server.cpp 232 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804
  1. #include "chat.h"
  2. #include "utils.hpp"
  3. #include "arg.h"
  4. #include "common.h"
  5. #include "json-schema-to-grammar.h"
  6. #include "llama.h"
  7. #include "log.h"
  8. #include "sampling.h"
  9. #include "speculative.h"
  10. #include "mtmd.h"
  11. // mime type for sending response
  12. #define MIMETYPE_JSON "application/json; charset=utf-8"
  13. // auto generated files (see README.md for details)
  14. #include "index.html.gz.hpp"
  15. #include "loading.html.hpp"
  16. #include <atomic>
  17. #include <chrono>
  18. #include <condition_variable>
  19. #include <cstddef>
  20. #include <cinttypes>
  21. #include <deque>
  22. #include <memory>
  23. #include <mutex>
  24. #include <signal.h>
  25. #include <thread>
  26. #include <unordered_map>
  27. #include <unordered_set>
  28. using json = nlohmann::ordered_json;
  29. constexpr int HTTP_POLLING_SECONDS = 1;
  30. enum stop_type {
  31. STOP_TYPE_NONE,
  32. STOP_TYPE_EOS,
  33. STOP_TYPE_WORD,
  34. STOP_TYPE_LIMIT,
  35. };
  36. // state diagram: https://github.com/ggml-org/llama.cpp/pull/9283
  37. enum slot_state {
  38. SLOT_STATE_IDLE,
  39. SLOT_STATE_STARTED, // TODO: this state is only used for setting up the initial prompt processing; maybe merge it with launch_slot_with_task in the future
  40. SLOT_STATE_PROCESSING_PROMPT,
  41. SLOT_STATE_DONE_PROMPT,
  42. SLOT_STATE_GENERATING,
  43. };
  44. enum server_state {
  45. SERVER_STATE_LOADING_MODEL, // Server is starting up, model not fully loaded yet
  46. SERVER_STATE_READY, // Server is ready and model is loaded
  47. };
  48. enum server_task_type {
  49. SERVER_TASK_TYPE_COMPLETION,
  50. SERVER_TASK_TYPE_EMBEDDING,
  51. SERVER_TASK_TYPE_RERANK,
  52. SERVER_TASK_TYPE_INFILL,
  53. SERVER_TASK_TYPE_CANCEL,
  54. SERVER_TASK_TYPE_NEXT_RESPONSE,
  55. SERVER_TASK_TYPE_METRICS,
  56. SERVER_TASK_TYPE_SLOT_SAVE,
  57. SERVER_TASK_TYPE_SLOT_RESTORE,
  58. SERVER_TASK_TYPE_SLOT_ERASE,
  59. SERVER_TASK_TYPE_SET_LORA,
  60. };
  61. enum oaicompat_type {
  62. OAICOMPAT_TYPE_NONE,
  63. OAICOMPAT_TYPE_CHAT,
  64. OAICOMPAT_TYPE_COMPLETION,
  65. OAICOMPAT_TYPE_EMBEDDING,
  66. };
  67. // https://community.openai.com/t/openai-chat-list-of-error-codes-and-types/357791/11
  68. enum error_type {
  69. ERROR_TYPE_INVALID_REQUEST,
  70. ERROR_TYPE_AUTHENTICATION,
  71. ERROR_TYPE_SERVER,
  72. ERROR_TYPE_NOT_FOUND,
  73. ERROR_TYPE_PERMISSION,
  74. ERROR_TYPE_UNAVAILABLE, // custom error
  75. ERROR_TYPE_NOT_SUPPORTED, // custom error
  76. ERROR_TYPE_EXCEED_CONTEXT_SIZE, // custom error
  77. };
  78. static bool server_task_type_need_embd(server_task_type task_type) {
  79. switch (task_type) {
  80. case SERVER_TASK_TYPE_EMBEDDING:
  81. case SERVER_TASK_TYPE_RERANK:
  82. return true;
  83. default:
  84. return false;
  85. }
  86. }
  87. static bool server_task_type_need_logits(server_task_type task_type) {
  88. switch (task_type) {
  89. case SERVER_TASK_TYPE_COMPLETION:
  90. case SERVER_TASK_TYPE_INFILL:
  91. return true;
  92. default:
  93. return false;
  94. }
  95. }
  96. struct slot_params {
  97. bool stream = true;
  98. bool include_usage = false;
  99. bool cache_prompt = true; // remember the prompt to avoid reprocessing all prompt
  100. bool return_tokens = false;
  101. bool return_progress = false;
  102. int32_t n_keep = 0; // number of tokens to keep from initial prompt
  103. int32_t n_discard = 0; // number of tokens after n_keep that may be discarded when shifting context, 0 defaults to half
  104. int32_t n_predict = -1; // new tokens to predict
  105. int32_t n_indent = 0; // minimum line indentation for the generated text in number of whitespace characters
  106. int64_t t_max_prompt_ms = -1; // TODO: implement
  107. int64_t t_max_predict_ms = -1; // if positive, limit the generation phase to this time limit
  108. std::vector<common_adapter_lora_info> lora;
  109. std::vector<std::string> antiprompt;
  110. std::vector<std::string> response_fields;
  111. bool timings_per_token = false;
  112. bool post_sampling_probs = false;
  113. struct common_params_sampling sampling;
  114. struct common_params_speculative speculative;
  115. // OAI-compat fields
  116. bool verbose = false;
  117. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  118. std::string oaicompat_model;
  119. std::string oaicompat_cmpl_id;
  120. common_chat_syntax oaicompat_chat_syntax;
  121. // Embeddings
  122. int32_t embd_normalize = 2; // (-1=none, 0=max absolute int16, 1=taxicab, 2=Euclidean/L2, >2=p-norm)
  123. json to_json(bool only_metrics = false) const {
  124. std::vector<std::string> samplers;
  125. samplers.reserve(sampling.samplers.size());
  126. for (const auto & sampler : sampling.samplers) {
  127. samplers.emplace_back(common_sampler_type_to_str(sampler));
  128. }
  129. json lora = json::array();
  130. for (size_t i = 0; i < this->lora.size(); ++i) {
  131. lora.push_back({{"id", i}, {"scale", this->lora[i].scale}});
  132. }
  133. if (only_metrics) {
  134. return json {
  135. {"seed", sampling.seed},
  136. {"temperature", sampling.temp},
  137. {"dynatemp_range", sampling.dynatemp_range},
  138. {"dynatemp_exponent", sampling.dynatemp_exponent},
  139. {"top_k", sampling.top_k},
  140. {"top_p", sampling.top_p},
  141. {"min_p", sampling.min_p},
  142. {"top_n_sigma", sampling.top_n_sigma},
  143. {"xtc_probability", sampling.xtc_probability},
  144. {"xtc_threshold", sampling.xtc_threshold},
  145. {"typical_p", sampling.typ_p},
  146. {"repeat_last_n", sampling.penalty_last_n},
  147. {"repeat_penalty", sampling.penalty_repeat},
  148. {"presence_penalty", sampling.penalty_present},
  149. {"frequency_penalty", sampling.penalty_freq},
  150. {"dry_multiplier", sampling.dry_multiplier},
  151. {"dry_base", sampling.dry_base},
  152. {"dry_allowed_length", sampling.dry_allowed_length},
  153. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  154. {"mirostat", sampling.mirostat},
  155. {"mirostat_tau", sampling.mirostat_tau},
  156. {"mirostat_eta", sampling.mirostat_eta},
  157. {"max_tokens", n_predict},
  158. {"n_predict", n_predict}, // TODO: deduplicate?
  159. {"n_keep", n_keep},
  160. {"n_discard", n_discard},
  161. {"ignore_eos", sampling.ignore_eos},
  162. {"stream", stream},
  163. {"n_probs", sampling.n_probs},
  164. {"min_keep", sampling.min_keep},
  165. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  166. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  167. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  168. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  169. {"samplers", samplers},
  170. {"speculative.n_max", speculative.n_max},
  171. {"speculative.n_min", speculative.n_min},
  172. {"speculative.p_min", speculative.p_min},
  173. {"timings_per_token", timings_per_token},
  174. {"post_sampling_probs", post_sampling_probs},
  175. {"lora", lora},
  176. };
  177. }
  178. auto grammar_triggers = json::array();
  179. for (const auto & trigger : sampling.grammar_triggers) {
  180. server_grammar_trigger ct(trigger);
  181. grammar_triggers.push_back(ct.to_json());
  182. }
  183. return json {
  184. {"seed", sampling.seed},
  185. {"temperature", sampling.temp},
  186. {"dynatemp_range", sampling.dynatemp_range},
  187. {"dynatemp_exponent", sampling.dynatemp_exponent},
  188. {"top_k", sampling.top_k},
  189. {"top_p", sampling.top_p},
  190. {"min_p", sampling.min_p},
  191. {"top_n_sigma", sampling.top_n_sigma},
  192. {"xtc_probability", sampling.xtc_probability},
  193. {"xtc_threshold", sampling.xtc_threshold},
  194. {"typical_p", sampling.typ_p},
  195. {"repeat_last_n", sampling.penalty_last_n},
  196. {"repeat_penalty", sampling.penalty_repeat},
  197. {"presence_penalty", sampling.penalty_present},
  198. {"frequency_penalty", sampling.penalty_freq},
  199. {"dry_multiplier", sampling.dry_multiplier},
  200. {"dry_base", sampling.dry_base},
  201. {"dry_allowed_length", sampling.dry_allowed_length},
  202. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  203. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  204. {"mirostat", sampling.mirostat},
  205. {"mirostat_tau", sampling.mirostat_tau},
  206. {"mirostat_eta", sampling.mirostat_eta},
  207. {"stop", antiprompt},
  208. {"max_tokens", n_predict},
  209. {"n_predict", n_predict}, // TODO: deduplicate?
  210. {"n_keep", n_keep},
  211. {"n_discard", n_discard},
  212. {"ignore_eos", sampling.ignore_eos},
  213. {"stream", stream},
  214. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  215. {"n_probs", sampling.n_probs},
  216. {"min_keep", sampling.min_keep},
  217. {"grammar", sampling.grammar},
  218. {"grammar_lazy", sampling.grammar_lazy},
  219. {"grammar_triggers", grammar_triggers},
  220. {"preserved_tokens", sampling.preserved_tokens},
  221. {"chat_format", common_chat_format_name(oaicompat_chat_syntax.format)},
  222. {"reasoning_format", common_reasoning_format_name(oaicompat_chat_syntax.reasoning_format)},
  223. {"reasoning_in_content", oaicompat_chat_syntax.reasoning_in_content},
  224. {"thinking_forced_open", oaicompat_chat_syntax.thinking_forced_open},
  225. {"samplers", samplers},
  226. {"speculative.n_max", speculative.n_max},
  227. {"speculative.n_min", speculative.n_min},
  228. {"speculative.p_min", speculative.p_min},
  229. {"timings_per_token", timings_per_token},
  230. {"post_sampling_probs", post_sampling_probs},
  231. {"lora", lora},
  232. };
  233. }
  234. };
  235. struct server_task {
  236. int id = -1; // to be filled by server_queue
  237. int index = -1; // used when there are multiple prompts (batch request)
  238. // used by SERVER_TASK_TYPE_CANCEL
  239. int id_target = -1;
  240. int id_slot = -1;
  241. // used by SERVER_TASK_TYPE_INFERENCE
  242. slot_params params;
  243. server_tokens tokens;
  244. server_task_type type;
  245. // used by SERVER_TASK_TYPE_SLOT_SAVE, SERVER_TASK_TYPE_SLOT_RESTORE, SERVER_TASK_TYPE_SLOT_ERASE
  246. struct slot_action {
  247. int slot_id;
  248. std::string filename;
  249. std::string filepath;
  250. };
  251. slot_action slot_action;
  252. // used by SERVER_TASK_TYPE_METRICS
  253. bool metrics_reset_bucket = false;
  254. // used by SERVER_TASK_TYPE_SET_LORA
  255. std::vector<common_adapter_lora_info> set_lora;
  256. server_task() = default;
  257. server_task(server_task_type type) : type(type) {}
  258. int32_t n_tokens() const {
  259. return tokens.size();
  260. }
  261. static slot_params params_from_json_cmpl(
  262. const llama_context * ctx,
  263. const common_params & params_base,
  264. const json & data) {
  265. const llama_model * model = llama_get_model(ctx);
  266. const llama_vocab * vocab = llama_model_get_vocab(model);
  267. slot_params params;
  268. // Sampling parameter defaults are loaded from the global server context (but individual requests can still override them)
  269. slot_params defaults;
  270. defaults.sampling = params_base.sampling;
  271. defaults.speculative = params_base.speculative;
  272. defaults.n_keep = params_base.n_keep;
  273. defaults.n_predict = params_base.n_predict;
  274. defaults.antiprompt = params_base.antiprompt;
  275. // enabling this will output extra debug information in the HTTP responses from the server
  276. params.verbose = params_base.verbosity > 9;
  277. params.timings_per_token = json_value(data, "timings_per_token", false);
  278. params.stream = json_value(data, "stream", false);
  279. auto stream_opt = json_value(data, "stream_options", json::object());
  280. params.include_usage = json_value(stream_opt, "include_usage", false);
  281. params.cache_prompt = json_value(data, "cache_prompt", true);
  282. params.return_tokens = json_value(data, "return_tokens", false);
  283. params.return_progress = json_value(data, "return_progress", false);
  284. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  285. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  286. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  287. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  288. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  289. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  290. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  291. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  292. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  293. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  294. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  295. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  296. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  297. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  298. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  299. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  300. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  301. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  302. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  303. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  304. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  305. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  306. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  307. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  308. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  309. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  310. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  311. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  312. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  313. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  314. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  315. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  316. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  317. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  318. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  319. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  320. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  321. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  322. // Use OpenAI API logprobs only if n_probs wasn't provided
  323. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  324. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  325. }
  326. if (data.contains("lora")) {
  327. if (data.at("lora").is_array()) {
  328. params.lora = parse_lora_request(params_base.lora_adapters, data.at("lora"));
  329. } else {
  330. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  331. }
  332. } else {
  333. params.lora = params_base.lora_adapters;
  334. }
  335. // TODO: add more sanity checks for the input parameters
  336. if (params.sampling.penalty_last_n < -1) {
  337. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  338. }
  339. if (params.sampling.dry_penalty_last_n < -1) {
  340. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  341. }
  342. if (params.sampling.penalty_last_n == -1) {
  343. // note: should be the slot's context and not the full context, but it's ok
  344. params.sampling.penalty_last_n = llama_n_ctx(ctx);
  345. }
  346. if (params.sampling.dry_penalty_last_n == -1) {
  347. params.sampling.dry_penalty_last_n = llama_n_ctx(ctx);
  348. }
  349. if (params.sampling.dry_base < 1.0f) {
  350. params.sampling.dry_base = defaults.sampling.dry_base;
  351. }
  352. // sequence breakers for DRY
  353. {
  354. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  355. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  356. if (data.contains("dry_sequence_breakers")) {
  357. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  358. if (params.sampling.dry_sequence_breakers.empty()) {
  359. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  360. }
  361. }
  362. }
  363. // process "json_schema" and "grammar"
  364. if (data.contains("json_schema") && !data.contains("grammar")) {
  365. try {
  366. auto schema = json_value(data, "json_schema", json::object());
  367. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  368. params.sampling.grammar = json_schema_to_grammar(schema);
  369. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  370. } catch (const std::exception & e) {
  371. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  372. }
  373. } else {
  374. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  375. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  376. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  377. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  378. }
  379. {
  380. auto it = data.find("chat_format");
  381. if (it != data.end()) {
  382. params.oaicompat_chat_syntax.format = static_cast<common_chat_format>(it->get<int>());
  383. SRV_INF("Chat format: %s\n", common_chat_format_name(params.oaicompat_chat_syntax.format));
  384. } else {
  385. params.oaicompat_chat_syntax.format = defaults.oaicompat_chat_syntax.format;
  386. }
  387. common_reasoning_format reasoning_format = params_base.reasoning_format;
  388. if (data.contains("reasoning_format")) {
  389. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  390. }
  391. params.oaicompat_chat_syntax.reasoning_format = reasoning_format;
  392. params.oaicompat_chat_syntax.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  393. params.oaicompat_chat_syntax.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  394. params.oaicompat_chat_syntax.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  395. }
  396. {
  397. const auto preserved_tokens = data.find("preserved_tokens");
  398. if (preserved_tokens != data.end()) {
  399. for (const auto & t : *preserved_tokens) {
  400. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  401. if (ids.size() == 1) {
  402. SRV_DBG("Preserved token: %d\n", ids[0]);
  403. params.sampling.preserved_tokens.insert(ids[0]);
  404. } else {
  405. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  406. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  407. }
  408. }
  409. }
  410. const auto grammar_triggers = data.find("grammar_triggers");
  411. if (grammar_triggers != data.end()) {
  412. for (const auto & t : *grammar_triggers) {
  413. server_grammar_trigger ct(t);
  414. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  415. const auto & word = ct.value.value;
  416. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  417. if (ids.size() == 1) {
  418. auto token = ids[0];
  419. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  420. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  421. }
  422. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  423. common_grammar_trigger trigger;
  424. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  425. trigger.value = word;
  426. trigger.token = token;
  427. params.sampling.grammar_triggers.push_back(std::move(trigger));
  428. } else {
  429. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  430. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  431. }
  432. } else {
  433. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  434. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  435. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  436. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  437. } else {
  438. throw std::runtime_error("Unknown grammar trigger type");
  439. }
  440. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  441. }
  442. }
  443. }
  444. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  445. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  446. }
  447. }
  448. {
  449. params.sampling.logit_bias.clear();
  450. const auto & logit_bias = data.find("logit_bias");
  451. if (logit_bias != data.end() && logit_bias->is_array()) {
  452. const int n_vocab = llama_vocab_n_tokens(vocab);
  453. for (const auto & el : *logit_bias) {
  454. // TODO: we may want to throw errors here, in case "el" is incorrect
  455. if (el.is_array() && el.size() == 2) {
  456. float bias;
  457. if (el[1].is_number()) {
  458. bias = el[1].get<float>();
  459. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  460. bias = -INFINITY;
  461. } else {
  462. continue;
  463. }
  464. if (el[0].is_number_integer()) {
  465. llama_token tok = el[0].get<llama_token>();
  466. if (tok >= 0 && tok < n_vocab) {
  467. params.sampling.logit_bias.push_back({tok, bias});
  468. }
  469. } else if (el[0].is_string()) {
  470. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  471. for (auto tok : toks) {
  472. params.sampling.logit_bias.push_back({tok, bias});
  473. }
  474. }
  475. }
  476. }
  477. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  478. const int n_vocab = llama_vocab_n_tokens(vocab);
  479. for (const auto & el : logit_bias->items()) {
  480. float bias;
  481. const auto & key = el.key();
  482. const auto & value = el.value();
  483. if (value.is_number()) {
  484. bias = value.get<float>();
  485. } else if (value.is_boolean() && !value.get<bool>()) {
  486. bias = -INFINITY;
  487. } else {
  488. continue;
  489. }
  490. char *end;
  491. llama_token tok = strtol(key.c_str(), &end, 10);
  492. if (*end == 0) {
  493. if (tok >= 0 && tok < n_vocab) {
  494. params.sampling.logit_bias.push_back({tok, bias});
  495. }
  496. } else {
  497. auto toks = common_tokenize(vocab, key, false);
  498. for (auto tok : toks) {
  499. params.sampling.logit_bias.push_back({tok, bias});
  500. }
  501. }
  502. }
  503. }
  504. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  505. if (params.sampling.ignore_eos) {
  506. params.sampling.logit_bias.insert(
  507. params.sampling.logit_bias.end(),
  508. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  509. }
  510. }
  511. {
  512. params.antiprompt.clear();
  513. const auto & stop = data.find("stop");
  514. if (stop != data.end() && stop->is_array()) {
  515. for (const auto & word : *stop) {
  516. if (!word.empty()) {
  517. params.antiprompt.push_back(word);
  518. }
  519. }
  520. }
  521. // set reverse prompt from cli args if not set in the request
  522. if (params.antiprompt.empty()) {
  523. params.antiprompt = defaults.antiprompt;
  524. }
  525. }
  526. {
  527. const auto samplers = data.find("samplers");
  528. if (samplers != data.end()) {
  529. if (samplers->is_array()) {
  530. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  531. } else if (samplers->is_string()){
  532. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  533. }
  534. } else {
  535. params.sampling.samplers = defaults.sampling.samplers;
  536. }
  537. }
  538. std::string model_name = params_base.model_alias.empty() ? DEFAULT_OAICOMPAT_MODEL : params_base.model_alias;
  539. params.oaicompat_model = json_value(data, "model", model_name);
  540. return params;
  541. }
  542. // utility function
  543. static std::unordered_set<int> get_list_id(const std::vector<server_task> & tasks) {
  544. std::unordered_set<int> ids(tasks.size());
  545. for (size_t i = 0; i < tasks.size(); i++) {
  546. ids.insert(tasks[i].id);
  547. }
  548. return ids;
  549. }
  550. };
  551. struct result_timings {
  552. int32_t cache_n = -1;
  553. int32_t prompt_n = -1;
  554. double prompt_ms;
  555. double prompt_per_token_ms;
  556. double prompt_per_second;
  557. int32_t predicted_n = -1;
  558. double predicted_ms;
  559. double predicted_per_token_ms;
  560. double predicted_per_second;
  561. // Optional speculative metrics - only included when > 0
  562. int32_t draft_n = 0;
  563. int32_t draft_n_accepted = 0;
  564. json to_json() const {
  565. json base = {
  566. {"cache_n", cache_n},
  567. {"prompt_n", prompt_n},
  568. {"prompt_ms", prompt_ms},
  569. {"prompt_per_token_ms", prompt_per_token_ms},
  570. {"prompt_per_second", prompt_per_second},
  571. {"predicted_n", predicted_n},
  572. {"predicted_ms", predicted_ms},
  573. {"predicted_per_token_ms", predicted_per_token_ms},
  574. {"predicted_per_second", predicted_per_second},
  575. };
  576. if (draft_n > 0) {
  577. base["draft_n"] = draft_n;
  578. base["draft_n_accepted"] = draft_n_accepted;
  579. }
  580. return base;
  581. }
  582. };
  583. struct result_prompt_progress {
  584. int32_t total = 0;
  585. int32_t cache = 0;
  586. int32_t processed = 0;
  587. int64_t time_ms = 0;
  588. json to_json() const {
  589. return json {
  590. {"total", total},
