convert_hf_to_gguf.py 374 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. logger = logging.getLogger("hf-to-gguf")
  27. ###### MODEL DEFINITIONS ######
  28. class SentencePieceTokenTypes(IntEnum):
  29. NORMAL = 1
  30. UNKNOWN = 2
  31. CONTROL = 3
  32. USER_DEFINED = 4
  33. UNUSED = 5
  34. BYTE = 6
  35. class ModelType(IntEnum):
  36. TEXT = 1
  37. MMPROJ = 2
  38. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  39. class ModelBase:
  40. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  41. ModelType.TEXT: {},
  42. ModelType.MMPROJ: {},
  43. }
  44. dir_model: Path
  45. ftype: gguf.LlamaFileType
  46. fname_out: Path
  47. is_big_endian: bool
  48. endianess: gguf.GGUFEndian
  49. use_temp_file: bool
  50. lazy: bool
  51. part_names: list[str]
  52. is_safetensors: bool
  53. hparams: dict[str, Any]
  54. tensor_names: set[str] | None
  55. gguf_writer: gguf.GGUFWriter
  56. model_name: str | None
  57. metadata_override: Path | None
  58. dir_model_card: Path
  59. remote_hf_model_id: str | None
  60. # subclasses should define this!
  61. model_arch: gguf.MODEL_ARCH
  62. # subclasses should initialize this!
  63. block_count: int
  64. tensor_map: gguf.TensorNameMap
  65. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  66. use_temp_file: bool = False, eager: bool = False,
  67. metadata_override: Path | None = None, model_name: str | None = None,
  68. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  69. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None):
  70. if type(self) is ModelBase or \
  71. type(self) is TextModel or \
  72. type(self) is MmprojModel:
  73. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  74. self.dir_model = dir_model
  75. self.ftype = ftype
  76. self.fname_out = fname_out
  77. self.is_big_endian = is_big_endian
  78. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  79. self.use_temp_file = use_temp_file
  80. self.lazy = not eager or (remote_hf_model_id is not None)
  81. self.remote_hf_model_id = remote_hf_model_id
  82. if remote_hf_model_id is not None:
  83. self.is_safetensors = True
  84. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  85. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  86. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  87. self.tensor_names = set(name for name in remote_tensors.keys())
  88. for name, remote_tensor in gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id).items():
  89. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  90. self.get_tensors = get_remote_tensors
  91. else:
  92. self.part_names = ModelBase.get_model_part_names(self.dir_model, "model", ".safetensors")
  93. self.is_safetensors = len(self.part_names) > 0
  94. if not self.is_safetensors:
  95. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  96. self.hparams = ModelBase.load_hparams(self.dir_model) if hparams is None else hparams
  97. self.tensor_names = None
  98. self.metadata_override = metadata_override
  99. self.model_name = model_name
  100. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  101. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  102. if self.ftype == gguf.LlamaFileType.GUESSED:
  103. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  104. _, first_tensor = next(self.get_tensors())
  105. if first_tensor.dtype == torch.float16:
  106. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  107. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  108. else:
  109. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  110. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  111. # Configure GGUF Writer
  112. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  113. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  114. @classmethod
  115. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  116. stem, suffix = path.stem, path.suffix
  117. new_name = f"{prefix}{stem}{suffix}"
  118. return path.with_name(new_name)
  119. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  120. key = next((k for k in keys if k in self.hparams), None)
  121. if key is not None:
  122. return self.hparams[key]
  123. if optional:
  124. return None
  125. raise KeyError(f"could not find any of: {keys}")
  126. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  127. tensor_names_from_parts: set[str] = set()
  128. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  129. index_name += ".index.json"
  130. index_file = self.dir_model / index_name
  131. if index_file.is_file():
  132. self.tensor_names = set()
  133. logger.info(f"gguf: loading model weight map from '{index_name}'")
  134. with open(index_file, "r", encoding="utf-8") as f:
  135. index: dict[str, Any] = json.load(f)
  136. weight_map = index.get("weight_map")
  137. if weight_map is None or not isinstance(weight_map, dict):
  138. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  139. self.tensor_names.update(weight_map.keys())
  140. else:
  141. self.tensor_names = tensor_names_from_parts
  142. weight_map = {}
  143. for part_name in self.part_names:
  144. logger.info(f"gguf: loading model part '{part_name}'")
  145. ctx: ContextManager[Any]
  146. if self.is_safetensors:
  147. from safetensors import safe_open
  148. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  149. else:
  150. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  151. with ctx as model_part:
  152. tensor_names_from_parts.update(model_part.keys())
  153. for name in model_part.keys():
  154. if self.is_safetensors:
  155. if self.lazy:
  156. data = model_part.get_slice(name)
  157. data = LazyTorchTensor.from_safetensors_slice(data)
  158. else:
  159. data = model_part.get_tensor(name)
  160. else:
  161. data = model_part[name]
  162. if self.lazy:
  163. data = LazyTorchTensor.from_eager(data)
  164. yield name, data
  165. # verify tensor name presence and identify potentially missing files
  166. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  167. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  168. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  169. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  170. if len(extra) == 0 and len(missing_files) > 0:
  171. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  172. f"Missing tensors: {missing}")
  173. else:
  174. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  175. f"Missing tensors: {missing}\n"
  176. f"Extra tensors: {extra}")
  177. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  178. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  179. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  180. name: str = gguf.TENSOR_NAMES[key]
  181. if "{bid}" in name:
  182. assert bid is not None
  183. name = name.format(bid=bid)
  184. return name + suffix
  185. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  186. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  187. return False
  188. key_name: str = gguf.TENSOR_NAMES[key]
  189. if "{bid}" in key_name:
  190. if bid is None:
  191. return False
  192. key_name = key_name.format(bid=bid)
  193. else:
  194. if bid is not None:
  195. return False
  196. return name == (key_name + suffix)
  197. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  198. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  199. if new_name is None:
  200. raise ValueError(f"Can not map tensor {name!r}")
  201. return new_name
  202. def set_gguf_parameters(self):
  203. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  204. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  205. del bid # unused
  206. return [(self.map_tensor_name(name), data_torch)]
  207. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  208. del name, new_name, bid, n_dims # unused
  209. return False
  210. # some models need extra generated tensors (like rope_freqs)
  211. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  212. return ()
  213. def prepare_tensors(self):
  214. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  215. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  216. # we don't need these
  217. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  218. continue
  219. old_dtype = data_torch.dtype
  220. # convert any unsupported data types to float32
  221. if data_torch.dtype not in (torch.float16, torch.float32):
  222. data_torch = data_torch.to(torch.float32)
  223. # use the first number-like part of the tensor name as the block id
  224. bid = None
  225. for part in name.split("."):
  226. if part.isdecimal():
  227. bid = int(part)
  228. break
  229. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  230. # TODO: why do we squeeze here?
  231. # data = data_torch.squeeze().numpy()
  232. data = data_torch.numpy()
  233. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  234. if len(data.shape) == 0:
  235. data = data_torch.numpy()
  236. n_dims = len(data.shape)
  237. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  238. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  239. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  240. data_qtype = gguf.GGMLQuantizationType.F32
  241. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  242. # Some tensor types are always in float32
  243. if data_qtype is False and (
  244. any(
  245. self.match_model_tensor_name(new_name, key, bid)
  246. for key in (
  247. gguf.MODEL_TENSOR.FFN_GATE_INP,
  248. gguf.MODEL_TENSOR.POS_EMBD,
  249. gguf.MODEL_TENSOR.TOKEN_TYPES,
  250. gguf.MODEL_TENSOR.SSM_CONV1D,
  251. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  252. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  253. gguf.MODEL_TENSOR.TIME_MIX_W1,
  254. gguf.MODEL_TENSOR.TIME_MIX_W2,
  255. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  256. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  257. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  258. gguf.MODEL_TENSOR.POSNET_NORM1,
  259. gguf.MODEL_TENSOR.POSNET_NORM2,
  260. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  261. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  262. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  263. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  264. )
  265. )
  266. or not new_name.endswith(".weight")
  267. ):
  268. data_qtype = gguf.GGMLQuantizationType.F32
  269. if data_qtype is False and any(
  270. self.match_model_tensor_name(new_name, key, bid)
  271. for key in (
  272. gguf.MODEL_TENSOR.TOKEN_EMBD,
  273. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  274. gguf.MODEL_TENSOR.OUTPUT,
  275. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  276. gguf.MODEL_TENSOR.LAUREL_L,
  277. gguf.MODEL_TENSOR.LAUREL_R,
  278. )
  279. ):
  280. if self.ftype in (
  281. gguf.LlamaFileType.MOSTLY_TQ1_0,
  282. gguf.LlamaFileType.MOSTLY_TQ2_0,
  283. ):
  284. # TODO: use Q4_K and Q6_K
  285. data_qtype = gguf.GGMLQuantizationType.F16
  286. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  287. if isinstance(data_qtype, bool):
  288. if self.ftype == gguf.LlamaFileType.ALL_F32:
  289. data_qtype = gguf.GGMLQuantizationType.F32
  290. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  291. data_qtype = gguf.GGMLQuantizationType.F16
  292. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  293. data_qtype = gguf.GGMLQuantizationType.BF16
  294. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  295. data_qtype = gguf.GGMLQuantizationType.Q8_0
  296. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  297. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  298. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  299. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  300. else:
  301. raise ValueError(f"Unknown file type: {self.ftype.name}")
  302. try:
  303. data = gguf.quants.quantize(data, data_qtype)
  304. except gguf.QuantError as e:
  305. logger.warning("%s, %s", e, "falling back to F16")
  306. data_qtype = gguf.GGMLQuantizationType.F16
  307. data = gguf.quants.quantize(data, data_qtype)
  308. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  309. # reverse shape to make it similar to the internal ggml dimension order
  310. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  311. # n_dims is implicit in the shape
  312. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  313. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  314. def set_type(self):
  315. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  316. def prepare_metadata(self, vocab_only: bool):
  317. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  318. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  319. # If we are using HF model id, set the metadata name to the model id
  320. if self.remote_hf_model_id:
  321. self.metadata.name = self.remote_hf_model_id
  322. # Fallback to model directory name if metadata name is still missing
  323. if self.metadata.name is None:
  324. self.metadata.name = self.dir_model.name
  325. # Generate parameter weight class (useful for leader boards) if not yet determined
  326. if self.metadata.size_label is None and total_params > 0:
  327. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  328. self.set_type()
  329. logger.info("Set meta model")
  330. self.metadata.set_gguf_meta_model(self.gguf_writer)
  331. logger.info("Set model parameters")
  332. self.set_gguf_parameters()
  333. logger.info("Set model quantization version")
  334. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  335. def write_vocab(self):
  336. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  337. def write(self):
  338. self.prepare_tensors()
  339. self.prepare_metadata(vocab_only=False)
  340. self.gguf_writer.write_header_to_file(path=self.fname_out)
  341. self.gguf_writer.write_kv_data_to_file()
  342. self.gguf_writer.write_tensors_to_file(progress=True)
  343. self.gguf_writer.close()
  344. @staticmethod
  345. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  346. part_names: list[str] = []
  347. for filename in os.listdir(dir_model):
  348. if filename.startswith(prefix) and filename.endswith(suffix):
  349. part_names.append(filename)
  350. part_names.sort()
  351. return part_names
  352. @staticmethod
  353. def load_hparams(dir_model: Path):
  354. try:
  355. # for security reason, we don't allow loading remote code by default
  356. # if a model need remote code, we will fallback to config.json
  357. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  358. except Exception as e:
  359. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  360. logger.warning("Trying to load config.json instead")
  361. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  362. config = json.load(f)
  363. if "llm_config" in config:
  364. # rename for InternVL
  365. config["text_config"] = config["llm_config"]
  366. if "thinker_config" in config:
  367. # rename for Qwen2.5-Omni
  368. config["text_config"] = config["thinker_config"]["text_config"]
  369. return config
  370. @classmethod
  371. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  372. assert names
  373. def func(modelcls: AnyModel) -> AnyModel:
  374. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  375. for name in names:
  376. cls._model_classes[model_type][name] = modelcls
  377. return modelcls
  378. return func
  379. @classmethod
  380. def print_registered_models(cls):
  381. for model_type, model_classes in cls._model_classes.items():
  382. logger.error(f"{model_type.name} models:")
  383. for name in sorted(model_classes.keys()):
  384. logger.error(f" - {name}")
  385. @classmethod
  386. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  387. try:
  388. return cls._model_classes[model_type][arch]
  389. except KeyError:
  390. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  391. class TextModel(ModelBase):
  392. model_type = ModelType.TEXT
  393. hf_arch: str
  394. def __init__(self, *args, **kwargs):
  395. super().__init__(*args, **kwargs)
  396. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  397. if "text_config" in self.hparams:
  398. # move the text_config to the root level
  399. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  400. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  401. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  402. @classmethod
  403. def __init_subclass__(cls):
  404. # can't use an abstract property, because overriding it without type errors
  405. # would require using decorated functions instead of simply defining the property
  406. if "model_arch" not in cls.__dict__:
  407. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  408. def set_vocab(self):
  409. self._set_vocab_gpt2()
  410. def prepare_metadata(self, vocab_only: bool):
  411. super().prepare_metadata(vocab_only=vocab_only)
  412. total_params = self.gguf_writer.get_total_parameter_count()[0]
  413. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  414. output_type: str = self.ftype.name.partition("_")[2]
  415. # Filename Output
  416. if self.fname_out.is_dir():
  417. # Generate default filename based on model specification and available metadata
  418. if not vocab_only:
  419. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  420. else:
  421. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  422. # Use the default filename
  423. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  424. else:
  425. # Output path is a custom defined templated filename
  426. # Note: `not is_dir()` is used because `.is_file()` will not detect
  427. # file template strings as it doesn't actually exist as a file
  428. # Process templated file name with the output ftype, useful with the "auto" ftype
  429. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  430. logger.info("Set model tokenizer")
  431. self.set_vocab()
  432. def set_gguf_parameters(self):
  433. self.gguf_writer.add_block_count(self.block_count)
  434. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  435. self.gguf_writer.add_context_length(n_ctx)
  436. logger.info(f"gguf: context length = {n_ctx}")
  437. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  438. self.gguf_writer.add_embedding_length(n_embd)
  439. logger.info(f"gguf: embedding length = {n_embd}")
  440. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  441. self.gguf_writer.add_feed_forward_length(n_ff)
  442. logger.info(f"gguf: feed forward length = {n_ff}")
  443. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  444. self.gguf_writer.add_head_count(n_head)
  445. logger.info(f"gguf: head count = {n_head}")
  446. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  447. self.gguf_writer.add_head_count_kv(n_head_kv)
  448. logger.info(f"gguf: key-value head count = {n_head_kv}")
  449. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  450. self.gguf_writer.add_rope_freq_base(rope_theta)
  451. logger.info(f"gguf: rope theta = {rope_theta}")
  452. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  453. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  454. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  455. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  456. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  457. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  458. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  459. self.gguf_writer.add_expert_count(n_experts)
  460. logger.info(f"gguf: expert count = {n_experts}")
  461. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  462. self.gguf_writer.add_expert_used_count(n_experts_used)
  463. logger.info(f"gguf: experts used count = {n_experts_used}")
  464. if (head_dim := self.hparams.get("head_dim")) is not None:
  465. self.gguf_writer.add_key_length(head_dim)
  466. self.gguf_writer.add_value_length(head_dim)
  467. self.gguf_writer.add_file_type(self.ftype)
  468. logger.info(f"gguf: file type = {self.ftype}")
  469. def write_vocab(self):
  470. if len(self.gguf_writer.tensors) != 1:
  471. raise ValueError('Splitting the vocabulary is not supported')
  472. self.prepare_metadata(vocab_only=True)
  473. self.gguf_writer.write_header_to_file(path=self.fname_out)
  474. self.gguf_writer.write_kv_data_to_file()
  475. self.gguf_writer.close()
  476. def does_token_look_special(self, token: str | bytes) -> bool:
  477. if isinstance(token, (bytes, bytearray)):
  478. token_text = token.decode(encoding="utf-8")
  479. elif isinstance(token, memoryview):
  480. token_text = token.tobytes().decode(encoding="utf-8")
  481. else:
  482. token_text = token
  483. # Some models mark some added tokens which ought to be control tokens as not special.
  484. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  485. seems_special = token_text in (
  486. "<pad>", # deepseek-coder
  487. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  488. )
  489. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  490. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  491. # TODO: should these be marked as UNUSED instead? (maybe not)
  492. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  493. return seems_special
  494. # used for GPT-2 BPE and WordPiece vocabs
  495. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  496. tokens: list[str] = []
  497. toktypes: list[int] = []
  498. from transformers import AutoTokenizer
  499. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  500. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  501. assert max(tokenizer.vocab.values()) < vocab_size
  502. tokpre = self.get_vocab_base_pre(tokenizer)
  503. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  504. added_vocab = tokenizer.get_added_vocab()
  505. added_tokens_decoder = tokenizer.added_tokens_decoder
  506. for i in range(vocab_size):
  507. if i not in reverse_vocab:
  508. tokens.append(f"[PAD{i}]")
  509. toktypes.append(gguf.TokenType.UNUSED)
  510. else:
  511. token: str = reverse_vocab[i]
  512. if token in added_vocab:
  513. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  514. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  515. if not added_tokens_decoder[i].normalized:
  516. previous_token = token
  517. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  518. if previous_token != token:
  519. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  520. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  521. toktypes.append(gguf.TokenType.CONTROL)
  522. else:
  523. # NOTE: this was added for Gemma.
  524. # Encoding and decoding the tokens above isn't sufficient for this case.
  525. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  526. toktypes.append(gguf.TokenType.USER_DEFINED)
  527. else:
  528. toktypes.append(gguf.TokenType.NORMAL)
  529. tokens.append(token)
  530. return tokens, toktypes, tokpre
  531. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  532. # do not modify it manually!
  533. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  534. # Marker: Start get_vocab_base_pre
  535. def get_vocab_base_pre(self, tokenizer) -> str:
  536. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  537. # is specific for the BPE pre-tokenizer used by the model
  538. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  539. # use in llama.cpp to implement the same pre-tokenizer
  540. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  541. chktok = tokenizer.encode(chktxt)
  542. chkhsh = sha256(str(chktok).encode()).hexdigest()
  543. logger.debug(f"chktok: {chktok}")
  544. logger.debug(f"chkhsh: {chkhsh}")
  545. res = None
  546. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  547. # or pull the latest version of the model from Huggingface
  548. # don't edit the hashes manually!
  549. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  550. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  551. res = "chatglm-bpe"
  552. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  553. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  554. res = "chatglm-bpe"
  555. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  556. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  557. res = "glm4"
  558. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  559. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  560. res = "minerva-7b"
  561. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  562. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  563. res = "hunyuan"
  564. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  565. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  566. res = "hunyuan-dense"
  567. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  568. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  569. res = "falcon-h1"
  570. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  571. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  572. res = "falcon-h1"
  573. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  574. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  575. res = "falcon-h1"
  576. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  577. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  578. res = "falcon-h1"
  579. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  580. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  581. res = "kimi-k2"
  582. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  583. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  584. res = "qwen2"
  585. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  586. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  587. res = "llama-bpe"
  588. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  589. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  590. res = "deepseek-llm"
  591. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  592. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  593. res = "deepseek-coder"
  594. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  595. # ref: https://huggingface.co/tiiuae/falcon-7b
  596. res = "falcon"
  597. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  598. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  599. res = "bert-bge"
  600. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  601. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  602. res = "falcon3"
  603. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  604. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  605. res = "bert-bge-large"
  606. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  607. # ref: https://huggingface.co/mosaicml/mpt-7b
  608. res = "mpt"
  609. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  610. # ref: https://huggingface.co/bigcode/starcoder2-3b
  611. res = "starcoder"
  612. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  613. # ref: https://huggingface.co/openai-community/gpt2
  614. res = "gpt-2"
  615. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  616. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  617. res = "stablelm2"
  618. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  619. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  620. res = "refact"
  621. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  622. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  623. res = "command-r"
  624. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  625. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  626. res = "qwen2"
  627. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  628. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  629. res = "olmo"
  630. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  631. # ref: https://huggingface.co/databricks/dbrx-base
  632. res = "dbrx"
  633. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  634. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  635. res = "jina-v1-en"
  636. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  637. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  638. res = "jina-v2-en"
  639. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  640. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  641. res = "jina-v2-es"
  642. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  643. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  644. res = "jina-v2-de"
  645. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  646. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  647. res = "smaug-bpe"
  648. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  649. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  650. res = "poro-chat"
  651. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  652. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  653. res = "jina-v2-code"
  654. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  655. # ref: https://huggingface.co/LumiOpen/Viking-7B
  656. res = "viking"
  657. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  658. # ref: https://huggingface.co/core42/jais-13b
  659. res = "jais"
  660. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  661. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  662. res = "codeshell"
  663. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  664. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  665. res = "tekken"
  666. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  667. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  668. res = "smollm"
  669. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  670. # ref: https://huggingface.co/bigscience/bloom
  671. res = "bloom"
  672. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  673. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  674. res = "gpt3-finnish"
  675. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  676. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  677. res = "exaone"
  678. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  679. # ref: https://huggingface.co/microsoft/phi-2
  680. res = "phi-2"
  681. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  682. # ref: https://huggingface.co/facebook/chameleon-7b
  683. res = "chameleon"
  684. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  685. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  686. res = "roberta-bpe"
  687. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  688. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  689. res = "gigachat"
  690. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  691. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  692. res = "megrez"
  693. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  694. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  695. res = "deepseek-v3"
  696. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  697. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  698. res = "deepseek-r1-qwen"
  699. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  700. # ref: https://huggingface.co/Xenova/gpt-4o
  701. res = "gpt-4o"
  702. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  703. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  704. res = "superbpe"
  705. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  706. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  707. res = "trillion"
  708. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  709. # ref: https://huggingface.co/inclusionAI/Ling-lite
  710. res = "bailingmoe"
  711. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  712. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  713. res = "llama4"
  714. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  715. # ref: https://huggingface.co/mistral-community/pixtral-12b
  716. res = "pixtral"
  717. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  718. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  719. res = "seed-coder"
  720. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  721. # ref: https://huggingface.co/skt/A.X-4.0
  722. res = "a.x-4.0"
  723. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  724. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  725. res = "midm-2.0"
  726. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  727. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  728. res = "lfm2"
  729. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  730. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  731. res = "exaone4"
  732. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  733. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  734. res = "mellum"
  735. if res is None:
  736. logger.warning("\n")
  737. logger.warning("**************************************************************************************")
  738. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  739. logger.warning("** There are 2 possible reasons for this:")
  740. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  741. logger.warning("** - the pre-tokenization config has changed upstream")
  742. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  743. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  744. logger.warning("**")
  745. logger.warning(f"** chkhsh: {chkhsh}")
  746. logger.warning("**************************************************************************************")
  747. logger.warning("\n")
  748. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  749. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  750. logger.debug(f"chkhsh: {chkhsh}")
  751. return res
  752. # Marker: End get_vocab_base_pre
  753. def _set_vocab_none(self) -> None:
  754. self.gguf_writer.add_tokenizer_model("none")
  755. def _set_vocab_gpt2(self) -> None:
  756. tokens, toktypes, tokpre = self.get_vocab_base()
  757. self.gguf_writer.add_tokenizer_model("gpt2")
  758. self.gguf_writer.add_tokenizer_pre(tokpre)
  759. self.gguf_writer.add_token_list(tokens)
  760. self.gguf_writer.add_token_types(toktypes)
  761. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  762. special_vocab.add_to_gguf(self.gguf_writer)
  763. def _set_vocab_qwen(self):
  764. dir_model = self.dir_model
  765. hparams = self.hparams
  766. tokens: list[str] = []
  767. toktypes: list[int] = []
  768. from transformers import AutoTokenizer
  769. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  770. vocab_size = hparams["vocab_size"]
  771. assert max(tokenizer.get_vocab().values()) < vocab_size
  772. tokpre = self.get_vocab_base_pre(tokenizer)
  773. merges = []
  774. vocab = {}
  775. mergeable_ranks = tokenizer.mergeable_ranks
  776. for token, rank in mergeable_ranks.items():
  777. vocab[QwenModel.token_bytes_to_string(token)] = rank
  778. if len(token) == 1:
  779. continue
  780. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  781. assert len(merged) == 2
  782. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  783. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  784. added_vocab = tokenizer.special_tokens
  785. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  786. for i in range(vocab_size):
  787. if i not in reverse_vocab:
  788. tokens.append(f"[PAD{i}]")
  789. toktypes.append(gguf.TokenType.UNUSED)
  790. elif reverse_vocab[i] in added_vocab:
  791. tokens.append(reverse_vocab[i])
  792. toktypes.append(gguf.TokenType.CONTROL)
  793. else:
  794. tokens.append(reverse_vocab[i])
  795. toktypes.append(gguf.TokenType.NORMAL)
  796. self.gguf_writer.add_tokenizer_model("gpt2")
  797. self.gguf_writer.add_tokenizer_pre(tokpre)
  798. self.gguf_writer.add_token_list(tokens)
  799. self.gguf_writer.add_token_types(toktypes)
  800. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  801. special_vocab.merges = merges
  802. # only add special tokens when they were not already loaded from config.json
  803. if len(special_vocab.special_token_ids) == 0:
  804. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  805. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  806. # this one is usually not in config.json anyway
  807. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  808. special_vocab.add_to_gguf(self.gguf_writer)
  809. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  810. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  811. self.gguf_writer.add_tokenizer_model("llama")
  812. self.gguf_writer.add_tokenizer_pre("default")
  813. self.gguf_writer.add_token_list(tokens)
  814. self.gguf_writer.add_token_scores(scores)
  815. self.gguf_writer.add_token_types(toktypes)
  816. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  817. special_vocab.add_to_gguf(self.gguf_writer)
  818. def _create_vocab_sentencepiece(self):
  819. from sentencepiece import SentencePieceProcessor
  820. tokenizer_path = self.dir_model / 'tokenizer.model'
  821. if not tokenizer_path.is_file():
  822. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  823. tokenizer = SentencePieceProcessor()
  824. tokenizer.LoadFromFile(str(tokenizer_path))
  825. vocab_size = self.find_hparam([
  826. "vocab_size_per_layer_input", # gemma3n
  827. "vocab_size",
  828. ], optional=True) or tokenizer.vocab_size()
  829. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  830. scores: list[float] = [-10000.0] * vocab_size
  831. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  832. for token_id in range(tokenizer.vocab_size()):
  833. if token_id >= vocab_size:
  834. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  835. break
  836. piece = tokenizer.IdToPiece(token_id)
  837. text = piece.encode("utf-8")
  838. score = tokenizer.GetScore(token_id)
  839. toktype = SentencePieceTokenTypes.NORMAL
  840. if tokenizer.IsUnknown(token_id):
  841. toktype = SentencePieceTokenTypes.UNKNOWN
  842. elif tokenizer.IsControl(token_id):
  843. toktype = SentencePieceTokenTypes.CONTROL
  844. elif tokenizer.IsUnused(token_id):
  845. toktype = SentencePieceTokenTypes.UNUSED
  846. elif tokenizer.IsByte(token_id):
  847. toktype = SentencePieceTokenTypes.BYTE
  848. tokens[token_id] = text
  849. scores[token_id] = score
  850. toktypes[token_id] = toktype
  851. added_tokens_file = self.dir_model / 'added_tokens.json'
  852. if added_tokens_file.is_file():
  853. with open(added_tokens_file, "r", encoding="utf-8") as f:
  854. added_tokens_json = json.load(f)
  855. for key in added_tokens_json:
  856. token_id = added_tokens_json[key]
  857. if token_id >= vocab_size:
  858. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  859. continue
  860. tokens[token_id] = key.encode("utf-8")
  861. scores[token_id] = -1000.0
  862. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  863. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  864. if tokenizer_config_file.is_file():
  865. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  866. tokenizer_config_json = json.load(f)
