch in self.get_tensors():
  6644. if "mlp.experts.down_proj_blocks" in name:
  6645. blocks0 = data_torch
  6646. elif "mlp.experts.down_proj_scales" in name:
  6647. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  6648. self.repack_mxfp4(new_name, blocks0, data_torch)
  6649. elif "mlp.experts.gate_up_proj_blocks" in name:
  6650. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  6651. elif "mlp.experts.gate_up_proj_scales" in name:
  6652. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6653. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  6654. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  6655. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  6656. self.repack_mxfp4(new_name_up, blocks1, scales1)
  6657. return []
  6658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6659. del bid # unused
  6660. if "sinks" in name:
  6661. name += ".weight"
  6662. # correct naming for down_proj
  6663. if "down_proj" in name:
  6664. if name.endswith("_bias"):
  6665. name = name.replace("down_proj_bias", "down_proj.bias")
  6666. elif "_blocks" not in name and "_scales" not in name:
  6667. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6668. name = name.replace("down_proj", "down_proj.weight")
  6669. data_torch = data_torch.transpose(-1, -2)
  6670. else:
  6671. # otherwise, it should already be repacked to ggml MXFP4 format
  6672. return []
  6673. # split the gate_up into gate and up
  6674. if "gate_up_proj" in name:
  6675. if name.endswith("_bias"):
  6676. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  6677. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  6678. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  6679. return [
  6680. (self.map_tensor_name(name_gate), gate_proj_bias),
  6681. (self.map_tensor_name(name_up), up_proj_bias)
  6682. ]
  6683. elif "_blocks" not in name and "_scales" not in name:
  6684. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  6685. name_up = name.replace("gate_up_proj", "up_proj.weight")
  6686. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  6687. data_torch = data_torch.transpose(-1, -2)
  6688. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  6689. return [
  6690. (self.map_tensor_name(name_gate), gate_proj_weight),
  6691. (self.map_tensor_name(name_up), up_proj_weight)
  6692. ]
  6693. else:
  6694. # otherwise, it should already be repacked to ggml MXFP4 format
  6695. return []
  6696. return [(self.map_tensor_name(name), data_torch)]
  6697. def set_vocab(self):
  6698. self._set_vocab_gpt2()
  6699. def set_gguf_parameters(self):
  6700. super().set_gguf_parameters()
  6701. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6702. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  6703. rope_scaling = self.hparams.get("rope_scaling") or {}
  6704. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  6705. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  6706. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6707. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6708. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  6709. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  6710. class LFM2Model(TextModel):
  6711. model_arch = gguf.MODEL_ARCH.LFM2
  6712. def _add_feed_forward_length(self):
  6713. ff_dim = self.hparams["block_ff_dim"]
  6714. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6715. ff_dim = self.hparams["block_ff_dim"]
  6716. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6717. multiple_of = self.hparams["block_multiple_of"]
  6718. if auto_adjust_ff_dim:
  6719. ff_dim = int(2 * ff_dim / 3)
  6720. # custom dim factor multiplier
  6721. if ffn_dim_multiplier is not None:
  6722. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6723. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6724. self.gguf_writer.add_feed_forward_length(ff_dim)
  6725. def set_gguf_parameters(self):
  6726. # set num_key_value_heads only for attention layers
  6727. self.hparams["num_key_value_heads"] = [
  6728. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6729. for layer_type in self.hparams["layer_types"]
  6730. ]
  6731. super().set_gguf_parameters()
  6732. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6733. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6734. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6735. self._add_feed_forward_length()
  6736. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6737. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6738. if is_vision_tensor:
  6739. # skip vision tensors
  6740. return []
  6741. name = name.replace("language_model.", "")
  6742. # conv op requires 2d tensor
  6743. if 'conv.conv' in name:
  6744. data_torch = data_torch.squeeze(1)
  6745. return [(self.map_tensor_name(name), data_torch)]
  6746. @ModelBase.register("Lfm2VlForConditionalGeneration")
  6747. class LFM2VLModel(MmprojModel):
  6748. def __init__(self, *args, **kwargs):
  6749. super().__init__(*args, **kwargs)
  6750. assert self.hparams_vision is not None
  6751. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  6752. self.hparams_vision["image_size"] = 256
  6753. def set_gguf_parameters(self):
  6754. super().set_gguf_parameters()
  6755. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  6756. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  6757. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  6758. self.gguf_writer.add_vision_use_gelu(True)
  6759. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  6760. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  6761. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  6762. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6763. del bid # unused
  6764. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  6765. if is_vision_tensor:
  6766. # remove "model." prefix
  6767. name = name.replace("model.vision_tower.", "vision_tower.")
