| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308 |
- #pragma once
- #include "llama-batch.h"
- #include "llama-graph.h"
- #include "llama-kv-cells.h"
- #include "llama-memory.h"
- #include <unordered_map>
- #include <vector>
- struct llama_cparams;
- struct llama_hparams;
- struct llama_model;
- struct llama_context;
- //
- // llama_kv_cache_unified
- //
- class llama_kv_cache_unified : public llama_memory_i {
- public:
- static uint32_t get_padding(const llama_cparams & cparams);
- // this callback is used to filter out layers that should not be included in the cache
- using layer_filter_cb = std::function<bool(int32_t il)>;
- using ubatch_heads = std::vector<uint32_t>;
- struct defrag_info {
- bool empty() const {
- return ids.empty();
- }
- // contains information about which cell moves where:
- // - cell i moves to ids[i]
- // - if ids[i] == i || ids[i] == ids.size(), then cell i is not moved
- std::vector<uint32_t> ids;
- };
- llama_kv_cache_unified(
- const llama_model & model,
- layer_filter_cb && filter,
- ggml_type type_k,
- ggml_type type_v,
- bool v_trans,
- bool offload,
- uint32_t kv_size,
- uint32_t n_seq_max,
- uint32_t n_pad,
- uint32_t n_swa,
- llama_swa_type swa_type);
- ~llama_kv_cache_unified() = default;
- //
- // llama_memory_i
- //
- llama_memory_state_ptr init_batch(
- const llama_batch & batch,
- uint32_t n_ubatch,
- bool embd_all) override;
- llama_memory_state_ptr init_full() override;
- llama_memory_state_ptr init_update(llama_context * lctx, bool optimize) override;
- bool get_can_shift() const override;
- void clear(bool data) override;
- bool seq_rm (llama_seq_id seq_id, llama_pos p0, llama_pos p1) override;
- void seq_cp (llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) override;
- void seq_keep(llama_seq_id seq_id) override;
- void seq_add (llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) override;
- void seq_div (llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) override;
- llama_pos seq_pos_min(llama_seq_id seq_id) const override;
- llama_pos seq_pos_max(llama_seq_id seq_id) const override;
- // state write/load
- void state_write(llama_io_write_i & io, llama_seq_id seq_id = -1) const override;
- void state_read (llama_io_read_i & io, llama_seq_id seq_id = -1) override;
- //
- // llama_kv_cache_unified specific API
- //
- uint32_t get_size() const;
- bool get_has_shift() const;
- //
- // graph_build API
- //
- uint32_t get_n_kv() const;
- // get views of the current state of the cache
- ggml_tensor * get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
- ggml_tensor * get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const;
- // store k_cur and v_cur in the cache based on the provided head location
- ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il, uint32_t head_cur) const;
- ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il, uint32_t head_cur) const;
- //
- // preparation API
- //
- // find places for the provided ubatches in the cache, returns the head locations
- // return empty vector on failure
- ubatch_heads prepare(const std::vector<llama_ubatch> & ubatches);
- bool update(llama_context * lctx, bool do_shift, const defrag_info & dinfo);
- // return the cell position where we can insert the ubatch
- // return -1 on failure to find a contiguous slot of kv cells
- int32_t find_slot(const llama_ubatch & ubatch) const;
- // emplace the ubatch context into slot: [head_cur, head_cur + ubatch.n_tokens)
- void apply_ubatch(uint32_t head_cur, const llama_ubatch & ubatch);
- //
- // set_input API
- //
- void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
- void set_input_k_shift (ggml_tensor * dst) const;
- void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
- private:
- const llama_model & model;
- const llama_hparams & hparams;
- struct kv_layer {
- // layer index in the model
- // note: can be different from the layer index in the KV cache
- uint32_t il;
- ggml_tensor * k;
- ggml_tensor * v;
- };
- bool v_trans = true; // the value tensor is transposed