  867. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  868. for token_id, token_data in added_tokens_decoder.items():
  869. token_id = int(token_id)
  870. token: str = token_data["content"]
  871. if token_id >= vocab_size:
  872. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  873. continue
  874. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  875. if tokens[token_id] != token.encode("utf-8"):
  876. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  877. if token_data.get("special") or self.does_token_look_special(token):
  878. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  879. else:
  880. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  881. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  882. scores[token_id] = -1000.0
  883. tokens[token_id] = token.encode("utf-8")
  884. if vocab_size > len(tokens):
  885. pad_count = vocab_size - len(tokens)
  886. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  887. for i in range(1, pad_count + 1):
  888. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  889. scores.append(-1000.0)
  890. toktypes.append(SentencePieceTokenTypes.UNUSED)
  891. return tokens, scores, toktypes
  892. def _set_vocab_llama_hf(self):
  893. vocab = gguf.LlamaHfVocab(self.dir_model)
  894. tokens = []
  895. scores = []
  896. toktypes = []
  897. for text, score, toktype in vocab.all_tokens():
  898. tokens.append(text)
  899. scores.append(score)
  900. toktypes.append(toktype)
  901. assert len(tokens) == vocab.vocab_size
  902. self.gguf_writer.add_tokenizer_model("llama")
  903. self.gguf_writer.add_tokenizer_pre("default")
  904. self.gguf_writer.add_token_list(tokens)
  905. self.gguf_writer.add_token_scores(scores)
  906. self.gguf_writer.add_token_types(toktypes)
  907. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  908. special_vocab.add_to_gguf(self.gguf_writer)
  909. def _set_vocab_rwkv_world(self):
  910. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  911. vocab_size = self.hparams.get("vocab_size", 65536)
  912. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  913. toktypes: list[int] = [gguf.TokenType.CONTROL]
  914. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  915. lines = f.readlines()
  916. for line in lines:
  917. parts = line.split(' ')
  918. assert len(parts) >= 3
  919. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  920. token = token.encode("utf-8") if isinstance(token, str) else token
  921. assert isinstance(token, bytes)
  922. assert len(token) == token_len
  923. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  924. tokens.append(token_text.encode("utf-8"))
  925. toktypes.append(gguf.TokenType.NORMAL)
  926. remainder = vocab_size - len(tokens)
  927. assert remainder >= 0
  928. for i in range(len(tokens), vocab_size):
  929. tokens.append(f"[PAD{i}]".encode("utf-8"))
  930. toktypes.append(gguf.TokenType.UNUSED)
  931. self.gguf_writer.add_tokenizer_model("rwkv")
  932. self.gguf_writer.add_token_list(tokens)
  933. self.gguf_writer.add_token_types(toktypes)
  934. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  935. if special_vocab.chat_template is None:
  936. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  937. if template_path.is_file():
  938. with open(template_path, "r", encoding="utf-8") as f:
  939. template = f.read()
  940. else:
  941. template = "rwkv-world"
  942. special_vocab.chat_template = template
  943. # hack: Add '\n\n' as the EOT token to make it chat normally
  944. special_vocab._set_special_token("eot", 261)
  945. # hack: Override these as they have already been set (incorrectly)
  946. special_vocab.special_token_ids["bos"] = 0
  947. special_vocab.special_token_ids["eos"] = 0
  948. special_vocab.add_to_gguf(self.gguf_writer)
  949. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  950. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  951. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  952. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  953. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  954. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  955. assert field # tokenizer model
  956. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  957. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  958. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  959. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  960. assert field # token list
  961. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  962. if model_name == "llama-spm":
  963. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  964. assert field # token scores
  965. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  966. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  967. assert field # token types
  968. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  969. if model_name != "llama-spm":
  970. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  971. assert field # token merges
  972. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  973. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  974. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  975. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  976. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  977. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  978. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  979. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  980. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  981. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  982. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  983. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  984. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  985. def _try_set_pooling_type(self) -> None:
  986. # get pooling path
  987. pooling_path = None
  988. module_path = self.dir_model / "modules.json"
  989. if module_path.is_file():
  990. with open(module_path, encoding="utf-8") as f:
  991. modules = json.load(f)
  992. for mod in modules:
  993. if mod["type"] == "sentence_transformers.models.Pooling":
  994. pooling_path = mod["path"]
  995. break
  996. # get pooling type
  997. if pooling_path is not None:
  998. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  999. pooling = json.load(f)
  1000. if pooling["pooling_mode_mean_tokens"]:
  1001. pooling_type = gguf.PoolingType.MEAN
  1002. elif pooling["pooling_mode_cls_token"]:
  1003. pooling_type = gguf.PoolingType.CLS
  1004. elif pooling["pooling_mode_lasttoken"]:
  1005. pooling_type = gguf.PoolingType.LAST
  1006. else:
  1007. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1008. self.gguf_writer.add_pooling_type(pooling_type)
  1009. class MmprojModel(ModelBase):
  1010. model_type = ModelType.MMPROJ
  1011. model_arch = gguf.MODEL_ARCH.MMPROJ
  1012. preprocessor_config: dict[str, Any]
  1013. global_config: dict[str, Any]
  1014. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1015. has_vision_encoder: bool = True # by default
  1016. has_audio_encoder: bool = False
  1017. # for models having multiple encoders, we need to separate their hparams
  1018. hparams_vision: dict[str, Any] | None = None
  1019. hparams_audio: dict[str, Any] | None = None
  1020. def __init__(self, *args, **kwargs):
  1021. super().__init__(*args, **kwargs)
  1022. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1023. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1024. # get n_embd of the text model
  1025. if "text_config" not in self.hparams:
  1026. self.hparams["text_config"] = {}
  1027. if "audio_config" not in self.hparams:
  1028. self.hparams["audio_config"] = {}
  1029. text_config = {**self.hparams, **self.hparams["text_config"]}
  1030. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1031. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1032. # move vision config to the top level, while preserving the original hparams in global_config
  1033. import copy
  1034. self.global_config = copy.deepcopy(self.hparams)
  1035. self.hparams_vision = self.get_vision_config()
  1036. self.hparams_audio = self.get_audio_config()
  1037. if self.hparams_vision is None and self.hparams_audio is None:
  1038. raise ValueError("vision_config / audio_config not found in hparams")
  1039. # for compat with vision-only models
  1040. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1041. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1042. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1043. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1044. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1045. # load preprocessor config
  1046. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1047. self.preprocessor_config = json.load(f)
  1048. def get_vision_config(self) -> dict[str, Any] | None:
  1049. return self.global_config.get("vision_config")
  1050. def get_audio_config(self) -> dict[str, Any] | None:
  1051. return self.global_config.get("audio_config")
  1052. def set_type(self):
  1053. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1054. def set_gguf_parameters(self):
  1055. self.gguf_writer.add_file_type(self.ftype)
  1056. if self.has_vision_encoder:
  1057. self.gguf_writer.add_clip_has_vision_encoder(True)
  1058. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1059. # vision config
  1060. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1061. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1062. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1063. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1064. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1065. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1066. # preprocessor config
  1067. self.gguf_writer.add_vision_image_mean(self.preprocessor_config["image_mean"])
  1068. self.gguf_writer.add_vision_image_std(self.preprocessor_config["image_std"])
  1069. if self.has_audio_encoder:
  1070. self.gguf_writer.add_clip_has_audio_encoder(True)
  1071. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1072. # audio config
  1073. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1074. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1075. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1076. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1077. if not self.has_vision_encoder and not self.has_audio_encoder:
  1078. raise ValueError("MmprojModel must have either vision or audio encoder")
  1079. def write_vocab(self):
  1080. raise ValueError("MmprojModel does not support vocab writing")
  1081. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1082. assert self.hparams_vision is not None
  1083. return self._find_param(self.hparams_vision, keys, optional)
  1084. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1085. assert self.hparams_audio is not None
  1086. return self._find_param(self.hparams_audio, keys, optional)
  1087. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1088. key = next((k for k in keys if k in obj), None)
  1089. if key is not None:
  1090. return obj[key]
  1091. if optional:
  1092. return None
  1093. raise KeyError(f"could not find any of: {keys}")
  1094. @ModelBase.register("GPTNeoXForCausalLM")
  1095. class GPTNeoXModel(TextModel):
  1096. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1097. def set_gguf_parameters(self):
  1098. block_count = self.hparams["num_hidden_layers"]
  1099. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1100. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1101. self.gguf_writer.add_block_count(block_count)
  1102. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1103. self.gguf_writer.add_rope_dimension_count(
  1104. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1105. )
  1106. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1107. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1108. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1109. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1110. del bid # unused
  1111. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1112. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1113. tensors: list[tuple[str, Tensor]] = []
  1114. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1115. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1116. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1117. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1118. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1119. data_torch = torch.cat(
  1120. (
  1121. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1122. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1123. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1124. ),
  1125. dim=0,
  1126. )
  1127. logger.info("re-format attention.linear_qkv.weight")
  1128. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1129. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1130. data_torch = torch.cat(
  1131. (
  1132. qkv_bias[:, 0, :].reshape((n_embed,)),
  1133. qkv_bias[:, 1, :].reshape((n_embed,)),
  1134. qkv_bias[:, 2, :].reshape((n_embed,)),
  1135. ),
  1136. dim=0,
  1137. )
  1138. logger.info("re-format attention.linear_qkv.bias")
  1139. tensors.append((self.map_tensor_name(name), data_torch))
  1140. return tensors
  1141. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1142. class BloomModel(TextModel):
  1143. model_arch = gguf.MODEL_ARCH.BLOOM
  1144. def set_gguf_parameters(self):
  1145. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1146. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1147. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1148. self.gguf_writer.add_embedding_length(n_embed)
  1149. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1150. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1151. self.gguf_writer.add_head_count(n_head)
  1152. self.gguf_writer.add_head_count_kv(n_head)
  1153. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1154. self.gguf_writer.add_file_type(self.ftype)
  1155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1156. del bid # unused
  1157. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1158. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1159. name = re.sub(r'transformer\.', '', name)
  1160. tensors: list[tuple[str, Tensor]] = []
  1161. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1162. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1163. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1164. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1165. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1166. data_torch = torch.cat(
  1167. (
  1168. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1169. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1170. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1171. ),
  1172. dim=0,
  1173. )
  1174. logger.info("re-format attention.linear_qkv.weight")
  1175. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1176. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1177. data_torch = torch.cat(
  1178. (
  1179. qkv_bias[:, 0, :].reshape((n_embed,)),
  1180. qkv_bias[:, 1, :].reshape((n_embed,)),
  1181. qkv_bias[:, 2, :].reshape((n_embed,)),
  1182. ),
  1183. dim=0,
  1184. )
  1185. logger.info("re-format attention.linear_qkv.bias")
  1186. tensors.append((self.map_tensor_name(name), data_torch))
  1187. return tensors
  1188. @ModelBase.register("MPTForCausalLM")
  1189. class MPTModel(TextModel):
  1190. model_arch = gguf.MODEL_ARCH.MPT
  1191. def set_vocab(self):
  1192. try:
  1193. self._set_vocab_gpt2()
  1194. except Exception:
  1195. # Fallback for SEA-LION model
  1196. self._set_vocab_sentencepiece()
  1197. self.gguf_writer.add_add_bos_token(False)
  1198. self.gguf_writer.add_pad_token_id(3)
  1199. self.gguf_writer.add_eos_token_id(1)
  1200. self.gguf_writer.add_unk_token_id(0)
  1201. def set_gguf_parameters(self):
  1202. block_count = self.hparams["n_layers"]
  1203. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1204. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1205. self.gguf_writer.add_block_count(block_count)
  1206. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1207. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1208. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1209. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1210. self.gguf_writer.add_layer_norm_eps(1e-5)
  1211. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1212. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1213. if self.hparams["attn_config"]["alibi"]:
  1214. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1215. else:
  1216. self.gguf_writer.add_max_alibi_bias(0.0)
  1217. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1218. del bid # unused
  1219. if "scales" in name:
  1220. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1221. new_name = new_name.replace("scales", "act.scales")
  1222. else:
  1223. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1224. return [(new_name, data_torch)]
  1225. @ModelBase.register("OrionForCausalLM")
  1226. class OrionModel(TextModel):
  1227. model_arch = gguf.MODEL_ARCH.ORION
  1228. def set_vocab(self):
  1229. self._set_vocab_sentencepiece()
  1230. def set_gguf_parameters(self):
  1231. block_count = self.hparams["num_hidden_layers"]
  1232. head_count = self.hparams["num_attention_heads"]
  1233. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1234. ctx_length = 0
  1235. if "max_sequence_length" in self.hparams:
  1236. ctx_length = self.hparams["max_sequence_length"]
  1237. elif "max_position_embeddings" in self.hparams:
  1238. ctx_length = self.hparams["max_position_embeddings"]
  1239. elif "model_max_length" in self.hparams:
  1240. ctx_length = self.hparams["model_max_length"]
  1241. else:
  1242. raise ValueError("gguf: can not find ctx length parameter.")
  1243. self.gguf_writer.add_file_type(self.ftype)
  1244. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1245. self.gguf_writer.add_context_length(ctx_length)
  1246. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1247. self.gguf_writer.add_block_count(block_count)
  1248. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1249. self.gguf_writer.add_head_count(head_count)
  1250. self.gguf_writer.add_head_count_kv(head_count_kv)
  1251. # note: config provides rms norm but it is actually layer norm
  1252. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1253. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1254. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1255. class BaichuanModel(TextModel):
  1256. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1257. def set_vocab(self):
  1258. self._set_vocab_sentencepiece()
  1259. def set_gguf_parameters(self):
  1260. block_count = self.hparams["num_hidden_layers"]
  1261. head_count = self.hparams["num_attention_heads"]
  1262. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1263. ctx_length = 0
  1264. if "max_sequence_length" in self.hparams:
  1265. ctx_length = self.hparams["max_sequence_length"]
  1266. elif "max_position_embeddings" in self.hparams:
  1267. ctx_length = self.hparams["max_position_embeddings"]
  1268. elif "model_max_length" in self.hparams:
  1269. ctx_length = self.hparams["model_max_length"]
  1270. else:
  1271. raise ValueError("gguf: can not find ctx length parameter.")
  1272. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1273. self.gguf_writer.add_context_length(ctx_length)
  1274. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1275. self.gguf_writer.add_block_count(block_count)
  1276. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1277. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1278. self.gguf_writer.add_head_count(head_count)
  1279. self.gguf_writer.add_head_count_kv(head_count_kv)
  1280. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1281. self.gguf_writer.add_file_type(self.ftype)
  1282. rope_scaling = self.hparams.get("rope_scaling") or {}
  1283. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1284. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1285. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1287. head_count = self.hparams["num_attention_heads"]
  1288. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1289. tensors: list[tuple[str, Tensor]] = []
  1290. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1291. logger.info(f"Unpacking and permuting layer {bid}")
  1292. tensors = [
  1293. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1294. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1295. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1296. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1297. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1298. self._reverse_hf_part(data_torch, 2)),
  1299. ]
  1300. else:
  1301. tensors = [(self.map_tensor_name(name), data_torch)]
  1302. return tensors
  1303. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1304. if n_kv_head is not None and n_head != n_kv_head:
  1305. n_head //= n_kv_head
  1306. return (
  1307. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1308. .swapaxes(1, 2)
  1309. .reshape(weights.shape)
  1310. )
  1311. def _reverse_hf_permute_part(
  1312. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1313. ) -> Tensor:
  1314. r = weights.shape[0] // 3
  1315. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1316. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1317. r = weights.shape[0] // 3
  1318. return weights[r * n_part:r * n_part + r, ...]
  1319. @ModelBase.register("XverseForCausalLM")
  1320. class XverseModel(TextModel):
  1321. model_arch = gguf.MODEL_ARCH.XVERSE
  1322. def set_vocab(self):
  1323. assert (self.dir_model / "tokenizer.json").is_file()
  1324. dir_model = self.dir_model
  1325. hparams = self.hparams
  1326. tokens: list[bytes] = []
  1327. toktypes: list[int] = []
  1328. from transformers import AutoTokenizer
  1329. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1330. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1331. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1332. # because vocab_size is the count of items, and indexes start at 0.
  1333. max_vocab_index = max(tokenizer.get_vocab().values())
  1334. if max_vocab_index >= vocab_size:
  1335. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1336. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1337. added_vocab = tokenizer.get_added_vocab()
  1338. for token_id in range(vocab_size):
  1339. token_text = reverse_vocab[token_id].encode('utf-8')
  1340. # replace "\x00" to string with length > 0
  1341. if token_text == b"\x00":
  1342. toktype = gguf.TokenType.BYTE # special
  1343. token_text = f"<{token_text}>".encode('utf-8')
  1344. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1345. toktype = gguf.TokenType.BYTE # special
  1346. elif reverse_vocab[token_id] in added_vocab:
  1347. if tokenizer.added_tokens_decoder[token_id].special:
  1348. toktype = gguf.TokenType.CONTROL
  1349. else:
  1350. toktype = gguf.TokenType.USER_DEFINED
  1351. else:
  1352. toktype = gguf.TokenType.NORMAL
  1353. tokens.append(token_text)
  1354. toktypes.append(toktype)
  1355. self.gguf_writer.add_tokenizer_model("llama")
  1356. self.gguf_writer.add_tokenizer_pre("default")
  1357. self.gguf_writer.add_token_list(tokens)
  1358. self.gguf_writer.add_token_types(toktypes)
  1359. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1360. special_vocab.add_to_gguf(self.gguf_writer)
  1361. def set_gguf_parameters(self):
  1362. block_count = self.hparams["num_hidden_layers"]
  1363. head_count = self.hparams["num_attention_heads"]
  1364. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1365. ctx_length = 0
  1366. if "max_sequence_length" in self.hparams:
  1367. ctx_length = self.hparams["max_sequence_length"]
  1368. elif "max_position_embeddings" in self.hparams:
  1369. ctx_length = self.hparams["max_position_embeddings"]
  1370. elif "model_max_length" in self.hparams:
  1371. ctx_length = self.hparams["model_max_length"]
  1372. else:
  1373. raise ValueError("gguf: can not find ctx length parameter.")
  1374. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1375. self.gguf_writer.add_context_length(ctx_length)
  1376. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1377. self.gguf_writer.add_block_count(block_count)
  1378. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1379. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1380. self.gguf_writer.add_head_count(head_count)
  1381. self.gguf_writer.add_head_count_kv(head_count_kv)
  1382. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1383. self.gguf_writer.add_file_type(self.ftype)
  1384. rope_scaling = self.hparams.get("rope_scaling") or {}
  1385. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1386. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1387. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1389. del bid # unused
  1390. head_count = self.hparams["num_attention_heads"]
  1391. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1392. # HF models permute some of the tensors, so we need to undo that
  1393. if name.endswith("q_proj.weight"):
  1394. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1395. if name.endswith("k_proj.weight"):
  1396. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1397. return [(self.map_tensor_name(name), data_torch)]
  1398. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1399. if n_kv_head is not None and n_head != n_kv_head:
  1400. n_head //= n_kv_head
  1401. return (
  1402. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1403. .swapaxes(1, 2)
  1404. .reshape(weights.shape)
  1405. )
  1406. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1407. class FalconModel(TextModel):
  1408. model_arch = gguf.MODEL_ARCH.FALCON
  1409. def set_gguf_parameters(self):
  1410. block_count = self.hparams.get("num_hidden_layers")
  1411. if block_count is None:
  1412. block_count = self.hparams["n_layer"] # old name
  1413. n_head = self.hparams.get("num_attention_heads")
  1414. if n_head is None:
  1415. n_head = self.hparams["n_head"] # old name
  1416. n_head_kv = self.hparams.get("num_kv_heads")
  1417. if n_head_kv is None:
  1418. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1419. self.gguf_writer.add_context_length(2048) # not in config.json
  1420. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1421. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1422. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1423. self.gguf_writer.add_block_count(block_count)
  1424. self.gguf_writer.add_head_count(n_head)
  1425. self.gguf_writer.add_head_count_kv(n_head_kv)
  1426. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1427. self.gguf_writer.add_file_type(self.ftype)
  1428. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1429. del bid # unused
  1430. # QKV tensor transform
  1431. # The original query_key_value tensor contains n_head_kv "kv groups",
  1432. # each consisting of n_head/n_head_kv query weights followed by one key
  1433. # and one value weight (shared by all query heads in the kv group).
  1434. # This layout makes it a big pain to work with in GGML.
  1435. # So we rearrange them here,, so that we have n_head query weights
  1436. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1437. # in contiguous fashion.
  1438. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1439. if "query_key_value" in name:
  1440. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1441. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1442. head_dim = self.hparams["hidden_size"] // n_head
  1443. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1444. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1445. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1446. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1447. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1448. return [(self.map_tensor_name(name), data_torch)]
  1449. @ModelBase.register("GPTBigCodeForCausalLM")
  1450. class StarCoderModel(TextModel):
  1451. model_arch = gguf.MODEL_ARCH.STARCODER
  1452. def set_gguf_parameters(self):
  1453. block_count = self.hparams["n_layer"]
  1454. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1455. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1456. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1457. self.gguf_writer.add_block_count(block_count)
  1458. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1459. self.gguf_writer.add_head_count_kv(1)
  1460. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1461. self.gguf_writer.add_file_type(self.ftype)
  1462. @ModelBase.register("GPTRefactForCausalLM")
  1463. class RefactModel(TextModel):
  1464. model_arch = gguf.MODEL_ARCH.REFACT
  1465. def set_vocab(self):
  1466. super().set_vocab()
  1467. # TODO: how to determine special FIM tokens automatically?
  1468. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1469. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1470. special_vocab._set_special_token("prefix", 1)
  1471. special_vocab._set_special_token("suffix", 3)
  1472. special_vocab._set_special_token("middle", 2)
  1473. special_vocab.chat_template = None # do not add it twice
  1474. special_vocab.add_to_gguf(self.gguf_writer)
  1475. def set_gguf_parameters(self):
  1476. hidden_dim = self.hparams["n_embd"]
  1477. inner_dim = 4 * hidden_dim
  1478. hidden_dim = int(2 * inner_dim / 3)
  1479. multiple_of = 256
  1480. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1481. block_count = self.hparams["n_layer"]
  1482. # refact uses Alibi. So this is from config.json which might be used by training.
  1483. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1484. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1485. self.gguf_writer.add_feed_forward_length(ff_dim)
  1486. self.gguf_writer.add_block_count(block_count)
  1487. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1488. self.gguf_writer.add_head_count_kv(1)
  1489. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1490. self.gguf_writer.add_file_type(self.ftype)
  1491. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1492. hidden_dim = self.hparams["n_embd"]
  1493. inner_dim = 4 * hidden_dim
  1494. hidden_dim = int(2 * inner_dim / 3)
  1495. multiple_of = 256
  1496. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1497. n_head = self.hparams["n_head"]
  1498. n_head_kv = 1
  1499. head_dim = self.hparams["n_embd"] // n_head
  1500. tensors: list[tuple[str, Tensor]] = []
  1501. if bid is not None:
  1502. if name == f"transformer.h.{bid}.attn.kv.weight":
  1503. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1504. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1505. elif name == f"transformer.h.{bid}.attn.q.weight":
  1506. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1507. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1508. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1509. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1510. if len(tensors) == 0:
  1511. tensors.append((self.map_tensor_name(name), data_torch))
  1512. return tensors
  1513. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1514. class StableLMModel(TextModel):
  1515. model_arch = gguf.MODEL_ARCH.STABLELM
  1516. def set_vocab(self):
  1517. if (self.dir_model / "tokenizer.json").is_file():
  1518. self._set_vocab_gpt2()
  1519. else:
  1520. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1521. self._set_vocab_qwen()
  1522. def set_gguf_parameters(self):
  1523. hparams = self.hparams
  1524. block_count = hparams["num_hidden_layers"]
  1525. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1526. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1527. self.gguf_writer.add_block_count(block_count)
  1528. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1529. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1530. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1531. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1532. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1533. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1534. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1535. self.gguf_writer.add_file_type(self.ftype)
  1536. _q_norms: list[dict[str, Tensor]] | None = None
  1537. _k_norms: list[dict[str, Tensor]] | None = None
  1538. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1539. n_head = self.hparams["num_attention_heads"]
  1540. n_kv_head = self.hparams["num_key_value_heads"]
  1541. if name.find("q_layernorm.norms") != -1:
  1542. assert bid is not None
  1543. if self._q_norms is None:
  1544. self._q_norms = [{} for _ in range(self.block_count)]
  1545. self._q_norms[bid][name] = data_torch
  1546. if len(self._q_norms[bid]) >= n_head:
  1547. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1548. else:
  1549. return []
  1550. if name.find("k_layernorm.norms") != -1:
  1551. assert bid is not None
  1552. if self._k_norms is None:
  1553. self._k_norms = [{} for _ in range(self.block_count)]
  1554. self._k_norms[bid][name] = data_torch
  1555. if len(self._k_norms[bid]) >= n_kv_head:
  1556. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1557. else:
  1558. return []
  1559. return [(self.map_tensor_name(name), data_torch)]
  1560. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1561. datas: list[Tensor] = []
  1562. # extract the norms in order
  1563. for xid in range(n_head):
  1564. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1565. datas.append(norms[ename])
  1566. del norms[ename]
  1567. data_torch = torch.stack(datas, dim=0)
  1568. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1569. new_name = self.map_tensor_name(merged_name)
  1570. return [(new_name, data_torch)]
  1571. def prepare_tensors(self):
  1572. super().prepare_tensors()
  1573. if self._q_norms is not None or self._k_norms is not None:
  1574. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1575. norms = (
  1576. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1577. ) + (
  1578. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1579. )
  1580. if len(norms) > 0:
  1581. raise ValueError(f"Unprocessed norms: {norms}")
  1582. @ModelBase.register(
  1583. "LLaMAForCausalLM",
  1584. "LlamaForCausalLM",
  1585. "MistralForCausalLM",
  1586. "MixtralForCausalLM",
  1587. "VLlama3ForCausalLM",
  1588. "LlavaForConditionalGeneration",
  1589. "VoxtralForConditionalGeneration",
  1590. "LlamaModel")
  1591. class LlamaModel(TextModel):
  1592. model_arch = gguf.MODEL_ARCH.LLAMA
  1593. undo_permute = True
  1594. def __init__(self, *args, **kwargs):
  1595. super().__init__(*args, **kwargs)
  1596. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1597. if self.hf_arch == "VLlama3ForCausalLM":
  1598. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1599. def set_vocab(self):
  1600. path_tekken_json = self.dir_model / "tekken.json"
  1601. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1602. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1603. return self.set_vocab_tekken()
  1604. try:
  1605. self._set_vocab_sentencepiece()
  1606. except FileNotFoundError:
  1607. try:
  1608. self._set_vocab_llama_hf()
  1609. except (FileNotFoundError, TypeError):
  1610. # Llama 3
  1611. self._set_vocab_gpt2()
  1612. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1613. if self.hparams.get("vocab_size", 32000) == 32016:
  1614. special_vocab = gguf.SpecialVocab(
  1615. self.dir_model, load_merges=False,
  1616. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1617. )
  1618. special_vocab._set_special_token("prefix", 32007)
  1619. special_vocab._set_special_token("suffix", 32008)
  1620. special_vocab._set_special_token("middle", 32009)
  1621. special_vocab._set_special_token("eot", 32010)
  1622. special_vocab.add_to_gguf(self.gguf_writer)
  1623. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1624. if tokenizer_config_file.is_file():
  1625. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1626. tokenizer_config_json = json.load(f)
  1627. if "add_prefix_space" in tokenizer_config_json:
  1628. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1629. # Apply to granite small models only
  1630. if self.hparams.get("vocab_size", 32000) == 49152:
  1631. self.gguf_writer.add_add_bos_token(False)
  1632. def set_vocab_tekken(self):
  1633. vocab = gguf.vocab.MistralVocab(self.dir_model)
  1634. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1635. tokens = []
  1636. scores = []
  1637. toktypes = []
  1638. for text, score, toktype in vocab.all_tokens():
  1639. tokens.append(text)
  1640. scores.append(score)
  1641. toktypes.append(toktype)
  1642. assert len(tokens) == vocab.vocab_size, (
  1643. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1644. )
  1645. if vocab.tokenizer_type == gguf.vocab.MistralTokenizerType.tekken:
  1646. self.gguf_writer.add_tokenizer_pre("tekken")
  1647. self.gguf_writer.add_token_merges(
  1648. vocab.extract_vocab_merges_from_model()
  1649. )
  1650. logger.info(
  1651. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1652. )
  1653. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1654. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1655. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1656. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1657. self.gguf_writer.add_token_list(tokens)
  1658. self.gguf_writer.add_token_scores(scores)
  1659. self.gguf_writer.add_token_types(toktypes)
  1660. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1661. self.gguf_writer.add_add_bos_token(True)
  1662. self.gguf_writer.add_add_eos_token(False)
  1663. script_dir = Path(__file__).parent
  1664. template_path = script_dir / "models/templates/unsloth-mistral-Devstral-Small-2507.jinja"
  1665. with open(template_path, "r", encoding="utf-8") as f:
  1666. template = f.read()
  1667. self.gguf_writer.add_chat_template(template)
  1668. def set_gguf_parameters(self):
  1669. super().set_gguf_parameters()
  1670. hparams = self.hparams
  1671. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1672. if (rope_dim := hparams.get("head_dim")) is None:
  1673. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1674. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1675. rope_scaling = self.hparams.get("rope_scaling") or {}
  1676. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1677. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1678. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1679. @staticmethod
