| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843 |
- #include "ggml-cuda.h"
- #include "ggml.h"
- #include "ggml-backend-impl.h"
- #include "ggml-cuda/common.cuh"
- #include "ggml-cuda/acc.cuh"
- #include "ggml-cuda/alibi.cuh"
- #include "ggml-cuda/arange.cuh"
- #include "ggml-cuda/argsort.cuh"
- #include "ggml-cuda/binbcast.cuh"
- #include "ggml-cuda/clamp.cuh"
- #include "ggml-cuda/concat.cuh"
- #include "ggml-cuda/convert.cuh"
- #include "ggml-cuda/cpy.cuh"
- #include "ggml-cuda/diagmask.cuh"
- #include "ggml-cuda/dmmv.cuh"
- #include "ggml-cuda/getrows.cuh"
- #include "ggml-cuda/im2col.cuh"
- #include "ggml-cuda/mmq.cuh"
- #include "ggml-cuda/mmvq.cuh"
- #include "ggml-cuda/norm.cuh"
- #include "ggml-cuda/pad.cuh"
- #include "ggml-cuda/pool2d.cuh"
- #include "ggml-cuda/quantize.cuh"
- #include "ggml-cuda/rope.cuh"
- #include "ggml-cuda/scale.cuh"
- #include "ggml-cuda/softmax.cuh"
- #include "ggml-cuda/sumrows.cuh"
- #include "ggml-cuda/tsembd.cuh"
- #include "ggml-cuda/unary.cuh"
- #include "ggml-cuda/upscale.cuh"
- #include <algorithm>
- #include <array>
- #include <atomic>
- #include <cinttypes>
- #include <cstddef>
- #include <cstdint>
- #include <float.h>
- #include <limits>
- #include <map>
- #include <memory>
- #include <mutex>
- #include <stdint.h>
- #include <stdio.h>
- #include <string>
- #include <vector>
- static_assert(sizeof(half) == sizeof(ggml_fp16_t), "wrong fp16 size");
- [[noreturn]]
- void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg) {
- int id = -1; // in case cudaGetDevice fails
- cudaGetDevice(&id);
- fprintf(stderr, "CUDA error: %s\n", msg);
- fprintf(stderr, " current device: %d, in function %s at %s:%d\n", id, func, file, line);
- fprintf(stderr, " %s\n", stmt);
- // abort with GGML_ASSERT to get a stack trace
- GGML_ASSERT(!"CUDA error");
- }
- // this is faster on Windows
- // probably because the Windows CUDA libraries forget to make this check before invoking the drivers
- void ggml_cuda_set_device(int device) {
- int current_device;
- CUDA_CHECK(cudaGetDevice(¤t_device));
- if (device == current_device) {
- return;
- }
- CUDA_CHECK(cudaSetDevice(device));
- }
- int ggml_cuda_get_device() {
- int id;
- CUDA_CHECK(cudaGetDevice(&id));
- return id;
- }
- static ggml_cuda_device_info ggml_cuda_init() {
- #ifdef __HIP_PLATFORM_AMD__
- // Workaround for a rocBLAS bug when using multiple graphics cards:
- // https://github.com/ROCmSoftwarePlatform/rocBLAS/issues/1346
- rocblas_initialize();
- CUDA_CHECK(cudaDeviceSynchronize());
- #endif
- ggml_cuda_device_info info = {};
- cudaError_t err = cudaGetDeviceCount(&info.device_count);
- if (err != cudaSuccess) {
- fprintf(stderr, "%s: failed to initialize " GGML_CUDA_NAME ": %s\n", __func__, cudaGetErrorString(err));
- return info;
- }
- GGML_ASSERT(info.device_count <= GGML_CUDA_MAX_DEVICES);
- int64_t total_vram = 0;
- #if defined(GGML_CUDA_FORCE_MMQ)
- fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: yes\n", __func__);
- #else
- fprintf(stderr, "%s: GGML_CUDA_FORCE_MMQ: no\n", __func__);
- #endif
- #if defined(CUDA_USE_TENSOR_CORES)
- fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: yes\n", __func__);
- #else
- fprintf(stderr, "%s: CUDA_USE_TENSOR_CORES: no\n", __func__);
- #endif
- fprintf(stderr, "%s: found %d " GGML_CUDA_NAME " devices:\n", __func__, info.device_count);
- for (int id = 0; id < info.device_count; ++id) {
- int device_vmm = 0;
- #if !defined(GGML_USE_HIPBLAS)
- CUdevice device;
- CU_CHECK(cuDeviceGet(&device, id));
- CU_CHECK(cuDeviceGetAttribute(&device_vmm, CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device));
- if (device_vmm) {
- CUmemAllocationProp alloc_prop = {};
- alloc_prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- alloc_prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- alloc_prop.location.id = id;
- CU_CHECK(cuMemGetAllocationGranularity(&info.devices[id].vmm_granularity, &alloc_prop, CU_MEM_ALLOC_GRANULARITY_RECOMMENDED));
- }
- #endif // !defined(GGML_USE_HIPBLAS)
- info.devices[id].vmm = !!device_vmm;
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, id));
- fprintf(stderr, " Device %d: %s, compute capability %d.%d, VMM: %s\n", id, prop.name, prop.major, prop.minor, device_vmm ? "yes" : "no");
- info.default_tensor_split[id] = total_vram;
- total_vram += prop.totalGlobalMem;
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- info.devices[id].cc = 100*prop.major + 10*prop.minor + CC_OFFSET_AMD;
- #else
- info.devices[id].cc = 100*prop.major + 10*prop.minor;
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- info.devices[id].smpb = prop.sharedMemPerBlock;
- }
- for (int id = 0; id < info.device_count; ++id) {
- info.default_tensor_split[id] /= total_vram;
- }
- // configure logging to stdout
- // CUBLAS_CHECK(cublasLoggerConfigure(1, 1, 0, nullptr));
- return info;
- }
- const ggml_cuda_device_info & ggml_cuda_info() {
- static ggml_cuda_device_info info = ggml_cuda_init();
- return info;
- }
- // #define DEBUG_CUDA_MALLOC
- // buffer pool for cuda (legacy)
- struct ggml_cuda_pool_leg : public ggml_cuda_pool {
- static const int MAX_BUFFERS = 256;
- int device;
- struct ggml_cuda_buffer {
- void * ptr = nullptr;
- size_t size = 0;
- };
- ggml_cuda_buffer buffer_pool[MAX_BUFFERS] = {};
- size_t pool_size = 0;
- explicit ggml_cuda_pool_leg(int device) :
- device(device) {
- }
- ~ggml_cuda_pool_leg() {
- ggml_cuda_set_device(device);
- for (int i = 0; i < MAX_BUFFERS; ++i) {
- ggml_cuda_buffer & b = buffer_pool[i];
- if (b.ptr != nullptr) {
- CUDA_CHECK(cudaFree(b.ptr));
- pool_size -= b.size;
- }
- }
- GGML_ASSERT(pool_size == 0);
- }
- void * alloc(size_t size, size_t * actual_size) override {
- #ifdef DEBUG_CUDA_MALLOC
- int nnz = 0;
- size_t max_size = 0;
- #endif
- size_t best_diff = 1ull << 36;
- int ibest = -1;
- for (int i = 0; i < MAX_BUFFERS; ++i) {
- ggml_cuda_buffer& b = buffer_pool[i];
- if (b.ptr != nullptr) {
- #ifdef DEBUG_CUDA_MALLOC
- ++nnz;
- if (b.size > max_size) max_size = b.size;
- #endif
- if (b.size >= size) {
- size_t diff = b.size - size;
- if (diff < best_diff) {
- best_diff = diff;
- ibest = i;
- if (!best_diff) {
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- }
- }
- }
- }
- if (ibest >= 0) {
- ggml_cuda_buffer& b = buffer_pool[ibest];
- void * ptr = b.ptr;
- *actual_size = b.size;
- b.ptr = nullptr;
- b.size = 0;
- return ptr;
- }
- void * ptr;
- size_t look_ahead_size = (size_t) (1.05 * size);
- look_ahead_size = 256 * ((look_ahead_size + 255)/256);
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaMalloc((void **) &ptr, look_ahead_size));
- *actual_size = look_ahead_size;
- pool_size += look_ahead_size;
- #ifdef DEBUG_CUDA_MALLOC
- fprintf(stderr, "%s[%d]: %d buffers, max_size = %u MB, pool_size = %u MB, requested %u MB\n", __func__, device, nnz,
- (uint32_t)(max_size/1024/1024), (uint32_t)(pool_size/1024/1024), (uint32_t)(size/1024/1024));
- #endif
- return ptr;
- }
- void free(void * ptr, size_t size) override {
- for (int i = 0; i < MAX_BUFFERS; ++i) {
- ggml_cuda_buffer& b = buffer_pool[i];
- if (b.ptr == nullptr) {
- b.ptr = ptr;
- b.size = size;
- return;
- }
- }
- fprintf(stderr, "WARNING: cuda buffer pool full, increase MAX_CUDA_BUFFERS\n");
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaFree(ptr));
- pool_size -= size;
- }
- };
- // pool with virtual memory
- #if !defined(GGML_USE_HIPBLAS)
- struct ggml_cuda_pool_vmm : public ggml_cuda_pool {
- static const size_t CUDA_POOL_VMM_MAX_SIZE = 1ull << 35; // 32 GB
- int device;
- CUdeviceptr pool_addr = 0;
- size_t pool_used = 0;
- size_t pool_size = 0;
- size_t granularity;
- explicit ggml_cuda_pool_vmm(int device) :
- device(device),
- granularity(ggml_cuda_info().devices[device].vmm_granularity) {
- }
- ~ggml_cuda_pool_vmm() {
- if (pool_addr != 0) {
- CU_CHECK(cuMemUnmap(pool_addr, pool_size));
- CU_CHECK(cuMemAddressFree(pool_addr, CUDA_POOL_VMM_MAX_SIZE));
- }
- }
- void * alloc(size_t size, size_t * actual_size) override {
- // round up the allocation size to the alignment to ensure that all allocations are aligned for all data types
- const size_t alignment = 128;
- size = alignment * ((size + alignment - 1) / alignment);
- size_t avail = pool_size - pool_used;
- if (size > avail) {
- // round up to the next multiple of the granularity
- size_t reserve_size = size - avail;
- reserve_size = granularity * ((reserve_size + granularity - 1) / granularity);
- GGML_ASSERT(pool_size + reserve_size <= CUDA_POOL_VMM_MAX_SIZE);
- // allocate more physical memory
- CUmemAllocationProp prop = {};
- prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
- prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- prop.location.id = device;
- CUmemGenericAllocationHandle handle;
- CU_CHECK(cuMemCreate(&handle, reserve_size, &prop, 0));
- // reserve virtual address space (if not already reserved)
- if (pool_addr == 0) {
- CU_CHECK(cuMemAddressReserve(&pool_addr, CUDA_POOL_VMM_MAX_SIZE, 0, 0, 0));
- }
- // map at the end of the pool
- CU_CHECK(cuMemMap(pool_addr + pool_size, reserve_size, 0, handle, 0));
- // the memory allocation handle is no longer needed after mapping
- CU_CHECK(cuMemRelease(handle));
- // set access
- CUmemAccessDesc access = {};
- access.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
- access.location.id = device;
- access.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
- CU_CHECK(cuMemSetAccess(pool_addr + pool_size, reserve_size, &access, 1));
- // add to the pool
- pool_size += reserve_size;
- //printf("cuda pool[%d]: size increased to %llu MB (reserved %llu MB)\n",
- // device, (unsigned long long) (pool_size/1024/1024),
- // (unsigned long long) (reserve_size/1024/1024));
- }
- GGML_ASSERT(pool_addr != 0);
- void * ptr = (void *) (pool_addr + pool_used);
- *actual_size = size;
- pool_used += size;
- #ifdef DEBUG_CUDA_MALLOC
- printf("cuda pool[%d]: allocated %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
- #endif
- return ptr;
- }
- void free(void * ptr, size_t size) override {
- #ifdef DEBUG_CUDA_MALLOC
- printf("cuda pool[%d]: freed %llu bytes at %llx\n", device, (unsigned long long) size, ptr);
- #endif
- pool_used -= size;
- // all deallocations must be in reverse order of the allocations
- GGML_ASSERT(ptr == (void *) (pool_addr + pool_used));
- }
- };
- #endif // !defined(GGML_USE_HIPBLAS)
- std::unique_ptr<ggml_cuda_pool> ggml_backend_cuda_context::new_pool_for_device(int device) {
- #if !defined(GGML_USE_HIPBLAS)
- if (ggml_cuda_info().devices[device].vmm) {
- return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_vmm(device));
- }
- #endif
- return std::unique_ptr<ggml_cuda_pool>(new ggml_cuda_pool_leg(device));
- }
- // cuda buffer
- struct ggml_backend_cuda_buffer_context {
- int device;
- void * dev_ptr = nullptr;
- std::string name;
- ggml_backend_cuda_buffer_context(int device, void * dev_ptr) :
- device(device), dev_ptr(dev_ptr),
- name(GGML_CUDA_NAME + std::to_string(device)) {
- }
- ~ggml_backend_cuda_buffer_context() {
- CUDA_CHECK(cudaFree(dev_ptr));
- }
- };
- GGML_CALL static const char * ggml_backend_cuda_buffer_get_name(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- return ctx->name.c_str();
- }
- GGML_CALL static bool ggml_backend_buffer_is_cuda(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_cuda_buffer_get_name;
- }
- GGML_CALL static void ggml_backend_cuda_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- delete ctx;
- }
- GGML_CALL static void * ggml_backend_cuda_buffer_get_base(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- return ctx->dev_ptr;
- }
- GGML_CALL static void ggml_backend_cuda_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- if (tensor->view_src != NULL && tensor->view_offs == 0) {
- assert(tensor->view_src->buffer->buft == buffer->buft);
- tensor->backend = tensor->view_src->backend;
- tensor->extra = tensor->view_src->extra;
- return;
- }
- if (ggml_is_quantized(tensor->type)) {
- // initialize padding to 0 to avoid possible NaN values
- size_t original_size = ggml_nbytes(tensor);
- size_t padded_size = ggml_backend_buft_get_alloc_size(buffer->buft, tensor);
