convert-hf-to-gguf.py 98 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296
  1. #!/usr/bin/env python3
  2. from __future__ import annotations
  3. import argparse
  4. import contextlib
  5. import json
  6. import os
  7. import re
  8. import sys
  9. from abc import ABC, abstractmethod
  10. from enum import IntEnum
  11. from pathlib import Path
  12. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterator, Sequence, TypeVar, cast
  13. import numpy as np
  14. import torch
  15. if TYPE_CHECKING:
  16. from torch import Tensor
  17. if 'NO_LOCAL_GGUF' not in os.environ:
  18. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  19. import gguf
  20. from convert import LlamaHfVocab, permute
  21. ###### MODEL DEFINITIONS ######
  22. class SentencePieceTokenTypes(IntEnum):
  23. NORMAL = 1
  24. UNKNOWN = 2
  25. CONTROL = 3
  26. USER_DEFINED = 4
  27. UNUSED = 5
  28. BYTE = 6
  29. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  30. class Model(ABC):
  31. _model_classes: dict[str, type[Model]] = {}
  32. def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
  33. self.dir_model = dir_model
  34. self.ftype = ftype
  35. self.fname_out = fname_out
  36. self.is_big_endian = is_big_endian
  37. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  38. self.is_safetensors = self._is_model_safetensors()
  39. self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
  40. self.part_names = self._get_part_names()
  41. self.hparams = Model.load_hparams(self.dir_model)
  42. self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
  43. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer"])
  44. @property
  45. @abstractmethod
  46. def model_arch(self) -> gguf.MODEL_ARCH:
  47. pass
  48. def find_hparam(self, keys: Sequence[str], optional: bool = False) -> Any:
  49. key = next((k for k in keys if k in self.hparams), None)
  50. if key is not None:
  51. return self.hparams[key]
  52. if optional:
  53. return None
  54. raise KeyError(f"could not find any of: {keys}")
  55. def set_vocab(self):
  56. self._set_vocab_gpt2()
  57. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  58. for part_name in self.part_names:
  59. print(f"gguf: loading model part '{part_name}'")
  60. ctx: ContextManager[Any]
  61. if self.is_safetensors:
  62. from safetensors import safe_open
  63. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  64. else:
  65. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  66. with ctx as model_part:
  67. for name in model_part.keys():
  68. data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
  69. yield name, data
  70. def set_gguf_parameters(self):
  71. self.gguf_writer.add_name(self.dir_model.name)
  72. self.gguf_writer.add_block_count(self.block_count)
  73. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  74. self.gguf_writer.add_context_length(n_ctx)
  75. print(f"gguf: context length = {n_ctx}")
  76. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  77. self.gguf_writer.add_embedding_length(n_embd)
  78. print(f"gguf: embedding length = {n_embd}")
  79. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  80. self.gguf_writer.add_feed_forward_length(n_ff)
  81. print(f"gguf: feed forward length = {n_ff}")
  82. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  83. self.gguf_writer.add_head_count(n_head)
  84. print(f"gguf: head count = {n_head}")
  85. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  86. self.gguf_writer.add_head_count_kv(n_head_kv)
  87. print(f"gguf: key-value head count = {n_head_kv}")
  88. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  89. self.gguf_writer.add_rope_freq_base(rope_theta)
  90. print(f"gguf: rope theta = {rope_theta}")
  91. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  92. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  93. print(f"gguf: rms norm epsilon = {f_rms_eps}")
  94. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  95. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  96. print(f"gguf: layer norm epsilon = {f_norm_eps}")
  97. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  98. self.gguf_writer.add_expert_count(n_experts)
  99. print(f"gguf: expert count = {n_experts}")
  100. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  101. self.gguf_writer.add_expert_used_count(n_experts_used)
  102. print(f"gguf: experts used count = {n_experts_used}")
  103. self.gguf_writer.add_file_type(self.ftype)
  104. print(f"gguf: file type = {self.ftype}")
  105. def write_tensors(self):
  106. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  107. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  108. for name, data_torch in self.get_tensors():
  109. # we don't need these
  110. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  111. continue
  112. old_dtype = data_torch.dtype
  113. # convert any unsupported data types to float32
  114. if data_torch.dtype not in (torch.float16, torch.float32):
  115. data_torch = data_torch.to(torch.float32)
  116. data = data_torch.squeeze().numpy()
  117. # map tensor names
  118. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  119. if new_name is None:
  120. print(f"Can not map tensor {name!r}")
  121. sys.exit()
  122. n_dims = len(data.shape)
  123. data_dtype = data.dtype
  124. # if f32 desired, convert any float16 to float32
  125. if self.ftype == 0 and data_dtype == np.float16:
  126. data = data.astype(np.float32)
  127. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  128. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  129. data = data.astype(np.float32)
  130. # if f16 desired, convert any float32 2-dim weight tensors to float16
  131. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  132. data = data.astype(np.float16)
  133. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  134. self.gguf_writer.add_tensor(new_name, data)
  135. def write(self):
  136. self.write_tensors()
  137. self.gguf_writer.write_header_to_file()
  138. self.gguf_writer.write_kv_data_to_file()
  139. self.gguf_writer.write_tensors_to_file()
  140. self.gguf_writer.close()
  141. def write_vocab(self):
  142. self.gguf_writer.write_header_to_file()
  143. self.gguf_writer.write_kv_data_to_file()
  144. self.gguf_writer.close()
  145. @staticmethod
  146. def count_model_parts(dir_model: Path, prefix: str) -> int:
  147. num_parts = 0
  148. for filename in os.listdir(dir_model):
  149. if filename.endswith(prefix):
  150. num_parts += 1
  151. return num_parts
  152. @staticmethod
  153. def load_hparams(dir_model):
  154. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  155. return json.load(f)
  156. @classmethod
  157. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  158. assert names
  159. def func(modelcls: type[Model]):
  160. for name in names:
  161. cls._model_classes[name] = modelcls
  162. return modelcls
  163. return func
  164. @classmethod
  165. def from_model_architecture(cls, arch):
  166. try:
  167. return cls._model_classes[arch]
  168. except KeyError:
  169. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  170. def _is_model_safetensors(self) -> bool:
  171. return Model.count_model_parts(self.dir_model, ".safetensors") > 0
  172. def _get_part_names(self):
  173. if self.is_safetensors:
  174. if self.num_parts == 1: # there's only one .safetensors file
  175. return ("model.safetensors",)
  176. return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
  177. if self.num_parts == 1: # there's only one .bin file
  178. return ("pytorch_model.bin",)
  179. return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
  180. def _set_vocab_gpt2(self):
  181. dir_model = self.dir_model
  182. hparams = self.hparams
  183. tokens: list[str] = []
  184. toktypes: list[int] = []
  185. from transformers import AutoTokenizer
  186. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  187. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  188. assert max(tokenizer.vocab.values()) < vocab_size
  189. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  190. added_vocab = tokenizer.get_added_vocab()
  191. for i in range(vocab_size):
  192. if i not in reverse_vocab:
  193. tokens.append(f"[PAD{i}]")
  194. toktypes.append(gguf.TokenType.USER_DEFINED)
  195. elif reverse_vocab[i] in added_vocab:
  196. tokens.append(reverse_vocab[i])
  197. if tokenizer.added_tokens_decoder[i].special:
  198. toktypes.append(gguf.TokenType.CONTROL)
  199. else:
  200. toktypes.append(gguf.TokenType.USER_DEFINED)
  201. else:
  202. tokens.append(reverse_vocab[i])
  203. toktypes.append(gguf.TokenType.NORMAL)
  204. self.gguf_writer.add_tokenizer_model("gpt2")
  205. self.gguf_writer.add_token_list(tokens)
  206. self.gguf_writer.add_token_types(toktypes)
  207. special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
  208. special_vocab.add_to_gguf(self.gguf_writer)
  209. def _set_vocab_qwen(self):
  210. dir_model = self.dir_model
  211. hparams = self.hparams
  212. tokens: list[str] = []
  213. toktypes: list[int] = []
  214. from transformers import AutoTokenizer
  215. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  216. vocab_size = hparams["vocab_size"]
  217. assert max(tokenizer.get_vocab().values()) < vocab_size
  218. merges = []
  219. vocab = {}
  220. mergeable_ranks = tokenizer.mergeable_ranks
  221. for token, rank in mergeable_ranks.items():
  222. vocab[QwenModel.token_bytes_to_string(token)] = rank
  223. if len(token) == 1:
  224. continue
  225. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  226. assert len(merged) == 2
  227. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  228. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  229. added_vocab = tokenizer.special_tokens
  230. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
  231. for i in range(vocab_size):
  232. if i not in reverse_vocab:
  233. tokens.append(f"[PAD{i}]")
  234. toktypes.append(gguf.TokenType.USER_DEFINED)
  235. elif reverse_vocab[i] in added_vocab:
  236. tokens.append(reverse_vocab[i])
  237. toktypes.append(gguf.TokenType.CONTROL)
  238. else:
  239. tokens.append(reverse_vocab[i])
  240. toktypes.append(gguf.TokenType.NORMAL)
  241. self.gguf_writer.add_tokenizer_model("gpt2")
  242. self.gguf_writer.add_token_list(tokens)
  243. self.gguf_writer.add_token_types(toktypes)
  244. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  245. special_vocab.merges = merges
  246. # only add special tokens when they were not already loaded from config.json