  1680. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1681. if n_head_kv is not None and n_head != n_head_kv:
  1682. n_head = n_head_kv
  1683. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1684. .swapaxes(1, 2)
  1685. .reshape(weights.shape))
  1686. _experts: list[dict[str, Tensor]] | None = None
  1687. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1688. n_head = self.hparams["num_attention_heads"]
  1689. n_kv_head = self.hparams.get("num_key_value_heads")
  1690. is_multimodal_tensor = "vision_tower" in name \
  1691. or "vision_model" in name \
  1692. or "audio_tower" in name \
  1693. or "model.connector" in name \
  1694. or "multi_modal_projector" in name
  1695. if is_multimodal_tensor:
  1696. return [] # skip vision tensors
  1697. elif self.hf_arch == "LlamaModel":
  1698. name = "model." + name
  1699. elif name.startswith("model.text_model"):
  1700. name = name.replace("text_model.", "") # for SmolVLM
  1701. elif name.startswith("language_model."):
  1702. name = name.replace("language_model.", "") # for the rest
  1703. if self.undo_permute:
  1704. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1705. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1706. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1707. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1708. # process the experts separately
  1709. if name.find("block_sparse_moe.experts") != -1:
  1710. n_experts = self.hparams["num_local_experts"]
  1711. assert bid is not None
  1712. if self._experts is None:
  1713. self._experts = [{} for _ in range(self.block_count)]
  1714. self._experts[bid][name] = data_torch
  1715. if len(self._experts[bid]) >= n_experts * 3:
  1716. tensors: list[tuple[str, Tensor]] = []
  1717. # merge the experts into a single 3d tensor
  1718. for wid in ["w1", "w2", "w3"]:
  1719. datas: list[Tensor] = []
  1720. for xid in range(n_experts):
  1721. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1722. datas.append(self._experts[bid][ename])
  1723. del self._experts[bid][ename]
  1724. data_torch = torch.stack(datas, dim=0)
  1725. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1726. new_name = self.map_tensor_name(merged_name)
  1727. tensors.append((new_name, data_torch))
  1728. return tensors
  1729. else:
  1730. return []
  1731. return [(self.map_tensor_name(name), data_torch)]
  1732. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1733. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1734. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1735. base = self.hparams.get("rope_theta", 10000.0)
  1736. if (dim := self.hparams.get("head_dim")) is None:
  1737. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1738. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1739. factor = rope_scaling.get("factor", 8.0)
  1740. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1741. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1742. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1743. low_freq_wavelen = old_context_len / low_freq_factor
  1744. high_freq_wavelen = old_context_len / high_freq_factor
  1745. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1746. rope_factors = []
  1747. for freq in freqs:
  1748. wavelen = 2 * math.pi / freq
  1749. if wavelen < high_freq_wavelen:
  1750. rope_factors.append(1)
  1751. elif wavelen > low_freq_wavelen:
  1752. rope_factors.append(factor)
  1753. else:
  1754. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1755. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1756. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1757. def prepare_tensors(self):
  1758. super().prepare_tensors()
  1759. if self._experts is not None:
  1760. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1761. experts = [k for d in self._experts for k in d.keys()]
  1762. if len(experts) > 0:
  1763. raise ValueError(f"Unprocessed experts: {experts}")
  1764. @ModelBase.register("ArceeForCausalLM")
  1765. class ArceeModel(LlamaModel):
  1766. model_arch = gguf.MODEL_ARCH.ARCEE
  1767. def set_gguf_parameters(self):
  1768. super().set_gguf_parameters()
  1769. self._try_set_pooling_type()
  1770. rope_scaling = self.hparams.get("rope_scaling") or {}
  1771. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1772. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1773. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1774. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1775. @ModelBase.register(
  1776. "LlavaForConditionalGeneration", # pixtral
  1777. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1778. )
  1779. class LlavaVisionModel(MmprojModel):
  1780. img_break_tok_id = -1
  1781. def __init__(self, *args, **kwargs):
  1782. super().__init__(*args, **kwargs)
  1783. if self.hparams["model_type"] == "pixtral":
  1784. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1785. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1786. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1787. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1788. else:
  1789. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1790. def get_token_id(self, token: str) -> int:
  1791. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1792. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1793. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1794. for id_, token_data in added_tokens_decoder.items():
  1795. if token_data["content"] == token:
  1796. return int(id_)
  1797. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1798. def set_gguf_parameters(self):
  1799. super().set_gguf_parameters()
  1800. hparams = self.hparams
  1801. if hparams["model_type"] == "pixtral":
  1802. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1803. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1804. # hidden_act
  1805. if hparams["hidden_act"] == "silu":
  1806. self.gguf_writer.add_vision_use_silu(True)
  1807. elif hparams["hidden_act"] == "gelu":
  1808. self.gguf_writer.add_vision_use_gelu(True)
  1809. else:
  1810. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1811. # spatial_merge_size
  1812. if "spatial_merge_size" in self.global_config:
  1813. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1814. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1815. del bid # unused
  1816. n_head = self.hparams["num_attention_heads"]
  1817. n_kv_head = n_head
  1818. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower."):
  1819. # process vision tensors
  1820. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1821. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1822. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1823. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1824. return [(self.map_tensor_name(name), data_torch)]
  1825. if self.img_break_tok_id > 0 and "embed_tokens.weight" in name:
  1826. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1827. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1828. img_break_embd = data_torch[self.img_break_tok_id]
  1829. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1830. return [(self.map_tensor_name(name), img_break_embd)]
  1831. return [] # skip other tensors
  1832. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1833. class SmolVLMModel(MmprojModel):
  1834. def __init__(self, *args, **kwargs):
  1835. super().__init__(*args, **kwargs)
  1836. if self.hparams["model_type"] == "smolvlm_vision":
  1837. # fix for SmolVLM2, missing some keys in config.json
  1838. # default values are taken from transformers code
  1839. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1840. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1841. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1842. def set_gguf_parameters(self):
  1843. super().set_gguf_parameters()
  1844. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1845. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1846. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1847. self.gguf_writer.add_vision_use_gelu(True)
  1848. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1849. del bid, new_name, n_dims # unused
  1850. if ".embeddings." in name:
  1851. return gguf.GGMLQuantizationType.F32
  1852. return False
  1853. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1854. del bid # unused
  1855. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1856. if is_vision_tensor:
  1857. return [(self.map_tensor_name(name), data_torch)]
  1858. return [] # skip other tensors
  1859. @ModelBase.register("Llama4ForConditionalGeneration")
  1860. class Llama4Model(LlamaModel):
  1861. model_arch = gguf.MODEL_ARCH.LLAMA4
  1862. undo_permute = False
  1863. def __init__(self, *args, **kwargs):
  1864. super().__init__(*args, **kwargs)
  1865. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1866. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1867. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1868. def set_vocab(self):
  1869. self._set_vocab_gpt2()
  1870. def set_gguf_parameters(self):
  1871. super().set_gguf_parameters()
  1872. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1873. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1874. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1875. if name.startswith("language_model."):
  1876. name = name.replace("language_model.", "")
  1877. # split the gate_up into gate and up
  1878. if "gate_up_proj" in name:
  1879. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1880. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1881. dim_half = data_torch.shape[-1] // 2
  1882. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1883. return [
  1884. (self.map_tensor_name(name_gate), gate_proj_weight),
  1885. (self.map_tensor_name(name_up), up_proj_weight)
  1886. ]
  1887. if name.endswith("down_proj"):
  1888. name += ".weight"
  1889. data_torch = data_torch.transpose(-1, -2)
  1890. if "multi_modal_projector" in name or "vision_model" in name:
  1891. return []
  1892. return super().modify_tensors(data_torch, name, bid)
  1893. @ModelBase.register("Llama4ForConditionalGeneration")
  1894. class Llama4VisionModel(MmprojModel):
  1895. def set_gguf_parameters(self):
  1896. super().set_gguf_parameters()
  1897. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  1898. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  1899. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  1900. assert self.hparams["hidden_act"] == "gelu"
  1901. self.gguf_writer.add_vision_use_gelu(True)
  1902. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1903. del bid # unused
  1904. if "multi_modal_projector" in name or "vision_model" in name:
  1905. # process vision tensors
  1906. if "positional_embedding_vlm" in name and ".weight" not in name:
  1907. name += ".weight"
  1908. if "multi_modal_projector.linear_1" in name:
  1909. # despite the name with number postfix, this is a single fully connected layer
  1910. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  1911. return [(self.map_tensor_name(name), data_torch)]
  1912. return []
  1913. @ModelBase.register("Mistral3ForConditionalGeneration")
  1914. class Mistral3Model(LlamaModel):
  1915. model_arch = gguf.MODEL_ARCH.LLAMA
  1916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1917. name = name.replace("language_model.", "")
  1918. if "multi_modal_projector" in name or "vision_tower" in name:
  1919. return []
  1920. return super().modify_tensors(data_torch, name, bid)
  1921. @ModelBase.register("DeciLMForCausalLM")
  1922. class DeciModel(TextModel):
  1923. model_arch = gguf.MODEL_ARCH.DECI
  1924. @staticmethod
  1925. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1926. # DeciLM-specific code
  1927. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1928. return DeciModel._find_multiple(intermediate_size, 256)
  1929. @staticmethod
  1930. def _find_multiple(n: int, k: int) -> int:
  1931. # DeciLM-specific code
  1932. if n % k == 0:
  1933. return n
  1934. return n + k - (n % k)
  1935. def __init__(self, *args, **kwargs):
  1936. super().__init__(*args, **kwargs)
  1937. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1938. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1939. assert self.block_count == len(_block_configs)
  1940. self._num_kv_heads = list()
  1941. self._num_heads = list()
  1942. _ffn_multipliers = list()
  1943. # ***linear attention layer***
  1944. # if n_heads_in_group is None and replace_with_linear is True
  1945. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1946. # ***attention-free layer***
  1947. # if n_heads_in_group is None and replace_with_linear is False
  1948. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1949. # ***normal attention-layer***
  1950. # if n_heads_in_group is not None, then
  1951. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1952. # _num_heads[il] is num_attention_head
  1953. # ***dummy layer*** for nemotron 253B
  1954. # if n_heads_in_group is None and ffn_mult is None
  1955. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  1956. for il in range(len(_block_configs)):
  1957. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1958. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1959. self._num_kv_heads.append(0)
  1960. self._num_heads.append(self.hparams["num_attention_heads"])
  1961. else:
  1962. self._num_kv_heads.append(0)
  1963. self._num_heads.append(0)
  1964. else:
  1965. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1966. self._num_heads.append(self.hparams["num_attention_heads"])
  1967. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  1968. _ffn_multipliers.append(0.0)
  1969. else:
  1970. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1971. assert self.block_count == len(self._num_kv_heads)
  1972. assert self.block_count == len(self._num_heads)
  1973. assert self.block_count == len(_ffn_multipliers)
  1974. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1975. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1976. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1977. self._ffn_dims: list[int] = [
  1978. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1979. for multiplier in _ffn_multipliers
  1980. ]
  1981. def set_vocab(self):
  1982. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1983. # eos_token from '|eot_id|' to '|end_of_text|'
  1984. if self.hparams.get("vocab_size", 128256) == 128256:
  1985. tokens, toktypes, tokpre = self.get_vocab_base()
  1986. self.gguf_writer.add_tokenizer_model("gpt2")
  1987. self.gguf_writer.add_tokenizer_pre(tokpre)
  1988. self.gguf_writer.add_token_list(tokens)
  1989. self.gguf_writer.add_token_types(toktypes)
  1990. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1991. special_vocab.add_to_gguf(self.gguf_writer)
  1992. else:
  1993. # DeciLM-7B
  1994. self._set_vocab_llama_hf()
  1995. def set_gguf_parameters(self):
  1996. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1997. assert self.block_count == len(self._num_kv_heads)
  1998. assert self.block_count == len(self._num_heads)
  1999. assert self.block_count == len(self._ffn_dims)
  2000. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2001. self.gguf_writer.add_rope_freq_base(rope_theta)
  2002. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2003. self.gguf_writer.add_head_count(self._num_heads)
  2004. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2005. self.gguf_writer.add_block_count(self.block_count)
  2006. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2007. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2008. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2009. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2010. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2011. self.gguf_writer.add_file_type(self.ftype)
  2012. else: # DeciLM-7B
  2013. super().set_gguf_parameters()
  2014. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2015. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2016. assert self.block_count == len(self._num_kv_heads)
  2017. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2018. hparams = self.hparams
  2019. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2020. if (rope_dim := hparams.get("head_dim")) is None:
  2021. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2022. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2023. rope_scaling = self.hparams.get("rope_scaling") or {}
  2024. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2025. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2026. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2027. @staticmethod
  2028. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2029. if n_head_kv is not None and n_head != n_head_kv:
  2030. n_head = n_head_kv
  2031. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2032. .swapaxes(1, 2)
  2033. .reshape(weights.shape))
  2034. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2035. n_head = self.hparams["num_attention_heads"]
  2036. if bid is not None:
  2037. if "num_key_value_heads_per_layer" in self.hparams:
  2038. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2039. elif "block_configs" in self.hparams:
  2040. n_kv_head = self._num_kv_heads[bid]
  2041. n_head = self._num_heads[bid]
  2042. else:
  2043. n_kv_head = self.hparams.get("num_key_value_heads")
  2044. else:
  2045. n_kv_head = self.hparams.get("num_key_value_heads")
  2046. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2047. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2048. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2049. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2050. return [(self.map_tensor_name(name), data_torch)]
  2051. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2052. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2053. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2054. base = self.hparams.get("rope_theta", 10000.0)
  2055. if (dim := self.hparams.get("head_dim")) is None:
  2056. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2057. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2058. factor = rope_scaling.get("factor", 8.0)
  2059. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2060. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2061. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2062. low_freq_wavelen = old_context_len / low_freq_factor
  2063. high_freq_wavelen = old_context_len / high_freq_factor
  2064. assert low_freq_wavelen != high_freq_wavelen
  2065. rope_factors = []
  2066. for freq in freqs:
  2067. wavelen = 2 * math.pi / freq
  2068. if wavelen < high_freq_wavelen:
  2069. rope_factors.append(1)
  2070. elif wavelen > low_freq_wavelen:
  2071. rope_factors.append(factor)
  2072. else:
  2073. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2074. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2075. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2076. def prepare_tensors(self):
  2077. super().prepare_tensors()
  2078. @ModelBase.register("BitnetForCausalLM")
  2079. class BitnetModel(TextModel):
  2080. model_arch = gguf.MODEL_ARCH.BITNET
  2081. def set_vocab(self):
  2082. self._set_vocab_sentencepiece()
  2083. def set_gguf_parameters(self):
  2084. super().set_gguf_parameters()
  2085. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2086. self.gguf_writer.add_rope_scaling_factor(1.0)
  2087. def weight_quant(self, weight: Tensor) -> Tensor:
  2088. dtype = weight.dtype
  2089. weight = weight.float()
  2090. scale = weight.abs().mean().clamp(min=1e-5)
  2091. iscale = 1 / scale
  2092. # TODO: multiply by the scale directly instead of inverting it twice
  2093. # (this is also unnecessarily doubly inverted upstream)
  2094. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2095. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2096. return result.type(dtype)
  2097. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2098. new_name = self.map_tensor_name(name)
  2099. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2100. gguf.MODEL_TENSOR.ATTN_Q,
  2101. gguf.MODEL_TENSOR.ATTN_K,
  2102. gguf.MODEL_TENSOR.ATTN_V,
  2103. gguf.MODEL_TENSOR.ATTN_OUT,
  2104. gguf.MODEL_TENSOR.FFN_UP,
  2105. gguf.MODEL_TENSOR.FFN_DOWN,
  2106. gguf.MODEL_TENSOR.FFN_GATE,
  2107. ]):
  2108. # transform weight into 1/0/-1 (in fp32)
  2109. data_torch = self.weight_quant(data_torch)
  2110. yield (new_name, data_torch)
  2111. @ModelBase.register("GrokForCausalLM")
  2112. class GrokModel(TextModel):
  2113. model_arch = gguf.MODEL_ARCH.GROK
  2114. def set_vocab(self):
  2115. self._set_vocab_sentencepiece()
  2116. def __init__(self, *args, **kwargs):
  2117. super().__init__(*args, **kwargs)
  2118. def set_gguf_parameters(self):
  2119. super().set_gguf_parameters()
  2120. _experts: list[dict[str, Tensor]] | None = None
  2121. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2122. # process the experts separately
  2123. if name.find(".moe.") != -1:
  2124. n_experts = self.hparams["num_local_experts"]
  2125. assert bid is not None
  2126. if self._experts is None:
  2127. self._experts = [{} for _ in range(self.block_count)]
  2128. self._experts[bid][name] = data_torch
  2129. if len(self._experts[bid]) >= n_experts * 3:
  2130. tensors: list[tuple[str, Tensor]] = []
  2131. # merge the experts into a single 3d tensor
  2132. for wid in ["linear", "linear_1", "linear_v"]:
  2133. datas: list[Tensor] = []
  2134. for xid in range(n_experts):
  2135. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  2136. datas.append(self._experts[bid][ename])
  2137. del self._experts[bid][ename]
  2138. data_torch = torch.stack(datas, dim=0)
  2139. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  2140. new_name = self.map_tensor_name(merged_name)
  2141. tensors.append((new_name, data_torch))
  2142. return tensors
  2143. else:
  2144. return []
  2145. return [(self.map_tensor_name(name), data_torch)]
  2146. @ModelBase.register("DbrxForCausalLM")
  2147. class DbrxModel(TextModel):
  2148. model_arch = gguf.MODEL_ARCH.DBRX
  2149. def set_gguf_parameters(self):
  2150. ffn_config = self.hparams["ffn_config"]
  2151. attn_config = self.hparams["attn_config"]
  2152. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2153. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2154. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2155. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2156. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2157. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2158. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2159. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2160. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2161. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2162. self.gguf_writer.add_layer_norm_eps(1e-5)
  2163. self.gguf_writer.add_file_type(self.ftype)
  2164. logger.info(f"gguf: file type = {self.ftype}")
  2165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2166. del bid # unused
  2167. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2168. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2169. n_embd = self.hparams["d_model"]
  2170. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2171. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2172. # But llama.cpp moe graph works differently
  2173. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2174. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2175. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2176. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2177. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2178. experts = False
  2179. for exp_tensor_name in exp_tensor_names.keys():
  2180. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2181. experts = True
  2182. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2183. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2184. data_torch = data_torch.permute(*permute_tensor)
  2185. break
  2186. # map tensor names
  2187. # In MoE models the ffn tensors are typically most of the model weights,
  2188. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2189. # Every other model has the weight names ending in .weight,
  2190. # let's assume that is the convention which is not the case for dbrx:
  2191. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2192. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2193. return [(new_name, data_torch)]
  2194. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2195. del name, new_name, bid # unused
  2196. return n_dims > 1
  2197. @ModelBase.register("MiniCPMForCausalLM")
  2198. class MiniCPMModel(TextModel):
  2199. model_arch = gguf.MODEL_ARCH.MINICPM
  2200. def set_gguf_parameters(self):
  2201. super().set_gguf_parameters()
  2202. embedding_scale = float(self.hparams["scale_emb"])
  2203. self.gguf_writer.add_embedding_scale(embedding_scale)
  2204. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2205. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2206. self.gguf_writer.add_residual_scale(residual_scale)
  2207. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2208. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2209. self.gguf_writer.add_logit_scale(logit_scale)
  2210. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2211. rope_scaling = self.hparams.get("rope_scaling") or {}
  2212. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2213. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2214. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2215. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2216. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2217. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2218. if rope_scaling is not None:
  2219. long_factors = rope_scaling.get('long_factor', None)
  2220. short_factors = rope_scaling.get('short_factor', None)
  2221. if long_factors is None or short_factors is None:
  2222. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2223. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2224. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2225. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2226. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2227. def set_vocab(self):
  2228. self._set_vocab_sentencepiece()
  2229. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2230. del bid # unused
  2231. n_head = self.hparams["num_attention_heads"]
  2232. n_kv_head = self.hparams.get("num_key_value_heads")
  2233. # HF models permute some of the tensors, so we need to undo that
  2234. if name.endswith(("q_proj.weight")):
  2235. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2236. if name.endswith(("k_proj.weight")):
  2237. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2238. return [(self.map_tensor_name(name), data_torch)]
  2239. @ModelBase.register("MiniCPM3ForCausalLM")
  2240. class MiniCPM3Model(TextModel):
  2241. model_arch = gguf.MODEL_ARCH.MINICPM3
  2242. def set_gguf_parameters(self):
  2243. hparams = self.hparams
  2244. self.gguf_writer.add_file_type(self.ftype)
  2245. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2246. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2247. self.gguf_writer.add_block_count(self.block_count)
  2248. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2249. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2250. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2251. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2252. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2253. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2254. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2255. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2256. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2257. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2258. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2259. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2260. if rope_scaling is not None:
  2261. rope_dims = self.hparams["qk_rope_head_dim"]
  2262. long_factors = rope_scaling.get('long_factor', None)
  2263. short_factors = rope_scaling.get('short_factor', None)
  2264. if long_factors is None or short_factors is None:
  2265. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2266. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2267. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2268. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2269. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2270. def set_vocab(self):
  2271. self._set_vocab_sentencepiece()
  2272. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2273. if n_kv_head is not None and n_head != n_kv_head:
  2274. n_head //= n_kv_head
  2275. return (
  2276. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2277. .swapaxes(1, 2)
  2278. .reshape(weights.shape)
  2279. )
  2280. @ModelBase.register("QWenLMHeadModel")
  2281. class QwenModel(TextModel):
  2282. model_arch = gguf.MODEL_ARCH.QWEN
  2283. @staticmethod
  2284. def token_bytes_to_string(b):
  2285. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2286. byte_encoder = bytes_to_unicode()
  2287. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2288. @staticmethod
  2289. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2290. parts = [bytes([b]) for b in token]
  2291. while True:
  2292. min_idx = None
  2293. min_rank = None
  2294. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2295. rank = mergeable_ranks.get(pair[0] + pair[1])
  2296. if rank is not None and (min_rank is None or rank < min_rank):
  2297. min_idx = i
  2298. min_rank = rank
  2299. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2300. break
  2301. assert min_idx is not None
  2302. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2303. return parts
  2304. def set_vocab(self):
  2305. self._set_vocab_qwen()
  2306. def set_gguf_parameters(self):
  2307. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2308. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2309. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2310. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2311. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2312. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2313. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2314. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2315. self.gguf_writer.add_file_type(self.ftype)
  2316. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2317. class Qwen2Model(TextModel):
  2318. model_arch = gguf.MODEL_ARCH.QWEN2
  2319. def set_vocab(self):
  2320. try:
  2321. self._set_vocab_sentencepiece()
  2322. except FileNotFoundError:
  2323. self._set_vocab_gpt2()
  2324. def set_gguf_parameters(self):
  2325. super().set_gguf_parameters()
  2326. self._try_set_pooling_type()
  2327. rope_scaling = self.hparams.get("rope_scaling") or {}
  2328. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2329. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2330. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2331. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2332. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2333. if self.hf_arch == "Qwen2Model":
  2334. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2335. if "language_model." in name:
  2336. name = name.replace("language_model.", "") # for InternVL
  2337. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2338. or name.startswith("vision_model") or name.startswith("audio_tower"):
  2339. # skip vision and audio tensors
  2340. return []
  2341. yield from super().modify_tensors(data_torch, name, bid)
  2342. @ModelBase.register("DreamModel")
  2343. class DreamModel(TextModel):
  2344. model_arch = gguf.MODEL_ARCH.DREAM
  2345. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2346. tokens: list[str] = []
  2347. toktypes: list[int] = []
  2348. from transformers import AutoTokenizer
  2349. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2350. vocab_dict = tokenizer.get_vocab()
  2351. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2352. assert max(vocab_dict.values()) < vocab_size
  2353. tokpre = self.get_vocab_base_pre(tokenizer)
  2354. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2355. added_vocab = tokenizer.get_added_vocab()
  2356. for i in range(vocab_size):
  2357. if i not in reverse_vocab:
  2358. tokens.append(f"[PAD{i}]")
  2359. toktypes.append(gguf.TokenType.UNUSED)
  2360. elif reverse_vocab[i] in added_vocab:
  2361. tokens.append(reverse_vocab[i])
  2362. # Check if it's a special token - treat special tokens as CONTROL tokens
  2363. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2364. if tokenizer.added_tokens_decoder[i].special:
  2365. toktypes.append(gguf.TokenType.CONTROL)
  2366. else:
  2367. toktypes.append(gguf.TokenType.USER_DEFINED)
  2368. else:
  2369. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2370. toktypes.append(gguf.TokenType.CONTROL)
  2371. else:
  2372. tokens.append(reverse_vocab[i])
  2373. toktypes.append(gguf.TokenType.NORMAL)
  2374. return tokens, toktypes, tokpre
  2375. def set_vocab(self):
  2376. try:
  2377. self._set_vocab_sentencepiece()
  2378. except FileNotFoundError:
  2379. self._set_vocab_gpt2()
  2380. def set_gguf_parameters(self):
  2381. super().set_gguf_parameters()
  2382. self._try_set_pooling_type()
  2383. # Dream models use non-causal attention for diffusion
  2384. self.gguf_writer.add_causal_attention(False)
  2385. # Handle RoPE scaling similar to Qwen2
  2386. rope_scaling = self.hparams.get("rope_scaling") or {}
  2387. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2388. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2389. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2390. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2391. # Add Dream-specific parameters
  2392. mask_token_id = self.hparams.get("mask_token_id")
  2393. if mask_token_id is not None:
  2394. self.gguf_writer.add_mask_token_id(mask_token_id)
  2395. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2396. # Dream model tensors should be mapped directly since it's the base model
  2397. yield from super().modify_tensors(data_torch, name, bid)
  2398. @ModelBase.register("LLaDAModelLM")
  2399. class LLaDAModel(TextModel):
  2400. model_arch = gguf.MODEL_ARCH.LLADA
  2401. undo_permute = True
  2402. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2403. tokens: list[str] = []
  2404. toktypes: list[int] = []
  2405. from transformers import AutoTokenizer
  2406. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2407. vocab_dict = tokenizer.get_vocab()
  2408. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2409. assert max(vocab_dict.values()) < vocab_size
  2410. tokpre = self.get_vocab_base_pre(tokenizer)
  2411. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2412. added_vocab = tokenizer.get_added_vocab()
  2413. for i in range(vocab_size):
  2414. if i not in reverse_vocab:
  2415. tokens.append(f"[PAD{i}]")
  2416. toktypes.append(gguf.TokenType.UNUSED)
  2417. elif reverse_vocab[i] in added_vocab:
  2418. tokens.append(reverse_vocab[i])
  2419. # Check if it's a special token - treat special tokens as CONTROL tokens
  2420. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2421. if tokenizer.added_tokens_decoder[i].special:
  2422. toktypes.append(gguf.TokenType.CONTROL)
  2423. else:
  2424. toktypes.append(gguf.TokenType.USER_DEFINED)
  2425. else:
  2426. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2427. toktypes.append(gguf.TokenType.CONTROL)
  2428. else:
  2429. tokens.append(reverse_vocab[i])
  2430. toktypes.append(gguf.TokenType.NORMAL)
  2431. return tokens, toktypes, tokpre
  2432. def set_vocab(self):
  2433. self._set_vocab_gpt2()
  2434. # LLaDA specific parameters
  2435. self.gguf_writer.add_add_bos_token(True)
  2436. def set_gguf_parameters(self):
  2437. super().set_gguf_parameters()
  2438. self._try_set_pooling_type()
  2439. # Add parameters similar to LlamaModel
  2440. hparams = self.hparams
  2441. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2442. if (rope_dim := hparams.get("head_dim")) is None:
  2443. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2444. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2445. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2446. # Set context length for LLaDA
  2447. context_length = self.hparams.get("max_sequence_length", 4096)
  2448. self.gguf_writer.add_context_length(context_length)
  2449. # Set embedding length (dimension size)
  2450. embedding_length = self.hparams.get("d_model", 4096)
  2451. self.gguf_writer.add_embedding_length(embedding_length)
  2452. # Set feed forward length (MLP hidden size)
  2453. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2454. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2455. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2456. self.gguf_writer.add_causal_attention(False)
  2457. # LLaDA models don't shift their logits
  2458. self.gguf_writer.add_diffusion_shift_logits(False)
  2459. @staticmethod
  2460. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2461. if n_head_kv is not None and n_head != n_head_kv:
  2462. n_head = n_head_kv
  2463. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2464. .swapaxes(1, 2)
  2465. .reshape(weights.shape))
  2466. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2467. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2468. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2469. if self.undo_permute:
  2470. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2471. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2472. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2473. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2474. # LLaDA model tensors should be mapped directly since it's the base model
  2475. yield from super().modify_tensors(data_torch, name, bid)
  2476. @ModelBase.register("Ernie4_5_ForCausalLM")
  2477. class Ernie4_5Model(TextModel):
  2478. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2479. def set_vocab(self):
  2480. self._set_vocab_sentencepiece()
  2481. def set_gguf_parameters(self):
  2482. super().set_gguf_parameters()
  2483. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2484. num_heads = self.hparams["num_attention_heads"]
  2485. num_kv_heads = self.hparams["num_key_value_heads"]
  2486. if (head_dim := self.hparams.get("head_dim")) is None:
  2487. head_dim = self.hparams["hidden_size"] // num_heads
  2488. if "ernie." in name:
  2489. name = name.replace("ernie.", "model.")