- if (padded_size > original_size && tensor->view_src == nullptr) {
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemset((char *)tensor->data + original_size, 0, padded_size - original_size));
- }
- }
- }
- GGML_CALL static void ggml_backend_cuda_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cudaStreamPerThread));
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
- GGML_CALL static void ggml_backend_cuda_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
- GGML_CALL static bool ggml_backend_cuda_buffer_cpy_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * src, ggml_tensor * dst) {
- if (ggml_backend_buffer_is_cuda(src->buffer)) {
- ggml_backend_cuda_buffer_context * src_ctx = (ggml_backend_cuda_buffer_context *)src->buffer->context;
- ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *)dst->buffer->context;
- if (src_ctx->device == dst_ctx->device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(src), cudaMemcpyDeviceToDevice, cudaStreamPerThread));
- } else {
- #ifdef GGML_CUDA_NO_PEER_COPY
- return false;
- #else
- CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, dst_ctx->device, src->data, src_ctx->device, ggml_nbytes(src), cudaStreamPerThread));
- #endif
- }
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- return true;
- }
- return false;
- GGML_UNUSED(buffer);
- }
- GGML_CALL static void ggml_backend_cuda_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_cuda_buffer_context * ctx = (ggml_backend_cuda_buffer_context *)buffer->context;
- ggml_cuda_set_device(ctx->device);
- CUDA_CHECK(cudaDeviceSynchronize());
- CUDA_CHECK(cudaMemset(ctx->dev_ptr, value, buffer->size));
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- static ggml_backend_buffer_i ggml_backend_cuda_buffer_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_get_name,
- /* .free_buffer = */ ggml_backend_cuda_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_buffer_get_tensor,
- /* .cpy_tensor = */ ggml_backend_cuda_buffer_cpy_tensor,
- /* .clear = */ ggml_backend_cuda_buffer_clear,
- /* .reset = */ NULL,
- };
- // cuda buffer type
- struct ggml_backend_cuda_buffer_type_context {
- int device;
- std::string name;
- };
- GGML_CALL static const char * ggml_backend_cuda_buffer_type_name(ggml_backend_buffer_type_t buft) {
- ggml_backend_cuda_buffer_type_context * ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- return ctx->name.c_str();
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- ggml_cuda_set_device(buft_ctx->device);
- size = std::max(size, (size_t)1); // cudaMalloc returns null for size 0
- void * dev_ptr;
- cudaError_t err = cudaMalloc(&dev_ptr, size);
- if (err != cudaSuccess) {
- fprintf(stderr, "%s: allocating %.2f MiB on device %d: cudaMalloc failed: %s\n", __func__, size/1024.0/1024.0, buft_ctx->device, cudaGetErrorString(err));
- return nullptr;
- }
- ggml_backend_cuda_buffer_context * ctx = new ggml_backend_cuda_buffer_context(buft_ctx->device, dev_ptr);
- return ggml_backend_buffer_init(buft, ggml_backend_cuda_buffer_interface, ctx, size);
- }
- GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- GGML_UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_cuda_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- size_t size = ggml_nbytes(tensor);
- int64_t ne0 = tensor->ne[0];
- if (ggml_is_quantized(tensor->type)) {
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return size;
- GGML_UNUSED(buft);
- }
- GGML_CALL static bool ggml_backend_cuda_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- if (!ggml_backend_is_cuda(backend)) {
- return false;
- }
- ggml_backend_cuda_buffer_type_context * buft_ctx = (ggml_backend_cuda_buffer_type_context *)buft->context;
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return buft_ctx->device == cuda_ctx->device;
- }
- static ggml_backend_buffer_type_i ggml_backend_cuda_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cuda_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_cuda_buffer_type_supports_backend,
- /* .is_host = */ NULL,
- };
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_buffer_type(int device) {
- static std::mutex mutex;
- std::lock_guard<std::mutex> lock(mutex);
- if (device >= ggml_backend_cuda_get_device_count()) {
- return nullptr;
- }
- static ggml_backend_buffer_type ggml_backend_cuda_buffer_types[GGML_CUDA_MAX_DEVICES];
- static bool ggml_backend_cuda_buffer_type_initialized = false;
- if (!ggml_backend_cuda_buffer_type_initialized) {
- for (int i = 0; i < GGML_CUDA_MAX_DEVICES; i++) {
- ggml_backend_cuda_buffer_types[i] = {
- /* .iface = */ ggml_backend_cuda_buffer_type_interface,
- /* .context = */ new ggml_backend_cuda_buffer_type_context{i, GGML_CUDA_NAME + std::to_string(i)},
- };
- }
- ggml_backend_cuda_buffer_type_initialized = true;
- }
- return &ggml_backend_cuda_buffer_types[device];
- }
- // cuda split buffer
- static int64_t get_row_rounding(ggml_type type, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split) {
- int64_t min_compute_capability = INT_MAX;
- int64_t max_compute_capability = INT_MIN;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if (tensor_split[id] < (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
- if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
- min_compute_capability = ggml_cuda_info().devices[id].cc;
- }
- if (max_compute_capability < ggml_cuda_info().devices[id].cc) {
- max_compute_capability = ggml_cuda_info().devices[id].cc;
- }
- }
- }
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- return max_compute_capability >= CC_RDNA2 ? 128 : 32;
- case GGML_TYPE_Q3_K:
- return min_compute_capability < CC_RDNA2 ? 128 : 64;
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= CC_RDNA2 ? 128 : 64;
- default:
- GGML_ASSERT(false);
- }
- #else
- switch(type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return 64;
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return 1;
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- return max_compute_capability >= CC_VOLTA ? 128 : 64;
- case GGML_TYPE_Q6_K:
- return 64;
- default:
- GGML_ASSERT(false);
- }
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- }
- static void get_row_split(int64_t * row_low, int64_t * row_high, const ggml_tensor * tensor, const std::array<float, GGML_CUDA_MAX_DEVICES> & tensor_split, int id) {
- const int64_t nrows = ggml_nrows(tensor);
- const int64_t rounding = get_row_rounding(tensor->type, tensor_split);
- *row_low = id == 0 ? 0 : nrows*tensor_split[id];
- *row_low -= *row_low % rounding;
- if (id == ggml_backend_cuda_get_device_count() - 1) {
- *row_high = nrows;
- } else {
- *row_high = nrows*tensor_split[id + 1];
- *row_high -= *row_high % rounding;
- }
- }
- static size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
- static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
- return nrows_split*ggml_row_size(tensor->type, tensor->ne[0]);
- }
- struct ggml_backend_cuda_split_buffer_type_context {
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
- };
- struct ggml_backend_cuda_split_buffer_context {
- ~ggml_backend_cuda_split_buffer_context() {
- for (ggml_tensor_extra_gpu * extra : tensor_extras) {
- for (int id = 0; id < GGML_CUDA_MAX_DEVICES; ++id) {
- for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
- if (extra->events[id][is] != nullptr) {
- CUDA_CHECK(cudaEventDestroy(extra->events[id][is]));
- }
- }
- if (extra->data_device[id] != nullptr) {
- CUDA_CHECK(cudaFree(extra->data_device[id]));
- }
- }
- delete extra;
- }
- }
- std::vector<ggml_tensor_extra_gpu *> tensor_extras;
- };
- GGML_CALL static const char * ggml_backend_cuda_split_buffer_get_name(ggml_backend_buffer_t buffer) {
- return GGML_CUDA_NAME "_Split";
- GGML_UNUSED(buffer);
- }
- static bool ggml_backend_buffer_is_cuda_split(ggml_backend_buffer_t buffer) {
- return buffer->iface.get_name == ggml_backend_cuda_split_buffer_get_name;
- GGML_UNUSED(ggml_backend_buffer_is_cuda_split); // only used in debug builds currently, avoid unused function warning in release builds
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
- delete ctx;
- }
- GGML_CALL static void * ggml_backend_cuda_split_buffer_get_base(ggml_backend_buffer_t buffer) {
- // the pointers are stored in the tensor extras, this is just a dummy address and never dereferenced
- return (void *)0x1000;
- GGML_UNUSED(buffer);
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- GGML_ASSERT(tensor->view_src == nullptr); // views of split tensors are not supported
- ggml_backend_cuda_split_buffer_context * ctx = (ggml_backend_cuda_split_buffer_context *)buffer->context;
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- ggml_tensor_extra_gpu * extra = new ggml_tensor_extra_gpu{};
- ctx->tensor_extras.push_back(extra);
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- // FIXME: do not crash if cudaMalloc fails
- // currently, init_tensor cannot fail, it needs to be fixed in ggml-backend first
- ggml_cuda_set_device(id);
- char * buf;
- CUDA_CHECK(cudaMalloc(&buf, size));
- // set padding to 0 to avoid possible NaN values
- if (size > original_size) {
- CUDA_CHECK(cudaMemset(buf + original_size, 0, size - original_size));
- }
- extra->data_device[id] = buf;
- for (int64_t is = 0; is < GGML_CUDA_MAX_STREAMS; ++is) {
- CUDA_CHECK(cudaEventCreateWithFlags(&extra->events[id][is], cudaEventDisableTiming));
- }
- }
- tensor->extra = extra;
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- const char * buf_host = (const char *)data + offset_split;
- CUDA_CHECK(cudaMemcpyAsync(extra->data_device[id], buf_host, original_size, cudaMemcpyHostToDevice, cudaStreamPerThread));
- }
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- // split tensors must always be set in their entirety at once
- GGML_ASSERT(offset == 0);
- GGML_ASSERT(size == ggml_nbytes(tensor));
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *)buffer->buft->context;
- const int64_t ne0 = tensor->ne[0];
- const size_t nb1 = tensor->nb[1];
- ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *)tensor->extra;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, buft_ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- const size_t offset_split = row_low*nb1;
- size_t size = ggml_nbytes_split(tensor, nrows_split);
- const size_t original_size = size;
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- char * buf_host = (char *)data + offset_split;
- CUDA_CHECK(cudaMemcpyAsync(buf_host, extra->data_device[id], original_size, cudaMemcpyDeviceToHost, cudaStreamPerThread));
- }
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- CUDA_CHECK(cudaStreamSynchronize(cudaStreamPerThread));
- }
- }
- GGML_CALL static void ggml_backend_cuda_split_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- GGML_UNUSED(buffer);
- GGML_UNUSED(value);
- }
- static struct ggml_backend_buffer_i ggml_backend_cuda_split_buffer_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_get_name,
- /* .free_buffer = */ ggml_backend_cuda_split_buffer_free_buffer,
- /* .get_base = */ ggml_backend_cuda_split_buffer_get_base,
- /* .init_tensor = */ ggml_backend_cuda_split_buffer_init_tensor,
- /* .set_tensor = */ ggml_backend_cuda_split_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_cuda_split_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_cuda_split_buffer_clear,
- /* .reset = */ NULL,
- };
- // cuda split buffer type
- GGML_CALL static const char * ggml_backend_cuda_split_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_CUDA_NAME "_Split";
- GGML_UNUSED(buft);
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_split_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- // since we don't know the exact split after rounding, we cannot allocate the device buffers at this point
- // instead, we allocate them for each tensor separately in init_tensor
- // however, the size still represents the maximum cumulative size of all the device buffers after the tensors are allocated,
- // as returned by get_alloc_size. this limit is enforced during tensor allocation by ggml-alloc, so it must be correct.
