ggml-backend.c 75 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095
  1. #include "ggml-backend-impl.h"
  2. #include "ggml-alloc.h"
  3. #include "ggml-impl.h"
  4. #include <assert.h>
  5. #include <limits.h>
  6. #include <stdarg.h>
  7. #include <stdio.h>
  8. #include <stdlib.h>
  9. #include <string.h>
  10. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  11. // backend buffer type
  12. const char * ggml_backend_buft_name(ggml_backend_buffer_type_t buft) {
  13. return buft->iface.get_name(buft);
  14. }
  15. GGML_CALL ggml_backend_buffer_t ggml_backend_buft_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  16. return buft->iface.alloc_buffer(buft, size);
  17. }
  18. size_t ggml_backend_buft_get_alignment(ggml_backend_buffer_type_t buft) {
  19. return buft->iface.get_alignment(buft);
  20. }
  21. size_t ggml_backend_buft_get_max_size(ggml_backend_buffer_type_t buft) {
  22. // get_max_size is optional, defaults to SIZE_MAX
  23. if (buft->iface.get_max_size) {
  24. return buft->iface.get_max_size(buft);
  25. }
  26. return SIZE_MAX;
  27. }
  28. GGML_CALL size_t ggml_backend_buft_get_alloc_size(ggml_backend_buffer_type_t buft, struct ggml_tensor * tensor) {
  29. // get_alloc_size is optional, defaults to ggml_nbytes
  30. if (buft->iface.get_alloc_size) {
  31. size_t size = buft->iface.get_alloc_size(buft, tensor);
  32. assert(size >= ggml_nbytes(tensor));
  33. return size;
  34. }
  35. return ggml_nbytes(tensor);
  36. }
  37. bool ggml_backend_buft_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  38. return buft->iface.supports_backend(buft, backend);
  39. }
  40. bool ggml_backend_buft_is_host(ggml_backend_buffer_type_t buft) {
  41. if (buft->iface.is_host) {
  42. return buft->iface.is_host(buft);
  43. }
  44. return false;
  45. }
  46. // backend buffer
  47. GGML_CALL ggml_backend_buffer_t ggml_backend_buffer_init(
  48. ggml_backend_buffer_type_t buft,
  49. struct ggml_backend_buffer_i iface,
  50. ggml_backend_buffer_context_t context,
  51. size_t size) {
  52. ggml_backend_buffer_t buffer = malloc(sizeof(struct ggml_backend_buffer));
  53. (*buffer) = (struct ggml_backend_buffer) {
  54. /* .interface = */ iface,
  55. /* .buft = */ buft,
  56. /* .context = */ context,
  57. /* .size = */ size,
  58. /* .usage = */ GGML_BACKEND_BUFFER_USAGE_ANY
  59. };
  60. return buffer;
  61. }
  62. const char * ggml_backend_buffer_name(ggml_backend_buffer_t buffer) {
  63. return buffer->iface.get_name(buffer);
  64. }
  65. void ggml_backend_buffer_free(ggml_backend_buffer_t buffer) {
  66. if (buffer == NULL) {
  67. return;
  68. }
  69. if (buffer->iface.free_buffer != NULL) {
  70. buffer->iface.free_buffer(buffer);
  71. }
  72. free(buffer);
  73. }
  74. size_t ggml_backend_buffer_get_size(ggml_backend_buffer_t buffer) {
  75. return buffer->size;
  76. }
  77. void * ggml_backend_buffer_get_base(ggml_backend_buffer_t buffer) {
  78. void * base = buffer->iface.get_base(buffer);
  79. GGML_ASSERT(base != NULL && "backend buffer base cannot be NULL");
  80. return base;
  81. }
  82. GGML_CALL void ggml_backend_buffer_init_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  83. // init_tensor is optional
  84. if (buffer->iface.init_tensor) {
  85. buffer->iface.init_tensor(buffer, tensor);
  86. }
  87. }
  88. size_t ggml_backend_buffer_get_alignment (ggml_backend_buffer_t buffer) {
  89. return ggml_backend_buft_get_alignment(ggml_backend_buffer_get_type(buffer));
  90. }
  91. size_t ggml_backend_buffer_get_max_size(ggml_backend_buffer_t buffer) {
  92. return ggml_backend_buft_get_max_size(ggml_backend_buffer_get_type(buffer));
  93. }
  94. size_t ggml_backend_buffer_get_alloc_size(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  95. return ggml_backend_buft_get_alloc_size(ggml_backend_buffer_get_type(buffer), tensor);
  96. }
  97. void ggml_backend_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  98. buffer->iface.clear(buffer, value);
  99. }
  100. bool ggml_backend_buffer_is_host(ggml_backend_buffer_t buffer) {
  101. return ggml_backend_buft_is_host(ggml_backend_buffer_get_type(buffer));
  102. }
  103. void ggml_backend_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  104. buffer->usage = usage;
  105. // FIXME: add a generic callback to the buffer interface
  106. if (ggml_backend_buffer_is_multi_buffer(buffer)) {
  107. ggml_backend_multi_buffer_set_usage(buffer, usage);
  108. }
  109. }
  110. ggml_backend_buffer_type_t ggml_backend_buffer_get_type(ggml_backend_buffer_t buffer) {
  111. return buffer->buft;
  112. }
  113. void ggml_backend_buffer_reset(ggml_backend_buffer_t buffer) {
  114. if (buffer->iface.reset) {
  115. buffer->iface.reset(buffer);
  116. }
  117. }
  118. bool ggml_backend_buffer_copy_tensor(const struct ggml_tensor * src, struct ggml_tensor * dst) {
  119. ggml_backend_buffer_t dst_buf = dst->view_src ? dst->view_src->buffer : dst->buffer;
  120. if (dst_buf->iface.cpy_tensor) {
  121. return src->buffer->iface.cpy_tensor(dst_buf, src, dst);
  122. }
  123. return false;
  124. }
  125. // backend
  126. ggml_guid_t ggml_backend_guid(ggml_backend_t backend) {
  127. if (backend == NULL) {
  128. return NULL;
  129. }
  130. return backend->guid;
  131. }
  132. const char * ggml_backend_name(ggml_backend_t backend) {
  133. if (backend == NULL) {
  134. return "NULL";
  135. }
  136. return backend->iface.get_name(backend);
  137. }
  138. void ggml_backend_free(ggml_backend_t backend) {
  139. if (backend == NULL) {
  140. return;
  141. }
  142. backend->iface.free(backend);
  143. }
  144. ggml_backend_buffer_type_t ggml_backend_get_default_buffer_type(ggml_backend_t backend) {
  145. return backend->iface.get_default_buffer_type(backend);
  146. }
  147. ggml_backend_buffer_t ggml_backend_alloc_buffer(ggml_backend_t backend, size_t size) {
  148. return ggml_backend_buft_alloc_buffer(ggml_backend_get_default_buffer_type(backend), size);
  149. }
  150. size_t ggml_backend_get_alignment(ggml_backend_t backend) {
  151. return ggml_backend_buft_get_alignment(ggml_backend_get_default_buffer_type(backend));
  152. }
  153. size_t ggml_backend_get_max_size(ggml_backend_t backend) {
  154. return ggml_backend_buft_get_max_size(ggml_backend_get_default_buffer_type(backend));
  155. }
  156. void ggml_backend_tensor_set_async(ggml_backend_t backend, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  157. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  158. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  159. if (backend->iface.set_tensor_async == NULL) {
  160. ggml_backend_tensor_set(tensor, data, offset, size);
  161. } else {
  162. backend->iface.set_tensor_async(backend, tensor, data, offset, size);
  163. }
  164. }
  165. void ggml_backend_tensor_get_async(ggml_backend_t backend, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  166. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  167. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  168. if (backend->iface.get_tensor_async == NULL) {
  169. ggml_backend_tensor_get(tensor, data, offset, size);
  170. } else {
  171. backend->iface.get_tensor_async(backend, tensor, data, offset, size);
  172. }
  173. }
  174. GGML_CALL void ggml_backend_tensor_set(struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  175. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  176. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  177. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  178. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor write out of bounds");
  179. if (!size) {
  180. return;
  181. }
  182. buf->iface.set_tensor(buf, tensor, data, offset, size);
  183. }
  184. GGML_CALL void ggml_backend_tensor_get(const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  185. ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
  186. GGML_ASSERT(buf != NULL && "tensor buffer not set");
  187. GGML_ASSERT(tensor->data != NULL && "tensor not allocated");
  188. GGML_ASSERT(offset + size <= ggml_nbytes(tensor) && "tensor read out of bounds");
  189. if (!size) {
  190. return;
  191. }
  192. buf->iface.get_tensor(buf, tensor, data, offset, size);
  193. }
  194. void ggml_backend_synchronize(ggml_backend_t backend) {
  195. if (backend->iface.synchronize == NULL) {
  196. return;
  197. }
  198. backend->iface.synchronize(backend);
  199. }
  200. ggml_backend_graph_plan_t ggml_backend_graph_plan_create(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  201. GGML_ASSERT(backend->iface.graph_plan_create != NULL);
  202. return backend->iface.graph_plan_create(backend, cgraph);
  203. }
  204. void ggml_backend_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  205. GGML_ASSERT(backend->iface.graph_plan_free != NULL);
  206. backend->iface.graph_plan_free(backend, plan);
  207. }
  208. enum ggml_status ggml_backend_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  209. GGML_ASSERT(backend->iface.graph_plan_compute != NULL);
  210. return backend->iface.graph_plan_compute(backend, plan);
  211. }
  212. enum ggml_status ggml_backend_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  213. enum ggml_status err = ggml_backend_graph_compute_async(backend, cgraph);
  214. ggml_backend_synchronize(backend);
  215. return err;
  216. }
  217. enum ggml_status ggml_backend_graph_compute_async(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  218. return backend->iface.graph_compute(backend, cgraph);
  219. }
  220. bool ggml_backend_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  221. return backend->iface.supports_op(backend, op);
  222. }
  223. bool ggml_backend_offload_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  224. if (backend->iface.offload_op != NULL) {