  2490. # split the qkv weights
  2491. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2492. if "qkv_proj" in name:
  2493. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2494. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2495. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2496. total_q_dim = num_heads * head_dim
  2497. total_k_dim = num_kv_heads * head_dim
  2498. total_v_dim = num_kv_heads * head_dim
  2499. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2500. return [
  2501. (self.map_tensor_name(name_q), q_proj_weight),
  2502. (self.map_tensor_name(name_k), k_proj_weight),
  2503. (self.map_tensor_name(name_v), v_proj_weight)
  2504. ]
  2505. # split the up_gate_proj into gate and up
  2506. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2507. if "up_gate_proj" in name:
  2508. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2509. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2510. dim_half = data_torch.shape[0] // 2
  2511. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2512. return [
  2513. (self.map_tensor_name(name_gate), gate_proj_weight),
  2514. (self.map_tensor_name(name_up), up_proj_weight)
  2515. ]
  2516. return [(self.map_tensor_name(name), data_torch)]
  2517. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2518. class Ernie4_5MoeModel(Ernie4_5Model):
  2519. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2520. _experts: list[dict[str, Tensor]] | None = None
  2521. def __init__(self, *args, **kwargs):
  2522. super().__init__(*args, **kwargs)
  2523. self._experts = [{} for _ in range(self.block_count)]
  2524. def set_gguf_parameters(self):
  2525. super().set_gguf_parameters()
  2526. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2527. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2528. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2529. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2530. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2531. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2532. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2533. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2534. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2535. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2536. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2537. # Modify correction bias name as in DeepseekV2
  2538. if name.endswith("e_score_correction_bias"):
  2539. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2540. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2541. match = re.match(r"model.mtp_block.(\d+)", name)
  2542. if match:
  2543. return []
  2544. # skip all other MTP tensors for now
  2545. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2546. if match:
  2547. return []
  2548. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2549. if match:
  2550. return []
  2551. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2552. if match:
  2553. return []
  2554. # process the experts separately
  2555. if name.find("mlp.experts") != -1:
  2556. n_experts = self.hparams["moe_num_experts"]
  2557. assert bid is not None
  2558. if self._experts is None:
  2559. self._experts = [{} for _ in range(self.block_count)]
  2560. self._experts[bid][name] = data_torch
  2561. if len(self._experts[bid]) >= n_experts * 3:
  2562. tensors: list[tuple[str, Tensor]] = []
  2563. # merge the experts into a single 3d tensor
  2564. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2565. datas: list[Tensor] = []
  2566. for xid in range(n_experts):
  2567. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2568. datas.append(self._experts[bid][ename_to_retrieve])
  2569. del self._experts[bid][ename_to_retrieve]
  2570. data_torch = torch.stack(datas, dim=0)
  2571. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2572. new_name = self.map_tensor_name(merged_name)
  2573. tensors.append((new_name, data_torch))
  2574. return tensors
  2575. else:
  2576. return []
  2577. return [(self.map_tensor_name(name), data_torch)]
  2578. def prepare_tensors(self):
  2579. super().prepare_tensors()
  2580. if self._experts is not None:
  2581. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2582. experts = [k for d in self._experts for k in d.keys()]
  2583. if len(experts) > 0:
  2584. raise ValueError(f"Unprocessed experts: {experts}")
  2585. @ModelBase.register(
  2586. "Qwen2VLModel",
  2587. "Qwen2VLForConditionalGeneration",
  2588. "Qwen2_5_VLForConditionalGeneration",
  2589. "Qwen2_5OmniModel",
  2590. )
  2591. class Qwen2VLModel(TextModel):
  2592. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2593. def set_gguf_parameters(self):
  2594. super().set_gguf_parameters()
  2595. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2596. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2597. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2598. def set_vocab(self):
  2599. try:
  2600. self._set_vocab_sentencepiece()
  2601. except FileNotFoundError:
  2602. self._set_vocab_gpt2()
  2603. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2604. del bid # unused
  2605. if name.startswith("thinker."):
  2606. name = name.replace("thinker.", "")
  2607. if name.startswith("visual") or name.startswith("audio") or \
  2608. name.startswith("talker") or name.startswith("token2wav"):
  2609. # skip multimodal tensors
  2610. return []
  2611. return [(self.map_tensor_name(name), data_torch)]
  2612. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2613. class Qwen2VLVisionModel(MmprojModel):
  2614. def __init__(self, *args, **kwargs):
  2615. super().__init__(*args, **kwargs)
  2616. assert self.hparams_vision is not None
  2617. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2618. # rename config.json values
  2619. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2620. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2621. if "embed_dim" in self.hparams_vision: # qwen2vl
  2622. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2623. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2624. def set_gguf_parameters(self):
  2625. super().set_gguf_parameters()
  2626. assert self.hparams_vision is not None
  2627. hparams = self.hparams_vision
  2628. model_type = self.global_config['model_type']
  2629. if model_type == 'qwen2_vl':
  2630. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2631. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2632. if model_type == 'qwen2_5_omni':
  2633. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2634. else:
  2635. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2636. self.gguf_writer.add_vision_use_silu(True)
  2637. # find n_wa_pattern (window attention pattern)
  2638. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2639. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2640. n_wa_pattern = fullatt_block_indexes[0] + 1
  2641. # validate n_wa_pattern
  2642. for i in range(1, len(fullatt_block_indexes)):
  2643. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2644. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2645. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2646. else:
  2647. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2648. # default values below are taken from HF tranformers code
  2649. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2650. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2651. del bid, name, n_dims # unused
  2652. if ".patch_embd." in new_name:
  2653. return gguf.GGMLQuantizationType.F16
  2654. if ".position_embd." in new_name:
  2655. return gguf.GGMLQuantizationType.F32
  2656. return False
  2657. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2658. del bid # unused
  2659. if name.startswith("visual."):
  2660. # process visual tensors
  2661. # split QKV tensors if needed
  2662. if ".qkv." in name:
  2663. if data_torch.ndim == 2: # weight
  2664. c3, _ = data_torch.shape
  2665. else: # bias
  2666. c3 = data_torch.shape[0]
  2667. assert c3 % 3 == 0
  2668. c = c3 // 3
  2669. wq = data_torch[:c]
  2670. wk = data_torch[c: c * 2]
  2671. wv = data_torch[c * 2:]
  2672. return [
  2673. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2674. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2675. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2676. ]
  2677. elif 'patch_embed.proj.weight' in name:
  2678. # split Conv3D into Conv2Ds
  2679. c1, c2, kt, kh, kw = data_torch.shape
  2680. del c1, c2, kh, kw # unused
  2681. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2682. return [
  2683. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2684. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2685. ]
  2686. else:
  2687. return [(self.map_tensor_name(name), data_torch)]
  2688. return [] # skip other tensors
  2689. @ModelBase.register("Qwen2_5OmniModel")
  2690. class Qwen25OmniModel(Qwen2VLVisionModel):
  2691. has_vision_encoder = True
  2692. has_audio_encoder = True
  2693. def __init__(self, *args, **kwargs):
  2694. super().__init__(*args, **kwargs)
  2695. assert self.hparams_audio is not None
  2696. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2697. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2698. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2699. def set_gguf_parameters(self):
  2700. super().set_gguf_parameters()
  2701. assert self.hparams_audio is not None
  2702. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2703. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2704. def get_vision_config(self) -> dict[str, Any] | None:
  2705. return self.global_config["thinker_config"].get("vision_config")
  2706. def get_audio_config(self) -> dict[str, Any] | None:
  2707. return self.global_config["thinker_config"].get("audio_config")
  2708. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2709. # SinusoidsPositionEmbedding
  2710. assert self.hparams_audio is not None
  2711. max_timescale = 10000
  2712. length = 1500
  2713. channels = self.hparams_audio["hidden_size"]
  2714. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2715. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2716. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2717. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2718. yield ("audio_tower.embed_positions.weight", pos_embd)
  2719. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2720. del bid, new_name, n_dims # unused
  2721. if ".conv" in name and ".weight" in name:
  2722. return gguf.GGMLQuantizationType.F16
  2723. return False
  2724. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2725. if name.startswith("thinker."):
  2726. name = name.replace("thinker.", "")
  2727. if name.startswith("audio_tower"):
  2728. # process audio tensors
  2729. if "conv1.bias" in name or "conv2.bias" in name:
  2730. # transpose conv1 and conv2 bias
  2731. data_torch = data_torch.unsqueeze(-1)
  2732. if "audio_bos_eos_token" in name:
  2733. # this tensor is left unused in transformers code
  2734. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2735. return []
  2736. return [(self.map_tensor_name(name), data_torch)]
  2737. return super().modify_tensors(data_torch, name, bid)
  2738. @ModelBase.register("InternVisionModel")
  2739. class InternVisionModel(MmprojModel):
  2740. def set_gguf_parameters(self):
  2741. super().set_gguf_parameters()
  2742. hparams = self.hparams
  2743. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2744. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2745. # hidden_act
  2746. if hparams["hidden_act"] == "silu":
  2747. self.gguf_writer.add_vision_use_silu(True)
  2748. elif hparams["hidden_act"] == "gelu":
  2749. self.gguf_writer.add_vision_use_gelu(True)
  2750. else:
  2751. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2752. # downsample_ratio
  2753. downsample_ratio = self.global_config.get("downsample_ratio")
  2754. assert downsample_ratio is not None
  2755. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2756. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2757. del bid, name, n_dims # unused
  2758. if ".patch_embd." in new_name:
  2759. return gguf.GGMLQuantizationType.F16
  2760. if ".position_embd." in new_name:
  2761. return gguf.GGMLQuantizationType.F32
  2762. return False
  2763. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2764. del bid # unused
  2765. if name.startswith("vision_model") or name.startswith("mlp"):
  2766. # process visual tensors
  2767. # correct name
  2768. if name.startswith("vision_model"):
  2769. name = "vision_tower." + name
  2770. if (".ls" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2771. name += ".weight"
  2772. # split QKV tensors if needed
  2773. if ".qkv." in name:
  2774. if data_torch.ndim == 2: # weight
  2775. c3, _ = data_torch.shape
  2776. else: # bias
  2777. c3 = data_torch.shape[0]
  2778. assert c3 % 3 == 0
  2779. c = c3 // 3
  2780. wq = data_torch[:c]
  2781. wk = data_torch[c: c * 2]
  2782. wv = data_torch[c * 2:]
  2783. return [
  2784. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2785. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2786. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2787. ]
  2788. return [(self.map_tensor_name(name), data_torch)]
  2789. return [] # skip other tensors
  2790. @ModelBase.register("WavTokenizerDec")
  2791. class WavTokenizerDecModel(TextModel):
  2792. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2793. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2794. del bid # unused
  2795. if \
  2796. name.endswith("codebook.cluster_size") or \
  2797. name.endswith("codebook.embed_avg") or \
  2798. name.endswith("codebook.inited"):
  2799. logger.debug(f"Skipping {name!r}")
  2800. return []
  2801. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2802. return [(self.map_tensor_name(name), data_torch)]
  2803. def set_vocab(self):
  2804. self._set_vocab_none()
  2805. def set_gguf_parameters(self):
  2806. super().set_gguf_parameters()
  2807. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2808. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2809. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  2810. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  2811. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  2812. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  2813. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  2814. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  2815. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  2816. self.gguf_writer.add_causal_attention(False)
  2817. @ModelBase.register("Qwen2MoeForCausalLM")
  2818. class Qwen2MoeModel(TextModel):
  2819. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  2820. def set_gguf_parameters(self):
  2821. super().set_gguf_parameters()
  2822. if (n_experts := self.hparams.get("num_experts")) is not None:
  2823. self.gguf_writer.add_expert_count(n_experts)
  2824. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2825. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2826. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  2827. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  2828. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  2829. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  2830. # YaRN is not enabled by default
  2831. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  2832. rope_scaling = self.hparams.get("rope_scaling") or {}
  2833. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2834. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2835. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2836. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2837. _experts: list[dict[str, Tensor]] | None = None
  2838. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2839. # process the experts separately
  2840. if name.find("experts") != -1:
  2841. n_experts = self.hparams["num_experts"]
  2842. assert bid is not None
  2843. if self._experts is None:
  2844. self._experts = [{} for _ in range(self.block_count)]
  2845. self._experts[bid][name] = data_torch
  2846. if len(self._experts[bid]) >= n_experts * 3:
  2847. tensors: list[tuple[str, Tensor]] = []
  2848. # merge the experts into a single 3d tensor
  2849. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2850. datas: list[Tensor] = []
  2851. for xid in range(n_experts):
  2852. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2853. datas.append(self._experts[bid][ename])
  2854. del self._experts[bid][ename]
  2855. data_torch = torch.stack(datas, dim=0)
  2856. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2857. new_name = self.map_tensor_name(merged_name)
  2858. tensors.append((new_name, data_torch))
  2859. return tensors
  2860. else:
  2861. return []
  2862. return [(self.map_tensor_name(name), data_torch)]
  2863. def prepare_tensors(self):
  2864. super().prepare_tensors()
  2865. if self._experts is not None:
  2866. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2867. experts = [k for d in self._experts for k in d.keys()]
  2868. if len(experts) > 0:
  2869. raise ValueError(f"Unprocessed experts: {experts}")
  2870. @ModelBase.register("Qwen3ForCausalLM")
  2871. class Qwen3Model(Qwen2Model):
  2872. model_arch = gguf.MODEL_ARCH.QWEN3
  2873. @ModelBase.register("Qwen3MoeForCausalLM")
  2874. class Qwen3MoeModel(Qwen2MoeModel):
  2875. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2876. @ModelBase.register("GPT2LMHeadModel")
  2877. class GPT2Model(TextModel):
  2878. model_arch = gguf.MODEL_ARCH.GPT2
  2879. def set_gguf_parameters(self):
  2880. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2881. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2882. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2883. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2884. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2885. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2886. self.gguf_writer.add_file_type(self.ftype)
  2887. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2888. del bid # unused
  2889. tensors: list[tuple[str, Tensor]] = []
  2890. # we don't need these
  2891. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2892. return tensors
  2893. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2894. data_torch = data_torch.transpose(1, 0)
  2895. new_name = self.map_tensor_name(name)
  2896. tensors.append((new_name, data_torch))
  2897. return tensors
  2898. @ModelBase.register("PhiForCausalLM")
  2899. class Phi2Model(TextModel):
  2900. model_arch = gguf.MODEL_ARCH.PHI2
  2901. def set_gguf_parameters(self):
  2902. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2903. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2904. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2905. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2906. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2907. self.gguf_writer.add_embedding_length(n_embd)
  2908. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2909. self.gguf_writer.add_block_count(block_count)
  2910. self.gguf_writer.add_head_count(n_head)
  2911. self.gguf_writer.add_head_count_kv(n_head)
  2912. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2913. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2914. self.gguf_writer.add_file_type(self.ftype)
  2915. self.gguf_writer.add_add_bos_token(False)
  2916. @ModelBase.register("Phi3ForCausalLM")
  2917. class Phi3MiniModel(TextModel):
  2918. model_arch = gguf.MODEL_ARCH.PHI3
  2919. def set_vocab(self):
  2920. # Phi-4 model uses GPT2Tokenizer
  2921. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2922. if tokenizer_config_file.is_file():
  2923. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2924. tokenizer_config_json = json.load(f)
  2925. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2926. if tokenizer_class == 'GPT2Tokenizer':
  2927. return self._set_vocab_gpt2()
  2928. from sentencepiece import SentencePieceProcessor
  2929. tokenizer_path = self.dir_model / 'tokenizer.model'
  2930. if not tokenizer_path.is_file():
  2931. raise ValueError(f'Error: Missing {tokenizer_path}')
  2932. tokenizer = SentencePieceProcessor()
  2933. tokenizer.LoadFromFile(str(tokenizer_path))
  2934. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2935. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2936. scores: list[float] = [-10000.0] * vocab_size
  2937. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2938. for token_id in range(tokenizer.vocab_size()):
  2939. piece = tokenizer.IdToPiece(token_id)
  2940. text = piece.encode("utf-8")
  2941. score = tokenizer.GetScore(token_id)
  2942. toktype = SentencePieceTokenTypes.NORMAL
  2943. if tokenizer.IsUnknown(token_id):
  2944. toktype = SentencePieceTokenTypes.UNKNOWN
  2945. elif tokenizer.IsControl(token_id):
  2946. toktype = SentencePieceTokenTypes.CONTROL
  2947. elif tokenizer.IsUnused(token_id):
  2948. toktype = SentencePieceTokenTypes.UNUSED
  2949. elif tokenizer.IsByte(token_id):
  2950. toktype = SentencePieceTokenTypes.BYTE
  2951. tokens[token_id] = text
  2952. scores[token_id] = score
  2953. toktypes[token_id] = toktype
  2954. added_tokens_file = self.dir_model / 'added_tokens.json'
  2955. if added_tokens_file.is_file():
  2956. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2957. added_tokens_json = json.load(f)
  2958. for key in added_tokens_json:
  2959. token_id = added_tokens_json[key]
  2960. if token_id >= vocab_size:
  2961. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2962. continue
  2963. tokens[token_id] = key.encode("utf-8")
  2964. scores[token_id] = -1000.0
  2965. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2966. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2967. if tokenizer_config_file.is_file():
  2968. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2969. tokenizer_config_json = json.load(f)
  2970. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2971. for token_id, foken_data in added_tokens_decoder.items():
  2972. token_id = int(token_id)
  2973. token = foken_data["content"].encode("utf-8")
  2974. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2975. if tokens[token_id] != token:
  2976. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2977. tokens[token_id] = token
  2978. scores[token_id] = -1000.0
  2979. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2980. if foken_data.get("special"):
  2981. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2982. tokenizer_file = self.dir_model / 'tokenizer.json'
  2983. if tokenizer_file.is_file():
  2984. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2985. tokenizer_json = json.load(f)
  2986. added_tokens = tokenizer_json.get("added_tokens", [])
  2987. for foken_data in added_tokens:
  2988. token_id = int(foken_data["id"])
  2989. token = foken_data["content"].encode("utf-8")
  2990. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2991. if tokens[token_id] != token:
  2992. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2993. tokens[token_id] = token
  2994. scores[token_id] = -1000.0
  2995. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2996. if foken_data.get("special"):
  2997. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2998. self.gguf_writer.add_tokenizer_model("llama")
  2999. self.gguf_writer.add_tokenizer_pre("default")
  3000. self.gguf_writer.add_token_list(tokens)
  3001. self.gguf_writer.add_token_scores(scores)
  3002. self.gguf_writer.add_token_types(toktypes)
  3003. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3004. special_vocab.add_to_gguf(self.gguf_writer)
  3005. def set_gguf_parameters(self):
  3006. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3007. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3008. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3009. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3010. rms_eps = self.find_hparam(["rms_norm_eps"])
  3011. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3012. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3013. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3014. rope_dims = int(rot_pct * n_embd) // n_head
  3015. self.gguf_writer.add_context_length(max_pos_embds)
  3016. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3017. self.gguf_writer.add_embedding_length(n_embd)
  3018. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3019. self.gguf_writer.add_block_count(block_count)
  3020. self.gguf_writer.add_head_count(n_head)
  3021. self.gguf_writer.add_head_count_kv(n_head_kv)
  3022. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3023. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3024. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3025. self.gguf_writer.add_file_type(self.ftype)
  3026. sliding_window = self.hparams.get("sliding_window")
  3027. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3028. if sliding_window is None:
  3029. sliding_window = 0
  3030. self.gguf_writer.add_sliding_window(sliding_window)
  3031. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3032. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3033. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3034. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3035. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3036. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3037. rope_dims = int(rot_pct * n_embd) // n_head
  3038. # write rope scaling for long context (128k) model
  3039. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3040. if rope_scaling is None:
  3041. return
  3042. scale = max_pos_embds / orig_max_pos_embds
  3043. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3044. if len(rope_scaling_type) == 0:
  3045. raise KeyError('Missing the required key rope_scaling.type')
  3046. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3047. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3048. elif rope_scaling_type == 'yarn':
  3049. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3050. else:
  3051. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3052. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3053. long_factors = rope_scaling.get('long_factor', None)
  3054. short_factors = rope_scaling.get('short_factor', None)
  3055. if long_factors is None or short_factors is None:
  3056. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3057. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3058. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3059. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3060. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3061. @ModelBase.register("PhiMoEForCausalLM")
  3062. class PhiMoeModel(Phi3MiniModel):
  3063. model_arch = gguf.MODEL_ARCH.PHIMOE
  3064. _experts: list[dict[str, Tensor]] | None = None
  3065. def set_gguf_parameters(self):
  3066. super().set_gguf_parameters()
  3067. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3068. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3070. # process the experts separately
  3071. if name.find("block_sparse_moe.experts") != -1:
  3072. n_experts = self.hparams["num_local_experts"]
  3073. assert bid is not None
  3074. if self._experts is None:
  3075. self._experts = [{} for _ in range(self.block_count)]
  3076. self._experts[bid][name] = data_torch
  3077. if len(self._experts[bid]) >= n_experts * 3:
  3078. tensors: list[tuple[str, Tensor]] = []
  3079. # merge the experts into a single 3d tensor
  3080. for w_name in ["w1", "w2", "w3"]:
  3081. datas: list[Tensor] = []
  3082. for xid in range(n_experts):
  3083. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3084. datas.append(self._experts[bid][ename])
  3085. del self._experts[bid][ename]
  3086. data_torch = torch.stack(datas, dim=0)
  3087. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3088. new_name = self.map_tensor_name(merged_name)
  3089. tensors.append((new_name, data_torch))
  3090. return tensors
  3091. else:
  3092. return []
  3093. return [(self.map_tensor_name(name), data_torch)]
  3094. def prepare_tensors(self):
  3095. super().prepare_tensors()
  3096. if self._experts is not None:
  3097. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3098. experts = [k for d in self._experts for k in d.keys()]
  3099. if len(experts) > 0:
  3100. raise ValueError(f"Unprocessed experts: {experts}")
  3101. @ModelBase.register("PlamoForCausalLM")
  3102. class PlamoModel(TextModel):
  3103. model_arch = gguf.MODEL_ARCH.PLAMO
  3104. def set_vocab(self):
  3105. self._set_vocab_sentencepiece()
  3106. def set_gguf_parameters(self):
  3107. hparams = self.hparams
  3108. block_count = hparams["num_hidden_layers"]
  3109. self.gguf_writer.add_context_length(4096) # not in config.json
  3110. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3111. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3112. self.gguf_writer.add_block_count(block_count)
  3113. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3114. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3115. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3116. self.gguf_writer.add_file_type(self.ftype)
  3117. def shuffle_attn_q_weight(self, data_torch):
  3118. assert data_torch.size() == (5120, 5120)
  3119. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3120. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3121. data_torch = torch.reshape(data_torch, (5120, 5120))
  3122. return data_torch
  3123. def shuffle_attn_output_weight(self, data_torch):
  3124. assert data_torch.size() == (5120, 5120)
  3125. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3126. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3127. data_torch = torch.reshape(data_torch, (5120, 5120))
  3128. return data_torch
  3129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3130. del bid # unused
  3131. new_name = self.map_tensor_name(name)
  3132. # shuffle for broadcasting of gqa in ggml_mul_mat
  3133. if new_name.endswith("attn_q.weight"):
  3134. data_torch = self.shuffle_attn_q_weight(data_torch)
  3135. elif new_name.endswith("attn_output.weight"):
  3136. data_torch = self.shuffle_attn_output_weight(data_torch)
  3137. return [(new_name, data_torch)]
  3138. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3139. class Plamo2Model(TextModel):
  3140. model_arch = gguf.MODEL_ARCH.PLAMO2
  3141. def set_vocab(self):
  3142. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3143. # We need to handle this specially
  3144. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3145. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3146. if not tokenizer_jsonl_path.is_file():
  3147. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3148. # Load tokenizer config
  3149. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3150. tokenizer_config = json.load(f)
  3151. # Load tokens from JSONL file (actually a list format)
  3152. tokens = []
  3153. scores = []
  3154. toktypes = []
  3155. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3156. for line_num, line in enumerate(f):
  3157. if line.strip():
  3158. token_data = json.loads(line)
  3159. # Format: [token, score, type, ?, ?, ?, ?]
  3160. token = token_data[0].encode("utf-8")
  3161. score = float(token_data[1])
  3162. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3163. tokens.append(token)
  3164. scores.append(score)
  3165. # Map token type strings to GGUF token types
  3166. if token_type_str == "UNKNOWN":
  3167. toktypes.append(gguf.TokenType.UNKNOWN)
  3168. elif token_type_str == "CONTROL":
  3169. toktypes.append(gguf.TokenType.CONTROL)
  3170. elif token_type_str == "BYTE":
  3171. toktypes.append(gguf.TokenType.BYTE)
  3172. else:
  3173. # Check for PLaMo-2 special tokens
  3174. token_str = token_data[0]
  3175. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3176. toktypes.append(gguf.TokenType.CONTROL)
  3177. else:
  3178. toktypes.append(gguf.TokenType.NORMAL)
  3179. vocab_size = self.hparams["vocab_size"]
  3180. if vocab_size > len(tokens):
  3181. pad_count = vocab_size - len(tokens)
  3182. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3183. for i in range(1, pad_count + 1):
  3184. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3185. scores.append(-1000.0)
  3186. toktypes.append(gguf.TokenType.UNUSED)
  3187. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3188. self.gguf_writer.add_tokenizer_model("plamo2")
  3189. self.gguf_writer.add_tokenizer_pre("default")
  3190. self.gguf_writer.add_token_list(tokens)
  3191. self.gguf_writer.add_token_scores(scores)
  3192. self.gguf_writer.add_token_types(toktypes)
  3193. # Add special tokens from config
  3194. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3195. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3196. self.gguf_writer.add_bos_token_id(token_id)
  3197. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3198. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3199. self.gguf_writer.add_eos_token_id(token_id)
  3200. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3201. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3202. self.gguf_writer.add_pad_token_id(token_id)
  3203. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3204. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3205. self.gguf_writer.add_sep_token_id(token_id)
  3206. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3207. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3208. self.gguf_writer.add_unk_token_id(token_id)
  3209. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3210. self.gguf_writer.add_eot_token_id(4)
  3211. self.gguf_writer.add_add_space_prefix(False)
  3212. def set_gguf_parameters(self):
  3213. hparams = self.hparams
  3214. block_count = hparams["num_hidden_layers"]
  3215. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3216. # Which layers are Mamba layers
  3217. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3218. # This logic matches modeling_plamo.py's is_mamba function
  3219. mamba_step = hparams.get("mamba_step", 2)
  3220. mamba_enabled = hparams.get("mamba_enabled", True)
  3221. mamba_layers = []
  3222. if mamba_enabled:
  3223. for i in range(block_count):
  3224. if block_count <= (mamba_step // 2):
  3225. # use attention in last layer
  3226. is_mamba = (i != block_count - 1)
  3227. else:
  3228. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3229. if is_mamba:
  3230. mamba_layers.append(0)
  3231. else:
  3232. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3233. if mamba_layers:
  3234. self.gguf_writer.add_head_count_kv(mamba_layers)
  3235. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3236. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3237. self.gguf_writer.add_block_count(block_count)
  3238. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3239. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3240. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3241. # Mamba parameters
  3242. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3243. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3244. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3245. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3246. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3247. self.gguf_writer.add_ssm_group_count(0)
  3248. # MLP feed forward parameters (for attention layers)
  3249. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3250. self.gguf_writer.add_file_type(self.ftype)
  3251. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3252. del bid # unused
  3253. if name.endswith(".A_log"):
  3254. data_torch = -torch.exp(data_torch)
  3255. elif name.endswith(".dt_bias"):
  3256. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3257. elif name.endswith(".dt_norm_weight"):
  3258. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3259. elif name.endswith(".B_norm_weight"):
  3260. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3261. elif name.endswith(".C_norm_weight"):
  3262. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3263. elif name.endswith(".k_weight"):
  3264. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3265. elif name.endswith(".q_weight"):
  3266. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3267. elif name.endswith(".conv1d.weight"):
  3268. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3269. assert data_torch.ndim == 2
  3270. elif name.endswith(".pre_mixer_norm.weight"):
  3271. data_torch += 1.0
  3272. elif name.endswith(".post_mixer_norm.weight"):
  3273. data_torch += 1.0 / 5
  3274. elif name.endswith(".pre_mlp_norm.weight"):
  3275. data_torch += 1.0
  3276. elif name.endswith(".post_mlp_norm.weight"):
  3277. data_torch += 1.0 / (5**1.5)
  3278. elif name.endswith(".norm.weight"):
  3279. data_torch += 1.0
  3280. new_name = self.map_tensor_name(name)
  3281. return [(new_name, data_torch)]
  3282. @ModelBase.register("CodeShellForCausalLM")
  3283. class CodeShellModel(TextModel):
  3284. model_arch = gguf.MODEL_ARCH.CODESHELL
  3285. def set_gguf_parameters(self):
  3286. block_count = self.hparams["n_layer"]
  3287. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3288. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3289. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3290. self.gguf_writer.add_block_count(block_count)
  3291. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3292. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3293. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3294. self.gguf_writer.add_file_type(self.ftype)
  3295. self.gguf_writer.add_rope_freq_base(10000.0)
  3296. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3297. self.gguf_writer.add_rope_scaling_factor(1.0)
  3298. _has_tok_embd = False
  3299. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3300. del bid # unused
  3301. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3302. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3303. new_name = self.map_tensor_name(name)
  3304. # assuming token_embd.weight is seen before output.weight
  3305. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3306. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3307. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3308. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3309. self.tensor_names.remove("transformer.wte.weight")
  3310. elif new_name == tok_embd_name:
  3311. self._has_tok_embd = True
  3312. return [(new_name, data_torch)]
  3313. @ModelBase.register("InternLM2ForCausalLM")
  3314. class InternLM2Model(TextModel):
  3315. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3316. def set_vocab(self):
  3317. # (TODO): Is there a better way?
  3318. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3319. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3320. # recognized as an empty string in C++.
  3321. from sentencepiece import SentencePieceProcessor
  3322. from sentencepiece import sentencepiece_model_pb2 as model
  3323. tokenizer_path = self.dir_model / 'tokenizer.model'
  3324. tokens: list[bytes] = []
  3325. scores: list[float] = []
  3326. toktypes: list[int] = []
  3327. if not tokenizer_path.is_file():
  3328. logger.error(f'Error: Missing {tokenizer_path}')
  3329. sys.exit(1)
  3330. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3331. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3332. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3333. tokenizer = SentencePieceProcessor()
  3334. tokenizer.LoadFromFile(str(tokenizer_path))
  3335. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3336. for token_id in range(vocab_size):
  3337. piece = tokenizer.IdToPiece(token_id)
  3338. text = piece.encode("utf-8")
  3339. score = tokenizer.GetScore(token_id)
  3340. if text == b"\x00":
  3341. # (TODO): fixme
  3342. # Hack here and replace the \x00 characters.
  3343. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3344. text = "🐉".encode("utf-8")
  3345. toktype = SentencePieceTokenTypes.NORMAL
  3346. if tokenizer.IsUnknown(token_id):
  3347. toktype = SentencePieceTokenTypes.UNKNOWN
  3348. elif tokenizer.IsControl(token_id):
  3349. toktype = SentencePieceTokenTypes.CONTROL
  3350. elif tokenizer.IsUnused(token_id):
  3351. toktype = SentencePieceTokenTypes.UNUSED
  3352. elif tokenizer.IsByte(token_id):
  3353. toktype = SentencePieceTokenTypes.BYTE
  3354. # take care of ununsed raw token
  3355. if piece.startswith('[UNUSED'):
  3356. toktype = SentencePieceTokenTypes.UNUSED
  3357. tokens.append(text)
  3358. scores.append(score)
  3359. toktypes.append(toktype)
  3360. added_tokens_file = self.dir_model / 'added_tokens.json'
  3361. if added_tokens_file.is_file():
  3362. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3363. added_tokens_json = json.load(f)
  3364. for key in added_tokens_json:
  3365. tokens.append(key.encode("utf-8"))
  3366. scores.append(-1000.0)
  3367. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3368. chat_eos_token = '<|im_end|>'
  3369. chat_eos_token_id = None
  3370. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3371. if tokenizer_config_file.is_file():
  3372. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3373. tokenizer_config_json = json.load(f)
  3374. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3375. for token_id, foken_data in added_tokens_decoder.items():
  3376. token_id = int(token_id)
  3377. token = foken_data["content"]
  3378. if token == chat_eos_token:
  3379. chat_eos_token_id = token_id
  3380. token = token.encode("utf-8")
  3381. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3382. if tokens[token_id] != token:
  3383. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3384. tokens[token_id] = token
  3385. scores[token_id] = -1000.0
  3386. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3387. if foken_data.get("special"):
  3388. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3389. tokenizer_file = self.dir_model / 'tokenizer.json'
  3390. if tokenizer_file.is_file():
  3391. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3392. tokenizer_json = json.load(f)
  3393. added_tokens = tokenizer_json.get("added_tokens", [])
  3394. for foken_data in added_tokens:
  3395. token_id = int(foken_data["id"])
  3396. token = foken_data["content"]
  3397. if token == chat_eos_token:
  3398. chat_eos_token_id = token_id
  3399. token = token.encode("utf-8")
  3400. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3401. if tokens[token_id] != token:
  3402. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3403. tokens[token_id] = token
  3404. scores[token_id] = -1000.0
  3405. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3406. if foken_data.get("special"):
  3407. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3408. self.gguf_writer.add_tokenizer_model("llama")
  3409. self.gguf_writer.add_tokenizer_pre("default")
  3410. self.gguf_writer.add_token_list(tokens)
  3411. self.gguf_writer.add_token_scores(scores)
  3412. self.gguf_writer.add_token_types(toktypes)
  3413. self.gguf_writer.add_add_space_prefix(add_prefix)
  3414. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3415. old_eos = special_vocab.special_token_ids["eos"]
  3416. if chat_eos_token_id is not None:
  3417. # For the chat model, we replace the eos with '<|im_end|>'.
  3418. # TODO: this is a hack, should be fixed
  3419. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3420. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3421. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3422. " in chat mode so that the conversation can end normally.")
  3423. special_vocab.add_to_gguf(self.gguf_writer)
  3424. def set_gguf_parameters(self):
  3425. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3426. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3427. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3428. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3429. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3430. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3431. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3432. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3433. self.gguf_writer.add_file_type(self.ftype)
  3434. rope_scaling = self.hparams.get("rope_scaling") or {}
  3435. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3436. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3437. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3438. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3439. num_heads = self.hparams["num_attention_heads"]
  3440. num_kv_heads = self.hparams["num_key_value_heads"]
  3441. n_embd = self.hparams["hidden_size"]
  3442. q_per_kv = num_heads // num_kv_heads
  3443. head_dim = n_embd // num_heads
  3444. num_groups = num_heads // q_per_kv
  3445. name = name.replace("language_model.", "") # InternVL
  3446. if name.startswith("mlp") or name.startswith("vision_model"):
  3447. # skip visual tensors
  3448. return []
  3449. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3450. qkv = data_torch
  3451. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3452. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3453. # The model weights of q and k equire additional reshape.