  591. {"cache", cache},
  592. {"processed", processed},
  593. {"time_ms", time_ms},
  594. };
  595. }
  596. };
  597. struct server_task_result {
  598. int id = -1;
  599. int id_slot = -1;
  600. virtual bool is_error() {
  601. // only used by server_task_result_error
  602. return false;
  603. }
  604. virtual bool is_stop() {
  605. // only used by server_task_result_cmpl_*
  606. return true;
  607. }
  608. virtual int get_index() {
  609. return -1;
  610. }
  611. virtual json to_json() = 0;
  612. virtual ~server_task_result() = default;
  613. };
  614. // using shared_ptr for polymorphism of server_task_result
  615. using server_task_result_ptr = std::unique_ptr<server_task_result>;
  616. static inline std::string stop_type_to_str(stop_type type) {
  617. switch (type) {
  618. case STOP_TYPE_EOS: return "eos";
  619. case STOP_TYPE_WORD: return "word";
  620. case STOP_TYPE_LIMIT: return "limit";
  621. default: return "none";
  622. }
  623. }
  624. struct completion_token_output {
  625. llama_token tok;
  626. float prob;
  627. std::string text_to_send;
  628. struct prob_info {
  629. llama_token tok;
  630. std::string txt;
  631. float prob;
  632. };
  633. std::vector<prob_info> probs;
  634. json to_json(bool post_sampling_probs) const {
  635. json probs_for_token = json::array();
  636. for (const auto & p : probs) {
  637. std::string txt(p.txt);
  638. txt.resize(validate_utf8(txt));
  639. probs_for_token.push_back(json {
  640. {"id", p.tok},
  641. {"token", txt},
  642. {"bytes", str_to_bytes(p.txt)},
  643. {
  644. post_sampling_probs ? "prob" : "logprob",
  645. post_sampling_probs ? p.prob : logarithm(p.prob)
  646. },
  647. });
  648. }
  649. return probs_for_token;
  650. }
  651. static json probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  652. json out = json::array();
  653. for (const auto & p : probs) {
  654. std::string txt(p.text_to_send);
  655. txt.resize(validate_utf8(txt));
  656. out.push_back(json {
  657. {"id", p.tok},
  658. {"token", txt},
  659. {"bytes", str_to_bytes(p.text_to_send)},
  660. {
  661. post_sampling_probs ? "prob" : "logprob",
  662. post_sampling_probs ? p.prob : logarithm(p.prob)
  663. },
  664. {
  665. post_sampling_probs ? "top_probs" : "top_logprobs",
  666. p.to_json(post_sampling_probs)
  667. },
  668. });
  669. }
  670. return out;
  671. }
  672. static float logarithm(float x) {
  673. // nlohmann::json converts -inf to null, so we need to prevent that
  674. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  675. }
  676. static std::vector<unsigned char> str_to_bytes(const std::string & str) {
  677. std::vector<unsigned char> bytes;
  678. for (unsigned char c : str) {
  679. bytes.push_back(c);
  680. }
  681. return bytes;
  682. }
  683. };
  684. struct server_task_result_cmpl_final : server_task_result {
  685. int index = 0;
  686. std::string content;
  687. llama_tokens tokens;
  688. bool stream;
  689. bool include_usage;
  690. result_timings timings;
  691. std::string prompt;
  692. bool truncated;
  693. int32_t n_decoded;
  694. int32_t n_prompt_tokens;
  695. int32_t n_tokens_cached;
  696. bool has_new_line;
  697. std::string stopping_word;
  698. stop_type stop = STOP_TYPE_NONE;
  699. bool post_sampling_probs;
  700. std::vector<completion_token_output> probs_output;
  701. std::vector<std::string> response_fields;
  702. slot_params generation_params;
  703. // OAI-compat fields
  704. bool verbose = false;
  705. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  706. std::string oaicompat_model;
  707. std::string oaicompat_cmpl_id;
  708. common_chat_msg oaicompat_msg;
  709. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  710. virtual int get_index() override {
  711. return index;
  712. }
  713. virtual bool is_stop() override {
  714. return true; // in stream mode, final responses are considered stop
  715. }
  716. virtual json to_json() override {
  717. switch (oaicompat) {
  718. case OAICOMPAT_TYPE_NONE:
  719. return to_json_non_oaicompat();
  720. case OAICOMPAT_TYPE_COMPLETION:
  721. return to_json_oaicompat();
  722. case OAICOMPAT_TYPE_CHAT:
  723. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  724. default:
  725. GGML_ASSERT(false && "Invalid oaicompat_type");
  726. }
  727. }
  728. json to_json_non_oaicompat() {
  729. json res = json {
  730. {"index", index},
  731. {"content", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  732. {"tokens", stream ? llama_tokens {} : tokens},
  733. {"id_slot", id_slot},
  734. {"stop", true},
  735. {"model", oaicompat_model},
  736. {"tokens_predicted", n_decoded},
  737. {"tokens_evaluated", n_prompt_tokens},
  738. {"generation_settings", generation_params.to_json()},
  739. {"prompt", prompt},
  740. {"has_new_line", has_new_line},
  741. {"truncated", truncated},
  742. {"stop_type", stop_type_to_str(stop)},
  743. {"stopping_word", stopping_word},
  744. {"tokens_cached", n_tokens_cached},
  745. {"timings", timings.to_json()},
  746. };
  747. if (!stream && !probs_output.empty()) {
  748. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  749. }
  750. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  751. }
  752. json to_json_oaicompat() {
  753. std::time_t t = std::time(0);
  754. json logprobs = json(nullptr); // OAI default to null
  755. if (!stream && probs_output.size() > 0) {
  756. logprobs = json{
  757. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  758. };
  759. }
  760. json finish_reason = "length";
  761. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  762. finish_reason = "stop";
  763. }
  764. json res = json {
  765. {"choices", json::array({
  766. json{
  767. {"text", stream ? "" : content}, // in stream mode, content is already in last partial chunk
  768. {"index", index},
  769. {"logprobs", logprobs},
  770. {"finish_reason", finish_reason},
  771. }
  772. })},
  773. {"created", t},
  774. {"model", oaicompat_model},
  775. {"system_fingerprint", build_info},
  776. {"object", "text_completion"},
  777. {"usage", json {
  778. {"completion_tokens", n_decoded},
  779. {"prompt_tokens", n_prompt_tokens},
  780. {"total_tokens", n_decoded + n_prompt_tokens}
  781. }},
  782. {"id", oaicompat_cmpl_id}
  783. };
  784. // extra fields for debugging purposes
  785. if (verbose) {
  786. res["__verbose"] = to_json_non_oaicompat();
  787. }
  788. if (timings.prompt_n >= 0) {
  789. res.push_back({"timings", timings.to_json()});
  790. }
  791. return res;
  792. }
  793. json to_json_oaicompat_chat() {
  794. std::string finish_reason = "length";
  795. common_chat_msg msg;
  796. if (!oaicompat_msg.empty()) {
  797. msg = oaicompat_msg;
  798. } else {
  799. msg.role = "assistant";
  800. msg.content = content;
  801. }
  802. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  803. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  804. }
  805. json choice {
  806. {"finish_reason", finish_reason},
  807. {"index", 0},
  808. {"message", msg.to_json_oaicompat<json>()},
  809. };
  810. if (!stream && probs_output.size() > 0) {
  811. choice["logprobs"] = json{
  812. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  813. };
  814. }
  815. std::time_t t = std::time(0);
  816. json res = json {
  817. {"choices", json::array({choice})},
  818. {"created", t},
  819. {"model", oaicompat_model},
  820. {"system_fingerprint", build_info},
  821. {"object", "chat.completion"},
  822. {"usage", json {
  823. {"completion_tokens", n_decoded},
  824. {"prompt_tokens", n_prompt_tokens},
  825. {"total_tokens", n_decoded + n_prompt_tokens}
  826. }},
  827. {"id", oaicompat_cmpl_id}
  828. };
  829. // extra fields for debugging purposes
  830. if (verbose) {
  831. res["__verbose"] = to_json_non_oaicompat();
  832. }
  833. if (timings.prompt_n >= 0) {
  834. res.push_back({"timings", timings.to_json()});
  835. }
  836. return res;
  837. }
  838. json to_json_oaicompat_chat_stream() {
  839. std::time_t t = std::time(0);
  840. std::string finish_reason = "length";
  841. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  842. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  843. }
  844. json deltas = json::array();
  845. for (const auto & diff : oaicompat_msg_diffs) {
  846. deltas.push_back({
  847. {"choices", json::array({
  848. json {
  849. {"finish_reason", nullptr},
  850. {"index", 0},
  851. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  852. },
  853. })},
  854. {"created", t},
  855. {"id", oaicompat_cmpl_id},
  856. {"model", oaicompat_model},
  857. {"system_fingerprint", build_info},
  858. {"object", "chat.completion.chunk"},
  859. });
  860. }
  861. deltas.push_back({
  862. {"choices", json::array({
  863. json {
  864. {"finish_reason", finish_reason},
  865. {"index", 0},
  866. {"delta", json::object()},
  867. },
  868. })},
  869. {"created", t},
  870. {"id", oaicompat_cmpl_id},
  871. {"model", oaicompat_model},
  872. {"system_fingerprint", build_info},
  873. {"object", "chat.completion.chunk"},
  874. });
  875. if (include_usage) {
  876. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  877. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  878. deltas.push_back({
  879. {"choices", json::array()},
  880. {"created", t},
  881. {"id", oaicompat_cmpl_id},
  882. {"model", oaicompat_model},
  883. {"system_fingerprint", build_info},
  884. {"object", "chat.completion.chunk"},
  885. {"usage", json {
  886. {"completion_tokens", n_decoded},
  887. {"prompt_tokens", n_prompt_tokens},
  888. {"total_tokens", n_decoded + n_prompt_tokens},
  889. }},
  890. });
  891. }
  892. if (timings.prompt_n >= 0) {
  893. deltas.back().push_back({"timings", timings.to_json()});
  894. }
  895. // extra fields for debugging purposes
  896. if (verbose && !deltas.empty()) {
  897. deltas.front()["__verbose"] = to_json_non_oaicompat();
  898. }
  899. return deltas;
  900. }
  901. };
  902. struct server_task_result_cmpl_partial : server_task_result {
  903. int index = 0;
  904. std::string content;
  905. llama_tokens tokens;
  906. int32_t n_decoded;
  907. int32_t n_prompt_tokens;
  908. bool post_sampling_probs;
  909. bool is_progress = false;
  910. completion_token_output prob_output;
  911. result_timings timings;
  912. result_prompt_progress progress;
  913. // OAI-compat fields
  914. bool verbose = false;
  915. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  916. std::string oaicompat_model;
  917. std::string oaicompat_cmpl_id;
  918. std::vector<common_chat_msg_diff> oaicompat_msg_diffs;
  919. virtual int get_index() override {
  920. return index;
  921. }
  922. virtual bool is_stop() override {
  923. return false; // in stream mode, partial responses are not considered stop
  924. }
  925. virtual json to_json() override {
  926. switch (oaicompat) {
  927. case OAICOMPAT_TYPE_NONE:
  928. return to_json_non_oaicompat();
  929. case OAICOMPAT_TYPE_COMPLETION:
  930. return to_json_oaicompat();
  931. case OAICOMPAT_TYPE_CHAT:
  932. return to_json_oaicompat_chat();
  933. default:
  934. GGML_ASSERT(false && "Invalid oaicompat_type");
  935. }
  936. }
  937. json to_json_non_oaicompat() {
  938. // non-OAI-compat JSON
  939. json res = json {
  940. {"index", index},
  941. {"content", content},
  942. {"tokens", tokens},
  943. {"stop", false},
  944. {"id_slot", id_slot},
  945. {"tokens_predicted", n_decoded},
  946. {"tokens_evaluated", n_prompt_tokens},
  947. };
  948. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  949. if (timings.prompt_n > 0) {
  950. res.push_back({"timings", timings.to_json()});
  951. }
  952. if (is_progress) {
  953. res.push_back({"prompt_progress", progress.to_json()});
  954. }
  955. if (!prob_output.probs.empty()) {
  956. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  957. }
  958. return res;
  959. }
  960. json to_json_oaicompat() {
  961. std::time_t t = std::time(0);
  962. json logprobs = json(nullptr); // OAI default to null
  963. if (prob_output.probs.size() > 0) {
  964. logprobs = json{
  965. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  966. };
  967. }
  968. json res = json {
  969. {"choices", json::array({
  970. json{
  971. {"text", content},
  972. {"index", index},
  973. {"logprobs", logprobs},
  974. {"finish_reason", nullptr},
  975. }
  976. })},
  977. {"created", t},
  978. {"model", oaicompat_model},
  979. {"system_fingerprint", build_info},
  980. {"object", "text_completion"},
  981. {"id", oaicompat_cmpl_id}
  982. };
  983. // extra fields for debugging purposes
  984. if (verbose) {
  985. res["__verbose"] = to_json_non_oaicompat();
  986. }
  987. if (timings.prompt_n >= 0) {
  988. res.push_back({"timings", timings.to_json()});
  989. }
  990. if (is_progress) {
  991. res.push_back({"prompt_progress", progress.to_json()});
  992. }
  993. return res;
  994. }
  995. json to_json_oaicompat_chat() {
  996. bool first = n_decoded == 1;
  997. std::time_t t = std::time(0);
  998. json choices;
  999. std::vector<json> deltas;
  1000. auto add_delta = [&](const json & delta) {
  1001. deltas.push_back({
  1002. {"choices", json::array({
  1003. json {
  1004. {"finish_reason", nullptr},
  1005. {"index", 0},
  1006. {"delta", delta},
  1007. },
  1008. })},
  1009. {"created", t},
  1010. {"id", oaicompat_cmpl_id},
  1011. {"model", oaicompat_model},
  1012. {"system_fingerprint", build_info},
  1013. {"object", "chat.completion.chunk"},
  1014. });
  1015. };
  1016. // We have to send an initial update to conform to openai behavior
  1017. if (first || is_progress) {
  1018. add_delta({
  1019. {"role", "assistant"},
  1020. {"content", nullptr},
  1021. });
  1022. }
  1023. for (const auto & diff : oaicompat_msg_diffs) {
  1024. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  1025. }
  1026. if (!deltas.empty()) {
  1027. auto & last_json = deltas[deltas.size() - 1];
  1028. GGML_ASSERT(last_json.at("choices").size() >= 1);
  1029. if (prob_output.probs.size() > 0) {
  1030. last_json.at("choices").at(0)["logprobs"] = json {
  1031. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  1032. };
  1033. }
  1034. if (timings.prompt_n >= 0) {
  1035. last_json.push_back({"timings", timings.to_json()});
  1036. }
  1037. if (is_progress) {
  1038. last_json.push_back({"prompt_progress", progress.to_json()});
  1039. }
  1040. }
  1041. return deltas;
  1042. }
  1043. };
  1044. struct server_task_result_embd : server_task_result {
  1045. int index = 0;
  1046. std::vector<std::vector<float>> embedding;
  1047. int32_t n_tokens;
  1048. // OAI-compat fields
  1049. oaicompat_type oaicompat = OAICOMPAT_TYPE_NONE;
  1050. virtual int get_index() override {
  1051. return index;
  1052. }
  1053. virtual json to_json() override {
  1054. return oaicompat == OAICOMPAT_TYPE_EMBEDDING
  1055. ? to_json_oaicompat()
  1056. : to_json_non_oaicompat();
  1057. }
  1058. json to_json_non_oaicompat() {
  1059. return json {
  1060. {"index", index},
  1061. {"embedding", embedding},
  1062. };
  1063. }
  1064. json to_json_oaicompat() {
  1065. return json {
  1066. {"index", index},
  1067. {"embedding", embedding[0]},
  1068. {"tokens_evaluated", n_tokens},
  1069. };
  1070. }
  1071. };
  1072. struct server_task_result_rerank : server_task_result {
  1073. int index = 0;
  1074. float score = -1e6;
  1075. int32_t n_tokens;
  1076. virtual int get_index() override {
  1077. return index;
  1078. }
  1079. virtual json to_json() override {
  1080. return json {
  1081. {"index", index},
  1082. {"score", score},
  1083. {"tokens_evaluated", n_tokens},
  1084. };
  1085. }
  1086. };
  1087. // this function maybe used outside of server_task_result_error
  1088. static json format_error_response(const std::string & message, const enum error_type type) {
  1089. std::string type_str;
  1090. int code = 500;
  1091. switch (type) {
  1092. case ERROR_TYPE_INVALID_REQUEST:
  1093. type_str = "invalid_request_error";
  1094. code = 400;
  1095. break;
  1096. case ERROR_TYPE_AUTHENTICATION:
  1097. type_str = "authentication_error";
  1098. code = 401;
  1099. break;
  1100. case ERROR_TYPE_NOT_FOUND:
  1101. type_str = "not_found_error";
  1102. code = 404;
  1103. break;
  1104. case ERROR_TYPE_SERVER:
  1105. type_str = "server_error";
  1106. code = 500;
  1107. break;
  1108. case ERROR_TYPE_PERMISSION:
  1109. type_str = "permission_error";
  1110. code = 403;
  1111. break;
  1112. case ERROR_TYPE_NOT_SUPPORTED:
  1113. type_str = "not_supported_error";
  1114. code = 501;
  1115. break;
  1116. case ERROR_TYPE_UNAVAILABLE:
  1117. type_str = "unavailable_error";
  1118. code = 503;
  1119. break;
  1120. case ERROR_TYPE_EXCEED_CONTEXT_SIZE:
  1121. type_str = "exceed_context_size_error";
  1122. code = 400;
  1123. break;
  1124. }
  1125. return json {
  1126. {"code", code},
  1127. {"message", message},
  1128. {"type", type_str},
  1129. };
  1130. }
  1131. struct server_task_result_error : server_task_result {
  1132. int index = 0;
  1133. error_type err_type = ERROR_TYPE_SERVER;
  1134. std::string err_msg;
  1135. // for ERROR_TYPE_EXCEED_CONTEXT_SIZE
  1136. int32_t n_prompt_tokens = 0;
  1137. int32_t n_ctx = 0;
  1138. virtual bool is_error() override {
  1139. return true;
  1140. }
  1141. virtual json to_json() override {
  1142. json res = format_error_response(err_msg, err_type);
  1143. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1144. res["n_prompt_tokens"] = n_prompt_tokens;
  1145. res["n_ctx"] = n_ctx;
  1146. }
  1147. return res;
  1148. }
  1149. };
  1150. struct server_task_result_metrics : server_task_result {
  1151. int n_idle_slots;
  1152. int n_processing_slots;
  1153. int n_tasks_deferred;
  1154. int64_t t_start;
  1155. // TODO: somehow reuse server_metrics in the future, instead of duplicating the fields
  1156. uint64_t n_prompt_tokens_processed_total = 0;
  1157. uint64_t t_prompt_processing_total = 0;
  1158. uint64_t n_tokens_predicted_total = 0;
  1159. uint64_t t_tokens_generation_total = 0;
  1160. uint64_t n_tokens_max = 0;
  1161. uint64_t n_prompt_tokens_processed = 0;
  1162. uint64_t t_prompt_processing = 0;
  1163. uint64_t n_tokens_predicted = 0;
  1164. uint64_t t_tokens_generation = 0;
  1165. uint64_t n_decode_total = 0;
  1166. uint64_t n_busy_slots_total = 0;
  1167. // while we can also use std::vector<server_slot> this requires copying the slot object which can be quite messy
  1168. // therefore, we use json to temporarily store the slot.to_json() result
  1169. json slots_data = json::array();
  1170. virtual json to_json() override {
  1171. return json {
  1172. { "idle", n_idle_slots },
  1173. { "processing", n_processing_slots },
  1174. { "deferred", n_tasks_deferred },
  1175. { "t_start", t_start },
  1176. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1177. { "t_tokens_generation_total", t_tokens_generation_total },
  1178. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1179. { "t_prompt_processing_total", t_prompt_processing_total },
  1180. { "n_tokens_max", n_tokens_max },
  1181. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1182. { "t_prompt_processing", t_prompt_processing },
  1183. { "n_tokens_predicted", n_tokens_predicted },
  1184. { "t_tokens_generation", t_tokens_generation },
  1185. { "n_decode_total", n_decode_total },
  1186. { "n_busy_slots_total", n_busy_slots_total },
  1187. { "slots", slots_data },
  1188. };
  1189. }
  1190. };
  1191. struct server_task_result_slot_save_load : server_task_result {
  1192. std::string filename;
  1193. bool is_save; // true = save, false = load
  1194. size_t n_tokens;
  1195. size_t n_bytes;
  1196. double t_ms;
  1197. virtual json to_json() override {
  1198. if (is_save) {
  1199. return json {
  1200. { "id_slot", id_slot },
  1201. { "filename", filename },
  1202. { "n_saved", n_tokens },
  1203. { "n_written", n_bytes },
  1204. { "timings", {
  1205. { "save_ms", t_ms }
  1206. }},
  1207. };
  1208. }
  1209. return json {
  1210. { "id_slot", id_slot },
  1211. { "filename", filename },
  1212. { "n_restored", n_tokens },
  1213. { "n_read", n_bytes },
  1214. { "timings", {
  1215. { "restore_ms", t_ms }
  1216. }},
  1217. };
  1218. }
  1219. };
  1220. struct server_task_result_slot_erase : server_task_result {
  1221. size_t n_erased;
  1222. virtual json to_json() override {
  1223. return json {
  1224. { "id_slot", id_slot },
  1225. { "n_erased", n_erased },
  1226. };
  1227. }
  1228. };
  1229. struct server_task_result_apply_lora : server_task_result {
  1230. virtual json to_json() override {
  1231. return json {{ "success", true }};
  1232. }
  1233. };
  1234. struct server_prompt_checkpoint {
  1235. llama_pos pos_min;
  1236. llama_pos pos_max;
  1237. std::vector<uint8_t> data;
  1238. size_t size() const {
  1239. return data.size();
  1240. }
  1241. };
  1242. struct server_prompt {
  1243. server_tokens tokens;
  1244. std::vector<uint8_t> data;
  1245. std::list<server_prompt_checkpoint> checkpoints;
  1246. size_t size() const {
  1247. size_t res = data.size();
  1248. for (const auto & checkpoint : checkpoints) {
  1249. res += checkpoint.size();
  1250. }
  1251. return res;
  1252. }
  1253. int n_tokens() const {
  1254. return tokens.size();
  1255. }
  1256. };
  1257. struct server_prompt_cache {
  1258. server_prompt_cache(int32_t limit_size_mib, size_t limit_tokens) {
  1259. this->limit_size = 1024ull*1024ull*(limit_size_mib < 0 ? 0 : limit_size_mib);
  1260. this->limit_tokens = limit_tokens;
  1261. }
  1262. std::list<server_prompt> states;
  1263. // in bytes, 0 = no limit
  1264. size_t limit_size = 0;
  1265. // in tokens, 0 = no limit
  1266. size_t limit_tokens = 0;
  1267. size_t size() const {
  1268. size_t res = 0;
  1269. for (const auto & state : states) {
  1270. res += state.size();
  1271. }
  1272. return res;
  1273. }
  1274. size_t n_tokens() const {
  1275. size_t res = 0;
  1276. for (const auto & state : states) {
  1277. res += state.n_tokens();
  1278. }
  1279. return res;
  1280. }
  1281. server_prompt * alloc(const server_prompt & prompt, size_t state_size) {
  1282. // first check if the current state is contained fully in the cache
  1283. for (auto it = states.begin(); it != states.end(); ++it) {
  1284. const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
  1285. if (cur_lcp_len == (int) prompt.tokens.size()) {
  1286. SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
  1287. return nullptr;
  1288. }
  1289. }
  1290. // next, remove any cached prompts that are fully contained in the current prompt
  1291. for (auto it = states.begin(); it != states.end();) {
  1292. const int len = it->tokens.get_common_prefix(prompt.tokens);
  1293. if (len == (int) it->tokens.size()) {
  1294. SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
  1295. it = states.erase(it);
  1296. } else {
  1297. ++it;
  1298. }
  1299. }
  1300. std::vector<uint8_t> state_data;
  1301. // check if we can allocate enough memory for the new state
  1302. try {
  1303. state_data.resize(state_size);
  1304. } catch (const std::bad_alloc & e) {
  1305. SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
  1306. limit_size = std::max<size_t>(1, 0.4*size());
  1307. SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
  1308. update();
  1309. return nullptr;
  1310. }
  1311. // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
  1312. auto & cur = states.emplace_back();
  1313. cur = {
  1314. /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
  1315. /*.data =*/ std::move(state_data),
  1316. /*.checkpoints =*/ prompt.checkpoints,
  1317. };
  1318. return &cur;
  1319. }
  1320. bool load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
  1321. const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
  1322. float f_keep_best = float(lcp_best) / prompt.tokens.size();
  1323. float sim_best = float(lcp_best) / tokens_new.size();
  1324. SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1325. auto it_best = states.end();
  1326. // find the most similar cached prompt, that would also preserve the most context
  1327. for (auto it = states.begin(); it != states.end(); ++it) {
  1328. const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