- // the current index from where we start searching for a free slot in the ring buffer of KV cells (see find_slot())
- // note: this is not part of the KV state and it's only used to speed-up the find_slot() method
- uint32_t head = 0;
- const uint32_t n_seq_max = 1;
- // required padding
- const uint32_t n_pad = 1;
- // SWA
- const uint32_t n_swa = 0;
- int debug = 0;
- const llama_swa_type swa_type = LLAMA_SWA_TYPE_NONE;
- std::vector<ggml_context_ptr> ctxs;
- std::vector<ggml_backend_buffer_ptr> bufs;
- llama_kv_cells_unified cells;
- std::vector<kv_layer> layers;
- // model layer id -> KV cache layer id
- std::unordered_map<int32_t, int32_t> map_layer_ids;
- // return non-empty vector if cells have been moved
- defrag_info defrag_prepare(int32_t n_max_nodes) const;
- size_t total_size() const;
- size_t size_k_bytes() const;
- size_t size_v_bytes() const;
- bool is_masked_swa(llama_pos p0, llama_pos p1) const;
- ggml_tensor * build_rope_shift(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_tensor * cur,
- ggml_tensor * shift,
- ggml_tensor * factors,
- float freq_base,
- float freq_scale) const;
- llm_graph_result_ptr build_graph_shift(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_cgraph * gf) const;
- llm_graph_result_ptr build_graph_defrag(
- const llama_cparams & cparams,
- ggml_context * ctx,
- ggml_cgraph * gf,
- const defrag_info & dinfo) const;
- void state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id = -1) const;
- void state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const;
- bool state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id = -1);
- bool state_read_data(llama_io_read_i & io, uint32_t cell_count);
- };
- class llama_kv_cache_unified_state : public llama_memory_state_i {
- public:
- // some shorthands
- using ubatch_heads = llama_kv_cache_unified::ubatch_heads;
- using defrag_info = llama_kv_cache_unified::defrag_info;
- // used for errors
- llama_kv_cache_unified_state(llama_memory_status status);
- // used to create a full-cache state
- llama_kv_cache_unified_state(
- llama_kv_cache_unified * kv);
- // used to create an update state
- llama_kv_cache_unified_state(
- llama_kv_cache_unified * kv,
- llama_context * lctx,
- bool do_shift,
- defrag_info dinfo);
- // used to create a decode state from a batch
- llama_kv_cache_unified_state(
- llama_kv_cache_unified * kv,
- llama_sbatch sbatch,
- ubatch_heads heads,
- std::vector<llama_ubatch> ubatches);
- virtual ~llama_kv_cache_unified_state();
- //
- // llama_memory_state_i
- //
- bool next() override;
- bool apply() override;
- std::vector<int64_t> & out_ids() override;
- llama_memory_status get_status() const override;
- const llama_ubatch & get_ubatch() const override;
- //
- // llama_kv_cache_unified_state specific API
- //
- uint32_t get_n_kv() const;
- // get views of the current state of the cache
- ggml_tensor * get_k(ggml_context * ctx, int32_t il) const;
- ggml_tensor * get_v(ggml_context * ctx, int32_t il) const;
- // store k_cur and v_cur in the cache based on the provided head location
- ggml_tensor * cpy_k(ggml_context * ctx, ggml_tensor * k_cur, int32_t il) const;
- ggml_tensor * cpy_v(ggml_context * ctx, ggml_tensor * v_cur, int32_t il) const;
- void set_input_k_shift(ggml_tensor * dst) const;
- void set_input_kq_mask (ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const;
- void set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const;
- private:
- llama_memory_status status;
- llama_kv_cache_unified * kv;
- llama_context * lctx;
- //
- // update state
- //
- bool do_shift = false;
- defrag_info dinfo;
- //
- // batch processing state
- //
- llama_sbatch sbatch;
- // the index of the next ubatch to process
- size_t i_next = 0;
- ubatch_heads heads;
- std::vector<llama_ubatch> ubatches;
- //
- // data needed for building the compute graph for the current ubatch:
- //
- // a heuristic, to avoid attending the full cache if it is not yet utilized
- // as the cache gets filled, the benefit from this heuristic disappears
- int32_t n_kv;
- // the beginning of the current slot in which the ubatch will be inserted
- int32_t head;
- };
|