  247. if len(special_vocab.special_token_ids) == 0:
  248. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  249. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  250. # this one is usually not in config.json anyway
  251. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  252. special_vocab.add_to_gguf(self.gguf_writer)
  253. def _set_vocab_sentencepiece(self):
  254. from sentencepiece import SentencePieceProcessor
  255. tokenizer_path = self.dir_model / 'tokenizer.model'
  256. tokens: list[bytes] = []
  257. scores: list[float] = []
  258. toktypes: list[int] = []
  259. if not tokenizer_path.is_file():
  260. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  261. sys.exit(1)
  262. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  263. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  264. for token_id in range(tokenizer.vocab_size()):
  265. piece = tokenizer.id_to_piece(token_id)
  266. text = piece.encode("utf-8")
  267. score = tokenizer.get_score(token_id)
  268. toktype = SentencePieceTokenTypes.NORMAL
  269. if tokenizer.is_unknown(token_id):
  270. toktype = SentencePieceTokenTypes.UNKNOWN
  271. elif tokenizer.is_control(token_id):
  272. toktype = SentencePieceTokenTypes.CONTROL
  273. elif tokenizer.is_unused(token_id):
  274. toktype = SentencePieceTokenTypes.UNUSED
  275. elif tokenizer.is_byte(token_id):
  276. toktype = SentencePieceTokenTypes.BYTE
  277. tokens.append(text)
  278. scores.append(score)
  279. toktypes.append(toktype)
  280. added_tokens_file = self.dir_model / 'added_tokens.json'
  281. if added_tokens_file.is_file():
  282. with open(added_tokens_file, "r", encoding="utf-8") as f:
  283. added_tokens_json = json.load(f)
  284. for key in added_tokens_json:
  285. key = key.encode("utf-8")
  286. if key not in tokens:
  287. tokens.append(key)
  288. scores.append(-1000.0)
  289. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  290. assert len(tokens) == vocab_size
  291. self.gguf_writer.add_tokenizer_model("llama")
  292. self.gguf_writer.add_token_list(tokens)
  293. self.gguf_writer.add_token_scores(scores)
  294. self.gguf_writer.add_token_types(toktypes)
  295. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  296. special_vocab.add_to_gguf(self.gguf_writer)
  297. def _set_vocab_llama_hf(self):
  298. vocab = LlamaHfVocab(self.dir_model)
  299. tokens = []
  300. scores = []
  301. toktypes = []
  302. for text, score, toktype in vocab.all_tokens():
  303. tokens.append(text)
  304. scores.append(score)
  305. toktypes.append(toktype)
  306. assert len(tokens) == vocab.vocab_size
  307. self.gguf_writer.add_tokenizer_model("llama")
  308. self.gguf_writer.add_token_list(tokens)
  309. self.gguf_writer.add_token_scores(scores)
  310. self.gguf_writer.add_token_types(toktypes)
  311. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  312. special_vocab.add_to_gguf(self.gguf_writer)
  313. @Model.register("GPTNeoXForCausalLM")
  314. class GPTNeoXModel(Model):
  315. model_arch = gguf.MODEL_ARCH.GPTNEOX
  316. def set_gguf_parameters(self):
  317. block_count = self.hparams["num_hidden_layers"]
  318. self.gguf_writer.add_name(self.dir_model.name)
  319. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  320. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  321. self.gguf_writer.add_block_count(block_count)
  322. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  323. self.gguf_writer.add_rope_dimension_count(
  324. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  325. )
  326. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  327. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  328. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  329. @Model.register("BloomForCausalLM")
  330. class BloomModel(Model):
  331. model_arch = gguf.MODEL_ARCH.BLOOM
  332. def set_gguf_parameters(self):
  333. self.gguf_writer.add_name("Bloom")
  334. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  335. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  336. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  337. self.gguf_writer.add_embedding_length(n_embed)
  338. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  339. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  340. self.gguf_writer.add_head_count(n_head)
  341. self.gguf_writer.add_head_count_kv(n_head)
  342. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  343. self.gguf_writer.add_file_type(self.ftype)
  344. def write_tensors(self):
  345. block_count = self.hparams["n_layer"]
  346. tensors = dict(self.get_tensors())
  347. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  348. has_lm_head = True
  349. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  350. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  351. for name, data_torch in tensors.items():
  352. if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
  353. has_lm_head = False
  354. name = re.sub(r'transformer\.', '', name)
  355. old_dtype = data_torch.dtype
  356. # convert any unsupported data types to float32
  357. if data_torch.dtype not in (torch.float16, torch.float32):
  358. data_torch = data_torch.to(torch.float32)
  359. data = data_torch.squeeze().numpy()
  360. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  361. # Map bloom-style qkv_linear to gpt-style qkv_linear
  362. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  363. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  364. qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
  365. data = np.concatenate(
  366. (
  367. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  368. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  369. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  370. ),
  371. axis=0,
  372. )
  373. print("re-format attention.linear_qkv.weight")
  374. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  375. qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
  376. data = np.concatenate(
  377. (
  378. qkv_bias[:, 0, :].reshape((n_embed,)),
  379. qkv_bias[:, 1, :].reshape((n_embed,)),
  380. qkv_bias[:, 2, :].reshape((n_embed,)),
  381. ),
  382. axis=0,
  383. )
  384. print("re-format attention.linear_qkv.bias")
  385. # map tensor names
  386. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  387. if new_name is None:
  388. print(f"Can not map tensor {name!r}")
  389. sys.exit()
  390. n_dims = len(data.shape)
  391. data_dtype = data.dtype
  392. # if f32 desired, convert any float16 to float32
  393. if self.ftype == 0 and data_dtype == np.float16:
  394. data = data.astype(np.float32)
  395. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  396. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  397. data = data.astype(np.float32)
  398. # if f16 desired, convert any float32 2-dim weight tensors to float16
  399. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  400. data = data.astype(np.float16)
  401. print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  402. self.gguf_writer.add_tensor(new_name, data)
  403. if not has_lm_head and name == "word_embeddings.weight":
  404. self.gguf_writer.add_tensor("output.weight", data)
  405. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  406. @Model.register("MPTForCausalLM")
  407. class MPTModel(Model):
  408. model_arch = gguf.MODEL_ARCH.MPT
  409. def set_gguf_parameters(self):
  410. block_count = self.hparams["n_layers"]
  411. self.gguf_writer.add_name(self.dir_model.name)
  412. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  413. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  414. self.gguf_writer.add_block_count(block_count)
  415. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  416. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  417. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  418. self.gguf_writer.add_head_count_kv(kv_n_heads)
  419. self.gguf_writer.add_layer_norm_eps(1e-5)
  420. if self.hparams["attn_config"]["clip_qkv"] is not None:
  421. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  422. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  423. def write_tensors(self):
  424. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
  425. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  426. for name, data_torch in self.get_tensors():
  427. # we don't need these
  428. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  429. continue
  430. old_dtype = data_torch.dtype
  431. # convert any unsupported data types to float32
  432. if data_torch.dtype not in (torch.float16, torch.float32):
  433. data_torch = data_torch.to(torch.float32)
  434. data = data_torch.squeeze().numpy()
  435. # map tensor names
  436. if "scales" in name:
  437. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  438. if new_name is not None:
  439. new_name = new_name.replace("scales", "act.scales")
  440. else:
  441. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  442. if new_name is None:
  443. print(f"Can not map tensor {name!r}")
  444. sys.exit()
  445. n_dims = len(data.shape)
  446. data_dtype = data.dtype
  447. # if f32 desired, convert any float16 to float32
  448. if self.ftype == 0 and data_dtype == np.float16:
  449. data = data.astype(np.float32)
  450. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  451. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  452. data = data.astype(np.float32)
  453. # if f16 desired, convert any float32 2-dim weight tensors to float16
  454. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  455. data = data.astype(np.float16)
  456. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  457. self.gguf_writer.add_tensor(new_name, data)
  458. @Model.register("OrionForCausalLM")
  459. class OrionModel(Model):
  460. model_arch = gguf.MODEL_ARCH.ORION
  461. def set_vocab(self):
  462. self._set_vocab_sentencepiece()
  463. def set_gguf_parameters(self):
  464. block_count = self.hparams["num_hidden_layers"]
  465. head_count = self.hparams["num_attention_heads"]
  466. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  467. hf_repo = self.hparams.get("_name_or_path", "")
  468. ctx_length = 0
  469. if "max_sequence_length" in self.hparams:
  470. ctx_length = self.hparams["max_sequence_length"]
  471. elif "max_position_embeddings" in self.hparams:
  472. ctx_length = self.hparams["max_position_embeddings"]
  473. elif "model_max_length" in self.hparams:
  474. ctx_length = self.hparams["model_max_length"]
  475. else:
  476. print("gguf: can not find ctx length parameter.")