  1329. const float f_keep_cur = float(lcp_cur) / it->tokens.size();
  1330. const float sim_cur = float(lcp_cur) / tokens_new.size();
  1331. // don't trash large prompts
  1332. if (f_keep_cur < 0.25f) {
  1333. continue;
  1334. }
  1335. if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
  1336. f_keep_best = f_keep_cur;
  1337. sim_best = sim_cur;
  1338. it_best = it;
  1339. }
  1340. }
  1341. if (it_best != states.end()) {
  1342. SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1343. const size_t size = it_best->data.size();
  1344. const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
  1345. if (n != size) {
  1346. SRV_WRN("failed to restore state with size %zu\n", size);
  1347. return false;
  1348. }
  1349. it_best->data.clear();
  1350. it_best->data.shrink_to_fit();
  1351. prompt = std::move(*it_best);
  1352. states.erase(it_best);
  1353. }
  1354. return true;
  1355. }
  1356. void update() {
  1357. if (limit_size > 0) {
  1358. // always keep at least one state, regardless of the limits
  1359. while (states.size() > 1 && size() > limit_size) {
  1360. if (states.empty()) {
  1361. break;
  1362. }
  1363. SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
  1364. states.pop_front();
  1365. }
  1366. }
  1367. // average size per token
  1368. const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
  1369. // dynamically increase the token limit if it can fit in the memory limit
  1370. const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
  1371. if (limit_tokens > 0) {
  1372. while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
  1373. if (states.empty()) {
  1374. break;
  1375. }
  1376. SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
  1377. limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
  1378. states.pop_front();
  1379. }
  1380. }
  1381. SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
  1382. states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
  1383. for (const auto & state : states) {
  1384. SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
  1385. (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
  1386. }
  1387. }
  1388. };
  1389. struct server_slot {
  1390. int id;
  1391. llama_batch batch_spec = {};
  1392. // TODO: change to unique_ptrs for consistency:
  1393. llama_context * ctx = nullptr;
  1394. llama_context * ctx_dft = nullptr;
  1395. // multimodal
  1396. mtmd_context * mctx = nullptr;
  1397. common_speculative * spec = nullptr;
  1398. std::unique_ptr<const server_task> task;
  1399. std::unique_ptr<const server_task> task_prev; // used for debugging
  1400. // used to determine the slot that has been used the longest
  1401. int64_t t_last_used = -1;
  1402. // generation props
  1403. int32_t n_ctx = 0; // context size per slot
  1404. int32_t n_keep = 0;
  1405. int32_t n_decoded = 0;
  1406. int32_t n_remaining = -1;
  1407. int32_t i_batch = -1;
  1408. int32_t n_prompt_tokens_cache = 0;
  1409. int32_t n_prompt_tokens_processed = 0;
  1410. size_t last_nl_pos = 0;
  1411. std::string generated_text;
  1412. llama_tokens generated_tokens;
  1413. common_chat_msg chat_msg;
  1414. std::vector<completion_token_output> generated_token_probs;
  1415. bool has_next_token = true;
  1416. bool has_new_line = false;
  1417. bool truncated = false;
  1418. stop_type stop;
  1419. std::string stopping_word;
  1420. // state
  1421. slot_state state = SLOT_STATE_IDLE;
  1422. server_prompt prompt;
  1423. void prompt_save(server_prompt_cache & prompt_cache) const {
  1424. assert(prompt.data.size() == 0);
  1425. const size_t cur_size = llama_state_seq_get_size_ext(ctx, id, 0);
  1426. SRV_WRN(" - saving prompt with length %d, total state size = %.3f MiB\n",
  1427. (int) prompt.tokens.size(), cur_size / (1024.0 * 1024.0));
  1428. auto * cur = prompt_cache.alloc(prompt, cur_size);
  1429. if (cur == nullptr) {
  1430. return;
  1431. }
  1432. llama_state_seq_get_data_ext(ctx, cur->data.data(), cur_size, id, 0);
  1433. }
  1434. void prompt_load(server_prompt_cache & prompt_cache, const server_tokens & tokens) {
  1435. bool res = prompt_cache.load(prompt, tokens, ctx, id);
  1436. if (!res) {
  1437. SLT_WRN(*this, "%s", "failed to load prompt from cache\n");
  1438. llama_memory_seq_rm(llama_get_memory(ctx), id, -1, -1);
  1439. prompt.tokens.clear();
  1440. }
  1441. }
  1442. std::vector<common_adapter_lora_info> lora;
  1443. int32_t alora_invocation_start = -1;
  1444. // sampling
  1445. json json_schema;
  1446. struct common_sampler * smpl = nullptr;
  1447. llama_token sampled;
  1448. common_chat_format chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1449. std::vector<std::string> generated_tool_call_ids;
  1450. // stats
  1451. size_t n_sent_text = 0; // number of sent text character
  1452. int64_t t_start_process_prompt;
  1453. int64_t t_start_generation;
  1454. double t_prompt_processing; // ms
  1455. double t_token_generation; // ms
  1456. std::function<void(int)> callback_on_release;
  1457. // Speculative decoding stats
  1458. int32_t n_draft_total = 0; // Total draft tokens generated
  1459. int32_t n_draft_accepted = 0; // Draft tokens actually accepted
  1460. void reset() {
  1461. SLT_DBG(*this, "%s", "\n");
  1462. n_prompt_tokens_cache = 0;
  1463. last_nl_pos = 0;
  1464. generated_text = "";
  1465. has_new_line = false;
  1466. truncated = false;
  1467. stop = STOP_TYPE_NONE;
  1468. stopping_word = "";
  1469. n_sent_text = 0;
  1470. chat_format = COMMON_CHAT_FORMAT_CONTENT_ONLY;
  1471. generated_tokens.clear();
  1472. generated_token_probs.clear();
  1473. chat_msg = {};
  1474. json_schema = json();
  1475. generated_tool_call_ids.clear();
  1476. // clear speculative decoding stats
  1477. n_draft_total = 0;
  1478. n_draft_accepted = 0;
  1479. task.reset();
  1480. task_prev.reset();
  1481. // clear alora start
  1482. alora_invocation_start = -1;
  1483. }
  1484. bool need_embd() const {
  1485. GGML_ASSERT(task);
  1486. return server_task_type_need_embd(task->type);
  1487. }
  1488. bool need_logits() const {
  1489. GGML_ASSERT(task);
  1490. return server_task_type_need_logits(task->type);
  1491. }
  1492. // if the context does not have a memory module then all embeddings have to be computed within a single ubatch
  1493. // also we cannot split if the pooling would require any past tokens
  1494. bool can_split() const {
  1495. return
  1496. !need_embd() ||
  1497. (llama_get_memory(ctx) && llama_pooling_type(ctx) == LLAMA_POOLING_TYPE_LAST);
  1498. }
  1499. bool can_batch_with(server_slot & other_slot) const {
  1500. GGML_ASSERT(task);
  1501. return task->type == other_slot.task->type && are_lora_equal(lora, other_slot.lora);
  1502. }
  1503. bool has_budget(const common_params & global_params) {
  1504. GGML_ASSERT(task);
  1505. if (task->params.n_predict == -1 && global_params.n_predict == -1) {
  1506. return true; // limitless
  1507. }
  1508. n_remaining = -1;
  1509. if (task->params.n_predict != -1) {
  1510. n_remaining = task->params.n_predict - n_decoded;
  1511. } else if (global_params.n_predict != -1) {
  1512. n_remaining = global_params.n_predict - n_decoded;
  1513. }
  1514. return n_remaining > 0; // no budget
  1515. }
  1516. bool is_processing() const {
  1517. return state != SLOT_STATE_IDLE;
  1518. }
  1519. bool can_speculate() const {
  1520. return ctx_dft;
  1521. }
  1522. void add_token(const completion_token_output & token) {
  1523. if (!is_processing()) {
  1524. SLT_WRN(*this, "%s", "slot is not processing\n");
  1525. return;
  1526. }
  1527. generated_token_probs.push_back(token);
  1528. }
  1529. void release() {
  1530. if (is_processing()) {
  1531. GGML_ASSERT(task);
  1532. SLT_INF(*this, "stop processing: n_tokens = %d, truncated = %d\n", prompt.n_tokens(), truncated);
  1533. t_last_used = ggml_time_us();
  1534. t_token_generation = (ggml_time_us() - t_start_generation) / 1e3;
  1535. state = SLOT_STATE_IDLE;
  1536. task_prev = std::move(task);
  1537. task.reset();
  1538. callback_on_release(id);
  1539. }
  1540. }
  1541. result_timings get_timings() const {
  1542. result_timings timings;
  1543. timings.cache_n = n_prompt_tokens_cache;
  1544. timings.prompt_n = n_prompt_tokens_processed;
  1545. timings.prompt_ms = t_prompt_processing;
  1546. timings.prompt_per_token_ms = t_prompt_processing / n_prompt_tokens_processed;
  1547. timings.prompt_per_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1548. timings.predicted_n = n_decoded;
  1549. timings.predicted_ms = t_token_generation;
  1550. timings.predicted_per_token_ms = t_token_generation / n_decoded;
  1551. timings.predicted_per_second = 1e3 / t_token_generation * n_decoded;
  1552. // Add speculative metrics
  1553. if (n_draft_total > 0) {
  1554. timings.draft_n = n_draft_total;
  1555. timings.draft_n_accepted = n_draft_accepted;
  1556. }
  1557. return timings;
  1558. }
  1559. const common_chat_msg & update_chat_msg(std::vector<common_chat_msg_diff> & diffs) {
  1560. GGML_ASSERT(task);
  1561. auto previous_msg = chat_msg;
  1562. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  1563. auto new_msg = common_chat_parse(
  1564. generated_text,
  1565. /* is_partial= */ stop != STOP_TYPE_EOS,
  1566. task->params.oaicompat_chat_syntax);
  1567. if (!new_msg.empty()) {
  1568. new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
  1569. chat_msg = new_msg;
  1570. diffs = common_chat_msg_diff::compute_diffs(previous_msg, new_msg.empty() ? previous_msg : new_msg);
  1571. }
  1572. return chat_msg;
  1573. }
  1574. size_t find_stopping_strings(const std::string & text, const size_t last_token_size, bool is_full_stop) {
  1575. GGML_ASSERT(task);
  1576. size_t stop_pos = std::string::npos;
  1577. for (const std::string & word : task->params.antiprompt) {
  1578. size_t pos;
  1579. if (is_full_stop) {
  1580. const size_t tmp = word.size() + last_token_size;
  1581. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  1582. pos = text.find(word, from_pos);
  1583. } else {
  1584. // otherwise, partial stop
  1585. pos = string_find_partial_stop(text, word);
  1586. }
  1587. if (pos != std::string::npos && (stop_pos == std::string::npos || pos < stop_pos)) {
  1588. if (is_full_stop) {
  1589. stop = STOP_TYPE_WORD;
  1590. stopping_word = word;
  1591. has_next_token = false;
  1592. }
  1593. stop_pos = pos;
  1594. }
  1595. }
  1596. return stop_pos;
  1597. }
  1598. void print_timings() const {
  1599. const double t_prompt = t_prompt_processing / n_prompt_tokens_processed;
  1600. const double n_prompt_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
  1601. const double t_gen = t_token_generation / n_decoded;
  1602. const double n_gen_second = 1e3 / t_token_generation * n_decoded;
  1603. SLT_INF(*this,
  1604. "\n"
  1605. "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1606. " eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
  1607. " total time = %10.2f ms / %5d tokens\n",
  1608. t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
  1609. t_token_generation, n_decoded, t_gen, n_gen_second,
  1610. t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);
  1611. if (n_draft_total > 0) {
  1612. const float draft_ratio = (float) n_draft_accepted / n_draft_total;
  1613. SLT_INF(*this,
  1614. "\n"
  1615. "draft acceptance rate = %0.5f (%5d accepted / %5d generated)\n",
  1616. draft_ratio, n_draft_accepted, n_draft_total
  1617. );
  1618. }
  1619. }
  1620. json to_json(bool only_metrics = false) const {
  1621. json res;
  1622. res = {
  1623. {"id", id},
  1624. {"n_ctx", n_ctx},
  1625. {"speculative", can_speculate()},
  1626. {"is_processing", is_processing()},
  1627. };
  1628. const auto & ptask = task ? task : task_prev;
  1629. if (ptask) {
  1630. res["id_task"] = ptask->id;
  1631. res["params"] = ptask->params.to_json(only_metrics);
  1632. res["next_token"] = {
  1633. {
  1634. {"has_next_token", has_next_token},
  1635. {"has_new_line", has_new_line},
  1636. {"n_remain", n_remaining},
  1637. {"n_decoded", n_decoded},
  1638. }
  1639. };
  1640. if (!only_metrics) {
  1641. res["prompt"] = ptask->tokens.detokenize(ctx, true);
  1642. res["generated"] = generated_text;
  1643. }
  1644. }
  1645. return res;
  1646. }
  1647. };
  1648. struct server_metrics {
  1649. int64_t t_start = 0;
  1650. uint64_t n_prompt_tokens_processed_total = 0;
  1651. uint64_t t_prompt_processing_total = 0;
  1652. uint64_t n_tokens_predicted_total = 0;
  1653. uint64_t t_tokens_generation_total = 0;
  1654. uint64_t n_tokens_max = 0;
  1655. uint64_t n_prompt_tokens_processed = 0;
  1656. uint64_t t_prompt_processing = 0;
  1657. uint64_t n_tokens_predicted = 0;
  1658. uint64_t t_tokens_generation = 0;
  1659. uint64_t n_decode_total = 0;
  1660. uint64_t n_busy_slots_total = 0;
  1661. void init() {
  1662. t_start = ggml_time_us();
  1663. }
  1664. void on_prompt_eval(const server_slot & slot) {
  1665. n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
  1666. n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
  1667. t_prompt_processing += slot.t_prompt_processing;
  1668. t_prompt_processing_total += slot.t_prompt_processing;
  1669. n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
  1670. }
  1671. void on_prediction(const server_slot & slot) {
  1672. n_tokens_predicted_total += slot.n_decoded;
  1673. n_tokens_predicted += slot.n_decoded;
  1674. t_tokens_generation += slot.t_token_generation;
  1675. t_tokens_generation_total += slot.t_token_generation;
  1676. }
  1677. void on_decoded(const std::vector<server_slot> & slots) {
  1678. n_decode_total++;
  1679. for (const auto & slot : slots) {
  1680. if (slot.is_processing()) {
  1681. n_busy_slots_total++;
  1682. }
  1683. n_tokens_max = std::max(n_tokens_max, (uint64_t) slot.prompt.n_tokens());
  1684. }
  1685. }
  1686. void reset_bucket() {
  1687. n_prompt_tokens_processed = 0;
  1688. t_prompt_processing = 0;
  1689. n_tokens_predicted = 0;
  1690. t_tokens_generation = 0;
  1691. }
  1692. };
  1693. struct server_queue {
  1694. int id = 0;
  1695. bool running;
  1696. // queues
  1697. std::deque<server_task> queue_tasks;
  1698. std::deque<server_task> queue_tasks_deferred;
  1699. std::mutex mutex_tasks;
  1700. std::condition_variable condition_tasks;
  1701. // callback functions
  1702. std::function<void(server_task &&)> callback_new_task;
  1703. std::function<void(void)> callback_update_slots;
  1704. // Add a new task to the end of the queue
  1705. int post(server_task && task, bool front = false) {
  1706. std::unique_lock<std::mutex> lock(mutex_tasks);
  1707. GGML_ASSERT(task.id != -1);
  1708. // if this is cancel task make sure to clean up pending tasks
  1709. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1710. cleanup_pending_task(task.id_target);
  1711. }
  1712. const int task_id = task.id;
  1713. QUE_DBG("new task, id = %d, front = %d\n", task_id, front);
  1714. if (front) {
  1715. queue_tasks.push_front(std::move(task));
  1716. } else {
  1717. queue_tasks.push_back(std::move(task));
  1718. }
  1719. condition_tasks.notify_one();
  1720. return task_id;
  1721. }
  1722. // multi-task version of post()
  1723. int post(std::vector<server_task> && tasks, bool front = false) {
  1724. std::unique_lock<std::mutex> lock(mutex_tasks);
  1725. for (auto & task : tasks) {
  1726. if (task.id == -1) {
  1727. task.id = id++;
  1728. }
  1729. // if this is cancel task make sure to clean up pending tasks
  1730. if (task.type == SERVER_TASK_TYPE_CANCEL) {
  1731. cleanup_pending_task(task.id_target);
  1732. }
  1733. QUE_DBG("new task, id = %d/%d, front = %d\n", task.id, (int) tasks.size(), front);
  1734. if (front) {
  1735. queue_tasks.push_front(std::move(task));
  1736. } else {
  1737. queue_tasks.push_back(std::move(task));
  1738. }
  1739. }
  1740. condition_tasks.notify_one();
  1741. return 0;
  1742. }
  1743. // Add a new task, but defer until one slot is available
  1744. void defer(server_task && task) {
  1745. std::unique_lock<std::mutex> lock(mutex_tasks);
  1746. QUE_DBG("defer task, id = %d\n", task.id);
  1747. queue_tasks_deferred.push_back(std::move(task));
  1748. condition_tasks.notify_one();
  1749. }
  1750. // Get the next id for creating a new task
  1751. int get_new_id() {
  1752. std::unique_lock<std::mutex> lock(mutex_tasks);
  1753. int new_id = id++;
  1754. return new_id;
  1755. }
  1756. // Register function to process a new task
  1757. void on_new_task(std::function<void(server_task &&)> callback) {
  1758. callback_new_task = std::move(callback);
  1759. }
  1760. // Register the function to be called when all slots data is ready to be processed
  1761. void on_update_slots(std::function<void(void)> callback) {
  1762. callback_update_slots = std::move(callback);
  1763. }
  1764. // Call when the state of one slot is changed, it will move one task from deferred to main queue
  1765. void pop_deferred_task() {
  1766. std::unique_lock<std::mutex> lock(mutex_tasks);
  1767. if (!queue_tasks_deferred.empty()) {
  1768. queue_tasks.emplace_front(std::move(queue_tasks_deferred.front()));
  1769. queue_tasks_deferred.pop_front();
  1770. }
  1771. condition_tasks.notify_one();
  1772. }
  1773. // end the start_loop routine
  1774. void terminate() {
  1775. std::unique_lock<std::mutex> lock(mutex_tasks);
  1776. running = false;
  1777. condition_tasks.notify_all();
  1778. }
  1779. /**
  1780. * Main loop consists of these steps:
  1781. * - Wait until a new task arrives
  1782. * - Process the task (i.e. maybe copy data into slot)
  1783. * - Check if multitask is finished
  1784. * - Update all slots
  1785. */
  1786. void start_loop() {
  1787. running = true;
  1788. while (true) {
  1789. QUE_DBG("%s", "processing new tasks\n");
  1790. while (true) {
  1791. std::unique_lock<std::mutex> lock(mutex_tasks);
  1792. if (!running) {
  1793. QUE_DBG("%s", "terminate\n");
  1794. return;
  1795. }
  1796. if (queue_tasks.empty()) {
  1797. lock.unlock();
  1798. break;
  1799. }
  1800. server_task task = std::move(queue_tasks.front());
  1801. queue_tasks.pop_front();
  1802. lock.unlock();
  1803. QUE_DBG("processing task, id = %d\n", task.id);
  1804. callback_new_task(std::move(task));
  1805. }
  1806. // all tasks in the current loop is processed, slots data is now ready
  1807. QUE_DBG("%s", "update slots\n");
  1808. callback_update_slots();
  1809. QUE_DBG("%s", "waiting for new tasks\n");
  1810. {
  1811. std::unique_lock<std::mutex> lock(mutex_tasks);
  1812. if (!running) {
  1813. QUE_DBG("%s", "terminate\n");
  1814. return;
  1815. }
  1816. if (queue_tasks.empty()) {
  1817. condition_tasks.wait(lock, [&]{
  1818. return (!queue_tasks.empty() || !running);
  1819. });
  1820. }
  1821. }
  1822. }
  1823. }
  1824. private:
  1825. void cleanup_pending_task(int id_target) {
  1826. // no need lock because this is called exclusively by post()
  1827. auto rm_func = [id_target](const server_task & task) {
  1828. return task.id == id_target;
  1829. };
  1830. queue_tasks.erase(
  1831. std::remove_if(queue_tasks.begin(), queue_tasks.end(), rm_func),
  1832. queue_tasks.end());
  1833. queue_tasks_deferred.erase(
  1834. std::remove_if(queue_tasks_deferred.begin(), queue_tasks_deferred.end(), rm_func),
  1835. queue_tasks_deferred.end());
  1836. }
  1837. };
  1838. struct server_response {
  1839. bool running = true;
  1840. // for keeping track of all tasks waiting for the result
  1841. std::unordered_set<int> waiting_task_ids;
  1842. // the main result queue (using ptr for polymorphism)
  1843. std::vector<server_task_result_ptr> queue_results;
  1844. std::mutex mutex_results;
  1845. std::condition_variable condition_results;
  1846. // add the id_task to the list of tasks waiting for response
  1847. void add_waiting_task_id(int id_task) {
  1848. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", id_task, (int) waiting_task_ids.size());
  1849. std::unique_lock<std::mutex> lock(mutex_results);
  1850. waiting_task_ids.insert(id_task);
  1851. }
  1852. void add_waiting_tasks(const std::vector<server_task> & tasks) {
  1853. std::unique_lock<std::mutex> lock(mutex_results);
  1854. for (const auto & task : tasks) {
  1855. SRV_DBG("add task %d to waiting list. current waiting = %d (before add)\n", task.id, (int) waiting_task_ids.size());
  1856. waiting_task_ids.insert(task.id);
  1857. }
  1858. }
  1859. // when the request is finished, we can remove task associated with it
  1860. void remove_waiting_task_id(int id_task) {
  1861. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1862. std::unique_lock<std::mutex> lock(mutex_results);
  1863. waiting_task_ids.erase(id_task);
  1864. // make sure to clean up all pending results
  1865. queue_results.erase(
  1866. std::remove_if(queue_results.begin(), queue_results.end(), [id_task](const server_task_result_ptr & res) {
  1867. return res->id == id_task;
  1868. }),
  1869. queue_results.end());
  1870. }
  1871. void remove_waiting_task_ids(const std::unordered_set<int> & id_tasks) {
  1872. std::unique_lock<std::mutex> lock(mutex_results);
  1873. for (const auto & id_task : id_tasks) {
  1874. SRV_DBG("remove task %d from waiting list. current waiting = %d (before remove)\n", id_task, (int) waiting_task_ids.size());
  1875. waiting_task_ids.erase(id_task);
  1876. }
  1877. }
  1878. // This function blocks the thread until there is a response for one of the id_tasks
  1879. server_task_result_ptr recv(const std::unordered_set<int> & id_tasks) {
  1880. while (true) {
  1881. std::unique_lock<std::mutex> lock(mutex_results);
  1882. condition_results.wait(lock, [&]{
  1883. if (!running) {
  1884. SRV_DBG("%s : queue result stop\n", __func__);
  1885. std::terminate(); // we cannot return here since the caller is HTTP code
  1886. }
  1887. return !queue_results.empty();
  1888. });
  1889. for (size_t i = 0; i < queue_results.size(); i++) {
  1890. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1891. server_task_result_ptr res = std::move(queue_results[i]);
  1892. queue_results.erase(queue_results.begin() + i);
  1893. return res;
  1894. }
  1895. }
  1896. }
  1897. // should never reach here
  1898. }
  1899. // same as recv(), but have timeout in seconds
  1900. // if timeout is reached, nullptr is returned
  1901. server_task_result_ptr recv_with_timeout(const std::unordered_set<int> & id_tasks, int timeout) {
  1902. while (true) {
  1903. std::unique_lock<std::mutex> lock(mutex_results);
  1904. for (int i = 0; i < (int) queue_results.size(); i++) {
  1905. if (id_tasks.find(queue_results[i]->id) != id_tasks.end()) {
  1906. server_task_result_ptr res = std::move(queue_results[i]);
  1907. queue_results.erase(queue_results.begin() + i);
  1908. return res;
  1909. }
  1910. }
  1911. std::cv_status cr_res = condition_results.wait_for(lock, std::chrono::seconds(timeout));
  1912. if (!running) {
  1913. SRV_DBG("%s : queue result stop\n", __func__);
  1914. std::terminate(); // we cannot return here since the caller is HTTP code
  1915. }
  1916. if (cr_res == std::cv_status::timeout) {
  1917. return nullptr;
  1918. }
  1919. }
  1920. // should never reach here
  1921. }
  1922. // single-task version of recv()
  1923. server_task_result_ptr recv(int id_task) {
  1924. std::unordered_set<int> id_tasks = {id_task};
  1925. return recv(id_tasks);
  1926. }
  1927. // Send a new result to a waiting id_task
  1928. void send(server_task_result_ptr && result) {
  1929. SRV_DBG("sending result for task id = %d\n", result->id);
  1930. std::unique_lock<std::mutex> lock(mutex_results);
  1931. for (const auto & id_task : waiting_task_ids) {
  1932. if (result->id == id_task) {
  1933. SRV_DBG("task id = %d pushed to result queue\n", result->id);
  1934. queue_results.emplace_back(std::move(result));
  1935. condition_results.notify_all();
  1936. return;
  1937. }
  1938. }
  1939. }
  1940. // terminate the waiting loop
  1941. void terminate() {
  1942. running = false;
  1943. condition_results.notify_all();
  1944. }
  1945. };
  1946. struct server_context {
  1947. common_params params_base;
  1948. // note: keep these alive - they determine the lifetime of the model, context, etc.