  225. return backend->iface.offload_op(backend, op);
  226. }
  227. return false;
  228. }
  229. // backend copy
  230. static bool ggml_are_same_layout(const struct ggml_tensor * a, const struct ggml_tensor * b) {
  231. if (a->type != b->type) {
  232. return false;
  233. }
  234. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  235. if (a->ne[i] != b->ne[i]) {
  236. return false;
  237. }
  238. if (a->nb[i] != b->nb[i]) {
  239. return false;
  240. }
  241. }
  242. return true;
  243. }
  244. void ggml_backend_tensor_copy(struct ggml_tensor * src, struct ggml_tensor * dst) {
  245. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  246. if (src == dst) {
  247. return;
  248. }
  249. if (ggml_backend_buffer_is_host(src->buffer)) {
  250. ggml_backend_tensor_set(dst, src->data, 0, ggml_nbytes(src));
  251. } else if (ggml_backend_buffer_is_host(dst->buffer)) {
  252. ggml_backend_tensor_get(src, dst->data, 0, ggml_nbytes(src));
  253. } else if (!ggml_backend_buffer_copy_tensor(src, dst)) {
  254. #ifndef NDEBUG
  255. fprintf(stderr, "%s: warning: slow copy from %s to %s\n", __func__, ggml_backend_buffer_name(src->buffer), ggml_backend_buffer_name(dst->buffer));
  256. #endif
  257. size_t nbytes = ggml_nbytes(src);
  258. void * data = malloc(nbytes);
  259. ggml_backend_tensor_get(src, data, 0, nbytes);
  260. ggml_backend_tensor_set(dst, data, 0, nbytes);
  261. free(data);
  262. }
  263. }
  264. void ggml_backend_tensor_copy_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, struct ggml_tensor * src, struct ggml_tensor * dst) {
  265. GGML_ASSERT(ggml_are_same_layout(src, dst) && "cannot copy tensors with different layouts");
  266. if (src == dst) {
  267. return;
  268. }
  269. if (backend_dst->iface.cpy_tensor_async != NULL) {
  270. if (backend_dst->iface.cpy_tensor_async(backend_src, backend_dst, src, dst)) {
  271. return;
  272. }
  273. }
  274. // an async copy would normally happen after all the queued operations on both backends are completed
  275. // sync src, set_async dst
  276. if (ggml_backend_buffer_is_host(src->buffer)) {
  277. ggml_backend_synchronize(backend_src);
  278. ggml_backend_tensor_set_async(backend_dst, dst, src->data, 0, ggml_nbytes(src));
  279. } else {
  280. ggml_backend_synchronize(backend_src);
  281. ggml_backend_tensor_copy(src, dst);
  282. ggml_backend_synchronize(backend_dst);
  283. }
  284. }
  285. // events
  286. ggml_backend_event_t ggml_backend_event_new(ggml_backend_t backend) {
  287. if (backend->iface.event_new == NULL) {
  288. return NULL;
  289. }
  290. return backend->iface.event_new(backend);
  291. }
  292. void ggml_backend_event_free(ggml_backend_event_t event) {
  293. if (event == NULL) {
  294. return;
  295. }
  296. event->backend->iface.event_free(event);
  297. }
  298. void ggml_backend_event_record(ggml_backend_event_t event) {
  299. GGML_ASSERT(event->backend->iface.event_record != NULL);
  300. event->backend->iface.event_record(event);
  301. }
  302. void ggml_backend_event_synchronize(ggml_backend_event_t event) {
  303. GGML_ASSERT(event->backend->iface.event_synchronize != NULL);
  304. event->backend->iface.event_synchronize(event);
  305. }
  306. void ggml_backend_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
  307. GGML_ASSERT(backend->iface.event_wait != NULL);
  308. backend->iface.event_wait(backend, event);
  309. }
  310. // backend registry
  311. #define GGML_REG_MAX_BACKENDS 16
  312. struct ggml_backend_reg {
  313. char name[128];
  314. ggml_backend_init_fn init_fn;
  315. ggml_backend_buffer_type_t default_buffer_type;
  316. void * user_data;
  317. };
  318. static struct ggml_backend_reg ggml_backend_registry[GGML_REG_MAX_BACKENDS];
  319. static size_t ggml_backend_registry_count = 0;
  320. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data);
  321. GGML_CALL static void ggml_backend_registry_init(void) {
  322. static bool initialized = false;
  323. if (initialized) {
  324. return;
  325. }
  326. initialized = true;
  327. ggml_backend_register("CPU", ggml_backend_reg_cpu_init, ggml_backend_cpu_buffer_type(), NULL);
  328. // add forward decls here to avoid including the backend headers
  329. #ifdef GGML_USE_CUDA
  330. extern GGML_CALL void ggml_backend_cuda_reg_devices(void);
  331. ggml_backend_cuda_reg_devices();
  332. #endif
  333. #ifdef GGML_USE_SYCL
  334. extern void ggml_backend_sycl_reg_devices(void);
  335. ggml_backend_sycl_reg_devices();
  336. #endif
  337. #ifdef GGML_USE_METAL
  338. extern GGML_CALL ggml_backend_t ggml_backend_reg_metal_init(const char * params, void * user_data);
  339. extern GGML_CALL ggml_backend_buffer_type_t ggml_backend_metal_buffer_type(void);
  340. ggml_backend_register("Metal", ggml_backend_reg_metal_init, ggml_backend_metal_buffer_type(), NULL);
  341. #endif
  342. #ifdef GGML_USE_VULKAN
  343. extern GGML_CALL int ggml_backend_vk_reg_devices(void);
  344. ggml_backend_vk_reg_devices();
  345. #endif
  346. #ifdef GGML_USE_KOMPUTE
  347. extern GGML_CALL void ggml_backend_kompute_reg_devices(void);
  348. ggml_backend_kompute_reg_devices();
  349. #endif
  350. }
  351. GGML_CALL void ggml_backend_register(const char * name, ggml_backend_init_fn init_fn, ggml_backend_buffer_type_t default_buffer_type, void * user_data) {
  352. GGML_ASSERT(ggml_backend_registry_count < GGML_REG_MAX_BACKENDS);
  353. size_t id = ggml_backend_registry_count;
  354. ggml_backend_registry[id] = (struct ggml_backend_reg) {
  355. /* .name = */ {0},
  356. /* .fn = */ init_fn,
  357. /* .default_buffer_type = */ default_buffer_type,
  358. /* .user_data = */ user_data,
  359. };
  360. snprintf(ggml_backend_registry[id].name, sizeof(ggml_backend_registry[id].name), "%s", name);
  361. #ifndef NDEBUG
  362. fprintf(stderr, "%s: registered backend %s\n", __func__, name);
  363. #endif
  364. ggml_backend_registry_count++;
  365. }
  366. size_t ggml_backend_reg_get_count(void) {
  367. ggml_backend_registry_init();
  368. return ggml_backend_registry_count;
  369. }
  370. size_t ggml_backend_reg_find_by_name(const char * name) {
  371. ggml_backend_registry_init();
  372. for (size_t i = 0; i < ggml_backend_registry_count; i++) {
  373. // TODO: case insensitive in a portable way
  374. if (strcmp(ggml_backend_registry[i].name, name) == 0) {
  375. return i;
  376. }
  377. }
  378. // not found
  379. return SIZE_MAX;
  380. }
  381. // init from backend:params string
  382. ggml_backend_t ggml_backend_reg_init_backend_from_str(const char * backend_str) {
  383. ggml_backend_registry_init();
  384. const char * params = strchr(backend_str, ':');
  385. char backend_name[128];
  386. if (params == NULL) {
  387. snprintf(backend_name, sizeof(backend_name), "%s", backend_str);
  388. params = "";
  389. } else {
  390. snprintf(backend_name, sizeof(backend_name), "%.*s", (int)(params - backend_str), backend_str);
  391. params++;
  392. }
  393. size_t backend_i = ggml_backend_reg_find_by_name(backend_name);
  394. if (backend_i == SIZE_MAX) {
  395. fprintf(stderr, "%s: backend %s not found\n", __func__, backend_name);
  396. return NULL;
  397. }
  398. return ggml_backend_reg_init_backend(backend_i, params);
  399. }
  400. const char * ggml_backend_reg_get_name(size_t i) {
  401. ggml_backend_registry_init();
  402. GGML_ASSERT(i < ggml_backend_registry_count);
  403. return ggml_backend_registry[i].name;
  404. }
  405. ggml_backend_t ggml_backend_reg_init_backend(size_t i, const char * params) {
  406. ggml_backend_registry_init();
  407. GGML_ASSERT(i < ggml_backend_registry_count);
  408. return ggml_backend_registry[i].init_fn(params, ggml_backend_registry[i].user_data);
  409. }
  410. ggml_backend_buffer_type_t ggml_backend_reg_get_default_buffer_type(size_t i) {
  411. ggml_backend_registry_init();
  412. GGML_ASSERT(i < ggml_backend_registry_count);
  413. return ggml_backend_registry[i].default_buffer_type;
  414. }
  415. ggml_backend_buffer_t ggml_backend_reg_alloc_buffer(size_t i, size_t size) {
  416. ggml_backend_registry_init();
  417. GGML_ASSERT(i < ggml_backend_registry_count);
  418. return ggml_backend_buft_alloc_buffer(ggml_backend_registry[i].default_buffer_type, size);
  419. }
  420. // backend CPU
  421. static const size_t TENSOR_ALIGNMENT = 32; // required for mmap as gguf only guarantees 32-byte alignment
  422. GGML_CALL static const char * ggml_backend_cpu_buffer_name(ggml_backend_buffer_t buffer) {
  423. return "CPU";
  424. GGML_UNUSED(buffer);
  425. }
  426. GGML_CALL static void * ggml_backend_cpu_buffer_get_base(ggml_backend_buffer_t buffer) {
  427. uintptr_t data = (uintptr_t)buffer->context;
  428. // align the buffer
  429. if (data % TENSOR_ALIGNMENT != 0) {
  430. data = GGML_PAD(data, TENSOR_ALIGNMENT);
  431. }
  432. return (void *)data;
  433. }
  434. GGML_CALL static void ggml_backend_cpu_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  435. free(buffer->context);
  436. }
  437. GGML_CALL static void ggml_backend_cpu_buffer_set_tensor(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  438. memcpy((char *)tensor->data + offset, data, size);
  439. GGML_UNUSED(buffer);
  440. }
  441. GGML_CALL static void ggml_backend_cpu_buffer_get_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  442. memcpy(data, (const char *)tensor->data + offset, size);
  443. GGML_UNUSED(buffer);
  444. }
  445. GGML_CALL static bool ggml_backend_cpu_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const struct ggml_tensor * src, struct ggml_tensor * dst) {
  446. if (ggml_backend_buffer_is_host(src->buffer)) {
  447. memcpy(dst->data, src->data, ggml_nbytes(src));
  448. return true;
  449. }
  450. return false;
  451. GGML_UNUSED(buffer);
  452. }