- ggml_backend_cuda_split_buffer_context * ctx = new ggml_backend_cuda_split_buffer_context();
- return ggml_backend_buffer_init(buft, ggml_backend_cuda_split_buffer_interface, ctx, size);
- }
- GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alignment(ggml_backend_buffer_type_t buft) {
- return 128;
- GGML_UNUSED(buft);
- }
- GGML_CALL static size_t ggml_backend_cuda_split_buffer_type_get_alloc_size(ggml_backend_buffer_type_t buft, const ggml_tensor * tensor) {
- ggml_backend_cuda_split_buffer_type_context * ctx = (ggml_backend_cuda_split_buffer_type_context *)buft->context;
- size_t total_size = 0;
- const int64_t ne0 = tensor->ne[0];
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- int64_t row_low, row_high;
- get_row_split(&row_low, &row_high, tensor, ctx->tensor_split, id);
- int64_t nrows_split = row_high - row_low;
- if (nrows_split == 0) {
- continue;
- }
- total_size += ggml_nbytes_split(tensor, nrows_split);
- // pad last row to a multiple of 512 elements to avoid out-of-bounds memory accesses
- if (ne0 % MATRIX_ROW_PADDING != 0) {
- total_size += ggml_row_size(tensor->type, MATRIX_ROW_PADDING - ne0 % MATRIX_ROW_PADDING);
- }
- }
- return total_size;
- }
- GGML_CALL static bool ggml_backend_cuda_split_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_cuda(backend);
- GGML_UNUSED(buft);
- }
- GGML_CALL static bool ggml_backend_cuda_split_buffer_type_is_host(ggml_backend_buffer_type_t buft) {
- return false;
- GGML_UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_cuda_split_buffer_type_interface = {
- /* .get_name = */ ggml_backend_cuda_split_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_split_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cuda_split_buffer_type_get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cuda_split_buffer_type_get_alloc_size,
- /* .supports_backend = */ ggml_backend_cuda_split_buffer_type_supports_backend,
- /* .is_host = */ ggml_backend_cuda_split_buffer_type_is_host,
- };
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_split_buffer_type(const float * tensor_split) {
- static std::mutex mutex;
- std::lock_guard<std::mutex> lock(mutex);
- static std::map<std::array<float, GGML_CUDA_MAX_DEVICES>, struct ggml_backend_buffer_type> buft_map;
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split_arr = {};
- bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + GGML_CUDA_MAX_DEVICES, [](float x) { return x == 0.0f; });
- if (all_zero) {
- tensor_split_arr = ggml_cuda_info().default_tensor_split;
- } else {
- float split_sum = 0.0f;
- for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
- tensor_split_arr[i] = split_sum;
- split_sum += tensor_split[i];
- }
- for (int i = 0; i < ggml_backend_cuda_get_device_count(); ++i) {
- tensor_split_arr[i] /= split_sum;
- }
- }
- auto it = buft_map.find(tensor_split_arr);
- if (it != buft_map.end()) {
- return &it->second;
- }
- struct ggml_backend_buffer_type buft {
- /* .iface = */ ggml_backend_cuda_split_buffer_type_interface,
- /* .context = */ new ggml_backend_cuda_split_buffer_type_context{tensor_split_arr},
- };
- auto result = buft_map.emplace(tensor_split_arr, buft);
- return &result.first->second;
- }
- // host buffer type
- GGML_CALL static const char * ggml_backend_cuda_host_buffer_type_name(ggml_backend_buffer_type_t buft) {
- return GGML_CUDA_NAME "_Host";
- GGML_UNUSED(buft);
- }
- GGML_CALL static const char * ggml_backend_cuda_host_buffer_name(ggml_backend_buffer_t buffer) {
- return GGML_CUDA_NAME "_Host";
- GGML_UNUSED(buffer);
- }
- GGML_CALL static void ggml_backend_cuda_host_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- CUDA_CHECK(cudaFreeHost(buffer->context));
- }
- static void * ggml_cuda_host_malloc(size_t size) {
- if (getenv("GGML_CUDA_NO_PINNED") != nullptr) {
- return nullptr;
- }
- void * ptr = nullptr;
- cudaError_t err = cudaMallocHost((void **) &ptr, size);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- fprintf(stderr, "%s: warning: failed to allocate %.2f MiB of pinned memory: %s\n", __func__,
- size/1024.0/1024.0, cudaGetErrorString(err));
- return nullptr;
- }
- return ptr;
- }
- GGML_CALL static ggml_backend_buffer_t ggml_backend_cuda_host_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
- void * ptr = ggml_cuda_host_malloc(size);
- if (ptr == nullptr) {
- // fallback to cpu buffer
- return ggml_backend_buft_alloc_buffer(ggml_backend_cpu_buffer_type(), size);
- }
- ggml_backend_buffer_t buffer = ggml_backend_cpu_buffer_from_ptr(ptr, size);
- buffer->buft = buft;
- buffer->iface.get_name = ggml_backend_cuda_host_buffer_name;
- buffer->iface.free_buffer = ggml_backend_cuda_host_buffer_free_buffer;
- return buffer;
- }
- GGML_CALL ggml_backend_buffer_type_t ggml_backend_cuda_host_buffer_type() {
- static struct ggml_backend_buffer_type ggml_backend_cuda_buffer_type_host = {
- /* .iface = */ {
- /* .get_name = */ ggml_backend_cuda_host_buffer_type_name,
- /* .alloc_buffer = */ ggml_backend_cuda_host_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_cpu_buffer_type()->iface.get_alignment,
- /* .get_max_size = */ NULL, // defaults to SIZE_MAX
- /* .get_alloc_size = */ ggml_backend_cpu_buffer_type()->iface.get_alloc_size,
- /* .supports_backend = */ ggml_backend_cpu_buffer_type()->iface.supports_backend,
- /* .is_host = */ ggml_backend_cpu_buffer_type()->iface.is_host,
- },
- /* .context = */ nullptr,
- };
- return &ggml_backend_cuda_buffer_type_host;
- }
- //static bool ggml_backend_buffer_is_cuda_host(ggml_backend_buffer_t buffer) {
- // return buffer->buft->iface.get_name == ggml_backend_cuda_host_buffer_type_name;
- //}
- /// kernels
- typedef void (*ggml_cuda_op_mul_mat_t)(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream);
- #ifndef GGML_CUDA_PEER_MAX_BATCH_SIZE
- #define GGML_CUDA_PEER_MAX_BATCH_SIZE 128
- #endif // GGML_CUDA_PEER_MAX_BATCH_SIZE
- #define MUL_MAT_SRC1_COL_STRIDE 128
- static __global__ void mul_mat_p021_f16_f32(
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
- const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / (nchannels_y / nchannels_x);
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- // x is transposed and permuted
- const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
- const float xi = __half2float(x[ix]);
- const int row_y = col_x;
- // y is not transposed but permuted
- const int iy = channel*nrows_y + row_y;
- tmp += xi * y[iy];
- }
- // dst is not transposed and not permuted
- const int idst = channel*nrows_dst + row_dst;
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
- const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
- const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
- const half * x = (const half *) vx;
- const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
- const int channel = blockDim.z*blockIdx.z + threadIdx.z;
- const int channel_x = channel / channel_x_divisor;
- const int nrows_y = ncols_x;
- const int nrows_dst = nrows_x;
- const int row_dst = row_x;
- const int idst = channel*nrows_dst + row_dst;
- float tmp = 0.0f;
- for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
- const int col_x = col_x0 + threadIdx.x;
- if (col_x >= ncols_x) {
- break;
- }
- const int row_y = col_x;
- const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
- const int iy = channel*nrows_y + row_y;
- const float xi = __half2float(x[ix]);
- tmp += xi * y[iy];
- }
- // sum up partial sums and write back result
- tmp = warp_reduce_sum(tmp);
- if (threadIdx.x == 0) {
- dst[idst] = tmp;
- }
- }
- static void ggml_mul_mat_p021_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
- const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
- }
- static void ggml_mul_mat_vec_nc_f16_f32_cuda(
- const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
- const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
- const dim3 block_nums(1, nrows_x, nchannels_y);
- const dim3 block_dims(WARP_SIZE, 1, 1);
- mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
- (vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
- }
- static cudaError_t ggml_cuda_cpy_tensor_2d(
- void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src->buffer));
- char * src_ptr = (char *) src->data;
- char * dst_ptr = (char *) dst;
- const int64_t ne0 = src->ne[0];
- const int64_t nb0 = src->nb[0];
- const int64_t nb1 = src->nb[1];
- const int64_t nb2 = src->nb[2];
- const int64_t nb3 = src->nb[3];
- const enum ggml_type type = src->type;
- const int64_t ts = ggml_type_size(type);
- const int64_t bs = ggml_blck_size(type);
- int64_t i1_diff = i1_high - i1_low;
- const char * x = src_ptr + i1_low*nb1 + i2*nb2 + i3*nb3;
- if (nb0 == ts && nb1 == ts*ne0/bs) {
- return cudaMemcpyAsync(dst_ptr, x, i1_diff*nb1, cudaMemcpyDeviceToDevice, stream);
- } else if (nb0 == ts) {
- return cudaMemcpy2DAsync(dst_ptr, ts*ne0/bs, x, nb1, ts*ne0/bs, i1_diff, cudaMemcpyDeviceToDevice, stream);
- } else {
- for (int64_t i1 = 0; i1 < i1_diff; i1++) {
- const void * rx = (const void *) ((const char *) x + i1*nb1);
- void * rd = (void *) (dst_ptr + i1*ts*ne0/bs);
- // pretend the row is a matrix with cols=1
- cudaError_t r = cudaMemcpy2DAsync(rd, ts/bs, rx, nb0, ts/bs, ne0, cudaMemcpyDeviceToDevice, stream);
- if (r != cudaSuccess) {
- return r;
- }
- }
- return cudaSuccess;
- }
- }
- static void ggml_cuda_op_mul_mat_cublas(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
- const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
- const int64_t src1_padded_row_size, cudaStream_t stream) {
- GGML_ASSERT(src0_dd_i != nullptr);
- GGML_ASSERT(src1_ddf_i != nullptr);
- GGML_ASSERT(dst_dd_i != nullptr);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t row_diff = row_high - row_low;
- int id = ggml_cuda_get_device();
- // the main device has a larger memory buffer to hold the results from all GPUs
- // ldc == nrows of the matrix that cuBLAS writes into
- int ldc = id == ctx.device ? ne0 : row_diff;
- const int compute_capability = ggml_cuda_info().devices[id].cc;
- if (compute_capability >= CC_VOLTA && (src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && ggml_is_contiguous(src0) && row_diff == src0->ne[1] && dst->op_params[0] == GGML_PREC_DEFAULT) {
- // convert src0 and src1 to fp16, multiply as fp16, convert dst to fp32
- ggml_cuda_pool_alloc<half> src0_as_f16(ctx.pool());
- if (src0->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src0->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = row_diff*ne00;
- src0_as_f16.alloc(ne);
- to_fp16_cuda(src0_dd_i, src0_as_f16.get(), ne, stream);
- }
- const half * src0_ptr = src0->type == GGML_TYPE_F16 ? (const half *) src0_dd_i : src0_as_f16.get();
- ggml_cuda_pool_alloc<half> src1_as_f16(ctx.pool());
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t ne = src1_ncols*ne10;
- src1_as_f16.alloc(ne);
- to_fp16_cuda(src1_ddf_i, src1_as_f16.get(), ne, stream);