  1949. common_init_result llama_init;
  1950. common_init_result llama_init_dft;
  1951. llama_model * model = nullptr;
  1952. llama_context * ctx = nullptr;
  1953. // multimodal
  1954. mtmd_context * mctx = nullptr;
  1955. const llama_vocab * vocab = nullptr;
  1956. bool vocab_dft_compatible = true;
  1957. llama_model * model_dft = nullptr;
  1958. llama_context_params cparams_dft;
  1959. llama_batch batch {};
  1960. bool clean_kv_cache = true;
  1961. bool add_bos_token = true;
  1962. int32_t n_ctx; // total context for all clients / slots
  1963. // slots / clients
  1964. std::vector<server_slot> slots;
  1965. int slots_debug = 0;
  1966. server_queue queue_tasks;
  1967. server_response queue_results;
  1968. std::unique_ptr<server_prompt_cache> prompt_cache;
  1969. server_metrics metrics;
  1970. // Necessary similarity of prompt for slot selection
  1971. float slot_prompt_similarity = 0.0f;
  1972. common_chat_templates_ptr chat_templates;
  1973. oaicompat_parser_options oai_parser_opt;
  1974. ~server_context() {
  1975. mtmd_free(mctx);
  1976. // Clear any sampling context
  1977. for (server_slot & slot : slots) {
  1978. common_sampler_free(slot.smpl);
  1979. slot.smpl = nullptr;
  1980. llama_free(slot.ctx_dft);
  1981. slot.ctx_dft = nullptr;
  1982. common_speculative_free(slot.spec);
  1983. slot.spec = nullptr;
  1984. llama_batch_free(slot.batch_spec);
  1985. }
  1986. llama_batch_free(batch);
  1987. }
  1988. bool load_model(const common_params & params) {
  1989. SRV_INF("loading model '%s'\n", params.model.path.c_str());
  1990. params_base = params;
  1991. llama_init = common_init_from_params(params_base);
  1992. model = llama_init.model.get();
  1993. ctx = llama_init.context.get();
  1994. if (model == nullptr) {
  1995. SRV_ERR("failed to load model, '%s'\n", params_base.model.path.c_str());
  1996. return false;
  1997. }
  1998. vocab = llama_model_get_vocab(model);
  1999. n_ctx = llama_n_ctx(ctx);
  2000. add_bos_token = llama_vocab_get_add_bos(vocab);
  2001. if (params_base.has_speculative()) {
  2002. SRV_INF("loading draft model '%s'\n", params_base.speculative.model.path.c_str());
  2003. auto params_dft = params_base;
  2004. params_dft.devices = params_base.speculative.devices;
  2005. params_dft.model = params_base.speculative.model;
  2006. params_dft.n_ctx = params_base.speculative.n_ctx == 0 ? llama_n_ctx_seq(ctx) : params_base.speculative.n_ctx;
  2007. params_dft.n_gpu_layers = params_base.speculative.n_gpu_layers;
  2008. params_dft.n_parallel = 1;
  2009. params_dft.cache_type_k = params_base.speculative.cache_type_k;
  2010. params_dft.cache_type_v = params_base.speculative.cache_type_v;
  2011. params_dft.cpuparams.n_threads = params_base.speculative.cpuparams.n_threads;
  2012. params_dft.cpuparams_batch.n_threads = params_base.speculative.cpuparams_batch.n_threads;
  2013. params_dft.tensor_buft_overrides = params_base.speculative.tensor_buft_overrides;
  2014. llama_init_dft = common_init_from_params(params_dft);
  2015. model_dft = llama_init_dft.model.get();
  2016. if (model_dft == nullptr) {
  2017. SRV_ERR("failed to load draft model, '%s'\n", params_base.speculative.model.path.c_str());
  2018. return false;
  2019. }
  2020. vocab_dft_compatible = common_speculative_are_compatible(ctx, llama_init_dft.context.get());
  2021. if (!vocab_dft_compatible) {
  2022. SRV_INF("the draft model '%s' is not compatible with the target model '%s'. tokens will be translated between the draft and target models.\n", params_base.speculative.model.path.c_str(), params_base.model.path.c_str());
  2023. }
  2024. const int n_ctx_dft = llama_n_ctx(llama_init_dft.context.get());
  2025. cparams_dft = common_context_params_to_llama(params_dft);
  2026. cparams_dft.n_batch = n_ctx_dft;
  2027. // the context is not needed - we will create one for each slot
  2028. llama_init_dft.context.reset();
  2029. }
  2030. chat_templates = common_chat_templates_init(model, params_base.chat_template);
  2031. try {
  2032. common_chat_format_example(chat_templates.get(), params.use_jinja, params.default_template_kwargs);
  2033. } catch (const std::exception & e) {
  2034. SRV_WRN("%s: Chat template parsing error: %s\n", __func__, e.what());
  2035. SRV_WRN("%s: The chat template that comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses\n", __func__);
  2036. chat_templates = common_chat_templates_init(model, "chatml");
  2037. }
  2038. std::string & mmproj_path = params_base.mmproj.path;
  2039. if (!mmproj_path.empty()) {
  2040. mtmd_context_params mparams = mtmd_context_params_default();
  2041. mparams.use_gpu = params_base.mmproj_use_gpu;
  2042. mparams.print_timings = false;
  2043. mparams.n_threads = params_base.cpuparams.n_threads;
  2044. mparams.verbosity = params_base.verbosity > 0 ? GGML_LOG_LEVEL_DEBUG : GGML_LOG_LEVEL_INFO;
  2045. mparams.flash_attn_type = params_base.flash_attn_type;
  2046. mparams.image_min_tokens = params_base.image_min_tokens;
  2047. mparams.image_max_tokens = params_base.image_max_tokens;
  2048. mctx = mtmd_init_from_file(mmproj_path.c_str(), model, mparams);
  2049. if (mctx == nullptr) {
  2050. SRV_ERR("failed to load multimodal model, '%s'\n", mmproj_path.c_str());
  2051. return false;
  2052. }
  2053. SRV_INF("loaded multimodal model, '%s'\n", mmproj_path.c_str());
  2054. if (params_base.ctx_shift) {
  2055. params_base.ctx_shift = false;
  2056. SRV_WRN("%s\n", "ctx_shift is not supported by multimodal, it will be disabled");
  2057. }
  2058. if (params_base.n_cache_reuse) {
  2059. params_base.n_cache_reuse = 0;
  2060. SRV_WRN("%s\n", "cache_reuse is not supported by multimodal, it will be disabled");
  2061. }
  2062. if (params_base.has_speculative()) {
  2063. SRV_ERR("%s\n", "err: speculative decode is not supported by multimodal");
  2064. return false;
  2065. }
  2066. }
  2067. if (!llama_memory_can_shift(llama_get_memory(ctx))) {
  2068. if (params_base.ctx_shift) {
  2069. params_base.ctx_shift = false;
  2070. SRV_WRN("%s\n", "ctx_shift is not supported by this context, it will be disabled");
  2071. }
  2072. if (params_base.n_cache_reuse) {
  2073. params_base.n_cache_reuse = 0;
  2074. SRV_WRN("%s\n", "cache_reuse is not supported by this context, it will be disabled");
  2075. }
  2076. }
  2077. return true;
  2078. }
  2079. void init() {
  2080. SRV_INF("initializing slots, n_slots = %d\n", params_base.n_parallel);
  2081. const int n_ctx_train = llama_model_n_ctx_train(model);
  2082. int n_ctx_slot = llama_n_ctx_seq(ctx);
  2083. if (n_ctx_slot > n_ctx_train) {
  2084. SRV_WRN("the slot context (%d) exceeds the training context of the model (%d) - capping\n", n_ctx_slot, n_ctx_train);
  2085. n_ctx_slot = n_ctx_train;
  2086. }
  2087. for (int i = 0; i < params_base.n_parallel; i++) {
  2088. server_slot slot;
  2089. slot.id = i;
  2090. slot.ctx = ctx;
  2091. slot.n_ctx = n_ctx_slot;
  2092. slot.mctx = mctx;
  2093. slot.prompt.tokens.has_mtmd = mctx != nullptr;
  2094. if (model_dft) {
  2095. slot.batch_spec = llama_batch_init(params_base.speculative.n_max + 1, 0, 1);
  2096. // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
  2097. slot.ctx_dft = llama_init_from_model(model_dft, cparams_dft);
  2098. if (slot.ctx_dft == nullptr) {
  2099. SRV_ERR("%s", "failed to create draft context\n");
  2100. return;
  2101. }
  2102. slot.spec = common_speculative_init(slot.ctx, slot.ctx_dft);
  2103. if (slot.spec == nullptr) {
  2104. SRV_ERR("%s", "failed to create speculator\n");
  2105. return;
  2106. }
  2107. for (auto & pair : params_base.speculative.replacements) {
  2108. common_speculative_add_replacement_tgt_dft(slot.spec, pair.first.c_str(), pair.second.c_str());
  2109. }
  2110. }
  2111. SLT_INF(slot, "new slot, n_ctx = %d\n", slot.n_ctx);
  2112. slot.callback_on_release = [this](int) {
  2113. queue_tasks.pop_deferred_task();
  2114. };
  2115. slot.reset();
  2116. slots.push_back(std::move(slot));
  2117. }
  2118. {
  2119. const char * LLAMA_SERVER_SLOTS_DEBUG = getenv("LLAMA_SERVER_SLOTS_DEBUG");
  2120. slots_debug = LLAMA_SERVER_SLOTS_DEBUG ? atoi(LLAMA_SERVER_SLOTS_DEBUG) : 0;
  2121. if (slots_debug) {
  2122. SRV_WRN("slots debug = %d\n", slots_debug);
  2123. }
  2124. }
  2125. // the update_slots() logic will always submit a maximum of n_batch or n_parallel tokens
  2126. // note that n_batch can be > n_ctx (e.g. for non-causal attention models such as BERT where the KV cache is not used)
  2127. {
  2128. const int32_t n_batch = llama_n_batch(ctx);
  2129. batch = llama_batch_init(std::max(n_batch, params_base.n_parallel), 0, 1);
  2130. }
  2131. metrics.init();
  2132. if (params_base.cache_ram_mib != 0) {
  2133. if (params_base.cache_ram_mib < 0) {
  2134. SRV_WRN("prompt cache is enabled, size limit: %s\n", "no limit");
  2135. } else {
  2136. SRV_WRN("prompt cache is enabled, size limit: %d MiB\n", params_base.cache_ram_mib);
  2137. }
  2138. SRV_WRN("%s", "use `--cache-ram 0` to disable the prompt cache\n");
  2139. prompt_cache = std::make_unique<server_prompt_cache>(params_base.cache_ram_mib, n_ctx);
  2140. } else {
  2141. SRV_WRN("%s", "prompt cache is disabled - use `--cache-ram N` to enable it\n");
  2142. }
  2143. SRV_WRN("%s", "for more info see https://github.com/ggml-org/llama.cpp/pull/16391\n");
  2144. // thinking is enabled if:
  2145. // 1. It's not explicitly disabled (reasoning_budget == 0)
  2146. // 2. The chat template supports it
  2147. const bool enable_thinking = params_base.use_jinja && params_base.reasoning_budget != 0 && common_chat_templates_support_enable_thinking(chat_templates.get());
  2148. SRV_INF("thinking = %d\n", enable_thinking);
  2149. oai_parser_opt = {
  2150. /* use_jinja */ params_base.use_jinja,
  2151. /* prefill_assistant */ params_base.prefill_assistant,
  2152. /* reasoning_format */ params_base.reasoning_format,
  2153. /* chat_template_kwargs */ params_base.default_template_kwargs,
  2154. /* common_chat_templates */ chat_templates.get(),
  2155. /* allow_image */ mctx ? mtmd_support_vision(mctx) : false,
  2156. /* allow_audio */ mctx ? mtmd_support_audio (mctx) : false,
  2157. /* enable_thinking */ enable_thinking,
  2158. };
  2159. }
  2160. server_slot * get_slot_by_id(int id) {
  2161. for (server_slot & slot : slots) {
  2162. if (slot.id == id) {
  2163. return &slot;
  2164. }
  2165. }
  2166. return nullptr;
  2167. }
  2168. server_slot * get_available_slot(const server_task & task) {
  2169. server_slot * ret = nullptr;
  2170. bool update_cache = false;
  2171. // find the slot that has at least n% prompt similarity
  2172. if (ret == nullptr && slot_prompt_similarity != 0.0f) {
  2173. float sim_best = 0;
  2174. for (server_slot & slot : slots) {
  2175. // skip the slot if it is not available
  2176. if (slot.is_processing()) {
  2177. continue;
  2178. }
  2179. const auto & tokens = slot.prompt.tokens;
  2180. // skip the slot if it does not contains cached tokens
  2181. if (tokens.empty()) {
  2182. continue;
  2183. }
  2184. // fraction of the Longest Common Prefix length with respect to the input prompt length
  2185. const float sim_cur = float(tokens.get_common_prefix(task.tokens)) / task.tokens.size();
  2186. // select the current slot if the criteria match
  2187. if (sim_cur > sim_best && sim_cur > slot_prompt_similarity) {
  2188. sim_best = sim_cur;
  2189. ret = &slot;
  2190. }
  2191. }
  2192. if (ret != nullptr) {
  2193. const float f_keep = (sim_best*task.tokens.size()) / ret->prompt.tokens.size();
  2194. SLT_INF(*ret, "selected slot by LCP similarity, sim_best = %.3f (> %.3f thold), f_keep = %.3f\n",
  2195. sim_best, slot_prompt_similarity, f_keep);
  2196. // if we are about to lose a large portion of the existing context - save it in the prompt cache
  2197. if (f_keep < 0.5f) {
  2198. update_cache = true;
  2199. }
  2200. }
  2201. }
  2202. // find the slot that has been least recently used
  2203. if (ret == nullptr) {
  2204. int64_t t_last = -1;
  2205. for (server_slot & slot : slots) {
  2206. // skip the slot if it is not available
  2207. if (slot.is_processing()) {
  2208. continue;
  2209. }
  2210. // select the current slot if the criteria match
  2211. if (!ret || slot.t_last_used <= t_last) {
  2212. t_last = slot.t_last_used;
  2213. ret = &slot;
  2214. }
  2215. }
  2216. if (ret != nullptr) {
  2217. SLT_INF(*ret, "selected slot by LRU, t_last = %" PRId64 "\n", t_last);
  2218. update_cache = true;
  2219. }
  2220. }
  2221. if (ret) {
  2222. const auto & tokens = ret->prompt.tokens;
  2223. update_cache = update_cache && prompt_cache;
  2224. // cache prompts only for completion tasks
  2225. update_cache = update_cache && task.type == SERVER_TASK_TYPE_COMPLETION;
  2226. // don't update the cache if the slot's context is empty
  2227. update_cache = update_cache && tokens.size() > 0;
  2228. // TODO: mtmd does not support prompt cache
  2229. update_cache = update_cache && (ret->mctx == nullptr);
  2230. if (update_cache) {
  2231. SRV_WRN("%s", "updating prompt cache\n");
  2232. const int64_t t_start = ggml_time_us();
  2233. ret->prompt_save(*prompt_cache);
  2234. ret->prompt_load(*prompt_cache, task.tokens);
  2235. prompt_cache->update();
  2236. SRV_WRN("prompt cache update took %.2f ms\n", (ggml_time_us() - t_start) / 1000.0);
  2237. }
  2238. }
  2239. return ret;
  2240. }
  2241. // return true if at least one slot has been purged
  2242. // TODO: improve logic
  2243. // - smarter decision which slot to purge (LRU or longest prompt?)
  2244. // - move slot to level 2 cache instead of removing?
  2245. // - instead of purging, try to store and resume later?
  2246. bool try_purge_idle_slots() {
  2247. bool res = false;
  2248. if (!params_base.kv_unified) {
  2249. return res;
  2250. }
  2251. for (auto & slot : slots) {
  2252. if (slot.is_processing()) {
  2253. continue;
  2254. }
  2255. if (slot.prompt.n_tokens() > 0) {
  2256. SRV_WRN("purging slot %d with %zu tokens\n", slot.id, slot.prompt.tokens.size());
  2257. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  2258. slot.prompt.tokens.clear();
  2259. res = true;
  2260. // purge slots one by one
  2261. break;
  2262. }
  2263. }
  2264. return res;
  2265. }
  2266. bool launch_slot_with_task(server_slot & slot, server_task && task) {
  2267. slot.reset();
  2268. if (!are_lora_equal(task.params.lora, slot.lora)) {
  2269. // if lora has changed, check to see if the cache should be cleared
  2270. if (lora_should_clear_cache(slot.lora, task.params.lora)) {
  2271. SLT_INF(slot, "clearing cache for lora change. %zu loras -> %zu loras\n", slot.lora.size(), task.params.lora.size());
  2272. slot.prompt.tokens.clear();
  2273. } else {
  2274. SLT_INF(slot, "keeping cache for alora. %zu target loras\n", task.params.lora.size());
  2275. }
  2276. slot.lora = task.params.lora;
  2277. }
  2278. // if using alora, make sure it's only a single one requested and active
  2279. size_t alora_invocation_start = task.tokens.size();
  2280. if (lora_all_alora(slot.lora)) {
  2281. const auto & enabled_ids = lora_get_enabled_ids(slot.lora);
  2282. // TODO: This will error out if a user requests two aloras, but only
  2283. // provides the activation string for one. We could, instead search
  2284. // for all requested alora activation strings and then either keep
  2285. // only the last one, or reject if multiple are found.
  2286. if (enabled_ids.size() != 1) {
  2287. send_error(task, "Cannot run multiple aLoRAs in a single request", ERROR_TYPE_INVALID_REQUEST);
  2288. return false;
  2289. }
  2290. const auto & lora = slot.lora[enabled_ids[0]].ptr;
  2291. // get the pointer and count for the invocation tokens
  2292. const uint64_t n_invocation_tokens = llama_adapter_get_alora_n_invocation_tokens(lora);
  2293. const llama_token * invocation_tokens = llama_adapter_get_alora_invocation_tokens (lora);
  2294. // scan backwards through the prompt tokens to find the last
  2295. // occurrence of the invocation sequence
  2296. int match_idx = static_cast<int>(n_invocation_tokens) - 1;
  2297. for (int i = task.tokens.size() - 1; i >= 0; --i) {
  2298. // the token in this position matches the next token to find in
  2299. // the invocation sequence
  2300. if (task.tokens[i] == invocation_tokens[match_idx]) {
  2301. // if it's a full match, we've found the start
  2302. if (match_idx == 0) {
  2303. alora_invocation_start = i;
  2304. break;
  2305. }
  2306. // otherwise, check the next token in the sequence
  2307. --match_idx;
  2308. } else {
  2309. // no match in this position, so start looking over again
  2310. match_idx = static_cast<int>(n_invocation_tokens) - 1;
  2311. }
  2312. }
  2313. // if the activation string is not found, disable the alora
  2314. if (alora_invocation_start == task.tokens.size()) {
  2315. SLT_DBG(slot, "alora %zu requested, but not found. deactivating\n", enabled_ids[0]);
  2316. slot.lora[enabled_ids[0]].scale = 0.0f;
  2317. } else {
  2318. SLT_DBG(slot, "alora %zu activated starting at %zu\n", enabled_ids[0], alora_invocation_start);
  2319. slot.alora_invocation_start = alora_invocation_start;
  2320. }
  2321. }
  2322. if (!task.tokens.validate(ctx)) {
  2323. send_error(task, "Prompt contains invalid tokens", ERROR_TYPE_INVALID_REQUEST);
  2324. return false;
  2325. }
  2326. SLT_DBG(slot, "launching slot : %s\n", safe_json_to_str(slot.to_json()).c_str());
  2327. // initialize samplers
  2328. {
  2329. if (slot.smpl != nullptr) {
  2330. common_sampler_free(slot.smpl);
  2331. }
  2332. slot.smpl = common_sampler_init(model, task.params.sampling);
  2333. if (slot.smpl == nullptr) {
  2334. // for now, the only error that may happen here is invalid grammar
  2335. send_error(task, "Failed to parse grammar", ERROR_TYPE_INVALID_REQUEST);
  2336. return false;
  2337. }
  2338. SLT_INF(slot, "sampler chain: %s\n", common_sampler_print(slot.smpl).c_str());
  2339. }
  2340. // initialize draft batch
  2341. // TODO: rework speculative decoding [TAG_SERVER_SPEC_REWORK]
  2342. if (slot.ctx_dft) {
  2343. llama_batch_free(slot.batch_spec);
  2344. slot.batch_spec = llama_batch_init(task.params.speculative.n_max + 1, 0, 1);
  2345. }
  2346. slot.task = std::make_unique<const server_task>(std::move(task));
  2347. slot.state = SLOT_STATE_STARTED;
  2348. SLT_INF(slot, "%s", "processing task\n");
  2349. return true;
  2350. }
  2351. void kv_cache_clear() {
  2352. SRV_DBG("%s", "clearing KV cache\n");
  2353. // clear the entire KV cache
  2354. llama_memory_clear(llama_get_memory(ctx), true);
  2355. clean_kv_cache = false;
  2356. }
  2357. bool process_token(completion_token_output & result, server_slot & slot) {
  2358. // remember which tokens were sampled - used for repetition penalties during sampling
  2359. const std::string token_str = result.text_to_send;
  2360. slot.sampled = result.tok;
  2361. slot.generated_text += token_str;
  2362. if (slot.task->params.return_tokens) {
  2363. slot.generated_tokens.push_back(result.tok);
  2364. }
  2365. slot.has_next_token = true;
  2366. // check if there is incomplete UTF-8 character at the end
  2367. bool incomplete = validate_utf8(slot.generated_text) < slot.generated_text.size();
  2368. // search stop word and delete it
  2369. if (!incomplete) {
  2370. size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
  2371. const std::string str_test = slot.generated_text.substr(pos);
  2372. bool send_text = true;
  2373. size_t stop_pos = slot.find_stopping_strings(str_test, token_str.size(), true);
  2374. if (stop_pos != std::string::npos) {
  2375. slot.generated_text.erase(
  2376. slot.generated_text.begin() + pos + stop_pos,
  2377. slot.generated_text.end());
  2378. pos = std::min(slot.n_sent_text, slot.generated_text.size());
  2379. } else if (slot.has_next_token && !llama_vocab_is_eog(vocab, result.tok) ) {
  2380. stop_pos = slot.find_stopping_strings(str_test, token_str.size(), false);
  2381. send_text = stop_pos == std::string::npos;
  2382. }
  2383. // check if there is any token to predict
  2384. if (send_text) {
  2385. // no send the stop word in the response
  2386. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  2387. slot.n_sent_text += result.text_to_send.size();
  2388. // add the token to slot queue and cache
  2389. } else {
  2390. result.text_to_send = "";
  2391. }
  2392. slot.add_token(result);
  2393. if (slot.task->params.stream) {
  2394. send_partial_response(slot, result, false);
  2395. }
  2396. }
  2397. if (incomplete) {
  2398. slot.has_next_token = true;
  2399. }
  2400. // if context shifting is disabled, make sure that we don't run out of context
  2401. if (!params_base.ctx_shift && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
  2402. slot.truncated = true;
  2403. slot.stop = STOP_TYPE_LIMIT;
  2404. slot.has_next_token = false;
  2405. SLT_DBG(slot, "stopped due to running out of context capacity, prompt.n_tokens() = %d, task.n_tokens = %d, n_decoded = %d, n_ctx = %d\n",
  2406. slot.prompt.n_tokens(), slot.task->n_tokens(), slot.n_decoded, slot.n_ctx);
  2407. }
  2408. // check the limits
  2409. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params_base)) {
  2410. slot.stop = STOP_TYPE_LIMIT;
  2411. slot.has_next_token = false;
  2412. SLT_DBG(slot, "stopped by limit, n_decoded = %d, n_predict = %d\n", slot.n_decoded, slot.task->params.n_predict);
  2413. }
  2414. if (slot.has_new_line) {
  2415. // require that each new line has a whitespace prefix (i.e. indentation) of at least slot.params.n_indent
  2416. if (slot.task->params.n_indent > 0) {
  2417. // check the current indentation
  2418. // TODO: improve by not doing it more than once for each new line
  2419. if (slot.last_nl_pos > 0) {
  2420. size_t pos = slot.last_nl_pos;
  2421. int n_indent = 0;
  2422. while (pos < slot.generated_text.size() && (slot.generated_text[pos] == ' ' || slot.generated_text[pos] == '\t')) {
  2423. n_indent++;
  2424. pos++;
  2425. }
  2426. if (pos < slot.generated_text.size() && n_indent < slot.task->params.n_indent) {
  2427. slot.stop = STOP_TYPE_LIMIT;
  2428. slot.has_next_token = false;
  2429. // cut the last line
  2430. slot.generated_text.erase(pos, std::string::npos);
  2431. SLT_DBG(slot, "stopped by indentation limit, n_decoded = %d, n_indent = %d\n", slot.n_decoded, n_indent);
  2432. }
  2433. }
  2434. // find the next new line
  2435. {
  2436. const size_t pos = slot.generated_text.find('\n', slot.last_nl_pos);
  2437. if (pos != std::string::npos) {
  2438. slot.last_nl_pos = pos + 1;
  2439. }
  2440. }
  2441. }
  2442. }
  2443. // check if there is a new line in the generated text
  2444. if (result.text_to_send.find('\n') != std::string::npos) {
  2445. slot.has_new_line = true;
  2446. // if we have seen a new line, we stop after a certain time limit, but only upon another new line
  2447. if (slot.task->params.t_max_predict_ms > 0 && (ggml_time_us() - slot.t_start_generation > 1000.0f*slot.task->params.t_max_predict_ms)) {
  2448. slot.stop = STOP_TYPE_LIMIT;
  2449. slot.has_next_token = false;
  2450. SLT_DBG(slot, "stopped by time limit, n_decoded = %d, t_max_predict_ms = %d ms\n", slot.n_decoded, (int) slot.task->params.t_max_predict_ms);
  2451. }
  2452. }
  2453. if (llama_vocab_is_eog(vocab, result.tok)) {
  2454. slot.stop = STOP_TYPE_EOS;
  2455. slot.has_next_token = false;
  2456. SLT_DBG(slot, "%s", "stopped by EOS\n");
  2457. }
  2458. SLT_DBG(slot, "n_decoded = %d, n_remaining = %d, next token: %5d '%s'\n", slot.n_decoded, slot.n_remaining, result.tok, token_str.c_str());
  2459. return slot.has_next_token; // continue
  2460. }
  2461. void populate_token_probs(const server_slot & slot, completion_token_output & result, bool post_sampling, bool special, int idx) const {
  2462. size_t n_probs = slot.task->params.sampling.n_probs;
  2463. size_t n_vocab = llama_vocab_n_tokens(vocab);
  2464. if (post_sampling) {
  2465. const auto * cur_p = common_sampler_get_candidates(slot.smpl, true);
  2466. const size_t max_probs = cur_p->size;
  2467. // set probability for sampled token
  2468. for (size_t i = 0; i < max_probs; i++) {
  2469. if (cur_p->data[i].id == result.tok) {
  2470. result.prob = cur_p->data[i].p;
  2471. break;
  2472. }
  2473. }
  2474. // set probability for top n_probs tokens
  2475. result.probs.reserve(max_probs);
  2476. for (size_t i = 0; i < std::min(max_probs, n_probs); i++) {
  2477. result.probs.push_back({
  2478. cur_p->data[i].id,
  2479. common_token_to_piece(ctx, cur_p->data[i].id, special),
  2480. cur_p->data[i].p
  2481. });
  2482. }
  2483. } else {
  2484. // TODO: optimize this with min-p optimization
  2485. std::vector<llama_token_data> cur = get_token_probabilities(ctx, idx);
  2486. // set probability for sampled token
  2487. for (size_t i = 0; i < n_vocab; i++) {
  2488. // set probability for sampled token
  2489. if (cur[i].id == result.tok) {
  2490. result.prob = cur[i].p;
  2491. break;
  2492. }
  2493. }
  2494. // set probability for top n_probs tokens
  2495. result.probs.reserve(n_probs);
  2496. for (size_t i = 0; i < std::min(n_vocab, n_probs); i++) {
  2497. result.probs.push_back({
  2498. cur[i].id,
  2499. common_token_to_piece(ctx, cur[i].id, special),
  2500. cur[i].p
  2501. });
  2502. }
  2503. }
  2504. }
  2505. void send_error(const server_task & task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2506. send_error(task.id, error, type);
  2507. }
  2508. void send_error(const server_slot & slot, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER) {
  2509. send_error(slot.task->id, error, type, slot.task->n_tokens(), slot.n_ctx);
  2510. }
  2511. void send_error(const int id_task, const std::string & error, const enum error_type type = ERROR_TYPE_SERVER, const int32_t n_prompt_tokens = 0, const int32_t n_ctx = 0) {
  2512. SRV_ERR("task id = %d, error: %s\n", id_task, error.c_str());
  2513. if (type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  2514. GGML_ASSERT(n_ctx > 0 && n_prompt_tokens > 0);
  2515. }
  2516. auto res = std::make_unique<server_task_result_error>();
  2517. res->id = id_task;
  2518. res->err_type = type;
  2519. res->err_msg = error;
  2520. res->n_prompt_tokens = n_prompt_tokens;
  2521. res->n_ctx = n_ctx;
  2522. queue_results.send(std::move(res));
  2523. }
  2524. // if multimodal is enabled, send an error and return false
  2525. bool check_no_mtmd(const int id_task) {
  2526. if (mctx) {
  2527. send_error(id_task, "This feature is not supported by multimodal", ERROR_TYPE_NOT_SUPPORTED);
  2528. return false;
  2529. }
  2530. return true;
  2531. }
  2532. void send_partial_response(server_slot & slot, const completion_token_output & tkn, bool is_progress) {
  2533. auto res = std::make_unique<server_task_result_cmpl_partial>();
  2534. res->id = slot.task->id;
  2535. res->index = slot.task->index;
  2536. if (is_progress) {
  2537. res->is_progress = true;
  2538. res->progress.total = slot.task->n_tokens();
  2539. res->progress.cache = slot.n_prompt_tokens_cache;
  2540. res->progress.processed = slot.prompt.tokens.size();
  2541. res->progress.time_ms = (ggml_time_us() - slot.t_start_process_prompt) / 1000;
  2542. } else {
  2543. res->content = tkn.text_to_send;
  2544. res->tokens = { tkn.tok };
  2545. slot.update_chat_msg(res->oaicompat_msg_diffs);
  2546. }
  2547. res->n_decoded = slot.n_decoded;
  2548. res->n_prompt_tokens = slot.task->n_tokens();
  2549. res->post_sampling_probs = slot.task->params.post_sampling_probs;
  2550. res->verbose = slot.task->params.verbose;
  2551. res->oaicompat = slot.task->params.oaicompat;
  2552. res->oaicompat_model = slot.task->params.oaicompat_model;
  2553. res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
  2554. // populate res.probs_output
  2555. if (slot.task->params.sampling.n_probs > 0) {
  2556. res->prob_output = tkn; // copy the token probs
  2557. }
  2558. // populate timings if this is final response or timings_per_token is enabled
  2559. if (slot.stop != STOP_TYPE_NONE || slot.task->params.timings_per_token) {
  2560. res->timings = slot.get_timings();
  2561. }
  2562. queue_results.send(std::move(res));
  2563. }
  2564. void send_final_response(server_slot & slot) {
  2565. auto res = std::make_unique<server_task_result_cmpl_final>();
  2566. res->id = slot.task->id;
  2567. res->id_slot = slot.id;
  2568. res->index = slot.task->index;
  2569. res->content = slot.generated_text;
  2570. res->tokens = std::move(slot.generated_tokens);
  2571. res->timings = slot.get_timings();