  453. GGML_CALL static void ggml_backend_cpu_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  454. memset(buffer->context, value, buffer->size);
  455. }
  456. static struct ggml_backend_buffer_i cpu_backend_buffer_i = {
  457. /* .get_name = */ ggml_backend_cpu_buffer_name,
  458. /* .free_buffer = */ ggml_backend_cpu_buffer_free_buffer,
  459. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  460. /* .init_tensor = */ NULL, // no initialization required
  461. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  462. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  463. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  464. /* .clear = */ ggml_backend_cpu_buffer_clear,
  465. /* .reset = */ NULL,
  466. };
  467. // for buffers from ptr, free is not called
  468. static struct ggml_backend_buffer_i cpu_backend_buffer_i_from_ptr = {
  469. /* .get_name = */ ggml_backend_cpu_buffer_name,
  470. /* .free_buffer = */ NULL, // ptr is not owned by the buffer, so it does not need to be freed
  471. /* .get_base = */ ggml_backend_cpu_buffer_get_base,
  472. /* .init_tensor = */ NULL, // no initialization required
  473. /* .set_tensor = */ ggml_backend_cpu_buffer_set_tensor,
  474. /* .get_tensor = */ ggml_backend_cpu_buffer_get_tensor,
  475. /* .cpy_tensor = */ ggml_backend_cpu_buffer_cpy_tensor,
  476. /* .clear = */ ggml_backend_cpu_buffer_clear,
  477. /* .reset = */ NULL,
  478. };
  479. GGML_CALL static const char * ggml_backend_cpu_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  480. return "CPU";
  481. GGML_UNUSED(buft);
  482. }
  483. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  484. size += TENSOR_ALIGNMENT; // malloc may return an address that is not aligned
  485. void * data = malloc(size); // TODO: use GGML_ALIGNED_MALLOC (move to ggml-impl.h)
  486. if (data == NULL) {
  487. fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
  488. return NULL;
  489. }
  490. return ggml_backend_buffer_init(buft, cpu_backend_buffer_i, data, size);
  491. }
  492. GGML_CALL static size_t ggml_backend_cpu_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
  493. return TENSOR_ALIGNMENT;
  494. GGML_UNUSED(buft);
  495. }
  496. GGML_CALL static bool ggml_backend_cpu_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  497. return ggml_backend_is_cpu(backend);
  498. GGML_UNUSED(buft);
  499. }
  500. GGML_CALL static bool ggml_backend_cpu_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
  501. return true;
  502. GGML_UNUSED(buft);
  503. }
  504. GGML_CALL ggml_backend_buffer_type_t ggml_backend_cpu_buffer_type(void) {
  505. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type = {
  506. /* .iface = */ {
  507. /* .get_name = */ ggml_backend_cpu_buffer_type_get_name,
  508. /* .alloc_buffer = */ ggml_backend_cpu_buffer_type_alloc_buffer,
  509. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  510. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  511. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  512. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  513. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  514. },
  515. /* .context = */ NULL,
  516. };
  517. return &ggml_backend_cpu_buffer_type;
  518. }
  519. #ifdef GGML_USE_CPU_HBM
  520. // buffer type HBM
  521. #include <hbwmalloc.h>
  522. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_type_get_name(ggml_backend_buffer_type_t buft) {
  523. return "CPU_HBM";
  524. GGML_UNUSED(buft);
  525. }
  526. GGML_CALL static const char * ggml_backend_cpu_hbm_buffer_get_name(ggml_backend_buffer_t buf) {
  527. return "CPU_HBM";
  528. GGML_UNUSED(buf);
  529. }
  530. GGML_CALL static void ggml_backend_cpu_hbm_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  531. hbw_free(buffer->context);
  532. }
  533. GGML_CALL static ggml_backend_buffer_t ggml_backend_cpu_hbm_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
  534. //void * ptr = hbw_malloc(size);
  535. void * ptr;
  536. int result = hbw_posix_memalign(&ptr, ggml_backend_cpu_buffer_type_get_alignment(buft), size);
  537. if (result != 0) {
  538. fprintf(stderr, "failed to allocate HBM buffer of size %zu\n", size);
  539. return NULL;
  540. }
  541. ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
  542. buffer->buft = buft;
  543. buffer->iface.get_name = ggml_backend_cpu_hbm_buffer_get_name;
  544. buffer->iface.free_buffer = ggml_backend_cpu_hbm_buffer_free_buffer;
  545. return buffer;
  546. }
  547. ggml_backend_buffer_type_t ggml_backend_cpu_hbm_buffer_type(void) {
  548. static struct ggml_backend_buffer_type ggml_backend_cpu_buffer_type_hbm = {
  549. /* .iface = */ {
  550. /* .get_name = */ ggml_backend_cpu_hbm_buffer_type_get_name,
  551. /* .alloc_buffer = */ ggml_backend_cpu_hbm_buffer_type_alloc_buffer,
  552. /* .get_alignment = */ ggml_backend_cpu_buffer_type_get_alignment,
  553. /* .get_max_size = */ NULL, // defaults to SIZE_MAX
  554. /* .get_alloc_size = */ NULL, // defaults to ggml_nbytes
  555. /* .supports_backend = */ ggml_backend_cpu_buffer_type_supports_backend,
  556. /* .is_host = */ ggml_backend_cpu_buffer_type_is_host,
  557. },
  558. /* .context = */ NULL,
  559. };
  560. return &ggml_backend_cpu_buffer_type_hbm;
  561. }
  562. #endif
  563. struct ggml_backend_cpu_context {
  564. int n_threads;
  565. void * work_data;
  566. size_t work_size;
  567. ggml_abort_callback abort_callback;
  568. void * abort_callback_data;
  569. };
  570. GGML_CALL static const char * ggml_backend_cpu_name(ggml_backend_t backend) {
  571. return "CPU";
  572. GGML_UNUSED(backend);
  573. }
  574. GGML_CALL static void ggml_backend_cpu_free(ggml_backend_t backend) {
  575. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  576. free(cpu_ctx->work_data);
  577. free(cpu_ctx);
  578. free(backend);
  579. }
  580. GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cpu_get_default_buffer_type(ggml_backend_t backend) {
  581. return ggml_backend_cpu_buffer_type();
  582. GGML_UNUSED(backend);
  583. }
  584. struct ggml_backend_plan_cpu {
  585. struct ggml_cplan cplan;
  586. struct ggml_cgraph cgraph;
  587. };
  588. GGML_CALL static ggml_backend_graph_plan_t ggml_backend_cpu_graph_plan_create(ggml_backend_t backend, const struct ggml_cgraph * cgraph) {
  589. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  590. struct ggml_backend_plan_cpu * cpu_plan = malloc(sizeof(struct ggml_backend_plan_cpu));
  591. cpu_plan->cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  592. cpu_plan->cgraph = *cgraph; // FIXME: deep copy
  593. if (cpu_plan->cplan.work_size > 0) {
  594. cpu_plan->cplan.work_data = malloc(cpu_plan->cplan.work_size);
  595. if (cpu_plan->cplan.work_data == NULL) {
  596. free(cpu_plan);
  597. return NULL;
  598. }
  599. }
  600. cpu_plan->cplan.abort_callback = cpu_ctx->abort_callback;
  601. cpu_plan->cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  602. return cpu_plan;
  603. }
  604. GGML_CALL static void ggml_backend_cpu_graph_plan_free(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  605. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  606. free(cpu_plan->cplan.work_data);
  607. free(cpu_plan);
  608. GGML_UNUSED(backend);
  609. }
  610. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_plan_compute(ggml_backend_t backend, ggml_backend_graph_plan_t plan) {
  611. struct ggml_backend_plan_cpu * cpu_plan = (struct ggml_backend_plan_cpu *)plan;
  612. return ggml_graph_compute(&cpu_plan->cgraph, &cpu_plan->cplan);
  613. GGML_UNUSED(backend);
  614. }
  615. GGML_CALL static enum ggml_status ggml_backend_cpu_graph_compute(ggml_backend_t backend, struct ggml_cgraph * cgraph) {
  616. struct ggml_backend_cpu_context * cpu_ctx = (struct ggml_backend_cpu_context *)backend->context;
  617. struct ggml_cplan cplan = ggml_graph_plan(cgraph, cpu_ctx->n_threads);
  618. if (cpu_ctx->work_size < cplan.work_size) {
  619. free(cpu_ctx->work_data);
  620. cpu_ctx->work_data = malloc(cplan.work_size);
  621. if (cpu_ctx->work_data == NULL) {
  622. cpu_ctx->work_size = 0;
  623. return GGML_STATUS_ALLOC_FAILED;
  624. }
  625. cpu_ctx->work_size = cplan.work_size;
  626. }
  627. cplan.work_data = cpu_ctx->work_data;
  628. cplan.abort_callback = cpu_ctx->abort_callback;
  629. cplan.abort_callback_data = cpu_ctx->abort_callback_data;
  630. return ggml_graph_compute(cgraph, &cplan);
  631. }
  632. GGML_CALL static bool ggml_backend_cpu_supports_op(ggml_backend_t backend, const struct ggml_tensor * op) {
  633. switch (op->op) {
  634. case GGML_OP_CPY:
  635. return op->type != GGML_TYPE_IQ2_XXS && op->type != GGML_TYPE_IQ2_XS && op->type != GGML_TYPE_IQ1_S; // missing type_traits.from_float
  636. case GGML_OP_MUL_MAT:
  637. return op->src[1]->type == GGML_TYPE_F32 || op->src[1]->type == ggml_internal_get_type_traits(op->src[0]->type).vec_dot_type;
  638. default:
  639. return true;
  640. }
  641. GGML_UNUSED(backend);
  642. }
  643. static struct ggml_backend_i cpu_backend_i = {
  644. /* .get_name = */ ggml_backend_cpu_name,
  645. /* .free = */ ggml_backend_cpu_free,
  646. /* .get_default_buffer_type = */ ggml_backend_cpu_get_default_buffer_type,
  647. /* .set_tensor_async = */ NULL,
  648. /* .get_tensor_async = */ NULL,
  649. /* .cpy_tensor_async = */ NULL,
  650. /* .synchronize = */ NULL,
  651. /* .graph_plan_create = */ ggml_backend_cpu_graph_plan_create,
  652. /* .graph_plan_free = */ ggml_backend_cpu_graph_plan_free,
  653. /* .graph_plan_compute = */ ggml_backend_cpu_graph_plan_compute,
  654. /* .graph_compute = */ ggml_backend_cpu_graph_compute,
  655. /* .supports_op = */ ggml_backend_cpu_supports_op,
  656. /* .offload_op = */ NULL,
  657. /* .event_new = */ NULL,
  658. /* .event_free = */ NULL,
  659. /* .event_record = */ NULL,