- }
- const half * src1_ptr = src1->type == GGML_TYPE_F16 ? (const half *) src1_ddf_i : src1_as_f16.get();
- ggml_cuda_pool_alloc<half> dst_f16(ctx.pool(), row_diff*src1_ncols);
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
- CUBLAS_CHECK(
- cublasGemmEx(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha_f16, src0_ptr, CUDA_R_16F, ne00,
- src1_ptr, CUDA_R_16F, ne10,
- &beta_f16, dst_f16.get(), CUDA_R_16F, ldc,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16.get(), dst_dd_i, row_diff*src1_ncols, stream);
- } else {
- ggml_cuda_pool_alloc<float> src0_ddq_as_f32(ctx.pool(id));
- ggml_cuda_pool_alloc<float> src1_ddq_as_f32(ctx.pool(id));
- if (src0->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src0->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src0_ddq_as_f32.alloc(row_diff*ne00);
- to_fp32_cuda(src0_dd_i, src0_ddq_as_f32.get(), row_diff*ne00, stream);
- }
- if (src1->type != GGML_TYPE_F32) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(src1->type);
- GGML_ASSERT(to_fp32_cuda != nullptr);
- src1_ddq_as_f32.alloc(src1_ncols*ne10);
- to_fp32_cuda(src1_ddf_i, src1_ddq_as_f32.get(), src1_ncols*ne10, stream);
- }
- const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
- const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
- const float alpha = 1.0f;
- const float beta = 0.0f;
- CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(id), stream));
- CUBLAS_CHECK(
- cublasSgemm(ctx.cublas_handle(id), CUBLAS_OP_T, CUBLAS_OP_N,
- row_diff, src1_ncols, ne10,
- &alpha, src0_ddf_i, ne00,
- src1_ddf1_i, ne10,
- &beta, dst_dd_i, ldc));
- }
- GGML_UNUSED(dst);
- GGML_UNUSED(src1_ddq_i);
- GGML_UNUSED(src1_padded_row_size);
- }
- static void ggml_cuda_set_peer_access(const int n_tokens, int main_device) {
- static bool peer_access_enabled = false;
- const bool enable_peer_access = n_tokens <= GGML_CUDA_PEER_MAX_BATCH_SIZE;
- if (peer_access_enabled == enable_peer_access) {
- return;
- }
- #ifdef NDEBUG
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- ggml_cuda_set_device(id);
- CUDA_CHECK(cudaDeviceSynchronize());
- }
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- ggml_cuda_set_device(id);
- for (int id_other = 0; id_other < ggml_backend_cuda_get_device_count(); ++id_other) {
- if (id == id_other) {
- continue;
- }
- if (id != main_device && id_other != main_device) {
- continue;
- }
- int can_access_peer;
- CUDA_CHECK(cudaDeviceCanAccessPeer(&can_access_peer, id, id_other));
- if (can_access_peer) {
- if (enable_peer_access) {
- cudaError_t err = cudaDeviceEnablePeerAccess(id_other, 0);
- if (err != cudaErrorPeerAccessAlreadyEnabled) {
- CUDA_CHECK(err);
- }
- } else {
- cudaError_t err = cudaDeviceDisablePeerAccess(id_other);
- if (err != cudaErrorPeerAccessNotEnabled) {
- CUDA_CHECK(err);
- }
- }
- }
- }
- }
- ggml_cuda_set_device(main_device);
- #endif // NDEBUG
- peer_access_enabled = enable_peer_access;
- GGML_UNUSED(main_device);
- }
- static void ggml_cuda_op_mul_mat(
- ggml_backend_cuda_context & ctx,
- const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_cuda_op_mul_mat_t op,
- const bool convert_src1_to_q8_1) {
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne03 = src0->ne[3];
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int64_t nrows1 = ggml_nrows(src1);
- GGML_ASSERT(ne03 == ne13);
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- const int nb2 = dst->nb[2];
- const int nb3 = dst->nb[3];
- GGML_ASSERT(ggml_backend_buffer_is_cuda(dst->buffer));
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src1->buffer));
- ggml_backend_cuda_buffer_context * src1_ctx = (ggml_backend_cuda_buffer_context *) src1->buffer->context;
- ggml_backend_cuda_buffer_context * dst_ctx = (ggml_backend_cuda_buffer_context *) dst->buffer->context;
- GGML_ASSERT(src1->type == GGML_TYPE_F32 || (src1->ne[2] == 1 && src1->ne[3] == 1));
- GGML_ASSERT(ne12 >= ne02 && ne12 % ne02 == 0);
- const int64_t i02_divisor = ne12 / ne02;
- const size_t src0_ts = ggml_type_size(src0->type);
- const size_t src0_bs = ggml_blck_size(src0->type);
- const size_t q8_1_ts = sizeof(block_q8_1);
- const size_t q8_1_bs = QK8_1;
- const bool src0_is_contiguous = ggml_is_contiguous(src0);
- const bool src1_is_contiguous = ggml_is_contiguous(src1);
- const int64_t src1_padded_col_size = GGML_PAD(ne10, MATRIX_ROW_PADDING);
- const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
- GGML_ASSERT(!(split && ne02 > 1));
- GGML_ASSERT(!(split && ne03 > 1));
- GGML_ASSERT(!(split && ne02 < ne12));
- ggml_tensor_extra_gpu * src0_extra = split ? (ggml_tensor_extra_gpu *) src0->extra : nullptr;
- std::array<float, GGML_CUDA_MAX_DEVICES> tensor_split;
- if (split) {
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
- tensor_split = buft_ctx->tensor_split;
- }
- struct dev_data {
- ggml_cuda_pool_alloc<char> src0_dd_alloc;
- ggml_cuda_pool_alloc<float> src1_ddf_alloc;
- ggml_cuda_pool_alloc<char> src1_ddq_alloc;
- ggml_cuda_pool_alloc<float> dst_dd_alloc;
- char * src0_dd = nullptr;
- float * src1_ddf = nullptr; // float
- char * src1_ddq = nullptr; // q8_1
- float * dst_dd = nullptr;
- int64_t row_low;
- int64_t row_high;
- };
- dev_data dev[GGML_CUDA_MAX_DEVICES];
- int used_devices = 0;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- // by default, use all rows
- dev[id].row_low = 0;
- dev[id].row_high = ne01;
- // for multi GPU, get the row boundaries from tensor split
- // and round to mul_mat_q tile sizes
- if (split) {
- const int64_t rounding = get_row_rounding(src0->type, tensor_split);
- if (id != 0) {
- dev[id].row_low = ne01*tensor_split[id];
- if (dev[id].row_low < ne01) {
- dev[id].row_low -= dev[id].row_low % rounding;
- }
- }
- if (id != ggml_backend_cuda_get_device_count() - 1) {
- dev[id].row_high = ne01*tensor_split[id + 1];
- if (dev[id].row_high < ne01) {
- dev[id].row_high -= dev[id].row_high % rounding;
- }
- }
- }
- }
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
- continue;
- }
- used_devices++;
- const bool src1_on_device = id == src1_ctx->device;
- const bool dst_on_device = id == dst_ctx->device;
- ggml_cuda_set_device(id);
- cudaStream_t stream = ctx.stream(id, 0);
- if (src0_is_contiguous) {
- dev[id].src0_dd = split ? (char *) src0_extra->data_device[id] : (char *) src0->data;
- } else {
- dev[id].src0_dd = dev[id].src0_dd_alloc.alloc(ctx.pool(id), ggml_nbytes(src0));
- }
- if (src1_on_device && src1_is_contiguous) {
- dev[id].src1_ddf = (float *) src1->data;
- } else {
- dev[id].src1_ddf = dev[id].src1_ddf_alloc.alloc(ctx.pool(id), ggml_nelements(src1));
- }
- if (convert_src1_to_q8_1) {
- dev[id].src1_ddq = dev[id].src1_ddq_alloc.alloc(ctx.pool(id), nrows1*src1_padded_col_size*q8_1_ts/q8_1_bs);
- if (src1_on_device && src1_is_contiguous) {
- quantize_row_q8_1_cuda(dev[id].src1_ddf, dev[id].src1_ddq, ne10, nrows1, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- }
- if (dst_on_device) {
- dev[id].dst_dd = (float *) dst->data;
- } else {
- const size_t size_dst_ddf = split ? (dev[id].row_high - dev[id].row_low)*ne1 : ggml_nelements(dst);
- dev[id].dst_dd = dev[id].dst_dd_alloc.alloc(ctx.pool(id), size_dst_ddf);
- }
- }
- // if multiple devices are used they need to wait for the main device
- // here an event is recorded that signals that the main device has finished calculating the input data
- if (split && used_devices > 1) {
- ggml_cuda_set_device(ctx.device);
- CUDA_CHECK(cudaEventRecord(src0_extra->events[ctx.device][0], ctx.stream()));
- }
- const int64_t src1_col_stride = split && used_devices > 1 ? MUL_MAT_SRC1_COL_STRIDE : ne11;
- for (int64_t src1_col_0 = 0; src1_col_0 < ne11; src1_col_0 += src1_col_stride) {
- const int64_t is = split ? (src1_col_0/src1_col_stride) % GGML_CUDA_MAX_STREAMS : 0;
- const int64_t src1_ncols = src1_col_0 + src1_col_stride > ne11 ? ne11 - src1_col_0 : src1_col_stride;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if ((!split && id != ctx.device) || dev[id].row_low == dev[id].row_high) {
- continue;
- }
- const bool src1_on_device = id == src1_ctx->device;
- const bool dst_on_device = id == dst_ctx->device;
- const int64_t row_diff = dev[id].row_high - dev[id].row_low;
- ggml_cuda_set_device(id);
- cudaStream_t stream = ctx.stream(id, is);
- // wait for main GPU data if necessary
- if (split && (id != ctx.device || is != 0)) {
- CUDA_CHECK(cudaStreamWaitEvent(stream, src0_extra->events[ctx.device][0], 0));
- }
- for (int64_t i0 = 0; i0 < ne13*ne12; ++i0) {
- const int64_t i03 = i0 / ne12;
- const int64_t i02 = i0 % ne12;
- const size_t src1_ddq_i_offset = (i0*ne11 + src1_col_0) * src1_padded_col_size*q8_1_ts/q8_1_bs;
- // for split tensors the data begins at i0 == i0_offset_low
- char * src0_dd_i = dev[id].src0_dd + (i0/i02_divisor) * (ne01*ne00*src0_ts)/src0_bs;
- float * src1_ddf_i = dev[id].src1_ddf + (i0*ne11 + src1_col_0) * ne10;
- char * src1_ddq_i = dev[id].src1_ddq + src1_ddq_i_offset;
- float * dst_dd_i = dev[id].dst_dd + (i0*ne1 + src1_col_0) * (dst_on_device ? ne0 : row_diff);
- // the main device memory buffer can be on VRAM scratch, with space for all partial results
- // in that case an offset on dst_ddf_i is needed
- if (id == ctx.device) {
- dst_dd_i += dev[id].row_low; // offset is 0 if no tensor split
- }
- // copy src0, src1 to device if necessary
- if (src1_is_contiguous) {
- if (id != ctx.device) {
- if (convert_src1_to_q8_1) {
- char * src1_ddq_i_source = dev[ctx.device].src1_ddq + src1_ddq_i_offset;
- CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddq_i, id, src1_ddq_i_source, ctx.device,
- src1_ncols*src1_padded_col_size*q8_1_ts/q8_1_bs, stream));
- } else {
- float * src1_ddf_i_source = (float *) src1->data;
- src1_ddf_i_source += (i0*ne11 + src1_col_0) * ne10;
- CUDA_CHECK(cudaMemcpyPeerAsync(src1_ddf_i, id, src1_ddf_i_source, ctx.device,
- src1_ncols*ne10*sizeof(float), stream));
- }
- }
- } else if (src1_on_device && !src1_is_contiguous) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(
- src1_ddf_i, src1, i03, i02, src1_col_0, src1_col_0+src1_ncols, stream));
- } else {
- GGML_ASSERT(false);
- }
- if (convert_src1_to_q8_1 && !src1_is_contiguous) {
- quantize_row_q8_1_cuda(src1_ddf_i, src1_ddq_i, ne10, src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- }
- if (src1_col_0 == 0 && !src0_is_contiguous && i02 % i02_divisor == 0) {
- CUDA_CHECK(ggml_cuda_cpy_tensor_2d(src0_dd_i, src0, i03, i02/i02_divisor, dev[id].row_low, dev[id].row_high, stream));
- }
- // do the computation
- op(ctx, src0, src1, dst, src0_dd_i, src1_ddf_i, src1_ddq_i, dst_dd_i,
- dev[id].row_low, dev[id].row_high, src1_ncols, src1_padded_col_size, stream);
- CUDA_CHECK(cudaGetLastError());
- // copy dst to host or other device if necessary
- if (!dst_on_device) {
- void * dst_off_device = dst->data;
- if (split) {
- // src0 = weight matrix is saved as a transposed matrix for better memory layout.