  2572. res->prompt = slot.task->tokens.detokenize(ctx, true);
  2573. res->response_fields = std::move(slot.task->params.response_fields);
  2574. res->truncated = slot.truncated;
  2575. res->n_decoded = slot.n_decoded;
  2576. res->n_prompt_tokens = slot.task->n_tokens();
  2577. res->n_tokens_cached = slot.prompt.n_tokens();
  2578. res->has_new_line = slot.has_new_line;
  2579. res->stopping_word = slot.stopping_word;
  2580. res->stop = slot.stop;
  2581. res->post_sampling_probs = slot.task->params.post_sampling_probs;
  2582. res->verbose = slot.task->params.verbose;
  2583. res->stream = slot.task->params.stream;
  2584. res->include_usage = slot.task->params.include_usage;
  2585. res->oaicompat = slot.task->params.oaicompat;
  2586. res->oaicompat_model = slot.task->params.oaicompat_model;
  2587. res->oaicompat_cmpl_id = slot.task->params.oaicompat_cmpl_id;
  2588. res->oaicompat_msg = slot.update_chat_msg(res->oaicompat_msg_diffs);
  2589. // populate res.probs_output
  2590. if (slot.task->params.sampling.n_probs > 0) {
  2591. if (!slot.task->params.stream && slot.stop == STOP_TYPE_WORD) {
  2592. const llama_tokens stop_word_toks = common_tokenize(ctx, slot.stopping_word, false);
  2593. size_t safe_offset = std::min(slot.generated_token_probs.size(), stop_word_toks.size());
  2594. res->probs_output = std::vector<completion_token_output>(
  2595. slot.generated_token_probs.begin(),
  2596. slot.generated_token_probs.end() - safe_offset);
  2597. } else {
  2598. res->probs_output = std::vector<completion_token_output>(
  2599. slot.generated_token_probs.begin(),
  2600. slot.generated_token_probs.end());
  2601. }
  2602. }
  2603. res->generation_params = slot.task->params; // copy the parameters
  2604. queue_results.send(std::move(res));
  2605. }
  2606. void send_embedding(const server_slot & slot, const llama_batch & batch) {
  2607. auto res = std::make_unique<server_task_result_embd>();
  2608. res->id = slot.task->id;
  2609. res->index = slot.task->index;
  2610. res->n_tokens = slot.task->n_tokens();
  2611. res->oaicompat = slot.task->params.oaicompat;
  2612. const int n_embd = llama_model_n_embd(model);
  2613. std::vector<float> embd_res(n_embd, 0.0f);
  2614. for (int i = 0; i < batch.n_tokens; ++i) {
  2615. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2616. continue;
  2617. }
  2618. const float * embd = nullptr;
  2619. if (llama_pooling_type(slot.ctx) == LLAMA_POOLING_TYPE_NONE) {
  2620. embd = llama_get_embeddings_ith(ctx, i);
  2621. } else {
  2622. embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2623. }
  2624. if (embd == nullptr) {
  2625. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2626. res->embedding.push_back(std::vector<float>(n_embd, 0.0f));
  2627. continue;
  2628. }
  2629. // normalize only when there is pooling
  2630. if (llama_pooling_type(slot.ctx) != LLAMA_POOLING_TYPE_NONE) {
  2631. common_embd_normalize(embd, embd_res.data(), n_embd, slot.task->params.embd_normalize);
  2632. res->embedding.push_back(embd_res);
  2633. break;
  2634. }
  2635. res->embedding.emplace_back(embd, embd + n_embd);
  2636. }
  2637. SLT_DBG(slot, "%s", "sending embeddings\n");
  2638. queue_results.send(std::move(res));
  2639. }
  2640. void send_rerank(const server_slot & slot, const llama_batch & batch) {
  2641. auto res = std::make_unique<server_task_result_rerank>();
  2642. res->id = slot.task->id;
  2643. res->index = slot.task->index;
  2644. res->n_tokens = slot.task->n_tokens();
  2645. for (int i = 0; i < batch.n_tokens; ++i) {
  2646. if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
  2647. continue;
  2648. }
  2649. const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
  2650. if (embd == NULL) {
  2651. embd = llama_get_embeddings_ith(ctx, i);
  2652. }
  2653. if (embd == NULL) {
  2654. SLT_ERR(slot, "failed to get embeddings, token = %d, seq_id = %d\n", batch.token[i], batch.seq_id[i][0]);
  2655. res->score = -1e6;
  2656. continue;
  2657. }
  2658. res->score = embd[0];
  2659. }
  2660. SLT_DBG(slot, "sending rerank result, res.score = %f\n", res->score);
  2661. queue_results.send(std::move(res));
  2662. }
  2663. //
  2664. // Functions to process the task
  2665. //
  2666. void process_single_task(server_task && task) {
  2667. switch (task.type) {
  2668. case SERVER_TASK_TYPE_COMPLETION:
  2669. case SERVER_TASK_TYPE_INFILL:
  2670. case SERVER_TASK_TYPE_EMBEDDING:
  2671. case SERVER_TASK_TYPE_RERANK:
  2672. {
  2673. const int id_slot = task.id_slot;
  2674. server_slot * slot = id_slot != -1 ? get_slot_by_id(id_slot) : get_available_slot(task);
  2675. if (slot == nullptr) {
  2676. // if no slot is available, we defer this task for processing later
  2677. SRV_DBG("no slot is available, defer task, id_task = %d\n", task.id);
  2678. queue_tasks.defer(std::move(task));
  2679. break;
  2680. }
  2681. if (slot->is_processing()) {
  2682. // if requested slot is unavailable, we defer this task for processing later
  2683. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2684. queue_tasks.defer(std::move(task));
  2685. break;
  2686. }
  2687. if (!launch_slot_with_task(*slot, std::move(task))) {
  2688. SRV_ERR("failed to launch slot with task, id_task = %d\n", task.id);
  2689. break;
  2690. }
  2691. } break;
  2692. case SERVER_TASK_TYPE_CANCEL:
  2693. {
  2694. // release slot linked with the task id
  2695. for (auto & slot : slots) {
  2696. if (slot.task && slot.task->id == task.id_target) {
  2697. slot.release();
  2698. break;
  2699. }
  2700. }
  2701. } break;
  2702. case SERVER_TASK_TYPE_NEXT_RESPONSE:
  2703. {
  2704. // do nothing
  2705. } break;
  2706. case SERVER_TASK_TYPE_METRICS:
  2707. {
  2708. json slots_data = json::array();
  2709. int n_idle_slots = 0;
  2710. int n_processing_slots = 0;
  2711. for (server_slot & slot : slots) {
  2712. json slot_data = slot.to_json(slots_debug == 0);
  2713. if (slot.is_processing()) {
  2714. n_processing_slots++;
  2715. } else {
  2716. n_idle_slots++;
  2717. }
  2718. slots_data.push_back(slot_data);
  2719. }
  2720. SRV_DBG("n_idle_slots = %d, n_processing_slots = %d\n", n_idle_slots, n_processing_slots);
  2721. auto res = std::make_unique<server_task_result_metrics>();
  2722. res->id = task.id;
  2723. res->slots_data = std::move(slots_data);
  2724. res->n_idle_slots = n_idle_slots;
  2725. res->n_processing_slots = n_processing_slots;
  2726. res->n_tasks_deferred = queue_tasks.queue_tasks_deferred.size();
  2727. res->t_start = metrics.t_start;
  2728. res->n_prompt_tokens_processed_total = metrics.n_prompt_tokens_processed_total;
  2729. res->t_prompt_processing_total = metrics.t_prompt_processing_total;
  2730. res->n_tokens_predicted_total = metrics.n_tokens_predicted_total;
  2731. res->t_tokens_generation_total = metrics.t_tokens_generation_total;
  2732. res->n_tokens_max = metrics.n_tokens_max;
  2733. res->n_prompt_tokens_processed = metrics.n_prompt_tokens_processed;
  2734. res->t_prompt_processing = metrics.t_prompt_processing;
  2735. res->n_tokens_predicted = metrics.n_tokens_predicted;
  2736. res->t_tokens_generation = metrics.t_tokens_generation;
  2737. res->n_decode_total = metrics.n_decode_total;
  2738. res->n_busy_slots_total = metrics.n_busy_slots_total;
  2739. if (task.metrics_reset_bucket) {
  2740. metrics.reset_bucket();
  2741. }
  2742. queue_results.send(std::move(res));
  2743. } break;
  2744. case SERVER_TASK_TYPE_SLOT_SAVE:
  2745. {
  2746. if (!check_no_mtmd(task.id)) {
  2747. break;
  2748. }
  2749. int id_slot = task.slot_action.slot_id;
  2750. server_slot * slot = get_slot_by_id(id_slot);
  2751. if (slot == nullptr) {
  2752. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2753. break;
  2754. }
  2755. if (slot->is_processing()) {
  2756. // if requested slot is unavailable, we defer this task for processing later
  2757. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2758. queue_tasks.defer(std::move(task));
  2759. break;
  2760. }
  2761. const size_t token_count = slot->prompt.tokens.size();
  2762. const int64_t t_start = ggml_time_us();
  2763. std::string filename = task.slot_action.filename;
  2764. std::string filepath = task.slot_action.filepath;
  2765. const llama_tokens & tokens = slot->prompt.tokens.get_text_tokens();
  2766. const size_t nwrite = llama_state_seq_save_file(ctx, filepath.c_str(), slot->id, tokens.data(), token_count);
  2767. const int64_t t_end = ggml_time_us();
  2768. const double t_save_ms = (t_end - t_start) / 1000.0;
  2769. auto res = std::make_unique<server_task_result_slot_save_load>();
  2770. res->id = task.id;
  2771. res->id_slot = id_slot;
  2772. res->filename = filename;
  2773. res->is_save = true;
  2774. res->n_tokens = token_count;
  2775. res->n_bytes = nwrite;
  2776. res->t_ms = t_save_ms;
  2777. queue_results.send(std::move(res));
  2778. } break;
  2779. case SERVER_TASK_TYPE_SLOT_RESTORE:
  2780. {
  2781. if (!check_no_mtmd(task.id)) break;
  2782. int id_slot = task.slot_action.slot_id;
  2783. server_slot * slot = get_slot_by_id(id_slot);
  2784. if (slot == nullptr) {
  2785. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2786. break;
  2787. }
  2788. if (slot->is_processing()) {
  2789. // if requested slot is unavailable, we defer this task for processing later
  2790. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2791. queue_tasks.defer(std::move(task));
  2792. break;
  2793. }
  2794. const int64_t t_start = ggml_time_us();
  2795. std::string filename = task.slot_action.filename;
  2796. std::string filepath = task.slot_action.filepath;
  2797. llama_tokens tokens;
  2798. tokens.resize(slot->n_ctx);
  2799. size_t token_count = 0;
  2800. size_t nread = llama_state_seq_load_file(ctx, filepath.c_str(), slot->id, tokens.data(), tokens.size(), &token_count);
  2801. if (nread == 0) {
  2802. slot->prompt.tokens.clear(); // KV may already been invalidated?
  2803. send_error(task, "Unable to restore slot, no available space in KV cache or invalid slot save file", ERROR_TYPE_INVALID_REQUEST);
  2804. break;
  2805. }
  2806. tokens.resize(token_count);
  2807. slot->prompt.tokens.clear();
  2808. slot->prompt.tokens.insert(tokens);
  2809. const int64_t t_end = ggml_time_us();
  2810. const double t_restore_ms = (t_end - t_start) / 1000.0;
  2811. auto res = std::make_unique<server_task_result_slot_save_load>();
  2812. res->id = task.id;
  2813. res->id_slot = id_slot;
  2814. res->filename = filename;
  2815. res->is_save = false;
  2816. res->n_tokens = token_count;
  2817. res->n_bytes = nread;
  2818. res->t_ms = t_restore_ms;
  2819. queue_results.send(std::move(res));
  2820. } break;
  2821. case SERVER_TASK_TYPE_SLOT_ERASE:
  2822. {
  2823. if (!check_no_mtmd(task.id)) {
  2824. break;
  2825. }
  2826. int id_slot = task.slot_action.slot_id;
  2827. server_slot * slot = get_slot_by_id(id_slot);
  2828. if (slot == nullptr) {
  2829. send_error(task, "Invalid slot ID", ERROR_TYPE_INVALID_REQUEST);
  2830. break;
  2831. }
  2832. if (slot->is_processing()) {
  2833. // if requested slot is unavailable, we defer this task for processing later
  2834. SRV_DBG("requested slot is unavailable, defer task, id_task = %d\n", task.id);
  2835. queue_tasks.defer(std::move(task));
  2836. break;
  2837. }
  2838. // Erase token cache
  2839. const size_t n_erased = slot->prompt.tokens.size();
  2840. llama_memory_seq_rm(llama_get_memory(ctx), slot->id, -1, -1);
  2841. slot->prompt.tokens.clear();
  2842. auto res = std::make_unique<server_task_result_slot_erase>();
  2843. res->id = task.id;
  2844. res->id_slot = id_slot;
  2845. res->n_erased = n_erased;
  2846. queue_results.send(std::move(res));
  2847. } break;
  2848. case SERVER_TASK_TYPE_SET_LORA:
  2849. {
  2850. params_base.lora_adapters = std::move(task.set_lora);
  2851. auto res = std::make_unique<server_task_result_apply_lora>();
  2852. res->id = task.id;
  2853. queue_results.send(std::move(res));
  2854. } break;
  2855. }
  2856. }
  2857. void update_slots() {
  2858. // check if all slots are idle
  2859. {
  2860. bool all_idle = true;
  2861. for (auto & slot : slots) {
  2862. if (slot.is_processing()) {
  2863. all_idle = false;
  2864. break;
  2865. }
  2866. }
  2867. if (all_idle) {
  2868. SRV_INF("%s", "all slots are idle\n");
  2869. if (clean_kv_cache) {
  2870. kv_cache_clear();
  2871. }
  2872. return;
  2873. }
  2874. }
  2875. {
  2876. SRV_DBG("%s", "posting NEXT_RESPONSE\n");
  2877. server_task task(SERVER_TASK_TYPE_NEXT_RESPONSE);
  2878. task.id = queue_tasks.get_new_id();
  2879. queue_tasks.post(std::move(task));
  2880. }
  2881. // apply context-shift if needed
  2882. // TODO: simplify and improve
  2883. for (server_slot & slot : slots) {
  2884. if (slot.state == SLOT_STATE_GENERATING && slot.prompt.n_tokens() + 1 >= slot.n_ctx) {
  2885. if (!params_base.ctx_shift) {
  2886. // this check is redundant (for good)
  2887. // we should never get here, because generation should already stopped in process_token()
  2888. send_error(slot, "context shift is disabled", ERROR_TYPE_SERVER);
  2889. slot.release();
  2890. continue;
  2891. }
  2892. if (mctx) {
  2893. // we should never reach this because params_base.ctx_shift is automatically disabled if mmproj is loaded
  2894. // we don't support ctx_shift because an image chunk may contains multiple tokens
  2895. GGML_ABORT("not supported by multimodal");
  2896. }
  2897. // Shift context
  2898. int n_keep = slot.task->params.n_keep < 0 ? slot.task->n_tokens() : slot.task->params.n_keep;
  2899. if (add_bos_token) {
  2900. n_keep += 1;
  2901. }
  2902. n_keep = std::min(slot.n_ctx - 4, n_keep);
  2903. const int n_left = slot.prompt.n_tokens() - n_keep;
  2904. const int n_discard = slot.task->params.n_discard ? slot.task->params.n_discard : (n_left / 2);
  2905. SLT_WRN(slot, "slot context shift, n_keep = %d, n_left = %d, n_discard = %d\n", n_keep, n_left, n_discard);
  2906. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, n_keep , n_keep + n_discard);
  2907. llama_memory_seq_add(llama_get_memory(ctx), slot.id, n_keep + n_discard, slot.prompt.n_tokens(), -n_discard);
  2908. // add generated tokens to cache
  2909. // ref: https://github.com/ggml-org/llama.cpp/pull/16818#discussion_r2473269481
  2910. {
  2911. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  2912. llama_tokens new_tokens = slot.prompt.tokens.get_text_tokens(); // copy
  2913. for (size_t i = n_keep + n_discard; i < new_tokens.size(); i++) {
  2914. new_tokens[i - n_discard] = new_tokens[i];
  2915. }
  2916. new_tokens.resize(slot.prompt.tokens.size() - n_discard);
  2917. slot.prompt.tokens.clear();
  2918. slot.prompt.tokens.insert(new_tokens);
  2919. }
  2920. slot.truncated = true;
  2921. }
  2922. }
  2923. // start populating the batch for this iteration
  2924. common_batch_clear(batch);
  2925. // track if given slot can be batched with slots already in the batch
  2926. server_slot * slot_batched = nullptr;
  2927. auto accept_special_token = [&](server_slot & slot, llama_token token) {
  2928. return params_base.special ||
  2929. slot.task->params.sampling.preserved_tokens.find(token) != slot.task->params.sampling.preserved_tokens.end();
  2930. };
  2931. // first, add sampled tokens from any ongoing sequences
  2932. for (auto & slot : slots) {
  2933. if (slot.state != SLOT_STATE_GENERATING) {
  2934. continue;
  2935. }
  2936. // check if we can batch this slot with the previous one
  2937. if (!slot_batched) {
  2938. slot_batched = &slot;
  2939. } else if (!slot_batched->can_batch_with(slot)) {
  2940. continue;
  2941. }
  2942. slot.i_batch = batch.n_tokens;
  2943. common_batch_add(batch, slot.sampled, slot.prompt.tokens.pos_next(), { slot.id }, true);
  2944. slot.prompt.tokens.push_back(slot.sampled);
  2945. SLT_DBG(slot, "slot decode token, n_ctx = %d, n_tokens = %d, truncated = %d\n",
  2946. slot.n_ctx, slot.prompt.n_tokens(), slot.truncated);
  2947. }
  2948. // process in chunks of params.n_batch
  2949. int32_t n_batch = llama_n_batch(ctx);
  2950. int32_t n_ubatch = llama_n_ubatch(ctx);
  2951. float alora_scale = -1.0f;
  2952. size_t alora_disabled_id = 0;
  2953. // next, batch any pending prompts without exceeding n_batch
  2954. if (params_base.cont_batching || batch.n_tokens == 0) {
  2955. for (auto & slot : slots) {
  2956. if (!slot.is_processing()) {
  2957. continue;
  2958. }
  2959. // check if we can batch this slot with the previous one
  2960. if (slot_batched && !slot_batched->can_batch_with(slot)) {
  2961. continue;
  2962. }
  2963. // this slot still has a prompt to be processed
  2964. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_STARTED) {
  2965. const auto & input_tokens = slot.task->tokens;
  2966. // TODO: maybe move branch to outside of this loop in the future
  2967. if (slot.state == SLOT_STATE_STARTED) {
  2968. slot.t_start_process_prompt = ggml_time_us();
  2969. slot.t_start_generation = 0;
  2970. slot.state = SLOT_STATE_PROCESSING_PROMPT;
  2971. SLT_INF(slot, "new prompt, n_ctx_slot = %d, n_keep = %d, task.n_tokens = %d\n",
  2972. slot.n_ctx, slot.task->params.n_keep, slot.task->n_tokens());
  2973. // print prompt tokens (for debugging)
  2974. /*if (1) {
  2975. // first 16 tokens (avoid flooding logs)
  2976. for (int i = 0; i < std::min<int>(16, input_tokens.size()); i++) {
  2977. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
  2978. }
  2979. } else {
  2980. // all
  2981. for (int i = 0; i < (int) input_tokens.size(); i++) {
  2982. SLT_DBG(slot, "prompt token %3d: %6d '%s'\n", i, input_tokens[i], common_token_to_piece(ctx, input_tokens[i]).c_str());
  2983. }
  2984. }*/
  2985. // keep track how many tokens we can reuse from the previous state
  2986. int n_past = 0;
  2987. // empty prompt passed -> release the slot and send empty response
  2988. if (input_tokens.empty()) {
  2989. SLT_WRN(slot, "%s", "empty prompt - releasing slot\n");
  2990. slot.print_timings();
  2991. send_final_response(slot);
  2992. slot.release();
  2993. continue;
  2994. }
  2995. // TODO: support memory-less logits computation
  2996. if (slot.need_logits() && !llama_get_memory(ctx)) {
  2997. send_error(slot, "the current context does not logits computation. skipping", ERROR_TYPE_SERVER);
  2998. slot.release();
  2999. continue;
  3000. }
  3001. if (!slot.can_split()) {
  3002. if (slot.task->n_tokens() > n_ubatch) {
  3003. send_error(slot, "input is too large to process. increase the physical batch size", ERROR_TYPE_SERVER);
  3004. slot.release();
  3005. continue;
  3006. }
  3007. if (slot.task->n_tokens() > slot.n_ctx) {
  3008. send_error(slot, "input is larger than the max context size. skipping", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
  3009. slot.release();
  3010. continue;
  3011. }
  3012. } else {
  3013. if (slot.task->n_tokens() >= slot.n_ctx) {
  3014. send_error(slot, "the request exceeds the available context size, try increasing it", ERROR_TYPE_EXCEED_CONTEXT_SIZE);
  3015. slot.release();
  3016. continue;
  3017. }
  3018. if (slot.task->params.cache_prompt) {
  3019. // reuse any previously computed tokens that are common with the new prompt
  3020. n_past = slot.prompt.tokens.get_common_prefix(input_tokens);
  3021. // if there is an alora invoked, don't cache after the invocation start
  3022. if (slot.alora_invocation_start > 0) {
  3023. SLT_DBG(slot, "only caching to alora invocation start (n_past = %d, alora_invocation_start = %d)\n", n_past, slot.alora_invocation_start);
  3024. n_past = std::min(n_past, slot.alora_invocation_start - 1);
  3025. }
  3026. // reuse chunks from the cached prompt by shifting their KV cache in the new position
  3027. if (params_base.n_cache_reuse > 0) {
  3028. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  3029. size_t head_c = n_past; // cache
  3030. size_t head_p = n_past; // current prompt
  3031. if (mctx) {
  3032. // we should never reach this
  3033. GGML_ABORT("not supported by multimodal");
  3034. }
  3035. SLT_DBG(slot, "trying to reuse chunks with size > %d, n_past = %d\n", params_base.n_cache_reuse, n_past);
  3036. while (head_c < slot.prompt.tokens.size() &&
  3037. head_p < input_tokens.size()) {
  3038. size_t n_match = 0;
  3039. while (head_c + n_match < slot.prompt.tokens.size() &&
  3040. head_p + n_match < input_tokens.size() &&
  3041. slot.prompt.tokens[head_c + n_match] == input_tokens[head_p + n_match]) {
  3042. n_match++;
  3043. }
  3044. if (n_match >= (size_t) params_base.n_cache_reuse) {
  3045. SLT_INF(slot, "reusing chunk with size %zu, shifting KV cache [%zu, %zu) -> [%zu, %zu)\n", n_match, head_c, head_c + n_match, head_p, head_p + n_match);
  3046. //for (size_t i = head_p; i < head_p + n_match; i++) {
  3047. // SLT_DBG(slot, "cache token %3zu: %6d '%s'\n", i, prompt_tokens[i], common_token_to_piece(ctx, prompt_tokens[i]).c_str());
  3048. //}
  3049. const int64_t kv_shift = (int64_t) head_p - (int64_t) head_c;
  3050. llama_memory_seq_rm (llama_get_memory(ctx), slot.id, head_p, head_c);
  3051. llama_memory_seq_add(llama_get_memory(ctx), slot.id, head_c, head_c + n_match, kv_shift);
  3052. for (size_t i = 0; i < n_match; i++) {
  3053. slot.prompt.tokens.set_token(head_p + i, slot.prompt.tokens[head_c + i]);
  3054. n_past++;
  3055. }
  3056. head_c += n_match;
  3057. head_p += n_match;
  3058. } else {
  3059. head_c += 1;
  3060. }
  3061. }
  3062. SLT_DBG(slot, "after context reuse, new n_past = %d\n", n_past);
  3063. }
  3064. } else {
  3065. // if we don't cache the prompt, we have to remove all previous tokens
  3066. n_past = 0;
  3067. }
  3068. // note: when n_swa == 0, the model does not use SWA, which is equivalent to a window of 1
  3069. const auto n_swa = std::max(1, llama_model_n_swa(model));
  3070. // the largest pos_min required for a checkpoint to be useful
  3071. const auto pos_min_thold = std::max(0, n_past - n_swa);
  3072. // note: disallow with mtmd contexts for now
  3073. // https://github.com/ggml-org/llama.cpp/issues/17043
  3074. if (!mctx && n_past > 0 && n_past < slot.prompt.n_tokens()) {
  3075. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  3076. if (pos_min == -1) {
  3077. SLT_ERR(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min);
  3078. GGML_ABORT("pos_min == -1, but n_past > 0 - should not happen: https://github.com/ggml-org/llama.cpp/pull/13833#discussion_r2116181237");
  3079. }
  3080. // when the prompt prefix does not match, print the tokens around the mismatch
  3081. // this is useful for debugging prompt caching
  3082. if (slots_debug) {
  3083. const int np0 = std::max<int>(n_past - 4, 0);
  3084. const int np1 = std::min<int>(n_past + 6, std::min(slot.prompt.tokens.size(), slot.task->tokens.size()));
  3085. std::stringstream ss0;
  3086. std::stringstream ss1;
  3087. std::stringstream st0;
  3088. std::stringstream st1;
  3089. ss0 << "old: ... ";
  3090. ss1 << "new: ... ";
  3091. for (int i = np0; i < np1; i++) {
  3092. if (i == n_past) {
  3093. ss0 << " | ";
  3094. ss1 << " | ";
  3095. }
  3096. {
  3097. const auto token = slot.prompt.tokens[i];
  3098. const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
  3099. ss0 << piece;
  3100. st0 << std::setw(8) << token;
  3101. }
  3102. {
  3103. const auto token = slot.task->tokens[i];
  3104. const auto piece = token != LLAMA_TOKEN_NULL ? common_token_to_piece(ctx, token) : "[mtmd]";
  3105. ss1 << piece;
  3106. st1 << std::setw(8) << token;
  3107. }
  3108. }
  3109. SLT_WRN(slot, "%s\n", ss0.str().c_str());
  3110. SLT_WRN(slot, "%s\n", ss1.str().c_str());
  3111. SLT_WRN(slot, "%s\n", st0.str().c_str());
  3112. SLT_WRN(slot, "%s\n", st1.str().c_str());
  3113. }
  3114. if (pos_min > pos_min_thold) {
  3115. // TODO: support can be added in the future when corresponding vision models get released
  3116. GGML_ASSERT(!slot.prompt.tokens.has_mtmd);
  3117. SLT_WRN(slot, "n_past = %d, slot.prompt.tokens.size() = %d, seq_id = %d, pos_min = %d, n_swa = %d\n", n_past, (int) slot.prompt.tokens.size(), slot.id, pos_min, n_swa);
  3118. // search for a context checkpoint
  3119. const auto it = std::find_if(
  3120. slot.prompt.checkpoints.rbegin(),
  3121. slot.prompt.checkpoints.rend(),
  3122. [&](const auto & cur) {
  3123. // guarantee that a checkpoint will result in at least one token being processed [TAG_PROMPT_LOGITS]
  3124. return cur.pos_min < pos_min_thold;
  3125. }
  3126. );
  3127. bool do_reset = it == slot.prompt.checkpoints.rend();
  3128. if (!do_reset) {
  3129. // restore the context checkpoint
  3130. const size_t checkpoint_size = it->data.size();
  3131. const size_t n = llama_state_seq_set_data_ext(ctx, it->data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  3132. if (n != checkpoint_size) {
  3133. SLT_ERR(slot, "failed to restore context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
  3134. do_reset = true;
  3135. //printf("[DEBUG] `do_reset` was set to `true` after failing to restore a checkpoint");
  3136. } else {
  3137. n_past = std::min(n_past, std::max(it->pos_min + 1, it->pos_max));
  3138. SLT_WRN(slot, "restored context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n", it->pos_min, it->pos_max, (float) checkpoint_size / 1024 / 1024);
  3139. }
  3140. }
  3141. if (do_reset) {
  3142. SLT_WRN(slot, "forcing full prompt re-processing due to lack of cache data (likely due to SWA or hybrid/recurrent memory, see %s)\n",
  3143. "https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055");
  3144. n_past = 0;
  3145. }
  3146. }
  3147. }
  3148. {
  3149. // erase any checkpoints with pos_min > pos_min_thold
  3150. for (auto it = slot.prompt.checkpoints.begin(); it != slot.prompt.checkpoints.end();) {
  3151. const auto & cur = *it;
  3152. if (cur.pos_min > pos_min_thold) {
  3153. SLT_WRN(slot, "erased invalidated context checkpoint (pos_min = %d, pos_max = %d, n_swa = %d, size = %.3f MiB)\n", cur.pos_min, cur.pos_max, n_swa, (float) cur.data.size() / 1024 / 1024);
  3154. it = slot.prompt.checkpoints.erase(it);
  3155. } else {
  3156. ++it;
  3157. }
  3158. }
  3159. }
  3160. }
  3161. // [TAG_PROMPT_LOGITS]
  3162. if (n_past == slot.task->n_tokens() && n_past > 0) {
  3163. SLT_WRN(slot, "need to evaluate at least 1 token for each active slot (n_past = %d, task.n_tokens() = %d)\n", n_past, slot.task->n_tokens());
  3164. n_past--;
  3165. SLT_WRN(slot, "n_past was set to %d\n", n_past);
  3166. }
  3167. slot.n_prompt_tokens_cache = n_past;
  3168. slot.n_prompt_tokens_processed = 0;
  3169. slot.prompt.tokens.keep_first(n_past);
  3170. }
  3171. if (!slot.can_split()) {
  3172. // cannot fit the prompt in the current batch - will try next iter
  3173. if (batch.n_tokens + slot.task->n_tokens() > n_batch) {
  3174. continue;
  3175. }
  3176. }
  3177. // truncate any tokens that are beyond n_past for this slot
  3178. const llama_pos p0 = slot.prompt.tokens.pos_next();
  3179. SLT_INF(slot, "n_tokens = %d, memory_seq_rm [%d, end)\n", slot.prompt.n_tokens(), p0);
  3180. if (!llama_memory_seq_rm(llama_get_memory(ctx), slot.id, p0, -1)) {
  3181. SLT_WRN(slot, "failed to truncate tokens with position >= %d - clearing the memory\n", p0);
  3182. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, -1, -1);
  3183. // there is no common part left
  3184. slot.n_prompt_tokens_cache = 0;
  3185. slot.prompt.tokens.clear();
  3186. }
  3187. // check if we should process the image
  3188. if (slot.prompt.n_tokens() < slot.task->n_tokens() && input_tokens[slot.prompt.n_tokens()] == LLAMA_TOKEN_NULL) {
  3189. // process the image
  3190. size_t n_tokens_out = 0;
  3191. int32_t res = input_tokens.process_chunk(ctx, mctx, slot.prompt.n_tokens(), slot.prompt.tokens.pos_next(), slot.id, n_tokens_out);
  3192. if (res != 0) {
  3193. SLT_ERR(slot, "failed to process image, res = %d\n", res);
  3194. send_error(slot, "failed to process image", ERROR_TYPE_SERVER);
  3195. slot.release();
  3196. continue;
  3197. }
  3198. slot.n_prompt_tokens_processed += n_tokens_out;
  3199. // add the image chunk to cache
  3200. {
  3201. const auto & chunk = input_tokens.find_chunk(slot.prompt.n_tokens());
  3202. slot.prompt.tokens.push_back(chunk.get()); // copy
  3203. }
  3204. }
  3205. // If using an alora, there may be uncached tokens that come
  3206. // before the invocation sequence. When this happens, the
  3207. // tokens before the invocation sequence need to be
  3208. // processed without the adapter in a separate batch, then
  3209. // the adapter needs to be enabled for the remaining tokens.