  660. /* .event_wait = */ NULL,
  661. /* .event_synchronize = */ NULL,
  662. };
  663. static ggml_guid_t ggml_backend_cpu_guid(void) {
  664. static ggml_guid guid = { 0xaa, 0x67, 0xc7, 0x43, 0x96, 0xe6, 0xa3, 0x8a, 0xe3, 0xaf, 0xea, 0x92, 0x36, 0xbc, 0xfc, 0x89 };
  665. return &guid;
  666. }
  667. ggml_backend_t ggml_backend_cpu_init(void) {
  668. struct ggml_backend_cpu_context * ctx = malloc(sizeof(struct ggml_backend_cpu_context));
  669. if (ctx == NULL) {
  670. return NULL;
  671. }
  672. ctx->n_threads = GGML_DEFAULT_N_THREADS;
  673. ctx->work_data = NULL;
  674. ctx->work_size = 0;
  675. ctx->abort_callback = NULL;
  676. ctx->abort_callback_data = NULL;
  677. ggml_backend_t cpu_backend = malloc(sizeof(struct ggml_backend));
  678. if (cpu_backend == NULL) {
  679. free(ctx);
  680. return NULL;
  681. }
  682. *cpu_backend = (struct ggml_backend) {
  683. /* .guid = */ ggml_backend_cpu_guid(),
  684. /* .interface = */ cpu_backend_i,
  685. /* .context = */ ctx
  686. };
  687. return cpu_backend;
  688. }
  689. GGML_CALL bool ggml_backend_is_cpu(ggml_backend_t backend) {
  690. return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cpu_guid());
  691. }
  692. void ggml_backend_cpu_set_n_threads(ggml_backend_t backend_cpu, int n_threads) {
  693. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  694. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  695. ctx->n_threads = n_threads;
  696. }
  697. void ggml_backend_cpu_set_abort_callback(ggml_backend_t backend_cpu, ggml_abort_callback abort_callback, void * abort_callback_data) {
  698. GGML_ASSERT(ggml_backend_is_cpu(backend_cpu));
  699. struct ggml_backend_cpu_context * ctx = (struct ggml_backend_cpu_context *)backend_cpu->context;
  700. ctx->abort_callback = abort_callback;
  701. ctx->abort_callback_data = abort_callback_data;
  702. }
  703. GGML_CALL ggml_backend_buffer_t ggml_backend_cpu_buffer_from_ptr(void * ptr, size_t size) {
  704. GGML_ASSERT((uintptr_t)ptr % TENSOR_ALIGNMENT == 0 && "buffer pointer must be aligned");
  705. return ggml_backend_buffer_init(ggml_backend_cpu_buffer_type(), cpu_backend_buffer_i_from_ptr, ptr, size);
  706. }
  707. GGML_CALL static ggml_backend_t ggml_backend_reg_cpu_init(const char * params, void * user_data) {
  708. return ggml_backend_cpu_init();
  709. GGML_UNUSED(params);
  710. GGML_UNUSED(user_data);
  711. }
  712. // multi-buffer buffer
  713. struct ggml_backend_multi_buffer_context {
  714. ggml_backend_buffer_t * buffers;
  715. size_t n_buffers;
  716. };
  717. typedef struct ggml_backend_multi_buffer_context * ggml_backend_multi_buffer_context_t;
  718. GGML_CALL static const char * ggml_backend_multi_buffer_get_name(ggml_backend_buffer_t buffer) {
  719. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  720. return ctx->buffers[0]->iface.get_name(ctx->buffers[0]);
  721. }
  722. GGML_CALL static void ggml_backend_multi_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  723. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  724. for (size_t i = 0; i < ctx->n_buffers; i++) {
  725. ggml_backend_buffer_free(ctx->buffers[i]);
  726. }
  727. free(ctx->buffers);
  728. free(ctx);
  729. }
  730. GGML_CALL static void ggml_backend_multi_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  731. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  732. for (size_t i = 0; i < ctx->n_buffers; i++) {
  733. ggml_backend_buffer_clear(ctx->buffers[i], value);
  734. }
  735. }
  736. static struct ggml_backend_buffer_i ggml_backend_multi_buffer_context_interface(void) {
  737. static struct ggml_backend_buffer_i multi_backend_buffer_i = {
  738. /* .get_name = */ ggml_backend_multi_buffer_get_name,
  739. /* .free_buffer = */ ggml_backend_multi_buffer_free_buffer,
  740. /* .get_base = */ NULL,
  741. /* .init_tensor = */ NULL,
  742. /* .set_tensor = */ NULL,
  743. /* .get_tensor = */ NULL,
  744. /* .cpy_tensor = */ NULL,
  745. /* .clear = */ ggml_backend_multi_buffer_clear,
  746. /* .reset = */ NULL,
  747. };
  748. return multi_backend_buffer_i;
  749. }
  750. GGML_CALL ggml_backend_buffer_t ggml_backend_multi_buffer_alloc_buffer(ggml_backend_buffer_t * buffers, size_t n_buffers) {
  751. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) malloc(sizeof(struct ggml_backend_multi_buffer_context));
  752. ctx->n_buffers = n_buffers;
  753. ctx->buffers = (ggml_backend_buffer_t *) malloc(n_buffers * sizeof(ggml_backend_buffer_t));
  754. GGML_ASSERT(ctx->buffers != NULL);
  755. size_t total_size = 0;
  756. for (size_t i = 0; i < n_buffers; i++) {
  757. ctx->buffers[i] = buffers[i];
  758. total_size += ggml_backend_buffer_get_size(buffers[i]);
  759. }
  760. return ggml_backend_buffer_init(buffers[0]->buft, ggml_backend_multi_buffer_context_interface(), ctx, total_size);
  761. }
  762. GGML_CALL bool ggml_backend_buffer_is_multi_buffer(ggml_backend_buffer_t buffer) {
  763. return buffer->iface.get_name == ggml_backend_multi_buffer_get_name;
  764. }
  765. GGML_CALL void ggml_backend_multi_buffer_set_usage(ggml_backend_buffer_t buffer, enum ggml_backend_buffer_usage usage) {
  766. GGML_ASSERT(ggml_backend_buffer_is_multi_buffer(buffer));
  767. ggml_backend_multi_buffer_context_t ctx = (ggml_backend_multi_buffer_context_t) buffer->context;
  768. for (size_t i = 0; i < ctx->n_buffers; i++) {
  769. ggml_backend_buffer_set_usage(ctx->buffers[i], usage);
  770. }
  771. }
  772. // creates a copy of the tensor with the same memory layout
  773. static struct ggml_tensor * ggml_dup_tensor_layout(struct ggml_context * ctx, const struct ggml_tensor * tensor) {
  774. struct ggml_tensor * dup = ggml_dup_tensor(ctx, tensor);
  775. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  776. dup->nb[i] = tensor->nb[i];
  777. }
  778. return dup;
  779. }
  780. static bool ggml_is_view_op(enum ggml_op op) {
  781. return op == GGML_OP_VIEW || op == GGML_OP_RESHAPE || op == GGML_OP_PERMUTE || op == GGML_OP_TRANSPOSE;
  782. }
  783. // scheduler
  784. #ifndef GGML_SCHED_MAX_BACKENDS
  785. #define GGML_SCHED_MAX_BACKENDS 16
  786. #endif
  787. #ifndef GGML_SCHED_MAX_SPLITS
  788. #define GGML_SCHED_MAX_SPLITS 2048
  789. #endif
  790. #ifndef GGML_SCHED_MAX_SPLIT_INPUTS
  791. #define GGML_SCHED_MAX_SPLIT_INPUTS GGML_MAX_SRC
  792. #endif
  793. #ifndef GGML_SCHED_MAX_COPIES
  794. #define GGML_SCHED_MAX_COPIES 4
  795. #endif
  796. struct ggml_backend_sched_split {
  797. int backend_id;
  798. int i_start;
  799. int i_end;
  800. struct ggml_tensor * inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  801. int n_inputs;
  802. // graph view of this split
  803. struct ggml_cgraph graph;
  804. };
  805. struct ggml_backend_sched {
  806. bool is_reset; // true if the scheduler has been reset since the last graph split
  807. bool is_alloc;
  808. int n_backends;
  809. ggml_backend_t backends[GGML_SCHED_MAX_BACKENDS];
  810. ggml_backend_buffer_type_t bufts[GGML_SCHED_MAX_BACKENDS];
  811. ggml_gallocr_t galloc;
  812. // hash keys of the nodes in the graph
  813. struct ggml_hash_set hash_set;
  814. // hash values
  815. int * tensor_backend_id;
  816. struct ggml_tensor * (* tensor_copies)[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  817. int * node_backend_ids; // [graph_size]
  818. int * leaf_backend_ids; // [graph_size]
  819. // copy of the graph with modified inputs
  820. struct ggml_cgraph * graph;
  821. // graph splits
  822. struct ggml_backend_sched_split * splits;
  823. int n_splits;
  824. int splits_capacity;
  825. // pipeline parallelism support
  826. int n_copies;
  827. int cur_copy;
  828. ggml_backend_event_t events[GGML_SCHED_MAX_BACKENDS][GGML_SCHED_MAX_COPIES];
  829. struct ggml_tensor * graph_inputs[GGML_SCHED_MAX_SPLIT_INPUTS];
  830. int n_graph_inputs;
  831. struct ggml_context * ctx;
  832. ggml_backend_sched_eval_callback callback_eval;
  833. void * callback_eval_user_data;
  834. // align context_buffer to GGML_MEM_ALIGN
  835. #ifdef _MSC_VER
  836. __declspec(align(GGML_MEM_ALIGN))
  837. #else
  838. __attribute__((aligned(GGML_MEM_ALIGN)))
  839. #endif
  840. char context_buffer[GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2*sizeof(struct ggml_tensor) + sizeof(struct ggml_cgraph)];
  841. };
  842. #define hash_id(tensor) ggml_hash_find_or_insert(sched->hash_set, tensor)
  843. #define tensor_backend_id(tensor) sched->tensor_backend_id[hash_id(tensor)]
  844. // returns the priority of the backend, lower id is higher priority
  845. static int ggml_backend_sched_backend_id(ggml_backend_sched_t sched, ggml_backend_t backend) {
  846. for (int i = 0; i < sched->n_backends; i++) {
  847. if (sched->backends[i] == backend) {
  848. return i;
  849. }
  850. }
  851. return -1;
  852. }
  853. static int ggml_backend_sched_backend_from_buffer(ggml_backend_sched_t sched, const struct ggml_tensor * tensor) {
  854. ggml_backend_buffer_t buffer = tensor->buffer;
  855. if (buffer == NULL) {
  856. return -1;
  857. }
  858. // find highest prio backend that supports the buffer type
  859. for (int i = 0; i < sched->n_backends; i++) {
  860. if (ggml_backend_buft_supports_backend(buffer->buft, sched->backends[i])) {
  861. return i;
  862. }
  863. }
  864. fprintf(stderr, "%s: error: no backend supports buffer type %s used in tensor %s\n",
  865. __func__, ggml_backend_buffer_name(buffer), tensor->name);
  866. GGML_ASSERT(false);
  867. return -1;
  868. }
  869. #if 0
  870. static char causes[GGML_DEFAULT_GRAPH_SIZE*16 + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS][128]; // debug only
  871. #define SET_CAUSE(node, ...) sprintf(causes[hash_id(node)], __VA_ARGS__)
  872. #define GET_CAUSE(node) causes[hash_id(node)]
  873. #else
  874. #define SET_CAUSE(node, ...)