- // dst is NOT transposed.
- // The outputs of matrix matrix multiplications can therefore NOT simply be concatenated for >1 GPU.
- // Instead they need to be copied to the correct slice in ne0 = dst row index.
- // If dst is a vector with ne0 == 1 then you don't have to do this but it still produces correct results.
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0 + dev[id].row_low;
- #if !defined(GGML_USE_HIPBLAS)
- // cudaMemcpy2DAsync may fail with copies between vmm pools of different devices
- cudaMemcpy3DPeerParms p = {};
- p.dstDevice = ctx.device;
- p.dstPtr = make_cudaPitchedPtr(dhf_dst_i, ne0*sizeof(float), row_diff, src1_ncols);
- p.srcDevice = id;
- p.srcPtr = make_cudaPitchedPtr(dst_dd_i, row_diff*sizeof(float), row_diff, src1_ncols);
- p.extent = make_cudaExtent(row_diff*sizeof(float), src1_ncols, 1);
- CUDA_CHECK(cudaMemcpy3DPeerAsync(&p, stream));
- #else
- // HIP does not support cudaMemcpy3DPeerAsync or vmm pools
- CUDA_CHECK(cudaMemcpy2DAsync(dhf_dst_i, ne0*sizeof(float),
- dst_dd_i, row_diff*sizeof(float),
- row_diff*sizeof(float), src1_ncols,
- cudaMemcpyDeviceToDevice, stream));
- #endif
- } else {
- float * dhf_dst_i = (float *) ((char *) dst_off_device + i02*nb2 + i03*nb3);
- GGML_ASSERT(dst->nb[1] == ne0*sizeof(float));
- dhf_dst_i += src1_col_0*ne0;
- CUDA_CHECK(cudaMemcpyAsync(dhf_dst_i, dst_dd_i, src1_ncols*ne0*sizeof(float), cudaMemcpyDeviceToDevice, stream));
- }
- }
- // add event for the main device to wait on until other device is done
- if (split && (id != ctx.device || is != 0)) {
- CUDA_CHECK(cudaEventRecord(src0_extra->events[id][is], stream));
- }
- }
- }
- }
- // main device waits for all other devices to be finished
- if (split && ggml_backend_cuda_get_device_count() > 1) {
- int64_t is_max = (ne11 + MUL_MAT_SRC1_COL_STRIDE - 1) / MUL_MAT_SRC1_COL_STRIDE;
- is_max = is_max <= GGML_CUDA_MAX_STREAMS ? is_max : GGML_CUDA_MAX_STREAMS;
- ggml_cuda_set_device(ctx.device);
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- if (dev[id].row_low == dev[id].row_high) {
- continue;
- }
- for (int64_t is = 0; is < is_max; ++is) {
- CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), src0_extra->events[id][is], 0));
- }
- }
- }
- }
- static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
- GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
- GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t ne12 = src1->ne[2];
- cudaStream_t main_stream = ctx.stream();
- void * src0_ddq = src0->data;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
- }
- static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst){
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(!ggml_is_permuted(src0));
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const int64_t ne02 = src0->ne[2];
- const int64_t nb01 = src0->nb[1];
- const int64_t nb02 = src0->nb[2];
- const int64_t ne12 = src1->ne[2];
- cudaStream_t main_stream = ctx.stream();
- void * src0_ddq = src0->data;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- const int64_t row_stride_x = nb01 / sizeof(half);
- const int64_t channel_stride_x = nb02 / sizeof(half);
- ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
- }
- static __global__ void k_compute_batched_ptrs(
- const half * src0_as_f16, const half * src1_as_f16, char * dst,
- const void ** ptrs_src, void ** ptrs_dst,
- int64_t ne12, int64_t ne13,
- int64_t ne23,
- size_t nb02, size_t nb03,
- size_t nb12, size_t nb13,
- size_t nbd2, size_t nbd3,
- int64_t r2, int64_t r3) {
- int64_t i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int64_t i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int64_t i03 = i13 / r3;
- int64_t i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_as_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_as_f16 + i12*nb12 + i13*nb13;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst + i12*nbd2 + i13*nbd3;
- }
- static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(!ggml_is_transposed(src0));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t ne_dst = ggml_nelements(dst);
- cudaStream_t main_stream = ctx.stream();
- CUBLAS_CHECK(cublasSetStream(ctx.cublas_handle(), main_stream));
- void * src0_ddq = src0->data;
- half * src0_f16 = (half *) src0_ddq;
- float * src1_ddf = (float *) src1->data;
- float * dst_ddf = (float *) dst->data;
- // convert src1 to fp16
- ggml_cuda_pool_alloc<half> src1_f16_alloc(ctx.pool());
- if (src1->type != GGML_TYPE_F16) {
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- const int64_t ne_src1 = ggml_nelements(src1);
- src1_f16_alloc.alloc(ne_src1);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- to_fp16_cuda(src1_ddf, src1_f16_alloc.get(), ne_src1, main_stream);
- }
- half * src1_f16 = src1->type == GGML_TYPE_F16 ? (half *) src1_ddf : src1_f16_alloc.get();
- ggml_cuda_pool_alloc<half> dst_f16(ctx.pool());
- char * dst_t;
- cublasComputeType_t cu_compute_type = CUBLAS_COMPUTE_16F;
- cudaDataType_t cu_data_type = CUDA_R_16F;
- // dst strides
- size_t nbd2 = dst->nb[2];
- size_t nbd3 = dst->nb[3];
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- const float alpha_f32 = 1.0f;
- const float beta_f32 = 0.0f;
- const void * alpha = &alpha_f16;
- const void * beta = &beta_f16;
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- dst_t = (char *) dst_f16.alloc(ne_dst);
- nbd2 /= sizeof(float) / sizeof(half);
- nbd3 /= sizeof(float) / sizeof(half);
- } else {
- dst_t = (char *) dst_ddf;
- cu_compute_type = CUBLAS_COMPUTE_32F;
- cu_data_type = CUDA_R_32F;
- alpha = &alpha_f32;
- beta = &beta_f32;
- }
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- #if 0
- // use cublasGemmEx
- {
- for (int i13 = 0; i13 < ne13; ++i13) {
- for (int i12 = 0; i12 < ne12; ++i12) {
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- CUBLAS_CHECK(
- cublasGemmEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_as_f16 + i02*src0->nb[2] + i03*src0->nb[3] , CUDA_R_16F, nb01/sizeof(half),
- (const char *) src1_as_f16 + i12*src1->nb[2]/2 + i13*src1->nb[3]/2, CUDA_R_16F, nb11/sizeof(float),
- beta, ( char *) dst_t + i12*nbd2 + i13*nbd3, cu_data_type, ne01,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
- }
- }
- #else
- if (r2 == 1 && r3 == 1 && src0->nb[2]*src0->ne[2] == src0->nb[3] && src1->nb[2]*src1->ne[2] == src1->nb[3]) {
- // there is no broadcast and src0, src1 are contiguous across dims 2, 3
- // use cublasGemmStridedBatchedEx
- CUBLAS_CHECK(
- cublasGemmStridedBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const char *) src0_f16, CUDA_R_16F, nb01/nb00, nb02/nb00, // strideA
- (const char *) src1_f16, CUDA_R_16F, nb11/nb10, nb12/nb10, // strideB
- beta, ( char *) dst_t, cu_data_type, ne01, nb2/nb0, // strideC
- ne12*ne13,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- } else {
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
- ggml_cuda_pool_alloc<const void *> ptrs_src(ctx.pool(), 2*ne23);
- ggml_cuda_pool_alloc< void *> ptrs_dst(ctx.pool(), 1*ne23);
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs<<<1, block_dims, 0, main_stream>>>(
- src0_f16, src1_f16, dst_t,
- ptrs_src.get(), ptrs_dst.get(),
- ne12, ne13,
- ne23,
- nb02, nb03,
- src1->type == GGML_TYPE_F16 ? nb12 : nb12/2,
- src1->type == GGML_TYPE_F16 ? nb13 : nb13/2,
- nbd2, nbd3,
- r2, r3);
- CUDA_CHECK(cudaGetLastError());
- CUBLAS_CHECK(
- cublasGemmBatchedEx(ctx.cublas_handle(), CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- alpha, (const void **) (ptrs_src.get() + 0*ne23), CUDA_R_16F, nb01/nb00,
- (const void **) (ptrs_src.get() + 1*ne23), CUDA_R_16F, nb11/nb10,
- beta, ( void **) (ptrs_dst.get() + 0*ne23), cu_data_type, ne01,
- ne23,
- cu_compute_type,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- }
- #endif
- if (dst->op_params[0] == GGML_PREC_DEFAULT) {
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16.get(), dst_ddf, ne_dst, main_stream);
- }
- }
- static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- const bool split = ggml_backend_buffer_is_cuda_split(src0->buffer);
- int64_t min_compute_capability = INT_MAX;
- bool any_pascal_with_slow_fp16 = false;
- if (split) {
- ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
- auto & tensor_split = buft_ctx->tensor_split;
- for (int id = 0; id < ggml_backend_cuda_get_device_count(); ++id) {
- // skip devices that are not going to do any work:
- if (tensor_split[id] >= (id + 1 < ggml_backend_cuda_get_device_count() ? tensor_split[id + 1] : 1.0f)) {
- continue;
- }
- if (min_compute_capability > ggml_cuda_info().devices[id].cc) {
- min_compute_capability = ggml_cuda_info().devices[id].cc;
- }
- if (ggml_cuda_info().devices[id].cc == 610) {
- any_pascal_with_slow_fp16 = true;
- }
- }
- } else {
- min_compute_capability = ggml_cuda_info().devices[ctx.device].cc;
- any_pascal_with_slow_fp16 = ggml_cuda_info().devices[ctx.device].cc == 610;
- }
- // check data types and tensor shapes for custom matrix multiplication kernels:
- bool use_dequantize_mul_mat_vec = (ggml_is_quantized(src0->type) || src0->type == GGML_TYPE_F16)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src0->ne[0] % GGML_CUDA_DMMV_X == 0 && src1->ne[1] == 1;
- bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
- && src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
- bool use_mul_mat_q = ggml_cuda_supports_mmq(src0->type)
- && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
- #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- const bool fp16_performance_good = min_compute_capability >= CC_RDNA1;
- #ifdef CUDA_USE_TENSOR_CORES
- use_mul_mat_q = use_mul_mat_q && min_compute_capability < CC_RDNA3;
- #endif // CUDA_USE_TENSOR_CORES
- #else
- // fp16 performance is good on Volta or newer and on P100 (compute capability 6.0)
- const bool fp16_performance_good = min_compute_capability >= CC_PASCAL && !any_pascal_with_slow_fp16;
- // mmvq and mmq need the __dp4a instruction which on NVIDIA is only available for CC >= 6.1
- use_mul_mat_vec_q = use_mul_mat_vec_q && min_compute_capability >= MIN_CC_DP4A;
- use_mul_mat_q = use_mul_mat_q && min_compute_capability >= MIN_CC_DP4A;
- #ifdef CUDA_USE_TENSOR_CORES
- // when tensor cores are available, use them for large batch size
- // ref: https://github.com/ggerganov/llama.cpp/pull/3776
- use_mul_mat_q = use_mul_mat_q && (!fp16_performance_good || src1->ne[1] <= MMQ_MAX_BATCH_SIZE);