  6768. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  6769. if "patch_embedding.weight" in name:
  6770. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  6771. return [(self.map_tensor_name(name), data_torch)]
  6772. return [] # skip other tensors
  6773. @ModelBase.register("SmallThinkerForCausalLM")
  6774. class SmallThinkerModel(TextModel):
  6775. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6776. def set_gguf_parameters(self):
  6777. super().set_gguf_parameters()
  6778. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6779. self.gguf_writer.add_expert_count(n_experts)
  6780. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6781. self.gguf_writer.add_expert_used_count(n_experts_used)
  6782. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6783. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6784. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6785. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6786. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6787. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6788. else:
  6789. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6790. # YaRN is not enabled by default
  6791. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6792. rope_scaling = self.hparams.get("rope_scaling") or {}
  6793. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6794. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6795. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6796. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6797. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6798. if sliding_window_layout:
  6799. for i in sliding_window_layout:
  6800. if i != 0:
  6801. sliding_window = self.hparams.get("sliding_window_size")
  6802. if sliding_window:
  6803. self.gguf_writer.add_sliding_window(sliding_window)
  6804. break
  6805. _experts: list[dict[str, Tensor]] | None = None
  6806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6807. # process the experts separately
  6808. if name.find("experts") != -1:
  6809. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6810. assert bid is not None
  6811. if self._experts is None:
  6812. self._experts = [{} for _ in range(self.block_count)]
  6813. self._experts[bid][name] = data_torch
  6814. if len(self._experts[bid]) >= n_experts * 3:
  6815. tensors: list[tuple[str, Tensor]] = []
  6816. # merge the experts into a single 3d tensor
  6817. for w_name in ["down", "gate", "up"]:
  6818. datas: list[Tensor] = []
  6819. for xid in range(n_experts):
  6820. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6821. datas.append(self._experts[bid][ename])
  6822. del self._experts[bid][ename]
  6823. data_torch = torch.stack(datas, dim=0)
  6824. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6825. new_name = self.map_tensor_name(merged_name)
  6826. tensors.append((new_name, data_torch))
  6827. return tensors
  6828. else:
  6829. return []
  6830. return [(self.map_tensor_name(name), data_torch)]
  6831. def prepare_tensors(self):
  6832. super().prepare_tensors()
  6833. if self._experts is not None:
  6834. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6835. experts = [k for d in self._experts for k in d.keys()]
  6836. if len(experts) > 0:
  6837. raise ValueError(f"Unprocessed experts: {experts}")
  6838. class MistralModel(LlamaModel):
  6839. model_arch = gguf.MODEL_ARCH.LLAMA
  6840. model_name = "Mistral"
  6841. hf_arch = ""
  6842. is_mistral_format = True
  6843. undo_permute = False
  6844. @staticmethod
  6845. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path):
  6846. assert TokenizerVersion is not None, "mistral_common is not installed"
  6847. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  6848. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  6849. )
  6850. if vocab.tokenizer.version == TokenizerVersion.v1:
  6851. return "mistral-v1"
  6852. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  6853. return "mistral-v3"
  6854. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  6855. return "mistral-v3-tekken"
  6856. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  6857. return "mistral-v7"
  6858. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  6859. return "mistral-v7-tekken"
  6860. elif vocab.tokenizer.version == TokenizerVersion.v11:
  6861. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  6862. elif vocab.tokenizer.version == TokenizerVersion.v13:
  6863. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  6864. else:
  6865. raise ValueError(f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}")
  6866. template_path = templates_dir / template_file
  6867. if not template_path.exists():
  6868. raise FileNotFoundError(f"Template file not found: {template_path}")
  6869. with open(template_path, "r", encoding="utf-8") as f:
  6870. template = f.read()
  6871. return template
  6872. class PixtralModel(LlavaVisionModel):
  6873. model_name = "Pixtral"
  6874. hf_arch = ""
  6875. is_mistral_format = True
  6876. def set_gguf_parameters(self):
  6877. super().set_gguf_parameters()
  6878. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  6879. self.gguf_writer.add_vision_attention_layernorm_eps(
  6880. self.find_hparam(["norm_eps"])
  6881. )
  6882. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  6883. self.gguf_writer.add_vision_use_silu(True)
  6884. # spatial_merge_size