  875. #define GET_CAUSE(node) ""
  876. #endif
  877. // returns the backend that should be used for the node based on the current locations
  878. static int ggml_backend_sched_backend_id_from_cur(ggml_backend_sched_t sched, struct ggml_tensor * tensor) {
  879. // TODO: use supports_op to check if the backend supports the op
  880. // assign pre-allocated nodes to their backend
  881. int cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor);
  882. if (cur_backend_id != -1) {
  883. SET_CAUSE(tensor, "1.dst");
  884. return cur_backend_id;
  885. }
  886. // view_src
  887. if (tensor->view_src != NULL) {
  888. cur_backend_id = ggml_backend_sched_backend_from_buffer(sched, tensor->view_src);
  889. if (cur_backend_id != -1) {
  890. SET_CAUSE(tensor, "1.vsrc");
  891. return cur_backend_id;
  892. }
  893. }
  894. // graph input
  895. if (tensor->flags & GGML_TENSOR_FLAG_INPUT) {
  896. cur_backend_id = sched->n_backends - 1; // last backend (assumed CPU)
  897. SET_CAUSE(tensor, "1.inp");
  898. return cur_backend_id;
  899. }
  900. // assign nodes that use weights to the backend of the weights
  901. // operations with weights are preferably run on the same backend as the weights
  902. for (int i = 0; i < GGML_MAX_SRC; i++) {
  903. const struct ggml_tensor * src = tensor->src[i];
  904. if (src == NULL) {
  905. continue;
  906. }
  907. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  908. int src_backend_id = ggml_backend_sched_backend_from_buffer(sched, src);
  909. // check if a backend with higher prio wants to offload the op
  910. if (src_backend_id == sched->n_backends - 1) {
  911. for (int b = 0; b < src_backend_id; b++) {
  912. if (ggml_backend_offload_op(sched->backends[b], tensor)) {
  913. SET_CAUSE(tensor, "1.off");
  914. return b;
  915. }
  916. }
  917. }
  918. SET_CAUSE(tensor, "1.wgt%d", i);
  919. return src_backend_id;
  920. }
  921. }
  922. return -1;
  923. }
  924. static char * fmt_size(size_t size) {
  925. static char buffer[128];
  926. if (size >= 1024*1024) {
  927. sprintf(buffer, "%zuM", size/1024/1024);
  928. } else {
  929. sprintf(buffer, "%zuK", size/1024);
  930. }
  931. return buffer;
  932. }
  933. static void ggml_backend_sched_print_assignments(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  934. int cur_split = 0;
  935. for (int i = 0; i < graph->n_nodes; i++) {
  936. if (cur_split < sched->n_splits && i == sched->splits[cur_split].i_start) {
  937. ggml_backend_t split_backend = sched->backends[sched->splits[cur_split].backend_id];
  938. fprintf(stderr, "\n## SPLIT #%d: %s # %d inputs: ", cur_split, ggml_backend_name(split_backend),
  939. sched->splits[cur_split].n_inputs);
  940. for (int j = 0; j < sched->splits[cur_split].n_inputs; j++) {
  941. fprintf(stderr, "[%s (%5.5s)] ", sched->splits[cur_split].inputs[j]->name,
  942. fmt_size(ggml_nbytes(sched->splits[cur_split].inputs[j])));
  943. }
  944. fprintf(stderr, "\n");
  945. cur_split++;
  946. }
  947. struct ggml_tensor * node = graph->nodes[i];
  948. if (ggml_is_view_op(node->op)) {
  949. continue;
  950. }
  951. ggml_backend_t tensor_backend = ggml_backend_sched_get_tensor_backend(sched, node);
  952. fprintf(stderr, "node #%3d (%10.10s): %20.20s (%5.5s) [%5.5s %8.8s]:", i, ggml_op_name(node->op), node->name,
  953. fmt_size(ggml_nbytes(node)), tensor_backend ? ggml_backend_name(tensor_backend) : "NULL", GET_CAUSE(node));
  954. for (int j = 0; j < GGML_MAX_SRC; j++) {
  955. struct ggml_tensor * src = node->src[j];
  956. if (src == NULL) {
  957. continue;
  958. }
  959. ggml_backend_t src_backend = ggml_backend_sched_get_tensor_backend(sched, src);
  960. fprintf(stderr, " %20.20s (%5.5s) [%5.5s %8.8s]", src->name,
  961. fmt_size(ggml_nbytes(src)), src_backend ? ggml_backend_name(src_backend) : "NULL", GET_CAUSE(src));
  962. }
  963. fprintf(stderr, "\n");
  964. }
  965. }
  966. //#define DEBUG_PASS1
  967. //#define DEBUG_PASS2
  968. //#define DEBUG_PASS3
  969. //#define DEBUG_PASS4
  970. // assigns backends to ops and splits the graph into subgraphs that can be computed on the same backend
  971. static void ggml_backend_sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  972. // reset splits
  973. sched->n_splits = 0;
  974. sched->n_graph_inputs = 0;
  975. sched->is_reset = false;
  976. struct ggml_init_params params = {
  977. /* .mem_size = */ sizeof(sched->context_buffer),
  978. /* .mem_buffer = */ sched->context_buffer,
  979. /* .no_alloc = */ true
  980. };
  981. ggml_free(sched->ctx);
  982. sched->ctx = ggml_init(params);
  983. if (sched->ctx == NULL) {
  984. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  985. GGML_ASSERT(false);
  986. }
  987. // pass 1: assign backends to ops with pre-allocated inputs
  988. for (int i = 0; i < graph->n_leafs; i++) {
  989. struct ggml_tensor * leaf = graph->leafs[i];
  990. int * leaf_backend_id = &tensor_backend_id(leaf);
  991. if (*leaf_backend_id != -1) {
  992. // do not overwrite user assignments
  993. continue;
  994. }
  995. *leaf_backend_id = ggml_backend_sched_backend_id_from_cur(sched, leaf);
  996. }
  997. for (int i = 0; i < graph->n_nodes; i++) {
  998. struct ggml_tensor * node = graph->nodes[i];
  999. int * node_backend_id = &tensor_backend_id(node);
  1000. if (*node_backend_id != -1) {
  1001. // do not overwrite user assignments
  1002. continue;
  1003. }
  1004. *node_backend_id = ggml_backend_sched_backend_id_from_cur(sched, node);
  1005. // src
  1006. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1007. struct ggml_tensor * src = node->src[j];
  1008. if (src == NULL) {
  1009. continue;
  1010. }
  1011. int * src_backend_id = &tensor_backend_id(src);
  1012. if (*src_backend_id == -1) {
  1013. *src_backend_id = ggml_backend_sched_backend_id_from_cur(sched, src);
  1014. }
  1015. }
  1016. }
  1017. #ifdef DEBUG_PASS1
  1018. fprintf(stderr, "PASS 1 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1019. #endif
  1020. // pass 2: expand current backend assignments
  1021. // assign the same backend to adjacent nodes
  1022. // expand gpu backends (i.e. non last prio) up and down, ignoring cpu (the lowest priority backend)
  1023. // thus, cpu will never be used unless weights are on cpu, or there are no gpu ops between cpu ops
  1024. // pass 2.2 expand gpu down
  1025. {
  1026. int cur_backend_id = -1;
  1027. for (int i = 0; i < graph->n_nodes; i++) {
  1028. struct ggml_tensor * node = graph->nodes[i];
  1029. if (ggml_is_view_op(node->op)) {
  1030. continue;
  1031. }
  1032. int * node_backend_id = &tensor_backend_id(node);
  1033. if (*node_backend_id != -1) {
  1034. if (*node_backend_id == sched->n_backends - 1) {
  1035. // skip cpu (lowest prio backend)
  1036. cur_backend_id = -1;
  1037. } else {
  1038. cur_backend_id = *node_backend_id;
  1039. }
  1040. } else {
  1041. *node_backend_id = cur_backend_id;
  1042. SET_CAUSE(node, "2.2");
  1043. }
  1044. }
  1045. }
  1046. // pass 2.1 expand gpu up
  1047. {
  1048. int cur_backend_id = -1;
  1049. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1050. struct ggml_tensor * node = graph->nodes[i];
  1051. if (ggml_is_view_op(node->op)) {
  1052. continue;
  1053. }
  1054. int * node_backend_id = &tensor_backend_id(node);
  1055. if (*node_backend_id != -1) {
  1056. if (*node_backend_id == sched->n_backends - 1) {
  1057. // skip cpu (lowest prio backend)
  1058. cur_backend_id = -1;
  1059. } else {
  1060. cur_backend_id = *node_backend_id;
  1061. }
  1062. } else {
  1063. *node_backend_id = cur_backend_id;
  1064. SET_CAUSE(node, "2.1");
  1065. }
  1066. }
  1067. }
  1068. // pass 2.4 expand rest down
  1069. {
  1070. int cur_backend_id = -1;
  1071. for (int i = 0; i < graph->n_nodes; i++) {
  1072. struct ggml_tensor * node = graph->nodes[i];
  1073. if (ggml_is_view_op(node->op)) {
  1074. continue;
  1075. }
  1076. int * node_backend_id = &tensor_backend_id(node);
  1077. if (*node_backend_id != -1) {
  1078. cur_backend_id = *node_backend_id;
  1079. } else {
  1080. *node_backend_id = cur_backend_id;
  1081. SET_CAUSE(node, "2.4");
  1082. }
  1083. }
  1084. }
  1085. // pass 2.3 expand rest up
  1086. {
  1087. int cur_backend_id = -1;
  1088. for (int i = graph->n_nodes - 1; i >= 0; i--) {
  1089. struct ggml_tensor * node = graph->nodes[i];
  1090. if (ggml_is_view_op(node->op)) {
  1091. continue;
  1092. }
  1093. int * node_backend_id = &tensor_backend_id(node);
  1094. if (*node_backend_id != -1) {
  1095. cur_backend_id = *node_backend_id;
  1096. } else {
  1097. *node_backend_id = cur_backend_id;
  1098. SET_CAUSE(node, "2.3");
  1099. }
  1100. }
  1101. }
  1102. #ifdef DEBUG_PASS2
  1103. fprintf(stderr, "PASS 2 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1104. #endif
  1105. // pass 3: assign backends to remaining src from dst and view_src
  1106. for (int i = 0; i < graph->n_nodes; i++) {
  1107. struct ggml_tensor * node = graph->nodes[i];
  1108. int * cur_backend_id = &tensor_backend_id(node);
  1109. if (node->view_src != NULL && *cur_backend_id == -1) {
  1110. *cur_backend_id = tensor_backend_id(node->view_src);
  1111. SET_CAUSE(node, "3.vsrc");
  1112. }