  477. sys.exit()
  478. self.gguf_writer.add_file_type(self.ftype)
  479. self.gguf_writer.add_name(self.dir_model.name)
  480. self.gguf_writer.add_source_hf_repo(hf_repo)
  481. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  482. self.gguf_writer.add_context_length(ctx_length)
  483. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  484. self.gguf_writer.add_block_count(block_count)
  485. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  486. self.gguf_writer.add_head_count(head_count)
  487. self.gguf_writer.add_head_count_kv(head_count_kv)
  488. # note: config provides rms norm but it is actually layer norm
  489. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  490. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  491. def write_tensors(self):
  492. # Collect tensors from generator object
  493. model_kv = dict(self.get_tensors())
  494. block_count = self.hparams["num_hidden_layers"]
  495. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  496. for name, data_torch in model_kv.items():
  497. # we don't need these
  498. if name.endswith(".rotary_emb.inv_freq"):
  499. continue
  500. old_dtype = data_torch.dtype
  501. # convert any unsupported data types to float32
  502. if data_torch.dtype not in (torch.float16, torch.float32):
  503. data_torch = data_torch.to(torch.float32)
  504. data = data_torch.squeeze().numpy()
  505. # map tensor names
  506. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  507. if new_name is None:
  508. print(f"Can not map tensor {name!r}")
  509. sys.exit()
  510. n_dims = len(data.shape)
  511. data_dtype = data.dtype
  512. # if f32 desired, convert any float16 to float32
  513. if self.ftype == 0 and data_dtype == np.float16:
  514. data = data.astype(np.float32)
  515. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  516. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  517. data = data.astype(np.float32)
  518. # if f16 desired, convert any float32 2-dim weight tensors to float16
  519. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  520. data = data.astype(np.float16)
  521. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  522. self.gguf_writer.add_tensor(new_name, data)
  523. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  524. class BaichuanModel(Model):
  525. model_arch = gguf.MODEL_ARCH.BAICHUAN
  526. def set_vocab(self):
  527. self._set_vocab_sentencepiece()
  528. def set_gguf_parameters(self):
  529. block_count = self.hparams["num_hidden_layers"]
  530. head_count = self.hparams["num_attention_heads"]
  531. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  532. hf_repo = self.hparams.get("_name_or_path", "")
  533. ctx_length = 0
  534. if "max_sequence_length" in self.hparams:
  535. ctx_length = self.hparams["max_sequence_length"]
  536. elif "max_position_embeddings" in self.hparams:
  537. ctx_length = self.hparams["max_position_embeddings"]
  538. elif "model_max_length" in self.hparams:
  539. ctx_length = self.hparams["model_max_length"]
  540. else:
  541. print("gguf: can not find ctx length parameter.")
  542. sys.exit()
  543. self.gguf_writer.add_name(self.dir_model.name)
  544. self.gguf_writer.add_source_hf_repo(hf_repo)
  545. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  546. self.gguf_writer.add_context_length(ctx_length)
  547. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  548. self.gguf_writer.add_block_count(block_count)
  549. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  550. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  551. self.gguf_writer.add_head_count(head_count)
  552. self.gguf_writer.add_head_count_kv(head_count_kv)
  553. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  554. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  555. if self.hparams["rope_scaling"].get("type") == "linear":
  556. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  557. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  558. def write_tensors(self):
  559. # Collect tensors from generator object
  560. model_kv = dict(self.get_tensors())
  561. block_count = self.hparams["num_hidden_layers"]
  562. head_count = self.hparams["num_attention_heads"]
  563. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  564. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  565. for i in range(block_count):
  566. if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
  567. print(f"Unpacking and permuting layer {i}")
  568. model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
  569. self._reverse_hf_permute_part(w, 0, head_count, head_count)
  570. model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
  571. self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
  572. model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
  573. self._reverse_hf_part(w, 2)
  574. del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
  575. for name, data_torch in model_kv.items():
  576. # we don't need these
  577. if name.endswith(".rotary_emb.inv_freq"):
  578. continue
  579. old_dtype = data_torch.dtype
  580. # convert any unsupported data types to float32
  581. if data_torch.dtype not in (torch.float16, torch.float32):
  582. data_torch = data_torch.to(torch.float32)
  583. data = data_torch.squeeze().numpy()
  584. # map tensor names
  585. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  586. if new_name is None:
  587. print(f"Can not map tensor {name!r}")
  588. sys.exit()
  589. n_dims = len(data.shape)
  590. data_dtype = data.dtype
  591. # if f32 desired, convert any float16 to float32
  592. if self.ftype == 0 and data_dtype == np.float16:
  593. data = data.astype(np.float32)
  594. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  595. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  596. data = data.astype(np.float32)
  597. # if f16 desired, convert any float32 2-dim weight tensors to float16
  598. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  599. data = data.astype(np.float16)
  600. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  601. self.gguf_writer.add_tensor(new_name, data)
  602. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  603. if n_kv_head is not None and n_head != n_kv_head:
  604. n_head //= n_kv_head
  605. return (
  606. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  607. .swapaxes(1, 2)
  608. .reshape(weights.shape)
  609. )
  610. def _reverse_hf_permute_part(
  611. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  612. ) -> Tensor:
  613. r = weights.shape[0] // 3
  614. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  615. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  616. r = weights.shape[0] // 3
  617. return weights[r * n_part:r * n_part + r, ...]
  618. @Model.register("XverseForCausalLM")
  619. class XverseModel(Model):
  620. model_arch = gguf.MODEL_ARCH.XVERSE
  621. def set_vocab(self):
  622. assert (self.dir_model / "tokenizer.json").is_file()
  623. dir_model = self.dir_model
  624. hparams = self.hparams
  625. tokens: list[bytearray] = []
  626. toktypes: list[int] = []
  627. from transformers import AutoTokenizer
  628. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  629. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  630. assert max(tokenizer.vocab.values()) < vocab_size
  631. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  632. added_vocab = tokenizer.get_added_vocab()
  633. for token_id in range(vocab_size):
  634. token_text = reverse_vocab[token_id].encode('utf-8')
  635. # replace "\x00" to string with length > 0
  636. if token_text == b"\x00":
  637. toktype = gguf.TokenType.BYTE # special
  638. token_text = f"<{token_text}>".encode('utf-8')
  639. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  640. toktype = gguf.TokenType.BYTE # special
  641. elif reverse_vocab[token_id] in added_vocab:
  642. if tokenizer.added_tokens_decoder[token_id].special:
  643. toktype = gguf.TokenType.CONTROL
  644. else:
  645. toktype = gguf.TokenType.USER_DEFINED
  646. else:
  647. toktype = gguf.TokenType.NORMAL
  648. tokens.append(token_text)
  649. toktypes.append(toktype)
  650. self.gguf_writer.add_tokenizer_model("llama")
  651. self.gguf_writer.add_token_list(tokens)
  652. self.gguf_writer.add_token_types(toktypes)
  653. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  654. special_vocab.add_to_gguf(self.gguf_writer)
  655. def set_gguf_parameters(self):
  656. block_count = self.hparams["num_hidden_layers"]
  657. head_count = self.hparams["num_attention_heads"]
  658. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  659. hf_repo = self.hparams.get("_name_or_path", "")
  660. ctx_length = 0
  661. if "max_sequence_length" in self.hparams:
  662. ctx_length = self.hparams["max_sequence_length"]
  663. elif "max_position_embeddings" in self.hparams:
  664. ctx_length = self.hparams["max_position_embeddings"]
  665. elif "model_max_length" in self.hparams:
  666. ctx_length = self.hparams["model_max_length"]
  667. else:
  668. print("gguf: can not find ctx length parameter.")