  6885. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  6886. self.gguf_writer.add_vision_spatial_merge_size(
  6887. self.find_vparam(["spatial_merge_size"])
  6888. )
  6889. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  6890. if name == "vision_language_adapter.w_in.weight":
  6891. return "mm.1.weight"
  6892. elif name == "vision_language_adapter.w_out.weight":
  6893. return "mm.2.weight"
  6894. return super().map_tensor_name(name, try_suffixes)
  6895. ###### CONVERSION LOGIC ######
  6896. # tree of lazy tensors
  6897. class LazyTorchTensor(gguf.LazyBase):
  6898. _tensor_type = torch.Tensor
  6899. # to keep the type-checker happy
  6900. dtype: torch.dtype
  6901. shape: torch.Size
  6902. # only used when converting a torch.Tensor to a np.ndarray
  6903. _dtype_map: dict[torch.dtype, type] = {
  6904. torch.float16: np.float16,
  6905. torch.float32: np.float32,
  6906. torch.uint8: np.uint8,
  6907. }
  6908. # used for safetensors slices
  6909. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6910. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6911. _dtype_str_map: dict[str, torch.dtype] = {
  6912. "F64": torch.float64,
  6913. "F32": torch.float32,
  6914. "BF16": torch.bfloat16,
  6915. "F16": torch.float16,
  6916. # "U64": torch.uint64,
  6917. "I64": torch.int64,
  6918. # "U32": torch.uint32,
  6919. "I32": torch.int32,
  6920. # "U16": torch.uint16,
  6921. "I16": torch.int16,
  6922. "U8": torch.uint8,
  6923. "I8": torch.int8,
  6924. "BOOL": torch.bool,
  6925. "F8_E4M3": torch.float8_e4m3fn,
  6926. "F8_E5M2": torch.float8_e5m2,
  6927. }
  6928. def numpy(self) -> gguf.LazyNumpyTensor:
  6929. dtype = self._dtype_map[self.dtype]
  6930. return gguf.LazyNumpyTensor(
  6931. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6932. args=(self,),
  6933. func=(lambda s: s.numpy())
  6934. )
  6935. @classmethod
  6936. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6937. return torch.empty(size=shape, dtype=dtype, device="meta")
  6938. @classmethod
  6939. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6940. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6941. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6942. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6943. return cast(torch.Tensor, lazy)
  6944. @classmethod
  6945. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6946. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6947. shape = remote_tensor.shape
  6948. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6949. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6950. return cast(torch.Tensor, lazy)
  6951. @classmethod
  6952. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6953. del types # unused
  6954. if kwargs is None:
  6955. kwargs = {}
  6956. if func is torch.Tensor.numpy:
  6957. return args[0].numpy()
  6958. return cls._wrap_fn(func)(*args, **kwargs)
  6959. def parse_args() -> argparse.Namespace:
  6960. parser = argparse.ArgumentParser(
  6961. description="Convert a huggingface model to a GGML compatible file")
  6962. parser.add_argument(
  6963. "--vocab-only", action="store_true",
  6964. help="extract only the vocab",
  6965. )
  6966. parser.add_argument(
  6967. "--outfile", type=Path,
  6968. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6969. )
  6970. parser.add_argument(
  6971. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6972. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6973. )
  6974. parser.add_argument(
  6975. "--bigendian", action="store_true",
  6976. help="model is executed on big endian machine",
  6977. )
  6978. parser.add_argument(
  6979. "model", type=str,
  6980. help="directory containing model file or huggingface repository ID (if --remote)",
  6981. nargs="?",
  6982. )
  6983. parser.add_argument(
  6984. "--use-temp-file", action="store_true",
  6985. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6986. )
  6987. parser.add_argument(
  6988. "--no-lazy", action="store_true",
  6989. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6990. )
  6991. parser.add_argument(
  6992. "--model-name", type=str, default=None,
  6993. help="name of the model",
  6994. )
  6995. parser.add_argument(
  6996. "--verbose", action="store_true",
  6997. help="increase output verbosity",
  6998. )
  6999. parser.add_argument(
  7000. "--split-max-tensors", type=int, default=0,
  7001. help="max tensors in each split",
  7002. )
  7003. parser.add_argument(
  7004. "--split-max-size", type=str, default="0",
  7005. help="max size per split N(M|G)",
  7006. )
  7007. parser.add_argument(
  7008. "--dry-run", action="store_true",
  7009. help="only print out a split plan and exit, without writing any new files",
  7010. )
  7011. parser.add_argument(
  7012. "--no-tensor-first-split", action="store_true",
  7013. help="do not add tensors to the first split (disabled by default)"
  7014. )
  7015. parser.add_argument(
  7016. "--metadata", type=Path,
  7017. help="Specify the path for an authorship metadata override file"
  7018. )
  7019. parser.add_argument(
  7020. "--print-supported-models", action="store_true",
  7021. help="Print the supported models"
  7022. )
  7023. parser.add_argument(
  7024. "--remote", action="store_true",
  7025. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7026. )
  7027. parser.add_argument(
  7028. "--mmproj", action="store_true",
  7029. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7030. )