  1113. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1114. struct ggml_tensor * src = node->src[j];
  1115. if (src == NULL) {
  1116. continue;
  1117. }
  1118. int * src_backend_id = &tensor_backend_id(src);
  1119. if (*src_backend_id == -1) {
  1120. if (src->view_src != NULL) {
  1121. // views are always on the same backend as the source
  1122. *src_backend_id = tensor_backend_id(src->view_src);
  1123. SET_CAUSE(src, "3.vsrc");
  1124. } else {
  1125. *src_backend_id = *cur_backend_id;
  1126. SET_CAUSE(src, "3.cur");
  1127. }
  1128. }
  1129. }
  1130. }
  1131. #ifdef DEBUG_PASS3
  1132. fprintf(stderr, "PASS 3 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1133. #endif
  1134. // pass 4: split graph, find tensors that need to be copied
  1135. {
  1136. int i_split = 0;
  1137. struct ggml_backend_sched_split * split = &sched->splits[0];
  1138. // find the backend of the first split, skipping view ops
  1139. for (int i = 0; i < graph->n_nodes; i++) {
  1140. struct ggml_tensor * node = graph->nodes[i];
  1141. if (!ggml_is_view_op(node->op)) {
  1142. split->backend_id = tensor_backend_id(node);
  1143. break;
  1144. }
  1145. }
  1146. split->i_start = 0;
  1147. split->n_inputs = 0;
  1148. memset(split->inputs, 0, sizeof(split->inputs)); //HACK
  1149. int cur_backend_id = split->backend_id;
  1150. for (int i = 0; i < graph->n_nodes; i++) {
  1151. struct ggml_tensor * node = graph->nodes[i];
  1152. if (ggml_is_view_op(node->op)) {
  1153. continue;
  1154. }
  1155. const int node_backend_id = tensor_backend_id(node);
  1156. GGML_ASSERT(node_backend_id != -1); // all nodes should be assigned by now
  1157. // check if we should start a new split based on the sources of the current node
  1158. bool need_new_split = false;
  1159. if (node_backend_id == cur_backend_id && split->n_inputs > 0) {
  1160. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1161. struct ggml_tensor * src = node->src[j];
  1162. if (src == NULL) {
  1163. continue;
  1164. }
  1165. // check if a weight is on a different backend
  1166. // by starting a new split, the memory of the previously offloaded weights can be reused
  1167. if (src->buffer != NULL && src->buffer->usage == GGML_BACKEND_BUFFER_USAGE_WEIGHTS) {
  1168. int src_backend_id = tensor_backend_id(src);
  1169. if (src_backend_id != -1 && src_backend_id != cur_backend_id) {
  1170. need_new_split = true;
  1171. break;
  1172. }
  1173. }
  1174. // check if the split has too many inputs
  1175. if (split->n_inputs == GGML_SCHED_MAX_SPLIT_INPUTS) {
  1176. const size_t id = hash_id(src);
  1177. int src_backend_id = sched->tensor_backend_id[id];
  1178. if (src_backend_id != cur_backend_id && sched->tensor_copies[hash_id(src)][cur_backend_id][0] == NULL) {
  1179. //printf("starting new split because of too many inputs: node %s, input %s\n", node->name, src->name);
  1180. need_new_split = true;
  1181. break;
  1182. }
  1183. }
  1184. }
  1185. }
  1186. if (node_backend_id != cur_backend_id || need_new_split) {
  1187. split->i_end = i;
  1188. i_split++;
  1189. if (i_split >= sched->splits_capacity) {
  1190. sched->splits_capacity *= 2;
  1191. sched->splits = realloc(sched->splits, sched->splits_capacity * sizeof(struct ggml_backend_sched_split));
  1192. GGML_ASSERT(sched->splits != NULL);
  1193. }
  1194. GGML_ASSERT(i_split < GGML_SCHED_MAX_SPLITS);
  1195. split = &sched->splits[i_split];
  1196. split->backend_id = node_backend_id;
  1197. split->i_start = i;
  1198. split->n_inputs = 0;
  1199. cur_backend_id = node_backend_id;
  1200. }
  1201. // find inputs that are not on the same backend
  1202. for (int j = 0; j < GGML_MAX_SRC; j++) {
  1203. struct ggml_tensor * src = node->src[j];
  1204. if (src == NULL) {
  1205. continue;
  1206. }
  1207. const int src_backend_id = tensor_backend_id(src);
  1208. assert(src_backend_id != -1); // all inputs should be assigned by now
  1209. if (src->flags & GGML_TENSOR_FLAG_INPUT && sched->n_copies > 1) {
  1210. size_t id = hash_id(src);
  1211. if (sched->tensor_copies[id][src_backend_id][0] == NULL) {
  1212. ggml_backend_t backend = sched->backends[src_backend_id];
  1213. for (int c = 0; c < sched->n_copies; c++) {
  1214. struct ggml_tensor * tensor_copy;
  1215. if (c == sched->cur_copy) {
  1216. tensor_copy = src; // use the original tensor as the current copy
  1217. } else {
  1218. tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1219. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1220. }
  1221. if (sched->n_copies > 1) {
  1222. ggml_set_input(tensor_copy);
  1223. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1224. }
  1225. sched->tensor_copies[id][src_backend_id][c] = tensor_copy;
  1226. SET_CAUSE(tensor_copy, "4.cpy");
  1227. }
  1228. int n_graph_inputs = sched->n_graph_inputs++;
  1229. GGML_ASSERT(n_graph_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1230. sched->graph_inputs[n_graph_inputs] = src;
  1231. }
  1232. }
  1233. if (src_backend_id != node_backend_id) {
  1234. // create a copy of the input in the split's backend
  1235. const size_t id = hash_id(src);
  1236. if (sched->tensor_copies[id][cur_backend_id][0] == NULL) {
  1237. ggml_backend_t backend = sched->backends[cur_backend_id];
  1238. for (int c = 0; c < sched->n_copies; c++) {
  1239. struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src);
  1240. ggml_format_name(tensor_copy, "%s#%s#%d", ggml_backend_name(backend), src->name, c);
  1241. if (sched->n_copies > 1) {
  1242. ggml_set_input(tensor_copy);
  1243. ggml_set_output(tensor_copy); // prevent ggml-alloc from overwriting the tensor
  1244. }
  1245. sched->tensor_copies[id][cur_backend_id][c] = tensor_copy;
  1246. SET_CAUSE(tensor_copy, "4.cpy");
  1247. }
  1248. int n_inputs = split->n_inputs++;
  1249. GGML_ASSERT(n_inputs < GGML_SCHED_MAX_SPLIT_INPUTS);
  1250. split->inputs[n_inputs] = src;
  1251. }
  1252. node->src[j] = sched->tensor_copies[id][cur_backend_id][sched->cur_copy];
  1253. }
  1254. }
  1255. }
  1256. split->i_end = graph->n_nodes;
  1257. sched->n_splits = i_split + 1;
  1258. }
  1259. #ifdef DEBUG_PASS4
  1260. fprintf(stderr, "PASS 4 ASSIGNMENTS\n"); ggml_backend_sched_print_assignments(sched, graph);
  1261. #endif
  1262. // create copies of the graph for each split
  1263. // TODO: avoid this copy
  1264. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(sched->ctx, graph->n_nodes + sched->n_splits*GGML_SCHED_MAX_SPLIT_INPUTS*2, false);
  1265. for (int i = 0; i < sched->n_splits; i++) {
  1266. struct ggml_backend_sched_split * split = &sched->splits[i];
  1267. split->graph = ggml_graph_view(graph, split->i_start, split->i_end);
  1268. // add inputs to the graph copy so that they are allocated by ggml-alloc at the start of the split
  1269. for (int j = 0; j < split->n_inputs; j++) {
  1270. assert(graph_copy->size > (graph_copy->n_nodes + 1));
  1271. struct ggml_tensor * input = split->inputs[j];
  1272. const size_t input_id = hash_id(input);
  1273. struct ggml_tensor * input_cpy = sched->tensor_copies[input_id][split->backend_id][sched->cur_copy];
  1274. // add a dependency to the input source so that it is not freed before the copy is done
  1275. struct ggml_tensor * input_dep = ggml_view_tensor(sched->ctx, input);
  1276. input_dep->src[0] = input;
  1277. sched->node_backend_ids[graph_copy->n_nodes] = sched->tensor_backend_id[input_id];
  1278. graph_copy->nodes[graph_copy->n_nodes++] = input_dep;
  1279. // add a dependency to the input copy so that it is allocated at the start of the split
  1280. sched->node_backend_ids[graph_copy->n_nodes] = split->backend_id;
  1281. graph_copy->nodes[graph_copy->n_nodes++] = input_cpy;
  1282. }
  1283. for (int j = split->i_start; j < split->i_end; j++) {
  1284. assert(graph_copy->size > graph_copy->n_nodes);
  1285. sched->node_backend_ids[graph_copy->n_nodes] = tensor_backend_id(graph->nodes[j]);
  1286. graph_copy->nodes[graph_copy->n_nodes++] = graph->nodes[j];
  1287. }
  1288. }
  1289. if (sched->n_copies > 1) {
  1290. // add input copies as leafs so that they are allocated first
  1291. for (int i = 0; i < sched->n_graph_inputs; i++) {
  1292. struct ggml_tensor * input = sched->graph_inputs[i];
  1293. size_t id = hash_id(input);
  1294. int backend_id = tensor_backend_id(input);
  1295. for (int c = 0; c < sched->n_copies; c++) {
  1296. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1297. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1298. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1299. }
  1300. }
  1301. for (int i = 0; i < sched->n_splits; i++) {
  1302. struct ggml_backend_sched_split * split = &sched->splits[i];
  1303. int backend_id = split->backend_id;
  1304. for (int j = 0; j < split->n_inputs; j++) {
  1305. struct ggml_tensor * input = split->inputs[j];
  1306. size_t id = hash_id(input);
  1307. for (int c = 0; c < sched->n_copies; c++) {
  1308. struct ggml_tensor * input_cpy = sched->tensor_copies[id][backend_id][c];
  1309. sched->leaf_backend_ids[graph_copy->n_leafs] = backend_id;
  1310. graph_copy->leafs[graph_copy->n_leafs++] = input_cpy;
  1311. }
  1312. }
  1313. }
  1314. }
  1315. // add leafs from the original graph