  669. sys.exit()
  670. self.gguf_writer.add_name(self.dir_model.name)
  671. self.gguf_writer.add_source_hf_repo(hf_repo)
  672. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  673. self.gguf_writer.add_context_length(ctx_length)
  674. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  675. self.gguf_writer.add_block_count(block_count)
  676. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  677. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  678. self.gguf_writer.add_head_count(head_count)
  679. self.gguf_writer.add_head_count_kv(head_count_kv)
  680. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  681. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  682. if self.hparams["rope_scaling"].get("type") == "linear":
  683. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  684. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  685. def write_tensors(self):
  686. # Collect tensors from generator object
  687. model_kv = dict(self.get_tensors())
  688. block_count = self.hparams["num_hidden_layers"]
  689. head_count = self.hparams["num_attention_heads"]
  690. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  691. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  692. for name, data_torch in model_kv.items():
  693. # we don't need these
  694. if name.endswith(".rotary_emb.inv_freq"):
  695. continue
  696. old_dtype = data_torch.dtype
  697. # convert any unsupported data types to float32
  698. if data_torch.dtype not in (torch.float16, torch.float32):
  699. data_torch = data_torch.to(torch.float32)
  700. # HF models permute some of the tensors, so we need to undo that
  701. if name.endswith(("q_proj.weight")):
  702. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  703. if name.endswith(("k_proj.weight")):
  704. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  705. data = data_torch.squeeze().numpy()
  706. # map tensor names
  707. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  708. if new_name is None:
  709. print(f"Can not map tensor {name!r}")
  710. sys.exit()
  711. n_dims = len(data.shape)
  712. data_dtype = data.dtype
  713. # if f32 desired, convert any float16 to float32
  714. if self.ftype == 0 and data_dtype == np.float16:
  715. data = data.astype(np.float32)
  716. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  717. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  718. data = data.astype(np.float32)
  719. # if f16 desired, convert any float32 2-dim weight tensors to float16
  720. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  721. data = data.astype(np.float16)
  722. print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  723. self.gguf_writer.add_tensor(new_name, data)
  724. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  725. if n_kv_head is not None and n_head != n_kv_head:
  726. n_head //= n_kv_head
  727. return (
  728. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  729. .swapaxes(1, 2)
  730. .reshape(weights.shape)
  731. )
  732. @Model.register("FalconForCausalLM", "RWForCausalLM")
  733. class FalconModel(Model):
  734. model_arch = gguf.MODEL_ARCH.FALCON
  735. def set_gguf_parameters(self):
  736. block_count = self.hparams.get("num_hidden_layers")
  737. if block_count is None:
  738. block_count = self.hparams["n_layer"] # old name
  739. n_head = self.hparams.get("num_attention_heads")
  740. if n_head is None:
  741. n_head = self.hparams["n_head"] # old name
  742. n_head_kv = self.hparams.get("num_kv_heads")
  743. if n_head_kv is None:
  744. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  745. self.gguf_writer.add_name("Falcon")
  746. self.gguf_writer.add_context_length(2048) # not in config.json
  747. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  748. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  749. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  750. self.gguf_writer.add_block_count(block_count)
  751. self.gguf_writer.add_head_count(n_head)
  752. self.gguf_writer.add_head_count_kv(n_head_kv)
  753. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  754. self.gguf_writer.add_file_type(self.ftype)
  755. def write_tensors(self):
  756. block_count = self.hparams.get("num_hidden_layers")
  757. if block_count is None:
  758. block_count = self.hparams["n_layer"] # old name
  759. n_head = self.hparams.get("num_attention_heads")
  760. if n_head is None:
  761. n_head = self.hparams["n_head"] # old name
  762. n_head_kv = self.hparams.get("num_kv_heads")
  763. if n_head_kv is None:
  764. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  765. head_dim = self.hparams["hidden_size"] // n_head
  766. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  767. for name, data_torch in self.get_tensors():
  768. old_dtype = data_torch.dtype
  769. # convert any unsupported data types to float32
  770. if data_torch.dtype not in (torch.float16, torch.float32):
  771. data_torch = data_torch.to(torch.float32)
  772. # QKV tensor transform
  773. # The original query_key_value tensor contains n_head_kv "kv groups",
  774. # each consisting of n_head/n_head_kv query weights followed by one key
  775. # and one value weight (shared by all query heads in the kv group).
  776. # This layout makes it a big pain to work with in GGML.
  777. # So we rearrange them here,, so that we have n_head query weights
  778. # followed by n_head_kv key weights followed by n_head_kv value weights,
  779. # in contiguous fashion.
  780. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  781. if "query_key_value" in name:
  782. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  783. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  784. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  785. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  786. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  787. data = data_torch.squeeze().numpy()
  788. # map tensor names
  789. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  790. if new_name is None:
  791. print(f"Can not map tensor {name!r}")
  792. sys.exit()
  793. n_dims = len(data.shape)
  794. data_dtype = data.dtype
  795. # if f32 desired, convert any float16 to float32
  796. if self.ftype == 0 and data_dtype == np.float16:
  797. data = data.astype(np.float32)
  798. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  799. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  800. data = data.astype(np.float32)
  801. # if f16 desired, convert any float32 2-dim weight tensors to float16
  802. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  803. data = data.astype(np.float16)
  804. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  805. self.gguf_writer.add_tensor(new_name, data)
  806. @Model.register("GPTBigCodeForCausalLM")
  807. class StarCoderModel(Model):
  808. model_arch = gguf.MODEL_ARCH.STARCODER
  809. def set_gguf_parameters(self):
  810. block_count = self.hparams["n_layer"]
  811. self.gguf_writer.add_name("StarCoder")
  812. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  813. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  814. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  815. self.gguf_writer.add_block_count(block_count)
  816. self.gguf_writer.add_head_count(self.hparams["n_head"])
  817. self.gguf_writer.add_head_count_kv(1)
  818. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  819. self.gguf_writer.add_file_type(self.ftype)
  820. @Model.register("GPTRefactForCausalLM")
  821. class RefactModel(Model):
  822. model_arch = gguf.MODEL_ARCH.REFACT
  823. def set_gguf_parameters(self):
  824. hidden_dim = self.hparams["n_embd"]
  825. inner_dim = 4 * hidden_dim
  826. hidden_dim = int(2 * inner_dim / 3)
  827. multiple_of = 256
  828. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  829. block_count = self.hparams["n_layer"]
  830. self.gguf_writer.add_name("Refact")
  831. # refact uses Alibi. So this is from config.json which might be used by training.
  832. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  833. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  834. self.gguf_writer.add_feed_forward_length(ff_dim)
  835. self.gguf_writer.add_block_count(block_count)
  836. self.gguf_writer.add_head_count(self.hparams["n_head"])
  837. self.gguf_writer.add_head_count_kv(1)
  838. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  839. self.gguf_writer.add_file_type(self.ftype)
  840. def write_tensors(self):
  841. hidden_dim = self.hparams["n_embd"]
  842. inner_dim = 4 * hidden_dim
  843. hidden_dim = int(2 * inner_dim / 3)
  844. multiple_of = 256
  845. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  846. n_head = self.hparams["n_head"]
  847. n_head_kv = 1
  848. head_dim = self.hparams["n_embd"] // n_head
  849. block_count = self.hparams["n_layer"]
  850. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  851. tensors = dict(self.get_tensors())
  852. for i in range(block_count):
  853. if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
  854. tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
  855. tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
  856. del tensors[f"transformer.h.{i}.attn.kv.weight"]
  857. if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
  858. tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
  859. del tensors[f"transformer.h.{i}.attn.q.weight"]
  860. if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
  861. tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
  862. tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
  863. del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
  864. for name, data_torch in tensors.items():
  865. old_dtype = data_torch.dtype
  866. # convert any unsupported data types to float32
  867. if data_torch.dtype not in (torch.float16, torch.float32):
  868. data_torch = data_torch.to(torch.float32)
  869. data = data_torch.squeeze().numpy()
  870. # map tensor names
  871. new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
  872. if new_name is None:
  873. print(f"Can not map tensor {name!r}")
  874. sys.exit()
  875. n_dims = len(data.shape)
  876. data_dtype = data.dtype
  877. # if f32 desired, convert any float16 to float32
  878. if self.ftype == 0 and data_dtype == np.float16:
  879. data = data.astype(np.float32)
  880. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  881. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  882. data = data.astype(np.float32)
  883. # if f16 desired, convert any float32 2-dim weight tensors to float16
  884. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  885. data = data.astype(np.float16)
  886. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  887. self.gguf_writer.add_tensor(new_name, data)
  888. @Model.register("PersimmonForCausalLM")
  889. class PersimmonModel(Model):
  890. model_arch = gguf.MODEL_ARCH.PERSIMMON
  891. def set_gguf_parameters(self):
  892. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  893. head_count = self.hparams["num_attention_heads"]
  894. head_count_kv = head_count
  895. hidden_size = self.hparams["hidden_size"]
  896. self.gguf_writer.add_name('persimmon-8b-chat')
  897. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  898. self.gguf_writer.add_embedding_length(hidden_size)
  899. self.gguf_writer.add_block_count(block_count)
  900. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  901. # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
  902. # than the head size?