- #endif // CUDA_USE_TENSOR_CORES
- #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
- // if mmvq is available it's a better choice than dmmv:
- #ifndef GGML_CUDA_FORCE_DMMV
- use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
- #endif // GGML_CUDA_FORCE_DMMV
- // debug helpers
- //printf("src0: %8d %8d %8d %8d\n", src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3]);
- //printf("src1: %8d %8d %8d %8d\n", src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3]);
- //printf(" %8d %8d %8d %8d\n", src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3]);
- //printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
- //printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
- if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && ggml_is_permuted(src0) && ggml_is_permuted(src1) && src1->ne[1] == 1) {
- // KQ single-batch
- ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
- } else if (!split && !fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
- // KQV single-batch
- ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
- } else if (!split && fp16_performance_good && src0->type == GGML_TYPE_F16 && !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
- // KQ + KQV multi-batch
- ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
- } else if (use_dequantize_mul_mat_vec) {
- ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
- } else if (use_mul_mat_vec_q) {
- ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
- } else if (use_mul_mat_q) {
- ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_q, true);
- } else {
- ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_cublas, false);
- }
- }
- #if 0
- template<typename ... Srcs>
- static __global__ void k_compute_batched_ptrs_id(
- const void ** ptrs_src, void ** ptrs_dst,
- int ne12, int ne13,
- int ne23,
- int nb02, int nb03,
- int nb12, int nb13,
- int nb2, int nb3,
- int r2, int r3,
- ggml_type src0_type, half * src0_as_f16, int64_t src0_ne,
- const half * src1_f16, half * dst_f16,
- const int32_t * ids, const int id,
- Srcs... src0s) {
- int i = ids[id];
- half * src0_f16;
- const void * srcs_ar[] = { (const half *) src0s... };
- if (src0_type == GGML_TYPE_F16) {
- src0_f16 = (half *) srcs_ar[i];
- } else {
- src0_f16 = src0_as_f16;
- if (threadIdx.x == 0 && threadIdx.y == 0) {
- const to_fp16_cuda_t to_fp16 = ggml_get_to_fp16_cuda(src0_type);
- to_fp16(srcs_ar[i], src0_f16, src0_ne, cudaStreamFireAndForget);
- }
- }
- int i13 = blockIdx.x * blockDim.x + threadIdx.x;
- int i12 = blockIdx.y * blockDim.y + threadIdx.y;
- if (i13 >= ne13 || i12 >= ne12) {
- return;
- }
- int i03 = i13 / r3;
- int i02 = i12 / r2;
- ptrs_src[0*ne23 + i12 + i13*ne12] = (const char *) src0_f16 + i02*nb02 + i03*nb03;
- ptrs_src[1*ne23 + i12 + i13*ne12] = (const char *) src1_f16 + i12*nb12/2 + i13*nb13/2;
- ptrs_dst[0*ne23 + i12 + i13*ne12] = ( char *) dst_f16 + i12* nb2/2 + i13* nb3/2;
- }
- static void ggml_cuda_mul_mat_id_cublas(ggml_tensor * dst) {
- const struct ggml_tensor * ids = dst->src[0];
- const struct ggml_tensor * src1 = dst->src[1];
- const struct ggml_tensor * src00 = dst->src[2];
- const int id = dst->op_params[0];
- GGML_ASSERT(!ggml_is_transposed(src00));
- GGML_ASSERT(!ggml_is_transposed(src1));
- GGML_ASSERT(src00->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int64_t ne00 = src00->ne[0]; GGML_UNUSED(ne00);
- const int64_t ne01 = src00->ne[1];
- const int64_t ne02 = src00->ne[2];
- const int64_t ne03 = src00->ne[3];
- //const int64_t nb01 = src00->nb[1];
- const int64_t nb02 = src00->nb[2]; GGML_UNUSED(nb02);
- const int64_t nb03 = src00->nb[3]; GGML_UNUSED(nb03);
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- //const int64_t nb11 = src1->nb[1];
- const int64_t nb12 = src1->nb[2]; GGML_UNUSED(nb12);
- const int64_t nb13 = src1->nb[3]; GGML_UNUSED(nb13);
- const int64_t ne1 = ggml_nelements(src1);
- const int64_t ne = ggml_nelements(dst);
- ggml_cuda_set_device(g_main_device);
- cudaStream_t main_stream = g_cudaStreams[g_main_device][0];
- CUBLAS_CHECK(cublasSetStream(g_cublas_handles[g_main_device], main_stream));
- //ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
- //void * src0_ddq = src0_extra->data_device[g_main_device];
- //half * src0_as_f16 = (half *) src0_ddq;
- ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
- float * src1_ddf = (float *) src1_extra->data_device[g_main_device];
- ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
- float * dst_ddf = (float *) dst_extra->data_device[g_main_device];
- // convert src1 to fp16
- const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
- GGML_ASSERT(to_fp16_cuda != nullptr);
- size_t src1_as = 0;
- half * src1_as_f16 = (half *) ggml_cuda_pool_malloc(ne1 * sizeof(half), &src1_as);
- to_fp16_cuda(src1_ddf, src1_as_f16, ne1, main_stream);
- size_t dst_as = 0;
- half * dst_f16 = (half *) ggml_cuda_pool_malloc(ne * sizeof(half), &dst_as);
- GGML_ASSERT(ne12 % ne02 == 0);
- GGML_ASSERT(ne13 % ne03 == 0);
- // broadcast factors
- const int64_t r2 = ne12/ne02;
- const int64_t r3 = ne13/ne03;
- const half alpha_f16 = 1.0f;
- const half beta_f16 = 0.0f;
- // use cublasGemmBatchedEx
- const int ne23 = ne12*ne13;
- const void ** ptrs_src = nullptr;
- void ** ptrs_dst = nullptr;
- size_t ptrs_src_s = 0;
- size_t ptrs_dst_s = 0;
- ptrs_src = (const void **) ggml_cuda_pool_malloc(2*ne23*sizeof(void *), &ptrs_src_s);
- ptrs_dst = ( void **) ggml_cuda_pool_malloc(1*ne23*sizeof(void *), &ptrs_dst_s);
- int64_t src0_ne = ggml_nelements(src00);
- half * src0_as_f16 = nullptr;
- size_t src0_as = 0;
- if (src00->type != GGML_TYPE_F16) {
- src0_as_f16 = (half *) ggml_cuda_pool_malloc(src0_ne * sizeof(half), &src0_as);
- }
- static_assert(GGML_MAX_SRC == 6, "GGML_MAX_SRC == 6");
- dim3 block_dims(ne13, ne12);
- k_compute_batched_ptrs_id<<<1, block_dims, 0, main_stream>>>(
- ptrs_src, ptrs_dst,
- ne12, ne13,
- ne23,
- ne00*ne01*sizeof(half), ne00*ne01*ne02*sizeof(half),
- nb12, nb13,
- dst->nb[2], dst->nb[3],
- r2, r3,
- src00->type, src0_as_f16, src0_ne,
- src1_as_f16, dst_f16,
- (const int *)((ggml_tensor_extra_gpu *)ids->extra)->data_device[g_main_device], id,
- dst->src[2] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[2]->extra)->data_device[g_main_device] : nullptr,
- dst->src[3] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[3]->extra)->data_device[g_main_device] : nullptr,
- dst->src[4] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[4]->extra)->data_device[g_main_device] : nullptr,
- dst->src[5] ? (const half *)((ggml_tensor_extra_gpu *)dst->src[5]->extra)->data_device[g_main_device] : nullptr
- );
- CUDA_CHECK(cudaGetLastError());
- CUBLAS_CHECK(
- cublasGemmBatchedEx(g_cublas_handles[g_main_device], CUBLAS_OP_T, CUBLAS_OP_N,
- ne01, ne11, ne10,
- &alpha_f16, (const void **) (ptrs_src + 0*ne23), CUDA_R_16F, ne00,
- (const void **) (ptrs_src + 1*ne23), CUDA_R_16F, ne10,
- &beta_f16, ( void **) (ptrs_dst + 0*ne23), CUDA_R_16F, ne01,
- ne23,
- CUBLAS_COMPUTE_16F,
- CUBLAS_GEMM_DEFAULT_TENSOR_OP));
- if (src0_as != 0) {
- ggml_cuda_pool_free(src0_as_f16, src0_as);
- }
- if (ptrs_src_s != 0) {
- ggml_cuda_pool_free(ptrs_src, ptrs_src_s);
- }
- if (ptrs_dst_s != 0) {
- ggml_cuda_pool_free(ptrs_dst, ptrs_dst_s);
- }
- const to_fp32_cuda_t to_fp32_cuda = ggml_get_to_fp32_cuda(GGML_TYPE_F16);
- to_fp32_cuda(dst_f16, dst_ddf, ne, main_stream);
- ggml_cuda_pool_free(src1_as_f16, src1_as);
- ggml_cuda_pool_free(dst_f16, dst_as);
- }
- #endif
- static void ggml_cuda_mul_mat_id(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- #if 0
- ggml_cuda_mul_mat_id_cublas(dst);
- // TODO: mmq/mmv support
- #endif
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- cudaStream_t stream = ctx.stream();
- const size_t nb11 = src1->nb[1];
- const size_t nb1 = dst->nb[1];
- const struct ggml_tensor * ids = src0;
- const int32_t id = ((int32_t *) dst->op_params)[0];
- const int32_t n_as = ((int32_t *) dst->op_params)[1];
- std::vector<char> ids_host(ggml_nbytes(ids));
- const char * ids_dev = (const char *) ids->data;
- CUDA_CHECK(cudaMemcpyAsync(ids_host.data(), ids_dev, ggml_nbytes(ids), cudaMemcpyDeviceToHost, stream));
- CUDA_CHECK(cudaStreamSynchronize(stream));
- ggml_tensor src1_row = *src1;
- ggml_tensor dst_row = *dst;
- char * src1_original = (char *) src1->data;
- char * dst_original = (char *) dst->data;
- if (src1->ne[1] == 1) {
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
- src1_row.data = src1_original + i01*src1->nb[1];
- dst_row.data = dst_original + i01*dst->nb[1];
- ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row);
- }
- } else {
- ggml_cuda_pool_alloc<char> src1_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(src1));
- ggml_cuda_pool_alloc<char> dst_contiguous(ctx.pool(), sizeof(float)*ggml_nelements(dst));
- src1_row.data = src1_contiguous.get();
- dst_row.data = dst_contiguous.get();
- for (int32_t row_id = 0; row_id < n_as; ++row_id) {
- const struct ggml_tensor * src0_row = dst->src[row_id + 2];
- int64_t num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- if (row_id_i != row_id) {
- continue;
- }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- CUDA_CHECK(cudaMemcpyAsync(src1_contiguous.get() + num_src1_rows*nb11, src1_original + i01*nb11,
- nb11, cudaMemcpyDeviceToDevice, stream));
- num_src1_rows++;
- }
- if (num_src1_rows == 0) {
- continue;
- }
- src1_row.ne[1] = num_src1_rows;
- dst_row.ne[1] = num_src1_rows;
- src1_row.nb[1] = nb11;
- src1_row.nb[2] = num_src1_rows*nb11;
- src1_row.nb[3] = num_src1_rows*nb11;
- dst_row.nb[1] = nb1;
- dst_row.nb[2] = num_src1_rows*nb1;
- dst_row.nb[3] = num_src1_rows*nb1;
- ggml_cuda_mul_mat(ctx, src0_row, &src1_row, &dst_row);
- num_src1_rows = 0;
- for (int64_t i01 = 0; i01 < ids->ne[1]; i01++) {
- const int32_t row_id_i = *(const int32_t *) (ids_host.data() + i01*ids->nb[1] + id*ids->nb[0]);
- if (row_id_i != row_id) {
- continue;
- }
- GGML_ASSERT(row_id >= 0 && row_id < n_as);
- CUDA_CHECK(cudaMemcpyAsync(dst_original + i01*nb1, dst_contiguous.get() + num_src1_rows*nb1,
- nb1, cudaMemcpyDeviceToDevice, stream));
- num_src1_rows++;
- }
- }
- }
- }
- static bool ggml_cuda_compute_forward(ggml_backend_cuda_context & ctx, struct ggml_tensor * dst) {
- // why is this here instead of mul_mat?