  3454. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3455. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3456. v = v.reshape((-1, v.shape[-1]))
  3457. return [
  3458. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3459. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3460. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3461. ]
  3462. else:
  3463. return [(self.map_tensor_name(name), data_torch)]
  3464. @ModelBase.register("InternLM3ForCausalLM")
  3465. class InternLM3Model(TextModel):
  3466. model_arch = gguf.MODEL_ARCH.LLAMA
  3467. def set_vocab(self):
  3468. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3469. self.gguf_writer.add_tokenizer_model("llama")
  3470. self.gguf_writer.add_tokenizer_pre("default")
  3471. self.gguf_writer.add_token_list(tokens)
  3472. self.gguf_writer.add_token_scores(scores)
  3473. self.gguf_writer.add_token_types(toktypes)
  3474. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3475. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3476. if tokenizer_config_file.is_file():
  3477. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3478. tokenizer_config_json = json.load(f)
  3479. if "add_prefix_space" in tokenizer_config_json:
  3480. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3481. if "added_tokens_decoder" in tokenizer_config_json:
  3482. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3483. if token_data.get("special"):
  3484. token_id = int(token_id)
  3485. token = token_data["content"]
  3486. special_vocab._set_special_token(token, token_id)
  3487. # update eos token
  3488. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3489. special_vocab.special_token_ids["eos"] = token_id
  3490. special_vocab.add_to_gguf(self.gguf_writer)
  3491. def set_gguf_parameters(self):
  3492. super().set_gguf_parameters()
  3493. hparams = self.hparams
  3494. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3495. if (rope_dim := hparams.get("head_dim")) is None:
  3496. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3497. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3498. rope_scaling = self.hparams.get("rope_scaling") or {}
  3499. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3500. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3501. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3502. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3503. n_head = self.hparams["num_attention_heads"]
  3504. n_kv_head = self.hparams.get("num_key_value_heads")
  3505. name = name.replace("language_model.", "") # InternVL
  3506. if name.startswith("mlp") or name.startswith("vision_model"):
  3507. # skip visual tensors
  3508. return []
  3509. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3510. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3511. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3512. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3513. return [(self.map_tensor_name(name), data_torch)]
  3514. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3515. class BertModel(TextModel):
  3516. model_arch = gguf.MODEL_ARCH.BERT
  3517. def __init__(self, *args, **kwargs):
  3518. super().__init__(*args, **kwargs)
  3519. self.vocab_size = None
  3520. if cls_out_labels := self.hparams.get("id2label"):
  3521. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3522. # Remove dummy labels added by AutoConfig
  3523. cls_out_labels = None
  3524. self.cls_out_labels = cls_out_labels
  3525. def set_gguf_parameters(self):
  3526. super().set_gguf_parameters()
  3527. self.gguf_writer.add_causal_attention(False)
  3528. self._try_set_pooling_type()
  3529. if self.cls_out_labels:
  3530. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3531. def set_vocab(self):
  3532. tokens, toktypes, tokpre = self.get_vocab_base()
  3533. self.vocab_size = len(tokens)
  3534. # we need this to validate the size of the token_type embeddings
  3535. # though currently we are passing all zeros to the token_type embeddings
  3536. # "Sequence A" or "Sequence B"
  3537. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3538. # convert to phantom space vocab
  3539. def phantom(tok):
  3540. if tok.startswith("[") and tok.endswith("]"):
  3541. return tok
  3542. if tok.startswith("##"):
  3543. return tok[2:]
  3544. return "\u2581" + tok
  3545. tokens = list(map(phantom, tokens))
  3546. # add vocab to gguf
  3547. self.gguf_writer.add_tokenizer_model("bert")
  3548. self.gguf_writer.add_tokenizer_pre(tokpre)
  3549. self.gguf_writer.add_token_list(tokens)
  3550. self.gguf_writer.add_token_types(toktypes)
  3551. # handle special tokens
  3552. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3553. special_vocab.add_to_gguf(self.gguf_writer)
  3554. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3555. del bid # unused
  3556. if name.startswith("bert."):
  3557. name = name[5:]
  3558. if name.endswith(".gamma"):
  3559. name = name[:-6] + ".weight"
  3560. if name.endswith(".beta"):
  3561. name = name[:-5] + ".bias"
  3562. # we are only using BERT for embeddings so we don't need the pooling layer
  3563. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3564. return [] # we don't need these
  3565. if name.startswith("cls.predictions"):
  3566. return []
  3567. if name.startswith("cls.seq_relationship"):
  3568. return []
  3569. if self.cls_out_labels:
  3570. # For BertForSequenceClassification (direct projection layer)
  3571. if name == "classifier.weight":
  3572. name = "classifier.out_proj.weight"
  3573. if name == "classifier.bias":
  3574. name = "classifier.out_proj.bias"
  3575. return [(self.map_tensor_name(name), data_torch)]
  3576. def _xlmroberta_tokenizer_init(self) -> None:
  3577. # we need the pad_token_id to know how to chop down position_embd matrix
  3578. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3579. self._position_offset = 1 + pad_token_id
  3580. if "max_position_embeddings" in self.hparams:
  3581. self.hparams["max_position_embeddings"] -= self._position_offset
  3582. else:
  3583. self._position_offset = None
  3584. def _xlmroberta_set_vocab(self) -> None:
  3585. # to avoid TypeError: Descriptors cannot be created directly
  3586. # exception when importing sentencepiece_model_pb2
  3587. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3588. from sentencepiece import SentencePieceProcessor
  3589. from sentencepiece import sentencepiece_model_pb2 as model
  3590. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3591. tokenizer_json = {}
  3592. tokenizer_config_json = {}
  3593. if not tokenizer_path.is_file():
  3594. tokenizer_path = self.dir_model / 'tokenizer.json'
  3595. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3596. if not tokenizer_path.is_file():
  3597. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3598. from base64 import b64decode
  3599. from transformers import AutoTokenizer
  3600. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3601. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3602. tokenizer_json = json.load(fp)
  3603. if tokenizer_config_path.is_file():
  3604. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3605. tokenizer_config_json = json.load(fp)
  3606. add_prefix = tokenizer.add_prefix_space
  3607. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3608. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3609. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3610. else:
  3611. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3612. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3613. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3614. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3615. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3616. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3617. tokenizer = SentencePieceProcessor()
  3618. tokenizer.LoadFromFile(str(tokenizer_path))
  3619. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3620. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3621. scores: list[float] = [-10000.0] * vocab_size
  3622. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3623. if isinstance(tokenizer, SentencePieceProcessor):
  3624. for token_id in range(tokenizer.vocab_size()):
  3625. piece = tokenizer.IdToPiece(token_id)
  3626. text = piece.encode("utf-8")
  3627. score = tokenizer.GetScore(token_id)
  3628. toktype = SentencePieceTokenTypes.NORMAL
  3629. if tokenizer.IsUnknown(token_id):
  3630. toktype = SentencePieceTokenTypes.UNKNOWN
  3631. elif tokenizer.IsControl(token_id):
  3632. toktype = SentencePieceTokenTypes.CONTROL
  3633. elif tokenizer.IsUnused(token_id):
  3634. toktype = SentencePieceTokenTypes.UNUSED
  3635. elif tokenizer.IsByte(token_id):
  3636. toktype = SentencePieceTokenTypes.BYTE
  3637. tokens[token_id] = text
  3638. scores[token_id] = score
  3639. toktypes[token_id] = toktype
  3640. else:
  3641. added_vocab = tokenizer.get_added_vocab()
  3642. unk_token = tokenizer_config_json.get("unk_token")
  3643. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3644. for token_id in range(tokenizer.vocab_size):
  3645. piece = tokenizer._convert_id_to_token(token_id)
  3646. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3647. text = piece.encode("utf-8")
  3648. score = tokenizer_json["model"]["vocab"][token_id][1]
  3649. toktype = SentencePieceTokenTypes.NORMAL
  3650. if token_id == unk_token_id:
  3651. toktype = SentencePieceTokenTypes.UNKNOWN
  3652. elif token_id in tokenizer.all_special_ids:
  3653. toktype = SentencePieceTokenTypes.CONTROL
  3654. elif token_id in added_vocab.values():
  3655. toktype = SentencePieceTokenTypes.USER_DEFINED
  3656. # No reliable way to detect this, but jina doesn't have any
  3657. # elif tokenizer.IsByte(token_id):
  3658. # toktype = SentencePieceTokenTypes.BYTE
  3659. tokens[token_id] = text
  3660. scores[token_id] = score
  3661. toktypes[token_id] = toktype
  3662. if isinstance(tokenizer, SentencePieceProcessor):
  3663. # realign tokens (see HF tokenizer code)
  3664. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3665. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3666. toktypes = [
  3667. SentencePieceTokenTypes.CONTROL,
  3668. SentencePieceTokenTypes.CONTROL,
  3669. SentencePieceTokenTypes.CONTROL,
  3670. SentencePieceTokenTypes.UNKNOWN,
  3671. ] + toktypes[3:-1]
  3672. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3673. # Add mask token missing from sentencepiece.bpe.model
  3674. tokens[250001] = b'<mask>'
  3675. scores[250001] = 0.0
  3676. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3677. self.gguf_writer.add_tokenizer_model("t5")
  3678. self.gguf_writer.add_tokenizer_pre("default")
  3679. self.gguf_writer.add_token_list(tokens)
  3680. self.gguf_writer.add_token_scores(scores)
  3681. self.gguf_writer.add_token_types(toktypes)
  3682. self.gguf_writer.add_add_space_prefix(add_prefix)
  3683. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3684. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3685. if precompiled_charsmap:
  3686. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3687. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3688. special_vocab.add_to_gguf(self.gguf_writer)
  3689. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3690. class DistilBertModel(BertModel):
  3691. model_arch = gguf.MODEL_ARCH.BERT
  3692. def set_gguf_parameters(self):
  3693. self.gguf_writer.add_layer_norm_eps(1e-12)
  3694. logger.info("gguf: layer norm epsilon = 1e-12")
  3695. super().set_gguf_parameters()
  3696. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3697. if name.startswith("distilbert."):
  3698. name = name[11:]
  3699. # These layers act as MLM head, so we don't need them
  3700. if name.startswith("vocab_"):
  3701. return []
  3702. return super().modify_tensors(data_torch, name, bid)
  3703. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3704. class RobertaModel(BertModel):
  3705. model_arch = gguf.MODEL_ARCH.BERT
  3706. def __init__(self, *args, **kwargs):
  3707. super().__init__(*args, **kwargs)
  3708. # we need the pad_token_id to know how to chop down position_embd matrix
  3709. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3710. self._position_offset = 1 + pad_token_id
  3711. if "max_position_embeddings" in self.hparams:
  3712. self.hparams["max_position_embeddings"] -= self._position_offset
  3713. else:
  3714. self._position_offset = None
  3715. def set_vocab(self):
  3716. """Support BPE tokenizers for roberta models"""
  3717. bpe_tok_path = self.dir_model / "tokenizer.json"
  3718. if bpe_tok_path.exists():
  3719. self._set_vocab_gpt2()
  3720. # we need this to validate the size of the token_type embeddings
  3721. # though currently we are passing all zeros to the token_type embeddings
  3722. # "Sequence A" or "Sequence B"
  3723. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3724. else:
  3725. return super().set_vocab()
  3726. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3727. # if name starts with "roberta.", remove the prefix
  3728. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3729. if name.startswith("roberta."):
  3730. name = name[8:]
  3731. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3732. if name == "embeddings.position_embeddings.weight":
  3733. if self._position_offset is not None:
  3734. data_torch = data_torch[self._position_offset:,:]
  3735. return super().modify_tensors(data_torch, name, bid)
  3736. @ModelBase.register("NomicBertModel")
  3737. class NomicBertModel(BertModel):
  3738. model_arch = gguf.MODEL_ARCH.BERT
  3739. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  3740. hparams = kwargs.pop("hparams", None)
  3741. if hparams is None:
  3742. hparams = ModelBase.load_hparams(dir_model)
  3743. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  3744. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  3745. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  3746. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  3747. if self._tokenizer_is_xlmroberta:
  3748. self._xlmroberta_tokenizer_init()
  3749. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  3750. if npos == 8192 and mtp == 2048:
  3751. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  3752. elif npos == 2048 and mtp == 2048:
  3753. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  3754. else:
  3755. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  3756. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  3757. # this doesn't do anything in the HF version
  3758. assert self.hparams["causal"] is False
  3759. # no bias tensors unless MoE
  3760. assert self.hparams["qkv_proj_bias"] == self.is_moe
  3761. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  3762. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  3763. # norm at end of layer
  3764. assert self.hparams["prenorm"] is False
  3765. # standard RoPE
  3766. assert self.hparams["rotary_emb_fraction"] == 1.0
  3767. assert self.hparams["rotary_emb_interleaved"] is False
  3768. assert self.hparams["rotary_emb_scale_base"] is None
  3769. def set_vocab(self) -> None:
  3770. if self._tokenizer_is_xlmroberta:
  3771. return self._xlmroberta_set_vocab()
  3772. return super().set_vocab()
  3773. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  3774. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  3775. if "mlp.experts.bias" in name:
  3776. return [] # Explicitly return an empty list.
  3777. if "mlp.experts.mlp.w1" in name:
  3778. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3779. name += ".weight"
  3780. if "mlp.experts.mlp.w2" in name:
  3781. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  3782. data_torch = data_torch.transpose(1, 2)
  3783. name += ".weight"
  3784. return [(self.map_tensor_name(name), data_torch)]
  3785. def set_gguf_parameters(self):
  3786. super().set_gguf_parameters()
  3787. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  3788. if self.is_moe:
  3789. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  3790. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  3791. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  3792. def _is_tokenizer_xlmroberta(self) -> bool:
  3793. with open(self.dir_model / "tokenizer.json") as f:
  3794. tokenizer_json = json.load(f)
  3795. toktyp = tokenizer_json["model"]["type"]
  3796. if toktyp == "Unigram":
  3797. return True
  3798. if toktyp == "WordPiece":
  3799. return False
  3800. raise ValueError(f"unknown tokenizer: {toktyp}")
  3801. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  3802. class NeoBert(BertModel):
  3803. model_arch = gguf.MODEL_ARCH.NEO_BERT
  3804. def set_gguf_parameters(self):
  3805. super().set_gguf_parameters()
  3806. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  3807. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  3808. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  3809. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3810. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  3811. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  3812. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  3813. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  3814. def modify_tensors(self, data_torch, name, bid):
  3815. if name.startswith("decoder."):
  3816. return []
  3817. if name.startswith("model."):
  3818. name = name[6:]
  3819. return super().modify_tensors(data_torch, name, bid)
  3820. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  3821. class XLMRobertaModel(BertModel):
  3822. model_arch = gguf.MODEL_ARCH.BERT
  3823. def __init__(self, *args, **kwargs):
  3824. super().__init__(*args, **kwargs)
  3825. self._xlmroberta_tokenizer_init()
  3826. def set_vocab(self):
  3827. self._xlmroberta_set_vocab()
  3828. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3829. # if name starts with "roberta.", remove the prefix
  3830. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3831. if name.startswith("roberta."):
  3832. name = name[8:]
  3833. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  3834. if name == "embeddings.position_embeddings.weight":
  3835. if self._position_offset is not None:
  3836. data_torch = data_torch[self._position_offset:,:]
  3837. return super().modify_tensors(data_torch, name, bid)
  3838. @ModelBase.register("GemmaForCausalLM")
  3839. class GemmaModel(TextModel):
  3840. model_arch = gguf.MODEL_ARCH.GEMMA
  3841. def set_vocab(self):
  3842. self._set_vocab_sentencepiece()
  3843. # TODO: these special tokens should be exported only for the CodeGemma family
  3844. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  3845. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  3846. special_vocab._set_special_token("prefix", 67)
  3847. special_vocab._set_special_token("suffix", 69)
  3848. special_vocab._set_special_token("middle", 68)
  3849. special_vocab._set_special_token("fsep", 70)
  3850. special_vocab._set_special_token("eot", 107)
  3851. special_vocab.chat_template = None # do not add it twice
  3852. special_vocab.add_to_gguf(self.gguf_writer)
  3853. self.gguf_writer.add_add_space_prefix(False)
  3854. def set_gguf_parameters(self):
  3855. hparams = self.hparams
  3856. block_count = hparams["num_hidden_layers"]
  3857. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3858. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3859. self.gguf_writer.add_block_count(block_count)
  3860. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3861. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3862. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3863. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3864. self.gguf_writer.add_key_length(hparams["head_dim"])
  3865. self.gguf_writer.add_value_length(hparams["head_dim"])
  3866. self.gguf_writer.add_file_type(self.ftype)
  3867. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3868. del bid # unused
  3869. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3870. # To prevent errors, skip loading lm_head.weight.
  3871. if name == "lm_head.weight":
  3872. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3873. return []
  3874. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3875. if name.endswith("norm.weight"):
  3876. data_torch = data_torch + 1
  3877. return [(self.map_tensor_name(name), data_torch)]
  3878. @ModelBase.register("Gemma2ForCausalLM")
  3879. class Gemma2Model(TextModel):
  3880. model_arch = gguf.MODEL_ARCH.GEMMA2
  3881. def set_vocab(self):
  3882. self._set_vocab_sentencepiece()
  3883. self.gguf_writer.add_add_space_prefix(False)
  3884. def set_gguf_parameters(self):
  3885. hparams = self.hparams
  3886. block_count = hparams["num_hidden_layers"]
  3887. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  3888. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3889. self.gguf_writer.add_block_count(block_count)
  3890. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3891. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3892. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  3893. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3894. self.gguf_writer.add_key_length(hparams["head_dim"])
  3895. self.gguf_writer.add_value_length(hparams["head_dim"])
  3896. self.gguf_writer.add_file_type(self.ftype)
  3897. self.gguf_writer.add_attn_logit_softcapping(
  3898. self.hparams["attn_logit_softcapping"]
  3899. )
  3900. self.gguf_writer.add_final_logit_softcapping(
  3901. self.hparams["final_logit_softcapping"]
  3902. )
  3903. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3904. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3905. del bid # unused
  3906. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  3907. # To prevent errors, skip loading lm_head.weight.
  3908. if name == "lm_head.weight":
  3909. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  3910. return []
  3911. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  3912. if name.endswith("norm.weight"):
  3913. data_torch = data_torch + 1
  3914. return [(self.map_tensor_name(name), data_torch)]
  3915. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  3916. class Gemma3Model(TextModel):
  3917. model_arch = gguf.MODEL_ARCH.GEMMA3
  3918. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  3919. def set_vocab(self):
  3920. self._set_vocab_sentencepiece()
  3921. self.gguf_writer.add_add_space_prefix(False)
  3922. def set_gguf_parameters(self):
  3923. hparams = self.hparams
  3924. block_count = hparams["num_hidden_layers"]
  3925. # some default values are not specified in the hparams
  3926. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  3927. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3928. self.gguf_writer.add_block_count(block_count)
  3929. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3930. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  3931. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  3932. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  3933. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  3934. self.gguf_writer.add_file_type(self.ftype)
  3935. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  3936. # attn_logit_softcapping is removed in Gemma3
  3937. assert hparams.get("attn_logit_softcapping") is None
  3938. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  3939. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  3940. if hparams.get("rope_scaling") is not None:
  3941. assert hparams["rope_scaling"]["rope_type"] == "linear"
  3942. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  3943. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3944. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3945. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3946. del bid # unused
  3947. if "language_model." in name:
  3948. name = name.replace("language_model.", "")
  3949. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3950. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3951. return [] # skip vision tensors
  3952. # remove OOV (out-of-vocabulary) rows in token_embd
  3953. if "embed_tokens.weight" in name:
  3954. vocab = self._create_vocab_sentencepiece()
  3955. tokens = vocab[0]
  3956. data_torch = data_torch[:len(tokens)]
  3957. # ref code in Gemma3RMSNorm
  3958. # output = output * (1.0 + self.weight.float())
  3959. # note: this is not the case on gemma3n
  3960. if name.endswith("norm.weight"):
  3961. data_torch = data_torch + self.norm_shift
  3962. return [(self.map_tensor_name(name), data_torch)]
  3963. @ModelBase.register("Gemma3ForConditionalGeneration")
  3964. class Gemma3VisionModel(MmprojModel):
  3965. def set_gguf_parameters(self):
  3966. super().set_gguf_parameters()
  3967. hparams = self.hparams
  3968. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  3969. # default values below are taken from HF tranformers code
  3970. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  3971. self.gguf_writer.add_vision_use_gelu(True)
  3972. # calculate proj_scale_factor (used by tinygemma3 test model)
  3973. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  3974. n_per_side = int(image_seq_length ** 0.5)
  3975. image_size = self.hparams["image_size"]
  3976. patch_size = self.hparams["patch_size"]
  3977. proj_scale_factor = (image_size // patch_size) // n_per_side
  3978. if proj_scale_factor > 0 and proj_scale_factor != 4:
  3979. # we only need to write this if it's not the default value
  3980. # in this case, we are converting a test model
  3981. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  3982. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3983. del bid, new_name, n_dims # unused
  3984. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  3985. if "input_projection" in name:
  3986. return gguf.GGMLQuantizationType.F16
  3987. if ".embeddings." in name:
  3988. return gguf.GGMLQuantizationType.F32
  3989. return False
  3990. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3991. del bid # unused
  3992. if "vision_model.head." in name:
  3993. return [] # skip redundant tensors for tinygemma3
  3994. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  3995. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  3996. # process vision tensors
  3997. name = name.replace("_weight", ".weight")
  3998. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  3999. # the other norm values are part of SigLIP model, and they are already correct
  4000. # ref code: Gemma3RMSNorm
  4001. if "soft_emb_norm.weight" in name:
  4002. logger.info(f"Correcting norm value for '{name}'")
  4003. data_torch = data_torch + 1
  4004. return [(self.map_tensor_name(name), data_torch)]
  4005. return [] # skip other tensors
  4006. @ModelBase.register("Gemma3nForConditionalGeneration")
  4007. class Gemma3NModel(Gemma3Model):
  4008. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4009. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4010. _altup_proj: list[Tensor] = []
  4011. _altup_unembd: list[Tensor] = []
  4012. def __init__(self, *args, **kwargs):
  4013. super().__init__(*args, **kwargs)
  4014. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4015. self._altup_proj = [
  4016. torch.Tensor(), # to be replaced
  4017. torch.Tensor(), # to be replaced
  4018. torch.Tensor(), # to be replaced
  4019. ]
  4020. self._altup_unembd = [
  4021. torch.Tensor(), # to be replaced
  4022. torch.Tensor(), # to be replaced
  4023. torch.Tensor(), # to be replaced
  4024. ]
  4025. def set_vocab(self):
  4026. super().set_vocab()
  4027. def set_gguf_parameters(self):
  4028. super().set_gguf_parameters()
  4029. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4030. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4031. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4032. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4033. activation_sparsity_scale = []
  4034. for s in self.hparams["activation_sparsity_pattern"]:
  4035. normal_dist = torch.distributions.normal.Normal(0, 1)
  4036. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4037. activation_sparsity_scale.append(std_multiplier.item())
  4038. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4039. sliding_window_pattern = []
  4040. for t in self.hparams["layer_types"]:
  4041. sliding_window_pattern.append(t == "sliding_attention")
  4042. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4043. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4044. has_all = all(m.numel() > 0 for m in matrices)
  4045. if not has_all:
  4046. return None
  4047. else:
  4048. return torch.stack(matrices, dim=0)
  4049. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4050. if name.endswith("_scale"):
  4051. name = name + ".weight"
  4052. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4053. if "language_model." not in name:
  4054. return [] # skip non-language model tensors
  4055. if "altup_unembed_projections" in name:
  4056. data_torch = data_torch.to(device="cpu")
  4057. if ".0." in name:
  4058. self._altup_unembd[0] = data_torch
  4059. elif ".1." in name:
  4060. self._altup_unembd[1] = data_torch
  4061. elif ".2." in name:
  4062. self._altup_unembd[2] = data_torch
  4063. else:
  4064. raise ValueError(f"Unknown name: {name}")
  4065. out = self._stack_matrices(self._altup_unembd)
  4066. if out is not None:
  4067. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4068. else:
  4069. return []
  4070. if "altup_projections" in name:
  4071. data_torch = data_torch.to(device="cpu")
  4072. if ".0." in name:
  4073. self._altup_proj[0] = data_torch
  4074. elif ".1." in name:
  4075. self._altup_proj[1] = data_torch
  4076. elif ".2." in name:
  4077. self._altup_proj[2] = data_torch
  4078. else:
  4079. raise ValueError(f"Unknown name: {name}")
  4080. out = self._stack_matrices(self._altup_proj)
  4081. if out is not None:
  4082. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4083. else:
  4084. return []
  4085. return super().modify_tensors(data_torch, name, bid)
  4086. @ModelBase.register("Starcoder2ForCausalLM")
  4087. class StarCoder2Model(TextModel):
  4088. model_arch = gguf.MODEL_ARCH.STARCODER2
  4089. @ModelBase.register("Rwkv6ForCausalLM")
  4090. class Rwkv6Model(TextModel):
  4091. model_arch = gguf.MODEL_ARCH.RWKV6
  4092. def set_vocab(self):
  4093. self._set_vocab_rwkv_world()
  4094. def set_gguf_parameters(self):
  4095. block_count = self.hparams["num_hidden_layers"]
  4096. head_size = self.hparams["head_size"]
  4097. hidden_size = self.hparams["hidden_size"]
  4098. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4099. rescale_every_n_layers = self.hparams["rescale_every"]
  4100. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4101. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4102. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4103. # RWKV isn't context limited
  4104. self.gguf_writer.add_context_length(1048576)
  4105. self.gguf_writer.add_embedding_length(hidden_size)
  4106. self.gguf_writer.add_block_count(block_count)
  4107. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4108. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4109. self.gguf_writer.add_wkv_head_size(head_size)
  4110. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4111. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4112. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4113. self.gguf_writer.add_file_type(self.ftype)
  4114. # required by llama.cpp, unused
  4115. self.gguf_writer.add_head_count(0)
  4116. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4117. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4118. new_name = self.map_tensor_name(name)
  4119. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4120. new_name += ".weight"
  4121. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4122. data_torch = data_torch.transpose(0, 1)
  4123. if new_name.endswith("time_mix_w2.weight"):
  4124. data_torch = data_torch.permute(0, 2, 1)
  4125. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4126. data_torch = data_torch.squeeze()
  4127. try:
  4128. rescale_every_n_layers = self.hparams["rescale_every"]
  4129. if rescale_every_n_layers > 0:
  4130. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4131. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4132. except KeyError:
  4133. pass
  4134. # concat time_mix_lerp weights to reduce some cpu overhead
  4135. # also reduces the number of tensors in the model
  4136. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4137. try:
  4138. self.lerp_weights[bid][new_name] = data_torch
  4139. except KeyError:
  4140. self.lerp_weights[bid] = {new_name: data_torch}
  4141. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4142. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4143. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4144. yield (new_name, data)
  4145. return
  4146. yield (new_name, data_torch)
  4147. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4148. class RWKV6Qwen2Model(Rwkv6Model):
  4149. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4150. def set_vocab(self):
  4151. try:
  4152. self._set_vocab_sentencepiece()
  4153. except FileNotFoundError:
  4154. self._set_vocab_gpt2()
  4155. def set_gguf_parameters(self):
  4156. block_count = self.hparams["num_hidden_layers"]
  4157. num_attention_heads = self.hparams["num_attention_heads"]
  4158. num_key_value_heads = self.hparams["num_key_value_heads"]
  4159. hidden_size = self.hparams["hidden_size"]
  4160. head_size = hidden_size // num_attention_heads
  4161. rms_norm_eps = self.hparams["rms_norm_eps"]
  4162. intermediate_size = self.hparams["intermediate_size"]
  4163. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4164. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4165. # RWKV isn't context limited
  4166. self.gguf_writer.add_context_length(1048576)
  4167. self.gguf_writer.add_embedding_length(hidden_size)
  4168. self.gguf_writer.add_block_count(block_count)
  4169. self.gguf_writer.add_wkv_head_size(head_size)
  4170. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4171. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4172. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4173. self.gguf_writer.add_file_type(self.ftype)
  4174. # special parameters for time_mixing in RWKV6QWEN2
  4175. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4176. self.gguf_writer.add_token_shift_count(1)
  4177. # RWKV6QWEN2 use grouped key/value like GQA
  4178. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4179. # required by llama.cpp, unused
  4180. self.gguf_writer.add_head_count(0)
  4181. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4182. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4183. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4184. data = data.view(5, -1, data.shape[-1])
  4185. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4186. # permute them here to avoid code changes
  4187. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4188. if "w2" in new_name:
  4189. data = data.view(5, -1, data.shape[-1])
  4190. yield (new_name, data)
  4191. continue
  4192. yield (new_name, data)
  4193. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4194. class Rwkv7Model(TextModel):
  4195. model_arch = gguf.MODEL_ARCH.RWKV7
  4196. def set_vocab(self):
  4197. self._set_vocab_rwkv_world()
  4198. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4199. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4200. def set_gguf_parameters(self):
  4201. block_count = self.hparams["num_hidden_layers"]
  4202. try:
  4203. head_size = self.hparams["head_size"]
  4204. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4205. except KeyError:
  4206. head_size = self.hparams["head_dim"]
  4207. layer_norm_eps = self.hparams["norm_eps"]
  4208. hidden_size = self.hparams["hidden_size"]
  4209. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4210. # ICLR: In-Context-Learning-Rate
  4211. try:
  4212. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4213. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4214. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4215. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4216. except KeyError:
  4217. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4218. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4219. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4220. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4221. # RWKV isn't context limited
  4222. self.gguf_writer.add_context_length(1048576)
  4223. self.gguf_writer.add_embedding_length(hidden_size)
  4224. self.gguf_writer.add_block_count(block_count)
  4225. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4226. self.gguf_writer.add_wkv_head_size(head_size)
  4227. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4228. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4229. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4230. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4231. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4232. self.gguf_writer.add_file_type(self.ftype)
  4233. # required by llama.cpp, unused
  4234. self.gguf_writer.add_head_count(0)
  4235. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4236. lora_needs_transpose: bool = True
  4237. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4238. # unify tensor names here to make life easier
  4239. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4240. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4241. name = name.replace("time_mixer.", "")
  4242. # lora layer names in fla-hub's impl
  4243. if "_lora.lora" in name:
  4244. self.lora_needs_transpose = False
  4245. name = name.replace("_lora.lora.0.weight", "1.weight")
  4246. name = name.replace("_lora.lora.2.weight", "2.weight")
  4247. name = name.replace("_lora.lora.2.bias", "0.weight")
  4248. name = name.replace("feed_forward_norm", "ln2")
  4249. name = name.replace("g_norm", "ln_x")
  4250. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4251. # some models have dummy v0/v1/v2 on first layer while others don't
  4252. # ignore them all since they are not used
  4253. return
  4254. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4255. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4256. if bid is not None and "attention.x_" in name:
  4257. if "attention.x_x" in name:
  4258. # already concatenated
  4259. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4260. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4261. yield (new_name, data)
  4262. else:
  4263. try:
  4264. self.lerp_weights[bid][name] = data_torch
  4265. except KeyError:
  4266. self.lerp_weights[bid] = {name: data_torch}
  4267. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4268. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4269. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4270. yield (new_name, data)
  4271. return
  4272. else:
  4273. data_torch = data_torch.squeeze()
  4274. new_name = self.map_tensor_name(name)
  4275. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4276. new_name += ".weight"
  4277. if self.lora_needs_transpose and any(
  4278. new_name.endswith(t) for t in [
  4279. "time_mix_w1.weight", "time_mix_w2.weight",
  4280. "time_mix_a1.weight", "time_mix_a2.weight",
  4281. "time_mix_v1.weight", "time_mix_v2.weight",
  4282. "time_mix_g1.weight", "time_mix_g2.weight",
  4283. ]
  4284. ):
  4285. data_torch = data_torch.transpose(0, 1)
  4286. if 'r_k' in new_name:
  4287. data_torch = data_torch.flatten()
  4288. if bid == 0 and "time_mix_a" in new_name:
  4289. # dummy v0/v1/v2 on first layer
  4290. # easist way to make llama happy
  4291. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4292. yield (new_name, data_torch)
  4293. @ModelBase.register("RwkvHybridForCausalLM")
  4294. class ARwkv7Model(Rwkv7Model):
  4295. model_arch = gguf.MODEL_ARCH.ARWKV7
  4296. def set_vocab(self):
  4297. try:
  4298. self._set_vocab_sentencepiece()
  4299. except FileNotFoundError:
  4300. self._set_vocab_gpt2()
  4301. def set_gguf_parameters(self):
  4302. block_count = self.hparams["num_hidden_layers"]
  4303. hidden_size = self.hparams["hidden_size"]
  4304. head_size = self.hparams["head_size"]
  4305. rms_norm_eps = self.hparams["rms_norm_eps"]
  4306. intermediate_size = self.hparams["intermediate_size"]
  4307. wkv_has_gate = self.hparams["wkv_has_gate"]
  4308. assert self.hparams["wkv_version"] == 7
  4309. # ICLR: In-Context-Learning-Rate
  4310. lora_rank_decay = 64
  4311. lora_rank_iclr = 64
  4312. lora_rank_value_residual_mix = 32
  4313. lora_rank_gate = 128 if wkv_has_gate else 0
  4314. # RWKV isn't context limited
  4315. self.gguf_writer.add_context_length(1048576)
  4316. self.gguf_writer.add_embedding_length(hidden_size)
  4317. self.gguf_writer.add_block_count(block_count)
  4318. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4319. self.gguf_writer.add_wkv_head_size(head_size)
  4320. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4321. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4322. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4323. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4324. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4325. self.gguf_writer.add_file_type(self.ftype)
  4326. self.gguf_writer.add_token_shift_count(1)
  4327. # required by llama.cpp, unused
  4328. self.gguf_writer.add_head_count(0)
  4329. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4330. class MambaModel(TextModel):
  4331. model_arch = gguf.MODEL_ARCH.MAMBA
  4332. def __init__(self, dir_model: Path, *args, **kwargs):
  4333. # Avoid using AutoConfig for hparams
  4334. hparams = kwargs.pop("hparams", None)
  4335. if hparams is None:
  4336. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4337. hparams = json.load(f)
  4338. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4339. def set_vocab(self):
  4340. vocab_size = self.hparams["vocab_size"]
  4341. # Round vocab size to next multiple of 8
  4342. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4343. # pad using ceiling division
  4344. # ref: https://stackoverflow.com/a/17511341/22827863
  4345. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4346. self.hparams["vocab_size"] = vocab_size
  4347. if (self.dir_model / "tokenizer.json").is_file():
  4348. self._set_vocab_gpt2()
  4349. elif (self.dir_model / "tokenizer.model").is_file():
  4350. self._set_vocab_sentencepiece()
  4351. else:
  4352. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4353. self._set_vocab_builtin("gpt-neox", vocab_size)
  4354. def set_gguf_parameters(self):
  4355. d_model = self.find_hparam(["hidden_size", "d_model"])
  4356. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4357. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4358. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4359. # ceiling division
  4360. # ref: https://stackoverflow.com/a/17511341/22827863
  4361. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4362. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4363. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4364. use_dt_b_c_norm = False
  4365. # For falconmamba we do apply RMS norm on B / DT and C layers
  4366. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4367. use_dt_b_c_norm = True
  4368. # Fail early for models which don't have a block expansion factor of 2
  4369. assert d_inner == 2 * d_model
  4370. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4371. self.gguf_writer.add_embedding_length(d_model)
  4372. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4373. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4374. self.gguf_writer.add_block_count(self.block_count)
  4375. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4376. self.gguf_writer.add_ssm_inner_size(d_inner)
  4377. self.gguf_writer.add_ssm_state_size(d_state)
  4378. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4379. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4380. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4381. self.gguf_writer.add_file_type(self.ftype)
  4382. _tok_embd = None
  4383. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4384. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4385. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4386. new_name = self.map_tensor_name(name)
  4387. if name.endswith(".A_log"):
  4388. logger.debug("A_log --> A ==> " + new_name)
  4389. data_torch = -torch.exp(data_torch)
  4390. # [4 1 8192 1] -> [4 8192 1 1]
  4391. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4392. data_torch = data_torch.squeeze()
  4393. # assuming token_embd.weight is seen before output.weight
  4394. if self._tok_embd is not None and new_name == output_name:
  4395. if torch.equal(self._tok_embd, data_torch):
  4396. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4397. return []
  4398. elif new_name == tok_embd_name:
  4399. self._tok_embd = data_torch
  4400. return [(new_name, data_torch)]
  4401. @ModelBase.register("Mamba2ForCausalLM")
  4402. class Mamba2Model(TextModel):
  4403. model_arch = gguf.MODEL_ARCH.MAMBA2
  4404. def __init__(self, dir_model: Path, *args, **kwargs):
  4405. # Avoid using AutoConfig for hparams
  4406. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4407. hparams = kwargs.pop("hparams", None)
  4408. if hparams is None:
  4409. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4410. hparams = json.load(f)
  4411. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4412. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4413. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4414. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4415. def set_vocab(self):
  4416. vocab_size = self.hparams["vocab_size"]
  4417. # Round vocab size to next multiple of 16
  4418. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4419. # pad using ceiling division
  4420. # ref: https://stackoverflow.com/a/17511341/22827863
  4421. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4422. self.hparams["vocab_size"] = vocab_size
  4423. if (self.dir_model / "tokenizer.model").is_file():
  4424. self._set_vocab_sentencepiece()
  4425. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4426. # mamba-codestral
  4427. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4428. elif (self.dir_model / "tokenizer.json").is_file():
  4429. self._set_vocab_gpt2()
  4430. else:
  4431. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4432. self._set_vocab_builtin("gpt-neox", vocab_size)
  4433. def set_gguf_parameters(self):
  4434. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4435. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4436. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4437. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4438. # Fail early for models which don't have a block expansion factor of 2
  4439. # TODO: does this really matter?