  903. # ref: https://github.com/ggerganov/llama.cpp/pull/4889
  904. # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
  905. self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
  906. self.gguf_writer.add_head_count(head_count)
  907. self.gguf_writer.add_head_count_kv(head_count_kv)
  908. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  909. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  910. def set_vocab(self):
  911. self._set_vocab_sentencepiece()
  912. # self.gguf_writer.add_bos_token_id(71013)
  913. # self.gguf_writer.add_eos_token_id(71013)
  914. def write_tensors(self):
  915. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  916. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  917. for name, data_torch in self.get_tensors():
  918. if name.endswith(".self_attention.rotary_emb.inv_freq"):
  919. continue
  920. old_dtype = data_torch.dtype
  921. # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
  922. data = data_torch.to(torch.float32).squeeze().numpy()
  923. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  924. if new_name is None:
  925. print(f"Can not map tensor {name!r}")
  926. sys.exit()
  927. n_dims = len(data.shape)
  928. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  929. self.gguf_writer.add_tensor(new_name, data)
  930. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  931. class StableLMModel(Model):
  932. model_arch = gguf.MODEL_ARCH.STABLELM
  933. def set_vocab(self):
  934. if (self.dir_model / "tokenizer.json").is_file():
  935. self._set_vocab_gpt2()
  936. else:
  937. # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
  938. self._set_vocab_qwen()
  939. def set_gguf_parameters(self):
  940. hparams = self.hparams
  941. block_count = hparams["num_hidden_layers"]
  942. self.gguf_writer.add_name(self.dir_model.name)
  943. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  944. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  945. self.gguf_writer.add_block_count(block_count)
  946. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  947. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  948. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  949. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  950. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  951. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  952. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  953. class LlamaModel(Model):
  954. model_arch = gguf.MODEL_ARCH.LLAMA
  955. def set_vocab(self):
  956. try:
  957. self. _set_vocab_sentencepiece()
  958. except FileNotFoundError:
  959. self._set_vocab_llama_hf()
  960. def set_gguf_parameters(self):
  961. super().set_gguf_parameters()
  962. hparams = self.hparams
  963. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  964. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  965. # Same as super class, but permuting q_proj, k_proj
  966. def write_tensors(self):
  967. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  968. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  969. n_head = self.hparams.get("num_attention_heads")
  970. n_kv_head = self.hparams.get("num_key_value_heads")
  971. for name, data_torch in self.get_tensors():
  972. # we don't need these
  973. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  974. continue
  975. old_dtype = data_torch.dtype
  976. # convert any unsupported data types to float32
  977. if data_torch.dtype not in (torch.float16, torch.float32):
  978. data_torch = data_torch.to(torch.float32)
  979. data = data_torch.numpy()
  980. if name.endswith("q_proj.weight"):
  981. data = permute(data, n_head, n_head)
  982. if name.endswith("k_proj.weight"):
  983. data = permute(data, n_head, n_kv_head)
  984. data = data.squeeze()
  985. # map tensor names
  986. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  987. if new_name is None:
  988. print(f"Can not map tensor {name!r}")
  989. sys.exit()
  990. n_dims = len(data.shape)
  991. data_dtype = data.dtype
  992. # if f32 desired, convert any float16 to float32
  993. if self.ftype == 0 and data_dtype == np.float16:
  994. data = data.astype(np.float32)
  995. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  996. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  997. data = data.astype(np.float32)
  998. # if f16 desired, convert any float32 2-dim weight tensors to float16
  999. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1000. data = data.astype(np.float16)
  1001. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1002. self.gguf_writer.add_tensor(new_name, data)
  1003. @Model.register("GrokForCausalLM")
  1004. class GrokModel(Model):
  1005. model_arch = gguf.MODEL_ARCH.GROK
  1006. def set_vocab(self):
  1007. self._set_vocab_sentencepiece()
  1008. def __init__(self, *args, **kwargs):
  1009. super().__init__(*args, **kwargs)
  1010. def set_gguf_parameters(self):
  1011. super().set_gguf_parameters()
  1012. self.gguf_writer.add_name("Grok")
  1013. @Model.register("MiniCPMForCausalLM")
  1014. class MiniCPMModel(Model):
  1015. model_arch = gguf.MODEL_ARCH.MINICPM
  1016. def set_gguf_parameters(self):
  1017. block_count = self.hparams["num_hidden_layers"]
  1018. self.gguf_writer.add_name("MiniCPM")
  1019. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1020. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1021. self.gguf_writer.add_block_count(block_count)
  1022. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1023. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1024. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1025. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1026. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1027. self.gguf_writer.add_file_type(self.ftype)
  1028. def set_vocab(self):
  1029. self._set_vocab_llama_hf()
  1030. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1031. if n_kv_head is not None and n_head != n_kv_head:
  1032. n_head //= n_kv_head
  1033. return (
  1034. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1035. .swapaxes(1, 2)
  1036. .reshape(weights.shape)
  1037. )
  1038. def write_tensors(self):
  1039. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1040. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1041. n_head = self.hparams.get("num_attention_heads")
  1042. n_kv_head = self.hparams.get("num_key_value_heads")
  1043. for name, data_torch in self.get_tensors():
  1044. # we don't need these
  1045. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
  1046. continue
  1047. old_dtype = data_torch.dtype
  1048. # convert any unsupported data types to float32
  1049. if data_torch.dtype not in (torch.float16, torch.float32):
  1050. data_torch = data_torch.to(torch.float32)
  1051. # HF models permute some of the tensors, so we need to undo that
  1052. if name.endswith(("q_proj.weight")):
  1053. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1054. if name.endswith(("k_proj.weight")):
  1055. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1056. data = data_torch.squeeze().numpy()
  1057. # map tensor names
  1058. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1059. if new_name is None:
  1060. print(f"Can not map tensor {name!r}")
  1061. sys.exit()
  1062. n_dims = len(data.shape)
  1063. data_dtype = data.dtype
  1064. # if f32 desired, convert any float16 to float32
  1065. if self.ftype == 0 and data_dtype == np.float16:
  1066. data = data.astype(np.float32)
  1067. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1068. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1069. data = data.astype(np.float32)
  1070. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1071. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1072. data = data.astype(np.float16)
  1073. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1074. self.gguf_writer.add_tensor(new_name, data)
  1075. @Model.register("QWenLMHeadModel")
  1076. class QwenModel(Model):
  1077. model_arch = gguf.MODEL_ARCH.QWEN
  1078. @staticmethod
  1079. def token_bytes_to_string(b):
  1080. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1081. byte_encoder = bytes_to_unicode()
  1082. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1083. @staticmethod
  1084. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1085. parts = [bytes([b]) for b in token]
  1086. while True:
  1087. min_idx = None
  1088. min_rank = None
  1089. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1090. rank = mergeable_ranks.get(pair[0] + pair[1])
  1091. if rank is not None and (min_rank is None or rank < min_rank):
  1092. min_idx = i
  1093. min_rank = rank
  1094. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1095. break
  1096. assert min_idx is not None
  1097. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1098. return parts
  1099. def set_vocab(self):
  1100. self._set_vocab_qwen()
  1101. def set_gguf_parameters(self):
  1102. self.gguf_writer.add_name("Qwen")
  1103. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1104. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1105. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1106. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1107. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1108. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1109. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1110. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1111. def write_tensors(self):
  1112. block_count = self.hparams["num_hidden_layers"]
  1113. model_kv = dict(self.get_tensors())
  1114. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1115. for name, data_torch in model_kv.items():
  1116. # we don't need these
  1117. if name.endswith(".rotary_emb.inv_freq"):
  1118. continue
  1119. old_dtype = data_torch.dtype
  1120. # convert any unsupported data types to float32
  1121. if data_torch.dtype not in (torch.float16, torch.float32):
  1122. data_torch = data_torch.to(torch.float32)
  1123. data = data_torch.squeeze().numpy()
  1124. # map tensor names
  1125. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1126. if new_name is None:
  1127. print(f"Can not map tensor {name!r}")
  1128. sys.exit()
  1129. n_dims = len(data.shape)
  1130. data_dtype = data.dtype
  1131. # if f32 desired, convert any float16 to float32
  1132. if self.ftype == 0 and data_dtype == np.float16:
  1133. data = data.astype(np.float32)
  1134. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1135. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1136. data = data.astype(np.float32)
  1137. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1138. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1139. data = data.astype(np.float16)
  1140. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1141. self.gguf_writer.add_tensor(new_name, data)
  1142. @Model.register("Qwen2ForCausalLM")
  1143. class Qwen2Model(Model):
  1144. model_arch = gguf.MODEL_ARCH.QWEN2
  1145. @Model.register("GPT2LMHeadModel")
  1146. class GPT2Model(Model):
  1147. model_arch = gguf.MODEL_ARCH.GPT2
  1148. def set_gguf_parameters(self):
  1149. self.gguf_writer.add_name(self.dir_model.name)
  1150. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1151. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1152. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1153. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1154. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1155. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1156. self.gguf_writer.add_file_type(self.ftype)