- if (dst->src[0] != nullptr && ggml_backend_buffer_is_cuda_split(dst->src[0]->buffer)) {
- ggml_cuda_set_peer_access(dst->src[1]->ne[1], ctx.device);
- }
- switch (dst->op) {
- case GGML_OP_REPEAT:
- ggml_cuda_op_repeat(ctx, dst);
- break;
- case GGML_OP_GET_ROWS:
- ggml_cuda_op_get_rows(ctx, dst);
- break;
- case GGML_OP_DUP:
- ggml_cuda_dup(ctx, dst);
- break;
- case GGML_OP_CPY:
- ggml_cuda_cpy(ctx, dst->src[0], dst->src[1]);
- break;
- case GGML_OP_CONT:
- ggml_cuda_dup(ctx, dst);
- break;
- case GGML_OP_ADD:
- ggml_cuda_op_add(ctx, dst);
- break;
- case GGML_OP_ACC:
- ggml_cuda_op_acc(ctx, dst);
- break;
- case GGML_OP_MUL:
- ggml_cuda_op_mul(ctx, dst);
- break;
- case GGML_OP_DIV:
- ggml_cuda_op_div(ctx, dst);
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(dst)) {
- case GGML_UNARY_OP_GELU:
- ggml_cuda_op_gelu(ctx, dst);
- break;
- case GGML_UNARY_OP_SILU:
- ggml_cuda_op_silu(ctx, dst);
- break;
- case GGML_UNARY_OP_GELU_QUICK:
- ggml_cuda_op_gelu_quick(ctx, dst);
- break;
- case GGML_UNARY_OP_TANH:
- ggml_cuda_op_tanh(ctx, dst);
- break;
- case GGML_UNARY_OP_RELU:
- ggml_cuda_op_relu(ctx, dst);
- break;
- case GGML_UNARY_OP_HARDSIGMOID:
- ggml_cuda_op_hardsigmoid(ctx, dst);
- break;
- case GGML_UNARY_OP_HARDSWISH:
- ggml_cuda_op_hardswish(ctx, dst);
- break;
- default:
- return false;
- }
- break;
- case GGML_OP_NORM:
- ggml_cuda_op_norm(ctx, dst);
- break;
- case GGML_OP_GROUP_NORM:
- ggml_cuda_op_group_norm(ctx, dst);
- break;
- case GGML_OP_CONCAT:
- ggml_cuda_op_concat(ctx, dst);
- break;
- case GGML_OP_UPSCALE:
- ggml_cuda_op_upscale(ctx, dst);
- break;
- case GGML_OP_PAD:
- ggml_cuda_op_pad(ctx, dst);
- break;
- case GGML_OP_ARANGE:
- ggml_cuda_op_arange(ctx, dst);
- break;
- case GGML_OP_TIMESTEP_EMBEDDING:
- ggml_cuda_op_timestep_embedding(ctx, dst);
- break;
- case GGML_OP_LEAKY_RELU:
- ggml_cuda_op_leaky_relu(ctx, dst);
- break;
- case GGML_OP_RMS_NORM:
- ggml_cuda_op_rms_norm(ctx, dst);
- break;
- case GGML_OP_MUL_MAT:
- if (dst->src[0]->ne[3] != dst->src[1]->ne[3]) {
- fprintf(stderr, "%s: cannot compute %s: src0->ne[3] = %" PRId64 ", src1->ne[3] = %" PRId64 " - fallback to CPU\n", __func__, dst->name, dst->src[0]->ne[3], dst->src[1]->ne[3]);
- return false;
- } else {
- ggml_cuda_mul_mat(ctx, dst->src[0], dst->src[1], dst);
- }
- break;
- case GGML_OP_MUL_MAT_ID:
- ggml_cuda_mul_mat_id(ctx, dst);
- break;
- case GGML_OP_SCALE:
- ggml_cuda_op_scale(ctx, dst);
- break;
- case GGML_OP_SQR:
- ggml_cuda_op_sqr(ctx, dst);
- break;
- case GGML_OP_CLAMP:
- ggml_cuda_op_clamp(ctx, dst);
- break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- break;
- case GGML_OP_DIAG_MASK_INF:
- ggml_cuda_op_diag_mask_inf(ctx, dst);
- break;
- case GGML_OP_SOFT_MAX:
- ggml_cuda_op_soft_max(ctx, dst);
- break;
- case GGML_OP_ROPE:
- ggml_cuda_op_rope(ctx, dst);
- break;
- case GGML_OP_ALIBI:
- ggml_cuda_op_alibi(ctx, dst);
- break;
- case GGML_OP_IM2COL:
- ggml_cuda_op_im2col(ctx, dst);
- break;
- case GGML_OP_POOL_2D:
- ggml_cuda_op_pool2d(ctx, dst);
- break;
- case GGML_OP_SUM_ROWS:
- ggml_cuda_op_sum_rows(ctx, dst);
- break;
- case GGML_OP_ARGSORT:
- ggml_cuda_op_argsort(ctx, dst);
- break;
- default:
- return false;
- }
- cudaError_t err = cudaGetLastError();
- if (err != cudaSuccess) {
- fprintf(stderr, "%s: %s failed\n", __func__, ggml_op_desc(dst));
- GGML_ASSERT(false);
- }
- return true;
- }
- ////////////////////////////////////////////////////////////////////////////////
- // backend
- GGML_CALL static const char * ggml_backend_cuda_name(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return cuda_ctx->name.c_str();
- }
- GGML_CALL static void ggml_backend_cuda_free(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- delete cuda_ctx;
- delete backend;
- }
- GGML_CALL static ggml_backend_buffer_type_t ggml_backend_cuda_get_default_buffer_type(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- return ggml_backend_cuda_buffer_type(cuda_ctx->device);
- }
- GGML_CALL static void ggml_backend_cuda_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
- GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- CUDA_CHECK(cudaMemcpyAsync((char *)tensor->data + offset, data, size, cudaMemcpyHostToDevice, cuda_ctx->stream()));
- }
- GGML_CALL static void ggml_backend_cuda_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_backend_buffer_t buf = tensor->view_src ? tensor->view_src->buffer : tensor->buffer;
- GGML_ASSERT(buf->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) && "unsupported buffer type");
- CUDA_CHECK(cudaMemcpyAsync(data, (const char *)tensor->data + offset, size, cudaMemcpyDeviceToHost, cuda_ctx->stream()));
- }
- GGML_CALL static bool ggml_backend_cuda_cpy_tensor_async(ggml_backend_t backend_src, ggml_backend_t backend_dst, const ggml_tensor * src, ggml_tensor * dst) {
- GGML_ASSERT(ggml_backend_is_cuda(backend_src) || ggml_backend_is_cuda(backend_dst));
- ggml_backend_buffer_t buf_src = src->view_src ? src->view_src->buffer : src->buffer;
- ggml_backend_buffer_t buf_dst = dst->view_src ? dst->view_src->buffer : dst->buffer;
- if (!ggml_backend_buffer_is_cuda(src->buffer)) {
- return false;
- }
- if (!ggml_backend_buffer_is_cuda(dst->buffer)) {
- return false;
- }
- // device -> device
- ggml_backend_cuda_context * cuda_ctx_src = (ggml_backend_cuda_context *)backend_src->context;
- ggml_backend_cuda_context * cuda_ctx_dst = (ggml_backend_cuda_context *)backend_dst->context;
- if (backend_src != backend_dst) {
- ggml_backend_cuda_buffer_context * buf_ctx_src = (ggml_backend_cuda_buffer_context *)buf_src->context;
- ggml_backend_cuda_buffer_context * buf_ctx_dst = (ggml_backend_cuda_buffer_context *)buf_dst->context;
- GGML_ASSERT(cuda_ctx_src->device == buf_ctx_src->device);
- GGML_ASSERT(cuda_ctx_dst->device == buf_ctx_dst->device);
- // copy on src stream
- if (cuda_ctx_src->device == cuda_ctx_dst->device) {
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
- } else {
- #ifdef GGML_CUDA_NO_PEER_COPY
- return false;
- #else
- CUDA_CHECK(cudaMemcpyPeerAsync(dst->data, cuda_ctx_dst->device, src->data, cuda_ctx_src->device, ggml_nbytes(dst), cuda_ctx_src->stream()));
- #endif
- }
- // record event on src stream
- if (!cuda_ctx_src->copy_event) {
- ggml_cuda_set_device(cuda_ctx_src->device);
- CUDA_CHECK(cudaEventCreateWithFlags(&cuda_ctx_src->copy_event, cudaEventDisableTiming));
- }
- CUDA_CHECK(cudaEventRecord(cuda_ctx_src->copy_event, cuda_ctx_src->stream()));
- // wait on dst stream for the copy to complete
- CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx_dst->stream(), cuda_ctx_src->copy_event, 0));
- } else {
- // src and dst are on the same backend
- CUDA_CHECK(cudaMemcpyAsync(dst->data, src->data, ggml_nbytes(dst), cudaMemcpyDeviceToDevice, cuda_ctx_dst->stream()));
- }
- return true;
- }
- GGML_CALL static void ggml_backend_cuda_synchronize(ggml_backend_t backend) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- CUDA_CHECK(cudaStreamSynchronize(cuda_ctx->stream()));
- GGML_UNUSED(backend);
- }
- GGML_CALL static enum ggml_status ggml_backend_cuda_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_cuda_set_device(cuda_ctx->device);
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (ggml_is_empty(node) || node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- #ifndef NDEBUG
- assert(node->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device));
- for (int j = 0; j < GGML_MAX_SRC; j++) {
- if (node->src[j] != nullptr) {
- assert(node->src[j]->buffer->buft == ggml_backend_cuda_buffer_type(cuda_ctx->device) || ggml_backend_buffer_is_cuda_split(node->src[j]->buffer));
- }
- }
- #endif
- bool ok = ggml_cuda_compute_forward(*cuda_ctx, node);
- if (!ok) {
- fprintf(stderr, "%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- return GGML_STATUS_SUCCESS;
- }
- GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_tensor * op) {
- switch (op->op) {
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- case GGML_UNARY_OP_HARDSIGMOID:
- case GGML_UNARY_OP_HARDSWISH:
- case GGML_UNARY_OP_GELU_QUICK:
- case GGML_UNARY_OP_TANH:
- return true;
- default:
- return false;
- }
- break;