  4440. # skip the assertion for FalconH1 Model
  4441. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4442. assert self.d_inner == 2 * self.d_model
  4443. assert self.d_inner % head_dim == 0
  4444. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4445. self.gguf_writer.add_embedding_length(self.d_model)
  4446. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4447. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4448. self.gguf_writer.add_block_count(self.block_count)
  4449. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4450. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4451. self.gguf_writer.add_ssm_state_size(d_state)
  4452. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4453. self.gguf_writer.add_ssm_group_count(self.n_group)
  4454. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4455. self.gguf_writer.add_file_type(self.ftype)
  4456. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4457. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4458. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4459. name = name.removeprefix("model.")
  4460. if name.endswith(".dt_bias"):
  4461. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4462. new_name = self.map_tensor_name(name)
  4463. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4464. data_torch = data_torch.squeeze()
  4465. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4466. gguf.MODEL_TENSOR.SSM_A,
  4467. gguf.MODEL_TENSOR.SSM_D,
  4468. ]):
  4469. # unsqueeze A to use similar shape semantics as Mamba-1
  4470. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4471. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4472. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4473. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4474. if name.endswith(".A_log"):
  4475. logger.debug("A_log --> A ==> " + new_name)
  4476. data_torch = -torch.exp(data_torch)
  4477. yield (new_name, data_torch)
  4478. @ModelBase.register("JambaForCausalLM")
  4479. class JambaModel(TextModel):
  4480. model_arch = gguf.MODEL_ARCH.JAMBA
  4481. def get_vocab_base_pre(self, tokenizer) -> str:
  4482. del tokenizer # unused
  4483. return "gpt-2"
  4484. def set_vocab(self):
  4485. if (self.dir_model / "tokenizer.model").is_file():
  4486. # Using Jamba's tokenizer.json causes errors on model load
  4487. # (something about "byte not found in vocab"),
  4488. # but there's a working tokenizer.model
  4489. self._set_vocab_sentencepiece()
  4490. else:
  4491. # Some Jamba models only have a tokenizer.json, which works.
  4492. self._set_vocab_gpt2()
  4493. def set_gguf_parameters(self):
  4494. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4495. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4496. d_inner = self.hparams["mamba_expand"] * d_model
  4497. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4498. # ceiling division
  4499. # ref: https://stackoverflow.com/a/17511341/22827863
  4500. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4501. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4502. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4503. n_kv_head = self.hparams["num_key_value_heads"]
  4504. attn_offset = self.hparams["attn_layer_offset"]
  4505. attn_period = self.hparams["attn_layer_period"]
  4506. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4507. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4508. ]
  4509. self.gguf_writer.add_block_count(self.block_count)
  4510. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4511. self.gguf_writer.add_embedding_length(d_model)
  4512. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4513. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4514. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4515. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4516. self.gguf_writer.add_ssm_inner_size(d_inner)
  4517. self.gguf_writer.add_ssm_state_size(d_state)
  4518. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4519. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4520. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4521. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4522. self.gguf_writer.add_file_type(self.ftype)
  4523. _experts: list[dict[str, Tensor]] | None = None
  4524. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4525. # Mini-Jamba
  4526. name = name.replace(".moe.", ".feed_forward.")
  4527. if bid is not None:
  4528. moe_offset = self.hparams["expert_layer_offset"]
  4529. moe_period = self.hparams["expert_layer_period"]
  4530. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4531. name = name.replace(".experts.0.", ".")
  4532. # process the experts separately
  4533. if ".feed_forward.experts." in name:
  4534. n_experts = self.hparams["num_experts"]
  4535. assert bid is not None
  4536. if self._experts is None:
  4537. self._experts = [{} for _ in range(self.block_count)]
  4538. self._experts[bid][name] = data_torch
  4539. if len(self._experts[bid]) >= n_experts * 3:
  4540. # merge the experts into a single 3d tensor
  4541. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4542. datas: list[Tensor] = []
  4543. for xid in range(n_experts):
  4544. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4545. datas.append(self._experts[bid][ename])
  4546. del self._experts[bid][ename]
  4547. data_torch = torch.stack(datas, dim=0)
  4548. # using the same merged name as qwen2moe
  4549. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4550. new_name = self.map_tensor_name(merged_name)
  4551. yield new_name, data_torch
  4552. return
  4553. new_name = self.map_tensor_name(name)
  4554. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4555. data_torch = data_torch.squeeze()
  4556. if name.endswith(".A_log"):
  4557. logger.debug("A_log --> A ==> " + new_name)
  4558. data_torch = -torch.exp(data_torch)
  4559. yield (new_name, data_torch)
  4560. def prepare_tensors(self):
  4561. super().prepare_tensors()
  4562. if self._experts is not None:
  4563. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4564. experts = [k for d in self._experts for k in d.keys()]
  4565. if len(experts) > 0:
  4566. raise ValueError(f"Unprocessed experts: {experts}")
  4567. @ModelBase.register("CohereForCausalLM")
  4568. class CommandR2Model(TextModel):
  4569. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4570. def __init__(self, *args, **kwargs):
  4571. super().__init__(*args, **kwargs)
  4572. # max_position_embeddings = 8192 in config.json but model was actually
  4573. # trained on 128k context length
  4574. # aya-23 models don't have model_max_length specified
  4575. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4576. def set_gguf_parameters(self):
  4577. super().set_gguf_parameters()
  4578. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4579. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4580. @ModelBase.register("Cohere2ForCausalLM")
  4581. class Cohere2Model(TextModel):
  4582. model_arch = gguf.MODEL_ARCH.COHERE2
  4583. def set_gguf_parameters(self):
  4584. super().set_gguf_parameters()
  4585. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4586. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4587. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4588. rotary_pct = self.hparams["rotary_pct"]
  4589. hidden_size = self.hparams["hidden_size"]
  4590. num_attention_heads = self.hparams["num_attention_heads"]
  4591. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4592. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4593. @ModelBase.register("OlmoForCausalLM")
  4594. @ModelBase.register("OLMoForCausalLM")
  4595. class OlmoModel(TextModel):
  4596. model_arch = gguf.MODEL_ARCH.OLMO
  4597. def set_gguf_parameters(self):
  4598. super().set_gguf_parameters()
  4599. self.gguf_writer.add_layer_norm_eps(1e-5)
  4600. clip_qkv = self.hparams.get("clip_qkv")
  4601. if clip_qkv is not None:
  4602. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4603. # Same as super class, but permuting q_proj, k_proj
  4604. # Copied from: LlamaModel
  4605. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4606. del bid # unused
  4607. n_head = self.hparams["num_attention_heads"]
  4608. n_kv_head = self.hparams.get("num_key_value_heads")
  4609. if name.endswith("q_proj.weight"):
  4610. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4611. if name.endswith("k_proj.weight"):
  4612. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4613. return [(self.map_tensor_name(name), data_torch)]
  4614. @ModelBase.register("Olmo2ForCausalLM")
  4615. class Olmo2Model(TextModel):
  4616. model_arch = gguf.MODEL_ARCH.OLMO2
  4617. @ModelBase.register("OlmoeForCausalLM")
  4618. class OlmoeModel(TextModel):
  4619. model_arch = gguf.MODEL_ARCH.OLMOE
  4620. def set_gguf_parameters(self):
  4621. super().set_gguf_parameters()
  4622. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4623. if (n_experts := self.hparams.get("num_experts")) is not None:
  4624. self.gguf_writer.add_expert_count(n_experts)
  4625. _experts: list[dict[str, Tensor]] | None = None
  4626. # Copied from: Qwen2MoeModel
  4627. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4628. # process the experts separately
  4629. if name.find("experts") != -1:
  4630. n_experts = self.hparams["num_experts"]
  4631. assert bid is not None
  4632. if self._experts is None:
  4633. self._experts = [{} for _ in range(self.block_count)]
  4634. self._experts[bid][name] = data_torch
  4635. if len(self._experts[bid]) >= n_experts * 3:
  4636. tensors: list[tuple[str, Tensor]] = []
  4637. # merge the experts into a single 3d tensor
  4638. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4639. datas: list[Tensor] = []
  4640. for xid in range(n_experts):
  4641. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4642. datas.append(self._experts[bid][ename])
  4643. del self._experts[bid][ename]
  4644. data_torch = torch.stack(datas, dim=0)
  4645. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4646. new_name = self.map_tensor_name(merged_name)
  4647. tensors.append((new_name, data_torch))
  4648. return tensors
  4649. else:
  4650. return []
  4651. return [(self.map_tensor_name(name), data_torch)]
  4652. # Copied from: Qwen2MoeModel
  4653. def prepare_tensors(self):
  4654. super().prepare_tensors()
  4655. if self._experts is not None:
  4656. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4657. experts = [k for d in self._experts for k in d.keys()]
  4658. if len(experts) > 0:
  4659. raise ValueError(f"Unprocessed experts: {experts}")
  4660. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  4661. class JinaBertV2Model(BertModel):
  4662. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  4663. def set_vocab(self):
  4664. tokenizer_class = 'BertTokenizer'
  4665. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  4666. tokenizer_class = json.load(f)['tokenizer_class']
  4667. if tokenizer_class == 'BertTokenizer':
  4668. super().set_vocab()
  4669. elif tokenizer_class == 'RobertaTokenizer':
  4670. self._set_vocab_gpt2()
  4671. self.gguf_writer.add_token_type_count(2)
  4672. else:
  4673. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  4674. @ModelBase.register("OpenELMForCausalLM")
  4675. class OpenELMModel(TextModel):
  4676. model_arch = gguf.MODEL_ARCH.OPENELM
  4677. @staticmethod
  4678. def _make_divisible(v: float | int, divisor: int) -> int:
  4679. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  4680. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  4681. # Make sure that round down does not go down by more than 10%.
  4682. if new_v < 0.9 * v:
  4683. new_v += divisor
  4684. return new_v
  4685. def __init__(self, *args, **kwargs):
  4686. super().__init__(*args, **kwargs)
  4687. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  4688. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  4689. self._n_embd: int = self.hparams["model_dim"]
  4690. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  4691. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  4692. self._ffn_dims: list[int] = [
  4693. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  4694. for multiplier in ffn_multipliers
  4695. ]
  4696. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  4697. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  4698. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  4699. def set_vocab(self):
  4700. try:
  4701. self._set_vocab_sentencepiece()
  4702. except FileNotFoundError:
  4703. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  4704. def set_gguf_parameters(self):
  4705. n_embd = self._n_embd
  4706. head_dim = self.hparams["head_dim"]
  4707. rot_pct = 1.0
  4708. assert self.block_count == len(self._num_kv_heads)
  4709. assert self.block_count == len(self._num_query_heads)
  4710. assert self.block_count == len(self._ffn_dims)
  4711. self.gguf_writer.add_block_count(self.block_count)
  4712. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  4713. self.gguf_writer.add_embedding_length(n_embd)
  4714. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  4715. self.gguf_writer.add_head_count(self._num_query_heads)
  4716. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  4717. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  4718. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  4719. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  4720. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  4721. self.gguf_writer.add_key_length(head_dim)
  4722. self.gguf_writer.add_value_length(head_dim)
  4723. self.gguf_writer.add_file_type(self.ftype)
  4724. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  4725. if "n_layers" in keys:
  4726. return self.hparams["num_transformer_layers"]
  4727. return super().find_hparam(keys, optional)
  4728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4729. # split ff
  4730. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  4731. ff_dim = self._ffn_dims[bid]
  4732. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  4733. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  4734. return
  4735. yield (self.map_tensor_name(name), data_torch)
  4736. @ModelBase.register("ArcticForCausalLM")
  4737. class ArcticModel(TextModel):
  4738. model_arch = gguf.MODEL_ARCH.ARCTIC
  4739. def set_vocab(self):
  4740. # The reason for using a custom implementation here is that the
  4741. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  4742. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  4743. from sentencepiece import SentencePieceProcessor
  4744. tokenizer_path = self.dir_model / 'tokenizer.model'
  4745. if not tokenizer_path.is_file():
  4746. logger.error(f'Error: Missing {tokenizer_path}')
  4747. sys.exit(1)
  4748. # Read the whole vocabulary from the tokenizer.model file
  4749. tokenizer = SentencePieceProcessor()
  4750. tokenizer.LoadFromFile(str(tokenizer_path))
  4751. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4752. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4753. scores: list[float] = [-10000.0] * vocab_size
  4754. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4755. for token_id in range(tokenizer.vocab_size()):
  4756. piece = tokenizer.IdToPiece(token_id)
  4757. text = piece.encode("utf-8")
  4758. score = tokenizer.GetScore(token_id)
  4759. toktype = SentencePieceTokenTypes.NORMAL
  4760. if tokenizer.IsUnknown(token_id):
  4761. toktype = SentencePieceTokenTypes.UNKNOWN
  4762. elif tokenizer.IsControl(token_id):
  4763. toktype = SentencePieceTokenTypes.CONTROL
  4764. elif tokenizer.IsUnused(token_id):
  4765. toktype = SentencePieceTokenTypes.UNUSED
  4766. elif tokenizer.IsByte(token_id):
  4767. toktype = SentencePieceTokenTypes.BYTE
  4768. tokens[token_id] = text
  4769. scores[token_id] = score
  4770. toktypes[token_id] = toktype
  4771. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  4772. # of information about added/redefined tokens and modify them accordingly.
  4773. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4774. if tokenizer_config_file.is_file():
  4775. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4776. tokenizer_config_json = json.load(f)
  4777. if "added_tokens_decoder" in tokenizer_config_json:
  4778. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  4779. for token_id, token_json in added_tokens_decoder.items():
  4780. token_id = int(token_id)
  4781. if token_id >= vocab_size:
  4782. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  4783. continue
  4784. token_content = token_json["content"]
  4785. token_type = SentencePieceTokenTypes.USER_DEFINED
  4786. token_score = -10000.0
  4787. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  4788. # Set the score to 0.0 as in the original tokenizer.model
  4789. if ("special" in token_json) and token_json["special"]:
  4790. if token_content == tokenizer_config_json["unk_token"]:
  4791. token_type = SentencePieceTokenTypes.UNKNOWN
  4792. else:
  4793. token_type = SentencePieceTokenTypes.CONTROL
  4794. token_score = 0.0
  4795. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  4796. tokens[token_id] = token_content.encode("utf-8")
  4797. toktypes[token_id] = token_type
  4798. scores[token_id] = token_score
  4799. self.gguf_writer.add_tokenizer_model("llama")
  4800. self.gguf_writer.add_tokenizer_pre("default")
  4801. self.gguf_writer.add_token_list(tokens)
  4802. self.gguf_writer.add_token_scores(scores)
  4803. self.gguf_writer.add_token_types(toktypes)
  4804. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4805. special_vocab.add_to_gguf(self.gguf_writer)
  4806. def set_gguf_parameters(self):
  4807. super().set_gguf_parameters()
  4808. hparams = self.hparams
  4809. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4810. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  4811. _experts: list[dict[str, Tensor]] | None = None
  4812. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4813. n_head = self.hparams["num_attention_heads"]
  4814. n_kv_head = self.hparams.get("num_key_value_heads")
  4815. if name.endswith("q_proj.weight"):
  4816. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4817. if name.endswith("k_proj.weight"):
  4818. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4819. # process the experts separately
  4820. if name.find("block_sparse_moe.experts") != -1:
  4821. n_experts = self.hparams["num_local_experts"]
  4822. assert bid is not None
  4823. if self._experts is None:
  4824. self._experts = [{} for _ in range(self.block_count)]
  4825. self._experts[bid][name] = data_torch
  4826. if len(self._experts[bid]) >= n_experts * 3:
  4827. tensors: list[tuple[str, Tensor]] = []
  4828. # merge the experts into a single 3d tensor
  4829. for wid in ["w1", "w2", "w3"]:
  4830. datas: list[Tensor] = []
  4831. for xid in range(n_experts):
  4832. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  4833. datas.append(self._experts[bid][ename])
  4834. del self._experts[bid][ename]
  4835. data_torch = torch.stack(datas, dim=0)
  4836. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  4837. new_name = self.map_tensor_name(merged_name)
  4838. tensors.append((new_name, data_torch))
  4839. return tensors
  4840. else:
  4841. return []
  4842. return [(self.map_tensor_name(name), data_torch)]
  4843. def prepare_tensors(self):
  4844. super().prepare_tensors()
  4845. if self._experts is not None:
  4846. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4847. experts = [k for d in self._experts for k in d.keys()]
  4848. if len(experts) > 0:
  4849. raise ValueError(f"Unprocessed experts: {experts}")
  4850. @ModelBase.register("DeepseekForCausalLM")
  4851. class DeepseekModel(TextModel):
  4852. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  4853. def set_vocab(self):
  4854. try:
  4855. self._set_vocab_sentencepiece()
  4856. except FileNotFoundError:
  4857. self._set_vocab_gpt2()
  4858. def set_gguf_parameters(self):
  4859. super().set_gguf_parameters()
  4860. hparams = self.hparams
  4861. if (rope_dim := hparams.get("head_dim")) is None:
  4862. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4863. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4864. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4865. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4866. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4867. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4868. self.gguf_writer.add_expert_weights_scale(1.0)
  4869. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4870. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4871. _experts: list[dict[str, Tensor]] | None = None
  4872. @staticmethod
  4873. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4874. if n_head_kv is not None and n_head != n_head_kv:
  4875. n_head = n_head_kv
  4876. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4877. .swapaxes(1, 2)
  4878. .reshape(weights.shape))
  4879. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4880. n_head = self.hparams["num_attention_heads"]
  4881. n_kv_head = self.hparams.get("num_key_value_heads")
  4882. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4883. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  4884. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4885. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  4886. # process the experts separately
  4887. if name.find("mlp.experts") != -1:
  4888. n_experts = self.hparams["n_routed_experts"]
  4889. assert bid is not None
  4890. if self._experts is None:
  4891. self._experts = [{} for _ in range(self.block_count)]
  4892. self._experts[bid][name] = data_torch
  4893. if len(self._experts[bid]) >= n_experts * 3:
  4894. tensors: list[tuple[str, Tensor]] = []
  4895. # merge the experts into a single 3d tensor
  4896. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4897. datas: list[Tensor] = []
  4898. for xid in range(n_experts):
  4899. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4900. datas.append(self._experts[bid][ename])
  4901. del self._experts[bid][ename]
  4902. data_torch = torch.stack(datas, dim=0)
  4903. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4904. new_name = self.map_tensor_name(merged_name)
  4905. tensors.append((new_name, data_torch))
  4906. return tensors
  4907. else:
  4908. return []
  4909. return [(self.map_tensor_name(name), data_torch)]
  4910. def prepare_tensors(self):
  4911. super().prepare_tensors()
  4912. if self._experts is not None:
  4913. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4914. experts = [k for d in self._experts for k in d.keys()]
  4915. if len(experts) > 0:
  4916. raise ValueError(f"Unprocessed experts: {experts}")
  4917. @ModelBase.register("DeepseekV2ForCausalLM")
  4918. @ModelBase.register("DeepseekV3ForCausalLM")
  4919. @ModelBase.register("KimiVLForConditionalGeneration")
  4920. class DeepseekV2Model(TextModel):
  4921. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  4922. def set_vocab(self):
  4923. try:
  4924. self._set_vocab_gpt2()
  4925. return
  4926. except Exception:
  4927. pass
  4928. from transformers import AutoTokenizer
  4929. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  4930. tokpre = self.get_vocab_base_pre(tokenizer)
  4931. if tokpre == "kimi-k2":
  4932. # Build merges list using the approach similar to HunYuanMoE
  4933. merges = []
  4934. vocab = {}
  4935. mergeable_ranks = tokenizer.model._mergeable_ranks
  4936. for token, rank in mergeable_ranks.items():
  4937. vocab[QwenModel.token_bytes_to_string(token)] = rank
  4938. if len(token) == 1:
  4939. continue
  4940. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  4941. if len(merged) == 2:
  4942. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  4943. # Build token list
  4944. vocab_size = self.hparams["vocab_size"]
  4945. special_tokens = tokenizer.special_tokens
  4946. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  4947. tokens: list[str] = []
  4948. toktypes: list[int] = []
  4949. for i in range(vocab_size):
  4950. if i not in reverse_vocab:
  4951. tokens.append(f"[PAD{i}]")
  4952. toktypes.append(gguf.TokenType.UNUSED)
  4953. else:
  4954. token = reverse_vocab[i]
  4955. tokens.append(token)
  4956. if i in special_tokens.values():
  4957. toktypes.append(gguf.TokenType.CONTROL)
  4958. else:
  4959. toktypes.append(gguf.TokenType.NORMAL)
  4960. self.gguf_writer.add_tokenizer_model("gpt2")
  4961. self.gguf_writer.add_tokenizer_pre(tokpre)
  4962. self.gguf_writer.add_token_list(tokens)
  4963. self.gguf_writer.add_token_types(toktypes)
  4964. self.gguf_writer.add_token_merges(merges)
  4965. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  4966. special_vocab.add_to_gguf(self.gguf_writer)
  4967. else:
  4968. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  4969. def set_gguf_parameters(self):
  4970. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  4971. self.hparams["num_key_value_heads"] = 1
  4972. super().set_gguf_parameters()
  4973. hparams = self.hparams
  4974. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4975. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4976. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  4977. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  4978. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  4979. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  4980. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  4981. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  4982. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  4983. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  4984. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4985. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  4986. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  4987. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  4988. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4989. if hparams["scoring_func"] == "sigmoid":
  4990. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  4991. elif hparams["scoring_func"] == "softmax":
  4992. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  4993. else:
  4994. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  4995. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  4996. rope_scaling = self.hparams.get("rope_scaling") or {}
  4997. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4998. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4999. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5000. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5001. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5002. _experts: list[dict[str, Tensor]] | None = None
  5003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5004. # skip vision tensors and remove "language_model." for Kimi-VL
  5005. if "vision_tower" in name or "multi_modal_projector" in name:
  5006. return []
  5007. if name.startswith("language_model."):
  5008. name = name.replace("language_model.", "")
  5009. # rename e_score_correction_bias tensors
  5010. if name.endswith("e_score_correction_bias"):
  5011. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5012. # skip Multi-Token Prediction (MTP) layers
  5013. block_count = self.hparams["num_hidden_layers"]
  5014. match = re.match(r"model.layers.(\d+)", name)
  5015. if match and int(match.group(1)) >= block_count:
  5016. return []
  5017. # process the experts separately
  5018. if name.find("mlp.experts") != -1:
  5019. n_experts = self.hparams["n_routed_experts"]
  5020. assert bid is not None
  5021. if self._experts is None:
  5022. self._experts = [{} for _ in range(self.block_count)]
  5023. self._experts[bid][name] = data_torch
  5024. if len(self._experts[bid]) >= n_experts * 3:
  5025. tensors: list[tuple[str, Tensor]] = []
  5026. # merge the experts into a single 3d tensor
  5027. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5028. datas: list[Tensor] = []
  5029. for xid in range(n_experts):
  5030. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5031. datas.append(self._experts[bid][ename])
  5032. del self._experts[bid][ename]
  5033. data_torch = torch.stack(datas, dim=0)
  5034. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5035. new_name = self.map_tensor_name(merged_name)
  5036. tensors.append((new_name, data_torch))
  5037. return tensors
  5038. else:
  5039. return []
  5040. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5041. if name.endswith("kv_b_proj.weight"):
  5042. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5043. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5044. n_head_kv = self.hparams["num_key_value_heads"]
  5045. v_head_dim = self.hparams["v_head_dim"]
  5046. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5047. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5048. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5049. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5050. k_b = k_b.transpose(1, 2)
  5051. return [
  5052. (self.map_tensor_name(name_kb), k_b),
  5053. (self.map_tensor_name(name_vb), v_b)
  5054. ]
  5055. return [(self.map_tensor_name(name), data_torch)]
  5056. def prepare_tensors(self):
  5057. super().prepare_tensors()
  5058. if self._experts is not None:
  5059. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5060. experts = [k for d in self._experts for k in d.keys()]
  5061. if len(experts) > 0:
  5062. raise ValueError(f"Unprocessed experts: {experts}")
  5063. @ModelBase.register("Dots1ForCausalLM")
  5064. class Dots1Model(Qwen2MoeModel):
  5065. model_arch = gguf.MODEL_ARCH.DOTS1
  5066. def __init__(self, *args, **kwargs):
  5067. super().__init__(*args, **kwargs)
  5068. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5069. def set_gguf_parameters(self):
  5070. super().set_gguf_parameters()
  5071. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5072. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5073. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5074. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5075. if self.hparams["scoring_func"] == "noaux_tc":
  5076. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5077. else:
  5078. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5079. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5080. if name.endswith("e_score_correction_bias"):
  5081. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5082. if "shared_experts" in name:
  5083. return [(self.map_tensor_name(name), data_torch)]
  5084. return super().modify_tensors(data_torch, name, bid)
  5085. @ModelBase.register("PLMForCausalLM")
  5086. class PLMModel(TextModel):
  5087. model_arch = gguf.MODEL_ARCH.PLM
  5088. def set_vocab(self):
  5089. self._set_vocab_gpt2()
  5090. def set_gguf_parameters(self):
  5091. super().set_gguf_parameters()
  5092. hparams = self.hparams
  5093. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5094. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5095. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5096. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5097. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5098. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5099. return [(self.map_tensor_name(name), data_torch)]
  5100. def prepare_tensors(self):
  5101. super().prepare_tensors()
  5102. @ModelBase.register("T5WithLMHeadModel")
  5103. @ModelBase.register("T5ForConditionalGeneration")
  5104. @ModelBase.register("MT5ForConditionalGeneration")
  5105. @ModelBase.register("UMT5ForConditionalGeneration")
  5106. class T5Model(TextModel):
  5107. model_arch = gguf.MODEL_ARCH.T5
  5108. def __init__(self, *args, **kwargs):
  5109. super().__init__(*args, **kwargs)
  5110. self.shared_token_embeddings_found = False
  5111. def set_vocab(self):
  5112. # to avoid TypeError: Descriptors cannot be created directly
  5113. # exception when importing sentencepiece_model_pb2
  5114. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5115. from sentencepiece import SentencePieceProcessor
  5116. from sentencepiece import sentencepiece_model_pb2 as model
  5117. tokenizer_path = self.dir_model / 'tokenizer.model'
  5118. # many older models use spiece.model tokenizer model filename
  5119. if not tokenizer_path.is_file():
  5120. tokenizer_path = self.dir_model / 'spiece.model'
  5121. if not tokenizer_path.is_file():
  5122. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5123. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5124. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5125. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5126. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5127. # assure the tokenizer model file name is correct
  5128. assert tokenizer_path.name == 'tokenizer.model'
  5129. return self._set_vocab_sentencepiece()
  5130. else:
  5131. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5132. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5133. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5134. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5135. tokenizer = SentencePieceProcessor()
  5136. tokenizer.LoadFromFile(str(tokenizer_path))
  5137. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5138. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5139. scores: list[float] = [-10000.0] * vocab_size
  5140. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5141. for token_id in range(tokenizer.vocab_size()):
  5142. piece = tokenizer.IdToPiece(token_id)
  5143. text = piece.encode("utf-8")
  5144. score = tokenizer.GetScore(token_id)
  5145. toktype = SentencePieceTokenTypes.NORMAL
  5146. if tokenizer.IsUnknown(token_id):
  5147. toktype = SentencePieceTokenTypes.UNKNOWN
  5148. elif tokenizer.IsControl(token_id):
  5149. toktype = SentencePieceTokenTypes.CONTROL
  5150. elif tokenizer.IsUnused(token_id):
  5151. toktype = SentencePieceTokenTypes.UNUSED
  5152. elif tokenizer.IsByte(token_id):
  5153. toktype = SentencePieceTokenTypes.BYTE
  5154. tokens[token_id] = text
  5155. scores[token_id] = score
  5156. toktypes[token_id] = toktype
  5157. added_tokens_file = self.dir_model / 'added_tokens.json'
  5158. if added_tokens_file.is_file():
  5159. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5160. added_tokens_json = json.load(f)
  5161. for key in added_tokens_json:
  5162. token_id = added_tokens_json[key]
  5163. if token_id >= vocab_size:
  5164. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5165. continue
  5166. tokens[token_id] = key.encode("utf-8")
  5167. scores[token_id] = -1000.0
  5168. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5169. if vocab_size > len(tokens):
  5170. pad_count = vocab_size - len(tokens)
  5171. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5172. for i in range(1, pad_count + 1):
  5173. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5174. scores.append(-1000.0)
  5175. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5176. self.gguf_writer.add_tokenizer_model("t5")
  5177. self.gguf_writer.add_tokenizer_pre("default")
  5178. self.gguf_writer.add_token_list(tokens)
  5179. self.gguf_writer.add_token_scores(scores)
  5180. self.gguf_writer.add_token_types(toktypes)
  5181. self.gguf_writer.add_add_space_prefix(add_prefix)
  5182. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5183. if precompiled_charsmap:
  5184. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5185. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5186. special_vocab.add_to_gguf(self.gguf_writer)
  5187. def set_gguf_parameters(self):
  5188. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5189. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5190. n_ctx = 512
  5191. self.gguf_writer.add_context_length(n_ctx)
  5192. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5193. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5194. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5195. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5196. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5197. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5198. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5199. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5200. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5201. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5202. self.gguf_writer.add_file_type(self.ftype)
  5203. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5204. del bid # unused
  5205. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5206. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5207. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5208. # and decoder and ignore the remaining ones.