  1157. def write_tensors(self):
  1158. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1159. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1160. for name, data_torch in self.get_tensors():
  1161. # we don't need these
  1162. if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias", ".attn.masked_bias")):
  1163. continue
  1164. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1165. data_torch = data_torch.transpose(1, 0)
  1166. old_dtype = data_torch.dtype
  1167. # convert any unsupported data types to float32
  1168. if data_torch.dtype not in (torch.float16, torch.float32):
  1169. data_torch = data_torch.to(torch.float32)
  1170. data = data_torch.squeeze().numpy()
  1171. # map tensor names
  1172. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1173. if new_name is None:
  1174. print(f"Can not map tensor {name!r}")
  1175. sys.exit()
  1176. n_dims = len(data.shape)
  1177. data_dtype = data.dtype
  1178. # if f32 desired, convert any float16 to float32
  1179. if self.ftype == 0 and data_dtype == np.float16:
  1180. data = data.astype(np.float32)
  1181. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1182. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1183. data = data.astype(np.float32)
  1184. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1185. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1186. data = data.astype(np.float16)
  1187. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1188. self.gguf_writer.add_tensor(new_name, data)
  1189. # note: GPT2 output is tied to (same as) wte in original model
  1190. if new_name == "token_embd.weight":
  1191. print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1192. self.gguf_writer.add_tensor("output.weight", data)
  1193. @Model.register("PhiForCausalLM")
  1194. class Phi2Model(Model):
  1195. model_arch = gguf.MODEL_ARCH.PHI2
  1196. def set_gguf_parameters(self):
  1197. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1198. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1199. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1200. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1201. self.gguf_writer.add_name("Phi2")
  1202. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1203. self.gguf_writer.add_embedding_length(n_embd)
  1204. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1205. self.gguf_writer.add_block_count(block_count)
  1206. self.gguf_writer.add_head_count(n_head)
  1207. self.gguf_writer.add_head_count_kv(n_head)
  1208. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1209. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1210. self.gguf_writer.add_file_type(self.ftype)
  1211. self.gguf_writer.add_add_bos_token(False)
  1212. @Model.register("PlamoForCausalLM")
  1213. class PlamoModel(Model):
  1214. model_arch = gguf.MODEL_ARCH.PLAMO
  1215. def set_vocab(self):
  1216. self._set_vocab_sentencepiece()
  1217. def set_gguf_parameters(self):
  1218. hparams = self.hparams
  1219. block_count = hparams["num_hidden_layers"]
  1220. self.gguf_writer.add_name("PLaMo")
  1221. self.gguf_writer.add_context_length(4096) # not in config.json
  1222. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1223. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1224. self.gguf_writer.add_block_count(block_count)
  1225. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1226. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1227. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1228. def shuffle_attn_q_weight(self, data_torch):
  1229. assert data_torch.size() == (5120, 5120)
  1230. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1231. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1232. data_torch = torch.reshape(data_torch, (5120, 5120))
  1233. return data_torch
  1234. def shuffle_attn_output_weight(self, data_torch):
  1235. assert data_torch.size() == (5120, 5120)
  1236. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1237. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1238. data_torch = torch.reshape(data_torch, (5120, 5120))
  1239. return data_torch
  1240. def write_tensors(self):
  1241. block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
  1242. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1243. for name, data_torch in self.get_tensors():
  1244. if "self_attn.rotary_emb.inv_freq" in name:
  1245. continue
  1246. # map tensor names
  1247. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1248. if new_name is None:
  1249. print(f"Can not map tensor {name!r}")
  1250. sys.exit()
  1251. # shuffle for broadcasting of gqa in ggml_mul_mat
  1252. if new_name.endswith("attn_q.weight"):
  1253. data_torch = self.shuffle_attn_q_weight(data_torch)
  1254. elif new_name.endswith("attn_output.weight"):
  1255. data_torch = self.shuffle_attn_output_weight(data_torch)
  1256. old_dtype = data_torch.dtype
  1257. # convert any unsupported data types to float32
  1258. if data_torch.dtype not in (torch.float16, torch.float32):
  1259. data_torch = data_torch.to(torch.float32)
  1260. data = data_torch.squeeze().numpy()
  1261. n_dims = len(data.shape)
  1262. data_dtype = data.dtype
  1263. # if f32 desired, convert any float16 to float32
  1264. if self.ftype == 0 and data_dtype == np.float16:
  1265. data = data.astype(np.float32)
  1266. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1267. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1268. data = data.astype(np.float32)
  1269. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1270. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1271. data = data.astype(np.float16)
  1272. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1273. self.gguf_writer.add_tensor(new_name, data)
  1274. @Model.register("CodeShellForCausalLM")
  1275. class CodeShellModel(Model):
  1276. model_arch = gguf.MODEL_ARCH.CODESHELL
  1277. def set_gguf_parameters(self):
  1278. block_count = self.hparams["n_layer"]
  1279. self.gguf_writer.add_name("CodeShell")
  1280. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1281. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1282. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1283. self.gguf_writer.add_block_count(block_count)
  1284. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1285. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1286. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1287. self.gguf_writer.add_file_type(self.ftype)
  1288. self.gguf_writer.add_rope_freq_base(10000.0)
  1289. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1290. self.gguf_writer.add_rope_scaling_factor(1.0)
  1291. def write_tensors(self):
  1292. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1293. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1294. tensors = dict(self.get_tensors())
  1295. has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
  1296. for name, data_torch in tensors.items():
  1297. # we don't need these
  1298. if name.endswith((".attn.rotary_emb.inv_freq")):
  1299. continue
  1300. old_dtype = data_torch.dtype
  1301. # convert any unsupported data types to float32
  1302. if data_torch.dtype not in (torch.float16, torch.float32):
  1303. data_torch = data_torch.to(torch.float32)
  1304. data = data_torch.squeeze().numpy()
  1305. # map tensor names
  1306. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1307. if new_name is None:
  1308. print(f"Can not map tensor {name!r}")
  1309. sys.exit()
  1310. n_dims = len(data.shape)
  1311. data_dtype = data.dtype
  1312. # if f32 desired, convert any float16 to float32
  1313. if self.ftype == 0 and data_dtype == np.float16:
  1314. data = data.astype(np.float32)
  1315. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1316. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1317. data = data.astype(np.float32)
  1318. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1319. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1320. data = data.astype(np.float16)
  1321. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1322. self.gguf_writer.add_tensor(new_name, data)
  1323. if not has_lm_head and name == "transformer.wte.weight":
  1324. self.gguf_writer.add_tensor("output.weight", data)
  1325. print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
  1326. @Model.register("InternLM2ForCausalLM")
  1327. class InternLM2Model(Model):
  1328. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1329. def set_vocab(self):
  1330. # (TODO): Is there a better way?
  1331. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1332. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1333. # recognized as an empty string in C++.
  1334. from sentencepiece import SentencePieceProcessor
  1335. from sentencepiece import sentencepiece_model_pb2 as model
  1336. tokenizer_path = self.dir_model / 'tokenizer.model'
  1337. tokens: list[bytes] = []
  1338. scores: list[float] = []
  1339. toktypes: list[int] = []
  1340. if not tokenizer_path.is_file():
  1341. print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
  1342. sys.exit(1)
  1343. sentencepiece_model = model.ModelProto()
  1344. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1345. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1346. tokenizer = SentencePieceProcessor(str(tokenizer_path))
  1347. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1348. for token_id in range(vocab_size):
  1349. piece = tokenizer.id_to_piece(token_id)
  1350. text = piece.encode("utf-8")
  1351. score = tokenizer.get_score(token_id)
  1352. if text == b"\x00":
  1353. # (TODO): fixme
  1354. # Hack here and replace the \x00 characters.
  1355. print(f"InternLM2 convert token '{text}' to '🐉'!")
  1356. text = "🐉"
  1357. toktype = SentencePieceTokenTypes.NORMAL
  1358. if tokenizer.is_unknown(token_id):
  1359. toktype = SentencePieceTokenTypes.UNKNOWN
  1360. elif tokenizer.is_control(token_id):
  1361. toktype = SentencePieceTokenTypes.CONTROL
  1362. elif tokenizer.is_unused(token_id):
  1363. toktype = SentencePieceTokenTypes.UNUSED
  1364. elif tokenizer.is_byte(token_id):
  1365. toktype = SentencePieceTokenTypes.BYTE
  1366. tokens.append(text)
  1367. scores.append(score)
  1368. toktypes.append(toktype)
  1369. added_tokens_file = self.dir_model / 'added_tokens.json'
  1370. if added_tokens_file.is_file():
  1371. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1372. added_tokens_json = json.load(f)
  1373. for key in added_tokens_json:
  1374. tokens.append(key.encode("utf-8"))
  1375. scores.append(-1000.0)
  1376. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1377. self.gguf_writer.add_tokenizer_model("llama")
  1378. self.gguf_writer.add_token_list(tokens)
  1379. self.gguf_writer.add_token_scores(scores)
  1380. self.gguf_writer.add_token_types(toktypes)
  1381. self.gguf_writer.add_add_space_prefix(add_prefix)
  1382. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1383. old_eos = special_vocab.special_token_ids["eos"]
  1384. if "chat" in os.path.basename(self.dir_model.absolute()):
  1385. # For the chat model, we replace the eos with '<|im_end|>'.
  1386. special_vocab.special_token_ids["eos"] = self._try_get_sft_eos(tokenizer)
  1387. print(f"Replace eos:{old_eos} with a special token:{special_vocab.special_token_ids['eos']} \
  1388. in chat mode so that the conversation can end normally.")