  7031. parser.add_argument(
  7032. "--mistral-format", action="store_true",
  7033. help="Whether the model is stored following the Mistral format.",
  7034. )
  7035. args = parser.parse_args()
  7036. if not args.print_supported_models and args.model is None:
  7037. parser.error("the following arguments are required: model")
  7038. return args
  7039. def split_str_to_n_bytes(split_str: str) -> int:
  7040. if split_str.endswith("K"):
  7041. n = int(split_str[:-1]) * 1000
  7042. elif split_str.endswith("M"):
  7043. n = int(split_str[:-1]) * 1000 * 1000
  7044. elif split_str.endswith("G"):
  7045. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7046. elif split_str.isnumeric():
  7047. n = int(split_str)
  7048. else:
  7049. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7050. if n < 0:
  7051. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7052. return n
  7053. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7054. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7055. # maybe we should fallback to text model's arch in that case, since not many models have both
  7056. text_config = hparams.get("text_config", {})
  7057. vision_config = hparams.get("vision_config", {})
  7058. arch = None
  7059. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7060. arch = arches[0]
  7061. elif "ssm_cfg" in hparams:
  7062. # For non-hf Mamba and Mamba2 models
  7063. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7064. # if "architectures" is found in the sub-config, use that instead
  7065. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7066. arch = text_config["architectures"][0]
  7067. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7068. arch = vision_config["architectures"][0]
  7069. if arch is None:
  7070. raise ValueError("Failed to detect model architecture")
  7071. return arch
  7072. def main() -> None:
  7073. args = parse_args()
  7074. if args.print_supported_models:
  7075. logger.error("Supported models:")
  7076. ModelBase.print_registered_models()
  7077. sys.exit(0)
  7078. if args.verbose:
  7079. logging.basicConfig(level=logging.DEBUG)
  7080. else:
  7081. logging.basicConfig(level=logging.INFO)
  7082. if args.remote:
  7083. hf_repo_id = args.model
  7084. from huggingface_hub import snapshot_download
  7085. local_dir = snapshot_download(
  7086. repo_id=hf_repo_id,
  7087. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  7088. dir_model = Path(local_dir)
  7089. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7090. else:
  7091. hf_repo_id = None
  7092. dir_model = Path(args.model)
  7093. if not dir_model.is_dir():
  7094. logger.error(f'Error: {dir_model} is not a directory')
  7095. sys.exit(1)
  7096. ftype_map: dict[str, gguf.LlamaFileType] = {
  7097. "f32": gguf.LlamaFileType.ALL_F32,
  7098. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7099. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7100. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7101. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7102. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7103. "auto": gguf.LlamaFileType.GUESSED,
  7104. }
  7105. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7106. if args.use_temp_file and is_split:
  7107. logger.error("Error: Cannot use temp file when splitting")
  7108. sys.exit(1)
  7109. if args.outfile is not None:
  7110. fname_out = args.outfile
  7111. elif hf_repo_id:
  7112. # if remote, use the model ID as the output file name
  7113. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7114. else:
  7115. fname_out = dir_model
  7116. logger.info(f"Loading model: {dir_model.name}")
  7117. if args.mmproj:
  7118. if "mmproj" not in fname_out.name:
  7119. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7120. is_mistral_format = args.mistral_format
  7121. with torch.inference_mode():
  7122. output_type = ftype_map[args.outtype]
  7123. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7124. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7125. if not is_mistral_format:
  7126. model_architecture = get_model_architecture(hparams, model_type)
  7127. logger.info(f"Model architecture: {model_architecture}")
  7128. try:
  7129. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7130. except NotImplementedError:
  7131. logger.error(f"Model {model_architecture} is not supported")
  7132. sys.exit(1)
  7133. elif args.mmproj:
  7134. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7135. model_class = PixtralModel
  7136. else:
  7137. model_class = MistralModel
  7138. model_instance = model_class(dir_model, output_type, fname_out,
  7139. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7140. eager=args.no_lazy,
  7141. metadata_override=args.metadata, model_name=args.model_name,
  7142. split_max_tensors=args.split_max_tensors,
  7143. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7144. small_first_shard=args.no_tensor_first_split,
  7145. remote_hf_model_id=hf_repo_id,
  7146. )
  7147. if args.vocab_only:
  7148. logger.info("Exporting model vocab...")
  7149. model_instance.write_vocab()
  7150. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7151. else:
  7152. logger.info("Exporting model...")
  7153. model_instance.write()
  7154. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7155. logger.info(f"Model successfully exported to {out_path}")
  7156. if __name__ == '__main__':
  7157. main()