  3210. if (lora_all_alora(slot.lora) && slot.alora_invocation_start - 1 > slot.prompt.n_tokens()) {
  3211. SLT_DBG(slot, "processing pre-alora tokens without the adapter (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
  3212. const auto & enabled_loras = lora_get_enabled_ids(slot.lora);
  3213. GGML_ASSERT(enabled_loras.size() == 1);
  3214. alora_scale = slot.lora[enabled_loras[0]].scale;
  3215. slot.lora[enabled_loras[0]].scale = 0.0f;
  3216. alora_disabled_id = enabled_loras[0];
  3217. }
  3218. bool do_checkpoint = params_base.n_ctx_checkpoints > 0;
  3219. // make checkpoints only for completion tasks
  3220. do_checkpoint = do_checkpoint && slot.task->type == SERVER_TASK_TYPE_COMPLETION;
  3221. // make a checkpoint of the parts of the memory that cannot be rolled back.
  3222. // checkpoints are created only if:
  3223. // - the model uses SWA and we are not using `swa_full`
  3224. // - the model architecture is marked as recurrent or hybrid
  3225. //
  3226. // TODO: try to make this conditional on the context or the memory module, instead of the model type
  3227. do_checkpoint = do_checkpoint && (
  3228. llama_model_is_recurrent(model) ||
  3229. llama_model_is_hybrid(model) ||
  3230. (llama_model_n_swa(model) > 0 && !params_base.swa_full)
  3231. );
  3232. // add prompt tokens for processing in the current batch
  3233. while (slot.prompt.n_tokens() < slot.task->n_tokens() && batch.n_tokens < n_batch) {
  3234. // get next token to process
  3235. llama_token cur_tok = input_tokens[slot.prompt.n_tokens()];
  3236. if (cur_tok == LLAMA_TOKEN_NULL) {
  3237. break; // end of text chunk
  3238. }
  3239. // if this is an alora request with pre-invocation
  3240. // tokens that are not cached, we need to stop filling
  3241. // this batch at those pre-invocation tokens.
  3242. if (alora_scale > 0 && slot.prompt.n_tokens() == slot.alora_invocation_start - 1) {
  3243. SLT_DBG(slot, "stop prompt batch filling at (n_tokens = %d, alora_invocation_start = %d)\n", slot.prompt.n_tokens(), slot.alora_invocation_start);
  3244. break;
  3245. }
  3246. // embedding requires all tokens in the batch to be output
  3247. common_batch_add(batch,
  3248. cur_tok,
  3249. slot.prompt.tokens.pos_next(),
  3250. { slot.id },
  3251. slot.need_embd());
  3252. slot.prompt.tokens.push_back(cur_tok);
  3253. slot.n_prompt_tokens_processed++;
  3254. // process the last few tokens of the prompt separately in order to allow for a checkpoint to be created.
  3255. if (do_checkpoint && slot.task->n_tokens() - slot.prompt.n_tokens() == 64) {
  3256. break;
  3257. }
  3258. }
  3259. // SLT_INF(slot, "new slot.prompt.tokens: %s\n", slot.slot.prompt.tokens.str().c_str());
  3260. SLT_INF(slot, "prompt processing progress, n_tokens = %d, batch.n_tokens = %d, progress = %f\n", slot.prompt.n_tokens(), batch.n_tokens, (float) slot.prompt.n_tokens() / slot.task->n_tokens());
  3261. // entire prompt has been processed
  3262. if (slot.prompt.n_tokens() == slot.task->n_tokens()) {
  3263. slot.state = SLOT_STATE_DONE_PROMPT;
  3264. GGML_ASSERT(batch.n_tokens > 0);
  3265. common_sampler_reset(slot.smpl);
  3266. // Process all prompt tokens through sampler system
  3267. for (int i = 0; i < slot.task->n_tokens(); ++i) {
  3268. llama_token id = input_tokens[i];
  3269. if (id != LLAMA_TOKEN_NULL) {
  3270. common_sampler_accept(slot.smpl, id, false);
  3271. }
  3272. }
  3273. // extract the logits only for the last token
  3274. batch.logits[batch.n_tokens - 1] = true;
  3275. slot.n_decoded = 0;
  3276. slot.i_batch = batch.n_tokens - 1;
  3277. SLT_INF(slot, "prompt done, n_tokens = %d, batch.n_tokens = %d\n", slot.prompt.n_tokens(), batch.n_tokens);
  3278. const auto pos_min = llama_memory_seq_pos_min(llama_get_memory(ctx), slot.id);
  3279. const auto pos_max = llama_memory_seq_pos_max(llama_get_memory(ctx), slot.id);
  3280. // no need for empty or small checkpoints
  3281. do_checkpoint = do_checkpoint && (pos_min >= 0 && pos_max >= 64);
  3282. // no need to create checkpoints that are too close together
  3283. do_checkpoint = do_checkpoint && (slot.prompt.checkpoints.empty() || pos_max > slot.prompt.checkpoints.back().pos_max + 64);
  3284. if (do_checkpoint) {
  3285. while (slot.prompt.checkpoints.size() >= (size_t) params_base.n_ctx_checkpoints) {
  3286. // make room for the new checkpoint, if needed
  3287. const auto & cur = slot.prompt.checkpoints.front();
  3288. SLT_WRN(slot, "erasing old context checkpoint (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
  3289. cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  3290. slot.prompt.checkpoints.erase(slot.prompt.checkpoints.begin());
  3291. }
  3292. const size_t checkpoint_size = llama_state_seq_get_size_ext(ctx, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  3293. auto & cur = slot.prompt.checkpoints.emplace_back(server_prompt_checkpoint{
  3294. /*.pos_min = */ pos_min,
  3295. /*.pos_max = */ pos_max,
  3296. /*.data = */ std::vector<uint8_t>(checkpoint_size),
  3297. });
  3298. llama_state_seq_get_data_ext(ctx, cur.data.data(), checkpoint_size, slot.id, LLAMA_STATE_SEQ_FLAGS_PARTIAL_ONLY);
  3299. SLT_WRN(slot, "created context checkpoint %d of %d (pos_min = %d, pos_max = %d, size = %.3f MiB)\n",
  3300. (int) slot.prompt.checkpoints.size(), params_base.n_ctx_checkpoints, cur.pos_min, cur.pos_max, (float) cur.data.size() / 1024 / 1024);
  3301. }
  3302. }
  3303. }
  3304. if (!slot_batched) {
  3305. slot_batched = &slot;
  3306. }
  3307. if (batch.n_tokens >= n_batch) {
  3308. break;
  3309. }
  3310. }
  3311. }
  3312. if (batch.n_tokens == 0) {
  3313. SRV_WRN("%s", "no tokens to decode\n");
  3314. return;
  3315. }
  3316. SRV_DBG("decoding batch, n_tokens = %d\n", batch.n_tokens);
  3317. if (slot_batched) {
  3318. // apply lora, only need to do it once per batch
  3319. common_set_adapter_lora(ctx, slot_batched->lora);
  3320. // if the lora is temporarily disabled for an alora, re-enable it
  3321. // for next time
  3322. if (alora_scale > 0.0f) {
  3323. SRV_DBG("re-enabling alora with scale %f\n", alora_scale);
  3324. slot_batched->lora[alora_disabled_id].scale = alora_scale;
  3325. }
  3326. llama_set_embeddings(ctx, slot_batched->need_embd());
  3327. }
  3328. int32_t i_next = 0;
  3329. // process the created batch of tokens
  3330. for (int32_t i = 0; i < batch.n_tokens; i = i_next) {
  3331. const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
  3332. llama_batch batch_view = {
  3333. n_tokens,
  3334. batch.token + i,
  3335. nullptr,
  3336. batch.pos + i,
  3337. batch.n_seq_id + i,
  3338. batch.seq_id + i,
  3339. batch.logits + i,
  3340. };
  3341. const int ret = llama_decode(ctx, batch_view);
  3342. metrics.on_decoded(slots);
  3343. if (ret != 0) {
  3344. {
  3345. std::string err;
  3346. if (n_batch == 1 && ret == 1) {
  3347. // TODO: try to terminate only the largest active slot/sequence and continue with the rest
  3348. // need to remove the tokens from the current batch too
  3349. err = "Context size has been exceeded.";
  3350. }
  3351. if (ret == -1) {
  3352. err = "Invalid input batch.";
  3353. }
  3354. if (ret < -1) {
  3355. // TODO: update slot state based on llama_memory_seq_pos_min() and llama_memory_seq_pos_max()
  3356. err = "Compute error.";
  3357. }
  3358. // TODO: handle ret == 2 (abort) when we start aborting
  3359. if (!err.empty()) {
  3360. SRV_ERR("%s i = %d, n_batch = %d, ret = %d\n", err.c_str(), i, n_batch, ret);
  3361. for (auto & slot : slots) {
  3362. if (slot.is_processing()) {
  3363. send_error(slot, err);
  3364. slot.release();
  3365. }
  3366. }
  3367. break;
  3368. }
  3369. }
  3370. // retry with half the batch size to try to find a free slot in the KV cache
  3371. if (!try_purge_idle_slots()) {
  3372. n_batch /= 2;
  3373. }
  3374. SRV_WRN("failed to find free space in the KV cache, retrying with smaller batch size, i = %d, n_batch = %d, ret = %d\n", i, n_batch, ret);
  3375. continue; // continue loop of n_batch
  3376. }
  3377. // move the head of the batch forward with the number of tokens we just processed
  3378. i_next = i + n_tokens;
  3379. // on successful decode, restore the original batch size
  3380. n_batch = llama_n_batch(ctx);
  3381. for (auto & slot : slots) {
  3382. // optionally send prompt processing progress
  3383. if (slot.state == SLOT_STATE_PROCESSING_PROMPT || slot.state == SLOT_STATE_DONE_PROMPT) {
  3384. if (slot.task->params.stream && slot.task->params.return_progress) {
  3385. send_partial_response(slot, {}, true);
  3386. }
  3387. }
  3388. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens)) {
  3389. continue; // continue loop of slots
  3390. }
  3391. if (slot.state == SLOT_STATE_DONE_PROMPT) {
  3392. if (slot.task->type == SERVER_TASK_TYPE_EMBEDDING) {
  3393. // prompt evaluated for embedding
  3394. send_embedding(slot, batch_view);
  3395. slot.release();
  3396. slot.i_batch = -1;
  3397. continue; // continue loop of slots
  3398. }
  3399. if (slot.task->type == SERVER_TASK_TYPE_RERANK) {
  3400. send_rerank(slot, batch_view);
  3401. slot.release();
  3402. slot.i_batch = -1;
  3403. continue; // continue loop of slots
  3404. }
  3405. // prompt evaluated for next-token prediction
  3406. slot.state = SLOT_STATE_GENERATING;
  3407. } else if (slot.state != SLOT_STATE_GENERATING) {
  3408. continue; // continue loop of slots
  3409. }
  3410. const int tok_idx = slot.i_batch - i;
  3411. llama_token id = common_sampler_sample(slot.smpl, ctx, tok_idx);
  3412. slot.i_batch = -1;
  3413. common_sampler_accept(slot.smpl, id, true);
  3414. slot.n_decoded += 1;
  3415. const int64_t t_current = ggml_time_us();
  3416. if (slot.n_decoded == 1) {
  3417. slot.t_start_generation = t_current;
  3418. slot.t_prompt_processing = (slot.t_start_generation - slot.t_start_process_prompt) / 1e3;
  3419. metrics.on_prompt_eval(slot);
  3420. }
  3421. slot.t_token_generation = std::max<int64_t>(1, t_current - slot.t_start_generation) / 1e3;
  3422. completion_token_output result;
  3423. result.tok = id;
  3424. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3425. result.prob = 1.0f; // TODO: set it here instead of doing inside populate_token_probs
  3426. if (slot.task->params.sampling.n_probs > 0) {
  3427. populate_token_probs(slot, result, slot.task->params.post_sampling_probs, params_base.special, tok_idx);
  3428. }
  3429. if (!process_token(result, slot)) {
  3430. // release slot because of stop condition
  3431. slot.print_timings();
  3432. send_final_response(slot);
  3433. metrics.on_prediction(slot);
  3434. slot.release();
  3435. continue;
  3436. }
  3437. }
  3438. // do speculative decoding
  3439. // TODO: rework to have a single draft llama_context shared across all slots [TAG_SERVER_SPEC_REWORK]
  3440. // perform the speculative drafting for all sequences at the same time in a single batch
  3441. for (auto & slot : slots) {
  3442. if (!slot.is_processing() || !slot.can_speculate()) {
  3443. continue;
  3444. }
  3445. if (slot.state != SLOT_STATE_GENERATING) {
  3446. continue;
  3447. }
  3448. if (mctx) {
  3449. // we should never reach this, as speculative is automatically disabled if mmproj is loaded
  3450. GGML_ABORT("not supported by multimodal");
  3451. }
  3452. // determine the max draft that fits the current slot state
  3453. int n_draft_max = slot.task->params.speculative.n_max;
  3454. // note: slot.prompt is not yet expanded with the `id` token sampled above
  3455. // also, need to leave space for 1 extra token to allow context shifts
  3456. n_draft_max = std::min(n_draft_max, slot.n_ctx - slot.prompt.n_tokens() - 2);
  3457. if (slot.n_remaining > 0) {
  3458. n_draft_max = std::min(n_draft_max, slot.n_remaining - 1);
  3459. }
  3460. SLT_DBG(slot, "max possible draft: %d\n", n_draft_max);
  3461. if (n_draft_max < slot.task->params.speculative.n_min) {
  3462. SLT_DBG(slot, "the max possible draft is too small: %d < %d - skipping speculative decoding\n", n_draft_max, slot.task->params.speculative.n_min);
  3463. continue;
  3464. }
  3465. llama_token id = slot.sampled;
  3466. struct common_speculative_params params_spec;
  3467. params_spec.n_draft = n_draft_max;
  3468. params_spec.n_reuse = llama_n_ctx(slot.ctx_dft) - slot.task->params.speculative.n_max;
  3469. params_spec.p_min = slot.task->params.speculative.p_min;
  3470. const llama_tokens & cached_text_tokens = slot.prompt.tokens.get_text_tokens();
  3471. llama_tokens draft = common_speculative_gen_draft(slot.spec, params_spec, cached_text_tokens, id);
  3472. // ignore small drafts
  3473. if (slot.task->params.speculative.n_min > (int) draft.size()) {
  3474. SLT_DBG(slot, "ignoring small draft: %d < %d\n", (int) draft.size(), slot.task->params.speculative.n_min);
  3475. continue;
  3476. }
  3477. // keep track of total number of drafted tokens tested
  3478. slot.n_draft_total += draft.size();
  3479. // construct the speculation batch
  3480. common_batch_clear(slot.batch_spec);
  3481. common_batch_add (slot.batch_spec, id, slot.prompt.tokens.pos_next(), { slot.id }, true);
  3482. for (size_t i = 0; i < draft.size(); ++i) {
  3483. common_batch_add(slot.batch_spec, draft[i], slot.prompt.tokens.pos_next() + 1 + i, { slot.id }, true);
  3484. }
  3485. SLT_DBG(slot, "decoding speculative batch, size = %d\n", slot.batch_spec.n_tokens);
  3486. llama_decode(ctx, slot.batch_spec);
  3487. // the accepted tokens from the speculation
  3488. const auto ids = common_sampler_sample_and_accept_n(slot.smpl, ctx, draft);
  3489. slot.n_decoded += ids.size();
  3490. // update how many tokens out of those tested were accepted
  3491. slot.n_draft_accepted += ids.size() - 1;
  3492. slot.prompt.tokens.push_back(id);
  3493. slot.prompt.tokens.insert({ids.begin(), ids.end() - 1});
  3494. llama_memory_seq_rm(llama_get_memory(ctx), slot.id, slot.prompt.n_tokens(), -1);
  3495. for (size_t i = 0; i < ids.size(); ++i) {
  3496. completion_token_output result;
  3497. result.tok = ids[i];
  3498. result.text_to_send = common_token_to_piece(ctx, result.tok, accept_special_token(slot, result.tok));
  3499. result.prob = 1.0f; // set later
  3500. // TODO: set result.probs
  3501. if (!process_token(result, slot)) {
  3502. slot.print_timings();
  3503. send_final_response(slot);
  3504. metrics.on_prediction(slot);
  3505. slot.release();
  3506. break;
  3507. }
  3508. }
  3509. SLT_DBG(slot, "accepted %d/%d draft tokens, new n_tokens = %d\n", (int) ids.size() - 1, (int) draft.size(), slot.prompt.n_tokens());
  3510. }
  3511. }
  3512. SRV_DBG("%s", "run slots completed\n");
  3513. }
  3514. json model_meta() const {
  3515. return json {
  3516. {"vocab_type", llama_vocab_type (vocab)},
  3517. {"n_vocab", llama_vocab_n_tokens (vocab)},
  3518. {"n_ctx_train", llama_model_n_ctx_train(model)},
  3519. {"n_embd", llama_model_n_embd (model)},
  3520. {"n_params", llama_model_n_params (model)},
  3521. {"size", llama_model_size (model)},
  3522. };
  3523. }
  3524. };
  3525. // generator-like API for server responses, support pooling connection state and aggregating results
  3526. struct server_response_reader {
  3527. std::unordered_set<int> id_tasks;
  3528. server_context & ctx_server;
  3529. size_t received_count = 0;
  3530. bool cancelled = false;
  3531. server_response_reader(server_context & ctx_server) : ctx_server(ctx_server) {}
  3532. ~server_response_reader() {
  3533. stop();
  3534. }
  3535. void post_tasks(std::vector<server_task> && tasks) {
  3536. id_tasks = server_task::get_list_id(tasks);
  3537. ctx_server.queue_results.add_waiting_tasks(tasks);
  3538. ctx_server.queue_tasks.post(std::move(tasks));
  3539. }
  3540. bool has_next() {
  3541. return !cancelled && received_count < id_tasks.size();
  3542. }
  3543. // return nullptr if should_stop() is true before receiving a result
  3544. // note: if one error is received, it will stop further processing and return error result
  3545. server_task_result_ptr next(const std::function<bool()> & should_stop) {
  3546. while (true) {
  3547. server_task_result_ptr result = ctx_server.queue_results.recv_with_timeout(id_tasks, HTTP_POLLING_SECONDS);
  3548. if (result == nullptr) {
  3549. // timeout, check stop condition
  3550. if (should_stop()) {
  3551. SRV_DBG("%s", "stopping wait for next result due to should_stop condition\n");
  3552. return nullptr;
  3553. }
  3554. } else {
  3555. if (result->is_error()) {
  3556. stop(); // cancel remaining tasks
  3557. SRV_DBG("%s", "received error result, stopping further processing\n");
  3558. return result;
  3559. }
  3560. if (result->is_stop()) {
  3561. received_count++;
  3562. }
  3563. return result;
  3564. }
  3565. }
  3566. // should not reach here
  3567. }
  3568. struct batch_response {
  3569. bool is_terminated = false; // if true, indicates that processing was stopped before all results were received
  3570. std::vector<server_task_result_ptr> results;
  3571. server_task_result_ptr error; // nullptr if no error
  3572. };
  3573. batch_response wait_for_all(const std::function<bool()> & should_stop) {
  3574. batch_response batch_res;
  3575. batch_res.results.resize(id_tasks.size());
  3576. while (has_next()) {
  3577. auto res = next(should_stop);
  3578. if (res == nullptr) {
  3579. batch_res.is_terminated = true;
  3580. return batch_res;
  3581. }
  3582. if (res->is_error()) {
  3583. batch_res.error = std::move(res);
  3584. return batch_res;
  3585. }
  3586. const size_t idx = res->get_index();
  3587. GGML_ASSERT(idx < batch_res.results.size() && "index out of range");
  3588. GGML_ASSERT(batch_res.results[idx] == nullptr && "duplicate result received");
  3589. batch_res.results[idx] = std::move(res);
  3590. }
  3591. return batch_res;
  3592. }
  3593. void stop() {
  3594. ctx_server.queue_results.remove_waiting_task_ids(id_tasks);
  3595. if (has_next() && !cancelled) {
  3596. // if tasks is not finished yet, cancel them
  3597. cancelled = true;
  3598. std::vector<server_task> cancel_tasks;
  3599. cancel_tasks.reserve(id_tasks.size());
  3600. for (const auto & id_task : id_tasks) {
  3601. SRV_WRN("cancel task, id_task = %d\n", id_task);
  3602. server_task task(SERVER_TASK_TYPE_CANCEL);
  3603. task.id_target = id_task;
  3604. ctx_server.queue_results.remove_waiting_task_id(id_task);
  3605. cancel_tasks.push_back(std::move(task));
  3606. }
  3607. // push to beginning of the queue, so it has highest priority
  3608. ctx_server.queue_tasks.post(std::move(cancel_tasks), true);
  3609. } else {
  3610. SRV_DBG("%s", "all tasks already finished, no need to cancel\n");
  3611. }
  3612. }
  3613. };
  3614. static void log_server_request(const httplib::Request & req, const httplib::Response & res) {
  3615. // skip GH copilot requests when using default port
  3616. if (req.path == "/v1/health") {
  3617. return;
  3618. }
  3619. // reminder: this function is not covered by httplib's exception handler; if someone does more complicated stuff, think about wrapping it in try-catch
  3620. SRV_INF("request: %s %s %s %d\n", req.method.c_str(), req.path.c_str(), req.remote_addr.c_str(), res.status);
  3621. SRV_DBG("request: %s\n", req.body.c_str());
  3622. SRV_DBG("response: %s\n", res.body.c_str());
  3623. }
  3624. static void res_err(httplib::Response & res, const json & error_data) {
  3625. json final_response {{"error", error_data}};
  3626. res.set_content(safe_json_to_str(final_response), MIMETYPE_JSON);
  3627. res.status = json_value(error_data, "code", 500);
  3628. }
  3629. static void res_ok(httplib::Response & res, const json & data) {
  3630. res.set_content(safe_json_to_str(data), MIMETYPE_JSON);
  3631. res.status = 200;
  3632. }
  3633. std::function<void(int)> shutdown_handler;
  3634. std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
  3635. inline void signal_handler(int signal) {
  3636. if (is_terminating.test_and_set()) {
  3637. // in case it hangs, we can force terminate the server by hitting Ctrl+C twice
  3638. // this is for better developer experience, we can remove when the server is stable enough
  3639. fprintf(stderr, "Received second interrupt, terminating immediately.\n");
  3640. exit(1);
  3641. }
  3642. shutdown_handler(signal);
  3643. }
  3644. int main(int argc, char ** argv) {
  3645. // own arguments required by this example
  3646. common_params params;
  3647. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_SERVER)) {
  3648. return 1;
  3649. }
  3650. // TODO: should we have a separate n_parallel parameter for the server?