  1316. for (int i = 0; i < graph->n_leafs; i++) {
  1317. struct ggml_tensor * leaf = graph->leafs[i];
  1318. sched->leaf_backend_ids[graph_copy->n_leafs] = tensor_backend_id(leaf);
  1319. graph_copy->leafs[graph_copy->n_leafs++] = leaf;
  1320. }
  1321. sched->graph = graph_copy;
  1322. }
  1323. static bool ggml_backend_sched_alloc_splits(ggml_backend_sched_t sched) {
  1324. // allocate graph
  1325. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1326. // the re-allocation may cause the split inputs to be moved to a different address
  1327. ggml_backend_sched_synchronize(sched);
  1328. #ifndef NDEBUG
  1329. fprintf(stderr, "%s: failed to allocate graph, reserving\n", __func__);
  1330. #endif
  1331. ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids);
  1332. if (!ggml_gallocr_alloc_graph(sched->galloc, sched->graph)) {
  1333. fprintf(stderr, "%s: failed to allocate graph\n", __func__);
  1334. return false;
  1335. }
  1336. }
  1337. return true;
  1338. }
  1339. static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t sched) {
  1340. struct ggml_backend_sched_split * splits = sched->splits;
  1341. for (int i = 0; i < sched->n_splits; i++) {
  1342. struct ggml_backend_sched_split * split = &splits[i];
  1343. int split_backend_id = split->backend_id;
  1344. ggml_backend_t split_backend = sched->backends[split_backend_id];
  1345. // copy the input tensors to the split backend
  1346. for (int j = 0; j < split->n_inputs; j++) {
  1347. ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
  1348. struct ggml_tensor * input = split->inputs[j];
  1349. struct ggml_tensor * input_cpy = sched->tensor_copies[hash_id(input)][split_backend_id][sched->cur_copy];
  1350. if (input->flags & GGML_TENSOR_FLAG_INPUT) {
  1351. // inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
  1352. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1353. ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
  1354. } else {
  1355. ggml_backend_synchronize(split_backend);
  1356. }
  1357. ggml_backend_tensor_copy(input, input_cpy);
  1358. } else {
  1359. // wait for the split backend to finish using the input before overwriting it
  1360. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1361. ggml_backend_event_wait(split_backend, sched->events[split_backend_id][sched->cur_copy]);
  1362. } else {
  1363. ggml_backend_synchronize(split_backend);
  1364. }
  1365. ggml_backend_tensor_copy_async(input_backend, split_backend, input, input_cpy);
  1366. }
  1367. }
  1368. if (!sched->callback_eval) {
  1369. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &split->graph);
  1370. if (ec != GGML_STATUS_SUCCESS) {
  1371. return ec;
  1372. }
  1373. } else {
  1374. // similar to ggml_backend_compare_graph_backend
  1375. for (int j0 = 0; j0 < split->graph.n_nodes; j0++) {
  1376. struct ggml_tensor * t = split->graph.nodes[j0];
  1377. // check if the user needs data from this node
  1378. bool need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1379. int j1 = j0;
  1380. // determine the range [j0, j1] of nodes that can be computed together
  1381. while (!need && j1 < split->graph.n_nodes - 1) {
  1382. t = split->graph.nodes[++j1];
  1383. need = sched->callback_eval(t, true, sched->callback_eval_user_data);
  1384. }
  1385. struct ggml_cgraph gv = ggml_graph_view(&split->graph, j0, j1 + 1);
  1386. enum ggml_status ec = ggml_backend_graph_compute_async(split_backend, &gv);
  1387. if (ec != GGML_STATUS_SUCCESS) {
  1388. return ec;
  1389. }
  1390. // TODO: pass backend to the callback, then the user can decide if they want to synchronize
  1391. ggml_backend_synchronize(split_backend);
  1392. if (need && !sched->callback_eval(t, false, sched->callback_eval_user_data)) {
  1393. break;
  1394. }
  1395. j0 = j1;
  1396. }
  1397. }
  1398. // record the event of this copy
  1399. if (split->n_inputs > 0) {
  1400. if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
  1401. ggml_backend_event_record(sched->events[split_backend_id][sched->cur_copy]);
  1402. }
  1403. }
  1404. }
  1405. sched->cur_copy = (sched->cur_copy + 1) % sched->n_copies;
  1406. return GGML_STATUS_SUCCESS;
  1407. }
  1408. ggml_backend_sched_t ggml_backend_sched_new(
  1409. ggml_backend_t * backends,
  1410. ggml_backend_buffer_type_t * bufts,
  1411. int n_backends,
  1412. size_t graph_size,
  1413. bool parallel) {
  1414. GGML_ASSERT(n_backends > 0);
  1415. GGML_ASSERT(n_backends <= GGML_SCHED_MAX_BACKENDS);
  1416. GGML_ASSERT(ggml_backend_is_cpu(backends[n_backends - 1])); // last backend must be CPU
  1417. struct ggml_backend_sched * sched = calloc(sizeof(struct ggml_backend_sched), 1);
  1418. // initialize hash table
  1419. sched->hash_set = ggml_hash_set_new(graph_size);
  1420. sched->tensor_backend_id = calloc(sizeof(sched->tensor_backend_id[0]), sched->hash_set.size);
  1421. sched->tensor_copies = calloc(sizeof(sched->tensor_copies[0]), sched->hash_set.size);
  1422. const size_t nodes_size = graph_size + GGML_SCHED_MAX_SPLITS*GGML_SCHED_MAX_SPLIT_INPUTS*2;
  1423. sched->node_backend_ids = calloc(sizeof(sched->node_backend_ids[0]), nodes_size);
  1424. sched->leaf_backend_ids = calloc(sizeof(sched->leaf_backend_ids[0]), nodes_size);
  1425. sched->n_backends = n_backends;
  1426. sched->n_copies = parallel ? GGML_SCHED_MAX_COPIES : 1;
  1427. const int initial_splits_capacity = 16;
  1428. sched->splits = calloc(sizeof(sched->splits[0]), initial_splits_capacity);
  1429. sched->splits_capacity = initial_splits_capacity;
  1430. for (int b = 0; b < n_backends; b++) {
  1431. sched->backends[b] = backends[b];
  1432. sched->bufts[b] = bufts ? bufts[b] : ggml_backend_get_default_buffer_type(backends[b]);
  1433. GGML_ASSERT(ggml_backend_buft_supports_backend(sched->bufts[b], backends[b]));
  1434. if (sched->n_copies > 1) {
  1435. for (int c = 0; c < sched->n_copies; c++) {
  1436. sched->events[b][c] = ggml_backend_event_new(backends[b]);
  1437. }
  1438. }
  1439. }
  1440. sched->galloc = ggml_gallocr_new_n(sched->bufts, n_backends);
  1441. ggml_backend_sched_reset(sched);
  1442. return sched;
  1443. }
  1444. void ggml_backend_sched_free(ggml_backend_sched_t sched) {
  1445. if (sched == NULL) {
  1446. return;
  1447. }
  1448. for (int b = 0; b < sched->n_backends; b++) {
  1449. for (int c = 0; c < sched->n_copies; c++) {
  1450. ggml_backend_event_free(sched->events[b][c]);
  1451. }
  1452. }
  1453. ggml_gallocr_free(sched->galloc);
  1454. ggml_free(sched->ctx);
  1455. free(sched->splits);
  1456. free(sched->hash_set.keys);
  1457. free(sched->tensor_backend_id);
  1458. free(sched->tensor_copies);
  1459. free(sched->node_backend_ids);
  1460. free(sched->leaf_backend_ids);
  1461. free(sched);
  1462. }
  1463. void ggml_backend_sched_reset(ggml_backend_sched_t sched) {
  1464. // reset state for the next run
  1465. size_t hash_size = sched->hash_set.size;
  1466. memset(sched->hash_set.keys, 0, sizeof(sched->hash_set.keys[0]) * hash_size); // NOLINT
  1467. memset(sched->tensor_backend_id, -1, sizeof(sched->tensor_backend_id[0]) * hash_size);
  1468. memset(sched->tensor_copies, 0, sizeof(sched->tensor_copies[0]) * hash_size);
  1469. sched->is_reset = true;
  1470. sched->is_alloc = false;
  1471. }
  1472. bool ggml_backend_sched_reserve(ggml_backend_sched_t sched, struct ggml_cgraph * measure_graph) {
  1473. GGML_ASSERT((int)sched->hash_set.size >= measure_graph->n_nodes);
  1474. ggml_backend_sched_split_graph(sched, measure_graph);
  1475. // TODO: extract this to a separate function
  1476. if (!ggml_gallocr_reserve_n(sched->galloc, sched->graph, sched->node_backend_ids, sched->leaf_backend_ids)) {
  1477. return false;
  1478. }
  1479. ggml_backend_sched_reset(sched);
  1480. ggml_backend_sched_synchronize(sched);
  1481. return true;
  1482. }
  1483. bool ggml_backend_sched_alloc_graph(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1484. GGML_ASSERT((int)sched->hash_set.size >= graph->n_nodes);
  1485. ggml_backend_sched_split_graph(sched, graph);
  1486. if (!ggml_backend_sched_alloc_splits(sched)) {
  1487. return false;
  1488. }
  1489. sched->is_alloc = true;
  1490. return true;
  1491. }
  1492. enum ggml_status ggml_backend_sched_graph_compute(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1493. enum ggml_status err = ggml_backend_sched_graph_compute_async(sched, graph);
  1494. ggml_backend_sched_synchronize(sched);
  1495. return err;
  1496. }
  1497. enum ggml_status ggml_backend_sched_graph_compute_async(ggml_backend_sched_t sched, struct ggml_cgraph * graph) {
  1498. if (!sched->is_reset && !sched->is_alloc) {
  1499. ggml_backend_sched_reset(sched);
  1500. }
  1501. if (!sched->is_alloc) {
  1502. if (!ggml_backend_sched_alloc_graph(sched, graph)) {
  1503. return GGML_STATUS_ALLOC_FAILED;
  1504. }
  1505. }
  1506. return ggml_backend_sched_compute_splits(sched);
  1507. }
  1508. void ggml_backend_sched_synchronize(ggml_backend_sched_t sched) {
  1509. for (int i = 0; i < sched->n_backends; i++) {
  1510. ggml_backend_synchronize(sched->backends[i]);
  1511. }
  1512. }
  1513. void ggml_backend_sched_set_eval_callback(ggml_backend_sched_t sched, ggml_backend_sched_eval_callback callback, void * user_data) {