  1389. special_vocab.add_to_gguf(self.gguf_writer)
  1390. def _try_get_sft_eos(self, tokenizer):
  1391. unused_145_list = tokenizer.encode('[UNUSED_TOKEN_145]')
  1392. im_end_list = tokenizer.encode('<|im_end|>')
  1393. assert (len(unused_145_list) == 1) ^ (len(im_end_list) == 1)
  1394. if len(unused_145_list) == 1:
  1395. eos_token = unused_145_list[0]
  1396. if len(im_end_list) == 1:
  1397. eos_token = im_end_list[0]
  1398. return eos_token
  1399. def _hf_permute_qk(self, weights, n_head: int, n_head_kv: int):
  1400. if n_head_kv is not None and n_head != n_head_kv:
  1401. n_head = n_head_kv
  1402. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1403. .swapaxes(1, 2)
  1404. .reshape(weights.shape))
  1405. def set_gguf_parameters(self):
  1406. self.gguf_writer.add_name("InternLM2")
  1407. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1408. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1409. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1410. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1411. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1412. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1413. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1414. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1415. def post_write_tensors(self, tensor_map, name, data_torch):
  1416. old_dtype = data_torch.dtype
  1417. # convert any unsupported data types to float32
  1418. if data_torch.dtype not in (torch.float16, torch.float32):
  1419. data_torch = data_torch.to(torch.float32)
  1420. data = data_torch.squeeze().numpy()
  1421. # map tensor names
  1422. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1423. if new_name is None:
  1424. print(f"Can not map tensor {name!r}")
  1425. sys.exit()
  1426. n_dims = len(data.shape)
  1427. data_dtype = data.dtype
  1428. # if f32 desired, convert any float16 to float32
  1429. if self.ftype == 0 and data_dtype == np.float16:
  1430. data = data.astype(np.float32)
  1431. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1432. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1433. data = data.astype(np.float32)
  1434. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1435. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1436. data = data.astype(np.float16)
  1437. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1438. self.gguf_writer.add_tensor(new_name, data)
  1439. def write_tensors(self):
  1440. from einops import rearrange
  1441. num_heads = self.hparams.get("num_attention_heads")
  1442. num_kv_heads = self.hparams.get("num_key_value_heads")
  1443. hidden_size = self.hparams.get("hidden_size")
  1444. q_per_kv = num_heads // num_kv_heads
  1445. head_dim = hidden_size // num_heads
  1446. num_groups = num_heads // q_per_kv
  1447. block_count = self.hparams["num_hidden_layers"]
  1448. model_kv = dict(self.get_tensors())
  1449. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1450. qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
  1451. for name, data_torch in model_kv.items():
  1452. # we don't need these
  1453. if name.endswith(".rotary_emb.inv_freq"):
  1454. continue
  1455. if re.match(qkv_pattern, name):
  1456. bid = re.findall(qkv_pattern, name)[0]
  1457. qkv = data_torch
  1458. qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
  1459. q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
  1460. # The model weights of q and k equire additional reshape.
  1461. q = self._hf_permute_qk(rearrange(q, " o g n i -> o (g n i)").T, num_heads, num_heads)
  1462. k = self._hf_permute_qk(rearrange(k, " o g n i -> o (g n i)").T, num_heads, num_kv_heads)
  1463. v = rearrange(v, " o g n i -> o (g n i)").T
  1464. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
  1465. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
  1466. self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
  1467. else:
  1468. self.post_write_tensors(tensor_map, name, data_torch)
  1469. @Model.register("BertModel", "CamembertModel")
  1470. class BertModel(Model):
  1471. model_arch = gguf.MODEL_ARCH.BERT
  1472. def __init__(self, *args, **kwargs):
  1473. super().__init__(*args, **kwargs)
  1474. self.vocab_size = None
  1475. def set_gguf_parameters(self):
  1476. super().set_gguf_parameters()
  1477. self.gguf_writer.add_causal_attention(False)
  1478. # get pooling path
  1479. pooling_path = None
  1480. module_path = self.dir_model / "modules.json"
  1481. if module_path.is_file():
  1482. with open(module_path, encoding="utf-8") as f:
  1483. modules = json.load(f)
  1484. for mod in modules:
  1485. if mod["type"] == "sentence_transformers.models.Pooling":
  1486. pooling_path = mod["path"]
  1487. break
  1488. # get pooling type
  1489. if pooling_path is not None:
  1490. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1491. pooling = json.load(f)
  1492. if pooling["pooling_mode_mean_tokens"]:
  1493. pooling_type = gguf.PoolingType.MEAN
  1494. elif pooling["pooling_mode_cls_token"]:
  1495. pooling_type = gguf.PoolingType.CLS
  1496. else:
  1497. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1498. self.gguf_writer.add_pooling_type(pooling_type)
  1499. def set_vocab(self):
  1500. # use huggingface vocab to get all tokens
  1501. vocab = LlamaHfVocab(self.dir_model, ignore_nonllama=True)
  1502. tokens, scores, toktypes = zip(*vocab.all_tokens())
  1503. assert len(tokens) == vocab.vocab_size
  1504. self.vocab_size = vocab.vocab_size
  1505. # we need this to validate the size of the token_type embeddings
  1506. # though currently we are passing all zeros to the token_type embeddings
  1507. n_token_types = len(set(toktypes))
  1508. self.gguf_writer.add_token_type_count(n_token_types)
  1509. # convert to phantom space vocab
  1510. def phantom(tok, typ):
  1511. if tok.startswith(b"[") and tok.endswith(b"]"):
  1512. return tok
  1513. if tok.startswith(b"##"):
  1514. return tok[2:]
  1515. return b"\xe2\x96\x81" + tok
  1516. tokens = tuple(phantom(t, y) for t, y in zip(tokens, toktypes))
  1517. # set up bos and eos tokens (cls and sep)
  1518. self.gguf_writer.add_bos_token_id(vocab.tokenizer.cls_token_id)
  1519. self.gguf_writer.add_eos_token_id(vocab.tokenizer.sep_token_id)
  1520. # add vocab to gguf
  1521. self.gguf_writer.add_tokenizer_model("bert")
  1522. self.gguf_writer.add_token_list(tokens)
  1523. self.gguf_writer.add_token_scores(scores)
  1524. self.gguf_writer.add_token_types(toktypes)
  1525. # handle special tokens
  1526. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1527. special_vocab.add_to_gguf(self.gguf_writer)
  1528. def write_tensors(self):
  1529. tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  1530. tensors = dict(self.get_tensors())
  1531. for name, data_torch in tensors.items():
  1532. # we are only using BERT for embeddings so we don't need the pooling layer
  1533. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1534. continue # we don't need these
  1535. # map tensor names
  1536. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1537. if new_name is None:
  1538. print(f"Can not map tensor {name!r}")
  1539. sys.exit()
  1540. data = data_torch.squeeze().numpy()
  1541. n_dims = len(data.shape)
  1542. new_dtype: type[np.floating[Any]]
  1543. if (
  1544. self.ftype == 1 and name.endswith(".weight") and n_dims == 2
  1545. and name != "embeddings.token_type_embeddings.weight" # not used with get_rows, must be F32
  1546. ):
  1547. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1548. new_dtype = np.float16
  1549. else:
  1550. # if f32 desired, convert any float16 to float32
  1551. new_dtype = np.float32
  1552. print(f"{new_name}, n_dims = {n_dims}, {data_torch.dtype} --> {new_dtype}")
  1553. if data.dtype != new_dtype:
  1554. data = data.astype(new_dtype)
  1555. self.gguf_writer.add_tensor(new_name, data)
  1556. @Model.register("NomicBertModel")
  1557. class NomicBertModel(BertModel):
  1558. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1559. def __init__(self, *args, **kwargs):
  1560. super().__init__(*args, **kwargs)
  1561. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1562. self.hparams["n_ctx"] = 2048
  1563. # SwigLU activation
  1564. assert self.hparams["activation_function"] == "swiglu"
  1565. # this doesn't do anything in the HF version
  1566. assert self.hparams["causal"] is False
  1567. # no bias tensors
  1568. assert self.hparams["qkv_proj_bias"] is False
  1569. assert self.hparams["mlp_fc1_bias"] is False
  1570. assert self.hparams["mlp_fc2_bias"] is False
  1571. # norm at end of layer
  1572. assert self.hparams["prenorm"] is False
  1573. # standard RoPE
  1574. assert self.hparams["rotary_emb_fraction"] == 1.0
  1575. assert self.hparams["rotary_emb_interleaved"] is False
  1576. assert self.hparams["rotary_emb_scale_base"] is None
  1577. def set_gguf_parameters(self):
  1578. super().set_gguf_parameters()
  1579. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1580. def get_tensors(self):
  1581. assert self.vocab_size is not None
  1582. for name, data in super().get_tensors():
  1583. # Nomic Embed's token embeddings tensor is padded, but llama.cpp wants tensor sizes to match exactly.