  3651. // https://github.com/ggml-org/llama.cpp/pull/16736#discussion_r2483763177
  3652. // TODO: this is a common configuration that is suitable for most local use cases
  3653. // however, overriding the parameters is a bit confusing - figure out something more intuitive
  3654. if (params.n_parallel == 1 && params.kv_unified == false && !params.has_speculative()) {
  3655. LOG_WRN("%s: setting n_parallel = 4 and kv_unified = true (add -kvu to disable this)\n", __func__);
  3656. params.n_parallel = 4;
  3657. params.kv_unified = true;
  3658. }
  3659. common_init();
  3660. // struct that contains llama context and inference
  3661. server_context ctx_server;
  3662. llama_backend_init();
  3663. llama_numa_init(params.numa);
  3664. LOG_INF("system info: n_threads = %d, n_threads_batch = %d, total_threads = %d\n", params.cpuparams.n_threads, params.cpuparams_batch.n_threads, std::thread::hardware_concurrency());
  3665. LOG_INF("\n");
  3666. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  3667. LOG_INF("\n");
  3668. std::unique_ptr<httplib::Server> svr;
  3669. #ifdef CPPHTTPLIB_OPENSSL_SUPPORT
  3670. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3671. LOG_INF("Running with SSL: key = %s, cert = %s\n", params.ssl_file_key.c_str(), params.ssl_file_cert.c_str());
  3672. svr.reset(
  3673. new httplib::SSLServer(params.ssl_file_cert.c_str(), params.ssl_file_key.c_str())
  3674. );
  3675. } else {
  3676. LOG_INF("Running without SSL\n");
  3677. svr.reset(new httplib::Server());
  3678. }
  3679. #else
  3680. if (params.ssl_file_key != "" && params.ssl_file_cert != "") {
  3681. LOG_ERR("Server is built without SSL support\n");
  3682. return 1;
  3683. }
  3684. svr.reset(new httplib::Server());
  3685. #endif
  3686. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  3687. svr->set_default_headers({{"Server", "llama.cpp"}});
  3688. svr->set_logger(log_server_request);
  3689. svr->set_exception_handler([](const httplib::Request &, httplib::Response & res, const std::exception_ptr & ep) {
  3690. std::string message;
  3691. try {
  3692. std::rethrow_exception(ep);
  3693. } catch (const std::exception & e) {
  3694. message = e.what();
  3695. } catch (...) {
  3696. message = "Unknown Exception";
  3697. }
  3698. try {
  3699. json formatted_error = format_error_response(message, ERROR_TYPE_SERVER);
  3700. LOG_WRN("got exception: %s\n", formatted_error.dump().c_str());
  3701. res_err(res, formatted_error);
  3702. } catch (const std::exception & e) {
  3703. LOG_ERR("got another exception: %s | while hanlding exception: %s\n", e.what(), message.c_str());
  3704. }
  3705. });
  3706. svr->set_error_handler([](const httplib::Request &, httplib::Response & res) {
  3707. if (res.status == 404) {
  3708. res_err(res, format_error_response("File Not Found", ERROR_TYPE_NOT_FOUND));
  3709. }
  3710. // for other error codes, we skip processing here because it's already done by res_err()
  3711. });
  3712. // set timeouts and change hostname and port
  3713. svr->set_read_timeout (params.timeout_read);
  3714. svr->set_write_timeout(params.timeout_write);
  3715. std::unordered_map<std::string, std::string> log_data;
  3716. log_data["hostname"] = params.hostname;
  3717. log_data["port"] = std::to_string(params.port);
  3718. if (params.api_keys.size() == 1) {
  3719. auto key = params.api_keys[0];
  3720. log_data["api_key"] = "api_key: ****" + key.substr(std::max((int)(key.length() - 4), 0));
  3721. } else if (params.api_keys.size() > 1) {
  3722. log_data["api_key"] = "api_key: " + std::to_string(params.api_keys.size()) + " keys loaded";
  3723. }
  3724. // Necessary similarity of prompt for slot selection
  3725. ctx_server.slot_prompt_similarity = params.slot_prompt_similarity;
  3726. //
  3727. // Middlewares
  3728. //
  3729. auto middleware_validate_api_key = [&params](const httplib::Request & req, httplib::Response & res) {
  3730. static const std::unordered_set<std::string> public_endpoints = {
  3731. "/health",
  3732. "/v1/health",
  3733. "/models",
  3734. "/v1/models",
  3735. "/api/tags"
  3736. };
  3737. // If API key is not set, skip validation
  3738. if (params.api_keys.empty()) {
  3739. return true;
  3740. }
  3741. // If path is public or is static file, skip validation
  3742. if (public_endpoints.find(req.path) != public_endpoints.end() || req.path == "/") {
  3743. return true;
  3744. }
  3745. // Check for API key in the header
  3746. auto auth_header = req.get_header_value("Authorization");
  3747. std::string prefix = "Bearer ";
  3748. if (auth_header.substr(0, prefix.size()) == prefix) {
  3749. std::string received_api_key = auth_header.substr(prefix.size());
  3750. if (std::find(params.api_keys.begin(), params.api_keys.end(), received_api_key) != params.api_keys.end()) {
  3751. return true; // API key is valid
  3752. }
  3753. }
  3754. // API key is invalid or not provided
  3755. res_err(res, format_error_response("Invalid API Key", ERROR_TYPE_AUTHENTICATION));
  3756. LOG_WRN("Unauthorized: Invalid API Key\n");
  3757. return false;
  3758. };
  3759. auto middleware_server_state = [&state](const httplib::Request & req, httplib::Response & res) {
  3760. server_state current_state = state.load();
  3761. if (current_state == SERVER_STATE_LOADING_MODEL) {
  3762. auto tmp = string_split<std::string>(req.path, '.');
  3763. if (req.path == "/" || tmp.back() == "html") {
  3764. res.set_content(reinterpret_cast<const char*>(loading_html), loading_html_len, "text/html; charset=utf-8");
  3765. res.status = 503;
  3766. } else if (req.path == "/models" || req.path == "/v1/models" || req.path == "/api/tags") {
  3767. // allow the models endpoint to be accessed during loading
  3768. return true;
  3769. } else {
  3770. res_err(res, format_error_response("Loading model", ERROR_TYPE_UNAVAILABLE));
  3771. }
  3772. return false;
  3773. }
  3774. return true;
  3775. };
  3776. // register server middlewares
  3777. svr->set_pre_routing_handler([&middleware_validate_api_key, &middleware_server_state](const httplib::Request & req, httplib::Response & res) {
  3778. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  3779. // If this is OPTIONS request, skip validation because browsers don't include Authorization header
  3780. if (req.method == "OPTIONS") {
  3781. res.set_header("Access-Control-Allow-Credentials", "true");
  3782. res.set_header("Access-Control-Allow-Methods", "GET, POST");
  3783. res.set_header("Access-Control-Allow-Headers", "*");
  3784. res.set_content("", "text/html"); // blank response, no data
  3785. return httplib::Server::HandlerResponse::Handled; // skip further processing
  3786. }
  3787. if (!middleware_server_state(req, res)) {
  3788. return httplib::Server::HandlerResponse::Handled;
  3789. }
  3790. if (!middleware_validate_api_key(req, res)) {
  3791. return httplib::Server::HandlerResponse::Handled;
  3792. }
  3793. return httplib::Server::HandlerResponse::Unhandled;
  3794. });
  3795. //
  3796. // Route handlers (or controllers)
  3797. //
  3798. const auto handle_health = [&](const httplib::Request &, httplib::Response & res) {
  3799. // error and loading states are handled by middleware
  3800. json health = {{"status", "ok"}};
  3801. res_ok(res, health);
  3802. };
  3803. const auto handle_slots = [&](const httplib::Request & req, httplib::Response & res) {
  3804. if (!params.endpoint_slots) {
  3805. res_err(res, format_error_response("This server does not support slots endpoint. Start it with `--slots`", ERROR_TYPE_NOT_SUPPORTED));
  3806. return;
  3807. }
  3808. // request slots data using task queue
  3809. int task_id = ctx_server.queue_tasks.get_new_id();
  3810. {
  3811. server_task task(SERVER_TASK_TYPE_METRICS);
  3812. task.id = task_id;
  3813. ctx_server.queue_results.add_waiting_task_id(task_id);
  3814. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3815. }
  3816. // get the result
  3817. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3818. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3819. if (result->is_error()) {
  3820. res_err(res, result->to_json());
  3821. return;
  3822. }
  3823. // TODO: get rid of this dynamic_cast
  3824. auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
  3825. GGML_ASSERT(res_task != nullptr);
  3826. // optionally return "fail_on_no_slot" error
  3827. if (req.has_param("fail_on_no_slot")) {
  3828. if (res_task->n_idle_slots == 0) {
  3829. res_err(res, format_error_response("no slot available", ERROR_TYPE_UNAVAILABLE));
  3830. return;
  3831. }
  3832. }
  3833. res_ok(res, res_task->slots_data);
  3834. };
  3835. const auto handle_metrics = [&](const httplib::Request &, httplib::Response & res) {
  3836. if (!params.endpoint_metrics) {
  3837. res_err(res, format_error_response("This server does not support metrics endpoint. Start it with `--metrics`", ERROR_TYPE_NOT_SUPPORTED));
  3838. return;
  3839. }
  3840. // request slots data using task queue
  3841. int task_id = ctx_server.queue_tasks.get_new_id();
  3842. {
  3843. server_task task(SERVER_TASK_TYPE_METRICS);
  3844. task.id = task_id;
  3845. ctx_server.queue_results.add_waiting_task_id(task_id);
  3846. ctx_server.queue_tasks.post(std::move(task), true); // high-priority task
  3847. }
  3848. // get the result
  3849. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3850. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3851. if (result->is_error()) {
  3852. res_err(res, result->to_json());
  3853. return;
  3854. }
  3855. // TODO: get rid of this dynamic_cast
  3856. auto res_task = dynamic_cast<server_task_result_metrics*>(result.get());
  3857. GGML_ASSERT(res_task != nullptr);
  3858. // metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
  3859. json all_metrics_def = json {
  3860. {"counter", {{
  3861. {"name", "prompt_tokens_total"},
  3862. {"help", "Number of prompt tokens processed."},
  3863. {"value", (uint64_t) res_task->n_prompt_tokens_processed_total}
  3864. }, {
  3865. {"name", "prompt_seconds_total"},
  3866. {"help", "Prompt process time"},
  3867. {"value", (uint64_t) res_task->t_prompt_processing_total / 1.e3}
  3868. }, {
  3869. {"name", "tokens_predicted_total"},
  3870. {"help", "Number of generation tokens processed."},
  3871. {"value", (uint64_t) res_task->n_tokens_predicted_total}
  3872. }, {
  3873. {"name", "tokens_predicted_seconds_total"},
  3874. {"help", "Predict process time"},
  3875. {"value", (uint64_t) res_task->t_tokens_generation_total / 1.e3}
  3876. }, {
  3877. {"name", "n_decode_total"},
  3878. {"help", "Total number of llama_decode() calls"},
  3879. {"value", res_task->n_decode_total}
  3880. }, {
  3881. {"name", "n_tokens_max"},
  3882. {"help", "Largest observed n_tokens."},
  3883. {"value", res_task->n_tokens_max}
  3884. }, {
  3885. {"name", "n_busy_slots_per_decode"},
  3886. {"help", "Average number of busy slots per llama_decode() call"},
  3887. {"value", (float) res_task->n_busy_slots_total / std::max((float) res_task->n_decode_total, 1.f)}
  3888. }}},
  3889. {"gauge", {{
  3890. {"name", "prompt_tokens_seconds"},
  3891. {"help", "Average prompt throughput in tokens/s."},
  3892. {"value", res_task->n_prompt_tokens_processed ? 1.e3 / res_task->t_prompt_processing * res_task->n_prompt_tokens_processed : 0.}
  3893. },{
  3894. {"name", "predicted_tokens_seconds"},
  3895. {"help", "Average generation throughput in tokens/s."},
  3896. {"value", res_task->n_tokens_predicted ? 1.e3 / res_task->t_tokens_generation * res_task->n_tokens_predicted : 0.}
  3897. },{
  3898. {"name", "requests_processing"},
  3899. {"help", "Number of requests processing."},
  3900. {"value", (uint64_t) res_task->n_processing_slots}
  3901. },{
  3902. {"name", "requests_deferred"},
  3903. {"help", "Number of requests deferred."},
  3904. {"value", (uint64_t) res_task->n_tasks_deferred}
  3905. }}}
  3906. };
  3907. std::stringstream prometheus;
  3908. for (const auto & el : all_metrics_def.items()) {
  3909. const auto & type = el.key();
  3910. const auto & metrics_def = el.value();
  3911. for (const auto & metric_def : metrics_def) {
  3912. const std::string name = metric_def.at("name");
  3913. const std::string help = metric_def.at("help");
  3914. auto value = json_value(metric_def, "value", 0.);
  3915. prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
  3916. << "# TYPE llamacpp:" << name << " " << type << "\n"
  3917. << "llamacpp:" << name << " " << value << "\n";
  3918. }
  3919. }
  3920. res.set_header("Process-Start-Time-Unix", std::to_string(res_task->t_start));
  3921. res.set_content(prometheus.str(), "text/plain; version=0.0.4");
  3922. res.status = 200; // HTTP OK
  3923. };
  3924. const auto handle_slots_save = [&ctx_server, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3925. json request_data = json::parse(req.body);
  3926. std::string filename = request_data.at("filename");
  3927. if (!fs_validate_filename(filename)) {
  3928. res_err(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3929. return;
  3930. }
  3931. std::string filepath = params.slot_save_path + filename;
  3932. int task_id = ctx_server.queue_tasks.get_new_id();
  3933. {
  3934. server_task task(SERVER_TASK_TYPE_SLOT_SAVE);
  3935. task.id = task_id;
  3936. task.slot_action.slot_id = id_slot;
  3937. task.slot_action.filename = filename;
  3938. task.slot_action.filepath = filepath;
  3939. ctx_server.queue_results.add_waiting_task_id(task_id);
  3940. ctx_server.queue_tasks.post(std::move(task));
  3941. }
  3942. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3943. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3944. if (result->is_error()) {
  3945. res_err(res, result->to_json());
  3946. return;
  3947. }
  3948. res_ok(res, result->to_json());
  3949. };
  3950. const auto handle_slots_restore = [&ctx_server, &params](const httplib::Request & req, httplib::Response & res, int id_slot) {
  3951. json request_data = json::parse(req.body);
  3952. std::string filename = request_data.at("filename");
  3953. if (!fs_validate_filename(filename)) {
  3954. res_err(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
  3955. return;
  3956. }
  3957. std::string filepath = params.slot_save_path + filename;
  3958. int task_id = ctx_server.queue_tasks.get_new_id();
  3959. {
  3960. server_task task(SERVER_TASK_TYPE_SLOT_RESTORE);
  3961. task.id = task_id;
  3962. task.slot_action.slot_id = id_slot;
  3963. task.slot_action.filename = filename;
  3964. task.slot_action.filepath = filepath;
  3965. ctx_server.queue_results.add_waiting_task_id(task_id);
  3966. ctx_server.queue_tasks.post(std::move(task));
  3967. }
  3968. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3969. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3970. if (result->is_error()) {
  3971. res_err(res, result->to_json());
  3972. return;
  3973. }
  3974. GGML_ASSERT(dynamic_cast<server_task_result_slot_save_load*>(result.get()) != nullptr);
  3975. res_ok(res, result->to_json());
  3976. };
  3977. const auto handle_slots_erase = [&ctx_server](const httplib::Request & /* req */, httplib::Response & res, int id_slot) {
  3978. int task_id = ctx_server.queue_tasks.get_new_id();
  3979. {
  3980. server_task task(SERVER_TASK_TYPE_SLOT_ERASE);
  3981. task.id = task_id;
  3982. task.slot_action.slot_id = id_slot;
  3983. ctx_server.queue_results.add_waiting_task_id(task_id);
  3984. ctx_server.queue_tasks.post(std::move(task));
  3985. }
  3986. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  3987. ctx_server.queue_results.remove_waiting_task_id(task_id);
  3988. if (result->is_error()) {
  3989. res_err(res, result->to_json());
  3990. return;
  3991. }
  3992. GGML_ASSERT(dynamic_cast<server_task_result_slot_erase*>(result.get()) != nullptr);
  3993. res_ok(res, result->to_json());
  3994. };
  3995. const auto handle_slots_action = [&params, &handle_slots_save, &handle_slots_restore, &handle_slots_erase](const httplib::Request & req, httplib::Response & res) {
  3996. if (params.slot_save_path.empty()) {
  3997. res_err(res, format_error_response("This server does not support slots action. Start it with `--slot-save-path`", ERROR_TYPE_NOT_SUPPORTED));
  3998. return;
  3999. }
  4000. std::string id_slot_str = req.path_params.at("id_slot");
  4001. int id_slot;
  4002. try {
  4003. id_slot = std::stoi(id_slot_str);
  4004. } catch (const std::exception &) {
  4005. res_err(res, format_error_response("Invalid slot ID", ERROR_TYPE_INVALID_REQUEST));
  4006. return;
  4007. }
  4008. std::string action = req.get_param_value("action");
  4009. if (action == "save") {
  4010. handle_slots_save(req, res, id_slot);
  4011. } else if (action == "restore") {
  4012. handle_slots_restore(req, res, id_slot);
  4013. } else if (action == "erase") {
  4014. handle_slots_erase(req, res, id_slot);
  4015. } else {
  4016. res_err(res, format_error_response("Invalid action", ERROR_TYPE_INVALID_REQUEST));
  4017. }
  4018. };
  4019. const auto handle_props = [&params, &ctx_server](const httplib::Request &, httplib::Response & res) {
  4020. json default_generation_settings_for_props;
  4021. {
  4022. slot_params params;
  4023. params.sampling = ctx_server.params_base.sampling;
  4024. default_generation_settings_for_props = json {
  4025. {"params", params.to_json(true)},
  4026. {"n_ctx", ctx_server.slots[0].n_ctx},
  4027. };
  4028. }
  4029. // this endpoint is publicly available, please only return what is safe to be exposed
  4030. json data = {
  4031. { "default_generation_settings", default_generation_settings_for_props },
  4032. { "total_slots", ctx_server.params_base.n_parallel },
  4033. { "model_alias", ctx_server.params_base.model_alias },
  4034. { "model_path", ctx_server.params_base.model.path },
  4035. { "modalities", json {
  4036. {"vision", ctx_server.oai_parser_opt.allow_image},
  4037. {"audio", ctx_server.oai_parser_opt.allow_audio},
  4038. } },
  4039. { "endpoint_slots", params.endpoint_slots },
  4040. { "endpoint_props", params.endpoint_props },
  4041. { "endpoint_metrics", params.endpoint_metrics },
  4042. { "webui", params.webui },
  4043. { "chat_template", common_chat_templates_source(ctx_server.chat_templates.get()) },
  4044. { "bos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_bos(ctx_server.vocab), /* special= */ true)},
  4045. { "eos_token", common_token_to_piece(ctx_server.ctx, llama_vocab_eos(ctx_server.vocab), /* special= */ true)},
  4046. { "build_info", build_info },
  4047. };
  4048. if (ctx_server.params_base.use_jinja) {
  4049. if (auto tool_use_src = common_chat_templates_source(ctx_server.chat_templates.get(), "tool_use")) {
  4050. data["chat_template_tool_use"] = tool_use_src;
  4051. }
  4052. }
  4053. res_ok(res, data);
  4054. };
  4055. const auto handle_props_change = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
  4056. if (!ctx_server.params_base.endpoint_props) {
  4057. res_err(res, format_error_response("This server does not support changing global properties. Start it with `--props`", ERROR_TYPE_NOT_SUPPORTED));
  4058. return;
  4059. }
  4060. json data = json::parse(req.body);
  4061. // update any props here
  4062. res_ok(res, {{ "success", true }});
  4063. };
  4064. const auto handle_api_show = [&ctx_server](const httplib::Request &, httplib::Response & res) {
  4065. bool has_mtmd = ctx_server.mctx != nullptr;
  4066. json data = {
  4067. {
  4068. "template", common_chat_templates_source(ctx_server.chat_templates.get()),
  4069. },
  4070. {
  4071. "model_info", {
  4072. { "llama.context_length", ctx_server.slots.back().n_ctx, },
  4073. }
  4074. },
  4075. {"modelfile", ""},
  4076. {"parameters", ""},
  4077. {"template", common_chat_templates_source(ctx_server.chat_templates.get())},
  4078. {"details", {
  4079. {"parent_model", ""},
  4080. {"format", "gguf"},
  4081. {"family", ""},
  4082. {"families", {""}},
  4083. {"parameter_size", ""},
  4084. {"quantization_level", ""}
  4085. }},
  4086. {"model_info", ""},
  4087. {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})}
  4088. };
  4089. res_ok(res, data);
  4090. };
  4091. // handle completion-like requests (completion, chat, infill)
  4092. // we can optionally provide a custom format for partial results and final results
  4093. const auto handle_completions_impl = [&ctx_server](
  4094. server_task_type type,
  4095. json & data,
  4096. const std::vector<raw_buffer> & files,
  4097. const std::function<bool()> & is_connection_closed,
  4098. httplib::Response & res,
  4099. oaicompat_type oaicompat) -> void {
  4100. GGML_ASSERT(type == SERVER_TASK_TYPE_COMPLETION || type == SERVER_TASK_TYPE_INFILL);
  4101. auto completion_id = gen_chatcmplid();
  4102. // need to store the reader as a pointer, so that it won't be destroyed when the handle returns
  4103. // use shared_ptr as it's shared between the chunked_content_provider() and on_complete()
  4104. const auto rd = std::make_shared<server_response_reader>(ctx_server);
  4105. try {
  4106. std::vector<server_task> tasks;
  4107. const auto & prompt = data.at("prompt");
  4108. // TODO: this log can become very long, put it behind a flag or think about a more compact format
  4109. //SRV_DBG("Prompt: %s\n", prompt.is_string() ? prompt.get<std::string>().c_str() : prompt.dump(2).c_str());
  4110. // process prompt
  4111. std::vector<server_tokens> inputs;
  4112. if (oaicompat && ctx_server.mctx != nullptr) {
  4113. // This is the case used by OAI compatible chat path with MTMD. TODO It can be moved to the path below.
  4114. inputs.push_back(process_mtmd_prompt(ctx_server.mctx, prompt.get<std::string>(), files));
  4115. } else {
  4116. // Everything else, including multimodal completions.
  4117. inputs = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  4118. }
  4119. tasks.reserve(inputs.size());
  4120. for (size_t i = 0; i < inputs.size(); i++) {
  4121. server_task task = server_task(type);
  4122. task.id = ctx_server.queue_tasks.get_new_id();
  4123. task.index = i;
  4124. task.tokens = std::move(inputs[i]);
  4125. task.params = server_task::params_from_json_cmpl(
  4126. ctx_server.ctx,
  4127. ctx_server.params_base,
  4128. data);
  4129. task.id_slot = json_value(data, "id_slot", -1);
  4130. // OAI-compat
  4131. task.params.oaicompat = oaicompat;
  4132. task.params.oaicompat_cmpl_id = completion_id;
  4133. // oaicompat_model is already populated by params_from_json_cmpl
  4134. tasks.push_back(std::move(task));
  4135. }
  4136. rd->post_tasks(std::move(tasks));
  4137. } catch (const std::exception & e) {
  4138. res_err(res, format_error_response(e.what(), ERROR_TYPE_INVALID_REQUEST));
  4139. return;
  4140. }
  4141. bool stream = json_value(data, "stream", false);
  4142. if (!stream) {
  4143. // non-stream, wait for the results
  4144. auto all_results = rd->wait_for_all(is_connection_closed);
  4145. if (all_results.is_terminated) {
  4146. return; // connection is closed
  4147. } else if (all_results.error) {
  4148. res_err(res, all_results.error->to_json());
  4149. return;
  4150. } else {
  4151. json arr = json::array();
  4152. for (auto & res : all_results.results) {
  4153. GGML_ASSERT(dynamic_cast<server_task_result_cmpl_final*>(res.get()) != nullptr);
  4154. arr.push_back(res->to_json());
  4155. }
  4156. // if single request, return single object instead of array
  4157. res_ok(res, arr.size() == 1 ? arr[0] : arr);
  4158. }
  4159. } else {
  4160. // in streaming mode, the first error must be treated as non-stream response
  4161. // this is to match the OAI API behavior
  4162. // ref: https://github.com/ggml-org/llama.cpp/pull/16486#discussion_r2419657309
  4163. server_task_result_ptr first_result = rd->next(is_connection_closed);
  4164. if (first_result == nullptr) {
  4165. return; // connection is closed
  4166. } else if (first_result->is_error()) {
  4167. res_err(res, first_result->to_json());
  4168. return;
  4169. } else {
  4170. GGML_ASSERT(
  4171. dynamic_cast<server_task_result_cmpl_partial*>(first_result.get()) != nullptr
  4172. || dynamic_cast<server_task_result_cmpl_final*>(first_result.get()) != nullptr
  4173. );
  4174. }
  4175. // next responses are streamed
  4176. json first_result_json = first_result->to_json();
  4177. const auto chunked_content_provider = [first_result_json, rd, oaicompat](size_t, httplib::DataSink & sink) mutable -> bool {
  4178. // flush the first result as it's not an error
  4179. if (!first_result_json.empty()) {
  4180. if (!server_sent_event(sink, first_result_json)) {
  4181. sink.done();
  4182. return false; // sending failed, go to on_complete()
  4183. }
  4184. first_result_json.clear(); // mark as sent
  4185. }
  4186. // receive subsequent results
  4187. auto result = rd->next([&sink]{ return !sink.is_writable(); });
  4188. if (result == nullptr) {
  4189. sink.done();
  4190. return false; // connection is closed, go to on_complete()
  4191. }
  4192. // send the results
  4193. json res_json = result->to_json();
  4194. bool ok = false;
  4195. if (result->is_error()) {
  4196. ok = server_sent_event(sink, json {{ "error", result->to_json() }});
  4197. sink.done();
  4198. return false; // go to on_complete()
  4199. } else {
  4200. GGML_ASSERT(
  4201. dynamic_cast<server_task_result_cmpl_partial*>(result.get()) != nullptr
  4202. || dynamic_cast<server_task_result_cmpl_final*>(result.get()) != nullptr
  4203. );
  4204. ok = server_sent_event(sink, res_json);
  4205. }
  4206. if (!ok) {
  4207. sink.done();
  4208. return false; // sending failed, go to on_complete()
  4209. }
  4210. // check if there is more data
  4211. if (!rd->has_next()) {
  4212. if (oaicompat != OAICOMPAT_TYPE_NONE) {
  4213. static const std::string ev_done = "data: [DONE]\n\n";
  4214. sink.write(ev_done.data(), ev_done.size());
  4215. }
  4216. sink.done();
  4217. return false; // no more data, go to on_complete()
  4218. }
  4219. // has next data, continue
  4220. return true;
  4221. };
  4222. auto on_complete = [rd](bool) {
  4223. rd->stop();
  4224. };
  4225. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  4226. }
  4227. };
  4228. const auto handle_completions = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  4229. json data = json::parse(req.body);
  4230. std::vector<raw_buffer> files; // dummy
  4231. handle_completions_impl(
  4232. SERVER_TASK_TYPE_COMPLETION,
  4233. data,
  4234. files,
  4235. req.is_connection_closed,
  4236. res,
  4237. OAICOMPAT_TYPE_NONE);
  4238. };
  4239. const auto handle_completions_oai = [&handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  4240. json data = oaicompat_completion_params_parse(json::parse(req.body));
  4241. std::vector<raw_buffer> files; // dummy
  4242. handle_completions_impl(
  4243. SERVER_TASK_TYPE_COMPLETION,
  4244. data,
  4245. files,
  4246. req.is_connection_closed,
  4247. res,
  4248. OAICOMPAT_TYPE_COMPLETION);
  4249. };
  4250. const auto handle_infill = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  4251. // check model compatibility
  4252. std::string err;
  4253. if (llama_vocab_fim_pre(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  4254. err += "prefix token is missing. ";
  4255. }
  4256. if (llama_vocab_fim_suf(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  4257. err += "suffix token is missing. ";
  4258. }
  4259. if (llama_vocab_fim_mid(ctx_server.vocab) == LLAMA_TOKEN_NULL) {
  4260. err += "middle token is missing. ";
  4261. }
  4262. if (!err.empty()) {
  4263. res_err(res, format_error_response(string_format("Infill is not supported by this model: %s", err.c_str()), ERROR_TYPE_NOT_SUPPORTED));
  4264. return;
  4265. }
  4266. json data = json::parse(req.body);
  4267. // validate input
  4268. if (data.contains("prompt") && !data.at("prompt").is_string()) {
  4269. // prompt is optional
  4270. res_err(res, format_error_response("\"prompt\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  4271. }
  4272. if (!data.contains("input_prefix")) {
  4273. res_err(res, format_error_response("\"input_prefix\" is required", ERROR_TYPE_INVALID_REQUEST));
  4274. }
  4275. if (!data.contains("input_suffix")) {
  4276. res_err(res, format_error_response("\"input_suffix\" is required", ERROR_TYPE_INVALID_REQUEST));
  4277. }
  4278. if (data.contains("input_extra") && !data.at("input_extra").is_array()) {
  4279. // input_extra is optional
  4280. res_err(res, format_error_response("\"input_extra\" must be an array of {\"filename\": string, \"text\": string}", ERROR_TYPE_INVALID_REQUEST));
  4281. return;
  4282. }
  4283. json input_extra = json_value(data, "input_extra", json::array());
  4284. for (const auto & chunk : input_extra) {
  4285. // { "text": string, "filename": string }
  4286. if (!chunk.contains("text") || !chunk.at("text").is_string()) {
  4287. res_err(res, format_error_response("extra_context chunk must contain a \"text\" field with a string value", ERROR_TYPE_INVALID_REQUEST));
  4288. return;
  4289. }
  4290. // filename is optional
  4291. if (chunk.contains("filename") && !chunk.at("filename").is_string()) {
  4292. res_err(res, format_error_response("extra_context chunk's \"filename\" field must be a string", ERROR_TYPE_INVALID_REQUEST));
  4293. return;
  4294. }
  4295. }
  4296. data["input_extra"] = input_extra; // default to empty array if it's not exist
  4297. std::string prompt = json_value(data, "prompt", std::string());
  4298. std::vector<server_tokens> tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, false, true);
  4299. SRV_DBG("creating infill tasks, n_prompts = %d\n", (int) tokenized_prompts.size());
  4300. data["prompt"] = format_infill(
  4301. ctx_server.vocab,
  4302. data.at("input_prefix"),
  4303. data.at("input_suffix"),
  4304. data.at("input_extra"),
  4305. ctx_server.params_base.n_batch,
  4306. ctx_server.params_base.n_predict,
  4307. ctx_server.slots[0].n_ctx, // TODO: there should be a better way
  4308. ctx_server.params_base.spm_infill,
  4309. tokenized_prompts[0].get_text_tokens() // TODO: this could maybe be multimodal.