  5209. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5210. if not self.shared_token_embeddings_found:
  5211. name = "shared.weight"
  5212. self.shared_token_embeddings_found = True
  5213. else:
  5214. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5215. return []
  5216. return [(self.map_tensor_name(name), data_torch)]
  5217. @ModelBase.register("T5EncoderModel")
  5218. class T5EncoderModel(TextModel):
  5219. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5220. def __init__(self, *args, **kwargs):
  5221. super().__init__(*args, **kwargs)
  5222. self.shared_token_embeddings_found = False
  5223. def set_vocab(self):
  5224. # to avoid TypeError: Descriptors cannot be created directly
  5225. # exception when importing sentencepiece_model_pb2
  5226. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5227. from sentencepiece import SentencePieceProcessor
  5228. from sentencepiece import sentencepiece_model_pb2 as model
  5229. tokenizer_path = self.dir_model / 'tokenizer.model'
  5230. # many older models use spiece.model tokenizer model filename
  5231. if not tokenizer_path.is_file():
  5232. tokenizer_path = self.dir_model / 'spiece.model'
  5233. if not tokenizer_path.is_file():
  5234. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5235. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5236. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5237. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5238. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5239. # assure the tokenizer model file name is correct
  5240. assert tokenizer_path.name == 'tokenizer.model'
  5241. return self._set_vocab_sentencepiece()
  5242. else:
  5243. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5244. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5245. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5246. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5247. tokenizer = SentencePieceProcessor()
  5248. tokenizer.LoadFromFile(str(tokenizer_path))
  5249. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5250. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5251. scores: list[float] = [-10000.0] * vocab_size
  5252. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5253. for token_id in range(tokenizer.vocab_size()):
  5254. piece = tokenizer.IdToPiece(token_id)
  5255. text = piece.encode("utf-8")
  5256. score = tokenizer.GetScore(token_id)
  5257. toktype = SentencePieceTokenTypes.NORMAL
  5258. if tokenizer.IsUnknown(token_id):
  5259. toktype = SentencePieceTokenTypes.UNKNOWN
  5260. elif tokenizer.IsControl(token_id):
  5261. toktype = SentencePieceTokenTypes.CONTROL
  5262. elif tokenizer.IsUnused(token_id):
  5263. toktype = SentencePieceTokenTypes.UNUSED
  5264. elif tokenizer.IsByte(token_id):
  5265. toktype = SentencePieceTokenTypes.BYTE
  5266. tokens[token_id] = text
  5267. scores[token_id] = score
  5268. toktypes[token_id] = toktype
  5269. added_tokens_file = self.dir_model / 'added_tokens.json'
  5270. if added_tokens_file.is_file():
  5271. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5272. added_tokens_json = json.load(f)
  5273. for key in added_tokens_json:
  5274. token_id = added_tokens_json[key]
  5275. if token_id >= vocab_size:
  5276. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5277. continue
  5278. tokens[token_id] = key.encode("utf-8")
  5279. scores[token_id] = -1000.0
  5280. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5281. if vocab_size > len(tokens):
  5282. pad_count = vocab_size - len(tokens)
  5283. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5284. for i in range(1, pad_count + 1):
  5285. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5286. scores.append(-1000.0)
  5287. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5288. self.gguf_writer.add_tokenizer_model("t5")
  5289. self.gguf_writer.add_tokenizer_pre("default")
  5290. self.gguf_writer.add_token_list(tokens)
  5291. self.gguf_writer.add_token_scores(scores)
  5292. self.gguf_writer.add_token_types(toktypes)
  5293. self.gguf_writer.add_add_space_prefix(add_prefix)
  5294. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5295. if precompiled_charsmap:
  5296. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5297. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5298. special_vocab.add_to_gguf(self.gguf_writer)
  5299. def set_gguf_parameters(self):
  5300. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5301. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5302. n_ctx = 512
  5303. self.gguf_writer.add_context_length(n_ctx)
  5304. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5305. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5306. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5307. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5308. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5309. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5310. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5311. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5312. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5313. self.gguf_writer.add_file_type(self.ftype)
  5314. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5315. del bid # unused
  5316. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5317. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5318. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5319. # and decoder and ignore the remaining ones.
  5320. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5321. if not self.shared_token_embeddings_found:
  5322. name = "shared.weight"
  5323. self.shared_token_embeddings_found = True
  5324. else:
  5325. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5326. return []
  5327. return [(self.map_tensor_name(name), data_torch)]
  5328. @ModelBase.register("JAISLMHeadModel")
  5329. class JaisModel(TextModel):
  5330. model_arch = gguf.MODEL_ARCH.JAIS
  5331. def __init__(self, *args, **kwargs):
  5332. super().__init__(*args, **kwargs)
  5333. # SwigLU activation
  5334. assert self.hparams["activation_function"] == "swiglu"
  5335. # ALiBi position embedding
  5336. assert self.hparams["position_embedding_type"] == "alibi"
  5337. # Embeddings scale
  5338. self.embeddings_scale = 1.0
  5339. if 'mup_embeddings_scale' in self.hparams:
  5340. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5341. elif 'embeddings_scale' in self.hparams:
  5342. self.embeddings_scale = self.hparams['embeddings_scale']
  5343. else:
  5344. assert False
  5345. self.width_scale = 1.0
  5346. if 'mup_output_alpha' in self.hparams:
  5347. assert 'mup_width_scale' in self.hparams
  5348. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5349. elif 'width_scale' in self.hparams:
  5350. self.width_scale = self.hparams['width_scale']
  5351. else:
  5352. assert False
  5353. self.max_alibi_bias = 8.0
  5354. def set_vocab(self):
  5355. self._set_vocab_gpt2()
  5356. def set_gguf_parameters(self):
  5357. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5358. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5359. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5360. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5361. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5362. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5363. self.gguf_writer.add_file_type(self.ftype)
  5364. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5365. del bid # unused
  5366. tensors: list[tuple[str, Tensor]] = []
  5367. # we don't need these
  5368. if name.endswith((".attn.bias")):
  5369. return tensors
  5370. if name.endswith(("relative_pe.slopes")):
  5371. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5372. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5373. # but Jais's PyTorch model simply precalculates the slope values and places them
  5374. # in relative_pes.slopes
  5375. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5376. first_val = float(data_torch[0].item())
  5377. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5378. return tensors
  5379. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5380. data_torch = data_torch.transpose(1, 0)
  5381. new_name = self.map_tensor_name(name)
  5382. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5383. tensors.append((new_name, data_torch * self.embeddings_scale))
  5384. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5385. tensors.append((new_name, data_torch * self.width_scale))
  5386. else:
  5387. tensors.append((new_name, data_torch))
  5388. return tensors
  5389. def prepare_tensors(self):
  5390. super().prepare_tensors()
  5391. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5392. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5393. class Glm4Model(TextModel):
  5394. model_arch = gguf.MODEL_ARCH.GLM4
  5395. def set_vocab(self):
  5396. from transformers import AutoTokenizer
  5397. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5398. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5399. tokens, toktypes, tokpre = self.get_vocab_base()
  5400. self.gguf_writer.add_tokenizer_model("gpt2")
  5401. self.gguf_writer.add_tokenizer_pre(tokpre)
  5402. self.gguf_writer.add_token_list(tokens)
  5403. self.gguf_writer.add_token_types(toktypes)
  5404. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5405. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5406. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5407. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5408. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5409. special_vocab.add_to_gguf(self.gguf_writer)
  5410. def set_gguf_parameters(self):
  5411. super().set_gguf_parameters()
  5412. if (rope_dim := self.hparams.get("head_dim")) is None:
  5413. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5414. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5415. rope_scaling = self.hparams.get("rope_scaling") or {}
  5416. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5417. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5418. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5419. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5421. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5422. return []
  5423. elif name.startswith("model.language_model."):
  5424. name = name.replace("language_model.", "") # for Glm4v
  5425. return super().modify_tensors(data_torch, name, bid)
  5426. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5427. class ChatGLMModel(TextModel):
  5428. model_arch = gguf.MODEL_ARCH.CHATGLM
  5429. def set_vocab_chatglm3(self):
  5430. dir_model = self.dir_model
  5431. hparams = self.hparams
  5432. tokens: list[bytes] = []
  5433. toktypes: list[int] = []
  5434. scores: list[float] = []
  5435. from transformers import AutoTokenizer
  5436. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5437. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5438. assert max(tokenizer.get_vocab().values()) < vocab_size
  5439. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5440. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5441. for token_id in range(vocab_size):
  5442. piece = tokenizer._convert_id_to_token(token_id)
  5443. if token_id == 0:
  5444. piece = "<unk>"
  5445. elif token_id == 1:
  5446. piece = "<bos>"
  5447. elif token_id == 2:
  5448. piece = "<eos>"
  5449. text = piece.encode("utf-8")
  5450. score = 0.0
  5451. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5452. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5453. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5454. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5455. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5456. if piece in special_tokens:
  5457. toktype = SentencePieceTokenTypes.CONTROL
  5458. elif len(piece) == 0:
  5459. text = f"[PAD{token_id}]".encode("utf-8")
  5460. toktype = SentencePieceTokenTypes.UNUSED
  5461. else:
  5462. toktype = SentencePieceTokenTypes.USER_DEFINED
  5463. tokens.append(text)
  5464. scores.append(score)
  5465. toktypes.append(toktype)
  5466. continue
  5467. toktype = SentencePieceTokenTypes.NORMAL
  5468. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5469. toktype = SentencePieceTokenTypes.UNKNOWN
  5470. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5471. toktype = SentencePieceTokenTypes.CONTROL
  5472. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5473. toktype = SentencePieceTokenTypes.UNUSED
  5474. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5475. toktype = SentencePieceTokenTypes.BYTE
  5476. tokens.append(text)
  5477. scores.append(score)
  5478. toktypes.append(toktype)
  5479. self.gguf_writer.add_tokenizer_model("llama")
  5480. # glm3 needs prefix and suffix formatted as:
  5481. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5482. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5483. self.gguf_writer.add_token_list(tokens)
  5484. self.gguf_writer.add_token_scores(scores)
  5485. self.gguf_writer.add_token_types(toktypes)
  5486. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5487. special_vocab.add_to_gguf(self.gguf_writer)
  5488. @staticmethod
  5489. def token_bytes_to_string(b):
  5490. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5491. byte_encoder = bytes_to_unicode()
  5492. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5493. @staticmethod
  5494. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5495. parts = [bytes([b]) for b in token]
  5496. while True:
  5497. min_idx = None
  5498. min_rank = None
  5499. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5500. rank = mergeable_ranks.get(pair[0] + pair[1])
  5501. if rank is not None and (min_rank is None or rank < min_rank):
  5502. min_idx = i
  5503. min_rank = rank
  5504. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5505. break
  5506. assert min_idx is not None
  5507. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5508. return parts
  5509. def set_vocab(self):
  5510. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5511. self.set_vocab_chatglm3()
  5512. return
  5513. dir_model = self.dir_model
  5514. hparams = self.hparams
  5515. tokens: list[str] = []
  5516. toktypes: list[int] = []
  5517. from transformers import AutoTokenizer
  5518. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5519. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5520. assert max(tokenizer.get_vocab().values()) < vocab_size
  5521. tokens, toktypes, tokpre = self.get_vocab_base()
  5522. self.gguf_writer.add_tokenizer_model("gpt2")
  5523. self.gguf_writer.add_tokenizer_pre(tokpre)
  5524. self.gguf_writer.add_token_list(tokens)
  5525. self.gguf_writer.add_token_types(toktypes)
  5526. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5527. # only add special tokens when they were not already loaded from config.json
  5528. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5529. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5530. # this one is usually not in config.json anyway
  5531. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5532. special_vocab.add_to_gguf(self.gguf_writer)
  5533. def set_gguf_parameters(self):
  5534. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  5535. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  5536. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  5537. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  5538. self.gguf_writer.add_embedding_length(n_embed)
  5539. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  5540. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  5541. self.gguf_writer.add_head_count(n_head)
  5542. self.gguf_writer.add_head_count_kv(n_head_kv)
  5543. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  5544. self.gguf_writer.add_file_type(self.ftype)
  5545. if "attention_dim" in self.hparams:
  5546. rope_dim = self.hparams["attention_dim"]
  5547. else:
  5548. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5549. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5550. self.gguf_writer.add_add_bos_token(False)
  5551. rope_freq = 10000
  5552. if "rope_ratio" in self.hparams:
  5553. rope_freq = rope_freq * self.hparams["rope_ratio"]
  5554. self.gguf_writer.add_rope_freq_base(rope_freq)
  5555. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5556. del bid # unused
  5557. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  5558. return []
  5559. name = name.removeprefix("transformer.")
  5560. return [(self.map_tensor_name(name), data_torch)]
  5561. @ModelBase.register("NemotronForCausalLM")
  5562. class NemotronModel(TextModel):
  5563. model_arch = gguf.MODEL_ARCH.NEMOTRON
  5564. def set_vocab(self):
  5565. self._set_vocab_sentencepiece()
  5566. self.gguf_writer.add_pad_token_id(0)
  5567. self.gguf_writer.add_unk_token_id(1)
  5568. def set_gguf_parameters(self):
  5569. super().set_gguf_parameters()
  5570. hparams = self.hparams
  5571. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5572. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  5573. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  5574. # * Partial RoPE
  5575. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  5576. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  5577. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  5578. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  5579. # * RopeScaling for Nemotron
  5580. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  5581. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5582. else:
  5583. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5584. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  5585. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5586. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  5587. # model.layers.{l}.input_layernorm.weight
  5588. # model.layers.{l}.post_attention_layernorm.weight
  5589. # model.norm.weight
  5590. if name.endswith("norm.weight"):
  5591. data_torch = data_torch + 1
  5592. return [(self.map_tensor_name(name), data_torch)]
  5593. @ModelBase.register("ExaoneForCausalLM")
  5594. class ExaoneModel(TextModel):
  5595. model_arch = gguf.MODEL_ARCH.EXAONE
  5596. def set_gguf_parameters(self):
  5597. hparams = self.hparams
  5598. assert (hparams["activation_function"] == "silu")
  5599. max_position_embeddings = hparams["max_position_embeddings"]
  5600. embed_dim = hparams["hidden_size"]
  5601. num_heads = hparams["num_attention_heads"]
  5602. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  5603. layer_norm_eps = hparams["layer_norm_epsilon"]
  5604. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  5605. num_layers = hparams["num_layers"]
  5606. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  5607. # attention_dropout_rate = hparams["attention_dropout"]
  5608. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  5609. # embed_dropout_rate = hparams["embed_dropout"]
  5610. self.gguf_writer.add_embedding_length(embed_dim)
  5611. self.gguf_writer.add_head_count(num_heads)
  5612. self.gguf_writer.add_head_count_kv(num_kv_heads)
  5613. self.gguf_writer.add_context_length(max_position_embeddings)
  5614. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  5615. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5616. self.gguf_writer.add_block_count(num_layers)
  5617. self.gguf_writer.add_file_type(self.ftype)
  5618. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  5619. self.gguf_writer.add_rope_freq_base(rope_theta)
  5620. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  5621. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  5622. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  5623. rope_scaling = self.hparams.get("rope_scaling") or {}
  5624. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5625. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5626. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5627. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5628. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5629. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5630. base = self.hparams.get("rope_theta", 10000.0)
  5631. if (dim := self.hparams.get("head_dim")) is None:
  5632. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5633. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5634. factor = rope_scaling.get("factor", 8.0)
  5635. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5636. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5637. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5638. low_freq_wavelen = old_context_len / low_freq_factor
  5639. high_freq_wavelen = old_context_len / high_freq_factor
  5640. assert low_freq_wavelen != high_freq_wavelen
  5641. rope_factors = []
  5642. for freq in freqs:
  5643. wavelen = 2 * math.pi / freq
  5644. if wavelen < high_freq_wavelen:
  5645. rope_factors.append(1)
  5646. elif wavelen > low_freq_wavelen:
  5647. rope_factors.append(factor)
  5648. else:
  5649. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5650. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5651. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5652. @ModelBase.register("Exaone4ForCausalLM")
  5653. class Exaone4Model(TextModel):
  5654. model_arch = gguf.MODEL_ARCH.EXAONE4
  5655. def set_vocab(self):
  5656. tokens, toktypes, tokpre = self.get_vocab_base()
  5657. self.gguf_writer.add_tokenizer_model("gpt2")
  5658. self.gguf_writer.add_tokenizer_pre(tokpre)
  5659. self.gguf_writer.add_token_list(tokens)
  5660. self.gguf_writer.add_token_types(toktypes)
  5661. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5662. special_vocab.add_to_gguf(self.gguf_writer)
  5663. def set_gguf_parameters(self):
  5664. super().set_gguf_parameters()
  5665. hparams = self.hparams
  5666. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5667. if hparams.get("sliding_window") is not None:
  5668. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  5669. if "layer_types" in hparams:
  5670. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  5671. elif "sliding_window_pattern" in hparams:
  5672. sliding_window_pattern = []
  5673. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  5674. for i in range(hparams["num_hidden_layers"]):
  5675. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  5676. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  5677. for i in range(hparams["num_hidden_layers"]):
  5678. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  5679. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  5680. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5681. rope_scaling = self.hparams.get("rope_scaling") or {}
  5682. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  5683. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  5684. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5685. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  5686. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  5687. if rope_scaling.get("rope_type", '').lower() == "llama3":
  5688. base = self.hparams.get("rope_theta", 10_000.0)
  5689. if (dim := self.hparams.get("head_dim")) is None:
  5690. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5691. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  5692. factor = rope_scaling.get("factor", 16.0)
  5693. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  5694. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  5695. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  5696. low_freq_wavelen = old_context_len / low_freq_factor
  5697. high_freq_wavelen = old_context_len / high_freq_factor
  5698. rope_factors = []
  5699. for freq in freqs:
  5700. wavelen = 2 * math.pi / freq
  5701. if wavelen < high_freq_wavelen:
  5702. rope_factors.append(1)
  5703. elif wavelen > low_freq_wavelen:
  5704. rope_factors.append(factor)
  5705. else:
  5706. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  5707. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  5708. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  5709. @ModelBase.register("GraniteForCausalLM")
  5710. class GraniteModel(LlamaModel):
  5711. """Conversion for IBM's GraniteForCausalLM"""
  5712. model_arch = gguf.MODEL_ARCH.GRANITE
  5713. def set_gguf_parameters(self):
  5714. """Granite uses standard llama parameters with the following differences:
  5715. - No head_dim support
  5716. - New multiplier params:
  5717. - attention_scale
  5718. - embedding_scale
  5719. - residual_scale
  5720. - logits_scaling
  5721. """
  5722. if head_dim := self.hparams.pop("head_dim", None):
  5723. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  5724. super().set_gguf_parameters()
  5725. # NOTE: Convert _multiplier params to _scale params for naming
  5726. # consistency
  5727. if attention_scale := self.hparams.get("attention_multiplier"):
  5728. self.gguf_writer.add_attention_scale(attention_scale)
  5729. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  5730. if embedding_scale := self.hparams.get("embedding_multiplier"):
  5731. self.gguf_writer.add_embedding_scale(embedding_scale)
  5732. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  5733. if residual_scale := self.hparams.get("residual_multiplier"):
  5734. self.gguf_writer.add_residual_scale(residual_scale)
  5735. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  5736. if logits_scale := self.hparams.get("logits_scaling"):
  5737. self.gguf_writer.add_logit_scale(logits_scale)
  5738. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  5739. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  5740. class GraniteMoeModel(GraniteModel):
  5741. """Conversion for IBM's GraniteMoeForCausalLM"""
  5742. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  5743. def set_gguf_parameters(self):
  5744. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  5745. - shared_intermediate_size
  5746. """
  5747. super().set_gguf_parameters()
  5748. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  5749. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  5750. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  5751. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5752. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  5753. is used. This essentially merges w1 and w3 into a single tensor with 2x
  5754. the hidden size that is then split during forward. To keep compatibility
  5755. with existing mixtral support, we pull them apart here.
  5756. """
  5757. if name.endswith("block_sparse_moe.input_linear.weight"):
  5758. ffn_dim = self.hparams["intermediate_size"]
  5759. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  5760. gate, up = data_torch.split(ffn_dim, dim=-2)
  5761. return [
  5762. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  5763. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  5764. ]
  5765. has_experts = bool(self.hparams.get('num_local_experts'))
  5766. if name.endswith("shared_mlp.input_linear.weight"):
  5767. ffn_dim = self.hparams["shared_intermediate_size"]
  5768. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  5769. gate, up = data_torch.split(ffn_dim, dim=-2)
  5770. if has_experts:
  5771. return [
  5772. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  5773. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  5774. ]
  5775. return [
  5776. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  5777. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  5778. ]
  5779. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  5780. return [
  5781. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  5782. ]
  5783. return super().modify_tensors(data_torch, name, bid)
  5784. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  5785. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  5786. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  5787. layers and optionally uses MoE w/ a shared expert"""
  5788. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  5789. undo_permute = True
  5790. def __init__(self, *args, **kwargs):
  5791. # Hybrid mamba models use a prefix for the mamba-specific params.