  1584. if name == 'embeddings.word_embeddings.weight' and data.shape[1] != self.vocab_size:
  1585. rounded_vocab_size = (self.vocab_size + 63) // 64 * 64
  1586. assert data.shape == (rounded_vocab_size, self.hparams["n_embd"])
  1587. data = data[:self.vocab_size, :]
  1588. yield name, data
  1589. @Model.register("GemmaForCausalLM")
  1590. class GemmaModel(Model):
  1591. model_arch = gguf.MODEL_ARCH.GEMMA
  1592. def set_vocab(self):
  1593. self._set_vocab_sentencepiece()
  1594. def set_gguf_parameters(self):
  1595. hparams = self.hparams
  1596. block_count = hparams["num_hidden_layers"]
  1597. self.gguf_writer.add_name(self.dir_model.name)
  1598. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1599. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1600. self.gguf_writer.add_block_count(block_count)
  1601. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1602. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1603. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  1604. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1605. self.gguf_writer.add_key_length(hparams["head_dim"])
  1606. self.gguf_writer.add_value_length(hparams["head_dim"])
  1607. self.gguf_writer.add_file_type(self.ftype)
  1608. def write_tensors(self):
  1609. block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
  1610. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1611. for name, data_torch in self.get_tensors():
  1612. old_dtype = data_torch.dtype
  1613. # convert any unsupported data types to float32
  1614. if data_torch.dtype not in (torch.float16, torch.float32):
  1615. data_torch = data_torch.to(torch.float32)
  1616. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  1617. if name.endswith("norm.weight"):
  1618. data_torch = data_torch + 1
  1619. data = data_torch.squeeze().numpy()
  1620. # map tensor names
  1621. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1622. if new_name is None:
  1623. print(f"Can not map tensor {name!r}")
  1624. sys.exit()
  1625. n_dims = len(data.shape)
  1626. data_dtype = data.dtype
  1627. data = data.astype(np.float32)
  1628. # if f16 desired, convert any float32 2-dim weight tensors to float16
  1629. if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
  1630. data = data.astype(np.float16)
  1631. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1632. self.gguf_writer.add_tensor(new_name, data)
  1633. @Model.register("Starcoder2ForCausalLM")
  1634. class StarCoder2Model(Model):
  1635. model_arch = gguf.MODEL_ARCH.STARCODER2
  1636. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  1637. class MambaModel(Model):
  1638. model_arch = gguf.MODEL_ARCH.MAMBA
  1639. def set_vocab(self):
  1640. vocab_size = self.hparams["vocab_size"]
  1641. # Round vocab size to next multiple of 8
  1642. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  1643. # pad using ceiling division
  1644. # ref: https://stackoverflow.com/a/17511341/22827863
  1645. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  1646. self.hparams["vocab_size"] = vocab_size
  1647. if (self.dir_model / "tokenizer.json").is_file():
  1648. self._set_vocab_gpt2()
  1649. else:
  1650. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  1651. tokenizer_path = Path(sys.path[0]) / "models" / "ggml-vocab-gpt-neox.gguf"
  1652. print(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1653. neox_reader = gguf.GGUFReader(tokenizer_path, "r")
  1654. field = neox_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1655. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]))
  1656. field = neox_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1657. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1658. field = neox_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1659. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1660. field = neox_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1661. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1662. field = neox_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)
  1663. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1664. field = neox_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)
  1665. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1666. field = neox_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)
  1667. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1668. def set_gguf_parameters(self):
  1669. d_model = self.find_hparam(["hidden_size", "d_model"])
  1670. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  1671. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  1672. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  1673. # ceiling division
  1674. # ref: https://stackoverflow.com/a/17511341/22827863
  1675. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  1676. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  1677. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  1678. # Fail early for models which don't have a block expansion factor of 2
  1679. assert d_inner == 2 * d_model
  1680. self.gguf_writer.add_name(self.dir_model.name)
  1681. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  1682. self.gguf_writer.add_embedding_length(d_model)
  1683. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  1684. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  1685. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1686. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  1687. self.gguf_writer.add_ssm_inner_size(d_inner)
  1688. self.gguf_writer.add_ssm_state_size(d_state)
  1689. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  1690. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  1691. self.gguf_writer.add_file_type(self.ftype)
  1692. def write_tensors(self):
  1693. block_count = self.hparams["n_layer"]
  1694. tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
  1695. tok_embd = None
  1696. tok_embd_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.TOKEN_EMBD] + ".weight"
  1697. output_name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.OUTPUT] + ".weight"
  1698. for name, data_torch in self.get_tensors():
  1699. old_dtype = data_torch.dtype
  1700. # convert any unsupported data types to float32
  1701. if data_torch.dtype not in (torch.float16, torch.float32):
  1702. data_torch = data_torch.to(torch.float32)
  1703. # map tensor names
  1704. new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
  1705. if new_name is None:
  1706. print(f"Can not map tensor {name!r}")
  1707. sys.exit()
  1708. if name.endswith(".A_log"):
  1709. print("A_log --> A ==> " + new_name)
  1710. data_torch = -torch.exp(data_torch)
  1711. # assuming token_embd.weight is seen before output.weight
  1712. if tok_embd is not None and new_name == output_name:
  1713. if torch.equal(tok_embd, data_torch):
  1714. print(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  1715. continue
  1716. if new_name == tok_embd_name:
  1717. tok_embd = data_torch
  1718. data = data_torch.squeeze().numpy()
  1719. n_dims = len(data.shape)
  1720. data_dtype = data.dtype
  1721. # if f32 desired, convert any float16 to float32
  1722. if self.ftype == 0 and data_dtype == np.float16:
  1723. data = data.astype(np.float32)
  1724. # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
  1725. if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
  1726. data = data.astype(np.float32)
  1727. # if f16 desired, convert big float32 2-dim weight tensors to float16
  1728. if self.ftype == 1 and data_dtype == np.float32 and new_name.removesuffix(".weight").endswith((".ssm_in", ".ssm_out", "token_embd", "output")) and n_dims == 2:
  1729. data = data.astype(np.float16)
  1730. print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
  1731. self.gguf_writer.add_tensor(new_name, data)
  1732. @Model.register("CohereForCausalLM")
  1733. class CommandR2Model(Model):
  1734. model_arch = gguf.MODEL_ARCH.COMMAND_R
  1735. def __init__(self, *args, **kwargs):
  1736. super().__init__(*args, **kwargs)
  1737. # max_position_embeddings = 8192 in config.json but model was actually
  1738. # trained on 128k context length
  1739. self.hparams["max_position_embeddings"] = self.hparams["model_max_length"]
  1740. def set_gguf_parameters(self):
  1741. super().set_gguf_parameters()
  1742. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  1743. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  1744. ###### CONVERSION LOGIC ######
  1745. def parse_args() -> argparse.Namespace:
  1746. parser = argparse.ArgumentParser(
  1747. description="Convert a huggingface model to a GGML compatible file")
  1748. parser.add_argument(
  1749. "--vocab-only", action="store_true",
  1750. help="extract only the vocab",
  1751. )
  1752. parser.add_argument(
  1753. "--awq-path", type=Path, default=None,
  1754. help="Path to scale awq cache file")
  1755. parser.add_argument(
  1756. "--outfile", type=Path,
  1757. help="path to write to; default: based on input",
  1758. )
  1759. parser.add_argument(
  1760. "--outtype", type=str, choices=["f32", "f16"], default="f16",
  1761. help="output format - use f32 for float32, f16 for float16",
  1762. )
  1763. parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
  1764. parser.add_argument(
  1765. "model", type=Path,
  1766. help="directory containing model file",
  1767. )
  1768. return parser.parse_args()
  1769. def main() -> None:
  1770. args = parse_args()
  1771. dir_model = args.model
  1772. if args.awq_path:
  1773. sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
  1774. from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
  1775. tmp_model_path = args.model / "weighted_model"
  1776. dir_model = tmp_model_path
  1777. if tmp_model_path.is_dir():
  1778. print(f"{tmp_model_path} exists as a weighted model.")
  1779. else:
  1780. tmp_model_path.mkdir(parents=True, exist_ok=True)
  1781. print("Saving new weighted model ...")
  1782. add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
  1783. print(f"Saved weighted model at {tmp_model_path}.")
  1784. if not dir_model.is_dir():
  1785. print(f'Error: {args.model} is not a directory', file=sys.stderr)
  1786. sys.exit(1)
  1787. ftype_map = {
  1788. "f32": gguf.GGMLQuantizationType.F32,
  1789. "f16": gguf.GGMLQuantizationType.F16,
  1790. }
  1791. if args.outfile is not None:
  1792. fname_out = args.outfile
  1793. else:
  1794. # output in the same directory as the model by default
  1795. fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
  1796. print(f"Loading model: {dir_model.name}")
  1797. hparams = Model.load_hparams(dir_model)
  1798. with torch.inference_mode():
  1799. model_class = Model.from_model_architecture(hparams["architectures"][0])
  1800. model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
  1801. print("Set model parameters")
  1802. model_instance.set_gguf_parameters()
  1803. print("Set model tokenizer")
  1804. model_instance.set_vocab()
  1805. if args.vocab_only:
  1806. print(f"Exporting model vocab to '{fname_out}'")
  1807. model_instance.write_vocab()
  1808. else:
  1809. print(f"Exporting model to '{fname_out}'")
  1810. model_instance.write()
  1811. print(f"Model successfully exported to '{fname_out}'")
  1812. if __name__ == '__main__':
  1813. main()