- case GGML_OP_MUL_MAT:
- case GGML_OP_MUL_MAT_ID:
- {
- struct ggml_tensor * a;
- struct ggml_tensor * b;
- if (op->op == GGML_OP_MUL_MAT) {
- a = op->src[0];
- b = op->src[1];
- } else {
- a = op->src[2];
- b = op->src[1];
- }
- if (a->ne[3] != b->ne[3]) {
- return false;
- }
- ggml_type a_type = a->type;
- if (a_type == GGML_TYPE_IQ2_XXS || a_type == GGML_TYPE_IQ2_XS || a_type == GGML_TYPE_IQ3_XXS ||
- a_type == GGML_TYPE_IQ1_S || a_type == GGML_TYPE_IQ4_NL || a_type == GGML_TYPE_IQ3_S ||
- a_type == GGML_TYPE_IQ1_M || a_type == GGML_TYPE_IQ2_S || a_type == GGML_TYPE_IQ4_XS) {
- if (b->ne[1] == 1 && ggml_nrows(b) > 1) {
- return false;
- }
- }
- return true;
- } break;
- case GGML_OP_GET_ROWS:
- {
- switch (op->src[0]->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- return true;
- default:
- return false;
- }
- } break;
- case GGML_OP_CPY:
- {
- ggml_type src0_type = op->src[0]->type;
- ggml_type src1_type = op->src[1]->type;
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q8_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q4_1) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_0) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_Q5_1) {
- return true;
- }
- if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_IQ4_NL) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F16) {
- return true;
- }
- if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
- return true;
- }
- return false;
- } break;
- case GGML_OP_DUP:
- case GGML_OP_REPEAT:
- case GGML_OP_CONCAT:
- {
- ggml_type src0_type = op->src[0]->type;
- return src0_type != GGML_TYPE_I32 && src0_type != GGML_TYPE_I16;
- } break;
- case GGML_OP_NONE:
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- case GGML_OP_NORM:
- case GGML_OP_ADD:
- case GGML_OP_MUL:
- case GGML_OP_DIV:
- case GGML_OP_RMS_NORM:
- case GGML_OP_SCALE:
- case GGML_OP_SQR:
- case GGML_OP_CLAMP:
- case GGML_OP_CONT:
- case GGML_OP_DIAG_MASK_INF:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_ROPE:
- case GGML_OP_ALIBI:
- case GGML_OP_IM2COL:
- case GGML_OP_POOL_2D:
- case GGML_OP_SUM_ROWS:
- case GGML_OP_ARGSORT:
- case GGML_OP_ACC:
- case GGML_OP_GROUP_NORM:
- case GGML_OP_UPSCALE:
- case GGML_OP_PAD:
- case GGML_OP_ARANGE:
- case GGML_OP_TIMESTEP_EMBEDDING:
- case GGML_OP_LEAKY_RELU:
- return true;
- default:
- return false;
- }
- GGML_UNUSED(backend);
- }
- GGML_CALL static bool ggml_backend_cuda_offload_op(ggml_backend_t backend, const ggml_tensor * op) {
- const int min_batch_size = 32;
- return op->ne[1] >= min_batch_size && op->op != GGML_OP_GET_ROWS;
- GGML_UNUSED(backend);
- }
- static ggml_backend_event_t ggml_backend_cuda_event_new(ggml_backend_t backend) {
- #ifdef GGML_CUDA_NO_PEER_COPY
- return nullptr;
- #else
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- ggml_cuda_set_device(cuda_ctx->device);
- cudaEvent_t event;
- CUDA_CHECK(cudaEventCreateWithFlags(&event, cudaEventDisableTiming));
- return new ggml_backend_event {
- /* .backend = */ backend,
- /* .context = */ event,
- };
- #endif
- }
- static void ggml_backend_cuda_event_free(ggml_backend_event_t event) {
- CUDA_CHECK(cudaEventDestroy((cudaEvent_t)event->context));
- delete event;
- }
- static void ggml_backend_cuda_event_record(ggml_backend_event_t event) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)event->backend->context;
- CUDA_CHECK(cudaEventRecord((cudaEvent_t)event->context, cuda_ctx->stream()));
- }
- static void ggml_backend_cuda_event_wait(ggml_backend_t backend, ggml_backend_event_t event) {
- ggml_backend_cuda_context * cuda_ctx = (ggml_backend_cuda_context *)backend->context;
- if (ggml_backend_is_cuda(event->backend)) {
- CUDA_CHECK(cudaStreamWaitEvent(cuda_ctx->stream(), (cudaEvent_t)event->context, 0));
- } else {
- #if 0
- // untested
- auto wait_fn = [](void * user_data) {
- ggml_backend_event_t event = (ggml_backend_event_t)user_data;
- ggml_backend_event_synchronize(event);
- };
- CUDA_CHECK(cudaLaunchHostFunc(cuda_ctx->stream(), wait_fn, event));
- #endif
- GGML_ASSERT(false);
- }
- }
- static void ggml_backend_cuda_event_synchronize(ggml_backend_event_t event) {
- CUDA_CHECK(cudaEventSynchronize((cudaEvent_t)event->context));
- }
- static ggml_backend_i ggml_backend_cuda_interface = {
- /* .get_name = */ ggml_backend_cuda_name,
- /* .free = */ ggml_backend_cuda_free,
- /* .get_default_buffer_type = */ ggml_backend_cuda_get_default_buffer_type,
- /* .set_tensor_async = */ ggml_backend_cuda_set_tensor_async,
- /* .get_tensor_async = */ ggml_backend_cuda_get_tensor_async,
- /* .cpy_tensor_async = */ ggml_backend_cuda_cpy_tensor_async,
- /* .synchronize = */ ggml_backend_cuda_synchronize,
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_cuda_graph_compute,
- /* .supports_op = */ ggml_backend_cuda_supports_op,
- /* .offload_op = */ ggml_backend_cuda_offload_op,
- /* .event_new = */ ggml_backend_cuda_event_new,
- /* .event_free = */ ggml_backend_cuda_event_free,
- /* .event_record = */ ggml_backend_cuda_event_record,
- /* .event_wait = */ ggml_backend_cuda_event_wait,
- /* .event_synchronize = */ ggml_backend_cuda_event_synchronize,
- };
- static ggml_guid_t ggml_backend_cuda_guid() {
- static ggml_guid guid = { 0x2c, 0xdd, 0xe8, 0x1c, 0x65, 0xb3, 0x65, 0x73, 0x6a, 0x12, 0x88, 0x61, 0x1c, 0xc9, 0xdc, 0x25 };
- return &guid;
- }
- GGML_CALL ggml_backend_t ggml_backend_cuda_init(int device) {
- if (device < 0 || device >= ggml_backend_cuda_get_device_count()) {
- fprintf(stderr, "%s: error: invalid device %d\n", __func__, device);
- return nullptr;
- }
- ggml_backend_cuda_context * ctx = new ggml_backend_cuda_context(device);
- if (ctx == nullptr) {
- fprintf(stderr, "%s: error: failed to allocate context\n", __func__);
- return nullptr;
- }
- ggml_backend_t cuda_backend = new ggml_backend {
- /* .guid = */ ggml_backend_cuda_guid(),
- /* .interface = */ ggml_backend_cuda_interface,
- /* .context = */ ctx
- };
- return cuda_backend;
- }
- GGML_CALL bool ggml_backend_is_cuda(ggml_backend_t backend) {
- return backend != NULL && ggml_guid_matches(backend->guid, ggml_backend_cuda_guid());
- }
- GGML_CALL int ggml_backend_cuda_get_device_count() {
- return ggml_cuda_info().device_count;
- }
- GGML_CALL void ggml_backend_cuda_get_device_description(int device, char * description, size_t description_size) {
- cudaDeviceProp prop;
- CUDA_CHECK(cudaGetDeviceProperties(&prop, device));
- snprintf(description, description_size, "%s", prop.name);
- }
- GGML_CALL void ggml_backend_cuda_get_device_memory(int device, size_t * free, size_t * total) {
- ggml_cuda_set_device(device);
- CUDA_CHECK(cudaMemGetInfo(free, total));
- }
- GGML_CALL bool ggml_backend_cuda_register_host_buffer(void * buffer, size_t size) {
- if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
- return false;
- }
- cudaError_t err = cudaHostRegister(buffer, size, cudaHostRegisterPortable | cudaHostRegisterReadOnly);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- fprintf(stderr, "%s: warning: failed to register %.2f MiB of pinned memory: %s\n", __func__,
- size/1024.0/1024.0, cudaGetErrorString(err));
- return false;
- }
- return true;
- }
- GGML_CALL void ggml_backend_cuda_unregister_host_buffer(void * buffer) {
- if (getenv("GGML_CUDA_REGISTER_HOST") == nullptr) {
- return;
- }
- cudaError_t err = cudaHostUnregister(buffer);
- if (err != cudaSuccess) {
- // clear the error
- cudaGetLastError();
- }
- }
- // backend registry
- GGML_CALL static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * user_data) {
- ggml_backend_t cuda_backend = ggml_backend_cuda_init((int) (intptr_t) user_data);
- return cuda_backend;
- GGML_UNUSED(params);
- }
- extern "C" GGML_CALL int ggml_backend_cuda_reg_devices();
- GGML_CALL int ggml_backend_cuda_reg_devices() {
- int device_count = ggml_backend_cuda_get_device_count();
- //int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
- for (int i = 0; i < device_count; i++) {
- char name[128];
- snprintf(name, sizeof(name), "%s%d", GGML_CUDA_NAME, i);
- ggml_backend_register(name, ggml_backend_reg_cuda_init, ggml_backend_cuda_buffer_type(i), (void *) (intptr_t) i);
- }
- return device_count;
- }
|