  4310. );
  4311. std::vector<raw_buffer> files; // dummy
  4312. handle_completions_impl(
  4313. SERVER_TASK_TYPE_INFILL,
  4314. data,
  4315. files,
  4316. req.is_connection_closed,
  4317. res,
  4318. OAICOMPAT_TYPE_NONE); // infill is not OAI compatible
  4319. };
  4320. const auto handle_chat_completions = [&ctx_server, &handle_completions_impl](const httplib::Request & req, httplib::Response & res) {
  4321. LOG_DBG("request: %s\n", req.body.c_str());
  4322. auto body = json::parse(req.body);
  4323. std::vector<raw_buffer> files;
  4324. json data = oaicompat_chat_params_parse(
  4325. body,
  4326. ctx_server.oai_parser_opt,
  4327. files);
  4328. handle_completions_impl(
  4329. SERVER_TASK_TYPE_COMPLETION,
  4330. data,
  4331. files,
  4332. req.is_connection_closed,
  4333. res,
  4334. OAICOMPAT_TYPE_CHAT);
  4335. };
  4336. // same with handle_chat_completions, but without inference part
  4337. const auto handle_apply_template = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
  4338. auto body = json::parse(req.body);
  4339. std::vector<raw_buffer> files; // dummy, unused
  4340. json data = oaicompat_chat_params_parse(
  4341. body,
  4342. ctx_server.oai_parser_opt,
  4343. files);
  4344. res_ok(res, {{ "prompt", std::move(data.at("prompt")) }});
  4345. };
  4346. const auto handle_models = [&params, &ctx_server, &state](const httplib::Request &, httplib::Response & res) {
  4347. server_state current_state = state.load();
  4348. json model_meta = nullptr;
  4349. if (current_state == SERVER_STATE_READY) {
  4350. model_meta = ctx_server.model_meta();
  4351. }
  4352. bool has_mtmd = ctx_server.mctx != nullptr;
  4353. json models = {
  4354. {"models", {
  4355. {
  4356. {"name", params.model_alias.empty() ? params.model.path : params.model_alias},
  4357. {"model", params.model_alias.empty() ? params.model.path : params.model_alias},
  4358. {"modified_at", ""},
  4359. {"size", ""},
  4360. {"digest", ""}, // dummy value, llama.cpp does not support managing model file's hash
  4361. {"type", "model"},
  4362. {"description", ""},
  4363. {"tags", {""}},
  4364. {"capabilities", has_mtmd ? json({"completion","multimodal"}) : json({"completion"})},
  4365. {"parameters", ""},
  4366. {"details", {
  4367. {"parent_model", ""},
  4368. {"format", "gguf"},
  4369. {"family", ""},
  4370. {"families", {""}},
  4371. {"parameter_size", ""},
  4372. {"quantization_level", ""}
  4373. }}
  4374. }
  4375. }},
  4376. {"object", "list"},
  4377. {"data", {
  4378. {
  4379. {"id", params.model_alias.empty() ? params.model.path : params.model_alias},
  4380. {"object", "model"},
  4381. {"created", std::time(0)},
  4382. {"owned_by", "llamacpp"},
  4383. {"meta", model_meta},
  4384. },
  4385. }}
  4386. };
  4387. res_ok(res, models);
  4388. };
  4389. const auto handle_tokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
  4390. const json body = json::parse(req.body);
  4391. json tokens_response = json::array();
  4392. if (body.count("content") != 0) {
  4393. const bool add_special = json_value(body, "add_special", false);
  4394. const bool parse_special = json_value(body, "parse_special", true);
  4395. const bool with_pieces = json_value(body, "with_pieces", false);
  4396. llama_tokens tokens = tokenize_mixed(ctx_server.vocab, body.at("content"), add_special, parse_special);
  4397. if (with_pieces) {
  4398. for (const auto& token : tokens) {
  4399. std::string piece = common_token_to_piece(ctx_server.ctx, token);
  4400. json piece_json;
  4401. // Check if the piece is valid UTF-8
  4402. if (is_valid_utf8(piece)) {
  4403. piece_json = piece;
  4404. } else {
  4405. // If not valid UTF-8, store as array of byte values
  4406. piece_json = json::array();
  4407. for (unsigned char c : piece) {
  4408. piece_json.push_back(static_cast<int>(c));
  4409. }
  4410. }
  4411. tokens_response.push_back({
  4412. {"id", token},
  4413. {"piece", piece_json}
  4414. });
  4415. }
  4416. } else {
  4417. tokens_response = tokens;
  4418. }
  4419. }
  4420. const json data = format_tokenizer_response(tokens_response);
  4421. res_ok(res, data);
  4422. };
  4423. const auto handle_detokenize = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
  4424. const json body = json::parse(req.body);
  4425. std::string content;
  4426. if (body.count("tokens") != 0) {
  4427. const llama_tokens tokens = body.at("tokens");
  4428. content = tokens_to_str(ctx_server.ctx, tokens.cbegin(), tokens.cend());
  4429. }
  4430. const json data = format_detokenized_response(content);
  4431. res_ok(res, data);
  4432. };
  4433. const auto handle_embeddings_impl = [&ctx_server](const httplib::Request & req, httplib::Response & res, oaicompat_type oaicompat) {
  4434. if (!ctx_server.params_base.embedding) {
  4435. res_err(res, format_error_response("This server does not support embeddings. Start it with `--embeddings`", ERROR_TYPE_NOT_SUPPORTED));
  4436. return;
  4437. }
  4438. if (oaicompat != OAICOMPAT_TYPE_NONE && llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  4439. res_err(res, format_error_response("Pooling type 'none' is not OAI compatible. Please use a different pooling type", ERROR_TYPE_INVALID_REQUEST));
  4440. return;
  4441. }
  4442. const json body = json::parse(req.body);
  4443. // for the shape of input/content, see tokenize_input_prompts()
  4444. json prompt;
  4445. if (body.count("input") != 0) {
  4446. prompt = body.at("input");
  4447. } else if (body.contains("content")) {
  4448. oaicompat = OAICOMPAT_TYPE_NONE; // "content" field is not OAI compatible
  4449. prompt = body.at("content");
  4450. } else {
  4451. res_err(res, format_error_response("\"input\" or \"content\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4452. return;
  4453. }
  4454. bool use_base64 = false;
  4455. if (body.count("encoding_format") != 0) {
  4456. const std::string& format = body.at("encoding_format");
  4457. if (format == "base64") {
  4458. use_base64 = true;
  4459. } else if (format != "float") {
  4460. res_err(res, format_error_response("The format to return the embeddings in. Can be either float or base64", ERROR_TYPE_INVALID_REQUEST));
  4461. return;
  4462. }
  4463. }
  4464. auto tokenized_prompts = tokenize_input_prompts(ctx_server.vocab, ctx_server.mctx, prompt, true, true);
  4465. for (const auto & tokens : tokenized_prompts) {
  4466. // this check is necessary for models that do not add BOS token to the input
  4467. if (tokens.empty()) {
  4468. res_err(res, format_error_response("Input content cannot be empty", ERROR_TYPE_INVALID_REQUEST));
  4469. return;
  4470. }
  4471. }
  4472. int embd_normalize = 2; // default to Euclidean/L2 norm
  4473. if (body.count("embd_normalize") != 0) {
  4474. embd_normalize = body.at("embd_normalize");
  4475. if (llama_pooling_type(ctx_server.ctx) == LLAMA_POOLING_TYPE_NONE) {
  4476. SRV_DBG("embd_normalize is not supported by pooling type %d, ignoring it\n", llama_pooling_type(ctx_server.ctx));
  4477. }
  4478. }
  4479. // create and queue the task
  4480. json responses = json::array();
  4481. server_response_reader rd(ctx_server);
  4482. {
  4483. std::vector<server_task> tasks;
  4484. for (size_t i = 0; i < tokenized_prompts.size(); i++) {
  4485. server_task task = server_task(SERVER_TASK_TYPE_EMBEDDING);
  4486. task.id = ctx_server.queue_tasks.get_new_id();
  4487. task.index = i;
  4488. task.tokens = std::move(tokenized_prompts[i]);
  4489. // OAI-compat
  4490. task.params.oaicompat = oaicompat;
  4491. task.params.embd_normalize = embd_normalize;
  4492. tasks.push_back(std::move(task));
  4493. }
  4494. rd.post_tasks(std::move(tasks));
  4495. }
  4496. // wait for the results
  4497. auto all_results = rd.wait_for_all(req.is_connection_closed);
  4498. // collect results
  4499. if (all_results.is_terminated) {
  4500. return; // connection is closed
  4501. } else if (all_results.error) {
  4502. res_err(res, all_results.error->to_json());
  4503. return;
  4504. } else {
  4505. for (auto & res : all_results.results) {
  4506. GGML_ASSERT(dynamic_cast<server_task_result_embd*>(res.get()) != nullptr);
  4507. responses.push_back(res->to_json());
  4508. }
  4509. }
  4510. // write JSON response
  4511. json root = oaicompat == OAICOMPAT_TYPE_EMBEDDING
  4512. ? format_embeddings_response_oaicompat(body, responses, use_base64)
  4513. : json(responses);
  4514. res_ok(res, root);
  4515. };
  4516. const auto handle_embeddings = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  4517. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_NONE);
  4518. };
  4519. const auto handle_embeddings_oai = [&handle_embeddings_impl](const httplib::Request & req, httplib::Response & res) {
  4520. handle_embeddings_impl(req, res, OAICOMPAT_TYPE_EMBEDDING);
  4521. };
  4522. const auto handle_rerank = [&ctx_server](const httplib::Request & req, httplib::Response & res) {
  4523. if (!ctx_server.params_base.embedding || ctx_server.params_base.pooling_type != LLAMA_POOLING_TYPE_RANK) {
  4524. res_err(res, format_error_response("This server does not support reranking. Start it with `--reranking`", ERROR_TYPE_NOT_SUPPORTED));
  4525. return;
  4526. }
  4527. const json body = json::parse(req.body);
  4528. // if true, use TEI API format, otherwise use Jina API format
  4529. // Jina: https://jina.ai/reranker/
  4530. // TEI: https://huggingface.github.io/text-embeddings-inference/#/Text%20Embeddings%20Inference/rerank
  4531. bool is_tei_format = body.contains("texts");
  4532. json query;
  4533. if (body.count("query") == 1) {
  4534. query = body.at("query");
  4535. if (!query.is_string()) {
  4536. res_err(res, format_error_response("\"query\" must be a string", ERROR_TYPE_INVALID_REQUEST));
  4537. return;
  4538. }
  4539. } else {
  4540. res_err(res, format_error_response("\"query\" must be provided", ERROR_TYPE_INVALID_REQUEST));
  4541. return;
  4542. }
  4543. std::vector<std::string> documents = json_value(body, "documents",
  4544. json_value(body, "texts", std::vector<std::string>()));
  4545. if (documents.empty()) {
  4546. res_err(res, format_error_response("\"documents\" must be a non-empty string array", ERROR_TYPE_INVALID_REQUEST));
  4547. return;
  4548. }
  4549. int top_n = json_value(body, "top_n", (int)documents.size());
  4550. // create and queue the task
  4551. json responses = json::array();
  4552. server_response_reader rd(ctx_server);
  4553. {
  4554. std::vector<server_task> tasks;
  4555. tasks.reserve(documents.size());
  4556. for (size_t i = 0; i < documents.size(); i++) {
  4557. auto tmp = format_rerank(ctx_server.model, ctx_server.vocab, ctx_server.mctx, query, documents[i]);
  4558. server_task task = server_task(SERVER_TASK_TYPE_RERANK);
  4559. task.id = ctx_server.queue_tasks.get_new_id();
  4560. task.index = i;
  4561. task.tokens = std::move(tmp);
  4562. tasks.push_back(std::move(task));
  4563. }
  4564. rd.post_tasks(std::move(tasks));
  4565. }
  4566. // wait for the results
  4567. auto all_results = rd.wait_for_all(req.is_connection_closed);
  4568. // collect results
  4569. if (all_results.is_terminated) {
  4570. return; // connection is closed
  4571. } else if (all_results.error) {
  4572. res_err(res, all_results.error->to_json());
  4573. return;
  4574. } else {
  4575. for (auto & res : all_results.results) {
  4576. GGML_ASSERT(dynamic_cast<server_task_result_rerank*>(res.get()) != nullptr);
  4577. responses.push_back(res->to_json());
  4578. }
  4579. }
  4580. // write JSON response
  4581. json root = format_response_rerank(
  4582. body,
  4583. responses,
  4584. is_tei_format,
  4585. documents,
  4586. top_n);
  4587. res_ok(res, root);
  4588. };
  4589. const auto handle_lora_adapters_list = [&](const httplib::Request &, httplib::Response & res) {
  4590. json result = json::array();
  4591. const auto & loras = ctx_server.params_base.lora_adapters;
  4592. for (size_t i = 0; i < loras.size(); ++i) {
  4593. auto & lora = loras[i];
  4594. json entry = {
  4595. {"id", i},
  4596. {"path", lora.path},
  4597. {"scale", lora.scale},
  4598. {"task_name", lora.task_name},
  4599. {"prompt_prefix", lora.prompt_prefix},
  4600. };
  4601. std::string alora_invocation_string = "";
  4602. const uint64_t n_alora_tokens = llama_adapter_get_alora_n_invocation_tokens(lora.ptr);
  4603. std::vector<llama_token> alora_invocation_tokens;
  4604. if (n_alora_tokens) {
  4605. const llama_token * alora_tokens = llama_adapter_get_alora_invocation_tokens(lora.ptr);
  4606. for (uint64_t i = 0; i < n_alora_tokens; ++i) {
  4607. alora_invocation_string += common_token_to_piece(ctx_server.ctx, alora_tokens[i]);
  4608. alora_invocation_tokens.push_back(alora_tokens[i]);
  4609. }
  4610. entry["alora_invocation_string"] = alora_invocation_string;
  4611. entry["alora_invocation_tokens"] = alora_invocation_tokens;
  4612. }
  4613. result.push_back(std::move(entry));
  4614. }
  4615. res_ok(res, result);
  4616. res.status = 200; // HTTP OK
  4617. };
  4618. const auto handle_lora_adapters_apply = [&](const httplib::Request & req, httplib::Response & res) {
  4619. const json body = json::parse(req.body);
  4620. if (!body.is_array()) {
  4621. res_err(res, format_error_response("Request body must be an array", ERROR_TYPE_INVALID_REQUEST));
  4622. return;
  4623. }
  4624. int task_id = ctx_server.queue_tasks.get_new_id();
  4625. {
  4626. server_task task(SERVER_TASK_TYPE_SET_LORA);
  4627. task.id = task_id;
  4628. task.set_lora = parse_lora_request(ctx_server.params_base.lora_adapters, body);
  4629. ctx_server.queue_results.add_waiting_task_id(task_id);
  4630. ctx_server.queue_tasks.post(std::move(task));
  4631. }
  4632. // get the result
  4633. server_task_result_ptr result = ctx_server.queue_results.recv(task_id);
  4634. ctx_server.queue_results.remove_waiting_task_id(task_id);
  4635. if (result->is_error()) {
  4636. res_err(res, result->to_json());
  4637. return;
  4638. }
  4639. GGML_ASSERT(dynamic_cast<server_task_result_apply_lora*>(result.get()) != nullptr);
  4640. res_ok(res, result->to_json());
  4641. };
  4642. //
  4643. // Router
  4644. //
  4645. if (!params.webui) {
  4646. LOG_INF("Web UI is disabled\n");
  4647. } else {
  4648. // register static assets routes
  4649. if (!params.public_path.empty()) {
  4650. // Set the base directory for serving static files
  4651. bool is_found = svr->set_mount_point(params.api_prefix + "/", params.public_path);
  4652. if (!is_found) {
  4653. LOG_ERR("%s: static assets path not found: %s\n", __func__, params.public_path.c_str());
  4654. return 1;
  4655. }
  4656. } else {
  4657. // using embedded static index.html
  4658. svr->Get(params.api_prefix + "/", [](const httplib::Request & req, httplib::Response & res) {
  4659. if (req.get_header_value("Accept-Encoding").find("gzip") == std::string::npos) {
  4660. res.set_content("Error: gzip is not supported by this browser", "text/plain");
  4661. } else {
  4662. res.set_header("Content-Encoding", "gzip");
  4663. // COEP and COOP headers, required by pyodide (python interpreter)
  4664. res.set_header("Cross-Origin-Embedder-Policy", "require-corp");
  4665. res.set_header("Cross-Origin-Opener-Policy", "same-origin");
  4666. res.set_content(reinterpret_cast<const char*>(index_html_gz), index_html_gz_len, "text/html; charset=utf-8");
  4667. }
  4668. return false;
  4669. });
  4670. }
  4671. }
  4672. // register API routes
  4673. svr->Get (params.api_prefix + "/health", handle_health); // public endpoint (no API key check)
  4674. svr->Get (params.api_prefix + "/v1/health", handle_health); // public endpoint (no API key check)
  4675. svr->Get (params.api_prefix + "/metrics", handle_metrics);
  4676. svr->Get (params.api_prefix + "/props", handle_props);
  4677. svr->Post(params.api_prefix + "/props", handle_props_change);
  4678. svr->Post(params.api_prefix + "/api/show", handle_api_show);
  4679. svr->Get (params.api_prefix + "/models", handle_models); // public endpoint (no API key check)
  4680. svr->Get (params.api_prefix + "/v1/models", handle_models); // public endpoint (no API key check)
  4681. svr->Get (params.api_prefix + "/api/tags", handle_models); // ollama specific endpoint. public endpoint (no API key check)
  4682. svr->Post(params.api_prefix + "/completion", handle_completions); // legacy
  4683. svr->Post(params.api_prefix + "/completions", handle_completions);
  4684. svr->Post(params.api_prefix + "/v1/completions", handle_completions_oai);
  4685. svr->Post(params.api_prefix + "/chat/completions", handle_chat_completions);
  4686. svr->Post(params.api_prefix + "/v1/chat/completions", handle_chat_completions);
  4687. svr->Post(params.api_prefix + "/api/chat", handle_chat_completions); // ollama specific endpoint
  4688. svr->Post(params.api_prefix + "/infill", handle_infill);
  4689. svr->Post(params.api_prefix + "/embedding", handle_embeddings); // legacy
  4690. svr->Post(params.api_prefix + "/embeddings", handle_embeddings);
  4691. svr->Post(params.api_prefix + "/v1/embeddings", handle_embeddings_oai);
  4692. svr->Post(params.api_prefix + "/rerank", handle_rerank);
  4693. svr->Post(params.api_prefix + "/reranking", handle_rerank);
  4694. svr->Post(params.api_prefix + "/v1/rerank", handle_rerank);
  4695. svr->Post(params.api_prefix + "/v1/reranking", handle_rerank);
  4696. svr->Post(params.api_prefix + "/tokenize", handle_tokenize);
  4697. svr->Post(params.api_prefix + "/detokenize", handle_detokenize);
  4698. svr->Post(params.api_prefix + "/apply-template", handle_apply_template);
  4699. // LoRA adapters hotswap
  4700. svr->Get (params.api_prefix + "/lora-adapters", handle_lora_adapters_list);
  4701. svr->Post(params.api_prefix + "/lora-adapters", handle_lora_adapters_apply);
  4702. // Save & load slots
  4703. svr->Get (params.api_prefix + "/slots", handle_slots);
  4704. svr->Post(params.api_prefix + "/slots/:id_slot", handle_slots_action);
  4705. //
  4706. // Start the server
  4707. //
  4708. if (params.n_threads_http < 1) {
  4709. // +2 threads for monitoring endpoints
  4710. params.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
  4711. }
  4712. log_data["n_threads_http"] = std::to_string(params.n_threads_http);
  4713. svr->new_task_queue = [&params] { return new httplib::ThreadPool(params.n_threads_http); };
  4714. // clean up function, to be called before exit
  4715. auto clean_up = [&svr, &ctx_server]() {
  4716. SRV_INF("%s: cleaning up before exit...\n", __func__);
  4717. svr->stop();
  4718. ctx_server.queue_results.terminate();
  4719. llama_backend_free();
  4720. };
  4721. bool was_bound = false;
  4722. bool is_sock = false;
  4723. if (string_ends_with(std::string(params.hostname), ".sock")) {
  4724. is_sock = true;
  4725. LOG_INF("%s: setting address family to AF_UNIX\n", __func__);
  4726. svr->set_address_family(AF_UNIX);
  4727. // bind_to_port requires a second arg, any value other than 0 should
  4728. // simply get ignored
  4729. was_bound = svr->bind_to_port(params.hostname, 8080);
  4730. } else {
  4731. LOG_INF("%s: binding port with default address family\n", __func__);
  4732. // bind HTTP listen port
  4733. if (params.port == 0) {
  4734. int bound_port = svr->bind_to_any_port(params.hostname);
  4735. if ((was_bound = (bound_port >= 0))) {
  4736. params.port = bound_port;
  4737. }
  4738. } else {
  4739. was_bound = svr->bind_to_port(params.hostname, params.port);
  4740. }
  4741. }
  4742. if (!was_bound) {
  4743. LOG_ERR("%s: couldn't bind HTTP server socket, hostname: %s, port: %d\n", __func__, params.hostname.c_str(), params.port);
  4744. clean_up();
  4745. return 1;
  4746. }
  4747. // run the HTTP server in a thread
  4748. std::thread t([&]() { svr->listen_after_bind(); });
  4749. svr->wait_until_ready();
  4750. LOG_INF("%s: HTTP server is listening, hostname: %s, port: %d, http threads: %d\n", __func__, params.hostname.c_str(), params.port, params.n_threads_http);
  4751. // load the model
  4752. LOG_INF("%s: loading model\n", __func__);
  4753. if (!ctx_server.load_model(params)) {
  4754. clean_up();
  4755. t.join();
  4756. LOG_ERR("%s: exiting due to model loading error\n", __func__);
  4757. return 1;
  4758. }
  4759. ctx_server.init();
  4760. state.store(SERVER_STATE_READY);
  4761. LOG_INF("%s: model loaded\n", __func__);
  4762. // print sample chat example to make it clear which template is used
  4763. LOG_INF("%s: chat template, chat_template: %s, example_format: '%s'\n", __func__,
  4764. common_chat_templates_source(ctx_server.chat_templates.get()),
  4765. common_chat_format_example(ctx_server.chat_templates.get(), ctx_server.params_base.use_jinja, ctx_server.params_base.default_template_kwargs).c_str());
  4766. ctx_server.queue_tasks.on_new_task([&ctx_server](server_task && task) {
  4767. ctx_server.process_single_task(std::move(task));
  4768. });
  4769. ctx_server.queue_tasks.on_update_slots([&ctx_server]() {
  4770. ctx_server.update_slots();
  4771. });
  4772. shutdown_handler = [&](int) {
  4773. // this will unblock start_loop()
  4774. ctx_server.queue_tasks.terminate();
  4775. };
  4776. #if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
  4777. struct sigaction sigint_action;
  4778. sigint_action.sa_handler = signal_handler;
  4779. sigemptyset (&sigint_action.sa_mask);
  4780. sigint_action.sa_flags = 0;
  4781. sigaction(SIGINT, &sigint_action, NULL);
  4782. sigaction(SIGTERM, &sigint_action, NULL);
  4783. #elif defined (_WIN32)
  4784. auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
  4785. return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
  4786. };
  4787. SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
  4788. #endif
  4789. LOG_INF("%s: server is listening on %s - starting the main loop\n", __func__,
  4790. is_sock ? string_format("unix://%s", params.hostname.c_str()).c_str() :
  4791. string_format("http://%s:%d", params.hostname.c_str(), params.port).c_str());
  4792. // this call blocks the main thread until queue_tasks.terminate() is called
  4793. ctx_server.queue_tasks.start_loop();
  4794. clean_up();
  4795. t.join();
  4796. llama_memory_breakdown_print(ctx_server.ctx);
  4797. return 0;
  4798. }