  1514. sched->callback_eval = callback;
  1515. sched->callback_eval_user_data = user_data;
  1516. }
  1517. int ggml_backend_sched_get_n_splits(ggml_backend_sched_t sched) {
  1518. return sched->n_splits;
  1519. }
  1520. int ggml_backend_sched_get_n_copies(ggml_backend_sched_t sched) {
  1521. return sched->n_copies;
  1522. }
  1523. size_t ggml_backend_sched_get_buffer_size(ggml_backend_sched_t sched, ggml_backend_t backend) {
  1524. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1525. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1526. return ggml_gallocr_get_buffer_size(sched->galloc, backend_index);
  1527. }
  1528. void ggml_backend_sched_set_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node, ggml_backend_t backend) {
  1529. int backend_index = ggml_backend_sched_backend_id(sched, backend);
  1530. GGML_ASSERT(backend_index >= 0 && backend_index < sched->n_backends);
  1531. tensor_backend_id(node) = backend_index;
  1532. }
  1533. ggml_backend_t ggml_backend_sched_get_tensor_backend(ggml_backend_sched_t sched, struct ggml_tensor * node) {
  1534. int backend_index = tensor_backend_id(node);
  1535. if (backend_index == -1) {
  1536. return NULL;
  1537. }
  1538. return sched->backends[backend_index];
  1539. }
  1540. // utils
  1541. void ggml_backend_view_init(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor) {
  1542. GGML_ASSERT(tensor->buffer == NULL);
  1543. GGML_ASSERT(tensor->view_src != NULL);
  1544. GGML_ASSERT(tensor->view_src->buffer != NULL);
  1545. GGML_ASSERT(tensor->view_src->data != NULL);
  1546. tensor->buffer = buffer;
  1547. tensor->data = (char *)tensor->view_src->data + tensor->view_offs;
  1548. tensor->backend = tensor->view_src->backend;
  1549. ggml_backend_buffer_init_tensor(buffer, tensor);
  1550. }
  1551. void ggml_backend_tensor_alloc(ggml_backend_buffer_t buffer, struct ggml_tensor * tensor, void * addr) {
  1552. GGML_ASSERT(tensor->buffer == NULL);
  1553. GGML_ASSERT(tensor->data == NULL);
  1554. GGML_ASSERT(tensor->view_src == NULL);
  1555. GGML_ASSERT(addr >= ggml_backend_buffer_get_base(buffer));
  1556. GGML_ASSERT((char *)addr + ggml_backend_buffer_get_alloc_size(buffer, tensor) <=
  1557. (char *)ggml_backend_buffer_get_base(buffer) + ggml_backend_buffer_get_size(buffer));
  1558. tensor->buffer = buffer;
  1559. tensor->data = addr;
  1560. ggml_backend_buffer_init_tensor(buffer, tensor);
  1561. }
  1562. static struct ggml_tensor * graph_copy_dup_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies,
  1563. struct ggml_context * ctx_allocated, struct ggml_context * ctx_unallocated, struct ggml_tensor * src) {
  1564. GGML_ASSERT(src != NULL);
  1565. GGML_ASSERT(src->data && "graph must be allocated");
  1566. size_t id = ggml_hash_insert(hash_set, src);
  1567. if (id == GGML_HASHTABLE_ALREADY_EXISTS) {
  1568. return node_copies[ggml_hash_find(hash_set, src)];
  1569. }
  1570. struct ggml_tensor * dst = ggml_dup_tensor_layout(src->data && !src->view_src ? ctx_allocated : ctx_unallocated, src);
  1571. if (src->view_src != NULL) {
  1572. dst->view_src = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, src->view_src);
  1573. dst->view_offs = src->view_offs;
  1574. }
  1575. dst->op = src->op;
  1576. memcpy(dst->op_params, src->op_params, sizeof(dst->op_params));
  1577. ggml_set_name(dst, src->name);
  1578. // copy src
  1579. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1580. struct ggml_tensor * s = src->src[i];
  1581. if (s == NULL) {
  1582. continue;
  1583. }
  1584. dst->src[i] = graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, s);
  1585. }
  1586. node_copies[id] = dst;
  1587. return dst;
  1588. }
  1589. static void graph_copy_init_tensor(struct ggml_hash_set hash_set, struct ggml_tensor ** node_copies, bool * node_init, struct ggml_tensor * src) {
  1590. size_t id = ggml_hash_find(hash_set, src);
  1591. if (node_init[id]) {
  1592. return;
  1593. }
  1594. node_init[id] = true;
  1595. struct ggml_tensor * dst = node_copies[id];
  1596. if (dst->view_src != NULL) {
  1597. graph_copy_init_tensor(hash_set, node_copies, node_init, src->view_src);
  1598. ggml_backend_view_init(dst->view_src->buffer, dst);
  1599. }
  1600. else {
  1601. ggml_backend_tensor_copy(src, dst);
  1602. }
  1603. // init src
  1604. for (int i = 0; i < GGML_MAX_SRC; i++) {
  1605. struct ggml_tensor * s = src->src[i];
  1606. if (s == NULL) {
  1607. continue;
  1608. }
  1609. graph_copy_init_tensor(hash_set, node_copies, node_init, s);
  1610. }
  1611. }
  1612. struct ggml_backend_graph_copy ggml_backend_graph_copy(ggml_backend_t backend, struct ggml_cgraph * graph) {
  1613. struct ggml_hash_set hash_set = {
  1614. /* .size = */ graph->visited_hash_table.size,
  1615. /* .keys = */ calloc(sizeof(hash_set.keys[0]), graph->visited_hash_table.size) // NOLINT
  1616. };
  1617. struct ggml_tensor ** node_copies = calloc(sizeof(node_copies[0]), hash_set.size); // NOLINT
  1618. bool * node_init = calloc(sizeof(node_init[0]), hash_set.size);
  1619. struct ggml_init_params params = {
  1620. /* .mem_size = */ ggml_tensor_overhead()*hash_set.size + ggml_graph_overhead_custom(graph->size, false),
  1621. /* .mem_buffer = */ NULL,
  1622. /* .no_alloc = */ true
  1623. };
  1624. struct ggml_context * ctx_allocated = ggml_init(params);
  1625. struct ggml_context * ctx_unallocated = ggml_init(params);
  1626. if (ctx_allocated == NULL || ctx_unallocated == NULL) {
  1627. fprintf(stderr, "failed to allocate context for graph copy\n");
  1628. free(hash_set.keys);
  1629. free(node_copies);
  1630. free(node_init);
  1631. ggml_free(ctx_allocated);
  1632. ggml_free(ctx_unallocated);
  1633. return (struct ggml_backend_graph_copy) {
  1634. /* .buffer = */ NULL,
  1635. /* .ctx_allocated = */ NULL,
  1636. /* .ctx_unallocated = */ NULL,
  1637. /* .graph = */ NULL,
  1638. };
  1639. }
  1640. // dup nodes
  1641. for (int i = 0; i < graph->n_nodes; i++) {
  1642. struct ggml_tensor * node = graph->nodes[i];
  1643. graph_copy_dup_tensor(hash_set, node_copies, ctx_allocated, ctx_unallocated, node);
  1644. }
  1645. // allocate nodes
  1646. ggml_backend_buffer_t buffer = ggml_backend_alloc_ctx_tensors(ctx_allocated, backend);
  1647. if (buffer == NULL) {
  1648. fprintf(stderr, "failed to allocate buffer for graph copy\n");
  1649. free(hash_set.keys);
  1650. free(node_copies);
  1651. free(node_init);
  1652. ggml_free(ctx_allocated);
  1653. ggml_free(ctx_unallocated);
  1654. return (struct ggml_backend_graph_copy) {
  1655. /* .buffer = */ NULL,
  1656. /* .ctx_allocated = */ NULL,
  1657. /* .ctx_unallocated = */ NULL,
  1658. /* .graph = */ NULL,
  1659. };
  1660. }
  1661. //printf("copy buffer size: %zu MB\n", ggml_backend_buffer_get_size(buffer) / 1024 / 1024);
  1662. // copy data and init views
  1663. for (int i = 0; i < graph->n_nodes; i++) {
  1664. struct ggml_tensor * node = graph->nodes[i];
  1665. graph_copy_init_tensor(hash_set, node_copies, node_init, node);
  1666. }
  1667. // build graph copy
  1668. struct ggml_cgraph * graph_copy = ggml_new_graph_custom(ctx_allocated, graph->size, false);
  1669. for (int i = 0; i < graph->n_nodes; i++) {
  1670. struct ggml_tensor * node = graph->nodes[i];
  1671. struct ggml_tensor * node_copy = node_copies[ggml_hash_find(hash_set, node)];
  1672. graph_copy->nodes[i] = node_copy;
  1673. }
  1674. graph_copy->n_nodes = graph->n_nodes;
  1675. free(hash_set.keys);
  1676. free(node_copies);
  1677. free(node_init);
  1678. return (struct ggml_backend_graph_copy) {
  1679. /* .buffer = */ buffer,
  1680. /* .ctx_allocated = */ ctx_allocated,
  1681. /* .ctx_unallocated = */ ctx_unallocated,
  1682. /* .graph = */ graph_copy,
  1683. };
  1684. }
  1685. void ggml_backend_graph_copy_free(struct ggml_backend_graph_copy copy) {
  1686. ggml_backend_buffer_free(copy.buffer);
  1687. ggml_free(copy.ctx_allocated);
  1688. ggml_free(copy.ctx_unallocated);
  1689. }
  1690. bool ggml_backend_compare_graph_backend(ggml_backend_t backend1, ggml_backend_t backend2, struct ggml_cgraph * graph, ggml_backend_eval_callback callback, void * user_data) {
  1691. struct ggml_backend_graph_copy copy = ggml_backend_graph_copy(backend2, graph);
  1692. if (copy.buffer == NULL) {
  1693. return false;
  1694. }
  1695. struct ggml_cgraph * g1 = graph;
  1696. struct ggml_cgraph * g2 = copy.graph;
  1697. assert(g1->n_nodes == g2->n_nodes);
  1698. for (int i = 0; i < g1->n_nodes; i++) {
  1699. //printf("eval %d/%d\n", i, g1->n_nodes);
  1700. struct ggml_tensor * t1 = g1->nodes[i];
  1701. struct ggml_tensor * t2 = g2->nodes[i];
  1702. assert(t1->op == t2->op && ggml_are_same_layout(t1, t2));
  1703. struct ggml_cgraph g1v = ggml_graph_view(g1, i, i + 1);
  1704. struct ggml_cgraph g2v = ggml_graph_view(g2, i, i + 1);
  1705. ggml_backend_graph_compute(backend1, &g1v);
  1706. ggml_backend_graph_compute(backend2, &g2v);
  1707. if (ggml_is_view_op(t1->op)) {
  1708. continue;
  1709. }
  1710. // compare results, calculate rms etc
  1711. if (!callback(i, t1, t2, user_data)) {
  1712. break;
  1713. }
  1714. }
  1715. ggml_backend_graph_copy_free(copy);
  1716. return true;
  1717. }