  5792. # TODO: Extend this if the prefix(es) need to be configurable
  5793. self.hparam_prefixes = ["mamba"]
  5794. super().__init__(*args, **kwargs)
  5795. # Lists of which layers use ssm vs attention
  5796. self._attn_layers = self.get_attn_layers()
  5797. self._ssm_layers = [
  5798. i for i in range(self.block_count)
  5799. if i not in self._attn_layers
  5800. ]
  5801. # n_group and d_inner are used during reshape_tensors for mamba2
  5802. self.d_model = self.find_hparam(["hidden_size", "d_model"])
  5803. self.n_group = self.find_hparam(["n_groups"])
  5804. self.d_inner = self.find_hparam(["expand"]) * self.d_model
  5805. def get_attn_layers(self):
  5806. # Explicit list of layer type names
  5807. if layer_types := self.hparams.get("layer_types"):
  5808. return [
  5809. i for i, typ in enumerate(layer_types)
  5810. if typ == "attention"
  5811. ]
  5812. # Layer types indicated by index or period
  5813. attn_layers = self.hparams.get("attn_layer_indices", [])
  5814. if not attn_layers:
  5815. attn_period = self.hparams.get("attn_layer_period")
  5816. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  5817. attn_offset = self.hparams.get("attn_layer_offset")
  5818. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  5819. attn_layers = [
  5820. i for i in range(self.block_count)
  5821. if i % attn_period == attn_offset
  5822. ]
  5823. return attn_layers
  5824. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  5825. prefixed = []
  5826. for pfx in self.hparam_prefixes:
  5827. prefixed.extend(
  5828. "_".join([pfx, k])
  5829. for k in keys
  5830. )
  5831. keys = list(keys) + prefixed
  5832. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  5833. def modify_tensors(
  5834. self, data_torch: Tensor, name: str, bid: int | None
  5835. ) -> Iterable[tuple[str, Tensor]]:
  5836. if (
  5837. name.endswith("block_sparse_moe.input_linear.weight")
  5838. or "shared_mlp" in name
  5839. ):
  5840. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5841. # Determine whether this is a mamba layer or an attention layer
  5842. if bid in self._ssm_layers:
  5843. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  5844. elif bid in self._attn_layers:
  5845. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  5846. return [(self.map_tensor_name(name), data_torch)]
  5847. def set_gguf_parameters(self):
  5848. """This method merges params from both parents and some that are
  5849. specific to this model. The result is some duplication of how the params
  5850. get set. The following warnings are expected during conversion:
  5851. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  5852. WARNING:Duplicated key name 'granitehybrid.context_length'
  5853. """
  5854. GraniteMoeModel.set_gguf_parameters(self)
  5855. ## Mamba mixer params ##
  5856. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  5857. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state"]))
  5858. self.gguf_writer.add_ssm_group_count(self.n_group)
  5859. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5860. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  5861. # in llama.cpp
  5862. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads"]))
  5863. ## Attention params ##
  5864. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  5865. head_count_kv_vec = [
  5866. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  5867. ]
  5868. if rope_dim := self.hparams.get("attn_rotary_emb"):
  5869. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5870. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  5871. ## If Bamba, use rope, otherwise don't
  5872. use_rope = "BambaForCausalLM" in self.hparams["architectures"]
  5873. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  5874. if not use_rope:
  5875. self.gguf_writer.add_context_length(2**20)
  5876. ## Validation ##
  5877. d_head = self.find_hparam(["d_head"], optional=True) or 64
  5878. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  5879. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  5880. def set_vocab(self):
  5881. self.hparams["pad_vocab_size_multiple"] = 8
  5882. Mamba2Model.set_vocab(self)
  5883. @ModelBase.register("BailingMoeForCausalLM")
  5884. class BailingMoeModel(TextModel):
  5885. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  5886. def set_vocab(self):
  5887. self._set_vocab_gpt2()
  5888. def set_gguf_parameters(self):
  5889. super().set_gguf_parameters()
  5890. hparams = self.hparams
  5891. if (rope_dim := hparams.get("head_dim")) is None:
  5892. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5893. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5894. rope_scaling = self.hparams.get("rope_scaling") or {}
  5895. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5896. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5897. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5898. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5899. else:
  5900. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5901. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5902. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5903. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5904. self.gguf_writer.add_expert_weights_scale(1.0)
  5905. self.gguf_writer.add_expert_count(hparams["num_experts"])
  5906. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  5907. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5908. _experts: list[dict[str, Tensor]] | None = None
  5909. @staticmethod
  5910. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5911. if n_head_kv is not None and n_head != n_head_kv:
  5912. n_head = n_head_kv
  5913. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5914. .swapaxes(1, 2)
  5915. .reshape(weights.shape))
  5916. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5917. n_head = self.hparams["num_attention_heads"]
  5918. n_kv_head = self.hparams.get("num_key_value_heads")
  5919. n_embd = self.hparams["hidden_size"]
  5920. if (head_dim := self.hparams.get("head_dim")) is None:
  5921. head_dim = n_embd // n_head
  5922. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5923. if name.endswith("attention.dense.weight"):
  5924. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  5925. elif name.endswith("query_key_value.weight"):
  5926. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  5927. return [
  5928. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  5929. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  5930. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  5931. ]
  5932. elif name.find("mlp.experts") != -1:
  5933. n_experts = self.hparams["num_experts"]
  5934. assert bid is not None
  5935. tensors: list[tuple[str, Tensor]] = []
  5936. if self._experts is None:
  5937. self._experts = [{} for _ in range(self.block_count)]
  5938. self._experts[bid][name] = data_torch
  5939. if len(self._experts[bid]) >= n_experts * 3:
  5940. # merge the experts into a single 3d tensor
  5941. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5942. datas: list[Tensor] = []
  5943. for xid in range(n_experts):
  5944. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5945. datas.append(self._experts[bid][ename])
  5946. del self._experts[bid][ename]
  5947. data_torch = torch.stack(datas, dim=0)
  5948. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5949. new_name = self.map_tensor_name(merged_name)
  5950. tensors.append((new_name, data_torch))
  5951. return tensors
  5952. new_name = self.map_tensor_name(name)
  5953. if new_name == output_name and self.hparams.get("norm_head"):
  5954. data_torch = data_torch.float()
  5955. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  5956. return [(new_name, data_torch)]
  5957. def prepare_tensors(self):
  5958. super().prepare_tensors()
  5959. if self._experts is not None:
  5960. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5961. experts = [k for d in self._experts for k in d.keys()]
  5962. if len(experts) > 0:
  5963. raise ValueError(f"Unprocessed experts: {experts}")
  5964. @ModelBase.register("ChameleonForConditionalGeneration")
  5965. @ModelBase.register("ChameleonForCausalLM") # obsolete
  5966. class ChameleonModel(TextModel):
  5967. model_arch = gguf.MODEL_ARCH.CHAMELEON
  5968. def set_gguf_parameters(self):
  5969. super().set_gguf_parameters()
  5970. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  5971. def set_vocab(self):
  5972. self._set_vocab_gpt2()
  5973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5974. # ignore image tokenizer for now
  5975. # TODO: remove this once image support is implemented for Chameleon
  5976. if name.startswith("model.vqmodel"):
  5977. return []
  5978. n_head = self.hparams["num_attention_heads"]
  5979. n_kv_head = self.hparams.get("num_key_value_heads")
  5980. hidden_dim = self.hparams.get("hidden_size")
  5981. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5982. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5983. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5984. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5985. if name.endswith(("q_norm.weight", "q_norm.bias")):
  5986. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  5987. if name.endswith(("k_norm.weight", "k_norm.bias")):
  5988. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  5989. return [(self.map_tensor_name(name), data_torch)]
  5990. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  5991. @staticmethod
  5992. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  5993. head_dim = hidden_dim // n_heads
  5994. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  5995. data_torch = data_torch.repeat_interleave(n_heads, 0)
  5996. return data_torch
  5997. @ModelBase.register("UltravoxModel")
  5998. class UltravoxModel(TextModel):
  5999. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6000. def __init__(self, *args, **kwargs):
  6001. super().__init__(*args, **kwargs)
  6002. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6003. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6004. class WhisperEncoderModel(MmprojModel):
  6005. has_vision_encoder = False # no vision encoder
  6006. has_audio_encoder = True
  6007. def __init__(self, *args, **kwargs):
  6008. super().__init__(*args, **kwargs)
  6009. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6010. self.hparams["hidden_size"] = self.hparams["d_model"]
  6011. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6012. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6013. def set_gguf_parameters(self):
  6014. super().set_gguf_parameters()
  6015. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6016. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6017. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6018. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6019. del bid, new_name, n_dims # unused
  6020. if ".conv" in name and ".weight" in name:
  6021. return gguf.GGMLQuantizationType.F16
  6022. return False
  6023. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6024. del bid # unused
  6025. if name.startswith("language_model."):
  6026. # skip language model tensors
  6027. return []
  6028. # prevent clash naming with vision tensors
  6029. if name.startswith("multi_modal_projector"):
  6030. name = "audio." + name
  6031. if "conv1.bias" in name or "conv2.bias" in name:
  6032. # transpose conv1 and conv2 bias
  6033. data_torch = data_torch.unsqueeze(-1)
  6034. return [(self.map_tensor_name(name), data_torch)]
  6035. @ModelBase.register("UltravoxModel")
  6036. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6037. has_vision_encoder = False # no vision encoder
  6038. has_audio_encoder = True
  6039. def set_gguf_parameters(self):
  6040. super().set_gguf_parameters()
  6041. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6042. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6043. @ModelBase.register("VoxtralForConditionalGeneration")
  6044. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6045. has_vision_encoder = False # no vision encoder
  6046. has_audio_encoder = True
  6047. def set_gguf_parameters(self):
  6048. super().set_gguf_parameters()
  6049. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6050. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6051. @ModelBase.register("FalconH1ForCausalLM")
  6052. class FalconH1Model(Mamba2Model):
  6053. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6054. def __init__(self, *args, **kwargs):
  6055. # Set the hparam prefixes for Falcon Mamba2
  6056. self.hparam_prefixes = ["mamba"]
  6057. # Initialize the base Mamba2Model
  6058. super().__init__(*args, **kwargs)
  6059. # Use Llama conversion for attention
  6060. self._transformer_model_class = LlamaModel
  6061. # n_group and d_inner are used during reshape_tensors for mamba2
  6062. self.n_group = self.find_hparam(["n_groups"])
  6063. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6064. self.d_head = self.find_hparam(["d_head"])
  6065. # Initialize any Falcon Mamba2 specific attributes
  6066. self.has_attention = True # Falcon Mamba2 has attention components
  6067. # Load Falcon-H1 multipliers from hyperparameters
  6068. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6069. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6070. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6071. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6072. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6073. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6074. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6075. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6076. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6077. prefixed = []
  6078. for pfx in self.hparam_prefixes:
  6079. prefixed.extend(
  6080. "_".join([pfx, k])
  6081. for k in keys
  6082. )
  6083. keys = list(keys) + prefixed
  6084. return super().find_hparam(keys, *args, **kwargs)
  6085. def set_vocab(self):
  6086. self._set_vocab_gpt2()
  6087. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6088. tensors = list(super().modify_tensors(data_torch, name, bid))
  6089. tensor = tensors[0][1]
  6090. if "down_proj" in name:
  6091. tensor = tensor * self.mlp_multipliers[1]
  6092. elif "gate_proj" in name:
  6093. tensor = tensor * self.mlp_multipliers[0]
  6094. elif "k_proj" in name:
  6095. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6096. elif "q_proj" in name:
  6097. tensor = tensor * self.attention_in_multiplier
  6098. elif "v_proj" in name:
  6099. tensor = tensor * self.attention_in_multiplier
  6100. elif "o_proj" in name:
  6101. tensor = tensor * self.attention_out_multiplier
  6102. elif "out_proj" in name:
  6103. tensor = tensor * self.ssm_out_multiplier
  6104. elif "in_proj" in name:
  6105. tensor = tensor * self.ssm_in_multiplier
  6106. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6107. intermediate_size = self.hparams["mamba_d_ssm"]
  6108. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6109. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6110. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6111. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6112. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6113. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6114. elif "lm_head" in name:
  6115. tensor = tensor * self.hparams["lm_head_multiplier"]
  6116. elif "embed_tokens" in name:
  6117. tensor = tensor * self.hparams["embedding_multiplier"]
  6118. elif "mamba.norm" in name:
  6119. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6120. tensors = [(tensors[0][0], tensor)]
  6121. return tensors
  6122. def set_gguf_parameters(self):
  6123. super().set_gguf_parameters()
  6124. ## General Params ##
  6125. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6126. # Override some Mamba2 defaults
  6127. self.gguf_writer.add_block_count(self.block_count)
  6128. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6129. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6130. ## Attention params ##
  6131. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6132. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6133. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6134. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6135. ## Validation ##
  6136. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6137. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6138. # Add any other Falcon Mamba2 specific configuration
  6139. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6140. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6141. class HunYuanMoEModel(TextModel):
  6142. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6143. def set_vocab(self):
  6144. from transformers import AutoTokenizer
  6145. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6146. # 1. Get the pre-tokenizer identifier hash
  6147. tokpre = self.get_vocab_base_pre(tokenizer)
  6148. # 2. Reverse-engineer the merges list from mergeable_ranks
  6149. merges = []
  6150. vocab = {}
  6151. mergeable_ranks = tokenizer.mergeable_ranks
  6152. for token, rank in mergeable_ranks.items():
  6153. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6154. if len(token) == 1:
  6155. continue
  6156. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6157. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6158. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6159. # 3. Generate the tokens and toktypes lists
  6160. vocab_size = self.hparams["vocab_size"]
  6161. assert tokenizer.vocab_size == vocab_size
  6162. special_tokens = tokenizer.special_tokens
  6163. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6164. tokens: list[str] = []
  6165. toktypes: list[int] = []
  6166. for i in range(vocab_size):
  6167. if i not in reverse_vocab:
  6168. tokens.append(f"[PAD{i}]")
  6169. toktypes.append(gguf.TokenType.UNUSED)
  6170. else:
  6171. token = reverse_vocab[i]
  6172. tokens.append(token)
  6173. if i in special_tokens.values():
  6174. toktypes.append(gguf.TokenType.CONTROL)
  6175. else:
  6176. toktypes.append(gguf.TokenType.NORMAL)
  6177. # 4. Write all vocab-related fields to the GGUF writer
  6178. self.gguf_writer.add_tokenizer_model("gpt2")
  6179. self.gguf_writer.add_tokenizer_pre(tokpre)
  6180. self.gguf_writer.add_token_list(tokens)
  6181. self.gguf_writer.add_token_types(toktypes)
  6182. self.gguf_writer.add_token_merges(merges)
  6183. # 5. Add special tokens and chat templates
  6184. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6185. special_vocab.add_to_gguf(self.gguf_writer)
  6186. # FIX for BOS token: Overwrite incorrect id read from config.json
  6187. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6188. def set_gguf_parameters(self):
  6189. super().set_gguf_parameters()
  6190. hparams = self.hparams
  6191. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6192. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6193. moe_intermediate_size = hparams["moe_intermediate_size"]
  6194. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6195. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6196. moe_topk = hparams["moe_topk"]
  6197. assert all(topk == moe_topk[0] for topk in moe_topk)
  6198. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6199. moe_shared_expert = hparams["num_shared_expert"]
  6200. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6201. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6202. # Rope
  6203. rope_scaling = hparams.get("rope_scaling", {})
  6204. if rope_scaling.get("type") == "dynamic":
  6205. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6206. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6207. alpha = rope_scaling.get("alpha", 1000)
  6208. base = hparams.get("rope_theta", 10000.0)
  6209. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6210. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6211. self.gguf_writer.add_rope_freq_base(scaled_base)
  6212. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6213. self.gguf_writer.add_rope_scaling_factor(1)
  6214. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6215. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6216. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6217. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6218. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6219. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6220. _experts: list[dict[str, Tensor]] | None = None
  6221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6222. if name == "lm_head.weight":
  6223. if self.hparams.get("tie_word_embeddings", False):
  6224. logger.info("Skipping tied output layer 'lm_head.weight'")
  6225. return []
  6226. if name.find("mlp.experts") != -1:
  6227. n_experts = self.hparams["num_experts"]
  6228. assert bid is not None
  6229. if self._experts is None:
  6230. self._experts = [{} for _ in range(self.block_count)]
  6231. self._experts[bid][name] = data_torch
  6232. if len(self._experts[bid]) >= n_experts * 3:
  6233. # merge the experts into a single 3d tensor
  6234. tensors: list[tuple[str, Tensor]] = []
  6235. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6236. datas: list[Tensor] = []
  6237. for xid in range(n_experts):
  6238. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6239. datas.append(self._experts[bid][ename])
  6240. del self._experts[bid][ename]
  6241. data_torch = torch.stack(datas, dim=0)
  6242. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6243. new_name = self.map_tensor_name(merged_name)
  6244. tensors.append((new_name, data_torch))
  6245. return tensors
  6246. else:
  6247. return []
  6248. return [(self.map_tensor_name(name), data_torch)]
  6249. def prepare_tensors(self):
  6250. super().prepare_tensors()
  6251. if self._experts is not None:
  6252. experts = [k for d in self._experts for k in d.keys()]
  6253. if len(experts) > 0:
  6254. raise ValueError(f"Unprocessed experts: {experts}")
  6255. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6256. class HunYuanModel(TextModel):
  6257. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6258. def set_vocab(self):
  6259. if (self.dir_model / "tokenizer.json").is_file():
  6260. self._set_vocab_gpt2()
  6261. else:
  6262. from transformers import AutoTokenizer
  6263. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6264. # 1. Get the pre-tokenizer identifier hash
  6265. tokpre = self.get_vocab_base_pre(tokenizer)
  6266. # 2. Reverse-engineer the merges list from mergeable_ranks
  6267. merges = []
  6268. vocab = {}
  6269. mergeable_ranks = tokenizer.mergeable_ranks
  6270. for token, rank in mergeable_ranks.items():
  6271. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6272. if len(token) == 1:
  6273. continue
  6274. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6275. if len(merged) == 2:
  6276. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6277. # 3. Generate the tokens and toktypes lists
  6278. vocab_size = self.hparams["vocab_size"]
  6279. assert tokenizer.vocab_size == vocab_size
  6280. special_tokens = tokenizer.special_tokens
  6281. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6282. tokens: list[str] = []
  6283. toktypes: list[int] = []
  6284. for i in range(vocab_size):
  6285. if i not in reverse_vocab:
  6286. tokens.append(f"[PAD{i}]")
  6287. toktypes.append(gguf.TokenType.UNUSED)
  6288. else:
  6289. token = reverse_vocab[i]
  6290. tokens.append(token)
  6291. if i in special_tokens.values():
  6292. toktypes.append(gguf.TokenType.CONTROL)
  6293. else:
  6294. toktypes.append(gguf.TokenType.NORMAL)
  6295. # 4. Write all vocab-related fields to the GGUF writer
  6296. self.gguf_writer.add_tokenizer_model("gpt2")
  6297. self.gguf_writer.add_tokenizer_pre(tokpre)
  6298. self.gguf_writer.add_token_list(tokens)
  6299. self.gguf_writer.add_token_types(toktypes)
  6300. self.gguf_writer.add_token_merges(merges)
  6301. # 5. Add special tokens and chat templates
  6302. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6303. special_vocab.add_to_gguf(self.gguf_writer)
  6304. # FIX for BOS token: Overwrite incorrect id read from config.json
  6305. if self.hparams['hidden_size'] == 4096:
  6306. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6307. def set_gguf_parameters(self):
  6308. super().set_gguf_parameters()
  6309. hparams = self.hparams
  6310. # Rope
  6311. rope_scaling = hparams.get("rope_scaling", {})
  6312. if rope_scaling.get("type") == "dynamic":
  6313. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6314. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6315. alpha = rope_scaling.get("alpha", 50)
  6316. base = hparams.get("rope_theta", 10000.0)
  6317. dim = hparams["head_dim"]
  6318. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6319. self.gguf_writer.add_rope_freq_base(scaled_base)
  6320. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6321. self.gguf_writer.add_rope_scaling_factor(1)
  6322. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6323. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6324. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6325. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6326. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6327. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6328. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6329. if name == "lm_head.weight":
  6330. if self.hparams.get("tie_word_embeddings", False):
  6331. logger.info("Skipping tied output layer 'lm_head.weight'")
  6332. return []
  6333. return [(self.map_tensor_name(name), data_torch)]
  6334. @ModelBase.register("SmolLM3ForCausalLM")
  6335. class SmolLM3Model(LlamaModel):
  6336. model_arch = gguf.MODEL_ARCH.SMOLLM3
  6337. def set_vocab(self):
  6338. super().set_vocab()
  6339. # remove unsupported array slicing in chat template
  6340. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  6341. from transformers import AutoTokenizer
  6342. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6343. if tokenizer.chat_template is not None:
  6344. chat_template = tokenizer.chat_template.replace("[:]", "")
  6345. self.gguf_writer.add_chat_template(chat_template)
  6346. @ModelBase.register("Lfm2ForCausalLM")
  6347. @ModelBase.register("LFM2ForCausalLM")
  6348. class LFM2Model(TextModel):
  6349. model_arch = gguf.MODEL_ARCH.LFM2
  6350. def _add_feed_forward_length(self):
  6351. ff_dim = self.hparams["block_ff_dim"]
  6352. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  6353. ff_dim = self.hparams["block_ff_dim"]
  6354. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  6355. multiple_of = self.hparams["block_multiple_of"]
  6356. if auto_adjust_ff_dim:
  6357. ff_dim = int(2 * ff_dim / 3)
  6358. # custom dim factor multiplier
  6359. if ffn_dim_multiplier is not None:
  6360. ff_dim = int(ffn_dim_multiplier * ff_dim)
  6361. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  6362. self.gguf_writer.add_feed_forward_length(ff_dim)
  6363. def set_gguf_parameters(self):
  6364. # set num_key_value_heads only for attention layers
  6365. self.hparams["num_key_value_heads"] = [
  6366. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  6367. for layer_type in self.hparams["layer_types"]
  6368. ]
  6369. super().set_gguf_parameters()
  6370. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6371. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  6372. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  6373. self._add_feed_forward_length()
  6374. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6375. # conv op requires 2d tensor
  6376. if 'conv.conv' in name:
  6377. data_torch = data_torch.squeeze(1)
  6378. return [(self.map_tensor_name(name), data_torch)]
  6379. @ModelBase.register("SmallThinkerForCausalLM")
  6380. class SmallThinkerModel(TextModel):
  6381. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  6382. def set_gguf_parameters(self):
  6383. super().set_gguf_parameters()
  6384. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  6385. self.gguf_writer.add_expert_count(n_experts)
  6386. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  6387. self.gguf_writer.add_expert_used_count(n_experts_used)
  6388. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  6389. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6390. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  6391. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6392. if (self.hparams.get('moe_primary_router_apply_softmax')):
  6393. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  6394. else:
  6395. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6396. # YaRN is not enabled by default
  6397. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6398. rope_scaling = self.hparams.get("rope_scaling") or {}
  6399. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6400. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6401. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6402. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6403. sliding_window_layout = self.hparams.get("sliding_window_layout")
  6404. if sliding_window_layout:
  6405. for i in sliding_window_layout:
  6406. if i != 0:
  6407. sliding_window = self.hparams.get("sliding_window_size")
  6408. if sliding_window:
  6409. self.gguf_writer.add_sliding_window(sliding_window)
  6410. break
  6411. _experts: list[dict[str, Tensor]] | None = None
  6412. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6413. # process the experts separately
  6414. if name.find("experts") != -1:
  6415. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  6416. assert bid is not None
  6417. if self._experts is None:
  6418. self._experts = [{} for _ in range(self.block_count)]
  6419. self._experts[bid][name] = data_torch
  6420. if len(self._experts[bid]) >= n_experts * 3:
  6421. tensors: list[tuple[str, Tensor]] = []
  6422. # merge the experts into a single 3d tensor
  6423. for w_name in ["down", "gate", "up"]:
  6424. datas: list[Tensor] = []
  6425. for xid in range(n_experts):
  6426. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6427. datas.append(self._experts[bid][ename])
  6428. del self._experts[bid][ename]
  6429. data_torch = torch.stack(datas, dim=0)
  6430. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6431. new_name = self.map_tensor_name(merged_name)
  6432. tensors.append((new_name, data_torch))
  6433. return tensors
  6434. else:
  6435. return []
  6436. return [(self.map_tensor_name(name), data_torch)]
  6437. def prepare_tensors(self):
  6438. super().prepare_tensors()
  6439. if self._experts is not None:
  6440. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6441. experts = [k for d in self._experts for k in d.keys()]
  6442. if len(experts) > 0:
  6443. raise ValueError(f"Unprocessed experts: {experts}")
  6444. ###### CONVERSION LOGIC ######
  6445. # tree of lazy tensors
  6446. class LazyTorchTensor(gguf.LazyBase):
  6447. _tensor_type = torch.Tensor
  6448. # to keep the type-checker happy
  6449. dtype: torch.dtype
  6450. shape: torch.Size
  6451. # only used when converting a torch.Tensor to a np.ndarray
  6452. _dtype_map: dict[torch.dtype, type] = {
  6453. torch.float16: np.float16,
  6454. torch.float32: np.float32,
  6455. }
  6456. # used for safetensors slices
  6457. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  6458. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  6459. _dtype_str_map: dict[str, torch.dtype] = {
  6460. "F64": torch.float64,
  6461. "F32": torch.float32,
  6462. "BF16": torch.bfloat16,
  6463. "F16": torch.float16,
  6464. # "U64": torch.uint64,
  6465. "I64": torch.int64,
  6466. # "U32": torch.uint32,
  6467. "I32": torch.int32,
  6468. # "U16": torch.uint16,
  6469. "I16": torch.int16,
  6470. "U8": torch.uint8,
  6471. "I8": torch.int8,
  6472. "BOOL": torch.bool,
  6473. "F8_E4M3": torch.float8_e4m3fn,
  6474. "F8_E5M2": torch.float8_e5m2,
  6475. }
  6476. def numpy(self) -> gguf.LazyNumpyTensor:
  6477. dtype = self._dtype_map[self.dtype]
  6478. return gguf.LazyNumpyTensor(
  6479. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  6480. args=(self,),
  6481. func=(lambda s: s.numpy())
  6482. )
  6483. @classmethod
  6484. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  6485. return torch.empty(size=shape, dtype=dtype, device="meta")
  6486. @classmethod
  6487. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  6488. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  6489. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  6490. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  6491. return cast(torch.Tensor, lazy)
  6492. @classmethod
  6493. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  6494. dtype = cls._dtype_str_map[remote_tensor.dtype]
  6495. shape = remote_tensor.shape
  6496. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  6497. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  6498. return cast(torch.Tensor, lazy)
  6499. @classmethod
  6500. def __torch_function__(cls, func, types, args=(), kwargs=None):
  6501. del types # unused
  6502. if kwargs is None:
  6503. kwargs = {}
  6504. if func is torch.Tensor.numpy:
  6505. return args[0].numpy()
  6506. return cls._wrap_fn(func)(*args, **kwargs)
  6507. def parse_args() -> argparse.Namespace:
  6508. parser = argparse.ArgumentParser(
  6509. description="Convert a huggingface model to a GGML compatible file")
  6510. parser.add_argument(
  6511. "--vocab-only", action="store_true",
  6512. help="extract only the vocab",
  6513. )
  6514. parser.add_argument(
  6515. "--outfile", type=Path,
  6516. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  6517. )
  6518. parser.add_argument(
  6519. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  6520. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  6521. )
  6522. parser.add_argument(
  6523. "--bigendian", action="store_true",
  6524. help="model is executed on big endian machine",
  6525. )
  6526. parser.add_argument(
  6527. "model", type=str,
  6528. help="directory containing model file or huggingface repository ID (if --remote)",
  6529. nargs="?",
  6530. )
  6531. parser.add_argument(
  6532. "--use-temp-file", action="store_true",
  6533. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  6534. )
  6535. parser.add_argument(
  6536. "--no-lazy", action="store_true",
  6537. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  6538. )
  6539. parser.add_argument(
  6540. "--model-name", type=str, default=None,
  6541. help="name of the model",
  6542. )
  6543. parser.add_argument(
  6544. "--verbose", action="store_true",
  6545. help="increase output verbosity",
  6546. )
  6547. parser.add_argument(
  6548. "--split-max-tensors", type=int, default=0,
  6549. help="max tensors in each split",
  6550. )
  6551. parser.add_argument(
  6552. "--split-max-size", type=str, default="0",
  6553. help="max size per split N(M|G)",
  6554. )
  6555. parser.add_argument(
  6556. "--dry-run", action="store_true",
  6557. help="only print out a split plan and exit, without writing any new files",
  6558. )
  6559. parser.add_argument(
  6560. "--no-tensor-first-split", action="store_true",
  6561. help="do not add tensors to the first split (disabled by default)"
  6562. )
  6563. parser.add_argument(
  6564. "--metadata", type=Path,
  6565. help="Specify the path for an authorship metadata override file"
  6566. )
  6567. parser.add_argument(
  6568. "--print-supported-models", action="store_true",
  6569. help="Print the supported models"
  6570. )
  6571. parser.add_argument(
  6572. "--remote", action="store_true",
  6573. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  6574. )
  6575. parser.add_argument(
  6576. "--mmproj", action="store_true",
  6577. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  6578. )
  6579. args = parser.parse_args()
  6580. if not args.print_supported_models and args.model is None:
  6581. parser.error("the following arguments are required: model")
  6582. return args
  6583. def split_str_to_n_bytes(split_str: str) -> int:
  6584. if split_str.endswith("K"):
  6585. n = int(split_str[:-1]) * 1000
  6586. elif split_str.endswith("M"):
  6587. n = int(split_str[:-1]) * 1000 * 1000
  6588. elif split_str.endswith("G"):
  6589. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  6590. elif split_str.isnumeric():
  6591. n = int(split_str)
  6592. else:
  6593. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  6594. if n < 0:
  6595. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  6596. return n
  6597. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  6598. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  6599. # maybe we should fallback to text model's arch in that case, since not many models have both
  6600. text_config = hparams.get("text_config", {})
  6601. vision_config = hparams.get("vision_config", {})
  6602. arch = None
  6603. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  6604. arch = arches[0]
  6605. elif "ssm_cfg" in hparams:
  6606. # For non-hf Mamba and Mamba2 models
  6607. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  6608. # if "architectures" is found in the sub-config, use that instead
  6609. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  6610. arch = text_config["architectures"][0]
  6611. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  6612. arch = vision_config["architectures"][0]
  6613. if arch is None:
  6614. raise ValueError("Failed to detect model architecture")
  6615. return arch
  6616. def main() -> None:
  6617. args = parse_args()
  6618. if args.print_supported_models:
  6619. logger.error("Supported models:")
  6620. ModelBase.print_registered_models()
  6621. sys.exit(0)
  6622. if args.verbose:
  6623. logging.basicConfig(level=logging.DEBUG)
  6624. else:
  6625. logging.basicConfig(level=logging.INFO)
  6626. if args.remote:
  6627. hf_repo_id = args.model
  6628. from huggingface_hub import snapshot_download
  6629. local_dir = snapshot_download(
  6630. repo_id=hf_repo_id,
  6631. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  6632. dir_model = Path(local_dir)
  6633. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  6634. else:
  6635. hf_repo_id = None
  6636. dir_model = Path(args.model)
  6637. if not dir_model.is_dir():
  6638. logger.error(f'Error: {dir_model} is not a directory')
  6639. sys.exit(1)
  6640. ftype_map: dict[str, gguf.LlamaFileType] = {
  6641. "f32": gguf.LlamaFileType.ALL_F32,
  6642. "f16": gguf.LlamaFileType.MOSTLY_F16,
  6643. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  6644. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  6645. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  6646. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  6647. "auto": gguf.LlamaFileType.GUESSED,
  6648. }
  6649. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  6650. if args.use_temp_file and is_split:
  6651. logger.error("Error: Cannot use temp file when splitting")
  6652. sys.exit(1)
  6653. if args.outfile is not None:
  6654. fname_out = args.outfile
  6655. elif hf_repo_id:
  6656. # if remote, use the model ID as the output file name
  6657. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  6658. else:
  6659. fname_out = dir_model
  6660. logger.info(f"Loading model: {dir_model.name}")
  6661. if args.mmproj:
  6662. if "mmproj" not in fname_out.name:
  6663. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  6664. with torch.inference_mode():
  6665. output_type = ftype_map[args.outtype]
  6666. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  6667. hparams = ModelBase.load_hparams(dir_model)
  6668. model_architecture = get_model_architecture(hparams, model_type)
  6669. logger.info(f"Model architecture: {model_architecture}")
  6670. try:
  6671. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  6672. except NotImplementedError:
  6673. logger.error(f"Model {model_architecture} is not supported")
  6674. sys.exit(1)
  6675. model_instance = model_class(dir_model, output_type, fname_out,
  6676. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  6677. eager=args.no_lazy,
  6678. metadata_override=args.metadata, model_name=args.model_name,
  6679. split_max_tensors=args.split_max_tensors,
  6680. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  6681. small_first_shard=args.no_tensor_first_split,
  6682. remote_hf_model_id=hf_repo_id)
  6683. if args.vocab_only:
  6684. logger.info("Exporting model vocab...")
  6685. model_instance.write_vocab()
  6686. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  6687. else:
  6688. logger.info("Exporting model...")
  6689. model_instance.write()
  6690. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  6691. logger.info(f"Model successfully exported to {out_path}")
  6692. if __name__ == '__main__':
  6693. main()